at v5.2 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/limits.h> 8#include <linux/linkage.h> 9#include <linux/stddef.h> 10#include <linux/types.h> 11#include <linux/compiler.h> 12#include <linux/bitops.h> 13#include <linux/log2.h> 14#include <linux/typecheck.h> 15#include <linux/printk.h> 16#include <linux/build_bug.h> 17#include <asm/byteorder.h> 18#include <asm/div64.h> 19#include <uapi/linux/kernel.h> 20#include <asm/div64.h> 21 22#define STACK_MAGIC 0xdeadbeef 23 24/** 25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 26 * @x: value to repeat 27 * 28 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 29 */ 30#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 31 32/* @a is a power of 2 value */ 33#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 34#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 35#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 36#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 38 39/* generic data direction definitions */ 40#define READ 0 41#define WRITE 1 42 43/** 44 * ARRAY_SIZE - get the number of elements in array @arr 45 * @arr: array to be sized 46 */ 47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 48 49#define u64_to_user_ptr(x) ( \ 50{ \ 51 typecheck(u64, (x)); \ 52 (void __user *)(uintptr_t)(x); \ 53} \ 54) 55 56/* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63/** 64 * round_up - round up to next specified power of 2 65 * @x: the value to round 66 * @y: multiple to round up to (must be a power of 2) 67 * 68 * Rounds @x up to next multiple of @y (which must be a power of 2). 69 * To perform arbitrary rounding up, use roundup() below. 70 */ 71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 72/** 73 * round_down - round down to next specified power of 2 74 * @x: the value to round 75 * @y: multiple to round down to (must be a power of 2) 76 * 77 * Rounds @x down to next multiple of @y (which must be a power of 2). 78 * To perform arbitrary rounding down, use rounddown() below. 79 */ 80#define round_down(x, y) ((x) & ~__round_mask(x, y)) 81 82/** 83 * FIELD_SIZEOF - get the size of a struct's field 84 * @t: the target struct 85 * @f: the target struct's field 86 * Return: the size of @f in the struct definition without having a 87 * declared instance of @t. 88 */ 89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 90 91#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 92 93#define DIV_ROUND_DOWN_ULL(ll, d) \ 94 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 95 96#define DIV_ROUND_UP_ULL(ll, d) \ 97 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) 98 99#if BITS_PER_LONG == 32 100# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 101#else 102# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 103#endif 104 105/** 106 * roundup - round up to the next specified multiple 107 * @x: the value to up 108 * @y: multiple to round up to 109 * 110 * Rounds @x up to next multiple of @y. If @y will always be a power 111 * of 2, consider using the faster round_up(). 112 */ 113#define roundup(x, y) ( \ 114{ \ 115 typeof(y) __y = y; \ 116 (((x) + (__y - 1)) / __y) * __y; \ 117} \ 118) 119/** 120 * rounddown - round down to next specified multiple 121 * @x: the value to round 122 * @y: multiple to round down to 123 * 124 * Rounds @x down to next multiple of @y. If @y will always be a power 125 * of 2, consider using the faster round_down(). 126 */ 127#define rounddown(x, y) ( \ 128{ \ 129 typeof(x) __x = (x); \ 130 __x - (__x % (y)); \ 131} \ 132) 133 134/* 135 * Divide positive or negative dividend by positive or negative divisor 136 * and round to closest integer. Result is undefined for negative 137 * divisors if the dividend variable type is unsigned and for negative 138 * dividends if the divisor variable type is unsigned. 139 */ 140#define DIV_ROUND_CLOSEST(x, divisor)( \ 141{ \ 142 typeof(x) __x = x; \ 143 typeof(divisor) __d = divisor; \ 144 (((typeof(x))-1) > 0 || \ 145 ((typeof(divisor))-1) > 0 || \ 146 (((__x) > 0) == ((__d) > 0))) ? \ 147 (((__x) + ((__d) / 2)) / (__d)) : \ 148 (((__x) - ((__d) / 2)) / (__d)); \ 149} \ 150) 151/* 152 * Same as above but for u64 dividends. divisor must be a 32-bit 153 * number. 