Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_KERNEL_H
3#define _LINUX_KERNEL_H
4
5
6#include <stdarg.h>
7#include <linux/limits.h>
8#include <linux/linkage.h>
9#include <linux/stddef.h>
10#include <linux/types.h>
11#include <linux/compiler.h>
12#include <linux/bitops.h>
13#include <linux/log2.h>
14#include <linux/typecheck.h>
15#include <linux/printk.h>
16#include <linux/build_bug.h>
17#include <asm/byteorder.h>
18#include <asm/div64.h>
19#include <uapi/linux/kernel.h>
20#include <asm/div64.h>
21
22#define STACK_MAGIC 0xdeadbeef
23
24/**
25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
26 * @x: value to repeat
27 *
28 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
29 */
30#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
31
32/* @a is a power of 2 value */
33#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
34#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
35#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
36#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
38
39/* generic data direction definitions */
40#define READ 0
41#define WRITE 1
42
43/**
44 * ARRAY_SIZE - get the number of elements in array @arr
45 * @arr: array to be sized
46 */
47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
48
49#define u64_to_user_ptr(x) ( \
50{ \
51 typecheck(u64, (x)); \
52 (void __user *)(uintptr_t)(x); \
53} \
54)
55
56/*
57 * This looks more complex than it should be. But we need to
58 * get the type for the ~ right in round_down (it needs to be
59 * as wide as the result!), and we want to evaluate the macro
60 * arguments just once each.
61 */
62#define __round_mask(x, y) ((__typeof__(x))((y)-1))
63/**
64 * round_up - round up to next specified power of 2
65 * @x: the value to round
66 * @y: multiple to round up to (must be a power of 2)
67 *
68 * Rounds @x up to next multiple of @y (which must be a power of 2).
69 * To perform arbitrary rounding up, use roundup() below.
70 */
71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
72/**
73 * round_down - round down to next specified power of 2
74 * @x: the value to round
75 * @y: multiple to round down to (must be a power of 2)
76 *
77 * Rounds @x down to next multiple of @y (which must be a power of 2).
78 * To perform arbitrary rounding down, use rounddown() below.
79 */
80#define round_down(x, y) ((x) & ~__round_mask(x, y))
81
82/**
83 * FIELD_SIZEOF - get the size of a struct's field
84 * @t: the target struct
85 * @f: the target struct's field
86 * Return: the size of @f in the struct definition without having a
87 * declared instance of @t.
88 */
89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
90
91#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
92
93#define DIV_ROUND_DOWN_ULL(ll, d) \
94 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
95
96#define DIV_ROUND_UP_ULL(ll, d) \
97 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
98
99#if BITS_PER_LONG == 32
100# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
101#else
102# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
103#endif
104
105/**
106 * roundup - round up to the next specified multiple
107 * @x: the value to up
108 * @y: multiple to round up to
109 *
110 * Rounds @x up to next multiple of @y. If @y will always be a power
111 * of 2, consider using the faster round_up().
112 */
113#define roundup(x, y) ( \
114{ \
115 typeof(y) __y = y; \
116 (((x) + (__y - 1)) / __y) * __y; \
117} \
118)
119/**
120 * rounddown - round down to next specified multiple
121 * @x: the value to round
122 * @y: multiple to round down to
123 *
124 * Rounds @x down to next multiple of @y. If @y will always be a power
125 * of 2, consider using the faster round_down().
126 */
127#define rounddown(x, y) ( \
128{ \
129 typeof(x) __x = (x); \
130 __x - (__x % (y)); \
131} \
132)
133
134/*
135 * Divide positive or negative dividend by positive or negative divisor
136 * and round to closest integer. Result is undefined for negative
137 * divisors if the dividend variable type is unsigned and for negative
138 * dividends if the divisor variable type is unsigned.
