at v5.2 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/bug.h> 14#include <linux/mm.h> 15#include <linux/mmu_notifier.h> 16#include <linux/preempt.h> 17#include <linux/msi.h> 18#include <linux/slab.h> 19#include <linux/vmalloc.h> 20#include <linux/rcupdate.h> 21#include <linux/ratelimit.h> 22#include <linux/err.h> 23#include <linux/irqflags.h> 24#include <linux/context_tracking.h> 25#include <linux/irqbypass.h> 26#include <linux/swait.h> 27#include <linux/refcount.h> 28#include <linux/nospec.h> 29#include <asm/signal.h> 30 31#include <linux/kvm.h> 32#include <linux/kvm_para.h> 33 34#include <linux/kvm_types.h> 35 36#include <asm/kvm_host.h> 37 38#ifndef KVM_MAX_VCPU_ID 39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40#endif 41 42/* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47#define KVM_MEMSLOT_INVALID (1UL << 16) 48 49/* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70/* Two fragments for cross MMIO pages. */ 71#define KVM_MAX_MMIO_FRAGMENTS 2 72 73#ifndef KVM_ADDRESS_SPACE_NUM 74#define KVM_ADDRESS_SPACE_NUM 1 75#endif 76 77/* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84#define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90/* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94static inline bool is_error_pfn(kvm_pfn_t pfn) 95{ 96 return !!(pfn & KVM_PFN_ERR_MASK); 97} 98 99/* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105{ 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107} 108 109/* noslot pfn indicates that the gfn is not in slot. */ 110static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111{ 112 return pfn == KVM_PFN_NOSLOT; 113} 114 115/* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119#ifndef KVM_HVA_ERR_BAD 120 121#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124static inline bool kvm_is_error_hva(unsigned long addr) 125{ 126 return addr >= PAGE_OFFSET; 127} 128 129#endif 130 131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133static inline bool is_error_page(struct page *page) 134{ 135 return IS_ERR(page); 136} 137 138#define KVM_REQUEST_MASK GENMASK(7,0) 139#define KVM_REQUEST_NO_WAKEUP BIT(8) 140#define KVM_REQUEST_WAIT BIT(9) 141/* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147#define KVM_REQ_PENDING_TIMER 2 148#define KVM_REQ_UNHALT 3 149#define KVM_REQUEST_ARCH_BASE 8 150 151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154}) 155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157#define KVM_USERSPACE_IRQ_SOURCE_ID 0 158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160extern struct kmem_cache *kvm_vcpu_cache; 161 162extern spinlock_t kvm_lock; 163extern struct list_head vm_list; 164 165struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169}; 170 171#define NR_IOBUS_DEVS 1000 172 173struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177}; 178 179enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185}; 186 187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200#ifdef CONFIG_KVM_ASYNC_PF 201struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gva_t gva; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211}; 212 213void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 214void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 215int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 216 struct kvm_arch_async_pf *arch); 217int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 218#endif 219 220enum { 221 OUTSIDE_GUEST_MODE, 222 IN_GUEST_MODE, 223 EXITING_GUEST_MODE, 224 READING_SHADOW_PAGE_TABLES, 225}; 226 227#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 228 229struct kvm_host_map { 230 /* 231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 232 * a 'struct page' for it. When using mem= kernel parameter some memory 233 * can be used as guest memory but they are not managed by host 234 * kernel). 235 * If 'pfn' is not managed by the host kernel, this field is 236 * initialized to KVM_UNMAPPED_PAGE. 237 */ 238 struct page *page; 239 void *hva; 240 kvm_pfn_t pfn; 241 kvm_pfn_t gfn; 242}; 243 244/* 245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 246 * directly to check for that. 247 */ 248static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 249{ 250 return !!map->hva; 251} 252 253/* 254 * Sometimes a large or cross-page mmio needs to be broken up into separate 255 * exits for userspace servicing. 