154 */ 155#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 156{ \ 157 typeof(divisor) __d = divisor; \ 158 unsigned long long _tmp = (x) + (__d) / 2; \ 159 do_div(_tmp, __d); \ 160 _tmp; \ 161} \ 162) 163 164/* 165 * Multiplies an integer by a fraction, while avoiding unnecessary 166 * overflow or loss of precision. 167 */ 168#define mult_frac(x, numer, denom)( \ 169{ \ 170 typeof(x) quot = (x) / (denom); \ 171 typeof(x) rem = (x) % (denom); \ 172 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 173} \ 174) 175 176 177#define _RET_IP_ (unsigned long)__builtin_return_address(0) 178#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 179 180#define sector_div(a, b) do_div(a, b) 181 182/** 183 * upper_32_bits - return bits 32-63 of a number 184 * @n: the number we're accessing 185 * 186 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 187 * the "right shift count >= width of type" warning when that quantity is 188 * 32-bits. 189 */ 190#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 191 192/** 193 * lower_32_bits - return bits 0-31 of a number 194 * @n: the number we're accessing 195 */ 196#define lower_32_bits(n) ((u32)(n)) 197 198struct completion; 199struct pt_regs; 200struct user; 201 202#ifdef CONFIG_PREEMPT_VOLUNTARY 203extern int _cond_resched(void); 204# define might_resched() _cond_resched() 205#else 206# define might_resched() do { } while (0) 207#endif 208 209#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 210extern void ___might_sleep(const char *file, int line, int preempt_offset); 211extern void __might_sleep(const char *file, int line, int preempt_offset); 212extern void __cant_sleep(const char *file, int line, int preempt_offset); 213 214/** 215 * might_sleep - annotation for functions that can sleep 216 * 217 * this macro will print a stack trace if it is executed in an atomic 218 * context (spinlock, irq-handler, ...). 219 * 220 * This is a useful debugging help to be able to catch problems early and not 221 * be bitten later when the calling function happens to sleep when it is not 222 * supposed to. 223 */ 224# define might_sleep() \ 225 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 226/** 227 * cant_sleep - annotation for functions that cannot sleep 228 * 229 * this macro will print a stack trace if it is executed with preemption enabled 230 */ 231# define cant_sleep() \ 232 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 233# define sched_annotate_sleep() (current->task_state_change = 0) 234#else 235 static inline void ___might_sleep(const char *file, int line, 236 int preempt_offset) { } 237 static inline void __might_sleep(const char *file, int line, 238 int preempt_offset) { } 239# define might_sleep() do { might_resched(); } while (0) 240# define cant_sleep() do { } while (0) 241# define sched_annotate_sleep() do { } while (0) 242#endif 243 244#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 245 246/** 247 * abs - return absolute value of an argument 248 * @x: the value. If it is unsigned type, it is converted to signed type first. 249 * char is treated as if it was signed (regardless of whether it really is) 250 * but the macro's return type is preserved as char. 251 * 252 * Return: an absolute value of x. 253 */ 254#define abs(x) __abs_choose_expr(x, long long, \ 255 __abs_choose_expr(x, long, \ 256 __abs_choose_expr(x, int, \ 257 __abs_choose_expr(x, short, \ 258 __abs_choose_expr(x, char, \ 259 __builtin_choose_expr( \ 260 __builtin_types_compatible_p(typeof(x), char), \ 261 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 262 ((void)0))))))) 263 264#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 265 __builtin_types_compatible_p(typeof(x), signed type) || \ 266 __builtin_types_compatible_p(typeof(x), unsigned type), \ 267 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 268 269/** 270 * reciprocal_scale - "scale" a value into range [0, ep_ro) 271 * @val: value 272 * @ep_ro: right open interval endpoint 273 * 274 * Perform a "reciprocal multiplication" in order to "scale" a value into 275 * range [0, @ep_ro), where the upper interval endpoint is right-open. 276 * This is useful, e.g. for accessing a index of an array containing 277 * @ep_ro elements, for example. Think of it as sort of modulus, only that 278 * the result isn't that of modulo. ;) Note that if initial input is a 279 * small value, then result will return 0. 