139 */
140#define DIV_ROUND_CLOSEST(x, divisor)( \
141{ \
142 typeof(x) __x = x; \
143 typeof(divisor) __d = divisor; \
144 (((typeof(x))-1) > 0 || \
145 ((typeof(divisor))-1) > 0 || \
146 (((__x) > 0) == ((__d) > 0))) ? \
147 (((__x) + ((__d) / 2)) / (__d)) : \
148 (((__x) - ((__d) / 2)) / (__d)); \
149} \
150)
151/*
152 * Same as above but for u64 dividends. divisor must be a 32-bit
153 * number.
154 */
155#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
156{ \
157 typeof(divisor) __d = divisor; \
158 unsigned long long _tmp = (x) + (__d) / 2; \
159 do_div(_tmp, __d); \
160 _tmp; \
161} \
162)
163
164/*
165 * Multiplies an integer by a fraction, while avoiding unnecessary
166 * overflow or loss of precision.
167 */
168#define mult_frac(x, numer, denom)( \
169{ \
170 typeof(x) quot = (x) / (denom); \
171 typeof(x) rem = (x) % (denom); \
172 (quot * (numer)) + ((rem * (numer)) / (denom)); \
173} \
174)
175
176
177#define _RET_IP_ (unsigned long)__builtin_return_address(0)
178#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
179
180#define sector_div(a, b) do_div(a, b)
181
182/**
183 * upper_32_bits - return bits 32-63 of a number
184 * @n: the number we're accessing
185 *
186 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
187 * the "right shift count >= width of type" warning when that quantity is
188 * 32-bits.
189 */
190#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
191
192/**
193 * lower_32_bits - return bits 0-31 of a number
194 * @n: the number we're accessing
195 */
196#define lower_32_bits(n) ((u32)(n))
197
198struct completion;
199struct pt_regs;
200struct user;
201
202#ifdef CONFIG_PREEMPT_VOLUNTARY
203extern int _cond_resched(void);
204# define might_resched() _cond_resched()
205#else
206# define might_resched() do { } while (0)
207#endif
208
209#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
210extern void ___might_sleep(const char *file, int line, int preempt_offset);
211extern void __might_sleep(const char *file, int line, int preempt_offset);
212extern void __cant_sleep(const char *file, int line, int preempt_offset);
213
214/**
215 * might_sleep - annotation for functions that can sleep
216 *
217 * this macro will print a stack trace if it is executed in an atomic
218 * context (spinlock, irq-handler, ...).
219 *
220 * This is a useful debugging help to be able to catch problems early and not
221 * be bitten later when the calling function happens to sleep when it is not
222 * supposed to.
223 */
224# define might_sleep() \
225 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
226/**
227 * cant_sleep - annotation for functions that cannot sleep
228 *
229 * this macro will print a stack trace if it is executed with preemption enabled
230 */
231# define cant_sleep() \
232 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
233# define sched_annotate_sleep() (current->task_state_change = 0)
234#else
235 static inline void ___might_sleep(const char *file, int line,
236 int preempt_offset) { }
237 static inline void __might_sleep(const char *file, int line,
238 int preempt_offset) { }
239# define might_sleep() do { might_resched(); } while (0)
240# define cant_sleep() do { } while (0)
241# define sched_annotate_sleep() do { } while (0)
242#endif
243
244#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
245
246/**
247 * abs - return absolute value of an argument
248 * @x: the value. If it is unsigned type, it is converted to signed type first.
249 * char is treated as if it was signed (regardless of whether it really is)
250 * but the macro's return type is preserved as char.
251 *
252 * Return: an absolute value of x.
253 */
254#define abs(x) __abs_choose_expr(x, long long, \
255 __abs_choose_expr(x, long, \
256 __abs_choose_expr(x, int, \
257 __abs_choose_expr(x, short, \
258 __abs_choose_expr(x, char, \
259 __builtin_choose_expr( \
260 __builtin_types_compatible_p(typeof(x), char), \
261 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
262 ((void)0)))))))
263
264#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
265 __builtin_types_compatible_p(typeof(x), signed type) || \
266 __builtin_types_compatible_p(typeof(x), unsigned type), \
267 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
268
269/**
270 * reciprocal_scale - "scale" a value into range [0, ep_ro)
271 * @val: value
272 * @ep_ro: right open interval endpoint
273 *
274 * Perform a "reciprocal multiplication" in order to "scale" a value into
275 * range [0, @ep_ro), where the upper interval endpoint is right-open.
