Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30
31struct mempolicy;
32struct anon_vma;
33struct anon_vma_chain;
34struct file_ra_state;
35struct user_struct;
36struct writeback_control;
37struct bdi_writeback;
38
39void init_mm_internals(void);
40
41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42extern unsigned long max_mapnr;
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
50#endif
51
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
78extern void * high_memory;
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
101
102/*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109#ifndef untagged_addr
110#define untagged_addr(addr) (addr)
111#endif
112
113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
141 */
142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
201extern unsigned long sysctl_user_reserve_kbytes;
202extern unsigned long sysctl_admin_reserve_kbytes;
203
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
235
236#ifndef CONFIG_MMU
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247#define VM_NONE 0x00000000
248
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279#define VM_SYNC 0x00800000 /* Synchronous page faults */
280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308#ifdef CONFIG_ARCH_HAS_PKEYS
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
318#endif
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323#elif defined(CONFIG_PPC)
324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325#elif defined(CONFIG_PARISC)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_IA64)
328# define VM_GROWSUP VM_ARCH_1
329#elif defined(CONFIG_SPARC64)
330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331# define VM_ARCH_CLEAR VM_SPARC_ADI
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
336#if defined(CONFIG_X86_INTEL_MPX)
337/* MPX specific bounds table or bounds directory */
338# define VM_MPX VM_HIGH_ARCH_4
339#else
340# define VM_MPX VM_NONE
341#endif
342
343#ifndef VM_GROWSUP
344# define VM_GROWSUP VM_NONE
345#endif
346
347/* Bits set in the VMA until the stack is in its final location */
348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352#endif
353
354#ifdef CONFIG_STACK_GROWSUP
355#define VM_STACK VM_GROWSUP
356#else
357#define VM_STACK VM_GROWSDOWN
358#endif
359
360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
362/*
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365 */
366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367
368/* This mask defines which mm->def_flags a process can inherit its parent */
369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
371/* This mask is used to clear all the VMA flags used by mlock */
372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
374/* Arch-specific flags to clear when updating VM flags on protection change */
375#ifndef VM_ARCH_CLEAR
376# define VM_ARCH_CLEAR VM_NONE
377#endif
378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
380/*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384extern pgprot_t protection_map[16];
385
386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391#define FAULT_FLAG_TRIED 0x20 /* Second try */
392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
395
396#define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
407/*
408 * vm_fault is filled by the the pagefault handler and passed to the vma's
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
411 *
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
415 * pgoff should be used in favour of virtual_address, if possible.
416 */
417struct vm_fault {
418 struct vm_area_struct *vma; /* Target VMA */
419 unsigned int flags; /* FAULT_FLAG_xxx flags */
420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
421 pgoff_t pgoff; /* Logical page offset based on vma */
422 unsigned long address; /* Faulting virtual address */
423 pmd_t *pmd; /* Pointer to pmd entry matching
424 * the 'address' */
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
428 pte_t orig_pte; /* Value of PTE at the time of fault */
429
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
432 struct page *page; /* ->fault handlers should return a
433 * page here, unless VM_FAULT_NOPAGE
434 * is set (which is also implied by
435 * VM_FAULT_ERROR).
436 */
437 /* These three entries are valid only while holding ptl lock */
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
453};
454
455/* page entry size for vm->huge_fault() */
456enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460};
461
462/*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
465 * to the functions called when a no-page or a wp-page exception occurs.
466 */
467struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
470 int (*split)(struct vm_area_struct * area, unsigned long addr);
471 int (*mremap)(struct vm_area_struct * area);
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
475 void (*map_pages)(struct vm_fault *vmf,
476 pgoff_t start_pgoff, pgoff_t end_pgoff);
477 unsigned long (*pagesize)(struct vm_area_struct * area);
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482
483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
497#ifdef CONFIG_NUMA
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519#endif
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
527};
528
529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530{
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
533 memset(vma, 0, sizeof(*vma));
534 vma->vm_mm = mm;
535 vma->vm_ops = &dummy_vm_ops;
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537}
538
539static inline void vma_set_anonymous(struct vm_area_struct *vma)
540{
541 vma->vm_ops = NULL;
542}
543
544/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
545#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
546
547struct mmu_gather;
548struct inode;
549
550#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
551static inline int pmd_devmap(pmd_t pmd)
552{
553 return 0;
554}
555static inline int pud_devmap(pud_t pud)
556{
557 return 0;
558}
559static inline int pgd_devmap(pgd_t pgd)
560{
561 return 0;
562}
563#endif
564
565/*
566 * FIXME: take this include out, include page-flags.h in
567 * files which need it (119 of them)
568 */
569#include <linux/page-flags.h>
570#include <linux/huge_mm.h>
571
572/*
573 * Methods to modify the page usage count.
574 *
575 * What counts for a page usage:
576 * - cache mapping (page->mapping)
577 * - private data (page->private)
578 * - page mapped in a task's page tables, each mapping
579 * is counted separately
580 *
581 * Also, many kernel routines increase the page count before a critical
582 * routine so they can be sure the page doesn't go away from under them.
583 */
584
585/*
586 * Drop a ref, return true if the refcount fell to zero (the page has no users)
587 */
588static inline int put_page_testzero(struct page *page)
589{
590 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
591 return page_ref_dec_and_test(page);
592}
593
594/*
595 * Try to grab a ref unless the page has a refcount of zero, return false if
596 * that is the case.
597 * This can be called when MMU is off so it must not access
598 * any of the virtual mappings.
599 */
600static inline int get_page_unless_zero(struct page *page)
601{
602 return page_ref_add_unless(page, 1, 0);
603}
604
605extern int page_is_ram(unsigned long pfn);
606
607enum {
608 REGION_INTERSECTS,
609 REGION_DISJOINT,
610 REGION_MIXED,
611};
612
613int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
614 unsigned long desc);
615
616/* Support for virtually mapped pages */
617struct page *vmalloc_to_page(const void *addr);
618unsigned long vmalloc_to_pfn(const void *addr);
619
620/*
621 * Determine if an address is within the vmalloc range
622 *
623 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
624 * is no special casing required.
625 */
626static inline bool is_vmalloc_addr(const void *x)
627{
628#ifdef CONFIG_MMU
629 unsigned long addr = (unsigned long)x;
630
631 return addr >= VMALLOC_START && addr < VMALLOC_END;
632#else
633 return false;
634#endif
635}
636#ifdef CONFIG_MMU
637extern int is_vmalloc_or_module_addr(const void *x);
638#else
639static inline int is_vmalloc_or_module_addr(const void *x)
640{
641 return 0;
642}
643#endif
644
645extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
646static inline void *kvmalloc(size_t size, gfp_t flags)
647{
648 return kvmalloc_node(size, flags, NUMA_NO_NODE);
649}
650static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
651{
652 return kvmalloc_node(size, flags | __GFP_ZERO, node);
653}
654static inline void *kvzalloc(size_t size, gfp_t flags)
655{
656 return kvmalloc(size, flags | __GFP_ZERO);
657}
658
659static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
660{
661 size_t bytes;
662
663 if (unlikely(check_mul_overflow(n, size, &bytes)))
664 return NULL;
665
666 return kvmalloc(bytes, flags);
667}
668
669static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
670{
671 return kvmalloc_array(n, size, flags | __GFP_ZERO);
672}
673
674extern void kvfree(const void *addr);
675
676static inline atomic_t *compound_mapcount_ptr(struct page *page)
677{
678 return &page[1].compound_mapcount;
679}
680
681static inline int compound_mapcount(struct page *page)
682{
683 VM_BUG_ON_PAGE(!PageCompound(page), page);
684 page = compound_head(page);
685 return atomic_read(compound_mapcount_ptr(page)) + 1;
686}
687
688/*
689 * The atomic page->_mapcount, starts from -1: so that transitions
690 * both from it and to it can be tracked, using atomic_inc_and_test
691 * and atomic_add_negative(-1).
692 */
693static inline void page_mapcount_reset(struct page *page)
694{
695 atomic_set(&(page)->_mapcount, -1);
696}
697
698int __page_mapcount(struct page *page);
699
700static inline int page_mapcount(struct page *page)
701{
702 VM_BUG_ON_PAGE(PageSlab(page), page);
703
704 if (unlikely(PageCompound(page)))
705 return __page_mapcount(page);
706 return atomic_read(&page->_mapcount) + 1;
707}
708
709#ifdef CONFIG_TRANSPARENT_HUGEPAGE
710int total_mapcount(struct page *page);
711int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
712#else
713static inline int total_mapcount(struct page *page)
714{
715 return page_mapcount(page);
716}
717static inline int page_trans_huge_mapcount(struct page *page,
718 int *total_mapcount)
719{
720 int mapcount = page_mapcount(page);
721 if (total_mapcount)
722 *total_mapcount = mapcount;
723 return mapcount;
724}
725#endif
726
727static inline struct page *virt_to_head_page(const void *x)
728{
729 struct page *page = virt_to_page(x);
730
731 return compound_head(page);
732}
733
734void __put_page(struct page *page);
735
736void put_pages_list(struct list_head *pages);
737
738void split_page(struct page *page, unsigned int order);
739
740/*
741 * Compound pages have a destructor function. Provide a
742 * prototype for that function and accessor functions.
