at v5.2 92 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30 31struct mempolicy; 32struct anon_vma; 33struct anon_vma_chain; 34struct file_ra_state; 35struct user_struct; 36struct writeback_control; 37struct bdi_writeback; 38 39void init_mm_internals(void); 40 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42extern unsigned long max_mapnr; 43 44static inline void set_max_mapnr(unsigned long limit) 45{ 46 max_mapnr = limit; 47} 48#else 49static inline void set_max_mapnr(unsigned long limit) { } 50#endif 51 52extern atomic_long_t _totalram_pages; 53static inline unsigned long totalram_pages(void) 54{ 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56} 57 58static inline void totalram_pages_inc(void) 59{ 60 atomic_long_inc(&_totalram_pages); 61} 62 63static inline void totalram_pages_dec(void) 64{ 65 atomic_long_dec(&_totalram_pages); 66} 67 68static inline void totalram_pages_add(long count) 69{ 70 atomic_long_add(count, &_totalram_pages); 71} 72 73static inline void totalram_pages_set(long val) 74{ 75 atomic_long_set(&_totalram_pages, val); 76} 77 78extern void * high_memory; 79extern int page_cluster; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/pgtable.h> 100#include <asm/processor.h> 101 102/* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109#ifndef untagged_addr 110#define untagged_addr(addr) (addr) 111#endif 112 113#ifndef __pa_symbol 114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115#endif 116 117#ifndef page_to_virt 118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119#endif 120 121#ifndef lm_alias 122#define lm_alias(x) __va(__pa_symbol(x)) 123#endif 124 125/* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132#ifndef mm_forbids_zeropage 133#define mm_forbids_zeropage(X) (0) 134#endif 135 136/* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142#if BITS_PER_LONG == 64 143/* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150static inline void __mm_zero_struct_page(struct page *page) 151{ 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175} 176#else 177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178#endif 179 180/* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196#define MAPCOUNT_ELF_CORE_MARGIN (5) 197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199extern int sysctl_max_map_count; 200 201extern unsigned long sysctl_user_reserve_kbytes; 202extern unsigned long sysctl_admin_reserve_kbytes; 203 204extern int sysctl_overcommit_memory; 205extern int sysctl_overcommit_ratio; 206extern unsigned long sysctl_overcommit_kbytes; 207 208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215/* to align the pointer to the (next) page boundary */ 216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223/* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234void vm_area_free(struct vm_area_struct *); 235 236#ifndef CONFIG_MMU 237extern struct rb_root nommu_region_tree; 238extern struct rw_semaphore nommu_region_sem; 239 240extern unsigned int kobjsize(const void *objp); 241#endif 242 243/* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247#define VM_NONE 0x00000000 248 249#define VM_READ 0x00000001 /* currently active flags */ 250#define VM_WRITE 0x00000002 251#define VM_EXEC 0x00000004 252#define VM_SHARED 0x00000008 253 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256#define VM_MAYWRITE 0x00000020 257#define VM_MAYEXEC 0x00000040 258#define VM_MAYSHARE 0x00000080 259 260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266#define VM_LOCKED 0x00002000 267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279#define VM_SYNC 0x00800000 /* Synchronous page faults */ 280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284#ifdef CONFIG_MEM_SOFT_DIRTY 285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286#else 287# define VM_SOFTDIRTY 0 288#endif 289 290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308#ifdef CONFIG_ARCH_HAS_PKEYS 309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314#ifdef CONFIG_PPC 315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316#else 317# define VM_PKEY_BIT4 0 318#endif 319#endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321#if defined(CONFIG_X86) 322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323#elif defined(CONFIG_PPC) 324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325#elif defined(CONFIG_PARISC) 326# define VM_GROWSUP VM_ARCH_1 327#elif defined(CONFIG_IA64) 328# define VM_GROWSUP VM_ARCH_1 329#elif defined(CONFIG_SPARC64) 330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331# define VM_ARCH_CLEAR VM_SPARC_ADI 332#elif !defined(CONFIG_MMU) 333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334#endif 335 336#if defined(CONFIG_X86_INTEL_MPX) 337/* MPX specific bounds table or bounds directory */ 338# define VM_MPX VM_HIGH_ARCH_4 339#else 340# define VM_MPX VM_NONE 341#endif 342 343#ifndef VM_GROWSUP 344# define VM_GROWSUP VM_NONE 345#endif 346 347/* Bits set in the VMA until the stack is in its final location */ 348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352#endif 353 354#ifdef CONFIG_STACK_GROWSUP 355#define VM_STACK VM_GROWSUP 356#else 357#define VM_STACK VM_GROWSDOWN 358#endif 359 360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362/* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368/* This mask defines which mm->def_flags a process can inherit its parent */ 369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371/* This mask is used to clear all the VMA flags used by mlock */ 372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374/* Arch-specific flags to clear when updating VM flags on protection change */ 375#ifndef VM_ARCH_CLEAR 376# define VM_ARCH_CLEAR VM_NONE 377#endif 378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380/* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384extern pgprot_t protection_map[16]; 385 386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391#define FAULT_FLAG_TRIED 0x20 /* Second try */ 392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396#define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407/* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453}; 454 455/* page entry size for vm->huge_fault() */ 456enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460}; 461 462/* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497#ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519#endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527}; 528 529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530{ 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537} 538 539static inline void vma_set_anonymous(struct vm_area_struct *vma) 540{ 541 vma->vm_ops = NULL; 542} 543 544/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 545#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 546 547struct mmu_gather; 548struct inode; 549 550#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 551static inline int pmd_devmap(pmd_t pmd) 552{ 553 return 0; 554} 555static inline int pud_devmap(pud_t pud) 556{ 557 return 0; 558} 559static inline int pgd_devmap(pgd_t pgd) 560{ 561 return 0; 562} 563#endif 564 565/* 566 * FIXME: take this include out, include page-flags.h in 567 * files which need it (119 of them) 568 */ 569#include <linux/page-flags.h> 570#include <linux/huge_mm.h> 571 572/* 573 * Methods to modify the page usage count. 574 * 575 * What counts for a page usage: 576 * - cache mapping (page->mapping) 577 * - private data (page->private) 578 * - page mapped in a task's page tables, each mapping 579 * is counted separately 580 * 581 * Also, many kernel routines increase the page count before a critical 582 * routine so they can be sure the page doesn't go away from under them. 583 */ 584 585/* 586 * Drop a ref, return true if the refcount fell to zero (the page has no users) 587 */ 588static inline int put_page_testzero(struct page *page) 589{ 590 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 591 return page_ref_dec_and_test(page); 592} 593 594/* 595 * Try to grab a ref unless the page has a refcount of zero, return false if 596 * that is the case. 597 * This can be called when MMU is off so it must not access 598 * any of the virtual mappings. 599 */ 600static inline int get_page_unless_zero(struct page *page) 601{ 602 return page_ref_add_unless(page, 1, 0); 603} 604 605extern int page_is_ram(unsigned long pfn); 606 607enum { 608 REGION_INTERSECTS, 609 REGION_DISJOINT, 610 REGION_MIXED, 611}; 612 613int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 614 unsigned long desc); 615 616/* Support for virtually mapped pages */ 617struct page *vmalloc_to_page(const void *addr); 618unsigned long vmalloc_to_pfn(const void *addr); 619 620/* 621 * Determine if an address is within the vmalloc range 622 * 623 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 624 * is no special casing required. 625 */ 626static inline bool is_vmalloc_addr(const void *x) 627{ 628#ifdef CONFIG_MMU 629 unsigned long addr = (unsigned long)x; 630 631 return addr >= VMALLOC_START && addr < VMALLOC_END; 632#else 633 return false; 634#endif 635} 636#ifdef CONFIG_MMU 637extern int is_vmalloc_or_module_addr(const void *x); 638#else 639static inline int is_vmalloc_or_module_addr(const void *x) 640{ 641 return 0; 642} 643#endif 644 645extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 646static inline void *kvmalloc(size_t size, gfp_t flags) 647{ 648 return kvmalloc_node(size, flags, NUMA_NO_NODE); 649} 650static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 651{ 652 return kvmalloc_node(size, flags | __GFP_ZERO, node); 653} 654static inline void *kvzalloc(size_t size, gfp_t flags) 655{ 656 return kvmalloc(size, flags | __GFP_ZERO); 657} 658 659static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 660{ 661 size_t bytes; 662 663 if (unlikely(check_mul_overflow(n, size, &bytes))) 664 return NULL; 665 666 return kvmalloc(bytes, flags); 667} 668 669static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 670{ 671 return kvmalloc_array(n, size, flags | __GFP_ZERO); 672} 673 674extern void kvfree(const void *addr); 675 676static inline atomic_t *compound_mapcount_ptr(struct page *page) 677{ 678 return &page[1].compound_mapcount; 679} 680 681static inline int compound_mapcount(struct page *page) 682{ 683 VM_BUG_ON_PAGE(!PageCompound(page), page); 684 page = compound_head(page); 685 return atomic_read(compound_mapcount_ptr(page)) + 1; 686} 687 688/* 689 * The atomic page->_mapcount, starts from -1: so that transitions 690 * both from it and to it can be tracked, using atomic_inc_and_test 691 * and atomic_add_negative(-1). 