276 * This is useful, e.g. for accessing a index of an array containing
277 * @ep_ro elements, for example. Think of it as sort of modulus, only that
278 * the result isn't that of modulo. ;) Note that if initial input is a
279 * small value, then result will return 0.
280 *
281 * Return: a result based on @val in interval [0, @ep_ro).
282 */
283static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
284{
285 return (u32)(((u64) val * ep_ro) >> 32);
286}
287
288#if defined(CONFIG_MMU) && \
289 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
290#define might_fault() __might_fault(__FILE__, __LINE__)
291void __might_fault(const char *file, int line);
292#else
293static inline void might_fault(void) { }
294#endif
295
296extern struct atomic_notifier_head panic_notifier_list;
297extern long (*panic_blink)(int state);
298__printf(1, 2)
299void panic(const char *fmt, ...) __noreturn __cold;
300void nmi_panic(struct pt_regs *regs, const char *msg);
301extern void oops_enter(void);
302extern void oops_exit(void);
303void print_oops_end_marker(void);
304extern int oops_may_print(void);
305void do_exit(long error_code) __noreturn;
306void complete_and_exit(struct completion *, long) __noreturn;
307
308#ifdef CONFIG_ARCH_HAS_REFCOUNT
309void refcount_error_report(struct pt_regs *regs, const char *err);
310#else
311static inline void refcount_error_report(struct pt_regs *regs, const char *err)
312{ }
313#endif
314
315/* Internal, do not use. */
316int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
317int __must_check _kstrtol(const char *s, unsigned int base, long *res);
318
319int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
320int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
321
322/**
323 * kstrtoul - convert a string to an unsigned long
324 * @s: The start of the string. The string must be null-terminated, and may also
325 * include a single newline before its terminating null. The first character
326 * may also be a plus sign, but not a minus sign.
327 * @base: The number base to use. The maximum supported base is 16. If base is
328 * given as 0, then the base of the string is automatically detected with the
329 * conventional semantics - If it begins with 0x the number will be parsed as a
330 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
331 * parsed as an octal number. Otherwise it will be parsed as a decimal.
332 * @res: Where to write the result of the conversion on success.
333 *
334 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
335 * Used as a replacement for the obsolete simple_strtoull. Return code must
336 * be checked.
337*/
338static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
339{
340 /*
341 * We want to shortcut function call, but
342 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
343 */
344 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
345 __alignof__(unsigned long) == __alignof__(unsigned long long))
346 return kstrtoull(s, base, (unsigned long long *)res);
347 else
348 return _kstrtoul(s, base, res);
349}
350
351/**
352 * kstrtol - convert a string to a long
353 * @s: The start of the string. The string must be null-terminated, and may also
354 * include a single newline before its terminating null. The first character
355 * may also be a plus sign or a minus sign.
356 * @base: The number base to use. The maximum supported base is 16. If base is
357 * given as 0, then the base of the string is automatically detected with the
358 * conventional semantics - If it begins with 0x the number will be parsed as a
359 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
360 * parsed as an octal number. Otherwise it will be parsed as a decimal.
361 * @res: Where to write the result of the conversion on success.
362 *
363 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
364 * Used as a replacement for the obsolete simple_strtoull. Return code must
365 * be checked.
366 */
367static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
368{
369 /*
370 * We want to shortcut function call, but
371 * __builtin_types_compatible_p(long, long long) = 0.