743 * These are _only_ valid on the head of a compound page.
744 */
745typedef void compound_page_dtor(struct page *);
746
747/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
748enum compound_dtor_id {
749 NULL_COMPOUND_DTOR,
750 COMPOUND_PAGE_DTOR,
751#ifdef CONFIG_HUGETLB_PAGE
752 HUGETLB_PAGE_DTOR,
753#endif
754#ifdef CONFIG_TRANSPARENT_HUGEPAGE
755 TRANSHUGE_PAGE_DTOR,
756#endif
757 NR_COMPOUND_DTORS,
758};
759extern compound_page_dtor * const compound_page_dtors[];
760
761static inline void set_compound_page_dtor(struct page *page,
762 enum compound_dtor_id compound_dtor)
763{
764 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
765 page[1].compound_dtor = compound_dtor;
766}
767
768static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
769{
770 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
771 return compound_page_dtors[page[1].compound_dtor];
772}
773
774static inline unsigned int compound_order(struct page *page)
775{
776 if (!PageHead(page))
777 return 0;
778 return page[1].compound_order;
779}
780
781static inline void set_compound_order(struct page *page, unsigned int order)
782{
783 page[1].compound_order = order;
784}
785
786void free_compound_page(struct page *page);
787
788#ifdef CONFIG_MMU
789/*
790 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
791 * servicing faults for write access. In the normal case, do always want
792 * pte_mkwrite. But get_user_pages can cause write faults for mappings
793 * that do not have writing enabled, when used by access_process_vm.
794 */
795static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
796{
797 if (likely(vma->vm_flags & VM_WRITE))
798 pte = pte_mkwrite(pte);
799 return pte;
800}
801
802vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
803 struct page *page);
804vm_fault_t finish_fault(struct vm_fault *vmf);
805vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
806#endif
807
808/*
809 * Multiple processes may "see" the same page. E.g. for untouched
810 * mappings of /dev/null, all processes see the same page full of
811 * zeroes, and text pages of executables and shared libraries have
812 * only one copy in memory, at most, normally.
813 *
814 * For the non-reserved pages, page_count(page) denotes a reference count.
815 * page_count() == 0 means the page is free. page->lru is then used for
816 * freelist management in the buddy allocator.
817 * page_count() > 0 means the page has been allocated.
818 *
819 * Pages are allocated by the slab allocator in order to provide memory
820 * to kmalloc and kmem_cache_alloc. In this case, the management of the
821 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
822 * unless a particular usage is carefully commented. (the responsibility of
823 * freeing the kmalloc memory is the caller's, of course).
824 *
825 * A page may be used by anyone else who does a __get_free_page().
826 * In this case, page_count still tracks the references, and should only
827 * be used through the normal accessor functions. The top bits of page->flags
828 * and page->virtual store page management information, but all other fields
829 * are unused and could be used privately, carefully. The management of this
830 * page is the responsibility of the one who allocated it, and those who have
831 * subsequently been given references to it.
832 *
833 * The other pages (we may call them "pagecache pages") are completely
834 * managed by the Linux memory manager: I/O, buffers, swapping etc.
835 * The following discussion applies only to them.
836 *
837 * A pagecache page contains an opaque `private' member, which belongs to the
838 * page's address_space. Usually, this is the address of a circular list of
839 * the page's disk buffers. PG_private must be set to tell the VM to call
840 * into the filesystem to release these pages.
841 *
842 * A page may belong to an inode's memory mapping. In this case, page->mapping
843 * is the pointer to the inode, and page->index is the file offset of the page,
844 * in units of PAGE_SIZE.
845 *
846 * If pagecache pages are not associated with an inode, they are said to be
847 * anonymous pages. These may become associated with the swapcache, and in that
848 * case PG_swapcache is set, and page->private is an offset into the swapcache.
849 *
850 * In either case (swapcache or inode backed), the pagecache itself holds one
851 * reference to the page. Setting PG_private should also increment the
852 * refcount. The each user mapping also has a reference to the page.
853 *
854 * The pagecache pages are stored in a per-mapping radix tree, which is
855 * rooted at mapping->i_pages, and indexed by offset.
856 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
857 * lists, we instead now tag pages as dirty/writeback in the radix tree.
858 *
859 * All pagecache pages may be subject to I/O:
860 * - inode pages may need to be read from disk,
861 * - inode pages which have been modified and are MAP_SHARED may need
862 * to be written back to the inode on disk,
863 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
864 * modified may need to be swapped out to swap space and (later) to be read
865 * back into memory.
866 */
867
868/*
869 * The zone field is never updated after free_area_init_core()
870 * sets it, so none of the operations on it need to be atomic.
871 */
872
873/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
874#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
875#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
876#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
877#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
878#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
879
880/*
881 * Define the bit shifts to access each section. For non-existent
882 * sections we define the shift as 0; that plus a 0 mask ensures
883 * the compiler will optimise away reference to them.
884 */
885#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
886#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
887#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
888#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
889#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
890
891/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
892#ifdef NODE_NOT_IN_PAGE_FLAGS
893#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
894#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
895 SECTIONS_PGOFF : ZONES_PGOFF)
896#else
897#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
898#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
899 NODES_PGOFF : ZONES_PGOFF)
900#endif
901
902#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
903
904#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
905#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
906#endif
907
908#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
909#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
910#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
911#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
912#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
913#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
914
915static inline enum zone_type page_zonenum(const struct page *page)
916{
917 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
918}
919
920#ifdef CONFIG_ZONE_DEVICE
921static inline bool is_zone_device_page(const struct page *page)
922{
923 return page_zonenum(page) == ZONE_DEVICE;
924}
925extern void memmap_init_zone_device(struct zone *, unsigned long,
926 unsigned long, struct dev_pagemap *);
927#else
928static inline bool is_zone_device_page(const struct page *page)
929{
930 return false;
931}
932#endif
933
934#ifdef CONFIG_DEV_PAGEMAP_OPS
935void dev_pagemap_get_ops(void);
936void dev_pagemap_put_ops(void);
937void __put_devmap_managed_page(struct page *page);
938DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
939static inline bool put_devmap_managed_page(struct page *page)
940{
941 if (!static_branch_unlikely(&devmap_managed_key))
942 return false;
943 if (!is_zone_device_page(page))
944 return false;
945 switch (page->pgmap->type) {
946 case MEMORY_DEVICE_PRIVATE:
947 case MEMORY_DEVICE_PUBLIC:
948 case MEMORY_DEVICE_FS_DAX:
949 __put_devmap_managed_page(page);
950 return true;
951 default:
952 break;
953 }
954 return false;
955}
956
957static inline bool is_device_private_page(const struct page *page)
958{
959 return is_zone_device_page(page) &&
960 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
961}
962
963static inline bool is_device_public_page(const struct page *page)
964{
965 return is_zone_device_page(page) &&
966 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
967}
968
969#ifdef CONFIG_PCI_P2PDMA
970static inline bool is_pci_p2pdma_page(const struct page *page)
971{
972 return is_zone_device_page(page) &&
973 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
974}
975#else /* CONFIG_PCI_P2PDMA */
976static inline bool is_pci_p2pdma_page(const struct page *page)
977{
978 return false;
979}
980#endif /* CONFIG_PCI_P2PDMA */
981
982#else /* CONFIG_DEV_PAGEMAP_OPS */
983static inline void dev_pagemap_get_ops(void)
984{
985}
986
987static inline void dev_pagemap_put_ops(void)
988{
989}
990
991static inline bool put_devmap_managed_page(struct page *page)
992{
993 return false;
994}
995
996static inline bool is_device_private_page(const struct page *page)
997{
998 return false;
999}
1000
1001static inline bool is_device_public_page(const struct page *page)
1002{
1003 return false;
1004}
1005
1006static inline bool is_pci_p2pdma_page(const struct page *page)
1007{
1008 return false;
1009}
1010#endif /* CONFIG_DEV_PAGEMAP_OPS */
1011
1012/* 127: arbitrary random number, small enough to assemble well */
1013#define page_ref_zero_or_close_to_overflow(page) \
1014 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1015
1016static inline void get_page(struct page *page)
1017{
1018 page = compound_head(page);
1019 /*
1020 * Getting a normal page or the head of a compound page
1021 * requires to already have an elevated page->_refcount.
1022 */
1023 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1024 page_ref_inc(page);
1025}
1026
1027static inline __must_check bool try_get_page(struct page *page)
1028{
1029 page = compound_head(page);
1030 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1031 return false;
1032 page_ref_inc(page);
1033 return true;
1034}
1035
1036static inline void put_page(struct page *page)
1037{
1038 page = compound_head(page);
1039
1040 /*
1041 * For devmap managed pages we need to catch refcount transition from
1042 * 2 to 1, when refcount reach one it means the page is free and we
1043 * need to inform the device driver through callback. See
1044 * include/linux/memremap.h and HMM for details.
