Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14/* #define DEBUG */
15/* #define VERBOSE_DEBUG */
16
17#include <linux/blkdev.h>
18#include <linux/pagemap.h>
19#include <linux/export.h>
20#include <linux/hid.h>
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/scatterlist.h>
24#include <linux/sched/signal.h>
25#include <linux/uio.h>
26#include <linux/vmalloc.h>
27#include <asm/unaligned.h>
28
29#include <linux/usb/ccid.h>
30#include <linux/usb/composite.h>
31#include <linux/usb/functionfs.h>
32
33#include <linux/aio.h>
34#include <linux/mmu_context.h>
35#include <linux/poll.h>
36#include <linux/eventfd.h>
37
38#include "u_fs.h"
39#include "u_f.h"
40#include "u_os_desc.h"
41#include "configfs.h"
42
43#define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44
45/* Reference counter handling */
46static void ffs_data_get(struct ffs_data *ffs);
47static void ffs_data_put(struct ffs_data *ffs);
48/* Creates new ffs_data object. */
49static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
50 __attribute__((malloc));
51
52/* Opened counter handling. */
53static void ffs_data_opened(struct ffs_data *ffs);
54static void ffs_data_closed(struct ffs_data *ffs);
55
56/* Called with ffs->mutex held; take over ownership of data. */
57static int __must_check
58__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
59static int __must_check
60__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
61
62
63/* The function structure ***************************************************/
64
65struct ffs_ep;
66
67struct ffs_function {
68 struct usb_configuration *conf;
69 struct usb_gadget *gadget;
70 struct ffs_data *ffs;
71
72 struct ffs_ep *eps;
73 u8 eps_revmap[16];
74 short *interfaces_nums;
75
76 struct usb_function function;
77};
78
79
80static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
81{
82 return container_of(f, struct ffs_function, function);
83}
84
85
86static inline enum ffs_setup_state
87ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
88{
89 return (enum ffs_setup_state)
90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
91}
92
93
94static void ffs_func_eps_disable(struct ffs_function *func);
95static int __must_check ffs_func_eps_enable(struct ffs_function *func);
96
97static int ffs_func_bind(struct usb_configuration *,
98 struct usb_function *);
99static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
100static void ffs_func_disable(struct usb_function *);
101static int ffs_func_setup(struct usb_function *,
102 const struct usb_ctrlrequest *);
103static bool ffs_func_req_match(struct usb_function *,
104 const struct usb_ctrlrequest *,
105 bool config0);
106static void ffs_func_suspend(struct usb_function *);
107static void ffs_func_resume(struct usb_function *);
108
109
110static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
111static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
112
113
114/* The endpoints structures *************************************************/
115
116struct ffs_ep {
117 struct usb_ep *ep; /* P: ffs->eps_lock */
118 struct usb_request *req; /* P: epfile->mutex */
119
120 /* [0]: full speed, [1]: high speed, [2]: super speed */
121 struct usb_endpoint_descriptor *descs[3];
122
123 u8 num;
124
125 int status; /* P: epfile->mutex */
126};
127
128struct ffs_epfile {
129 /* Protects ep->ep and ep->req. */
130 struct mutex mutex;
131
132 struct ffs_data *ffs;
133 struct ffs_ep *ep; /* P: ffs->eps_lock */
134
135 struct dentry *dentry;
136
137 /*
138 * Buffer for holding data from partial reads which may happen since
139 * we’re rounding user read requests to a multiple of a max packet size.
140 *
141 * The pointer is initialised with NULL value and may be set by
142 * __ffs_epfile_read_data function to point to a temporary buffer.
143 *
144 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 * data from said buffer and eventually free it. Importantly, while the
146 * function is using the buffer, it sets the pointer to NULL. This is
147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 * can never run concurrently (they are synchronised by epfile->mutex)
149 * so the latter will not assign a new value to the pointer.
150 *
151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
153 * value is crux of the synchronisation between ffs_func_eps_disable and
154 * __ffs_epfile_read_data.
155 *
156 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 * pointer back to its old value (as described above), but seeing as the
158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 * the buffer.