372 */
373 if (sizeof(long) == sizeof(long long) &&
374 __alignof__(long) == __alignof__(long long))
375 return kstrtoll(s, base, (long long *)res);
376 else
377 return _kstrtol(s, base, res);
378}
379
380int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
381int __must_check kstrtoint(const char *s, unsigned int base, int *res);
382
383static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
384{
385 return kstrtoull(s, base, res);
386}
387
388static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
389{
390 return kstrtoll(s, base, res);
391}
392
393static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
394{
395 return kstrtouint(s, base, res);
396}
397
398static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
399{
400 return kstrtoint(s, base, res);
401}
402
403int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
404int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
405int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
406int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
407int __must_check kstrtobool(const char *s, bool *res);
408
409int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
410int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
411int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
412int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
413int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
414int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
415int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
416int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
417int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
418int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
419int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
420
421static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
422{
423 return kstrtoull_from_user(s, count, base, res);
424}
425
426static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
427{
428 return kstrtoll_from_user(s, count, base, res);
429}
430
431static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
432{
433 return kstrtouint_from_user(s, count, base, res);
434}
435
436static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
437{
438 return kstrtoint_from_user(s, count, base, res);
439}
440
441/* Obsolete, do not use. Use kstrto<foo> instead */
442
443extern unsigned long simple_strtoul(const char *,char **,unsigned int);
444extern long simple_strtol(const char *,char **,unsigned int);
445extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
446extern long long simple_strtoll(const char *,char **,unsigned int);
447
448extern int num_to_str(char *buf, int size,
449 unsigned long long num, unsigned int width);
450
451/* lib/printf utilities */
452
453extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
454extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
455extern __printf(3, 4)
456int snprintf(char *buf, size_t size, const char *fmt, ...);
457extern __printf(3, 0)
458int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
459extern __printf(3, 4)
460int scnprintf(char *buf, size_t size, const char *fmt, ...);
461extern __printf(3, 0)
462int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
463extern __printf(2, 3) __malloc
464char *kasprintf(gfp_t gfp, const char *fmt, ...);
465extern __printf(2, 0) __malloc
466char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
467extern __printf(2, 0)
468const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
469
470extern __scanf(2, 3)
471int sscanf(const char *, const char *, ...);
472extern __scanf(2, 0)
473int vsscanf(const char *, const char *, va_list);
474
475extern int get_option(char **str, int *pint);
476extern char *get_options(const char *str, int nints, int *ints);
477extern unsigned long long memparse(const char *ptr, char **retptr);
478extern bool parse_option_str(const char *str, const char *option);
479extern char *next_arg(char *args, char **param, char **val);
480
481extern int core_kernel_text(unsigned long addr);
482extern int init_kernel_text(unsigned long addr);
483extern int core_kernel_data(unsigned long addr);
484extern int __kernel_text_address(unsigned long addr);
485extern int kernel_text_address(unsigned long addr);
486extern int func_ptr_is_kernel_text(void *ptr);
487
488u64 int_pow(u64 base, unsigned int exp);
489unsigned long int_sqrt(unsigned long);
490
491#if BITS_PER_LONG < 64
492u32 int_sqrt64(u64 x);
493#else
494static inline u32 int_sqrt64(u64 x)
495{
496 return (u32)int_sqrt(x);
497}
498#endif
499
500extern void bust_spinlocks(int yes);
501extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
502extern int panic_timeout;
503extern unsigned long panic_print;
504extern int panic_on_oops;
505extern int panic_on_unrecovered_nmi;
506extern int panic_on_io_nmi;
507extern int panic_on_warn;
508extern int sysctl_panic_on_rcu_stall;
509extern int sysctl_panic_on_stackoverflow;
510
511extern bool crash_kexec_post_notifiers;
512
513/*
514 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
515 * holds a CPU number which is executing panic() currently. A value of
516 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
517 */
518extern atomic_t panic_cpu;
519#define PANIC_CPU_INVALID -1
520
521/*
522 * Only to be used by arch init code. If the user over-wrote the default
523 * CONFIG_PANIC_TIMEOUT, honor it.