692 */ 693static inline void page_mapcount_reset(struct page *page) 694{ 695 atomic_set(&(page)->_mapcount, -1); 696} 697 698int __page_mapcount(struct page *page); 699 700static inline int page_mapcount(struct page *page) 701{ 702 VM_BUG_ON_PAGE(PageSlab(page), page); 703 704 if (unlikely(PageCompound(page))) 705 return __page_mapcount(page); 706 return atomic_read(&page->_mapcount) + 1; 707} 708 709#ifdef CONFIG_TRANSPARENT_HUGEPAGE 710int total_mapcount(struct page *page); 711int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 712#else 713static inline int total_mapcount(struct page *page) 714{ 715 return page_mapcount(page); 716} 717static inline int page_trans_huge_mapcount(struct page *page, 718 int *total_mapcount) 719{ 720 int mapcount = page_mapcount(page); 721 if (total_mapcount) 722 *total_mapcount = mapcount; 723 return mapcount; 724} 725#endif 726 727static inline struct page *virt_to_head_page(const void *x) 728{ 729 struct page *page = virt_to_page(x); 730 731 return compound_head(page); 732} 733 734void __put_page(struct page *page); 735 736void put_pages_list(struct list_head *pages); 737 738void split_page(struct page *page, unsigned int order); 739 740/* 741 * Compound pages have a destructor function. Provide a 742 * prototype for that function and accessor functions. 743 * These are _only_ valid on the head of a compound page. 744 */ 745typedef void compound_page_dtor(struct page *); 746 747/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 748enum compound_dtor_id { 749 NULL_COMPOUND_DTOR, 750 COMPOUND_PAGE_DTOR, 751#ifdef CONFIG_HUGETLB_PAGE 752 HUGETLB_PAGE_DTOR, 753#endif 754#ifdef CONFIG_TRANSPARENT_HUGEPAGE 755 TRANSHUGE_PAGE_DTOR, 756#endif 757 NR_COMPOUND_DTORS, 758}; 759extern compound_page_dtor * const compound_page_dtors[]; 760 761static inline void set_compound_page_dtor(struct page *page, 762 enum compound_dtor_id compound_dtor) 763{ 764 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 765 page[1].compound_dtor = compound_dtor; 766} 767 768static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 769{ 770 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 771 return compound_page_dtors[page[1].compound_dtor]; 772} 773 774static inline unsigned int compound_order(struct page *page) 775{ 776 if (!PageHead(page)) 777 return 0; 778 return page[1].compound_order; 779} 780 781static inline void set_compound_order(struct page *page, unsigned int order) 782{ 783 page[1].compound_order = order; 784} 785 786void free_compound_page(struct page *page); 787 788#ifdef CONFIG_MMU 789/* 790 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 791 * servicing faults for write access. In the normal case, do always want 792 * pte_mkwrite. But get_user_pages can cause write faults for mappings 793 * that do not have writing enabled, when used by access_process_vm. 794 */ 795static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 796{ 797 if (likely(vma->vm_flags & VM_WRITE)) 798 pte = pte_mkwrite(pte); 799 return pte; 800} 801 802vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 803 struct page *page); 804vm_fault_t finish_fault(struct vm_fault *vmf); 805vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 806#endif 807 808/* 809 * Multiple processes may "see" the same page. E.g. for untouched 810 * mappings of /dev/null, all processes see the same page full of 811 * zeroes, and text pages of executables and shared libraries have 812 * only one copy in memory, at most, normally. 813 * 814 * For the non-reserved pages, page_count(page) denotes a reference count. 815 * page_count() == 0 means the page is free. page->lru is then used for 816 * freelist management in the buddy allocator. 817 * page_count() > 0 means the page has been allocated. 818 * 819 * Pages are allocated by the slab allocator in order to provide memory 820 * to kmalloc and kmem_cache_alloc. In this case, the management of the 821 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 822 * unless a particular usage is carefully commented. (the responsibility of 823 * freeing the kmalloc memory is the caller's, of course). 824 * 825 * A page may be used by anyone else who does a __get_free_page(). 826 * In this case, page_count still tracks the references, and should only 827 * be used through the normal accessor functions. The top bits of page->flags 828 * and page->virtual store page management information, but all other fields 829 * are unused and could be used privately, carefully. The management of this 830 * page is the responsibility of the one who allocated it, and those who have 831 * subsequently been given references to it. 832 * 833 * The other pages (we may call them "pagecache pages") are completely 834 * managed by the Linux memory manager: I/O, buffers, swapping etc. 835 * The following discussion applies only to them. 836 * 837 * A pagecache page contains an opaque `private' member, which belongs to the 838 * page's address_space. Usually, this is the address of a circular list of 839 * the page's disk buffers. PG_private must be set to tell the VM to call 840 * into the filesystem to release these pages. 841 * 842 * A page may belong to an inode's memory mapping. In this case, page->mapping 843 * is the pointer to the inode, and page->index is the file offset of the page, 844 * in units of PAGE_SIZE. 845 * 846 * If pagecache pages are not associated with an inode, they are said to be 847 * anonymous pages. These may become associated with the swapcache, and in that 848 * case PG_swapcache is set, and page->private is an offset into the swapcache. 849 * 850 * In either case (swapcache or inode backed), the pagecache itself holds one 851 * reference to the page. Setting PG_private should also increment the 852 * refcount. The each user mapping also has a reference to the page. 853 * 854 * The pagecache pages are stored in a per-mapping radix tree, which is 855 * rooted at mapping->i_pages, and indexed by offset. 856 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 857 * lists, we instead now tag pages as dirty/writeback in the radix tree. 858 * 859 * All pagecache pages may be subject to I/O: 860 * - inode pages may need to be read from disk, 861 * - inode pages which have been modified and are MAP_SHARED may need 862 * to be written back to the inode on disk, 863 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 864 * modified may need to be swapped out to swap space and (later) to be read 865 * back into memory. 866 */ 867 868/* 869 * The zone field is never updated after free_area_init_core() 870 * sets it, so none of the operations on it need to be atomic. 871 */ 872 873/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 874#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 875#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 876#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 877#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 878#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 879 880/* 881 * Define the bit shifts to access each section. For non-existent 882 * sections we define the shift as 0; that plus a 0 mask ensures 883 * the compiler will optimise away reference to them. 884 */ 885#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 886#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 887#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 888#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 889#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 890 891/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 892#ifdef NODE_NOT_IN_PAGE_FLAGS 893#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 894#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 895 SECTIONS_PGOFF : ZONES_PGOFF) 896#else 897#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 898#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 899 NODES_PGOFF : ZONES_PGOFF) 900#endif 901 902#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 903 904#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 905#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 906#endif 907 908#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 909#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 910#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 911#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 912#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 913#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 914 915static inline enum zone_type page_zonenum(const struct page *page) 916{ 917 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 918} 919 920#ifdef CONFIG_ZONE_DEVICE 921static inline bool is_zone_device_page(const struct page *page) 922{ 923 return page_zonenum(page) == ZONE_DEVICE; 924} 925extern void memmap_init_zone_device(struct zone *, unsigned long, 926 unsigned long, struct dev_pagemap *); 927#else 928static inline bool is_zone_device_page(const struct page *page) 929{ 930 return false; 931} 932#endif 933 934#ifdef CONFIG_DEV_PAGEMAP_OPS 935void dev_pagemap_get_ops(void); 936void dev_pagemap_put_ops(void); 937void __put_devmap_managed_page(struct page *page); 938DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 939static inline bool put_devmap_managed_page(struct page *page) 940{ 941 if (!static_branch_unlikely(&devmap_managed_key)) 942 return false; 943 if (!is_zone_device_page(page)) 944 return false; 945 switch (page->pgmap->type) { 946 case MEMORY_DEVICE_PRIVATE: 947 case MEMORY_DEVICE_PUBLIC: 948 case MEMORY_DEVICE_FS_DAX: 949 __put_devmap_managed_page(page); 950 return true; 951 default: 952 break; 953 } 954 return false; 955} 956 957static inline bool is_device_private_page(const struct page *page) 958{ 959 return is_zone_device_page(page) && 960 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 961} 962 963static inline bool is_device_public_page(const struct page *page) 964{ 965 return is_zone_device_page(page) && 966 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 967} 968 969#ifdef CONFIG_PCI_P2PDMA 970static inline bool is_pci_p2pdma_page(const struct page *page) 971{ 972 return is_zone_device_page(page) && 973 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 974} 975#else /* CONFIG_PCI_P2PDMA */ 976static inline bool is_pci_p2pdma_page(const struct page *page) 977{ 978 return false; 979} 980#endif /* CONFIG_PCI_P2PDMA */ 981 982#else /* CONFIG_DEV_PAGEMAP_OPS */ 983static inline void dev_pagemap_get_ops(void) 984{ 985} 986 987static inline void dev_pagemap_put_ops(void) 988{ 989} 990 991static inline bool put_devmap_managed_page(struct page *page) 992{ 993 return false; 994} 995 996static inline bool is_device_private_page(const struct page *page) 997{ 998 return false; 999} 1000 1001static inline bool is_device_public_page(const struct page *page) 1002{ 1003 return false; 1004} 1005 1006static inline bool is_pci_p2pdma_page(const struct page *page) 1007{ 1008 return false; 1009} 1010#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1011 1012/* 127: arbitrary random number, small enough to assemble well */ 1013#define page_ref_zero_or_close_to_overflow(page) \ 1014 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1015 1016static inline void get_page(struct page *page) 1017{ 1018 page = compound_head(page); 1019 /* 1020 * Getting a normal page or the head of a compound page 1021 * requires to already have an elevated page->_refcount. 