Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/mm.h>
15#include <linux/mmu_notifier.h>
16#include <linux/preempt.h>
17#include <linux/msi.h>
18#include <linux/slab.h>
19#include <linux/vmalloc.h>
20#include <linux/rcupdate.h>
21#include <linux/ratelimit.h>
22#include <linux/err.h>
23#include <linux/irqflags.h>
24#include <linux/context_tracking.h>
25#include <linux/irqbypass.h>
26#include <linux/swait.h>
27#include <linux/refcount.h>
28#include <linux/nospec.h>
29#include <asm/signal.h>
30
31#include <linux/kvm.h>
32#include <linux/kvm_para.h>
33
34#include <linux/kvm_types.h>
35
36#include <asm/kvm_host.h>
37
38#ifndef KVM_MAX_VCPU_ID
39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40#endif
41
42/*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47#define KVM_MEMSLOT_INVALID (1UL << 16)
48
49/*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70/* Two fragments for cross MMIO pages. */
71#define KVM_MAX_MMIO_FRAGMENTS 2
72
73#ifndef KVM_ADDRESS_SPACE_NUM
74#define KVM_ADDRESS_SPACE_NUM 1
75#endif
76
77/*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84#define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90/*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94static inline bool is_error_pfn(kvm_pfn_t pfn)
95{
96 return !!(pfn & KVM_PFN_ERR_MASK);
97}
98
99/*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107}
108
109/* noslot pfn indicates that the gfn is not in slot. */
110static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111{
112 return pfn == KVM_PFN_NOSLOT;
113}
114
115/*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119#ifndef KVM_HVA_ERR_BAD
120
121#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124static inline bool kvm_is_error_hva(unsigned long addr)
125{
126 return addr >= PAGE_OFFSET;
127}
128
129#endif
130
131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133static inline bool is_error_page(struct page *page)
134{
135 return IS_ERR(page);
136}
137
138#define KVM_REQUEST_MASK GENMASK(7,0)
139#define KVM_REQUEST_NO_WAKEUP BIT(8)
140#define KVM_REQUEST_WAIT BIT(9)
141/*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147#define KVM_REQ_PENDING_TIMER 2
148#define KVM_REQ_UNHALT 3
149#define KVM_REQUEST_ARCH_BASE 8
150
151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154})
155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157#define KVM_USERSPACE_IRQ_SOURCE_ID 0
158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160extern struct kmem_cache *kvm_vcpu_cache;
161
162extern spinlock_t kvm_lock;
163extern struct list_head vm_list;
164
165struct kvm_io_range {
166 gpa_t addr;
167 int len;
168 struct kvm_io_device *dev;
169};
170
171#define NR_IOBUS_DEVS 1000
172
173struct kvm_io_bus {
174 int dev_count;
175 int ioeventfd_count;
176 struct kvm_io_range range[];
177};
178
179enum kvm_bus {
180 KVM_MMIO_BUS,
181 KVM_PIO_BUS,
182 KVM_VIRTIO_CCW_NOTIFY_BUS,
183 KVM_FAST_MMIO_BUS,
184 KVM_NR_BUSES
185};
186
187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 int len, const void *val);
189int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 gpa_t addr, int len, const void *val, long cookie);
191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 int len, void *val);
193int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 int len, struct kvm_io_device *dev);
195void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 struct kvm_io_device *dev);
197struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 gpa_t addr);
199
200#ifdef CONFIG_KVM_ASYNC_PF
201struct kvm_async_pf {
202 struct work_struct work;
203 struct list_head link;
204 struct list_head queue;
205 struct kvm_vcpu *vcpu;
206 struct mm_struct *mm;
207 gva_t gva;
208 unsigned long addr;
209 struct kvm_arch_async_pf arch;
210 bool wakeup_all;
211};
212
213void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
216 struct kvm_arch_async_pf *arch);
217int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218#endif
219
220enum {
221 OUTSIDE_GUEST_MODE,
222 IN_GUEST_MODE,
223 EXITING_GUEST_MODE,
224 READING_SHADOW_PAGE_TABLES,
225};
226
227#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
228
229struct kvm_host_map {
230 /*
231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 * a 'struct page' for it. When using mem= kernel parameter some memory
233 * can be used as guest memory but they are not managed by host
234 * kernel).