280 * 281 * Return: a result based on @val in interval [0, @ep_ro). 282 */ 283static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 284{ 285 return (u32)(((u64) val * ep_ro) >> 32); 286} 287 288#if defined(CONFIG_MMU) && \ 289 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 290#define might_fault() __might_fault(__FILE__, __LINE__) 291void __might_fault(const char *file, int line); 292#else 293static inline void might_fault(void) { } 294#endif 295 296extern struct atomic_notifier_head panic_notifier_list; 297extern long (*panic_blink)(int state); 298__printf(1, 2) 299void panic(const char *fmt, ...) __noreturn __cold; 300void nmi_panic(struct pt_regs *regs, const char *msg); 301extern void oops_enter(void); 302extern void oops_exit(void); 303void print_oops_end_marker(void); 304extern int oops_may_print(void); 305void do_exit(long error_code) __noreturn; 306void complete_and_exit(struct completion *, long) __noreturn; 307 308#ifdef CONFIG_ARCH_HAS_REFCOUNT 309void refcount_error_report(struct pt_regs *regs, const char *err); 310#else 311static inline void refcount_error_report(struct pt_regs *regs, const char *err) 312{ } 313#endif 314 315/* Internal, do not use. */ 316int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 317int __must_check _kstrtol(const char *s, unsigned int base, long *res); 318 319int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 320int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 321 322/** 323 * kstrtoul - convert a string to an unsigned long 324 * @s: The start of the string. The string must be null-terminated, and may also 325 * include a single newline before its terminating null. The first character 326 * may also be a plus sign, but not a minus sign. 327 * @base: The number base to use. The maximum supported base is 16. If base is 328 * given as 0, then the base of the string is automatically detected with the 329 * conventional semantics - If it begins with 0x the number will be parsed as a 330 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 331 * parsed as an octal number. Otherwise it will be parsed as a decimal. 332 * @res: Where to write the result of the conversion on success. 333 * 334 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 335 * Used as a replacement for the obsolete simple_strtoull. Return code must 336 * be checked. 337*/ 338static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 339{ 340 /* 341 * We want to shortcut function call, but 342 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 343 */ 344 if (sizeof(unsigned long) == sizeof(unsigned long long) && 345 __alignof__(unsigned long) == __alignof__(unsigned long long)) 346 return kstrtoull(s, base, (unsigned long long *)res); 347 else 348 return _kstrtoul(s, base, res); 349} 350 351/** 352 * kstrtol - convert a string to a long 353 * @s: The start of the string. The string must be null-terminated, and may also 354 * include a single newline before its terminating null. The first character 355 * may also be a plus sign or a minus sign. 356 * @base: The number base to use. The maximum supported base is 16. If base is 357 * given as 0, then the base of the string is automatically detected with the 358 * conventional semantics - If it begins with 0x the number will be parsed as a 359 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 360 * parsed as an octal number. Otherwise it will be parsed as a decimal. 361 * @res: Where to write the result of the conversion on success. 362 * 363 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 364 * Used as a replacement for the obsolete simple_strtoull. Return code must 365 * be checked. 366 */ 367static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 368{ 369 /* 370 * We want to shortcut function call, but 371 * __builtin_types_compatible_p(long, long long) = 0. 