1022 */ 1023 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1024 page_ref_inc(page); 1025} 1026 1027static inline __must_check bool try_get_page(struct page *page) 1028{ 1029 page = compound_head(page); 1030 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1031 return false; 1032 page_ref_inc(page); 1033 return true; 1034} 1035 1036static inline void put_page(struct page *page) 1037{ 1038 page = compound_head(page); 1039 1040 /* 1041 * For devmap managed pages we need to catch refcount transition from 1042 * 2 to 1, when refcount reach one it means the page is free and we 1043 * need to inform the device driver through callback. See 1044 * include/linux/memremap.h and HMM for details. 1045 */ 1046 if (put_devmap_managed_page(page)) 1047 return; 1048 1049 if (put_page_testzero(page)) 1050 __put_page(page); 1051} 1052 1053/** 1054 * put_user_page() - release a gup-pinned page 1055 * @page: pointer to page to be released 1056 * 1057 * Pages that were pinned via get_user_pages*() must be released via 1058 * either put_user_page(), or one of the put_user_pages*() routines 1059 * below. This is so that eventually, pages that are pinned via 1060 * get_user_pages*() can be separately tracked and uniquely handled. In 1061 * particular, interactions with RDMA and filesystems need special 1062 * handling. 1063 * 1064 * put_user_page() and put_page() are not interchangeable, despite this early 1065 * implementation that makes them look the same. put_user_page() calls must 1066 * be perfectly matched up with get_user_page() calls. 1067 */ 1068static inline void put_user_page(struct page *page) 1069{ 1070 put_page(page); 1071} 1072 1073void put_user_pages_dirty(struct page **pages, unsigned long npages); 1074void put_user_pages_dirty_lock(struct page **pages, unsigned long npages); 1075void put_user_pages(struct page **pages, unsigned long npages); 1076 1077#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1078#define SECTION_IN_PAGE_FLAGS 1079#endif 1080 1081/* 1082 * The identification function is mainly used by the buddy allocator for 1083 * determining if two pages could be buddies. We are not really identifying 1084 * the zone since we could be using the section number id if we do not have 1085 * node id available in page flags. 1086 * We only guarantee that it will return the same value for two combinable 1087 * pages in a zone. 1088 */ 1089static inline int page_zone_id(struct page *page) 1090{ 1091 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1092} 1093 1094#ifdef NODE_NOT_IN_PAGE_FLAGS 1095extern int page_to_nid(const struct page *page); 1096#else 1097static inline int page_to_nid(const struct page *page) 1098{ 1099 struct page *p = (struct page *)page; 1100 1101 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1102} 1103#endif 1104 1105#ifdef CONFIG_NUMA_BALANCING 1106static inline int cpu_pid_to_cpupid(int cpu, int pid) 1107{ 1108 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1109} 1110 1111static inline int cpupid_to_pid(int cpupid) 1112{ 1113 return cpupid & LAST__PID_MASK; 1114} 1115 1116static inline int cpupid_to_cpu(int cpupid) 1117{ 1118 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1119} 1120 1121static inline int cpupid_to_nid(int cpupid) 1122{ 1123 return cpu_to_node(cpupid_to_cpu(cpupid)); 1124} 1125 1126static inline bool cpupid_pid_unset(int cpupid) 1127{ 1128 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1129} 1130 1131static inline bool cpupid_cpu_unset(int cpupid) 1132{ 1133 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1134} 1135 1136static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1137{ 1138 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1139} 1140 1141#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1142#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1143static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1144{ 1145 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1146} 1147 1148static inline int page_cpupid_last(struct page *page) 1149{ 1150 return page->_last_cpupid; 1151} 1152static inline void page_cpupid_reset_last(struct page *page) 1153{ 1154 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1155} 1156#else 1157static inline int page_cpupid_last(struct page *page) 1158{ 1159 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1160} 1161 1162extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1163 1164static inline void page_cpupid_reset_last(struct page *page) 1165{ 1166 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1167} 1168#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1169#else /* !CONFIG_NUMA_BALANCING */ 1170static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1171{ 1172 return page_to_nid(page); /* XXX */ 1173} 1174 1175static inline int page_cpupid_last(struct page *page) 1176{ 1177 return page_to_nid(page); /* XXX */ 1178} 1179 1180static inline int cpupid_to_nid(int cpupid) 1181{ 1182 return -1; 1183} 1184 1185static inline int cpupid_to_pid(int cpupid) 1186{ 1187 return -1; 1188} 1189 1190static inline int cpupid_to_cpu(int cpupid) 1191{ 1192 return -1; 1193} 1194 1195static inline int cpu_pid_to_cpupid(int nid, int pid) 1196{ 1197 return -1; 1198} 1199 1200static inline bool cpupid_pid_unset(int cpupid) 1201{ 1202 return 1; 1203} 1204 1205static inline void page_cpupid_reset_last(struct page *page) 1206{ 1207} 1208 1209static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1210{ 1211 return false; 1212} 1213#endif /* CONFIG_NUMA_BALANCING */ 1214 1215#ifdef CONFIG_KASAN_SW_TAGS 1216static inline u8 page_kasan_tag(const struct page *page) 1217{ 1218 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1219} 1220 1221static inline void page_kasan_tag_set(struct page *page, u8 tag) 1222{ 1223 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1224 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1225} 1226 1227static inline void page_kasan_tag_reset(struct page *page) 1228{ 1229 page_kasan_tag_set(page, 0xff); 1230} 1231#else 1232static inline u8 page_kasan_tag(const struct page *page) 1233{ 1234 return 0xff; 1235} 1236 1237static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1238static inline void page_kasan_tag_reset(struct page *page) { } 1239#endif 1240 1241static inline struct zone *page_zone(const struct page *page) 1242{ 1243 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1244} 1245 1246static inline pg_data_t *page_pgdat(const struct page *page) 1247{ 1248 return NODE_DATA(page_to_nid(page)); 1249} 1250 1251#ifdef SECTION_IN_PAGE_FLAGS 1252static inline void set_page_section(struct page *page, unsigned long section) 1253{ 1254 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1255 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1256} 1257 1258static inline unsigned long page_to_section(const struct page *page) 1259{ 1260 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1261} 1262#endif 1263 1264static inline void set_page_zone(struct page *page, enum zone_type zone) 1265{ 1266 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1267 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1268} 1269 1270static inline void set_page_node(struct page *page, unsigned long node) 1271{ 1272 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1273 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1274} 1275 1276static inline void set_page_links(struct page *page, enum zone_type zone, 1277 unsigned long node, unsigned long pfn) 1278{ 1279 set_page_zone(page, zone); 1280 set_page_node(page, node); 1281#ifdef SECTION_IN_PAGE_FLAGS 1282 set_page_section(page, pfn_to_section_nr(pfn)); 1283#endif 1284} 1285 1286#ifdef CONFIG_MEMCG 1287static inline struct mem_cgroup *page_memcg(struct page *page) 1288{ 1289 return page->mem_cgroup; 1290} 1291static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1292{ 1293 WARN_ON_ONCE(!rcu_read_lock_held()); 1294 return READ_ONCE(page->mem_cgroup); 1295} 1296#else 1297static inline struct mem_cgroup *page_memcg(struct page *page) 1298{ 1299 return NULL; 1300} 1301static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1302{ 1303 WARN_ON_ONCE(!rcu_read_lock_held()); 1304 return NULL; 1305} 1306#endif 1307 1308/* 1309 * Some inline functions in vmstat.h depend on page_zone() 1310 */ 1311#include <linux/vmstat.h> 1312 1313static __always_inline void *lowmem_page_address(const struct page *page) 1314{ 1315 return page_to_virt(page); 1316} 1317 1318#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1319#define HASHED_PAGE_VIRTUAL 1320#endif 1321 1322#if defined(WANT_PAGE_VIRTUAL) 1323static inline void *page_address(const struct page *page) 1324{ 1325 return page->virtual; 1326} 1327static inline void set_page_address(struct page *page, void *address) 1328{ 1329 page->virtual = address; 1330} 1331#define page_address_init() do { } while(0) 1332#endif 1333 1334#if defined(HASHED_PAGE_VIRTUAL) 1335void *page_address(const struct page *page); 1336void set_page_address(struct page *page, void *virtual); 1337void page_address_init(void); 1338#endif 1339 1340#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1341#define page_address(page) lowmem_page_address(page) 1342#define set_page_address(page, address) do { } while(0) 1343#define page_address_init() do { } while(0) 1344#endif 1345 1346extern void *page_rmapping(struct page *page); 1347extern struct anon_vma *page_anon_vma(struct page *page); 1348extern struct address_space *page_mapping(struct page *page); 1349 1350extern struct address_space *__page_file_mapping(struct page *); 1351 1352static inline 1353struct address_space *page_file_mapping(struct page *page) 1354{ 1355 if (unlikely(PageSwapCache(page))) 1356 return __page_file_mapping(page); 1357 1358 return page->mapping; 1359} 1360 1361extern pgoff_t __page_file_index(struct page *page); 1362 1363/* 1364 * Return the pagecache index of the passed page. Regular pagecache pages 1365 * use ->index whereas swapcache pages use swp_offset(->private) 1366 */ 1367static inline pgoff_t page_index(struct page *page) 1368{ 1369 if (unlikely(PageSwapCache(page))) 1370 return __page_file_index(page); 1371 return page->index; 1372} 1373 1374bool page_mapped(struct page *page); 1375struct address_space *page_mapping(struct page *page); 1376struct address_space *page_mapping_file(struct page *page); 1377 1378/* 1379 * Return true only if the page has been allocated with 1380 * ALLOC_NO_WATERMARKS and the low watermark was not 1381 * met implying that the system is under some pressure. 