160 *
161 * == State transitions ==
162 *
163 * • ptr == NULL: (initial state)
164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 * ◦ __ffs_epfile_read_buffered: nop
166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 * ◦ reading finishes: n/a, not in ‘and reading’ state
168 * • ptr == DROP:
169 * ◦ __ffs_epfile_read_buffer_free: nop
170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 * ◦ reading finishes: n/a, not in ‘and reading’ state
173 * • ptr == buf:
174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
177 * is always called first
178 * ◦ reading finishes: n/a, not in ‘and reading’ state
179 * • ptr == NULL and reading:
180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
182 * ◦ __ffs_epfile_read_data: n/a, mutex is held
183 * ◦ reading finishes and …
184 * … all data read: free buf, go to ptr == NULL
185 * … otherwise: go to ptr == buf and reading
186 * • ptr == DROP and reading:
187 * ◦ __ffs_epfile_read_buffer_free: nop
188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
189 * ◦ __ffs_epfile_read_data: n/a, mutex is held
190 * ◦ reading finishes: free buf, go to ptr == DROP
191 */
192 struct ffs_buffer *read_buffer;
193#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194
195 char name[5];
196
197 unsigned char in; /* P: ffs->eps_lock */
198 unsigned char isoc; /* P: ffs->eps_lock */
199
200 unsigned char _pad;
201};
202
203struct ffs_buffer {
204 size_t length;
205 char *data;
206 char storage[];
207};
208
209/* ffs_io_data structure ***************************************************/
210
211struct ffs_io_data {
212 bool aio;
213 bool read;
214
215 struct kiocb *kiocb;
216 struct iov_iter data;
217 const void *to_free;
218 char *buf;
219
220 struct mm_struct *mm;
221 struct work_struct work;
222
223 struct usb_ep *ep;
224 struct usb_request *req;
225 struct sg_table sgt;
226 bool use_sg;
227
228 struct ffs_data *ffs;
229};
230
231struct ffs_desc_helper {
232 struct ffs_data *ffs;
233 unsigned interfaces_count;
234 unsigned eps_count;
235};
236
237static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
238static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
239
240static struct dentry *
241ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
242 const struct file_operations *fops);
243
244/* Devices management *******************************************************/
245
246DEFINE_MUTEX(ffs_lock);
247EXPORT_SYMBOL_GPL(ffs_lock);
248
249static struct ffs_dev *_ffs_find_dev(const char *name);
250static struct ffs_dev *_ffs_alloc_dev(void);
251static void _ffs_free_dev(struct ffs_dev *dev);
252static void *ffs_acquire_dev(const char *dev_name);
253static void ffs_release_dev(struct ffs_data *ffs_data);
254static int ffs_ready(struct ffs_data *ffs);
255static void ffs_closed(struct ffs_data *ffs);
256
257/* Misc helper functions ****************************************************/
258
259static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
260 __attribute__((warn_unused_result, nonnull));
261static char *ffs_prepare_buffer(const char __user *buf, size_t len)
262 __attribute__((warn_unused_result, nonnull));
263
264
265/* Control file aka ep0 *****************************************************/
266
267static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
268{
269 struct ffs_data *ffs = req->context;
270
271 complete(&ffs->ep0req_completion);
272}
273
274static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
275 __releases(&ffs->ev.waitq.lock)
276{
277 struct usb_request *req = ffs->ep0req;
278 int ret;
279
280 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
281
282 spin_unlock_irq(&ffs->ev.waitq.lock);
283
284 req->buf = data;
285 req->length = len;
286
287 /*
288 * UDC layer requires to provide a buffer even for ZLP, but should
289 * not use it at all. Let's provide some poisoned pointer to catch
290 * possible bug in the driver.