1045 */
1046 if (put_devmap_managed_page(page))
1047 return;
1048
1049 if (put_page_testzero(page))
1050 __put_page(page);
1051}
1052
1053/**
1054 * put_user_page() - release a gup-pinned page
1055 * @page: pointer to page to be released
1056 *
1057 * Pages that were pinned via get_user_pages*() must be released via
1058 * either put_user_page(), or one of the put_user_pages*() routines
1059 * below. This is so that eventually, pages that are pinned via
1060 * get_user_pages*() can be separately tracked and uniquely handled. In
1061 * particular, interactions with RDMA and filesystems need special
1062 * handling.
1063 *
1064 * put_user_page() and put_page() are not interchangeable, despite this early
1065 * implementation that makes them look the same. put_user_page() calls must
1066 * be perfectly matched up with get_user_page() calls.
1067 */
1068static inline void put_user_page(struct page *page)
1069{
1070 put_page(page);
1071}
1072
1073void put_user_pages_dirty(struct page **pages, unsigned long npages);
1074void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1075void put_user_pages(struct page **pages, unsigned long npages);
1076
1077#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1078#define SECTION_IN_PAGE_FLAGS
1079#endif
1080
1081/*
1082 * The identification function is mainly used by the buddy allocator for
1083 * determining if two pages could be buddies. We are not really identifying
1084 * the zone since we could be using the section number id if we do not have
1085 * node id available in page flags.
1086 * We only guarantee that it will return the same value for two combinable
1087 * pages in a zone.
1088 */
1089static inline int page_zone_id(struct page *page)
1090{
1091 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1092}
1093
1094#ifdef NODE_NOT_IN_PAGE_FLAGS
1095extern int page_to_nid(const struct page *page);
1096#else
1097static inline int page_to_nid(const struct page *page)
1098{
1099 struct page *p = (struct page *)page;
1100
1101 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1102}
1103#endif
1104
1105#ifdef CONFIG_NUMA_BALANCING
1106static inline int cpu_pid_to_cpupid(int cpu, int pid)
1107{
1108 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1109}
1110
1111static inline int cpupid_to_pid(int cpupid)
1112{
1113 return cpupid & LAST__PID_MASK;
1114}
1115
1116static inline int cpupid_to_cpu(int cpupid)
1117{
1118 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1119}
1120
1121static inline int cpupid_to_nid(int cpupid)
1122{
1123 return cpu_to_node(cpupid_to_cpu(cpupid));
1124}
1125
1126static inline bool cpupid_pid_unset(int cpupid)
1127{
1128 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1129}
1130
1131static inline bool cpupid_cpu_unset(int cpupid)
1132{
1133 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1134}
1135
1136static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1137{
1138 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1139}
1140
1141#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1142#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1143static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1144{
1145 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1146}
1147
1148static inline int page_cpupid_last(struct page *page)
1149{
1150 return page->_last_cpupid;
1151}
1152static inline void page_cpupid_reset_last(struct page *page)
1153{
1154 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1155}
1156#else
1157static inline int page_cpupid_last(struct page *page)
1158{
1159 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1160}
1161
1162extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1163
1164static inline void page_cpupid_reset_last(struct page *page)
1165{
1166 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1167}
1168#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1169#else /* !CONFIG_NUMA_BALANCING */
1170static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1171{
1172 return page_to_nid(page); /* XXX */
1173}
1174
1175static inline int page_cpupid_last(struct page *page)
1176{
1177 return page_to_nid(page); /* XXX */
1178}
1179
1180static inline int cpupid_to_nid(int cpupid)
1181{
1182 return -1;
1183}
1184
1185static inline int cpupid_to_pid(int cpupid)
1186{
1187 return -1;
1188}
1189
1190static inline int cpupid_to_cpu(int cpupid)
1191{
1192 return -1;
1193}
1194
1195static inline int cpu_pid_to_cpupid(int nid, int pid)
1196{
1197 return -1;
1198}
1199
1200static inline bool cpupid_pid_unset(int cpupid)
1201{
1202 return 1;
1203}
1204
1205static inline void page_cpupid_reset_last(struct page *page)
1206{
1207}
1208
1209static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1210{
1211 return false;
1212}
1213#endif /* CONFIG_NUMA_BALANCING */
1214
1215#ifdef CONFIG_KASAN_SW_TAGS
1216static inline u8 page_kasan_tag(const struct page *page)
1217{
1218 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1219}
1220
1221static inline void page_kasan_tag_set(struct page *page, u8 tag)
1222{
1223 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1224 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1225}
1226
1227static inline void page_kasan_tag_reset(struct page *page)
1228{
1229 page_kasan_tag_set(page, 0xff);
1230}
1231#else
1232static inline u8 page_kasan_tag(const struct page *page)
1233{
1234 return 0xff;
1235}
1236
1237static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1238static inline void page_kasan_tag_reset(struct page *page) { }
1239#endif
1240
1241static inline struct zone *page_zone(const struct page *page)
1242{
1243 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1244}
1245
1246static inline pg_data_t *page_pgdat(const struct page *page)
1247{
1248 return NODE_DATA(page_to_nid(page));
1249}
1250
1251#ifdef SECTION_IN_PAGE_FLAGS
1252static inline void set_page_section(struct page *page, unsigned long section)
1253{
1254 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1255 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1256}
1257
1258static inline unsigned long page_to_section(const struct page *page)
1259{
1260 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1261}
1262#endif
1263
1264static inline void set_page_zone(struct page *page, enum zone_type zone)
1265{
1266 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1267 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1268}
1269
1270static inline void set_page_node(struct page *page, unsigned long node)
1271{
1272 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1273 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1274}
1275
1276static inline void set_page_links(struct page *page, enum zone_type zone,
1277 unsigned long node, unsigned long pfn)
1278{
1279 set_page_zone(page, zone);
1280 set_page_node(page, node);
1281#ifdef SECTION_IN_PAGE_FLAGS
1282 set_page_section(page, pfn_to_section_nr(pfn));
1283#endif
1284}
1285
1286#ifdef CONFIG_MEMCG
1287static inline struct mem_cgroup *page_memcg(struct page *page)
1288{
1289 return page->mem_cgroup;
1290}
1291static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1292{
1293 WARN_ON_ONCE(!rcu_read_lock_held());
1294 return READ_ONCE(page->mem_cgroup);
1295}
1296#else
1297static inline struct mem_cgroup *page_memcg(struct page *page)
1298{
1299 return NULL;
1300}
1301static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1302{
1303 WARN_ON_ONCE(!rcu_read_lock_held());
1304 return NULL;
1305}
1306#endif
1307
1308/*
1309 * Some inline functions in vmstat.h depend on page_zone()
1310 */
1311#include <linux/vmstat.h>
1312
1313static __always_inline void *lowmem_page_address(const struct page *page)
1314{
1315 return page_to_virt(page);
1316}
1317
1318#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1319#define HASHED_PAGE_VIRTUAL
1320#endif
1321
1322#if defined(WANT_PAGE_VIRTUAL)
1323static inline void *page_address(const struct page *page)
1324{
1325 return page->virtual;
1326}
1327static inline void set_page_address(struct page *page, void *address)
1328{
1329 page->virtual = address;
1330}
1331#define page_address_init() do { } while(0)
1332#endif
1333
1334#if defined(HASHED_PAGE_VIRTUAL)
1335void *page_address(const struct page *page);
1336void set_page_address(struct page *page, void *virtual);
1337void page_address_init(void);
1338#endif
1339
1340#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1341#define page_address(page) lowmem_page_address(page)
1342#define set_page_address(page, address) do { } while(0)
1343#define page_address_init() do { } while(0)
1344#endif
1345
1346extern void *page_rmapping(struct page *page);
1347extern struct anon_vma *page_anon_vma(struct page *page);
1348extern struct address_space *page_mapping(struct page *page);
1349
1350extern struct address_space *__page_file_mapping(struct page *);
1351
1352static inline
1353struct address_space *page_file_mapping(struct page *page)
1354{
1355 if (unlikely(PageSwapCache(page)))
1356 return __page_file_mapping(page);
1357
1358 return page->mapping;
1359}
1360
1361extern pgoff_t __page_file_index(struct page *page);
1362
1363/*
1364 * Return the pagecache index of the passed page. Regular pagecache pages
1365 * use ->index whereas swapcache pages use swp_offset(->private)
1366 */
1367static inline pgoff_t page_index(struct page *page)
1368{
1369 if (unlikely(PageSwapCache(page)))
1370 return __page_file_index(page);
1371 return page->index;
1372}
1373
1374bool page_mapped(struct page *page);
1375struct address_space *page_mapping(struct page *page);
1376struct address_space *page_mapping_file(struct page *page);
1377
1378/*
1379 * Return true only if the page has been allocated with
1380 * ALLOC_NO_WATERMARKS and the low watermark was not
1381 * met implying that the system is under some pressure.