1382 */ 1383static inline bool page_is_pfmemalloc(struct page *page) 1384{ 1385 /* 1386 * Page index cannot be this large so this must be 1387 * a pfmemalloc page. 1388 */ 1389 return page->index == -1UL; 1390} 1391 1392/* 1393 * Only to be called by the page allocator on a freshly allocated 1394 * page. 1395 */ 1396static inline void set_page_pfmemalloc(struct page *page) 1397{ 1398 page->index = -1UL; 1399} 1400 1401static inline void clear_page_pfmemalloc(struct page *page) 1402{ 1403 page->index = 0; 1404} 1405 1406/* 1407 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1408 */ 1409extern void pagefault_out_of_memory(void); 1410 1411#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1412 1413/* 1414 * Flags passed to show_mem() and show_free_areas() to suppress output in 1415 * various contexts. 1416 */ 1417#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1418 1419extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1420 1421extern bool can_do_mlock(void); 1422extern int user_shm_lock(size_t, struct user_struct *); 1423extern void user_shm_unlock(size_t, struct user_struct *); 1424 1425/* 1426 * Parameter block passed down to zap_pte_range in exceptional cases. 1427 */ 1428struct zap_details { 1429 struct address_space *check_mapping; /* Check page->mapping if set */ 1430 pgoff_t first_index; /* Lowest page->index to unmap */ 1431 pgoff_t last_index; /* Highest page->index to unmap */ 1432}; 1433 1434struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1435 pte_t pte, bool with_public_device); 1436#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1437 1438struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1439 pmd_t pmd); 1440 1441void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1442 unsigned long size); 1443void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1444 unsigned long size); 1445void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1446 unsigned long start, unsigned long end); 1447 1448/** 1449 * mm_walk - callbacks for walk_page_range 1450 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1451 * this handler should only handle pud_trans_huge() puds. 1452 * the pmd_entry or pte_entry callbacks will be used for 1453 * regular PUDs. 1454 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1455 * this handler is required to be able to handle 1456 * pmd_trans_huge() pmds. They may simply choose to 1457 * split_huge_page() instead of handling it explicitly. 1458 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1459 * @pte_hole: if set, called for each hole at all levels 1460 * @hugetlb_entry: if set, called for each hugetlb entry 1461 * @test_walk: caller specific callback function to determine whether 1462 * we walk over the current vma or not. Returning 0 1463 * value means "do page table walk over the current vma," 1464 * and a negative one means "abort current page table walk 1465 * right now." 1 means "skip the current vma." 1466 * @mm: mm_struct representing the target process of page table walk 1467 * @vma: vma currently walked (NULL if walking outside vmas) 1468 * @private: private data for callbacks' usage 1469 * 1470 * (see the comment on walk_page_range() for more details) 1471 */ 1472struct mm_walk { 1473 int (*pud_entry)(pud_t *pud, unsigned long addr, 1474 unsigned long next, struct mm_walk *walk); 1475 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1476 unsigned long next, struct mm_walk *walk); 1477 int (*pte_entry)(pte_t *pte, unsigned long addr, 1478 unsigned long next, struct mm_walk *walk); 1479 int (*pte_hole)(unsigned long addr, unsigned long next, 1480 struct mm_walk *walk); 1481 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1482 unsigned long addr, unsigned long next, 1483 struct mm_walk *walk); 1484 int (*test_walk)(unsigned long addr, unsigned long next, 1485 struct mm_walk *walk); 1486 struct mm_struct *mm; 1487 struct vm_area_struct *vma; 1488 void *private; 1489}; 1490 1491struct mmu_notifier_range; 1492 1493int walk_page_range(unsigned long addr, unsigned long end, 1494 struct mm_walk *walk); 1495int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1496void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1497 unsigned long end, unsigned long floor, unsigned long ceiling); 1498int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1499 struct vm_area_struct *vma); 1500int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1501 struct mmu_notifier_range *range, 1502 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1503int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1504 unsigned long *pfn); 1505int follow_phys(struct vm_area_struct *vma, unsigned long address, 1506 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1507int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1508 void *buf, int len, int write); 1509 1510extern void truncate_pagecache(struct inode *inode, loff_t new); 1511extern void truncate_setsize(struct inode *inode, loff_t newsize); 1512void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1513void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1514int truncate_inode_page(struct address_space *mapping, struct page *page); 1515int generic_error_remove_page(struct address_space *mapping, struct page *page); 1516int invalidate_inode_page(struct page *page); 1517 1518#ifdef CONFIG_MMU 1519extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1520 unsigned long address, unsigned int flags); 1521extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1522 unsigned long address, unsigned int fault_flags, 1523 bool *unlocked); 1524void unmap_mapping_pages(struct address_space *mapping, 1525 pgoff_t start, pgoff_t nr, bool even_cows); 1526void unmap_mapping_range(struct address_space *mapping, 1527 loff_t const holebegin, loff_t const holelen, int even_cows); 1528#else 1529static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1530 unsigned long address, unsigned int flags) 1531{ 1532 /* should never happen if there's no MMU */ 1533 BUG(); 1534 return VM_FAULT_SIGBUS; 1535} 1536static inline int fixup_user_fault(struct task_struct *tsk, 1537 struct mm_struct *mm, unsigned long address, 1538 unsigned int fault_flags, bool *unlocked) 1539{ 1540 /* should never happen if there's no MMU */ 1541 BUG(); 1542 return -EFAULT; 1543} 1544static inline void unmap_mapping_pages(struct address_space *mapping, 1545 pgoff_t start, pgoff_t nr, bool even_cows) { } 1546static inline void unmap_mapping_range(struct address_space *mapping, 1547 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1548#endif 1549 1550static inline void unmap_shared_mapping_range(struct address_space *mapping, 1551 loff_t const holebegin, loff_t const holelen) 1552{ 1553 unmap_mapping_range(mapping, holebegin, holelen, 0); 1554} 1555 1556extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1557 void *buf, int len, unsigned int gup_flags); 1558extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1559 void *buf, int len, unsigned int gup_flags); 1560extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1561 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1562 1563long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1564 unsigned long start, unsigned long nr_pages, 1565 unsigned int gup_flags, struct page **pages, 1566 struct vm_area_struct **vmas, int *locked); 1567long get_user_pages(unsigned long start, unsigned long nr_pages, 1568 unsigned int gup_flags, struct page **pages, 1569 struct vm_area_struct **vmas); 1570long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1571 unsigned int gup_flags, struct page **pages, int *locked); 1572long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1573 struct page **pages, unsigned int gup_flags); 1574 1575int get_user_pages_fast(unsigned long start, int nr_pages, 1576 unsigned int gup_flags, struct page **pages); 1577 1578/* Container for pinned pfns / pages */ 1579struct frame_vector { 1580 unsigned int nr_allocated; /* Number of frames we have space for */ 1581 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1582 bool got_ref; /* Did we pin pages by getting page ref? */ 1583 bool is_pfns; /* Does array contain pages or pfns? */ 1584 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1585 * pfns_vector_pages() or pfns_vector_pfns() 1586 * for access */ 1587}; 1588 1589struct frame_vector *frame_vector_create(unsigned int nr_frames); 1590void frame_vector_destroy(struct frame_vector *vec); 1591int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1592 unsigned int gup_flags, struct frame_vector *vec); 1593void put_vaddr_frames(struct frame_vector *vec); 1594int frame_vector_to_pages(struct frame_vector *vec); 1595void frame_vector_to_pfns(struct frame_vector *vec); 1596 1597static inline unsigned int frame_vector_count(struct frame_vector *vec) 1598{ 1599 return vec->nr_frames; 1600} 1601 1602static inline struct page **frame_vector_pages(struct frame_vector *vec) 1603{ 1604 if (vec->is_pfns) { 1605 int err = frame_vector_to_pages(vec); 1606 1607 if (err) 1608 return ERR_PTR(err); 1609 } 1610 return (struct page **)(vec->ptrs); 1611} 1612 1613static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1614{ 1615 if (!vec->is_pfns) 1616 frame_vector_to_pfns(vec); 1617 return (unsigned long *)(vec->ptrs); 1618} 1619 1620struct kvec; 1621int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1622 struct page **pages); 1623int get_kernel_page(unsigned long start, int write, struct page **pages); 1624struct page *get_dump_page(unsigned long addr); 1625 1626extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1627extern void do_invalidatepage(struct page *page, unsigned int offset, 1628 unsigned int length); 1629 1630void __set_page_dirty(struct page *, struct address_space *, int warn); 1631int __set_page_dirty_nobuffers(struct page *page); 1632int __set_page_dirty_no_writeback(struct page *page); 1633int redirty_page_for_writepage(struct writeback_control *wbc, 1634 struct page *page); 1635void account_page_dirtied(struct page *page, struct address_space *mapping); 1636void account_page_cleaned(struct page *page, struct address_space *mapping, 1637 struct bdi_writeback *wb); 1638int set_page_dirty(struct page *page); 1639int set_page_dirty_lock(struct page *page); 1640void __cancel_dirty_page(struct page *page); 1641static inline void cancel_dirty_page(struct page *page) 1642{ 1643 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1644 if (PageDirty(page)) 1645 __cancel_dirty_page(page); 1646} 1647int clear_page_dirty_for_io(struct page *page); 1648 1649int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1650 1651static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1652{ 1653 return !vma->vm_ops; 1654} 1655 1656#ifdef CONFIG_SHMEM 1657/* 1658 * The vma_is_shmem is not inline because it is used only by slow 1659 * paths in userfault. 