291 */
292 if (req->buf == NULL)
293 req->buf = (void *)0xDEADBABE;
294
295 reinit_completion(&ffs->ep0req_completion);
296
297 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
298 if (unlikely(ret < 0))
299 return ret;
300
301 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
302 if (unlikely(ret)) {
303 usb_ep_dequeue(ffs->gadget->ep0, req);
304 return -EINTR;
305 }
306
307 ffs->setup_state = FFS_NO_SETUP;
308 return req->status ? req->status : req->actual;
309}
310
311static int __ffs_ep0_stall(struct ffs_data *ffs)
312{
313 if (ffs->ev.can_stall) {
314 pr_vdebug("ep0 stall\n");
315 usb_ep_set_halt(ffs->gadget->ep0);
316 ffs->setup_state = FFS_NO_SETUP;
317 return -EL2HLT;
318 } else {
319 pr_debug("bogus ep0 stall!\n");
320 return -ESRCH;
321 }
322}
323
324static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
325 size_t len, loff_t *ptr)
326{
327 struct ffs_data *ffs = file->private_data;
328 ssize_t ret;
329 char *data;
330
331 ENTER();
332
333 /* Fast check if setup was canceled */
334 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
335 return -EIDRM;
336
337 /* Acquire mutex */
338 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
339 if (unlikely(ret < 0))
340 return ret;
341
342 /* Check state */
343 switch (ffs->state) {
344 case FFS_READ_DESCRIPTORS:
345 case FFS_READ_STRINGS:
346 /* Copy data */
347 if (unlikely(len < 16)) {
348 ret = -EINVAL;
349 break;
350 }
351
352 data = ffs_prepare_buffer(buf, len);
353 if (IS_ERR(data)) {
354 ret = PTR_ERR(data);
355 break;
356 }
357
358 /* Handle data */
359 if (ffs->state == FFS_READ_DESCRIPTORS) {
360 pr_info("read descriptors\n");
361 ret = __ffs_data_got_descs(ffs, data, len);
362 if (unlikely(ret < 0))
363 break;
364
365 ffs->state = FFS_READ_STRINGS;
366 ret = len;
367 } else {
368 pr_info("read strings\n");
369 ret = __ffs_data_got_strings(ffs, data, len);
370 if (unlikely(ret < 0))
371 break;
372
373 ret = ffs_epfiles_create(ffs);
374 if (unlikely(ret)) {
375 ffs->state = FFS_CLOSING;
376 break;
377 }
378
379 ffs->state = FFS_ACTIVE;
380 mutex_unlock(&ffs->mutex);
381
382 ret = ffs_ready(ffs);
383 if (unlikely(ret < 0)) {
384 ffs->state = FFS_CLOSING;
385 return ret;
386 }
387
388 return len;
389 }
390 break;
391
392 case FFS_ACTIVE:
393 data = NULL;
394 /*
395 * We're called from user space, we can use _irq
396 * rather then _irqsave
397 */
398 spin_lock_irq(&ffs->ev.waitq.lock);
399 switch (ffs_setup_state_clear_cancelled(ffs)) {
400 case FFS_SETUP_CANCELLED:
401 ret = -EIDRM;
402 goto done_spin;
403
404 case FFS_NO_SETUP:
405 ret = -ESRCH;
406 goto done_spin;
407
408 case FFS_SETUP_PENDING:
409 break;
410 }
411
412 /* FFS_SETUP_PENDING */
413 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
414 spin_unlock_irq(&ffs->ev.waitq.lock);
415 ret = __ffs_ep0_stall(ffs);
416 break;
417 }
418
419 /* FFS_SETUP_PENDING and not stall */
420 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
421
422 spin_unlock_irq(&ffs->ev.waitq.lock);
423
424 data = ffs_prepare_buffer(buf, len);
425 if (IS_ERR(data)) {
426 ret = PTR_ERR(data);
427 break;
428 }
429
430 spin_lock_irq(&ffs->ev.waitq.lock);
431
432 /*
433 * We are guaranteed to be still in FFS_ACTIVE state
434 * but the state of setup could have changed from
435 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
436 * to check for that. If that happened we copied data
437 * from user space in vain but it's unlikely.
438 *
439 * For sure we are not in FFS_NO_SETUP since this is
440 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
441 * transition can be performed and it's protected by
442 * mutex.
443 */
444 if (ffs_setup_state_clear_cancelled(ffs) ==
445 FFS_SETUP_CANCELLED) {
446 ret = -EIDRM;
447done_spin:
448 spin_unlock_irq(&ffs->ev.waitq.lock);
449 } else {
450 /* unlocks spinlock */
451 ret = __ffs_ep0_queue_wait(ffs, data, len);
452 }
453 kfree(data);
454 break;
455
456 default:
457 ret = -EBADFD;
458 break;
459 }
460
461 mutex_unlock(&ffs->mutex);
462 return ret;
463}
464
465/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
466static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
467 size_t n)
468 __releases(&ffs->ev.waitq.lock)
469{
470 /*
471 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
472 * size of ffs->ev.types array (which is four) so that's how much space
473 * we reserve.