256 */ 257struct kvm_mmio_fragment { 258 gpa_t gpa; 259 void *data; 260 unsigned len; 261}; 262 263struct kvm_vcpu { 264 struct kvm *kvm; 265#ifdef CONFIG_PREEMPT_NOTIFIERS 266 struct preempt_notifier preempt_notifier; 267#endif 268 int cpu; 269 int vcpu_id; 270 int srcu_idx; 271 int mode; 272 u64 requests; 273 unsigned long guest_debug; 274 275 int pre_pcpu; 276 struct list_head blocked_vcpu_list; 277 278 struct mutex mutex; 279 struct kvm_run *run; 280 281 int guest_xcr0_loaded; 282 struct swait_queue_head wq; 283 struct pid __rcu *pid; 284 int sigset_active; 285 sigset_t sigset; 286 struct kvm_vcpu_stat stat; 287 unsigned int halt_poll_ns; 288 bool valid_wakeup; 289 290#ifdef CONFIG_HAS_IOMEM 291 int mmio_needed; 292 int mmio_read_completed; 293 int mmio_is_write; 294 int mmio_cur_fragment; 295 int mmio_nr_fragments; 296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 297#endif 298 299#ifdef CONFIG_KVM_ASYNC_PF 300 struct { 301 u32 queued; 302 struct list_head queue; 303 struct list_head done; 304 spinlock_t lock; 305 } async_pf; 306#endif 307 308#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 309 /* 310 * Cpu relax intercept or pause loop exit optimization 311 * in_spin_loop: set when a vcpu does a pause loop exit 312 * or cpu relax intercepted. 313 * dy_eligible: indicates whether vcpu is eligible for directed yield. 314 */ 315 struct { 316 bool in_spin_loop; 317 bool dy_eligible; 318 } spin_loop; 319#endif 320 bool preempted; 321 struct kvm_vcpu_arch arch; 322 struct dentry *debugfs_dentry; 323}; 324 325static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 326{ 327 /* 328 * The memory barrier ensures a previous write to vcpu->requests cannot 329 * be reordered with the read of vcpu->mode. It pairs with the general 330 * memory barrier following the write of vcpu->mode in VCPU RUN. 331 */ 332 smp_mb__before_atomic(); 333 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 334} 335 336/* 337 * Some of the bitops functions do not support too long bitmaps. 338 * This number must be determined not to exceed such limits. 339 */ 340#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 341 342struct kvm_memory_slot { 343 gfn_t base_gfn; 344 unsigned long npages; 345 unsigned long *dirty_bitmap; 346 struct kvm_arch_memory_slot arch; 347 unsigned long userspace_addr; 348 u32 flags; 349 short id; 350}; 351 352static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 353{ 354 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 355} 356 357static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 358{ 359 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 360 361 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 362} 363 364struct kvm_s390_adapter_int { 365 u64 ind_addr; 366 u64 summary_addr; 367 u64 ind_offset; 368 u32 summary_offset; 369 u32 adapter_id; 370}; 371 372struct kvm_hv_sint { 373 u32 vcpu; 374 u32 sint; 375}; 376 377struct kvm_kernel_irq_routing_entry { 378 u32 gsi; 379 u32 type; 380 int (*set)(struct kvm_kernel_irq_routing_entry *e, 381 struct kvm *kvm, int irq_source_id, int level, 382 bool line_status); 383 union { 384 struct { 385 unsigned irqchip; 386 unsigned pin; 387 } irqchip; 388 struct { 389 u32 address_lo; 390 u32 address_hi; 391 u32 data; 392 u32 flags; 393 u32 devid; 394 } msi; 395 struct kvm_s390_adapter_int adapter; 396 struct kvm_hv_sint hv_sint; 397 }; 398 struct hlist_node link; 399}; 400 401#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 402struct kvm_irq_routing_table { 403 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 404 u32 nr_rt_entries; 405 /* 406 * Array indexed by gsi. Each entry contains list of irq chips 407 * the gsi is connected to. 408 */ 409 struct hlist_head map[0]; 410}; 411#endif 412 413#ifndef KVM_PRIVATE_MEM_SLOTS 414#define KVM_PRIVATE_MEM_SLOTS 0 415#endif 416 417#ifndef KVM_MEM_SLOTS_NUM 418#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 419#endif 420 421#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 422static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 423{ 424 return 0; 425} 426#endif 427 428/* 429 * Note: 430 * memslots are not sorted by id anymore, please use id_to_memslot() 431 * to get the memslot by its id. 432 */ 433struct kvm_memslots { 434 u64 generation; 435 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 436 /* The mapping table from slot id to the index in memslots[]. */ 437 short id_to_index[KVM_MEM_SLOTS_NUM]; 438 atomic_t lru_slot; 439 int used_slots; 440}; 441 442struct kvm { 443 spinlock_t mmu_lock; 444 struct mutex slots_lock; 445 struct mm_struct *mm; /* userspace tied to this vm */ 446 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 447 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 448 449 /* 450 * created_vcpus is protected by kvm->lock, and is incremented 451 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 452 * incremented after storing the kvm_vcpu pointer in vcpus, 453 * and is accessed atomically. 