1382 */
1383static inline bool page_is_pfmemalloc(struct page *page)
1384{
1385 /*
1386 * Page index cannot be this large so this must be
1387 * a pfmemalloc page.
1388 */
1389 return page->index == -1UL;
1390}
1391
1392/*
1393 * Only to be called by the page allocator on a freshly allocated
1394 * page.
1395 */
1396static inline void set_page_pfmemalloc(struct page *page)
1397{
1398 page->index = -1UL;
1399}
1400
1401static inline void clear_page_pfmemalloc(struct page *page)
1402{
1403 page->index = 0;
1404}
1405
1406/*
1407 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1408 */
1409extern void pagefault_out_of_memory(void);
1410
1411#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1412
1413/*
1414 * Flags passed to show_mem() and show_free_areas() to suppress output in
1415 * various contexts.
1416 */
1417#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1418
1419extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1420
1421extern bool can_do_mlock(void);
1422extern int user_shm_lock(size_t, struct user_struct *);
1423extern void user_shm_unlock(size_t, struct user_struct *);
1424
1425/*
1426 * Parameter block passed down to zap_pte_range in exceptional cases.
1427 */
1428struct zap_details {
1429 struct address_space *check_mapping; /* Check page->mapping if set */
1430 pgoff_t first_index; /* Lowest page->index to unmap */
1431 pgoff_t last_index; /* Highest page->index to unmap */
1432};
1433
1434struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1435 pte_t pte, bool with_public_device);
1436#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1437
1438struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1439 pmd_t pmd);
1440
1441void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1442 unsigned long size);
1443void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1444 unsigned long size);
1445void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1446 unsigned long start, unsigned long end);
1447
1448/**
1449 * mm_walk - callbacks for walk_page_range
1450 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1451 * this handler should only handle pud_trans_huge() puds.
1452 * the pmd_entry or pte_entry callbacks will be used for
1453 * regular PUDs.
1454 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1455 * this handler is required to be able to handle
1456 * pmd_trans_huge() pmds. They may simply choose to
1457 * split_huge_page() instead of handling it explicitly.
1458 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1459 * @pte_hole: if set, called for each hole at all levels
1460 * @hugetlb_entry: if set, called for each hugetlb entry
1461 * @test_walk: caller specific callback function to determine whether
1462 * we walk over the current vma or not. Returning 0
1463 * value means "do page table walk over the current vma,"
1464 * and a negative one means "abort current page table walk
1465 * right now." 1 means "skip the current vma."
1466 * @mm: mm_struct representing the target process of page table walk
1467 * @vma: vma currently walked (NULL if walking outside vmas)
1468 * @private: private data for callbacks' usage
1469 *
1470 * (see the comment on walk_page_range() for more details)
1471 */
1472struct mm_walk {
1473 int (*pud_entry)(pud_t *pud, unsigned long addr,
1474 unsigned long next, struct mm_walk *walk);
1475 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1476 unsigned long next, struct mm_walk *walk);
1477 int (*pte_entry)(pte_t *pte, unsigned long addr,
1478 unsigned long next, struct mm_walk *walk);
1479 int (*pte_hole)(unsigned long addr, unsigned long next,
1480 struct mm_walk *walk);
1481 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1482 unsigned long addr, unsigned long next,
1483 struct mm_walk *walk);
1484 int (*test_walk)(unsigned long addr, unsigned long next,
1485 struct mm_walk *walk);
1486 struct mm_struct *mm;
1487 struct vm_area_struct *vma;
1488 void *private;
1489};
1490
1491struct mmu_notifier_range;
1492
1493int walk_page_range(unsigned long addr, unsigned long end,
1494 struct mm_walk *walk);
1495int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1496void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1497 unsigned long end, unsigned long floor, unsigned long ceiling);
1498int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1499 struct vm_area_struct *vma);
1500int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1501 struct mmu_notifier_range *range,
1502 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1503int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1504 unsigned long *pfn);
1505int follow_phys(struct vm_area_struct *vma, unsigned long address,
1506 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1507int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1508 void *buf, int len, int write);
1509
1510extern void truncate_pagecache(struct inode *inode, loff_t new);
1511extern void truncate_setsize(struct inode *inode, loff_t newsize);
1512void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1513void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1514int truncate_inode_page(struct address_space *mapping, struct page *page);
1515int generic_error_remove_page(struct address_space *mapping, struct page *page);
1516int invalidate_inode_page(struct page *page);
1517
1518#ifdef CONFIG_MMU
1519extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1520 unsigned long address, unsigned int flags);
1521extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1522 unsigned long address, unsigned int fault_flags,
1523 bool *unlocked);
1524void unmap_mapping_pages(struct address_space *mapping,
1525 pgoff_t start, pgoff_t nr, bool even_cows);
1526void unmap_mapping_range(struct address_space *mapping,
1527 loff_t const holebegin, loff_t const holelen, int even_cows);
1528#else
1529static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1530 unsigned long address, unsigned int flags)
1531{
1532 /* should never happen if there's no MMU */
1533 BUG();
1534 return VM_FAULT_SIGBUS;
1535}
1536static inline int fixup_user_fault(struct task_struct *tsk,
1537 struct mm_struct *mm, unsigned long address,
1538 unsigned int fault_flags, bool *unlocked)
1539{
1540 /* should never happen if there's no MMU */
1541 BUG();
1542 return -EFAULT;
1543}
1544static inline void unmap_mapping_pages(struct address_space *mapping,
1545 pgoff_t start, pgoff_t nr, bool even_cows) { }
1546static inline void unmap_mapping_range(struct address_space *mapping,
1547 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1548#endif
1549
1550static inline void unmap_shared_mapping_range(struct address_space *mapping,
1551 loff_t const holebegin, loff_t const holelen)
1552{
1553 unmap_mapping_range(mapping, holebegin, holelen, 0);
1554}
1555
1556extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1557 void *buf, int len, unsigned int gup_flags);
1558extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1559 void *buf, int len, unsigned int gup_flags);
1560extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1561 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1562
1563long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1564 unsigned long start, unsigned long nr_pages,
1565 unsigned int gup_flags, struct page **pages,
1566 struct vm_area_struct **vmas, int *locked);
1567long get_user_pages(unsigned long start, unsigned long nr_pages,
1568 unsigned int gup_flags, struct page **pages,
1569 struct vm_area_struct **vmas);
1570long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1571 unsigned int gup_flags, struct page **pages, int *locked);
1572long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1573 struct page **pages, unsigned int gup_flags);
1574
1575int get_user_pages_fast(unsigned long start, int nr_pages,
1576 unsigned int gup_flags, struct page **pages);
1577
1578/* Container for pinned pfns / pages */
1579struct frame_vector {
1580 unsigned int nr_allocated; /* Number of frames we have space for */
1581 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1582 bool got_ref; /* Did we pin pages by getting page ref? */
1583 bool is_pfns; /* Does array contain pages or pfns? */
1584 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1585 * pfns_vector_pages() or pfns_vector_pfns()
1586 * for access */
1587};
1588
1589struct frame_vector *frame_vector_create(unsigned int nr_frames);
1590void frame_vector_destroy(struct frame_vector *vec);
1591int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1592 unsigned int gup_flags, struct frame_vector *vec);
1593void put_vaddr_frames(struct frame_vector *vec);
1594int frame_vector_to_pages(struct frame_vector *vec);
1595void frame_vector_to_pfns(struct frame_vector *vec);
1596
1597static inline unsigned int frame_vector_count(struct frame_vector *vec)
1598{
1599 return vec->nr_frames;
1600}
1601
1602static inline struct page **frame_vector_pages(struct frame_vector *vec)
1603{
1604 if (vec->is_pfns) {
1605 int err = frame_vector_to_pages(vec);
1606
1607 if (err)
1608 return ERR_PTR(err);
1609 }
1610 return (struct page **)(vec->ptrs);
1611}
1612
1613static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1614{
1615 if (!vec->is_pfns)
1616 frame_vector_to_pfns(vec);
1617 return (unsigned long *)(vec->ptrs);
1618}
1619
1620struct kvec;
1621int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1622 struct page **pages);
1623int get_kernel_page(unsigned long start, int write, struct page **pages);
1624struct page *get_dump_page(unsigned long addr);
1625
1626extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1627extern void do_invalidatepage(struct page *page, unsigned int offset,
1628 unsigned int length);
1629
1630void __set_page_dirty(struct page *, struct address_space *, int warn);
1631int __set_page_dirty_nobuffers(struct page *page);
1632int __set_page_dirty_no_writeback(struct page *page);
1633int redirty_page_for_writepage(struct writeback_control *wbc,
1634 struct page *page);
1635void account_page_dirtied(struct page *page, struct address_space *mapping);
1636void account_page_cleaned(struct page *page, struct address_space *mapping,
1637 struct bdi_writeback *wb);
1638int set_page_dirty(struct page *page);
1639int set_page_dirty_lock(struct page *page);
1640void __cancel_dirty_page(struct page *page);
1641static inline void cancel_dirty_page(struct page *page)
1642{
1643 /* Avoid atomic ops, locking, etc. when not actually needed. */
1644 if (PageDirty(page))
1645 __cancel_dirty_page(page);
1646}
1647int clear_page_dirty_for_io(struct page *page);
1648
1649int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1650
1651static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1652{
1653 return !vma->vm_ops;
1654}
1655
1656#ifdef CONFIG_SHMEM
1657/*
1658 * The vma_is_shmem is not inline because it is used only by slow
1659 * paths in userfault.