1660 */ 1661bool vma_is_shmem(struct vm_area_struct *vma); 1662#else 1663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1664#endif 1665 1666int vma_is_stack_for_current(struct vm_area_struct *vma); 1667 1668extern unsigned long move_page_tables(struct vm_area_struct *vma, 1669 unsigned long old_addr, struct vm_area_struct *new_vma, 1670 unsigned long new_addr, unsigned long len, 1671 bool need_rmap_locks); 1672extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1673 unsigned long end, pgprot_t newprot, 1674 int dirty_accountable, int prot_numa); 1675extern int mprotect_fixup(struct vm_area_struct *vma, 1676 struct vm_area_struct **pprev, unsigned long start, 1677 unsigned long end, unsigned long newflags); 1678 1679/* 1680 * doesn't attempt to fault and will return short. 1681 */ 1682int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1683 struct page **pages); 1684/* 1685 * per-process(per-mm_struct) statistics. 1686 */ 1687static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1688{ 1689 long val = atomic_long_read(&mm->rss_stat.count[member]); 1690 1691#ifdef SPLIT_RSS_COUNTING 1692 /* 1693 * counter is updated in asynchronous manner and may go to minus. 1694 * But it's never be expected number for users. 1695 */ 1696 if (val < 0) 1697 val = 0; 1698#endif 1699 return (unsigned long)val; 1700} 1701 1702static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1703{ 1704 atomic_long_add(value, &mm->rss_stat.count[member]); 1705} 1706 1707static inline void inc_mm_counter(struct mm_struct *mm, int member) 1708{ 1709 atomic_long_inc(&mm->rss_stat.count[member]); 1710} 1711 1712static inline void dec_mm_counter(struct mm_struct *mm, int member) 1713{ 1714 atomic_long_dec(&mm->rss_stat.count[member]); 1715} 1716 1717/* Optimized variant when page is already known not to be PageAnon */ 1718static inline int mm_counter_file(struct page *page) 1719{ 1720 if (PageSwapBacked(page)) 1721 return MM_SHMEMPAGES; 1722 return MM_FILEPAGES; 1723} 1724 1725static inline int mm_counter(struct page *page) 1726{ 1727 if (PageAnon(page)) 1728 return MM_ANONPAGES; 1729 return mm_counter_file(page); 1730} 1731 1732static inline unsigned long get_mm_rss(struct mm_struct *mm) 1733{ 1734 return get_mm_counter(mm, MM_FILEPAGES) + 1735 get_mm_counter(mm, MM_ANONPAGES) + 1736 get_mm_counter(mm, MM_SHMEMPAGES); 1737} 1738 1739static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1740{ 1741 return max(mm->hiwater_rss, get_mm_rss(mm)); 1742} 1743 1744static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1745{ 1746 return max(mm->hiwater_vm, mm->total_vm); 1747} 1748 1749static inline void update_hiwater_rss(struct mm_struct *mm) 1750{ 1751 unsigned long _rss = get_mm_rss(mm); 1752 1753 if ((mm)->hiwater_rss < _rss) 1754 (mm)->hiwater_rss = _rss; 1755} 1756 1757static inline void update_hiwater_vm(struct mm_struct *mm) 1758{ 1759 if (mm->hiwater_vm < mm->total_vm) 1760 mm->hiwater_vm = mm->total_vm; 1761} 1762 1763static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1764{ 1765 mm->hiwater_rss = get_mm_rss(mm); 1766} 1767 1768static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1769 struct mm_struct *mm) 1770{ 1771 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1772 1773 if (*maxrss < hiwater_rss) 1774 *maxrss = hiwater_rss; 1775} 1776 1777#if defined(SPLIT_RSS_COUNTING) 1778void sync_mm_rss(struct mm_struct *mm); 1779#else 1780static inline void sync_mm_rss(struct mm_struct *mm) 1781{ 1782} 1783#endif 1784 1785#ifndef __HAVE_ARCH_PTE_DEVMAP 1786static inline int pte_devmap(pte_t pte) 1787{ 1788 return 0; 1789} 1790#endif 1791 1792int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1793 1794extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1795 spinlock_t **ptl); 1796static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1797 spinlock_t **ptl) 1798{ 1799 pte_t *ptep; 1800 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1801 return ptep; 1802} 1803 1804#ifdef __PAGETABLE_P4D_FOLDED 1805static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1806 unsigned long address) 1807{ 1808 return 0; 1809} 1810#else 1811int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1812#endif 1813 1814#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1815static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1816 unsigned long address) 1817{ 1818 return 0; 1819} 1820static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1821static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1822 1823#else 1824int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1825 1826static inline void mm_inc_nr_puds(struct mm_struct *mm) 1827{ 1828 if (mm_pud_folded(mm)) 1829 return; 1830 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1831} 1832 1833static inline void mm_dec_nr_puds(struct mm_struct *mm) 1834{ 1835 if (mm_pud_folded(mm)) 1836 return; 1837 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1838} 1839#endif 1840 1841#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1842static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1843 unsigned long address) 1844{ 1845 return 0; 1846} 1847 1848static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1849static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1850 1851#else 1852int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1853 1854static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1855{ 1856 if (mm_pmd_folded(mm)) 1857 return; 1858 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1859} 1860 1861static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1862{ 1863 if (mm_pmd_folded(mm)) 1864 return; 1865 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1866} 1867#endif 1868 1869#ifdef CONFIG_MMU 1870static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1871{ 1872 atomic_long_set(&mm->pgtables_bytes, 0); 1873} 1874 1875static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1876{ 1877 return atomic_long_read(&mm->pgtables_bytes); 1878} 1879 1880static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1881{ 1882 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1883} 1884 1885static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1886{ 1887 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1888} 1889#else 1890 1891static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1892static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1893{ 1894 return 0; 1895} 1896 1897static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1898static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1899#endif 1900 1901int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1902int __pte_alloc_kernel(pmd_t *pmd); 1903 1904/* 1905 * The following ifdef needed to get the 4level-fixup.h header to work. 1906 * Remove it when 4level-fixup.h has been removed. 1907 */ 1908#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1909 1910#ifndef __ARCH_HAS_5LEVEL_HACK 1911static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1912 unsigned long address) 1913{ 1914 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1915 NULL : p4d_offset(pgd, address); 1916} 1917 1918static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1919 unsigned long address) 1920{ 1921 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1922 NULL : pud_offset(p4d, address); 1923} 1924#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1925 1926static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1927{ 1928 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1929 NULL: pmd_offset(pud, address); 1930} 1931#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1932 1933#if USE_SPLIT_PTE_PTLOCKS 1934#if ALLOC_SPLIT_PTLOCKS 1935void __init ptlock_cache_init(void); 1936extern bool ptlock_alloc(struct page *page); 1937extern void ptlock_free(struct page *page); 1938 1939static inline spinlock_t *ptlock_ptr(struct page *page) 1940{ 1941 return page->ptl; 1942} 1943#else /* ALLOC_SPLIT_PTLOCKS */ 1944static inline void ptlock_cache_init(void) 1945{ 1946} 1947 1948static inline bool ptlock_alloc(struct page *page) 1949{ 1950 return true; 1951} 1952 1953static inline void ptlock_free(struct page *page) 1954{ 1955} 1956 1957static inline spinlock_t *ptlock_ptr(struct page *page) 1958{ 1959 return &page->ptl; 1960} 1961#endif /* ALLOC_SPLIT_PTLOCKS */ 1962 1963static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1964{ 1965 return ptlock_ptr(pmd_page(*pmd)); 1966} 1967 1968static inline bool ptlock_init(struct page *page) 1969{ 1970 /* 1971 * prep_new_page() initialize page->private (and therefore page->ptl) 1972 * with 0. Make sure nobody took it in use in between. 