454 */ 455 atomic_t online_vcpus; 456 int created_vcpus; 457 int last_boosted_vcpu; 458 struct list_head vm_list; 459 struct mutex lock; 460 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 461#ifdef CONFIG_HAVE_KVM_EVENTFD 462 struct { 463 spinlock_t lock; 464 struct list_head items; 465 struct list_head resampler_list; 466 struct mutex resampler_lock; 467 } irqfds; 468 struct list_head ioeventfds; 469#endif 470 struct kvm_vm_stat stat; 471 struct kvm_arch arch; 472 refcount_t users_count; 473#ifdef CONFIG_KVM_MMIO 474 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 475 spinlock_t ring_lock; 476 struct list_head coalesced_zones; 477#endif 478 479 struct mutex irq_lock; 480#ifdef CONFIG_HAVE_KVM_IRQCHIP 481 /* 482 * Update side is protected by irq_lock. 483 */ 484 struct kvm_irq_routing_table __rcu *irq_routing; 485#endif 486#ifdef CONFIG_HAVE_KVM_IRQFD 487 struct hlist_head irq_ack_notifier_list; 488#endif 489 490#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 491 struct mmu_notifier mmu_notifier; 492 unsigned long mmu_notifier_seq; 493 long mmu_notifier_count; 494#endif 495 long tlbs_dirty; 496 struct list_head devices; 497 bool manual_dirty_log_protect; 498 struct dentry *debugfs_dentry; 499 struct kvm_stat_data **debugfs_stat_data; 500 struct srcu_struct srcu; 501 struct srcu_struct irq_srcu; 502 pid_t userspace_pid; 503}; 504 505#define kvm_err(fmt, ...) \ 506 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 507#define kvm_info(fmt, ...) \ 508 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 509#define kvm_debug(fmt, ...) \ 510 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 511#define kvm_debug_ratelimited(fmt, ...) \ 512 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 513 ## __VA_ARGS__) 514#define kvm_pr_unimpl(fmt, ...) \ 515 pr_err_ratelimited("kvm [%i]: " fmt, \ 516 task_tgid_nr(current), ## __VA_ARGS__) 517 518/* The guest did something we don't support. */ 519#define vcpu_unimpl(vcpu, fmt, ...) \ 520 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 521 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 522 523#define vcpu_debug(vcpu, fmt, ...) \ 524 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 525#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 526 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 527 ## __VA_ARGS__) 528#define vcpu_err(vcpu, fmt, ...) \ 529 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 530 531static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 532{ 533 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 534 lockdep_is_held(&kvm->slots_lock) || 535 !refcount_read(&kvm->users_count)); 536} 537 538static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 539{ 540 int num_vcpus = atomic_read(&kvm->online_vcpus); 541 i = array_index_nospec(i, num_vcpus); 542 543 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 544 smp_rmb(); 545 return kvm->vcpus[i]; 546} 547 548#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 549 for (idx = 0; \ 550 idx < atomic_read(&kvm->online_vcpus) && \ 551 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 552 idx++) 553 554static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 555{ 556 struct kvm_vcpu *vcpu = NULL; 557 int i; 558 559 if (id < 0) 560 return NULL; 561 if (id < KVM_MAX_VCPUS) 562 vcpu = kvm_get_vcpu(kvm, id); 563 if (vcpu && vcpu->vcpu_id == id) 564 return vcpu; 565 kvm_for_each_vcpu(i, vcpu, kvm) 566 if (vcpu->vcpu_id == id) 567 return vcpu; 568 return NULL; 569} 570 571static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 572{ 573 struct kvm_vcpu *tmp; 574 int idx; 575 576 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 577 if (tmp == vcpu) 578 return idx; 579 BUG(); 580} 581 582#define kvm_for_each_memslot(memslot, slots) \ 583 for (memslot = &slots->memslots[0]; \ 584 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 585 memslot++) 586 587int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 588void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 589 590void vcpu_load(struct kvm_vcpu *vcpu); 591void vcpu_put(struct kvm_vcpu *vcpu); 592 593#ifdef __KVM_HAVE_IOAPIC 594void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 595void kvm_arch_post_irq_routing_update(struct kvm *kvm); 596#else 597static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 598{ 599} 600static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 601{ 602} 603#endif 604 605#ifdef CONFIG_HAVE_KVM_IRQFD 606int kvm_irqfd_init(void); 607void kvm_irqfd_exit(void); 608#else 609static inline int kvm_irqfd_init(void) 610{ 611 return 0; 612} 613 614static inline void kvm_irqfd_exit(void) 615{ 616} 617#endif 618int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 619 struct module *module); 620void kvm_exit(void); 621 622void kvm_get_kvm(struct kvm *kvm); 623void kvm_put_kvm(struct kvm *kvm); 624 625static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 626{ 627 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 628 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 629 lockdep_is_held(&kvm->slots_lock) || 630 !refcount_read(&kvm->users_count)); 631} 632 633static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 634{ 635 return __kvm_memslots(kvm, 0); 636} 637 638static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 639{ 640 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 641 642 return __kvm_memslots(vcpu->kvm, as_id); 