at v5.2 7.2 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_CPUSET_H 3#define _LINUX_CPUSET_H 4/* 5 * cpuset interface 6 * 7 * Copyright (C) 2003 BULL SA 8 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 9 * 10 */ 11 12#include <linux/sched.h> 13#include <linux/sched/topology.h> 14#include <linux/sched/task.h> 15#include <linux/cpumask.h> 16#include <linux/nodemask.h> 17#include <linux/mm.h> 18#include <linux/jump_label.h> 19 20#ifdef CONFIG_CPUSETS 21 22/* 23 * Static branch rewrites can happen in an arbitrary order for a given 24 * key. In code paths where we need to loop with read_mems_allowed_begin() and 25 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need 26 * to ensure that begin() always gets rewritten before retry() in the 27 * disabled -> enabled transition. If not, then if local irqs are disabled 28 * around the loop, we can deadlock since retry() would always be 29 * comparing the latest value of the mems_allowed seqcount against 0 as 30 * begin() still would see cpusets_enabled() as false. The enabled -> disabled 31 * transition should happen in reverse order for the same reasons (want to stop 32 * looking at real value of mems_allowed.sequence in retry() first). 33 */ 34extern struct static_key_false cpusets_pre_enable_key; 35extern struct static_key_false cpusets_enabled_key; 36static inline bool cpusets_enabled(void) 37{ 38 return static_branch_unlikely(&cpusets_enabled_key); 39} 40 41static inline void cpuset_inc(void) 42{ 43 static_branch_inc(&cpusets_pre_enable_key); 44 static_branch_inc(&cpusets_enabled_key); 45} 46 47static inline void cpuset_dec(void) 48{ 49 static_branch_dec(&cpusets_enabled_key); 50 static_branch_dec(&cpusets_pre_enable_key); 51} 52 53extern int cpuset_init(void); 54extern void cpuset_init_smp(void); 55extern void cpuset_force_rebuild(void); 56extern void cpuset_update_active_cpus(void); 57extern void cpuset_wait_for_hotplug(void); 58extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); 59extern void cpuset_cpus_allowed_fallback(struct task_struct *p); 60extern nodemask_t cpuset_mems_allowed(struct task_struct *p); 61#define cpuset_current_mems_allowed (current->mems_allowed) 62void cpuset_init_current_mems_allowed(void); 63int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); 64 65extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask); 66 67static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 68{ 69 if (cpusets_enabled()) 70 return __cpuset_node_allowed(node, gfp_mask); 71 return true; 72} 73 74static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 75{ 76 return __cpuset_node_allowed(zone_to_nid(z), gfp_mask); 77} 78 79static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 80{ 81 if (cpusets_enabled()) 82 return __cpuset_zone_allowed(z, gfp_mask); 83 return true; 84} 85 86extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 87 const struct task_struct *tsk2); 88 89#define cpuset_memory_pressure_bump() \ 90 do { \ 91 if (cpuset_memory_pressure_enabled) \ 92 __cpuset_memory_pressure_bump(); \ 93 } while (0) 94extern int cpuset_memory_pressure_enabled; 95extern void __cpuset_memory_pressure_bump(void); 96 97extern void cpuset_task_status_allowed(struct seq_file *m, 98 struct task_struct *task); 99extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 100 struct pid *pid, struct task_struct *tsk); 101 102extern int cpuset_mem_spread_node(void); 103extern int cpuset_slab_spread_node(void); 104 105static inline int cpuset_do_page_mem_spread(void) 106{ 107 return task_spread_page(current); 108} 109 110static inline int cpuset_do_slab_mem_spread(void) 111{ 112 return task_spread_slab(current); 113} 114 115extern bool current_cpuset_is_being_rebound(void); 116 117extern void rebuild_sched_domains(void); 118 119extern void cpuset_print_current_mems_allowed(void); 120 121/* 122 * read_mems_allowed_begin is required when making decisions involving 123 * mems_allowed such as during page allocation. mems_allowed can be updated in 124 * parallel and depending on the new value an operation can fail potentially 125 * causing process failure. A retry loop with read_mems_allowed_begin and 126 * read_mems_allowed_retry prevents these artificial failures. 