235 * If 'pfn' is not managed by the host kernel, this field is
236 * initialized to KVM_UNMAPPED_PAGE.
237 */
238 struct page *page;
239 void *hva;
240 kvm_pfn_t pfn;
241 kvm_pfn_t gfn;
242};
243
244/*
245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246 * directly to check for that.
247 */
248static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249{
250 return !!map->hva;
251}
252
253/*
254 * Sometimes a large or cross-page mmio needs to be broken up into separate
255 * exits for userspace servicing.
256 */
257struct kvm_mmio_fragment {
258 gpa_t gpa;
259 void *data;
260 unsigned len;
261};
262
263struct kvm_vcpu {
264 struct kvm *kvm;
265#ifdef CONFIG_PREEMPT_NOTIFIERS
266 struct preempt_notifier preempt_notifier;
267#endif
268 int cpu;
269 int vcpu_id;
270 int srcu_idx;
271 int mode;
272 u64 requests;
273 unsigned long guest_debug;
274
275 int pre_pcpu;
276 struct list_head blocked_vcpu_list;
277
278 struct mutex mutex;
279 struct kvm_run *run;
280
281 int guest_xcr0_loaded;
282 struct swait_queue_head wq;
283 struct pid __rcu *pid;
284 int sigset_active;
285 sigset_t sigset;
286 struct kvm_vcpu_stat stat;
287 unsigned int halt_poll_ns;
288 bool valid_wakeup;
289
290#ifdef CONFIG_HAS_IOMEM
291 int mmio_needed;
292 int mmio_read_completed;
293 int mmio_is_write;
294 int mmio_cur_fragment;
295 int mmio_nr_fragments;
296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297#endif
298
299#ifdef CONFIG_KVM_ASYNC_PF
300 struct {
301 u32 queued;
302 struct list_head queue;
303 struct list_head done;
304 spinlock_t lock;
305 } async_pf;
306#endif
307
308#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 /*
310 * Cpu relax intercept or pause loop exit optimization
311 * in_spin_loop: set when a vcpu does a pause loop exit
312 * or cpu relax intercepted.
313 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 */
315 struct {
316 bool in_spin_loop;
317 bool dy_eligible;
318 } spin_loop;
319#endif
320 bool preempted;
321 struct kvm_vcpu_arch arch;
322 struct dentry *debugfs_dentry;
323};
324
325static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
326{
327 /*
328 * The memory barrier ensures a previous write to vcpu->requests cannot
329 * be reordered with the read of vcpu->mode. It pairs with the general
330 * memory barrier following the write of vcpu->mode in VCPU RUN.
331 */
332 smp_mb__before_atomic();
333 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
334}
335
336/*
337 * Some of the bitops functions do not support too long bitmaps.
338 * This number must be determined not to exceed such limits.
339 */
340#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
341
342struct kvm_memory_slot {
343 gfn_t base_gfn;
344 unsigned long npages;
345 unsigned long *dirty_bitmap;
346 struct kvm_arch_memory_slot arch;
347 unsigned long userspace_addr;
348 u32 flags;
349 short id;
350};
351
352static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
353{
354 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
355}
356
357static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
358{
359 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
360
361 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
362}
363
364struct kvm_s390_adapter_int {
365 u64 ind_addr;
366 u64 summary_addr;
367 u64 ind_offset;
368 u32 summary_offset;
369 u32 adapter_id;
370};
371
372struct kvm_hv_sint {
373 u32 vcpu;
374 u32 sint;
375};
376
377struct kvm_kernel_irq_routing_entry {
378 u32 gsi;
379 u32 type;
380 int (*set)(struct kvm_kernel_irq_routing_entry *e,
381 struct kvm *kvm, int irq_source_id, int level,
382 bool line_status);
383 union {
384 struct {
385 unsigned irqchip;
386 unsigned pin;
387 } irqchip;
388 struct {
389 u32 address_lo;
390 u32 address_hi;
391 u32 data;
392 u32 flags;
393 u32 devid;
394 } msi;
395 struct kvm_s390_adapter_int adapter;
396 struct kvm_hv_sint hv_sint;
397 };
398 struct hlist_node link;
399};
400
401#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
402struct kvm_irq_routing_table {
403 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
404 u32 nr_rt_entries;
405 /*
406 * Array indexed by gsi. Each entry contains list of irq chips
407 * the gsi is connected to.