643} 644 645static inline struct kvm_memory_slot * 646id_to_memslot(struct kvm_memslots *slots, int id) 647{ 648 int index = slots->id_to_index[id]; 649 struct kvm_memory_slot *slot; 650 651 slot = &slots->memslots[index]; 652 653 WARN_ON(slot->id != id); 654 return slot; 655} 656 657/* 658 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 659 * - create a new memory slot 660 * - delete an existing memory slot 661 * - modify an existing memory slot 662 * -- move it in the guest physical memory space 663 * -- just change its flags 664 * 665 * Since flags can be changed by some of these operations, the following 666 * differentiation is the best we can do for __kvm_set_memory_region(): 667 */ 668enum kvm_mr_change { 669 KVM_MR_CREATE, 670 KVM_MR_DELETE, 671 KVM_MR_MOVE, 672 KVM_MR_FLAGS_ONLY, 673}; 674 675int kvm_set_memory_region(struct kvm *kvm, 676 const struct kvm_userspace_memory_region *mem); 677int __kvm_set_memory_region(struct kvm *kvm, 678 const struct kvm_userspace_memory_region *mem); 679void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 680 struct kvm_memory_slot *dont); 681int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 682 unsigned long npages); 683void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 684int kvm_arch_prepare_memory_region(struct kvm *kvm, 685 struct kvm_memory_slot *memslot, 686 const struct kvm_userspace_memory_region *mem, 687 enum kvm_mr_change change); 688void kvm_arch_commit_memory_region(struct kvm *kvm, 689 const struct kvm_userspace_memory_region *mem, 690 const struct kvm_memory_slot *old, 691 const struct kvm_memory_slot *new, 692 enum kvm_mr_change change); 693bool kvm_largepages_enabled(void); 694void kvm_disable_largepages(void); 695/* flush all memory translations */ 696void kvm_arch_flush_shadow_all(struct kvm *kvm); 697/* flush memory translations pointing to 'slot' */ 698void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 699 struct kvm_memory_slot *slot); 700 701int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 702 struct page **pages, int nr_pages); 703 704struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 705unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 706unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 707unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 708unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 709 bool *writable); 710void kvm_release_page_clean(struct page *page); 711void kvm_release_page_dirty(struct page *page); 712void kvm_set_page_accessed(struct page *page); 713 714kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 715kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 716kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 717 bool *writable); 718kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 719kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 720kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 721 bool atomic, bool *async, bool write_fault, 722 bool *writable); 723 724void kvm_release_pfn_clean(kvm_pfn_t pfn); 725void kvm_release_pfn_dirty(kvm_pfn_t pfn); 726void kvm_set_pfn_dirty(kvm_pfn_t pfn); 727void kvm_set_pfn_accessed(kvm_pfn_t pfn); 728void kvm_get_pfn(kvm_pfn_t pfn); 729 730int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 731 int len); 732int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 733 unsigned long len); 734int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 735int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 736 void *data, unsigned long len); 737int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 738 int offset, int len); 739int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 740 unsigned long len); 741int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 742 void *data, unsigned long len); 743int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 744 void *data, unsigned int offset, 745 unsigned long len); 746int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 747 gpa_t gpa, unsigned long len); 748int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 749int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 750struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 751bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 752unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 753void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 754 755struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 756struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 757kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 758kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 759int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 760struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 761void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 762unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 763unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 