127 */ 128static inline unsigned int read_mems_allowed_begin(void) 129{ 130 if (!static_branch_unlikely(&cpusets_pre_enable_key)) 131 return 0; 132 133 return read_seqcount_begin(&current->mems_allowed_seq); 134} 135 136/* 137 * If this returns true, the operation that took place after 138 * read_mems_allowed_begin may have failed artificially due to a concurrent 139 * update of mems_allowed. It is up to the caller to retry the operation if 140 * appropriate. 141 */ 142static inline bool read_mems_allowed_retry(unsigned int seq) 143{ 144 if (!static_branch_unlikely(&cpusets_enabled_key)) 145 return false; 146 147 return read_seqcount_retry(&current->mems_allowed_seq, seq); 148} 149 150static inline void set_mems_allowed(nodemask_t nodemask) 151{ 152 unsigned long flags; 153 154 task_lock(current); 155 local_irq_save(flags); 156 write_seqcount_begin(&current->mems_allowed_seq); 157 current->mems_allowed = nodemask; 158 write_seqcount_end(&current->mems_allowed_seq); 159 local_irq_restore(flags); 160 task_unlock(current); 161} 162 163#else /* !CONFIG_CPUSETS */ 164 165static inline bool cpusets_enabled(void) { return false; } 166 167static inline int cpuset_init(void) { return 0; } 168static inline void cpuset_init_smp(void) {} 169 170static inline void cpuset_force_rebuild(void) { } 171 172static inline void cpuset_update_active_cpus(void) 173{ 174 partition_sched_domains(1, NULL, NULL); 175} 176 177static inline void cpuset_wait_for_hotplug(void) { } 178 179static inline void cpuset_cpus_allowed(struct task_struct *p, 180 struct cpumask *mask) 181{ 182 cpumask_copy(mask, cpu_possible_mask); 183} 184 185static inline void cpuset_cpus_allowed_fallback(struct task_struct *p) 186{ 187} 188 189static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) 190{ 191 return node_possible_map; 192} 193 194#define cpuset_current_mems_allowed (node_states[N_MEMORY]) 195static inline void cpuset_init_current_mems_allowed(void) {} 196 197static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 198{ 199 return 1; 200} 201 202static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 203{ 204 return true; 205} 206 207static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 208{ 209 return true; 210} 211 212static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 213{ 214 return true; 215} 216 217static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 218 const struct task_struct *tsk2) 219{ 220 return 1; 221} 222 223static inline void cpuset_memory_pressure_bump(void) {} 224 225static inline void cpuset_task_status_allowed(struct seq_file *m, 226 struct task_struct *task) 227{ 228} 229 230static inline int cpuset_mem_spread_node(void) 231{ 232 return 0; 233} 234 235static inline int cpuset_slab_spread_node(void) 236{ 237 return 0; 238} 239 240static inline int cpuset_do_page_mem_spread(void) 241{ 242 return 0; 243} 244 245static inline int cpuset_do_slab_mem_spread(void) 246{ 247 return 0; 248} 249 250static inline bool current_cpuset_is_being_rebound(void) 251{ 252 return false; 253} 254 255static inline void rebuild_sched_domains(void) 256{ 257 partition_sched_domains(1, NULL, NULL); 258} 259 260static inline void cpuset_print_current_mems_allowed(void) 261{ 262} 263 264static inline void set_mems_allowed(nodemask_t nodemask) 265{ 266} 267 268static inline unsigned int read_mems_allowed_begin(void) 269{ 270 return 0; 271} 272 273static inline bool read_mems_allowed_retry(unsigned int seq) 274{ 275 return false; 276} 277 278#endif /* !CONFIG_CPUSETS */ 279 280#endif /* _LINUX_CPUSET_H */