1973 * 1974 * It can happen if arch try to use slab for page table allocation: 1975 * slab code uses page->slab_cache, which share storage with page->ptl. 1976 */ 1977 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1978 if (!ptlock_alloc(page)) 1979 return false; 1980 spin_lock_init(ptlock_ptr(page)); 1981 return true; 1982} 1983 1984#else /* !USE_SPLIT_PTE_PTLOCKS */ 1985/* 1986 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1987 */ 1988static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1989{ 1990 return &mm->page_table_lock; 1991} 1992static inline void ptlock_cache_init(void) {} 1993static inline bool ptlock_init(struct page *page) { return true; } 1994static inline void ptlock_free(struct page *page) {} 1995#endif /* USE_SPLIT_PTE_PTLOCKS */ 1996 1997static inline void pgtable_init(void) 1998{ 1999 ptlock_cache_init(); 2000 pgtable_cache_init(); 2001} 2002 2003static inline bool pgtable_page_ctor(struct page *page) 2004{ 2005 if (!ptlock_init(page)) 2006 return false; 2007 __SetPageTable(page); 2008 inc_zone_page_state(page, NR_PAGETABLE); 2009 return true; 2010} 2011 2012static inline void pgtable_page_dtor(struct page *page) 2013{ 2014 ptlock_free(page); 2015 __ClearPageTable(page); 2016 dec_zone_page_state(page, NR_PAGETABLE); 2017} 2018 2019#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2020({ \ 2021 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2022 pte_t *__pte = pte_offset_map(pmd, address); \ 2023 *(ptlp) = __ptl; \ 2024 spin_lock(__ptl); \ 2025 __pte; \ 2026}) 2027 2028#define pte_unmap_unlock(pte, ptl) do { \ 2029 spin_unlock(ptl); \ 2030 pte_unmap(pte); \ 2031} while (0) 2032 2033#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2034 2035#define pte_alloc_map(mm, pmd, address) \ 2036 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2037 2038#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2039 (pte_alloc(mm, pmd) ? \ 2040 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2041 2042#define pte_alloc_kernel(pmd, address) \ 2043 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2044 NULL: pte_offset_kernel(pmd, address)) 2045 2046#if USE_SPLIT_PMD_PTLOCKS 2047 2048static struct page *pmd_to_page(pmd_t *pmd) 2049{ 2050 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2051 return virt_to_page((void *)((unsigned long) pmd & mask)); 2052} 2053 2054static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2055{ 2056 return ptlock_ptr(pmd_to_page(pmd)); 2057} 2058 2059static inline bool pgtable_pmd_page_ctor(struct page *page) 2060{ 2061#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2062 page->pmd_huge_pte = NULL; 2063#endif 2064 return ptlock_init(page); 2065} 2066 2067static inline void pgtable_pmd_page_dtor(struct page *page) 2068{ 2069#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2070 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2071#endif 2072 ptlock_free(page); 2073} 2074 2075#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2076 2077#else 2078 2079static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2080{ 2081 return &mm->page_table_lock; 2082} 2083 2084static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2085static inline void pgtable_pmd_page_dtor(struct page *page) {} 2086 2087#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2088 2089#endif 2090 2091static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2092{ 2093 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2094 spin_lock(ptl); 2095 return ptl; 2096} 2097 2098/* 2099 * No scalability reason to split PUD locks yet, but follow the same pattern 2100 * as the PMD locks to make it easier if we decide to. The VM should not be 2101 * considered ready to switch to split PUD locks yet; there may be places 2102 * which need to be converted from page_table_lock. 2103 */ 2104static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2105{ 2106 return &mm->page_table_lock; 2107} 2108 2109static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2110{ 2111 spinlock_t *ptl = pud_lockptr(mm, pud); 2112 2113 spin_lock(ptl); 2114 return ptl; 2115} 2116 2117extern void __init pagecache_init(void); 2118extern void free_area_init(unsigned long * zones_size); 2119extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2120 unsigned long zone_start_pfn, unsigned long *zholes_size); 2121extern void free_initmem(void); 2122 2123/* 2124 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2125 * into the buddy system. The freed pages will be poisoned with pattern 2126 * "poison" if it's within range [0, UCHAR_MAX]. 2127 * Return pages freed into the buddy system. 2128 */ 2129extern unsigned long free_reserved_area(void *start, void *end, 2130 int poison, const char *s); 2131 2132#ifdef CONFIG_HIGHMEM 2133/* 2134 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2135 * and totalram_pages. 2136 */ 2137extern void free_highmem_page(struct page *page); 2138#endif 2139 2140extern void adjust_managed_page_count(struct page *page, long count); 2141extern void mem_init_print_info(const char *str); 2142 2143extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2144 2145/* Free the reserved page into the buddy system, so it gets managed. */ 2146static inline void __free_reserved_page(struct page *page) 2147{ 2148 ClearPageReserved(page); 2149 init_page_count(page); 2150 __free_page(page); 2151} 2152 2153static inline void free_reserved_page(struct page *page) 2154{ 2155 __free_reserved_page(page); 2156 adjust_managed_page_count(page, 1); 2157} 2158 2159static inline void mark_page_reserved(struct page *page) 2160{ 2161 SetPageReserved(page); 2162 adjust_managed_page_count(page, -1); 2163} 2164 2165/* 2166 * Default method to free all the __init memory into the buddy system. 2167 * The freed pages will be poisoned with pattern "poison" if it's within 2168 * range [0, UCHAR_MAX]. 2169 * Return pages freed into the buddy system. 2170 */ 2171static inline unsigned long free_initmem_default(int poison) 2172{ 2173 extern char __init_begin[], __init_end[]; 2174 2175 return free_reserved_area(&__init_begin, &__init_end, 2176 poison, "unused kernel"); 2177} 2178 2179static inline unsigned long get_num_physpages(void) 2180{ 2181 int nid; 2182 unsigned long phys_pages = 0; 2183 2184 for_each_online_node(nid) 2185 phys_pages += node_present_pages(nid); 2186 2187 return phys_pages; 2188} 2189 2190#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2191/* 2192 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2193 * zones, allocate the backing mem_map and account for memory holes in a more 2194 * architecture independent manner. This is a substitute for creating the 2195 * zone_sizes[] and zholes_size[] arrays and passing them to 2196 * free_area_init_node() 2197 * 2198 * An architecture is expected to register range of page frames backed by 2199 * physical memory with memblock_add[_node]() before calling 2200 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2201 * usage, an architecture is expected to do something like 2202 * 2203 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2204 * max_highmem_pfn}; 2205 * for_each_valid_physical_page_range() 2206 * memblock_add_node(base, size, nid) 2207 * free_area_init_nodes(max_zone_pfns); 2208 * 2209 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2210 * registered physical page range. Similarly 2211 * sparse_memory_present_with_active_regions() calls memory_present() for 2212 * each range when SPARSEMEM is enabled. 2213 * 2214 * See mm/page_alloc.c for more information on each function exposed by 2215 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2216 */ 2217extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2218unsigned long node_map_pfn_alignment(void); 2219unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2220 unsigned long end_pfn); 2221extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2222 unsigned long end_pfn); 2223extern void get_pfn_range_for_nid(unsigned int nid, 2224 unsigned long *start_pfn, unsigned long *end_pfn); 2225extern unsigned long find_min_pfn_with_active_regions(void); 2226extern void free_bootmem_with_active_regions(int nid, 2227 unsigned long max_low_pfn); 2228extern void sparse_memory_present_with_active_regions(int nid); 2229 2230#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2231 2232#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2233 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2234static inline int __early_pfn_to_nid(unsigned long pfn, 2235 struct mminit_pfnnid_cache *state) 2236{ 2237 return 0; 2238} 2239#else 2240/* please see mm/page_alloc.c */ 2241extern int __meminit early_pfn_to_nid(unsigned long pfn); 2242/* there is a per-arch backend function. */ 2243extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2244 struct mminit_pfnnid_cache *state); 2245#endif 2246 2247#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2248void zero_resv_unavail(void); 2249#else 2250static inline void zero_resv_unavail(void) {} 2251#endif 2252 2253extern void set_dma_reserve(unsigned long new_dma_reserve); 2254extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2255 enum memmap_context, struct vmem_altmap *); 2256extern void setup_per_zone_wmarks(void); 2257extern int __meminit init_per_zone_wmark_min(void); 2258extern void mem_init(void); 2259extern void __init mmap_init(void); 2260extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2261extern long si_mem_available(void); 2262extern void si_meminfo(struct sysinfo * val); 2263extern void si_meminfo_node(struct sysinfo *val, int nid); 2264#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2265extern unsigned long arch_reserved_kernel_pages(void); 2266#endif 2267 2268extern __printf(3, 4) 2269void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2270 2271extern void setup_per_cpu_pageset(void); 2272 2273extern void zone_pcp_update(struct zone *zone); 2274extern void zone_pcp_reset(struct zone *zone); 2275 2276/* page_alloc.c */ 2277extern int min_free_kbytes; 2278extern int watermark_boost_factor; 2279extern int watermark_scale_factor; 2280 2281/* nommu.c */ 2282extern atomic_long_t mmap_pages_allocated; 2283extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2284 2285/* interval_tree.c */ 2286void vma_interval_tree_insert(struct vm_area_struct *node, 2287 struct rb_root_cached *root); 2288void vma_interval_tree_insert_after(struct vm_area_struct *node, 2289 struct vm_area_struct *prev, 2290 struct rb_root_cached *root); 2291void vma_interval_tree_remove(struct vm_area_struct *node, 2292 struct rb_root_cached *root); 2293struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2294 unsigned long start, unsigned long last); 2295struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2296 unsigned long start, unsigned long last); 2297 2298#define vma_interval_tree_foreach(vma, root, start, last) \ 2299 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2300 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2301 2302void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2303 struct rb_root_cached *root); 2304void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2305 struct