764int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 765 int len); 766int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 767 unsigned long len); 768int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 769 unsigned long len); 770int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 771 int offset, int len); 772int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 773 unsigned long len); 774void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 775 776void kvm_sigset_activate(struct kvm_vcpu *vcpu); 777void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 778 779void kvm_vcpu_block(struct kvm_vcpu *vcpu); 780void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 781void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 782bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 783void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 784int kvm_vcpu_yield_to(struct kvm_vcpu *target); 785void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 786 787void kvm_flush_remote_tlbs(struct kvm *kvm); 788void kvm_reload_remote_mmus(struct kvm *kvm); 789 790bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 791 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 792bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 793 794long kvm_arch_dev_ioctl(struct file *filp, 795 unsigned int ioctl, unsigned long arg); 796long kvm_arch_vcpu_ioctl(struct file *filp, 797 unsigned int ioctl, unsigned long arg); 798vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 799 800int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 801 802int kvm_get_dirty_log(struct kvm *kvm, 803 struct kvm_dirty_log *log, int *is_dirty); 804 805int kvm_get_dirty_log_protect(struct kvm *kvm, 806 struct kvm_dirty_log *log, bool *flush); 807int kvm_clear_dirty_log_protect(struct kvm *kvm, 808 struct kvm_clear_dirty_log *log, bool *flush); 809 810void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 811 struct kvm_memory_slot *slot, 812 gfn_t gfn_offset, 813 unsigned long mask); 814 815int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 816 struct kvm_dirty_log *log); 817int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 818 struct kvm_clear_dirty_log *log); 819 820int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 821 bool line_status); 822int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 823 struct kvm_enable_cap *cap); 824long kvm_arch_vm_ioctl(struct file *filp, 825 unsigned int ioctl, unsigned long arg); 826 827int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 828int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 829 830int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 831 struct kvm_translation *tr); 832 833int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 834int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 835int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 836 struct kvm_sregs *sregs); 837int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 838 struct kvm_sregs *sregs); 839int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 840 struct kvm_mp_state *mp_state); 841int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 842 struct kvm_mp_state *mp_state); 843int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 844 struct kvm_guest_debug *dbg); 845int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 846 847int kvm_arch_init(void *opaque); 848void kvm_arch_exit(void); 849 850int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 851void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 852 853void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 854 855void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 856void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 857void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 858struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 859int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 860void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 861void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 862 863bool kvm_arch_has_vcpu_debugfs(void); 864int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 865 866int kvm_arch_hardware_enable(void); 867void kvm_arch_hardware_disable(void); 868int kvm_arch_hardware_setup(void); 869void kvm_arch_hardware_unsetup(void); 870void kvm_arch_check_processor_compat(void *rtn); 871int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 872bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 873int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 874 875#ifndef __KVM_HAVE_ARCH_VM_ALLOC 876/* 877 * All architectures that want to use vzalloc currently also 878 * need their own kvm_arch_alloc_vm implementation. 