372 */ 373 if (sizeof(long) == sizeof(long long) && 374 __alignof__(long) == __alignof__(long long)) 375 return kstrtoll(s, base, (long long *)res); 376 else 377 return _kstrtol(s, base, res); 378} 379 380int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 381int __must_check kstrtoint(const char *s, unsigned int base, int *res); 382 383static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 384{ 385 return kstrtoull(s, base, res); 386} 387 388static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 389{ 390 return kstrtoll(s, base, res); 391} 392 393static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 394{ 395 return kstrtouint(s, base, res); 396} 397 398static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 399{ 400 return kstrtoint(s, base, res); 401} 402 403int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 404int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 405int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 406int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 407int __must_check kstrtobool(const char *s, bool *res); 408 409int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 410int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 411int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 412int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 413int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 414int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 415int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 416int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 417int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 418int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 419int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 420 421static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 422{ 423 return kstrtoull_from_user(s, count, base, res); 424} 425 426static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 427{ 428 return kstrtoll_from_user(s, count, base, res); 429} 430 431static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 432{ 433 return kstrtouint_from_user(s, count, base, res); 434} 435 436static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 437{ 438 return kstrtoint_from_user(s, count, base, res); 439} 440 441/* Obsolete, do not use. Use kstrto<foo> instead */ 442 443extern unsigned long simple_strtoul(const char *,char **,unsigned int); 444extern long simple_strtol(const char *,char **,unsigned int); 445extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 446extern long long simple_strtoll(const char *,char **,unsigned int); 447 448extern int num_to_str(char *buf, int size, 449 unsigned long long num, unsigned int width); 450 451/* lib/printf utilities */ 452 453extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 454extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 455extern __printf(3, 4) 456int snprintf(char *buf, size_t size, const char *fmt, ...); 457extern __printf(3, 0) 458int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 459extern __printf(3, 4) 460int scnprintf(char *buf, size_t size, const char *fmt, ...); 461extern __printf(3, 0) 462int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 463extern __printf(2, 3) __malloc 464char *kasprintf(gfp_t gfp, const char *fmt, ...); 465extern __printf(2, 0) __malloc 466char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 467extern __printf(2, 0) 468const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 469 470extern __scanf(2, 3) 471int sscanf(const char *, const char *, ...); 472extern __scanf(2, 0) 473int vsscanf(const char *, const char *, va_list); 474 475extern int get_option(char **str, int *pint); 476extern char *get_options(const char *str, int nints, int *ints); 477extern unsigned long long memparse(const char *ptr, char **retptr); 478extern bool parse_option_str(const char *str, const char *option); 479extern char *next_arg(char *args, char **param, char **val); 480 481extern int core_kernel_text(unsigned long addr); 482extern int init_kernel_text(unsigned long addr); 483extern int core_kernel_data(unsigned long addr); 484extern int __kernel_text_address(unsigned long addr); 485extern int kernel_text_address(unsigned long addr); 486extern int func_ptr_is_kernel_text(void *ptr); 487 488u64 int_pow(u64 base, unsigned int exp); 489unsigned long int_sqrt(unsigned long); 490 491#if BITS_PER_LONG < 64 492u32 int_sqrt64(u64 x); 493#else 494static inline u32 int_sqrt64(u64 x) 495{ 496 return (u32)int_sqrt(x); 497} 498#endif 499 500extern void bust_spinlocks(int yes); 501extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 502extern int panic_timeout; 503extern unsigned long panic_print; 504extern int panic_on_oops; 505extern int panic_on_unrecovered_nmi; 