1660 */
1661bool vma_is_shmem(struct vm_area_struct *vma);
1662#else
1663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1664#endif
1665
1666int vma_is_stack_for_current(struct vm_area_struct *vma);
1667
1668extern unsigned long move_page_tables(struct vm_area_struct *vma,
1669 unsigned long old_addr, struct vm_area_struct *new_vma,
1670 unsigned long new_addr, unsigned long len,
1671 bool need_rmap_locks);
1672extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1673 unsigned long end, pgprot_t newprot,
1674 int dirty_accountable, int prot_numa);
1675extern int mprotect_fixup(struct vm_area_struct *vma,
1676 struct vm_area_struct **pprev, unsigned long start,
1677 unsigned long end, unsigned long newflags);
1678
1679/*
1680 * doesn't attempt to fault and will return short.
1681 */
1682int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1683 struct page **pages);
1684/*
1685 * per-process(per-mm_struct) statistics.
1686 */
1687static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1688{
1689 long val = atomic_long_read(&mm->rss_stat.count[member]);
1690
1691#ifdef SPLIT_RSS_COUNTING
1692 /*
1693 * counter is updated in asynchronous manner and may go to minus.
1694 * But it's never be expected number for users.
1695 */
1696 if (val < 0)
1697 val = 0;
1698#endif
1699 return (unsigned long)val;
1700}
1701
1702static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1703{
1704 atomic_long_add(value, &mm->rss_stat.count[member]);
1705}
1706
1707static inline void inc_mm_counter(struct mm_struct *mm, int member)
1708{
1709 atomic_long_inc(&mm->rss_stat.count[member]);
1710}
1711
1712static inline void dec_mm_counter(struct mm_struct *mm, int member)
1713{
1714 atomic_long_dec(&mm->rss_stat.count[member]);
1715}
1716
1717/* Optimized variant when page is already known not to be PageAnon */
1718static inline int mm_counter_file(struct page *page)
1719{
1720 if (PageSwapBacked(page))
1721 return MM_SHMEMPAGES;
1722 return MM_FILEPAGES;
1723}
1724
1725static inline int mm_counter(struct page *page)
1726{
1727 if (PageAnon(page))
1728 return MM_ANONPAGES;
1729 return mm_counter_file(page);
1730}
1731
1732static inline unsigned long get_mm_rss(struct mm_struct *mm)
1733{
1734 return get_mm_counter(mm, MM_FILEPAGES) +
1735 get_mm_counter(mm, MM_ANONPAGES) +
1736 get_mm_counter(mm, MM_SHMEMPAGES);
1737}
1738
1739static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1740{
1741 return max(mm->hiwater_rss, get_mm_rss(mm));
1742}
1743
1744static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1745{
1746 return max(mm->hiwater_vm, mm->total_vm);
1747}
1748
1749static inline void update_hiwater_rss(struct mm_struct *mm)
1750{
1751 unsigned long _rss = get_mm_rss(mm);
1752
1753 if ((mm)->hiwater_rss < _rss)
1754 (mm)->hiwater_rss = _rss;
1755}
1756
1757static inline void update_hiwater_vm(struct mm_struct *mm)
1758{
1759 if (mm->hiwater_vm < mm->total_vm)
1760 mm->hiwater_vm = mm->total_vm;
1761}
1762
1763static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1764{
1765 mm->hiwater_rss = get_mm_rss(mm);
1766}
1767
1768static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1769 struct mm_struct *mm)
1770{
1771 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1772
1773 if (*maxrss < hiwater_rss)
1774 *maxrss = hiwater_rss;
1775}
1776
1777#if defined(SPLIT_RSS_COUNTING)
1778void sync_mm_rss(struct mm_struct *mm);
1779#else
1780static inline void sync_mm_rss(struct mm_struct *mm)
1781{
1782}
1783#endif
1784
1785#ifndef __HAVE_ARCH_PTE_DEVMAP
1786static inline int pte_devmap(pte_t pte)
1787{
1788 return 0;
1789}
1790#endif
1791
1792int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1793
1794extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1795 spinlock_t **ptl);
1796static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1797 spinlock_t **ptl)
1798{
1799 pte_t *ptep;
1800 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1801 return ptep;
1802}
1803
1804#ifdef __PAGETABLE_P4D_FOLDED
1805static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1806 unsigned long address)
1807{
1808 return 0;
1809}
1810#else
1811int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1812#endif
1813
1814#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1815static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1816 unsigned long address)
1817{
1818 return 0;
1819}
1820static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1821static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1822
1823#else
1824int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1825
1826static inline void mm_inc_nr_puds(struct mm_struct *mm)
1827{
1828 if (mm_pud_folded(mm))
1829 return;
1830 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1831}
1832
1833static inline void mm_dec_nr_puds(struct mm_struct *mm)
1834{
1835 if (mm_pud_folded(mm))
1836 return;
1837 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1838}
1839#endif
1840
1841#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1842static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1843 unsigned long address)
1844{
1845 return 0;
1846}
1847
1848static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1849static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1850
1851#else
1852int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1853
1854static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1855{
1856 if (mm_pmd_folded(mm))
1857 return;
1858 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1859}
1860
1861static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1862{
1863 if (mm_pmd_folded(mm))
1864 return;
1865 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1866}
1867#endif
1868
1869#ifdef CONFIG_MMU
1870static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1871{
1872 atomic_long_set(&mm->pgtables_bytes, 0);
1873}
1874
1875static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1876{
1877 return atomic_long_read(&mm->pgtables_bytes);
1878}
1879
1880static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1881{
1882 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1883}
1884
1885static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1886{
1887 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1888}
1889#else
1890
1891static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1892static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1893{
1894 return 0;
1895}
1896
1897static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1898static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1899#endif
1900
1901int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1902int __pte_alloc_kernel(pmd_t *pmd);
1903
1904/*
1905 * The following ifdef needed to get the 4level-fixup.h header to work.
1906 * Remove it when 4level-fixup.h has been removed.
1907 */
1908#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1909
1910#ifndef __ARCH_HAS_5LEVEL_HACK
1911static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1912 unsigned long address)
1913{
1914 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1915 NULL : p4d_offset(pgd, address);
1916}
1917
1918static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1919 unsigned long address)
1920{
1921 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1922 NULL : pud_offset(p4d, address);
1923}
1924#endif /* !__ARCH_HAS_5LEVEL_HACK */
1925
1926static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1927{
1928 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1929 NULL: pmd_offset(pud, address);
1930}
1931#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1932
1933#if USE_SPLIT_PTE_PTLOCKS
1934#if ALLOC_SPLIT_PTLOCKS
1935void __init ptlock_cache_init(void);
1936extern bool ptlock_alloc(struct page *page);
1937extern void ptlock_free(struct page *page);
1938
1939static inline spinlock_t *ptlock_ptr(struct page *page)
1940{
1941 return page->ptl;
1942}
1943#else /* ALLOC_SPLIT_PTLOCKS */
1944static inline void ptlock_cache_init(void)
1945{
1946}
1947
1948static inline bool ptlock_alloc(struct page *page)
1949{
1950 return true;
1951}
1952
1953static inline void ptlock_free(struct page *page)
1954{
1955}
1956
1957static inline spinlock_t *ptlock_ptr(struct page *page)
1958{
1959 return &page->ptl;
1960}
1961#endif /* ALLOC_SPLIT_PTLOCKS */
1962
1963static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1964{
1965 return ptlock_ptr(pmd_page(*pmd));
1966}
1967
1968static inline bool ptlock_init(struct page *page)
1969{
1970 /*
1971 * prep_new_page() initialize page->private (and therefore page->ptl)
1972 * with 0. Make sure nobody took it in use in between.
1973 *
1974 * It can happen if arch try to use slab for page table allocation:
1975 * slab code uses page->slab_cache, which share storage with page->ptl.