879 */ 880static inline struct kvm *kvm_arch_alloc_vm(void) 881{ 882 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 883} 884 885static inline void kvm_arch_free_vm(struct kvm *kvm) 886{ 887 kfree(kvm); 888} 889#endif 890 891#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 892static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 893{ 894 return -ENOTSUPP; 895} 896#endif 897 898#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 899void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 900void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 901bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 902#else 903static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 904{ 905} 906 907static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 908{ 909} 910 911static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 912{ 913 return false; 914} 915#endif 916#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 917void kvm_arch_start_assignment(struct kvm *kvm); 918void kvm_arch_end_assignment(struct kvm *kvm); 919bool kvm_arch_has_assigned_device(struct kvm *kvm); 920#else 921static inline void kvm_arch_start_assignment(struct kvm *kvm) 922{ 923} 924 925static inline void kvm_arch_end_assignment(struct kvm *kvm) 926{ 927} 928 929static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 930{ 931 return false; 932} 933#endif 934 935static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 936{ 937#ifdef __KVM_HAVE_ARCH_WQP 938 return vcpu->arch.wqp; 939#else 940 return &vcpu->wq; 941#endif 942} 943 944#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 945/* 946 * returns true if the virtual interrupt controller is initialized and 947 * ready to accept virtual IRQ. On some architectures the virtual interrupt 948 * controller is dynamically instantiated and this is not always true. 949 */ 950bool kvm_arch_intc_initialized(struct kvm *kvm); 951#else 952static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 953{ 954 return true; 955} 956#endif 957 958int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 959void kvm_arch_destroy_vm(struct kvm *kvm); 960void kvm_arch_sync_events(struct kvm *kvm); 961 962int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 963void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 964 965bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 966 967struct kvm_irq_ack_notifier { 968 struct hlist_node link; 969 unsigned gsi; 970 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 971}; 972 973int kvm_irq_map_gsi(struct kvm *kvm, 974 struct kvm_kernel_irq_routing_entry *entries, int gsi); 975int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 976 977int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 978 bool line_status); 979int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 980 int irq_source_id, int level, bool line_status); 981int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 982 struct kvm *kvm, int irq_source_id, 983 int level, bool line_status); 984bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 985void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 986void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 987void kvm_register_irq_ack_notifier(struct kvm *kvm, 988 struct kvm_irq_ack_notifier *kian); 989void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 990 struct kvm_irq_ack_notifier *kian); 991int kvm_request_irq_source_id(struct kvm *kvm); 992void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 993 994/* 995 * search_memslots() and __gfn_to_memslot() are here because they are 996 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 997 * gfn_to_memslot() itself isn't here as an inline because that would 998 * bloat other code too much. 999 */ 1000static inline struct kvm_memory_slot * 1001search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1002{ 1003 int start = 0, end = slots->used_slots; 1004 int slot = atomic_read(&slots->lru_slot); 1005 struct kvm_memory_slot *memslots = slots->memslots; 1006 1007 if (gfn >= memslots[slot].base_gfn && 1008 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1009 return &memslots[slot]; 1010 1011 while (start < end) { 1012 slot = start + (end - start) / 2; 1013 1014 if (gfn >= memslots[slot].base_gfn) 1015 end = slot; 1016 else 1017 start = slot + 1; 1018 } 1019 1020 if (gfn >= memslots[start].base_gfn && 1021 gfn < memslots[start].base_gfn + memslots[start].npages) { 1022 atomic_set(&slots->lru_slot, start); 1023 return &memslots[start]; 1024 } 1025 1026 return NULL; 1027} 1028 1029static inline struct kvm_memory_slot * 1030__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1031{ 1032 return search_memslots(slots, gfn); 1033} 1034 1035static inline unsigned long 1036__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1037{ 1038 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1039} 1040 1041static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1042{ 1043 return gfn_to_memslot(kvm, gfn)->id; 1044} 1045 1046static inline gfn_t 1047hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1048{ 1049 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1050 