506extern int panic_on_io_nmi; 507extern int panic_on_warn; 508extern int sysctl_panic_on_rcu_stall; 509extern int sysctl_panic_on_stackoverflow; 510 511extern bool crash_kexec_post_notifiers; 512 513/* 514 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 515 * holds a CPU number which is executing panic() currently. A value of 516 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 517 */ 518extern atomic_t panic_cpu; 519#define PANIC_CPU_INVALID -1 520 521/* 522 * Only to be used by arch init code. If the user over-wrote the default 523 * CONFIG_PANIC_TIMEOUT, honor it. 524 */ 525static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 526{ 527 if (panic_timeout == arch_default_timeout) 528 panic_timeout = timeout; 529} 530extern const char *print_tainted(void); 531enum lockdep_ok { 532 LOCKDEP_STILL_OK, 533 LOCKDEP_NOW_UNRELIABLE 534}; 535extern void add_taint(unsigned flag, enum lockdep_ok); 536extern int test_taint(unsigned flag); 537extern unsigned long get_taint(void); 538extern int root_mountflags; 539 540extern bool early_boot_irqs_disabled; 541 542/* 543 * Values used for system_state. Ordering of the states must not be changed 544 * as code checks for <, <=, >, >= STATE. 545 */ 546extern enum system_states { 547 SYSTEM_BOOTING, 548 SYSTEM_SCHEDULING, 549 SYSTEM_RUNNING, 550 SYSTEM_HALT, 551 SYSTEM_POWER_OFF, 552 SYSTEM_RESTART, 553 SYSTEM_SUSPEND, 554} system_state; 555 556/* This cannot be an enum because some may be used in assembly source. */ 557#define TAINT_PROPRIETARY_MODULE 0 558#define TAINT_FORCED_MODULE 1 559#define TAINT_CPU_OUT_OF_SPEC 2 560#define TAINT_FORCED_RMMOD 3 561#define TAINT_MACHINE_CHECK 4 562#define TAINT_BAD_PAGE 5 563#define TAINT_USER 6 564#define TAINT_DIE 7 565#define TAINT_OVERRIDDEN_ACPI_TABLE 8 566#define TAINT_WARN 9 567#define TAINT_CRAP 10 568#define TAINT_FIRMWARE_WORKAROUND 11 569#define TAINT_OOT_MODULE 12 570#define TAINT_UNSIGNED_MODULE 13 571#define TAINT_SOFTLOCKUP 14 572#define TAINT_LIVEPATCH 15 573#define TAINT_AUX 16 574#define TAINT_RANDSTRUCT 17 575#define TAINT_FLAGS_COUNT 18 576 577struct taint_flag { 578 char c_true; /* character printed when tainted */ 579 char c_false; /* character printed when not tainted */ 580 bool module; /* also show as a per-module taint flag */ 581}; 582 583extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 584 585extern const char hex_asc[]; 586#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 587#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 588 589static inline char *hex_byte_pack(char *buf, u8 byte) 590{ 591 *buf++ = hex_asc_hi(byte); 592 *buf++ = hex_asc_lo(byte); 593 return buf; 594} 595 596extern const char hex_asc_upper[]; 597#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 598#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 599 600static inline char *hex_byte_pack_upper(char *buf, u8 byte) 601{ 602 *buf++ = hex_asc_upper_hi(byte); 603 *buf++ = hex_asc_upper_lo(byte); 604 return buf; 605} 606 607extern int hex_to_bin(char ch); 608extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 609extern char *bin2hex(char *dst, const void *src, size_t count); 610 611bool mac_pton(const char *s, u8 *mac); 612 613/* 614 * General tracing related utility functions - trace_printk(), 615 * tracing_on/tracing_off and tracing_start()/tracing_stop 616 * 617 * Use tracing_on/tracing_off when you want to quickly turn on or off 618 * tracing. It simply enables or disables the recording of the trace events. 619 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 620 * file, which gives a means for the kernel and userspace to interact. 621 * Place a tracing_off() in the kernel where you want tracing to end. 622 * From user space, examine the trace, and then echo 1 > tracing_on 623 * to continue tracing. 624 * 625 * tracing_stop/tracing_start has slightly more overhead. It is used 626 * by things like suspend to ram where disabling the recording of the 627 * trace is not enough, but tracing must actually stop because things 628 * like calling smp_processor_id() may crash the system. 