1976 */
1977 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1978 if (!ptlock_alloc(page))
1979 return false;
1980 spin_lock_init(ptlock_ptr(page));
1981 return true;
1982}
1983
1984#else /* !USE_SPLIT_PTE_PTLOCKS */
1985/*
1986 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1987 */
1988static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1989{
1990 return &mm->page_table_lock;
1991}
1992static inline void ptlock_cache_init(void) {}
1993static inline bool ptlock_init(struct page *page) { return true; }
1994static inline void ptlock_free(struct page *page) {}
1995#endif /* USE_SPLIT_PTE_PTLOCKS */
1996
1997static inline void pgtable_init(void)
1998{
1999 ptlock_cache_init();
2000 pgtable_cache_init();
2001}
2002
2003static inline bool pgtable_page_ctor(struct page *page)
2004{
2005 if (!ptlock_init(page))
2006 return false;
2007 __SetPageTable(page);
2008 inc_zone_page_state(page, NR_PAGETABLE);
2009 return true;
2010}
2011
2012static inline void pgtable_page_dtor(struct page *page)
2013{
2014 ptlock_free(page);
2015 __ClearPageTable(page);
2016 dec_zone_page_state(page, NR_PAGETABLE);
2017}
2018
2019#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2020({ \
2021 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2022 pte_t *__pte = pte_offset_map(pmd, address); \
2023 *(ptlp) = __ptl; \
2024 spin_lock(__ptl); \
2025 __pte; \
2026})
2027
2028#define pte_unmap_unlock(pte, ptl) do { \
2029 spin_unlock(ptl); \
2030 pte_unmap(pte); \
2031} while (0)
2032
2033#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2034
2035#define pte_alloc_map(mm, pmd, address) \
2036 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2037
2038#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2039 (pte_alloc(mm, pmd) ? \
2040 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2041
2042#define pte_alloc_kernel(pmd, address) \
2043 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2044 NULL: pte_offset_kernel(pmd, address))
2045
2046#if USE_SPLIT_PMD_PTLOCKS
2047
2048static struct page *pmd_to_page(pmd_t *pmd)
2049{
2050 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2051 return virt_to_page((void *)((unsigned long) pmd & mask));
2052}
2053
2054static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2055{
2056 return ptlock_ptr(pmd_to_page(pmd));
2057}
2058
2059static inline bool pgtable_pmd_page_ctor(struct page *page)
2060{
2061#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2062 page->pmd_huge_pte = NULL;
2063#endif
2064 return ptlock_init(page);
2065}
2066
2067static inline void pgtable_pmd_page_dtor(struct page *page)
2068{
2069#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2070 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2071#endif
2072 ptlock_free(page);
2073}
2074
2075#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2076
2077#else
2078
2079static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2080{
2081 return &mm->page_table_lock;
2082}
2083
2084static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2085static inline void pgtable_pmd_page_dtor(struct page *page) {}
2086
2087#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2088
2089#endif
2090
2091static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2092{
2093 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2094 spin_lock(ptl);
2095 return ptl;
2096}
2097
2098/*
2099 * No scalability reason to split PUD locks yet, but follow the same pattern
2100 * as the PMD locks to make it easier if we decide to. The VM should not be
2101 * considered ready to switch to split PUD locks yet; there may be places
2102 * which need to be converted from page_table_lock.
2103 */
2104static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2105{
2106 return &mm->page_table_lock;
2107}
2108
2109static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2110{
2111 spinlock_t *ptl = pud_lockptr(mm, pud);
2112
2113 spin_lock(ptl);
2114 return ptl;
2115}
2116
2117extern void __init pagecache_init(void);
2118extern void free_area_init(unsigned long * zones_size);
2119extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2120 unsigned long zone_start_pfn, unsigned long *zholes_size);
2121extern void free_initmem(void);
2122
2123/*
2124 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2125 * into the buddy system. The freed pages will be poisoned with pattern
2126 * "poison" if it's within range [0, UCHAR_MAX].
2127 * Return pages freed into the buddy system.
2128 */
2129extern unsigned long free_reserved_area(void *start, void *end,
2130 int poison, const char *s);
2131
2132#ifdef CONFIG_HIGHMEM
2133/*
2134 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2135 * and totalram_pages.
2136 */
2137extern void free_highmem_page(struct page *page);
2138#endif
2139
2140extern void adjust_managed_page_count(struct page *page, long count);
2141extern void mem_init_print_info(const char *str);
2142
2143extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2144
2145/* Free the reserved page into the buddy system, so it gets managed. */
2146static inline void __free_reserved_page(struct page *page)
2147{
2148 ClearPageReserved(page);
2149 init_page_count(page);
2150 __free_page(page);
2151}
2152
2153static inline void free_reserved_page(struct page *page)
2154{
2155 __free_reserved_page(page);
2156 adjust_managed_page_count(page, 1);
2157}
2158
2159static inline void mark_page_reserved(struct page *page)
2160{
2161 SetPageReserved(page);
2162 adjust_managed_page_count(page, -1);
2163}
2164
2165/*
2166 * Default method to free all the __init memory into the buddy system.
2167 * The freed pages will be poisoned with pattern "poison" if it's within
2168 * range [0, UCHAR_MAX].
2169 * Return pages freed into the buddy system.
2170 */
2171static inline unsigned long free_initmem_default(int poison)
2172{
2173 extern char __init_begin[], __init_end[];
2174
2175 return free_reserved_area(&__init_begin, &__init_end,
2176 poison, "unused kernel");
2177}
2178
2179static inline unsigned long get_num_physpages(void)
2180{
2181 int nid;
2182 unsigned long phys_pages = 0;
2183
2184 for_each_online_node(nid)
2185 phys_pages += node_present_pages(nid);
2186
2187 return phys_pages;
2188}
2189
2190#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2191/*
2192 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2193 * zones, allocate the backing mem_map and account for memory holes in a more
2194 * architecture independent manner. This is a substitute for creating the
2195 * zone_sizes[] and zholes_size[] arrays and passing them to
2196 * free_area_init_node()
2197 *
2198 * An architecture is expected to register range of page frames backed by
2199 * physical memory with memblock_add[_node]() before calling
2200 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2201 * usage, an architecture is expected to do something like
2202 *
2203 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2204 * max_highmem_pfn};
2205 * for_each_valid_physical_page_range()
2206 * memblock_add_node(base, size, nid)
2207 * free_area_init_nodes(max_zone_pfns);
2208 *
2209 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2210 * registered physical page range. Similarly
2211 * sparse_memory_present_with_active_regions() calls memory_present() for
2212 * each range when SPARSEMEM is enabled.
2213 *
2214 * See mm/page_alloc.c for more information on each function exposed by
2215 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2216 */
2217extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2218unsigned long node_map_pfn_alignment(void);
2219unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2220 unsigned long end_pfn);
2221extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2222 unsigned long end_pfn);
2223extern void get_pfn_range_for_nid(unsigned int nid,
2224 unsigned long *start_pfn, unsigned long *end_pfn);
2225extern unsigned long find_min_pfn_with_active_regions(void);
2226extern void free_bootmem_with_active_regions(int nid,
2227 unsigned long max_low_pfn);
2228extern void sparse_memory_present_with_active_regions(int nid);
2229
2230#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2231
2232#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2233 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2234static inline int __early_pfn_to_nid(unsigned long pfn,
2235 struct mminit_pfnnid_cache *state)
2236{
2237 return 0;
2238}
2239#else
2240/* please see mm/page_alloc.c */
2241extern int __meminit early_pfn_to_nid(unsigned long pfn);
2242/* there is a per-arch backend function. */
2243extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2244 struct mminit_pfnnid_cache *state);
2245#endif
2246
2247#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2248void zero_resv_unavail(void);
2249#else
2250static inline void zero_resv_unavail(void) {}
2251#endif
2252
2253extern void set_dma_reserve(unsigned long new_dma_reserve);
2254extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2255 enum memmap_context, struct vmem_altmap *);
2256extern void setup_per_zone_wmarks(void);
2257extern int __meminit init_per_zone_wmark_min(void);
2258extern void mem_init(void);
2259extern void __init mmap_init(void);
2260extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2261extern long si_mem_available(void);
2262extern void si_meminfo(struct sysinfo * val);
2263extern void si_meminfo_node(struct sysinfo *val, int nid);
2264#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2265extern unsigned long arch_reserved_kernel_pages(void);
2266#endif
2267
2268extern __printf(3, 4)
2269void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2270
2271extern void setup_per_cpu_pageset(void);
2272
2273extern void zone_pcp_update(struct zone *zone);
2274extern void zone_pcp_reset(struct zone *zone);
2275
2276/* page_alloc.c */
2277extern int min_free_kbytes;
2278extern int watermark_boost_factor;
2279extern int watermark_scale_factor;
2280
2281/* nommu.c */
2282extern atomic_long_t mmap_pages_allocated;
2283extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2284
2285/* interval_tree.c */
2286void vma_interval_tree_insert(struct vm_area_struct *node,
2287 struct rb_root_cached *root);
2288void vma_interval_tree_insert_after(struct vm_area_struct *node,
2289 struct vm_area_struct *prev,
2290 struct rb_root_cached *root);
2291void vma_interval_tree_remove(struct vm_area_struct *node,
2292 struct rb_root_cached *root);
2293struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2294 unsigned long start, unsigned long last);
2295struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2296 unsigned long start, unsigned long last);
2297
2298#define vma_interval_tree_foreach(vma, root, start, last) \
2299 for (vma = vma_interval_tree_iter_first(root, start, last); \
2300 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2301
2302void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2303 struct rb_root_cached *root);
2304void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2305 struct rb_root_cached *root);
2306struct anon_vma_chain *
2307anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2308 unsigned long start, unsigned long last);
2309struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2310 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2311#ifdef CONFIG_DEBUG_VM_RB
2312void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2313#endif
2314
2315#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2316 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2317 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2318
2319/* mmap.c */
2320extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2321extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2322 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2323 struct vm_area_struct *expand);