474 */
475 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
476 const size_t size = n * sizeof *events;
477 unsigned i = 0;
478
479 memset(events, 0, size);
480
481 do {
482 events[i].type = ffs->ev.types[i];
483 if (events[i].type == FUNCTIONFS_SETUP) {
484 events[i].u.setup = ffs->ev.setup;
485 ffs->setup_state = FFS_SETUP_PENDING;
486 }
487 } while (++i < n);
488
489 ffs->ev.count -= n;
490 if (ffs->ev.count)
491 memmove(ffs->ev.types, ffs->ev.types + n,
492 ffs->ev.count * sizeof *ffs->ev.types);
493
494 spin_unlock_irq(&ffs->ev.waitq.lock);
495 mutex_unlock(&ffs->mutex);
496
497 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
498}
499
500static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
501 size_t len, loff_t *ptr)
502{
503 struct ffs_data *ffs = file->private_data;
504 char *data = NULL;
505 size_t n;
506 int ret;
507
508 ENTER();
509
510 /* Fast check if setup was canceled */
511 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
512 return -EIDRM;
513
514 /* Acquire mutex */
515 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
516 if (unlikely(ret < 0))
517 return ret;
518
519 /* Check state */
520 if (ffs->state != FFS_ACTIVE) {
521 ret = -EBADFD;
522 goto done_mutex;
523 }
524
525 /*
526 * We're called from user space, we can use _irq rather then
527 * _irqsave
528 */
529 spin_lock_irq(&ffs->ev.waitq.lock);
530
531 switch (ffs_setup_state_clear_cancelled(ffs)) {
532 case FFS_SETUP_CANCELLED:
533 ret = -EIDRM;
534 break;
535
536 case FFS_NO_SETUP:
537 n = len / sizeof(struct usb_functionfs_event);
538 if (unlikely(!n)) {
539 ret = -EINVAL;
540 break;
541 }
542
543 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
544 ret = -EAGAIN;
545 break;
546 }
547
548 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
549 ffs->ev.count)) {
550 ret = -EINTR;
551 break;
552 }
553
554 /* unlocks spinlock */
555 return __ffs_ep0_read_events(ffs, buf,
556 min(n, (size_t)ffs->ev.count));
557
558 case FFS_SETUP_PENDING:
559 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
560 spin_unlock_irq(&ffs->ev.waitq.lock);
561 ret = __ffs_ep0_stall(ffs);
562 goto done_mutex;
563 }
564
565 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
566
567 spin_unlock_irq(&ffs->ev.waitq.lock);
568
569 if (likely(len)) {
570 data = kmalloc(len, GFP_KERNEL);
571 if (unlikely(!data)) {
572 ret = -ENOMEM;
573 goto done_mutex;
574 }
575 }
576
577 spin_lock_irq(&ffs->ev.waitq.lock);
578
579 /* See ffs_ep0_write() */
580 if (ffs_setup_state_clear_cancelled(ffs) ==
581 FFS_SETUP_CANCELLED) {
582 ret = -EIDRM;
583 break;
584 }
585
586 /* unlocks spinlock */
587 ret = __ffs_ep0_queue_wait(ffs, data, len);
588 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
589 ret = -EFAULT;
590 goto done_mutex;
591
592 default:
593 ret = -EBADFD;
594 break;
595 }
596
597 spin_unlock_irq(&ffs->ev.waitq.lock);
598done_mutex:
599 mutex_unlock(&ffs->mutex);
600 kfree(data);
601 return ret;
602}
603
604static int ffs_ep0_open(struct inode *inode, struct file *file)
605{
606 struct ffs_data *ffs = inode->i_private;
607
608 ENTER();
609
610 if (unlikely(ffs->state == FFS_CLOSING))
611 return -EBUSY;
612
613 file->private_data = ffs;
614 ffs_data_opened(ffs);
615
616 return 0;
617}
618
619static int ffs_ep0_release(struct inode *inode, struct file *file)
620{
621 struct ffs_data *ffs = file->private_data;
622
623 ENTER();
624
625 ffs_data_closed(ffs);
626
627 return 0;
628}
629
630static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
631{
632 struct ffs_data *ffs = file->private_data;
633 struct usb_gadget *gadget = ffs->gadget;
634 long ret;
635
636 ENTER();
637
638 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
639 struct ffs_function *func = ffs->func;
640 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
641 } else if (gadget && gadget->ops->ioctl) {
642 ret = gadget->ops->ioctl(gadget, code, value);
643 } else {
644 ret = -ENOTTY;
645 }
646
647 return ret;
648}
649
650static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
651{
652 struct ffs_data *ffs = file->private_data;
653 __poll_t mask = EPOLLWRNORM;
654 int ret;
655
656 poll_wait(file, &ffs->ev.waitq, wait);
657
658 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
659 if (unlikely(ret < 0))
660 return mask;
661
662 switch (ffs->state) {
663 case FFS_READ_DESCRIPTORS:
664 case FFS_READ_STRINGS:
665 mask |= EPOLLOUT;
666 break;
667
668 case FFS_ACTIVE:
669 switch (ffs->setup_state) {
670 case FFS_NO_SETUP:
671 if (ffs->ev.count)
672 mask |= EPOLLIN;
673 break;
674
675 case FFS_SETUP_PENDING:
676 case FFS_SETUP_CANCELLED:
677 mask |= (EPOLLIN | EPOLLOUT);
678 break;
679 }