524 */
525static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
526{
527 if (panic_timeout == arch_default_timeout)
528 panic_timeout = timeout;
529}
530extern const char *print_tainted(void);
531enum lockdep_ok {
532 LOCKDEP_STILL_OK,
533 LOCKDEP_NOW_UNRELIABLE
534};
535extern void add_taint(unsigned flag, enum lockdep_ok);
536extern int test_taint(unsigned flag);
537extern unsigned long get_taint(void);
538extern int root_mountflags;
539
540extern bool early_boot_irqs_disabled;
541
542/*
543 * Values used for system_state. Ordering of the states must not be changed
544 * as code checks for <, <=, >, >= STATE.
545 */
546extern enum system_states {
547 SYSTEM_BOOTING,
548 SYSTEM_SCHEDULING,
549 SYSTEM_RUNNING,
550 SYSTEM_HALT,
551 SYSTEM_POWER_OFF,
552 SYSTEM_RESTART,
553 SYSTEM_SUSPEND,
554} system_state;
555
556/* This cannot be an enum because some may be used in assembly source. */
557#define TAINT_PROPRIETARY_MODULE 0
558#define TAINT_FORCED_MODULE 1
559#define TAINT_CPU_OUT_OF_SPEC 2
560#define TAINT_FORCED_RMMOD 3
561#define TAINT_MACHINE_CHECK 4
562#define TAINT_BAD_PAGE 5
563#define TAINT_USER 6
564#define TAINT_DIE 7
565#define TAINT_OVERRIDDEN_ACPI_TABLE 8
566#define TAINT_WARN 9
567#define TAINT_CRAP 10
568#define TAINT_FIRMWARE_WORKAROUND 11
569#define TAINT_OOT_MODULE 12
570#define TAINT_UNSIGNED_MODULE 13
571#define TAINT_SOFTLOCKUP 14
572#define TAINT_LIVEPATCH 15
573#define TAINT_AUX 16
574#define TAINT_RANDSTRUCT 17
575#define TAINT_FLAGS_COUNT 18
576
577struct taint_flag {
578 char c_true; /* character printed when tainted */
579 char c_false; /* character printed when not tainted */
580 bool module; /* also show as a per-module taint flag */
581};
582
583extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
584
585extern const char hex_asc[];
586#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
587#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
588
589static inline char *hex_byte_pack(char *buf, u8 byte)
590{
591 *buf++ = hex_asc_hi(byte);
592 *buf++ = hex_asc_lo(byte);
593 return buf;
594}
595
596extern const char hex_asc_upper[];
597#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
598#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
599
600static inline char *hex_byte_pack_upper(char *buf, u8 byte)
601{
602 *buf++ = hex_asc_upper_hi(byte);
603 *buf++ = hex_asc_upper_lo(byte);
604 return buf;
605}
606
607extern int hex_to_bin(char ch);
608extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
609extern char *bin2hex(char *dst, const void *src, size_t count);
610
611bool mac_pton(const char *s, u8 *mac);
612
613/*
614 * General tracing related utility functions - trace_printk(),
615 * tracing_on/tracing_off and tracing_start()/tracing_stop
616 *
617 * Use tracing_on/tracing_off when you want to quickly turn on or off
618 * tracing. It simply enables or disables the recording of the trace events.
619 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
620 * file, which gives a means for the kernel and userspace to interact.
621 * Place a tracing_off() in the kernel where you want tracing to end.
622 * From user space, examine the trace, and then echo 1 > tracing_on
623 * to continue tracing.
624 *
625 * tracing_stop/tracing_start has slightly more overhead. It is used
626 * by things like suspend to ram where disabling the recording of the
627 * trace is not enough, but tracing must actually stop because things
628 * like calling smp_processor_id() may crash the system.
629 *
630 * Most likely, you want to use tracing_on/tracing_off.