2324static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2325 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2326{
2327 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2328}
2329extern struct vm_area_struct *vma_merge(struct mm_struct *,
2330 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2331 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2332 struct mempolicy *, struct vm_userfaultfd_ctx);
2333extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2334extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2335 unsigned long addr, int new_below);
2336extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2337 unsigned long addr, int new_below);
2338extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2339extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2340 struct rb_node **, struct rb_node *);
2341extern void unlink_file_vma(struct vm_area_struct *);
2342extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2343 unsigned long addr, unsigned long len, pgoff_t pgoff,
2344 bool *need_rmap_locks);
2345extern void exit_mmap(struct mm_struct *);
2346
2347static inline int check_data_rlimit(unsigned long rlim,
2348 unsigned long new,
2349 unsigned long start,
2350 unsigned long end_data,
2351 unsigned long start_data)
2352{
2353 if (rlim < RLIM_INFINITY) {
2354 if (((new - start) + (end_data - start_data)) > rlim)
2355 return -ENOSPC;
2356 }
2357
2358 return 0;
2359}
2360
2361extern int mm_take_all_locks(struct mm_struct *mm);
2362extern void mm_drop_all_locks(struct mm_struct *mm);
2363
2364extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2365extern struct file *get_mm_exe_file(struct mm_struct *mm);
2366extern struct file *get_task_exe_file(struct task_struct *task);
2367
2368extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2369extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2370
2371extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2372 const struct vm_special_mapping *sm);
2373extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2374 unsigned long addr, unsigned long len,
2375 unsigned long flags,
2376 const struct vm_special_mapping *spec);
2377/* This is an obsolete alternative to _install_special_mapping. */
2378extern int install_special_mapping(struct mm_struct *mm,
2379 unsigned long addr, unsigned long len,
2380 unsigned long flags, struct page **pages);
2381
2382extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2383
2384extern unsigned long mmap_region(struct file *file, unsigned long addr,
2385 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2386 struct list_head *uf);
2387extern unsigned long do_mmap(struct file *file, unsigned long addr,
2388 unsigned long len, unsigned long prot, unsigned long flags,
2389 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2390 struct list_head *uf);
2391extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2392 struct list_head *uf, bool downgrade);
2393extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2394 struct list_head *uf);
2395
2396static inline unsigned long
2397do_mmap_pgoff(struct file *file, unsigned long addr,
2398 unsigned long len, unsigned long prot, unsigned long flags,
2399 unsigned long pgoff, unsigned long *populate,
2400 struct list_head *uf)
2401{
2402 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2403}
2404
2405#ifdef CONFIG_MMU
2406extern int __mm_populate(unsigned long addr, unsigned long len,
2407 int ignore_errors);
2408static inline void mm_populate(unsigned long addr, unsigned long len)
2409{
2410 /* Ignore errors */
2411 (void) __mm_populate(addr, len, 1);
2412}
2413#else
2414static inline void mm_populate(unsigned long addr, unsigned long len) {}
2415#endif
2416
2417/* These take the mm semaphore themselves */
2418extern int __must_check vm_brk(unsigned long, unsigned long);
2419extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2420extern int vm_munmap(unsigned long, size_t);
2421extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2422 unsigned long, unsigned long,
2423 unsigned long, unsigned long);
2424
2425struct vm_unmapped_area_info {
2426#define VM_UNMAPPED_AREA_TOPDOWN 1
2427 unsigned long flags;
2428 unsigned long length;
2429 unsigned long low_limit;
2430 unsigned long high_limit;
2431 unsigned long align_mask;
2432 unsigned long align_offset;
2433};
2434
2435extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2436extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2437
2438/*
2439 * Search for an unmapped address range.
2440 *
2441 * We are looking for a range that:
2442 * - does not intersect with any VMA;
2443 * - is contained within the [low_limit, high_limit) interval;
2444 * - is at least the desired size.
2445 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2446 */
2447static inline unsigned long
2448vm_unmapped_area(struct vm_unmapped_area_info *info)
2449{
2450 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2451 return unmapped_area_topdown(info);
2452 else
2453 return unmapped_area(info);
2454}
2455
2456/* truncate.c */
2457extern void truncate_inode_pages(struct address_space *, loff_t);
2458extern void truncate_inode_pages_range(struct address_space *,
2459 loff_t lstart, loff_t lend);
2460extern void truncate_inode_pages_final(struct address_space *);
2461
2462/* generic vm_area_ops exported for stackable file systems */
2463extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2464extern void filemap_map_pages(struct vm_fault *vmf,
2465 pgoff_t start_pgoff, pgoff_t end_pgoff);
2466extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2467
2468/* mm/page-writeback.c */
2469int __must_check write_one_page(struct page *page);
2470void task_dirty_inc(struct task_struct *tsk);
2471
2472/* readahead.c */
2473#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2474
2475int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2476 pgoff_t offset, unsigned long nr_to_read);
2477
2478void page_cache_sync_readahead(struct address_space *mapping,
2479 struct file_ra_state *ra,
2480 struct file *filp,
2481 pgoff_t offset,
2482 unsigned long size);
2483
2484void page_cache_async_readahead(struct address_space *mapping,
2485 struct file_ra_state *ra,
2486 struct file *filp,
2487 struct page *pg,
2488 pgoff_t offset,
2489 unsigned long size);
2490
2491extern unsigned long stack_guard_gap;
2492/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2493extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2494
2495/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2496extern int expand_downwards(struct vm_area_struct *vma,
2497 unsigned long address);
2498#if VM_GROWSUP
2499extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2500#else
2501 #define expand_upwards(vma, address) (0)
2502#endif
2503
2504/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2505extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2506extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2507 struct vm_area_struct **pprev);
2508
2509/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2510 NULL if none. Assume start_addr < end_addr. */
2511static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2512{
2513 struct vm_area_struct * vma = find_vma(mm,start_addr);
2514
2515 if (vma && end_addr <= vma->vm_start)
2516 vma = NULL;
2517 return vma;
2518}
2519
2520static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2521{
2522 unsigned long vm_start = vma->vm_start;
2523
2524 if (vma->vm_flags & VM_GROWSDOWN) {
2525 vm_start -= stack_guard_gap;
2526 if (vm_start > vma->vm_start)
2527 vm_start = 0;
2528 }
2529 return vm_start;
2530}
2531
2532static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2533{
2534 unsigned long vm_end = vma->vm_end;
2535
2536 if (vma->vm_flags & VM_GROWSUP) {
2537 vm_end += stack_guard_gap;
2538 if (vm_end < vma->vm_end)
2539 vm_end = -PAGE_SIZE;
2540 }
2541 return vm_end;
2542}
2543
2544static inline unsigned long vma_pages(struct vm_area_struct *vma)
2545{
2546 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2547}
2548
2549/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2550static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2551 unsigned long vm_start, unsigned long vm_end)
2552{
2553 struct vm_area_struct *vma = find_vma(mm, vm_start);
2554
2555 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2556 vma = NULL;
2557
2558 return vma;
2559}
2560
2561static inline bool range_in_vma(struct vm_area_struct *vma,
2562 unsigned long start, unsigned long end)
2563{
2564 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2565}
2566
2567#ifdef CONFIG_MMU
2568pgprot_t vm_get_page_prot(unsigned long vm_flags);
2569void vma_set_page_prot(struct vm_area_struct *vma);
2570#else
2571static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2572{
2573 return __pgprot(0);
2574}
2575static inline void vma_set_page_prot(struct vm_area_struct *vma)
2576{
2577 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2578}
2579#endif
2580
2581#ifdef CONFIG_NUMA_BALANCING
2582unsigned long change_prot_numa(struct vm_area_struct *vma,
2583 unsigned long start, unsigned long end);
2584#endif
2585
2586struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2587int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2588 unsigned long pfn, unsigned long size, pgprot_t);
2589int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2590int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2591 unsigned long num);
2592int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2593 unsigned long num);
2594vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2595 unsigned long pfn);
2596vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2597 unsigned long pfn, pgprot_t pgprot);
2598vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2599 pfn_t pfn);
2600vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2601 unsigned long addr, pfn_t pfn);
2602int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2603
2604static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2605 unsigned long addr, struct page *page)
2606{
2607 int err = vm_insert_page(vma, addr, page);
2608
2609 if (err == -ENOMEM)
2610 return VM_FAULT_OOM;
2611 if (err < 0 && err != -EBUSY)
2612 return VM_FAULT_SIGBUS;
2613
2614 return VM_FAULT_NOPAGE;
2615}
2616
2617static inline vm_fault_t vmf_error(int err)
2618{
2619 if (err == -ENOMEM)
2620 return VM_FAULT_OOM;
2621 return VM_FAULT_SIGBUS;
2622}
2623
2624struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2625 unsigned int foll_flags);
2626
2627#define FOLL_WRITE 0x01 /* check pte is writable */
2628#define FOLL_TOUCH 0x02 /* mark page accessed */
2629#define FOLL_GET 0x04 /* do get_page on page */
2630#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2631#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2632#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2633 * and return without waiting upon it */
2634#define FOLL_POPULATE 0x40 /* fault in page */
2635#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2636#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2637#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2638#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2639#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2640#define FOLL_MLOCK 0x1000 /* lock present pages */
2641#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2642#define FOLL_COW 0x4000 /* internal GUP flag */
2643#define FOLL_ANON 0x8000 /* don't do file mappings */
2644#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2645
2646/*
2647 * NOTE on FOLL_LONGTERM:
2648 *
2649 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2650 * period _often_ under userspace control. This is contrasted with
2651 * iov_iter_get_pages() where usages which are transient.