408 */
409 struct hlist_head map[0];
410};
411#endif
412
413#ifndef KVM_PRIVATE_MEM_SLOTS
414#define KVM_PRIVATE_MEM_SLOTS 0
415#endif
416
417#ifndef KVM_MEM_SLOTS_NUM
418#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
419#endif
420
421#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
422static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
423{
424 return 0;
425}
426#endif
427
428/*
429 * Note:
430 * memslots are not sorted by id anymore, please use id_to_memslot()
431 * to get the memslot by its id.
432 */
433struct kvm_memslots {
434 u64 generation;
435 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
436 /* The mapping table from slot id to the index in memslots[]. */
437 short id_to_index[KVM_MEM_SLOTS_NUM];
438 atomic_t lru_slot;
439 int used_slots;
440};
441
442struct kvm {
443 spinlock_t mmu_lock;
444 struct mutex slots_lock;
445 struct mm_struct *mm; /* userspace tied to this vm */
446 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
447 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
448
449 /*
450 * created_vcpus is protected by kvm->lock, and is incremented
451 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
452 * incremented after storing the kvm_vcpu pointer in vcpus,
453 * and is accessed atomically.
454 */
455 atomic_t online_vcpus;
456 int created_vcpus;
457 int last_boosted_vcpu;
458 struct list_head vm_list;
459 struct mutex lock;
460 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
461#ifdef CONFIG_HAVE_KVM_EVENTFD
462 struct {
463 spinlock_t lock;
464 struct list_head items;
465 struct list_head resampler_list;
466 struct mutex resampler_lock;
467 } irqfds;
468 struct list_head ioeventfds;
469#endif
470 struct kvm_vm_stat stat;
471 struct kvm_arch arch;
472 refcount_t users_count;
473#ifdef CONFIG_KVM_MMIO
474 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
475 spinlock_t ring_lock;
476 struct list_head coalesced_zones;
477#endif
478
479 struct mutex irq_lock;
480#ifdef CONFIG_HAVE_KVM_IRQCHIP
481 /*
482 * Update side is protected by irq_lock.
483 */
484 struct kvm_irq_routing_table __rcu *irq_routing;
485#endif
486#ifdef CONFIG_HAVE_KVM_IRQFD
487 struct hlist_head irq_ack_notifier_list;
488#endif
489
490#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
491 struct mmu_notifier mmu_notifier;
492 unsigned long mmu_notifier_seq;
493 long mmu_notifier_count;
494#endif
495 long tlbs_dirty;
496 struct list_head devices;
497 bool manual_dirty_log_protect;
498 struct dentry *debugfs_dentry;
499 struct kvm_stat_data **debugfs_stat_data;
500 struct srcu_struct srcu;
501 struct srcu_struct irq_srcu;
502 pid_t userspace_pid;
503};
504
505#define kvm_err(fmt, ...) \
506 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
507#define kvm_info(fmt, ...) \
508 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
509#define kvm_debug(fmt, ...) \
510 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
511#define kvm_debug_ratelimited(fmt, ...) \
512 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
513 ## __VA_ARGS__)
514#define kvm_pr_unimpl(fmt, ...) \
515 pr_err_ratelimited("kvm [%i]: " fmt, \
516 task_tgid_nr(current), ## __VA_ARGS__)
517
518/* The guest did something we don't support. */
519#define vcpu_unimpl(vcpu, fmt, ...) \
520 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
521 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
522
523#define vcpu_debug(vcpu, fmt, ...) \
524 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
525#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
526 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
527 ## __VA_ARGS__)
528#define vcpu_err(vcpu, fmt, ...) \
529 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
530
531static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
532{
533 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
534 lockdep_is_held(&kvm->slots_lock) ||
535 !refcount_read(&kvm->users_count));
536}
537
538static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
539{
540 int num_vcpus = atomic_read(&kvm->online_vcpus);
541 i = array_index_nospec(i, num_vcpus);
542
543 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
544 smp_rmb();
545 return kvm->vcpus[i];
546}
547
548#define kvm_for_each_vcpu(idx, vcpup, kvm) \
549 for (idx = 0; \
550 idx < atomic_read(&kvm->online_vcpus) && \
551 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
552 idx++)
553
554static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
555{
556 struct kvm_vcpu *vcpu = NULL;
557 int i;
558
559 if (id < 0)
560 return NULL;
561 if (id < KVM_MAX_VCPUS)
562 vcpu = kvm_get_vcpu(kvm, id);
563 if (vcpu && vcpu->vcpu_id == id)
564 return vcpu;
565 kvm_for_each_vcpu(i, vcpu, kvm)
566 if (vcpu->vcpu_id == id)
567 return vcpu;
568 return NULL;
569}
570
571static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
572{
573 struct kvm_vcpu *tmp;
574 int idx;
575
576 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
577 if (tmp == vcpu)
578 return idx;
579 BUG();
580}
581
582#define kvm_for_each_memslot(memslot, slots) \
583 for (memslot = &slots->memslots[0]; \
584 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
585 memslot++)
586
587int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
588void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
589
590void vcpu_load(struct kvm_vcpu *vcpu);
591void vcpu_put(struct kvm_vcpu *vcpu);
592
593#ifdef __KVM_HAVE_IOAPIC