631 */
632
633enum ftrace_dump_mode {
634 DUMP_NONE,
635 DUMP_ALL,
636 DUMP_ORIG,
637};
638
639#ifdef CONFIG_TRACING
640void tracing_on(void);
641void tracing_off(void);
642int tracing_is_on(void);
643void tracing_snapshot(void);
644void tracing_snapshot_alloc(void);
645
646extern void tracing_start(void);
647extern void tracing_stop(void);
648
649static inline __printf(1, 2)
650void ____trace_printk_check_format(const char *fmt, ...)
651{
652}
653#define __trace_printk_check_format(fmt, args...) \
654do { \
655 if (0) \
656 ____trace_printk_check_format(fmt, ##args); \
657} while (0)
658
659/**
660 * trace_printk - printf formatting in the ftrace buffer
661 * @fmt: the printf format for printing
662 *
663 * Note: __trace_printk is an internal function for trace_printk() and
664 * the @ip is passed in via the trace_printk() macro.
665 *
666 * This function allows a kernel developer to debug fast path sections
667 * that printk is not appropriate for. By scattering in various
668 * printk like tracing in the code, a developer can quickly see
669 * where problems are occurring.
670 *
671 * This is intended as a debugging tool for the developer only.
672 * Please refrain from leaving trace_printks scattered around in
673 * your code. (Extra memory is used for special buffers that are
674 * allocated when trace_printk() is used.)
675 *
676 * A little optimization trick is done here. If there's only one
677 * argument, there's no need to scan the string for printf formats.
678 * The trace_puts() will suffice. But how can we take advantage of
679 * using trace_puts() when trace_printk() has only one argument?
680 * By stringifying the args and checking the size we can tell
681 * whether or not there are args. __stringify((__VA_ARGS__)) will
682 * turn into "()\0" with a size of 3 when there are no args, anything
683 * else will be bigger. All we need to do is define a string to this,
684 * and then take its size and compare to 3. If it's bigger, use
685 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
686 * let gcc optimize the rest.
687 */
688
689#define trace_printk(fmt, ...) \
690do { \
691 char _______STR[] = __stringify((__VA_ARGS__)); \
692 if (sizeof(_______STR) > 3) \
693 do_trace_printk(fmt, ##__VA_ARGS__); \
694 else \
695 trace_puts(fmt); \
696} while (0)
697
698#define do_trace_printk(fmt, args...) \
699do { \
700 static const char *trace_printk_fmt __used \
701 __attribute__((section("__trace_printk_fmt"))) = \
702 __builtin_constant_p(fmt) ? fmt : NULL; \
703 \
704 __trace_printk_check_format(fmt, ##args); \
705 \
706 if (__builtin_constant_p(fmt)) \
707 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
708 else \
709 __trace_printk(_THIS_IP_, fmt, ##args); \
710} while (0)
711
712extern __printf(2, 3)
713int __trace_bprintk(unsigned long ip, const char *fmt, ...);
714
715extern __printf(2, 3)
716int __trace_printk(unsigned long ip, const char *fmt, ...);
717
718/**
719 * trace_puts - write a string into the ftrace buffer
720 * @str: the string to record
721 *
722 * Note: __trace_bputs is an internal function for trace_puts and
723 * the @ip is passed in via the trace_puts macro.
724 *
725 * This is similar to trace_printk() but is made for those really fast
726 * paths that a developer wants the least amount of "Heisenbug" effects,
727 * where the processing of the print format is still too much.
728 *
729 * This function allows a kernel developer to debug fast path sections
730 * that printk is not appropriate for. By scattering in various
731 * printk like tracing in the code, a developer can quickly see
732 * where problems are occurring.
733 *
734 * This is intended as a debugging tool for the developer only.
735 * Please refrain from leaving trace_puts scattered around in
736 * your code. (Extra memory is used for special buffers that are
737 * allocated when trace_puts() is used.)
738 *
739 * Returns: 0 if nothing was written, positive # if string was.