1051 return slot->base_gfn + gfn_offset; 1052} 1053 1054static inline gpa_t gfn_to_gpa(gfn_t gfn) 1055{ 1056 return (gpa_t)gfn << PAGE_SHIFT; 1057} 1058 1059static inline gfn_t gpa_to_gfn(gpa_t gpa) 1060{ 1061 return (gfn_t)(gpa >> PAGE_SHIFT); 1062} 1063 1064static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1065{ 1066 return (hpa_t)pfn << PAGE_SHIFT; 1067} 1068 1069static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1070 gpa_t gpa) 1071{ 1072 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1073} 1074 1075static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1076{ 1077 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1078 1079 return kvm_is_error_hva(hva); 1080} 1081 1082enum kvm_stat_kind { 1083 KVM_STAT_VM, 1084 KVM_STAT_VCPU, 1085}; 1086 1087struct kvm_stat_data { 1088 int offset; 1089 struct kvm *kvm; 1090}; 1091 1092struct kvm_stats_debugfs_item { 1093 const char *name; 1094 int offset; 1095 enum kvm_stat_kind kind; 1096}; 1097extern struct kvm_stats_debugfs_item debugfs_entries[]; 1098extern struct dentry *kvm_debugfs_dir; 1099 1100#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1101static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1102{ 1103 if (unlikely(kvm->mmu_notifier_count)) 1104 return 1; 1105 /* 1106 * Ensure the read of mmu_notifier_count happens before the read 1107 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1108 * mmu_notifier_invalidate_range_end to make sure that the caller 1109 * either sees the old (non-zero) value of mmu_notifier_count or 1110 * the new (incremented) value of mmu_notifier_seq. 1111 * PowerPC Book3s HV KVM calls this under a per-page lock 1112 * rather than under kvm->mmu_lock, for scalability, so 1113 * can't rely on kvm->mmu_lock to keep things ordered. 1114 */ 1115 smp_rmb(); 1116 if (kvm->mmu_notifier_seq != mmu_seq) 1117 return 1; 1118 return 0; 1119} 1120#endif 1121 1122#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1123 1124#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1125 1126bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1127int kvm_set_irq_routing(struct kvm *kvm, 1128 const struct kvm_irq_routing_entry *entries, 1129 unsigned nr, 1130 unsigned flags); 1131int kvm_set_routing_entry(struct kvm *kvm, 1132 struct kvm_kernel_irq_routing_entry *e, 1133 const struct kvm_irq_routing_entry *ue); 1134void kvm_free_irq_routing(struct kvm *kvm); 1135 1136#else 1137 1138static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1139 1140#endif 1141 1142int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1143 1144#ifdef CONFIG_HAVE_KVM_EVENTFD 1145 1146void kvm_eventfd_init(struct kvm *kvm); 1147int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1148 1149#ifdef CONFIG_HAVE_KVM_IRQFD 1150int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1151void kvm_irqfd_release(struct kvm *kvm); 1152void kvm_irq_routing_update(struct kvm *); 1153#else 1154static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1155{ 1156 return -EINVAL; 1157} 1158 1159static inline void kvm_irqfd_release(struct kvm *kvm) {} 1160#endif 1161 1162#else 1163 1164static inline void kvm_eventfd_init(struct kvm *kvm) {} 1165 1166static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1167{ 1168 return -EINVAL; 1169} 1170 1171static inline void kvm_irqfd_release(struct kvm *kvm) {} 1172 1173#ifdef CONFIG_HAVE_KVM_IRQCHIP 1174static inline void kvm_irq_routing_update(struct kvm *kvm) 1175{ 1176} 1177#endif 1178 1179static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1180{ 1181 return -ENOSYS; 1182} 1183 1184#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1185 1186void kvm_arch_irq_routing_update(struct kvm *kvm); 1187 1188static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1189{ 1190 /* 1191 * Ensure the rest of the request is published to kvm_check_request's 1192 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1193 */ 1194 smp_wmb(); 1195 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1196} 1197 1198static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1199{ 1200 return READ_ONCE(vcpu->requests); 1201} 1202 1203static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1204{ 1205 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1206} 1207 1208static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1209{ 1210 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1211} 1212 1213static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1214{ 1215 if (kvm_test_request(req, vcpu)) { 1216 kvm_clear_request(req, vcpu); 1217 1218 /* 1219 * Ensure the rest of the request is visible to kvm_check_request's 1220 * caller. Paired with the smp_wmb in kvm_make_request. 