594void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
595void kvm_arch_post_irq_routing_update(struct kvm *kvm);
596#else
597static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
598{
599}
600static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
601{
602}
603#endif
604
605#ifdef CONFIG_HAVE_KVM_IRQFD
606int kvm_irqfd_init(void);
607void kvm_irqfd_exit(void);
608#else
609static inline int kvm_irqfd_init(void)
610{
611 return 0;
612}
613
614static inline void kvm_irqfd_exit(void)
615{
616}
617#endif
618int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
619 struct module *module);
620void kvm_exit(void);
621
622void kvm_get_kvm(struct kvm *kvm);
623void kvm_put_kvm(struct kvm *kvm);
624
625static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
626{
627 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
628 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
629 lockdep_is_held(&kvm->slots_lock) ||
630 !refcount_read(&kvm->users_count));
631}
632
633static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
634{
635 return __kvm_memslots(kvm, 0);
636}
637
638static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
639{
640 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
641
642 return __kvm_memslots(vcpu->kvm, as_id);
643}
644
645static inline struct kvm_memory_slot *
646id_to_memslot(struct kvm_memslots *slots, int id)
647{
648 int index = slots->id_to_index[id];
649 struct kvm_memory_slot *slot;
650
651 slot = &slots->memslots[index];
652
653 WARN_ON(slot->id != id);
654 return slot;
655}
656
657/*
658 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
659 * - create a new memory slot
660 * - delete an existing memory slot
661 * - modify an existing memory slot
662 * -- move it in the guest physical memory space
663 * -- just change its flags
664 *
665 * Since flags can be changed by some of these operations, the following
666 * differentiation is the best we can do for __kvm_set_memory_region():
667 */
668enum kvm_mr_change {
669 KVM_MR_CREATE,
670 KVM_MR_DELETE,
671 KVM_MR_MOVE,
672 KVM_MR_FLAGS_ONLY,
673};
674
675int kvm_set_memory_region(struct kvm *kvm,
676 const struct kvm_userspace_memory_region *mem);
677int __kvm_set_memory_region(struct kvm *kvm,
678 const struct kvm_userspace_memory_region *mem);
679void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
680 struct kvm_memory_slot *dont);
681int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
682 unsigned long npages);
683void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
684int kvm_arch_prepare_memory_region(struct kvm *kvm,
685 struct kvm_memory_slot *memslot,
686 const struct kvm_userspace_memory_region *mem,
687 enum kvm_mr_change change);
688void kvm_arch_commit_memory_region(struct kvm *kvm,
689 const struct kvm_userspace_memory_region *mem,
690 const struct kvm_memory_slot *old,
691 const struct kvm_memory_slot *new,
692 enum kvm_mr_change change);
693bool kvm_largepages_enabled(void);
694void kvm_disable_largepages(void);
695/* flush all memory translations */
696void kvm_arch_flush_shadow_all(struct kvm *kvm);
697/* flush memory translations pointing to 'slot' */
698void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
699 struct kvm_memory_slot *slot);
700
701int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
702 struct page **pages, int nr_pages);
703
704struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
705unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
706unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
707unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
708unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
709 bool *writable);
710void kvm_release_page_clean(struct page *page);
711void kvm_release_page_dirty(struct page *page);
712void kvm_set_page_accessed(struct page *page);
713
714kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
715kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
716kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
717 bool *writable);
718kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
719kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
720kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
721 bool atomic, bool *async, bool write_fault,
722 bool *writable);
723
724void kvm_release_pfn_clean(kvm_pfn_t pfn);
725void kvm_release_pfn_dirty(kvm_pfn_t pfn);
726void kvm_set_pfn_dirty(kvm_pfn_t pfn);
727void kvm_set_pfn_accessed(kvm_pfn_t pfn);
728void kvm_get_pfn(kvm_pfn_t pfn);
729
730int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
731 int len);
732int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
733 unsigned long len);
734int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
735int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
736 void *data, unsigned long len);
737int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
738 int offset, int len);
739int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
740 unsigned long len);
741int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
742 void *data, unsigned long len);
743int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
744 void *data, unsigned int offset,
745 unsigned long len);
746int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 gpa_t gpa, unsigned long len);
748int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
749int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
750struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
751bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
752unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
753void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
754
755struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
756struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
757kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
758kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
759int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
760struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
761void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
762unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
763unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
764int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
765 int len);
766int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
767 unsigned long len);
768int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
769 unsigned long len);
770int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
771 int offset, int len);
772int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
773 unsigned long len);
774void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
775
776void kvm_sigset_activate(struct kvm_vcpu *vcpu);
777void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
778
779void kvm_vcpu_block(struct kvm_vcpu *vcpu);
780void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
781void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
782bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
783void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
784int kvm_vcpu_yield_to(struct kvm_vcpu *target);
785void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
786
787void kvm_flush_remote_tlbs(struct kvm *kvm);
788void kvm_reload_remote_mmus(struct kvm *kvm);
789
790bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
791 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
792bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
793
794long kvm_arch_dev_ioctl(struct file *filp,
795 unsigned int ioctl, unsigned long arg);
796long kvm_arch_vcpu_ioctl(struct file *filp,
797 unsigned int ioctl, unsigned long arg);
798vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
799
800int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
801
802int kvm_get_dirty_log(struct kvm *kvm,
803 struct kvm_dirty_log *log, int *is_dirty);
804
805int kvm_get_dirty_log_protect(struct kvm *kvm,
806 struct kvm_dirty_log *log, bool *flush);
807int kvm_clear_dirty_log_protect(struct kvm *kvm,
808 struct kvm_clear_dirty_log *log, bool *flush);
809
810void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
811 struct kvm_memory_slot *slot,
812 gfn_t gfn_offset,
813 unsigned long mask);
814
815int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
816 struct kvm_dirty_log *log);
817int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
818 struct kvm_clear_dirty_log *log);
819
820int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
821 bool line_status);
822int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
823 struct kvm_enable_cap *cap);
824long kvm_arch_vm_ioctl(struct file *filp,
825 unsigned int ioctl, unsigned long arg);
826
827int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
828int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
829
830int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
831 struct kvm_translation *tr);
832
833int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
834int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
835int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
836 struct kvm_sregs *sregs);
837int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
838 struct kvm_sregs *sregs);
839int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
840 struct kvm_mp_state *mp_state);
841int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
842 struct kvm_mp_state *mp_state);
843int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
844 struct kvm_guest_debug *dbg);
845int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
846
847int kvm_arch_init(void *opaque);
848void kvm_arch_exit(void);
849
850int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
851void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
852
853void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
854
855void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
856void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
857void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
858struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
859int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
860void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
861void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
862
863bool kvm_arch_has_vcpu_debugfs(void);
864int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
865
866int kvm_arch_hardware_enable(void);
867void kvm_arch_hardware_disable(void);
868int kvm_arch_hardware_setup(void);
869void kvm_arch_hardware_unsetup(void);
870void kvm_arch_check_processor_compat(void *rtn);
871int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
872bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
873int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
874
875#ifndef __KVM_HAVE_ARCH_VM_ALLOC
876/*
877 * All architectures that want to use vzalloc currently also
878 * need their own kvm_arch_alloc_vm implementation.