740 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
741 */
742
743#define trace_puts(str) ({ \
744 static const char *trace_printk_fmt __used \
745 __attribute__((section("__trace_printk_fmt"))) = \
746 __builtin_constant_p(str) ? str : NULL; \
747 \
748 if (__builtin_constant_p(str)) \
749 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
750 else \
751 __trace_puts(_THIS_IP_, str, strlen(str)); \
752})
753extern int __trace_bputs(unsigned long ip, const char *str);
754extern int __trace_puts(unsigned long ip, const char *str, int size);
755
756extern void trace_dump_stack(int skip);
757
758/*
759 * The double __builtin_constant_p is because gcc will give us an error
760 * if we try to allocate the static variable to fmt if it is not a
761 * constant. Even with the outer if statement.
762 */
763#define ftrace_vprintk(fmt, vargs) \
764do { \
765 if (__builtin_constant_p(fmt)) { \
766 static const char *trace_printk_fmt __used \
767 __attribute__((section("__trace_printk_fmt"))) = \
768 __builtin_constant_p(fmt) ? fmt : NULL; \
769 \
770 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
771 } else \
772 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
773} while (0)
774
775extern __printf(2, 0) int
776__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
777
778extern __printf(2, 0) int
779__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
780
781extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
782#else
783static inline void tracing_start(void) { }
784static inline void tracing_stop(void) { }
785static inline void trace_dump_stack(int skip) { }
786
787static inline void tracing_on(void) { }
788static inline void tracing_off(void) { }
789static inline int tracing_is_on(void) { return 0; }
790static inline void tracing_snapshot(void) { }
791static inline void tracing_snapshot_alloc(void) { }
792
793static inline __printf(1, 2)
794int trace_printk(const char *fmt, ...)
795{
796 return 0;
797}
798static __printf(1, 0) inline int
799ftrace_vprintk(const char *fmt, va_list ap)
800{
801 return 0;
802}
803static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
804#endif /* CONFIG_TRACING */
805
806/*
807 * min()/max()/clamp() macros must accomplish three things:
808 *
809 * - avoid multiple evaluations of the arguments (so side-effects like
810 * "x++" happen only once) when non-constant.
811 * - perform strict type-checking (to generate warnings instead of
812 * nasty runtime surprises). See the "unnecessary" pointer comparison
813 * in __typecheck().
814 * - retain result as a constant expressions when called with only
815 * constant expressions (to avoid tripping VLA warnings in stack
816 * allocation usage).
817 */
818#define __typecheck(x, y) \
819 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
820
821/*
822 * This returns a constant expression while determining if an argument is
823 * a constant expression, most importantly without evaluating the argument.
824 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
825 */
826#define __is_constexpr(x) \
827 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
828
829#define __no_side_effects(x, y) \
830 (__is_constexpr(x) && __is_constexpr(y))
831
832#define __safe_cmp(x, y) \
833 (__typecheck(x, y) && __no_side_effects(x, y))
834
835#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
836
837#define __cmp_once(x, y, unique_x, unique_y, op) ({ \
838 typeof(x) unique_x = (x); \
839 typeof(y) unique_y = (y); \
840 __cmp(unique_x, unique_y, op); })
841
842#define __careful_cmp(x, y, op) \
843 __builtin_choose_expr(__safe_cmp(x, y), \
844 __cmp(x, y, op), \
845 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
846
847/**
848 * min - return minimum of two values of the same or compatible types
849 * @x: first value
850 * @y: second value
851 */
852#define min(x, y) __careful_cmp(x, y, <)
853
854/**
855 * max - return maximum of two values of the same or compatible types
856 * @x: first value
857 * @y: second value
858 */
859#define max(x, y) __careful_cmp(x, y, >)
860
861/**
862 * min3 - return minimum of three values
863 * @x: first value
864 * @y: second value
865 * @z: third value
866 */
867#define min3(x, y, z) min((typeof(x))min(x, y), z)
868
869/**
870 * max3 - return maximum of three values
871 * @x: first value
872 * @y: second value
873 * @z: third value
874 */
875#define max3(x, y, z) max((typeof(x))max(x, y), z)
876
877/**
878 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
879 * @x: value1
880 * @y: value2
881 */
882#define min_not_zero(x, y) ({ \
883 typeof(x) __x = (x); \
884 typeof(y) __y = (y); \
885 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
886
887/**
888 * clamp - return a value clamped to a given range with strict typechecking
889 * @val: current value
890 * @lo: lowest allowable value
891 * @hi: highest allowable value
892 *
893 * This macro does strict typechecking of @lo/@hi to make sure they are of the
894 * same type as @val. See the unnecessary pointer comparisons.