629 * 630 * Most likely, you want to use tracing_on/tracing_off. 631 */ 632 633enum ftrace_dump_mode { 634 DUMP_NONE, 635 DUMP_ALL, 636 DUMP_ORIG, 637}; 638 639#ifdef CONFIG_TRACING 640void tracing_on(void); 641void tracing_off(void); 642int tracing_is_on(void); 643void tracing_snapshot(void); 644void tracing_snapshot_alloc(void); 645 646extern void tracing_start(void); 647extern void tracing_stop(void); 648 649static inline __printf(1, 2) 650void ____trace_printk_check_format(const char *fmt, ...) 651{ 652} 653#define __trace_printk_check_format(fmt, args...) \ 654do { \ 655 if (0) \ 656 ____trace_printk_check_format(fmt, ##args); \ 657} while (0) 658 659/** 660 * trace_printk - printf formatting in the ftrace buffer 661 * @fmt: the printf format for printing 662 * 663 * Note: __trace_printk is an internal function for trace_printk() and 664 * the @ip is passed in via the trace_printk() macro. 665 * 666 * This function allows a kernel developer to debug fast path sections 667 * that printk is not appropriate for. By scattering in various 668 * printk like tracing in the code, a developer can quickly see 669 * where problems are occurring. 670 * 671 * This is intended as a debugging tool for the developer only. 672 * Please refrain from leaving trace_printks scattered around in 673 * your code. (Extra memory is used for special buffers that are 674 * allocated when trace_printk() is used.) 675 * 676 * A little optimization trick is done here. If there's only one 677 * argument, there's no need to scan the string for printf formats. 678 * The trace_puts() will suffice. But how can we take advantage of 679 * using trace_puts() when trace_printk() has only one argument? 680 * By stringifying the args and checking the size we can tell 681 * whether or not there are args. __stringify((__VA_ARGS__)) will 682 * turn into "()\0" with a size of 3 when there are no args, anything 683 * else will be bigger. All we need to do is define a string to this, 684 * and then take its size and compare to 3. If it's bigger, use 685 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 686 * let gcc optimize the rest. 687 */ 688 689#define trace_printk(fmt, ...) \ 690do { \ 691 char _______STR[] = __stringify((__VA_ARGS__)); \ 692 if (sizeof(_______STR) > 3) \ 693 do_trace_printk(fmt, ##__VA_ARGS__); \ 694 else \ 695 trace_puts(fmt); \ 696} while (0) 697 698#define do_trace_printk(fmt, args...) \ 699do { \ 700 static const char *trace_printk_fmt __used \ 701 __attribute__((section("__trace_printk_fmt"))) = \ 702 __builtin_constant_p(fmt) ? fmt : NULL; \ 703 \ 704 __trace_printk_check_format(fmt, ##args); \ 705 \ 706 if (__builtin_constant_p(fmt)) \ 707 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 708 else \ 709 __trace_printk(_THIS_IP_, fmt, ##args); \ 710} while (0) 711 712extern __printf(2, 3) 713int __trace_bprintk(unsigned long ip, const char *fmt, ...); 714 715extern __printf(2, 3) 716int __trace_printk(unsigned long ip, const char *fmt, ...); 717 718/** 719 * trace_puts - write a string into the ftrace buffer 720 * @str: the string to record 721 * 722 * Note: __trace_bputs is an internal function for trace_puts and 723 * the @ip is passed in via the trace_puts macro. 724 * 725 * This is similar to trace_printk() but is made for those really fast 726 * paths that a developer wants the least amount of "Heisenbug" effects, 727 * where the processing of the print format is still too much. 728 * 729 * This function allows a kernel developer to debug fast path sections 730 * that printk is not appropriate for. By scattering in various 731 * printk like tracing in the code, a developer can quickly see 732 * where problems are occurring. 733 * 734 * This is intended as a debugging tool for the developer only. 735 * Please refrain from leaving trace_puts scattered around in 736 * your code. (Extra memory is used for special buffers that are 737 * allocated when trace_puts() is used.) 738 * 739 * Returns: 0 if nothing was written, positive # if string was. 740 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 741 */ 742 743#define trace_puts(str) ({ \ 744 static const char *trace_printk_fmt __used \ 745 __attribute__((section("__trace_printk_fmt"))) = \ 746 __builtin_constant_p(str) ? str : NULL; \ 747 \ 748 if (__builtin_constant_p(str)) \ 749 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 750 else \ 751 __trace_puts(_THIS_IP_, str, strlen(str)); \ 752}) 753extern int __trace_bputs(unsigned long ip, const char *str); 754extern int __trace_puts(unsigned long ip, const char *str, int size); 755 756extern void trace_dump_stack(int skip); 757 758/* 759 * The double __builtin_constant_p is because gcc will give us an error 760 * if we try to allocate the static variable to fmt if it is not a 761 * constant. Even with the outer if statement. 