879 */
880static inline struct kvm *kvm_arch_alloc_vm(void)
881{
882 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
883}
884
885static inline void kvm_arch_free_vm(struct kvm *kvm)
886{
887 kfree(kvm);
888}
889#endif
890
891#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
892static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
893{
894 return -ENOTSUPP;
895}
896#endif
897
898#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
899void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
900void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
901bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
902#else
903static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
904{
905}
906
907static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
908{
909}
910
911static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
912{
913 return false;
914}
915#endif
916#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
917void kvm_arch_start_assignment(struct kvm *kvm);
918void kvm_arch_end_assignment(struct kvm *kvm);
919bool kvm_arch_has_assigned_device(struct kvm *kvm);
920#else
921static inline void kvm_arch_start_assignment(struct kvm *kvm)
922{
923}
924
925static inline void kvm_arch_end_assignment(struct kvm *kvm)
926{
927}
928
929static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
930{
931 return false;
932}
933#endif
934
935static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
936{
937#ifdef __KVM_HAVE_ARCH_WQP
938 return vcpu->arch.wqp;
939#else
940 return &vcpu->wq;
941#endif
942}
943
944#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
945/*
946 * returns true if the virtual interrupt controller is initialized and
947 * ready to accept virtual IRQ. On some architectures the virtual interrupt
948 * controller is dynamically instantiated and this is not always true.
949 */
950bool kvm_arch_intc_initialized(struct kvm *kvm);
951#else
952static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
953{
954 return true;
955}
956#endif
957
958int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
959void kvm_arch_destroy_vm(struct kvm *kvm);
960void kvm_arch_sync_events(struct kvm *kvm);
961
962int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
963void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
964
965bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
966
967struct kvm_irq_ack_notifier {
968 struct hlist_node link;
969 unsigned gsi;
970 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
971};
972
973int kvm_irq_map_gsi(struct kvm *kvm,
974 struct kvm_kernel_irq_routing_entry *entries, int gsi);
975int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
976
977int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
978 bool line_status);
979int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
980 int irq_source_id, int level, bool line_status);
981int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
982 struct kvm *kvm, int irq_source_id,
983 int level, bool line_status);
984bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
985void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
986void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
987void kvm_register_irq_ack_notifier(struct kvm *kvm,
988 struct kvm_irq_ack_notifier *kian);
989void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
990 struct kvm_irq_ack_notifier *kian);
991int kvm_request_irq_source_id(struct kvm *kvm);
992void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
993
994/*
995 * search_memslots() and __gfn_to_memslot() are here because they are
996 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
997 * gfn_to_memslot() itself isn't here as an inline because that would
998 * bloat other code too much.