895 */
896#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
897
898/*
899 * ..and if you can't take the strict
900 * types, you can specify one yourself.
901 *
902 * Or not use min/max/clamp at all, of course.
903 */
904
905/**
906 * min_t - return minimum of two values, using the specified type
907 * @type: data type to use
908 * @x: first value
909 * @y: second value
910 */
911#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
912
913/**
914 * max_t - return maximum of two values, using the specified type
915 * @type: data type to use
916 * @x: first value
917 * @y: second value
918 */
919#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
920
921/**
922 * clamp_t - return a value clamped to a given range using a given type
923 * @type: the type of variable to use
924 * @val: current value
925 * @lo: minimum allowable value
926 * @hi: maximum allowable value
927 *
928 * This macro does no typechecking and uses temporary variables of type
929 * @type to make all the comparisons.
930 */
931#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
932
933/**
934 * clamp_val - return a value clamped to a given range using val's type
935 * @val: current value
936 * @lo: minimum allowable value
937 * @hi: maximum allowable value
938 *
939 * This macro does no typechecking and uses temporary variables of whatever
940 * type the input argument @val is. This is useful when @val is an unsigned
941 * type and @lo and @hi are literals that will otherwise be assigned a signed
942 * integer type.
943 */
944#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
945
946
947/**
948 * swap - swap values of @a and @b
949 * @a: first value
950 * @b: second value
951 */
952#define swap(a, b) \
953 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
954
955/* This counts to 12. Any more, it will return 13th argument. */
956#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
957#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
958
959#define __CONCAT(a, b) a ## b
960#define CONCATENATE(a, b) __CONCAT(a, b)
961
962/**
963 * container_of - cast a member of a structure out to the containing structure
964 * @ptr: the pointer to the member.
965 * @type: the type of the container struct this is embedded in.
966 * @member: the name of the member within the struct.
967 *
968 */
969#define container_of(ptr, type, member) ({ \
970 void *__mptr = (void *)(ptr); \
971 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
972 !__same_type(*(ptr), void), \
973 "pointer type mismatch in container_of()"); \
974 ((type *)(__mptr - offsetof(type, member))); })
975
976/**
977 * container_of_safe - cast a member of a structure out to the containing structure
978 * @ptr: the pointer to the member.
979 * @type: the type of the container struct this is embedded in.
980 * @member: the name of the member within the struct.
981 *
982 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
983 */
984#define container_of_safe(ptr, type, member) ({ \
985 void *__mptr = (void *)(ptr); \
986 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
987 !__same_type(*(ptr), void), \
988 "pointer type mismatch in container_of()"); \
989 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \
990 ((type *)(__mptr - offsetof(type, member))); })
991
992/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
993#ifdef CONFIG_FTRACE_MCOUNT_RECORD
994# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
995#endif
996
997/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
998#define VERIFY_OCTAL_PERMISSIONS(perms) \
999 (BUILD_BUG_ON_ZERO((perms) < 0) + \
1000 BUILD_BUG_ON_ZERO((perms) > 0777) + \
1001 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
1002 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
1003 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
1004 /* USER_WRITABLE >= GROUP_WRITABLE */ \
1005 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
1006 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
1007 BUILD_BUG_ON_ZERO((perms) & 2) + \
1008 (perms))
1009#endif