rb_root_cached *root); 2306struct anon_vma_chain * 2307anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2308 unsigned long start, unsigned long last); 2309struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2310 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2311#ifdef CONFIG_DEBUG_VM_RB 2312void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2313#endif 2314 2315#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2316 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2317 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2318 2319/* mmap.c */ 2320extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2321extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2322 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2323 struct vm_area_struct *expand); 2324static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2325 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2326{ 2327 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2328} 2329extern struct vm_area_struct *vma_merge(struct mm_struct *, 2330 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2331 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2332 struct mempolicy *, struct vm_userfaultfd_ctx); 2333extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2334extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2335 unsigned long addr, int new_below); 2336extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2337 unsigned long addr, int new_below); 2338extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2339extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2340 struct rb_node **, struct rb_node *); 2341extern void unlink_file_vma(struct vm_area_struct *); 2342extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2343 unsigned long addr, unsigned long len, pgoff_t pgoff, 2344 bool *need_rmap_locks); 2345extern void exit_mmap(struct mm_struct *); 2346 2347static inline int check_data_rlimit(unsigned long rlim, 2348 unsigned long new, 2349 unsigned long start, 2350 unsigned long end_data, 2351 unsigned long start_data) 2352{ 2353 if (rlim < RLIM_INFINITY) { 2354 if (((new - start) + (end_data - start_data)) > rlim) 2355 return -ENOSPC; 2356 } 2357 2358 return 0; 2359} 2360 2361extern int mm_take_all_locks(struct mm_struct *mm); 2362extern void mm_drop_all_locks(struct mm_struct *mm); 2363 2364extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2365extern struct file *get_mm_exe_file(struct mm_struct *mm); 2366extern struct file *get_task_exe_file(struct task_struct *task); 2367 2368extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2369extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2370 2371extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2372 const struct vm_special_mapping *sm); 2373extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2374 unsigned long addr, unsigned long len, 2375 unsigned long flags, 2376 const struct vm_special_mapping *spec); 2377/* This is an obsolete alternative to _install_special_mapping. */ 2378extern int install_special_mapping(struct mm_struct *mm, 2379 unsigned long addr, unsigned long len, 2380 unsigned long flags, struct page **pages); 2381 2382extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2383 2384extern unsigned long mmap_region(struct file *file, unsigned long addr, 2385 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2386 struct list_head *uf); 2387extern unsigned long do_mmap(struct file *file, unsigned long addr, 2388 unsigned long len, unsigned long prot, unsigned long flags, 2389 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2390 struct list_head *uf); 2391extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2392 struct list_head *uf, bool downgrade); 2393extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2394 struct list_head *uf); 2395 2396static inline unsigned long 2397do_mmap_pgoff(struct file *file, unsigned long addr, 2398 unsigned long len, unsigned long prot, unsigned long flags, 2399 unsigned long pgoff, unsigned long *populate, 2400 struct list_head *uf) 2401{ 2402 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2403} 2404 2405#ifdef CONFIG_MMU 2406extern int __mm_populate(unsigned long addr, unsigned long len, 2407 int ignore_errors); 2408static inline void mm_populate(unsigned long addr, unsigned long len) 2409{ 2410 /* Ignore errors */ 2411 (void) __mm_populate(addr, len, 1); 2412} 2413#else 2414static inline void mm_populate(unsigned long addr, unsigned long len) {} 2415#endif 2416 2417/* These take the mm semaphore themselves */ 2418extern int __must_check vm_brk(unsigned long, unsigned long); 2419extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2420extern int vm_munmap(unsigned long, size_t); 2421extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2422 unsigned long, unsigned long, 2423 unsigned long, unsigned long); 2424 2425struct vm_unmapped_area_info { 2426#define VM_UNMAPPED_AREA_TOPDOWN 1 2427 unsigned long flags; 2428 unsigned long length; 2429 unsigned long low_limit; 2430 unsigned long high_limit; 2431 unsigned long align_mask; 2432 unsigned long align_offset; 2433}; 2434 2435extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2436extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2437 2438/* 2439 * Search for an unmapped address range. 2440 * 2441 * We are looking for a range that: 2442 * - does not intersect with any VMA; 2443 * - is contained within the [low_limit, high_limit) interval; 2444 * - is at least the desired size. 2445 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2446 */ 2447static inline unsigned long 2448vm_unmapped_area(struct vm_unmapped_area_info *info) 2449{ 2450 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2451 return unmapped_area_topdown(info); 2452 else 2453 return unmapped_area(info); 2454} 2455 2456/* truncate.c */ 2457extern void truncate_inode_pages(struct address_space *, loff_t); 2458extern void truncate_inode_pages_range(struct address_space *, 2459 loff_t lstart, loff_t lend); 2460extern void truncate_inode_pages_final(struct address_space *); 2461 2462/* generic vm_area_ops exported for stackable file systems */ 2463extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2464extern void filemap_map_pages(struct vm_fault *vmf, 2465 pgoff_t start_pgoff, pgoff_t end_pgoff); 2466extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2467 2468/* mm/page-writeback.c */ 2469int __must_check write_one_page(struct page *page); 2470void task_dirty_inc(struct task_struct *tsk); 2471 2472/* readahead.c */ 2473#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2474 2475int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2476 pgoff_t offset, unsigned long nr_to_read); 2477 2478void page_cache_sync_readahead(struct address_space *mapping, 2479 struct file_ra_state *ra, 2480 struct file *filp, 2481 pgoff_t offset, 2482 unsigned long size); 2483 2484void page_cache_async_readahead(struct address_space *mapping, 2485 struct file_ra_state *ra, 2486 struct file *filp, 2487 struct page *pg, 2488 pgoff_t offset, 2489 unsigned long size); 2490 2491extern unsigned long stack_guard_gap; 2492/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2493extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2494 2495/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2496extern int expand_downwards(struct vm_area_struct *vma, 2497 unsigned long address); 2498#if VM_GROWSUP 2499extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2500#else 2501 #define expand_upwards(vma, address) (0) 2502#endif 2503 2504/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2505extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2506extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2507 struct vm_area_struct **pprev); 2508 2509/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2510 NULL if none. Assume start_addr < end_addr. */ 2511static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2512{ 2513 struct vm_area_struct * vma = find_vma(mm,start_addr); 2514 2515 if (vma && end_addr <= vma->vm_start) 2516 vma = NULL; 2517 return vma; 2518} 2519 2520static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2521{ 2522 unsigned long vm_start = vma->vm_start; 2523 2524 if (vma->vm_flags & VM_GROWSDOWN) { 2525 vm_start -= stack_guard_gap; 2526 if (vm_start > vma->vm_start) 2527 vm_start = 0; 2528 } 2529 return vm_start; 2530} 2531 2532static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2533{ 2534 unsigned long vm_end = vma->vm_end; 2535 2536 if (vma->vm_flags & VM_GROWSUP) { 2537 vm_end += stack_guard_gap; 2538 if (vm_end < vma->vm_end) 2539 vm_end = -PAGE_SIZE; 2540 } 2541 return vm_end; 2542} 2543 2544static inline unsigned long vma_pages(struct vm_area_struct *vma) 2545{ 2546 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2547} 2548 2549/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2550static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2551 unsigned long vm_start, unsigned long vm_end) 2552{ 2553 struct vm_area_struct *vma = find_vma(mm, vm_start); 2554 2555 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2556 vma = NULL; 2557 2558 return vma; 2559} 2560 2561static inline bool range_in_vma(struct vm_area_struct *vma, 2562 unsigned long start, unsigned long end) 2563{ 2564 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2565} 2566 2567#ifdef CONFIG_MMU 2568pgprot_t vm_get_page_prot(unsigned long vm_flags); 2569void vma_set_page_prot(struct vm_area_struct *vma); 2570#else 2571static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2572{ 2573 return __pgprot(0); 2574} 2575static inline void vma_set_page_prot(struct vm_area_struct *vma) 2576{ 2577 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2578} 2579#endif 2580 2581#ifdef CONFIG_NUMA_BALANCING 2582unsigned long change_prot_numa(struct vm_area_struct *vma, 2583 unsigned long start, unsigned long end); 2584#endif 2585 2586struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2587int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2588 unsigned long pfn, unsigned long size, pgprot_t); 2589int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2590int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2591 unsigned long num); 2592int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2593 unsigned long num); 2594vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2595 unsigned long pfn); 2596vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2597 unsigned long pfn, pgprot_t pgprot); 2598vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2599 