999 */
1000static inline struct kvm_memory_slot *
1001search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1002{
1003 int start = 0, end = slots->used_slots;
1004 int slot = atomic_read(&slots->lru_slot);
1005 struct kvm_memory_slot *memslots = slots->memslots;
1006
1007 if (gfn >= memslots[slot].base_gfn &&
1008 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1009 return &memslots[slot];
1010
1011 while (start < end) {
1012 slot = start + (end - start) / 2;
1013
1014 if (gfn >= memslots[slot].base_gfn)
1015 end = slot;
1016 else
1017 start = slot + 1;
1018 }
1019
1020 if (gfn >= memslots[start].base_gfn &&
1021 gfn < memslots[start].base_gfn + memslots[start].npages) {
1022 atomic_set(&slots->lru_slot, start);
1023 return &memslots[start];
1024 }
1025
1026 return NULL;
1027}
1028
1029static inline struct kvm_memory_slot *
1030__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1031{
1032 return search_memslots(slots, gfn);
1033}
1034
1035static inline unsigned long
1036__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1037{
1038 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1039}
1040
1041static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1042{
1043 return gfn_to_memslot(kvm, gfn)->id;
1044}
1045
1046static inline gfn_t
1047hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1048{
1049 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1050
1051 return slot->base_gfn + gfn_offset;
1052}
1053
1054static inline gpa_t gfn_to_gpa(gfn_t gfn)
1055{
1056 return (gpa_t)gfn << PAGE_SHIFT;
1057}
1058
1059static inline gfn_t gpa_to_gfn(gpa_t gpa)
1060{
1061 return (gfn_t)(gpa >> PAGE_SHIFT);
1062}
1063
1064static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1065{
1066 return (hpa_t)pfn << PAGE_SHIFT;
1067}
1068
1069static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1070 gpa_t gpa)
1071{
1072 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1073}
1074
1075static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1076{
1077 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1078
1079 return kvm_is_error_hva(hva);
1080}
1081
1082enum kvm_stat_kind {
1083 KVM_STAT_VM,
1084 KVM_STAT_VCPU,
1085};
1086
1087struct kvm_stat_data {
1088 int offset;
1089 struct kvm *kvm;
1090};
1091
1092struct kvm_stats_debugfs_item {
1093 const char *name;
1094 int offset;
1095 enum kvm_stat_kind kind;
1096};
1097extern struct kvm_stats_debugfs_item debugfs_entries[];
1098extern struct dentry *kvm_debugfs_dir;
1099
1100#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1101static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1102{
1103 if (unlikely(kvm->mmu_notifier_count))
1104 return 1;
1105 /*
1106 * Ensure the read of mmu_notifier_count happens before the read
1107 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1108 * mmu_notifier_invalidate_range_end to make sure that the caller
1109 * either sees the old (non-zero) value of mmu_notifier_count or
1110 * the new (incremented) value of mmu_notifier_seq.
1111 * PowerPC Book3s HV KVM calls this under a per-page lock
1112 * rather than under kvm->mmu_lock, for scalability, so
1113 * can't rely on kvm->mmu_lock to keep things ordered.
1114 */
1115 smp_rmb();
1116 if (kvm->mmu_notifier_seq != mmu_seq)
1117 return 1;
1118 return 0;
1119}
1120#endif
1121
1122#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1123
1124#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1125
1126bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1127int kvm_set_irq_routing(struct kvm *kvm,
1128 const struct kvm_irq_routing_entry *entries,
1129 unsigned nr,
1130 unsigned flags);
1131int kvm_set_routing_entry(struct kvm *kvm,
1132 struct kvm_kernel_irq_routing_entry *e,
1133 const struct kvm_irq_routing_entry *ue);
1134void kvm_free_irq_routing(struct kvm *kvm);
1135
1136#else
1137
1138static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1139
1140#endif
1141
1142int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1143
1144#ifdef CONFIG_HAVE_KVM_EVENTFD
1145
1146void kvm_eventfd_init(struct kvm *kvm);
1147int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1148
1149#ifdef CONFIG_HAVE_KVM_IRQFD
1150int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1151void kvm_irqfd_release(struct kvm *kvm);
1152void kvm_irq_routing_update(struct kvm *);
1153#else
1154static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1155{
1156 return -EINVAL;
1157}
1158
1159static inline void kvm_irqfd_release(struct kvm *kvm) {}
1160#endif
1161
1162#else
1163
1164static inline void kvm_eventfd_init(struct kvm *kvm) {}
1165
1166static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1167{
1168 return -EINVAL;
1169}
1170
1171static inline void kvm_irqfd_release(struct kvm *kvm) {}
1172
1173#ifdef CONFIG_HAVE_KVM_IRQCHIP
1174static inline void kvm_irq_routing_update(struct kvm *kvm)
1175{
1176}
1177#endif
1178
1179static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1180{
1181 return -ENOSYS;
1182}
1183
1184#endif /* CONFIG_HAVE_KVM_EVENTFD */
1185
1186void kvm_arch_irq_routing_update(struct kvm *kvm);
1187
1188static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1189{
1190 /*
1191 * Ensure the rest of the request is published to kvm_check_request's
1192 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1193 */
1194 smp_wmb();
1195 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1196}
1197
1198static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1199{
1200 return READ_ONCE(vcpu->requests);
1201}
1202
1203static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1204{
1205 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1206}
1207
1208static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1209{
1210 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1211}
1212
1213static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1214{
1215 if (kvm_test_request(req, vcpu)) {
1216 kvm_clear_request(req, vcpu);
1217
1218 /*
1219 * Ensure the rest of the request is visible to kvm_check_request's
1220 * caller. Paired with the smp_wmb in kvm_make_request.