1221 */ 1222 smp_mb__after_atomic(); 1223 return true; 1224 } else { 1225 return false; 1226 } 1227} 1228 1229extern bool kvm_rebooting; 1230 1231extern unsigned int halt_poll_ns; 1232extern unsigned int halt_poll_ns_grow; 1233extern unsigned int halt_poll_ns_grow_start; 1234extern unsigned int halt_poll_ns_shrink; 1235 1236struct kvm_device { 1237 struct kvm_device_ops *ops; 1238 struct kvm *kvm; 1239 void *private; 1240 struct list_head vm_node; 1241}; 1242 1243/* create, destroy, and name are mandatory */ 1244struct kvm_device_ops { 1245 const char *name; 1246 1247 /* 1248 * create is called holding kvm->lock and any operations not suitable 1249 * to do while holding the lock should be deferred to init (see 1250 * below). 1251 */ 1252 int (*create)(struct kvm_device *dev, u32 type); 1253 1254 /* 1255 * init is called after create if create is successful and is called 1256 * outside of holding kvm->lock. 1257 */ 1258 void (*init)(struct kvm_device *dev); 1259 1260 /* 1261 * Destroy is responsible for freeing dev. 1262 * 1263 * Destroy may be called before or after destructors are called 1264 * on emulated I/O regions, depending on whether a reference is 1265 * held by a vcpu or other kvm component that gets destroyed 1266 * after the emulated I/O. 1267 */ 1268 void (*destroy)(struct kvm_device *dev); 1269 1270 /* 1271 * Release is an alternative method to free the device. It is 1272 * called when the device file descriptor is closed. Once 1273 * release is called, the destroy method will not be called 1274 * anymore as the device is removed from the device list of 1275 * the VM. kvm->lock is held. 1276 */ 1277 void (*release)(struct kvm_device *dev); 1278 1279 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1280 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1281 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1282 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1283 unsigned long arg); 1284 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1285}; 1286 1287void kvm_device_get(struct kvm_device *dev); 1288void kvm_device_put(struct kvm_device *dev); 1289struct kvm_device *kvm_device_from_filp(struct file *filp); 1290int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1291void kvm_unregister_device_ops(u32 type); 1292 1293extern struct kvm_device_ops kvm_mpic_ops; 1294extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1295extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1296 1297#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1298 1299static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1300{ 1301 vcpu->spin_loop.in_spin_loop = val; 1302} 1303static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1304{ 1305 vcpu->spin_loop.dy_eligible = val; 1306} 1307 1308#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1309 1310static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1311{ 1312} 1313 1314static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1315{ 1316} 1317#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1318 1319#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1320bool kvm_arch_has_irq_bypass(void); 1321int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1322 struct irq_bypass_producer *); 1323void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1324 struct irq_bypass_producer *); 1325void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1326void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1327int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1328 uint32_t guest_irq, bool set); 1329#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1330 1331#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1332/* If we wakeup during the poll time, was it a sucessful poll? */ 1333static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1334{ 1335 return vcpu->valid_wakeup; 1336} 1337 1338#else 1339static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1340{ 1341 return true; 1342} 1343#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1344 1345#ifdef CONFIG_HAVE_KVM_NO_POLL 1346/* Callback that tells if we must not poll */ 1347bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1348#else 1349static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1350{ 1351 return false; 1352} 1353#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1354 1355#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1356long kvm_arch_vcpu_async_ioctl(struct file *filp, 1357 unsigned int ioctl, unsigned long arg); 1358#else 1359static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1360 unsigned int ioctl, 1361 unsigned long arg) 1362{ 1363 return -ENOIOCTLCMD; 1364} 1365#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1366 1367int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1368 unsigned long start, unsigned long end, bool blockable); 1369 1370#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1371int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1372#else 1373static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1374{ 1375 return 0; 1376} 1377#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1378 1379#endif