pfn_t pfn); 2600vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2601 unsigned long addr, pfn_t pfn); 2602int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2603 2604static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2605 unsigned long addr, struct page *page) 2606{ 2607 int err = vm_insert_page(vma, addr, page); 2608 2609 if (err == -ENOMEM) 2610 return VM_FAULT_OOM; 2611 if (err < 0 && err != -EBUSY) 2612 return VM_FAULT_SIGBUS; 2613 2614 return VM_FAULT_NOPAGE; 2615} 2616 2617static inline vm_fault_t vmf_error(int err) 2618{ 2619 if (err == -ENOMEM) 2620 return VM_FAULT_OOM; 2621 return VM_FAULT_SIGBUS; 2622} 2623 2624struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2625 unsigned int foll_flags); 2626 2627#define FOLL_WRITE 0x01 /* check pte is writable */ 2628#define FOLL_TOUCH 0x02 /* mark page accessed */ 2629#define FOLL_GET 0x04 /* do get_page on page */ 2630#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2631#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2632#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2633 * and return without waiting upon it */ 2634#define FOLL_POPULATE 0x40 /* fault in page */ 2635#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2636#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2637#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2638#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2639#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2640#define FOLL_MLOCK 0x1000 /* lock present pages */ 2641#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2642#define FOLL_COW 0x4000 /* internal GUP flag */ 2643#define FOLL_ANON 0x8000 /* don't do file mappings */ 2644#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2645 2646/* 2647 * NOTE on FOLL_LONGTERM: 2648 * 2649 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2650 * period _often_ under userspace control. This is contrasted with 2651 * iov_iter_get_pages() where usages which are transient. 2652 * 2653 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2654 * lifetime enforced by the filesystem and we need guarantees that longterm 2655 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2656 * the filesystem. Ideas for this coordination include revoking the longterm 2657 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2658 * added after the problem with filesystems was found FS DAX VMAs are 2659 * specifically failed. Filesystem pages are still subject to bugs and use of 2660 * FOLL_LONGTERM should be avoided on those pages. 2661 * 2662 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2663 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2664 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2665 * is due to an incompatibility with the FS DAX check and 2666 * FAULT_FLAG_ALLOW_RETRY 2667 * 2668 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2669 * that region. And so CMA attempts to migrate the page before pinning when 2670 * FOLL_LONGTERM is specified. 2671 */ 2672 2673static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2674{ 2675 if (vm_fault & VM_FAULT_OOM) 2676 return -ENOMEM; 2677 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2678 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2679 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2680 return -EFAULT; 2681 return 0; 2682} 2683 2684typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2685 void *data); 2686extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2687 unsigned long size, pte_fn_t fn, void *data); 2688 2689 2690#ifdef CONFIG_PAGE_POISONING 2691extern bool page_poisoning_enabled(void); 2692extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2693#else 2694static inline bool page_poisoning_enabled(void) { return false; } 2695static inline void kernel_poison_pages(struct page *page, int numpages, 2696 int enable) { } 2697#endif 2698 2699extern bool _debug_pagealloc_enabled; 2700 2701static inline bool debug_pagealloc_enabled(void) 2702{ 2703 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled; 2704} 2705 2706#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2707extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2708 2709static inline void 2710kernel_map_pages(struct page *page, int numpages, int enable) 2711{ 2712 __kernel_map_pages(page, numpages, enable); 2713} 2714#ifdef CONFIG_HIBERNATION 2715extern bool kernel_page_present(struct page *page); 2716#endif /* CONFIG_HIBERNATION */ 2717#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2718static inline void 2719kernel_map_pages(struct page *page, int numpages, int enable) {} 2720#ifdef CONFIG_HIBERNATION 2721static inline bool kernel_page_present(struct page *page) { return true; } 2722#endif /* CONFIG_HIBERNATION */ 2723#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2724 2725#ifdef __HAVE_ARCH_GATE_AREA 2726extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2727extern int in_gate_area_no_mm(unsigned long addr); 2728extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2729#else 2730static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2731{ 2732 return NULL; 2733} 2734static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2735static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2736{ 2737 return 0; 2738} 2739#endif /* __HAVE_ARCH_GATE_AREA */ 2740 2741extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2742 2743#ifdef CONFIG_SYSCTL 2744extern int sysctl_drop_caches; 2745int drop_caches_sysctl_handler(struct ctl_table *, int, 2746 void __user *, size_t *, loff_t *); 2747#endif 2748 2749void drop_slab(void); 2750void drop_slab_node(int nid); 2751 2752#ifndef CONFIG_MMU 2753#define randomize_va_space 0 2754#else 2755extern int randomize_va_space; 2756#endif 2757 2758const char * arch_vma_name(struct vm_area_struct *vma); 2759void print_vma_addr(char *prefix, unsigned long rip); 2760 2761void *sparse_buffer_alloc(unsigned long size); 2762struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2763 struct vmem_altmap *altmap); 2764pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2765p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2766pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2767pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2768pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2769void *vmemmap_alloc_block(unsigned long size, int node); 2770struct vmem_altmap; 2771void *vmemmap_alloc_block_buf(unsigned long size, int node); 2772void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2773void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2774int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2775 int node); 2776int vmemmap_populate(unsigned long start, unsigned long end, int node, 2777 struct vmem_altmap *altmap); 2778void vmemmap_populate_print_last(void); 2779#ifdef CONFIG_MEMORY_HOTPLUG 2780void vmemmap_free(unsigned long start, unsigned long end, 2781 struct vmem_altmap *altmap); 2782#endif 2783void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2784 unsigned long nr_pages); 2785 2786enum mf_flags { 2787 MF_COUNT_INCREASED = 1 << 0, 2788 MF_ACTION_REQUIRED = 1 << 1, 2789 MF_MUST_KILL = 1 << 2, 2790 MF_SOFT_OFFLINE = 1 << 3, 2791}; 2792extern int memory_failure(unsigned long pfn, int flags); 2793extern void memory_failure_queue(unsigned long pfn, int flags); 2794extern int unpoison_memory(unsigned long pfn); 2795extern int get_hwpoison_page(struct page *page); 2796#define put_hwpoison_page(page) put_page(page) 2797extern int sysctl_memory_failure_early_kill; 2798extern int sysctl_memory_failure_recovery; 2799extern void shake_page(struct page *p, int access); 2800extern atomic_long_t num_poisoned_pages __read_mostly; 2801extern int soft_offline_page(struct page *page, int flags); 2802 2803 2804/* 2805 * Error handlers for various types of pages. 2806 */ 2807enum mf_result { 2808 MF_IGNORED, /* Error: cannot be handled */ 2809 MF_FAILED, /* Error: handling failed */ 2810 MF_DELAYED, /* Will be handled later */ 2811 MF_RECOVERED, /* Successfully recovered */ 2812}; 2813 2814enum mf_action_page_type { 2815 MF_MSG_KERNEL, 2816 MF_MSG_KERNEL_HIGH_ORDER, 2817 MF_MSG_SLAB, 2818 MF_MSG_DIFFERENT_COMPOUND, 2819 MF_MSG_POISONED_HUGE, 2820 MF_MSG_HUGE, 2821 MF_MSG_FREE_HUGE, 2822 MF_MSG_NON_PMD_HUGE, 2823 MF_MSG_UNMAP_FAILED, 2824 MF_MSG_DIRTY_SWAPCACHE, 2825 MF_MSG_CLEAN_SWAPCACHE, 2826 MF_MSG_DIRTY_MLOCKED_LRU, 2827 MF_MSG_CLEAN_MLOCKED_LRU, 2828 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2829 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2830 MF_MSG_DIRTY_LRU, 2831 MF_MSG_CLEAN_LRU, 2832 MF_MSG_TRUNCATED_LRU, 2833 MF_MSG_BUDDY, 2834 MF_MSG_BUDDY_2ND, 2835 MF_MSG_DAX, 2836 MF_MSG_UNKNOWN, 2837}; 2838 2839#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2840extern void clear_huge_page(struct page *page, 2841 unsigned long addr_hint, 2842 unsigned int pages_per_huge_page); 2843extern void copy_user_huge_page(struct page *dst, struct page *src, 2844 unsigned long addr_hint, 2845 struct vm_area_struct *vma, 2846 unsigned int pages_per_huge_page); 2847extern long copy_huge_page_from_user(struct page *dst_page, 2848 const void __user *usr_src, 2849 unsigned int pages_per_huge_page, 2850 bool allow_pagefault); 2851#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2852 2853extern struct page_ext_operations debug_guardpage_ops; 2854 2855#ifdef CONFIG_DEBUG_PAGEALLOC 2856extern unsigned int _debug_guardpage_minorder; 2857extern bool _debug_guardpage_enabled; 2858 2859static inline unsigned int debug_guardpage_minorder(void) 2860{ 2861 return _debug_guardpage_minorder; 2862} 2863 2864static inline bool debug_guardpage_enabled(void) 2865{ 2866 return _debug_guardpage_enabled; 2867} 2868 2869static inline bool page_is_guard(struct page *page) 2870{ 2871 struct page_ext *page_ext; 2872 2873 if (!debug_guardpage_enabled()) 2874 return false; 2875 2876 page_ext = lookup_page_ext(page); 2877 if (unlikely(!page_ext)) 2878 return false; 2879 2880 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2881} 2882#else 2883static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2884static inline bool debug_guardpage_enabled(void) { return false; } 2885static inline bool page_is_guard(struct page *page) { return false; } 2886#endif /* CONFIG_DEBUG_PAGEALLOC */ 2887 2888#if MAX_NUMNODES > 1 2889void __init setup_nr_node_ids(void); 2890#else 2891static inline void setup_nr_node_ids(void) {} 2892#endif 2893 2894#endif /* __KERNEL__ */ 2895#endif /* _LINUX_MM_H */