1221 */
1222 smp_mb__after_atomic();
1223 return true;
1224 } else {
1225 return false;
1226 }
1227}
1228
1229extern bool kvm_rebooting;
1230
1231extern unsigned int halt_poll_ns;
1232extern unsigned int halt_poll_ns_grow;
1233extern unsigned int halt_poll_ns_grow_start;
1234extern unsigned int halt_poll_ns_shrink;
1235
1236struct kvm_device {
1237 struct kvm_device_ops *ops;
1238 struct kvm *kvm;
1239 void *private;
1240 struct list_head vm_node;
1241};
1242
1243/* create, destroy, and name are mandatory */
1244struct kvm_device_ops {
1245 const char *name;
1246
1247 /*
1248 * create is called holding kvm->lock and any operations not suitable
1249 * to do while holding the lock should be deferred to init (see
1250 * below).
1251 */
1252 int (*create)(struct kvm_device *dev, u32 type);
1253
1254 /*
1255 * init is called after create if create is successful and is called
1256 * outside of holding kvm->lock.
1257 */
1258 void (*init)(struct kvm_device *dev);
1259
1260 /*
1261 * Destroy is responsible for freeing dev.
1262 *
1263 * Destroy may be called before or after destructors are called
1264 * on emulated I/O regions, depending on whether a reference is
1265 * held by a vcpu or other kvm component that gets destroyed
1266 * after the emulated I/O.
1267 */
1268 void (*destroy)(struct kvm_device *dev);
1269
1270 /*
1271 * Release is an alternative method to free the device. It is
1272 * called when the device file descriptor is closed. Once
1273 * release is called, the destroy method will not be called
1274 * anymore as the device is removed from the device list of
1275 * the VM. kvm->lock is held.
1276 */
1277 void (*release)(struct kvm_device *dev);
1278
1279 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1280 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1281 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1282 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1283 unsigned long arg);
1284 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1285};
1286
1287void kvm_device_get(struct kvm_device *dev);
1288void kvm_device_put(struct kvm_device *dev);
1289struct kvm_device *kvm_device_from_filp(struct file *filp);
1290int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1291void kvm_unregister_device_ops(u32 type);
1292
1293extern struct kvm_device_ops kvm_mpic_ops;
1294extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1295extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1296
1297#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1298
1299static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1300{
1301 vcpu->spin_loop.in_spin_loop = val;
1302}
1303static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1304{
1305 vcpu->spin_loop.dy_eligible = val;
1306}
1307
1308#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1309
1310static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1311{
1312}
1313
1314static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1315{
1316}
1317#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1318
1319#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1320bool kvm_arch_has_irq_bypass(void);
1321int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1322 struct irq_bypass_producer *);
1323void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1324 struct irq_bypass_producer *);
1325void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1326void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1327int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1328 uint32_t guest_irq, bool set);
1329#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1330
1331#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1332/* If we wakeup during the poll time, was it a sucessful poll? */
1333static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1334{
1335 return vcpu->valid_wakeup;
1336}
1337
1338#else
1339static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1340{
1341 return true;
1342}
1343#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1344
1345#ifdef CONFIG_HAVE_KVM_NO_POLL
1346/* Callback that tells if we must not poll */
1347bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1348#else
1349static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1350{
1351 return false;
1352}
1353#endif /* CONFIG_HAVE_KVM_NO_POLL */
1354
1355#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1356long kvm_arch_vcpu_async_ioctl(struct file *filp,
1357 unsigned int ioctl, unsigned long arg);
1358#else
1359static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1360 unsigned int ioctl,
1361 unsigned long arg)
1362{
1363 return -ENOIOCTLCMD;
1364}
1365#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1366
1367int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1368 unsigned long start, unsigned long end, bool blockable);
1369
1370#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1371int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1372#else
1373static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1374{
1375 return 0;
1376}
1377#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1378
1379#endif