762 */ 763#define ftrace_vprintk(fmt, vargs) \ 764do { \ 765 if (__builtin_constant_p(fmt)) { \ 766 static const char *trace_printk_fmt __used \ 767 __attribute__((section("__trace_printk_fmt"))) = \ 768 __builtin_constant_p(fmt) ? fmt : NULL; \ 769 \ 770 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 771 } else \ 772 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 773} while (0) 774 775extern __printf(2, 0) int 776__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 777 778extern __printf(2, 0) int 779__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 780 781extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 782#else 783static inline void tracing_start(void) { } 784static inline void tracing_stop(void) { } 785static inline void trace_dump_stack(int skip) { } 786 787static inline void tracing_on(void) { } 788static inline void tracing_off(void) { } 789static inline int tracing_is_on(void) { return 0; } 790static inline void tracing_snapshot(void) { } 791static inline void tracing_snapshot_alloc(void) { } 792 793static inline __printf(1, 2) 794int trace_printk(const char *fmt, ...) 795{ 796 return 0; 797} 798static __printf(1, 0) inline int 799ftrace_vprintk(const char *fmt, va_list ap) 800{ 801 return 0; 802} 803static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 804#endif /* CONFIG_TRACING */ 805 806/* 807 * min()/max()/clamp() macros must accomplish three things: 808 * 809 * - avoid multiple evaluations of the arguments (so side-effects like 810 * "x++" happen only once) when non-constant. 811 * - perform strict type-checking (to generate warnings instead of 812 * nasty runtime surprises). See the "unnecessary" pointer comparison 813 * in __typecheck(). 814 * - retain result as a constant expressions when called with only 815 * constant expressions (to avoid tripping VLA warnings in stack 816 * allocation usage). 817 */ 818#define __typecheck(x, y) \ 819 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 820 821/* 822 * This returns a constant expression while determining if an argument is 823 * a constant expression, most importantly without evaluating the argument. 824 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 825 */ 826#define __is_constexpr(x) \ 827 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 828 829#define __no_side_effects(x, y) \ 830 (__is_constexpr(x) && __is_constexpr(y)) 831 832#define __safe_cmp(x, y) \ 833 (__typecheck(x, y) && __no_side_effects(x, y)) 834 835#define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 836 837#define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 838 typeof(x) unique_x = (x); \ 839 typeof(y) unique_y = (y); \ 840 __cmp(unique_x, unique_y, op); }) 841 842#define __careful_cmp(x, y, op) \ 843 __builtin_choose_expr(__safe_cmp(x, y), \ 844 __cmp(x, y, op), \ 845 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 846 847/** 848 * min - return minimum of two values of the same or compatible types 849 * @x: first value 850 * @y: second value 851 */ 852#define min(x, y) __careful_cmp(x, y, <) 853 854/** 855 * max - return maximum of two values of the same or compatible types 856 * @x: first value 857 * @y: second value 858 */ 859#define max(x, y) __careful_cmp(x, y, >) 860 861/** 862 * min3 - return minimum of three values 863 * @x: first value 864 * @y: second value 865 * @z: third value 866 */ 867#define min3(x, y, z) min((typeof(x))min(x, y), z) 868 869/** 870 * max3 - return maximum of three values 871 * @x: first value 872 * @y: second value 873 * @z: third value 874 */ 875#define max3(x, y, z) max((typeof(x))max(x, y), z) 876 877/** 878 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 879 * @x: value1 880 * @y: value2 881 */ 882#define min_not_zero(x, y) ({ \ 883 typeof(x) __x = (x); \ 884 typeof(y) __y = (y); \ 885 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 886 887/** 888 * clamp - return a value clamped to a given range with strict typechecking 889 * @val: current value 890 * @lo: lowest allowable value 891 * @hi: highest allowable value 892 * 893 * This macro does strict typechecking of @lo/@hi to make sure they are of the 894 * same type as @val. See the unnecessary pointer comparisons. 