2652 *
2653 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2654 * lifetime enforced by the filesystem and we need guarantees that longterm
2655 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2656 * the filesystem. Ideas for this coordination include revoking the longterm
2657 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2658 * added after the problem with filesystems was found FS DAX VMAs are
2659 * specifically failed. Filesystem pages are still subject to bugs and use of
2660 * FOLL_LONGTERM should be avoided on those pages.
2661 *
2662 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2663 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2664 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2665 * is due to an incompatibility with the FS DAX check and
2666 * FAULT_FLAG_ALLOW_RETRY
2667 *
2668 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2669 * that region. And so CMA attempts to migrate the page before pinning when
2670 * FOLL_LONGTERM is specified.
2671 */
2672
2673static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2674{
2675 if (vm_fault & VM_FAULT_OOM)
2676 return -ENOMEM;
2677 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2678 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2679 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2680 return -EFAULT;
2681 return 0;
2682}
2683
2684typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2685 void *data);
2686extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2687 unsigned long size, pte_fn_t fn, void *data);
2688
2689
2690#ifdef CONFIG_PAGE_POISONING
2691extern bool page_poisoning_enabled(void);
2692extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2693#else
2694static inline bool page_poisoning_enabled(void) { return false; }
2695static inline void kernel_poison_pages(struct page *page, int numpages,
2696 int enable) { }
2697#endif
2698
2699extern bool _debug_pagealloc_enabled;
2700
2701static inline bool debug_pagealloc_enabled(void)
2702{
2703 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled;
2704}
2705
2706#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2707extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2708
2709static inline void
2710kernel_map_pages(struct page *page, int numpages, int enable)
2711{
2712 __kernel_map_pages(page, numpages, enable);
2713}
2714#ifdef CONFIG_HIBERNATION
2715extern bool kernel_page_present(struct page *page);
2716#endif /* CONFIG_HIBERNATION */
2717#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2718static inline void
2719kernel_map_pages(struct page *page, int numpages, int enable) {}
2720#ifdef CONFIG_HIBERNATION
2721static inline bool kernel_page_present(struct page *page) { return true; }
2722#endif /* CONFIG_HIBERNATION */
2723#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2724
2725#ifdef __HAVE_ARCH_GATE_AREA
2726extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2727extern int in_gate_area_no_mm(unsigned long addr);
2728extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2729#else
2730static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2731{
2732 return NULL;
2733}
2734static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2735static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2736{
2737 return 0;
2738}
2739#endif /* __HAVE_ARCH_GATE_AREA */
2740
2741extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2742
2743#ifdef CONFIG_SYSCTL
2744extern int sysctl_drop_caches;
2745int drop_caches_sysctl_handler(struct ctl_table *, int,
2746 void __user *, size_t *, loff_t *);
2747#endif
2748
2749void drop_slab(void);
2750void drop_slab_node(int nid);
2751
2752#ifndef CONFIG_MMU
2753#define randomize_va_space 0
2754#else
2755extern int randomize_va_space;
2756#endif
2757
2758const char * arch_vma_name(struct vm_area_struct *vma);
2759void print_vma_addr(char *prefix, unsigned long rip);
2760
2761void *sparse_buffer_alloc(unsigned long size);
2762struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2763 struct vmem_altmap *altmap);
2764pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2765p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2766pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2767pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2768pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2769void *vmemmap_alloc_block(unsigned long size, int node);
2770struct vmem_altmap;
2771void *vmemmap_alloc_block_buf(unsigned long size, int node);
2772void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2773void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2774int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2775 int node);
2776int vmemmap_populate(unsigned long start, unsigned long end, int node,
2777 struct vmem_altmap *altmap);
2778void vmemmap_populate_print_last(void);
2779#ifdef CONFIG_MEMORY_HOTPLUG
2780void vmemmap_free(unsigned long start, unsigned long end,
2781 struct vmem_altmap *altmap);
2782#endif
2783void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2784 unsigned long nr_pages);
2785
2786enum mf_flags {
2787 MF_COUNT_INCREASED = 1 << 0,
2788 MF_ACTION_REQUIRED = 1 << 1,
2789 MF_MUST_KILL = 1 << 2,
2790 MF_SOFT_OFFLINE = 1 << 3,
2791};
2792extern int memory_failure(unsigned long pfn, int flags);
2793extern void memory_failure_queue(unsigned long pfn, int flags);
2794extern int unpoison_memory(unsigned long pfn);
2795extern int get_hwpoison_page(struct page *page);
2796#define put_hwpoison_page(page) put_page(page)
2797extern int sysctl_memory_failure_early_kill;
2798extern int sysctl_memory_failure_recovery;
2799extern void shake_page(struct page *p, int access);
2800extern atomic_long_t num_poisoned_pages __read_mostly;
2801extern int soft_offline_page(struct page *page, int flags);
2802
2803
2804/*
2805 * Error handlers for various types of pages.
2806 */
2807enum mf_result {
2808 MF_IGNORED, /* Error: cannot be handled */
2809 MF_FAILED, /* Error: handling failed */
2810 MF_DELAYED, /* Will be handled later */
2811 MF_RECOVERED, /* Successfully recovered */
2812};
2813
2814enum mf_action_page_type {
2815 MF_MSG_KERNEL,
2816 MF_MSG_KERNEL_HIGH_ORDER,
2817 MF_MSG_SLAB,
2818 MF_MSG_DIFFERENT_COMPOUND,
2819 MF_MSG_POISONED_HUGE,
2820 MF_MSG_HUGE,
2821 MF_MSG_FREE_HUGE,
2822 MF_MSG_NON_PMD_HUGE,
2823 MF_MSG_UNMAP_FAILED,
2824 MF_MSG_DIRTY_SWAPCACHE,
2825 MF_MSG_CLEAN_SWAPCACHE,
2826 MF_MSG_DIRTY_MLOCKED_LRU,
2827 MF_MSG_CLEAN_MLOCKED_LRU,
2828 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2829 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2830 MF_MSG_DIRTY_LRU,
2831 MF_MSG_CLEAN_LRU,
2832 MF_MSG_TRUNCATED_LRU,
2833 MF_MSG_BUDDY,
2834 MF_MSG_BUDDY_2ND,
2835 MF_MSG_DAX,
2836 MF_MSG_UNKNOWN,
2837};
2838
2839#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2840extern void clear_huge_page(struct page *page,
2841 unsigned long addr_hint,
2842 unsigned int pages_per_huge_page);
2843extern void copy_user_huge_page(struct page *dst, struct page *src,
2844 unsigned long addr_hint,
2845 struct vm_area_struct *vma,
2846 unsigned int pages_per_huge_page);
2847extern long copy_huge_page_from_user(struct page *dst_page,
2848 const void __user *usr_src,
2849 unsigned int pages_per_huge_page,
2850 bool allow_pagefault);
2851#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2852
2853extern struct page_ext_operations debug_guardpage_ops;
2854
2855#ifdef CONFIG_DEBUG_PAGEALLOC
2856extern unsigned int _debug_guardpage_minorder;
2857extern bool _debug_guardpage_enabled;
2858
2859static inline unsigned int debug_guardpage_minorder(void)
2860{
2861 return _debug_guardpage_minorder;
2862}
2863
2864static inline bool debug_guardpage_enabled(void)
2865{
2866 return _debug_guardpage_enabled;
2867}
2868
2869static inline bool page_is_guard(struct page *page)
2870{
2871 struct page_ext *page_ext;
2872
2873 if (!debug_guardpage_enabled())
2874 return false;
2875
2876 page_ext = lookup_page_ext(page);
2877 if (unlikely(!page_ext))
2878 return false;
2879
2880 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2881}
2882#else
2883static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2884static inline bool debug_guardpage_enabled(void) { return false; }
2885static inline bool page_is_guard(struct page *page) { return false; }
2886#endif /* CONFIG_DEBUG_PAGEALLOC */
2887
2888#if MAX_NUMNODES > 1
2889void __init setup_nr_node_ids(void);
2890#else
2891static inline void setup_nr_node_ids(void) {}
2892#endif
2893
2894#endif /* __KERNEL__ */
2895#endif /* _LINUX_MM_H */