895 */ 896#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 897 898/* 899 * ..and if you can't take the strict 900 * types, you can specify one yourself. 901 * 902 * Or not use min/max/clamp at all, of course. 903 */ 904 905/** 906 * min_t - return minimum of two values, using the specified type 907 * @type: data type to use 908 * @x: first value 909 * @y: second value 910 */ 911#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 912 913/** 914 * max_t - return maximum of two values, using the specified type 915 * @type: data type to use 916 * @x: first value 917 * @y: second value 918 */ 919#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 920 921/** 922 * clamp_t - return a value clamped to a given range using a given type 923 * @type: the type of variable to use 924 * @val: current value 925 * @lo: minimum allowable value 926 * @hi: maximum allowable value 927 * 928 * This macro does no typechecking and uses temporary variables of type 929 * @type to make all the comparisons. 930 */ 931#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 932 933/** 934 * clamp_val - return a value clamped to a given range using val's type 935 * @val: current value 936 * @lo: minimum allowable value 937 * @hi: maximum allowable value 938 * 939 * This macro does no typechecking and uses temporary variables of whatever 940 * type the input argument @val is. This is useful when @val is an unsigned 941 * type and @lo and @hi are literals that will otherwise be assigned a signed 942 * integer type. 943 */ 944#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 945 946 947/** 948 * swap - swap values of @a and @b 949 * @a: first value 950 * @b: second value 951 */ 952#define swap(a, b) \ 953 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 954 955/* This counts to 12. Any more, it will return 13th argument. */ 956#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 957#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 958 959#define __CONCAT(a, b) a ## b 960#define CONCATENATE(a, b) __CONCAT(a, b) 961 962/** 963 * container_of - cast a member of a structure out to the containing structure 964 * @ptr: the pointer to the member. 965 * @type: the type of the container struct this is embedded in. 966 * @member: the name of the member within the struct. 967 * 968 */ 969#define container_of(ptr, type, member) ({ \ 970 void *__mptr = (void *)(ptr); \ 971 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 972 !__same_type(*(ptr), void), \ 973 "pointer type mismatch in container_of()"); \ 974 ((type *)(__mptr - offsetof(type, member))); }) 975 976/** 977 * container_of_safe - cast a member of a structure out to the containing structure 978 * @ptr: the pointer to the member. 979 * @type: the type of the container struct this is embedded in. 980 * @member: the name of the member within the struct. 981 * 982 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 983 */ 984#define container_of_safe(ptr, type, member) ({ \ 985 void *__mptr = (void *)(ptr); \ 986 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 987 !__same_type(*(ptr), void), \ 988 "pointer type mismatch in container_of()"); \ 989 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 990 ((type *)(__mptr - offsetof(type, member))); }) 991 992/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 993#ifdef CONFIG_FTRACE_MCOUNT_RECORD 994# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 995#endif 996 997/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 998#define VERIFY_OCTAL_PERMISSIONS(perms) \ 999 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1000 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1001 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1002 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1003 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1004 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1005 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1006 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1007 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1008 (perms)) 1009#endif