680 case FFS_CLOSING:
681 break;
682 case FFS_DEACTIVATED:
683 break;
684 }
685
686 mutex_unlock(&ffs->mutex);
687
688 return mask;
689}
690
691static const struct file_operations ffs_ep0_operations = {
692 .llseek = no_llseek,
693
694 .open = ffs_ep0_open,
695 .write = ffs_ep0_write,
696 .read = ffs_ep0_read,
697 .release = ffs_ep0_release,
698 .unlocked_ioctl = ffs_ep0_ioctl,
699 .poll = ffs_ep0_poll,
700};
701
702
703/* "Normal" endpoints operations ********************************************/
704
705static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
706{
707 ENTER();
708 if (likely(req->context)) {
709 struct ffs_ep *ep = _ep->driver_data;
710 ep->status = req->status ? req->status : req->actual;
711 complete(req->context);
712 }
713}
714
715static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
716{
717 ssize_t ret = copy_to_iter(data, data_len, iter);
718 if (likely(ret == data_len))
719 return ret;
720
721 if (unlikely(iov_iter_count(iter)))
722 return -EFAULT;
723
724 /*
725 * Dear user space developer!
726 *
727 * TL;DR: To stop getting below error message in your kernel log, change
728 * user space code using functionfs to align read buffers to a max
729 * packet size.
730 *
731 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
732 * packet size. When unaligned buffer is passed to functionfs, it
733 * internally uses a larger, aligned buffer so that such UDCs are happy.
734 *
735 * Unfortunately, this means that host may send more data than was
736 * requested in read(2) system call. f_fs doesn’t know what to do with
737 * that excess data so it simply drops it.
738 *
739 * Was the buffer aligned in the first place, no such problem would
740 * happen.
741 *
742 * Data may be dropped only in AIO reads. Synchronous reads are handled
743 * by splitting a request into multiple parts. This splitting may still
744 * be a problem though so it’s likely best to align the buffer
745 * regardless of it being AIO or not..
746 *
747 * This only affects OUT endpoints, i.e. reading data with a read(2),
748 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
749 * affected.
750 */
751 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
752 "Align read buffer size to max packet size to avoid the problem.\n",
753 data_len, ret);
754
755 return ret;
756}
757
758/*
759 * allocate a virtually contiguous buffer and create a scatterlist describing it
760 * @sg_table - pointer to a place to be filled with sg_table contents
761 * @size - required buffer size
762 */
763static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
764{
765 struct page **pages;
766 void *vaddr, *ptr;
767 unsigned int n_pages;
768 int i;
769
770 vaddr = vmalloc(sz);
771 if (!vaddr)
772 return NULL;
773
774 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
775 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
776 if (!pages) {
777 vfree(vaddr);
778
779 return NULL;
780 }
781 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
782 pages[i] = vmalloc_to_page(ptr);
783
784 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
785 kvfree(pages);
786 vfree(vaddr);
787
788 return NULL;
789 }
790 kvfree(pages);
791
792 return vaddr;
793}
794
795static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
796 size_t data_len)
797{
798 if (io_data->use_sg)
799 return ffs_build_sg_list(&io_data->sgt, data_len);
800
801 return kmalloc(data_len, GFP_KERNEL);
802}
803
804static inline void ffs_free_buffer(struct ffs_io_data *io_data)
805{
806 if (!io_data->buf)
807 return;
808
809 if (io_data->use_sg) {
810 sg_free_table(&io_data->sgt);
811 vfree(io_data->buf);
812 } else {
813 kfree(io_data->buf);
814 }
815}
816
817static void ffs_user_copy_worker(struct work_struct *work)
818{
819 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
820 work);
821 int ret = io_data->req->status ? io_data->req->status :
822 io_data->req->actual;
823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
824
825 if (io_data->read && ret > 0) {
826 mm_segment_t oldfs = get_fs();
827
828 set_fs(USER_DS);
829 use_mm(io_data->mm);
830 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831 unuse_mm(io_data->mm);
832 set_fs(oldfs);
833 }
834
835 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
836
837 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
838 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
839
840 usb_ep_free_request(io_data->ep, io_data->req);
841
842 if (io_data->read)
843 kfree(io_data->to_free);
844 ffs_free_buffer(io_data);
845 kfree(io_data);
846}
847
848static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
849 struct usb_request *req)
850{
851 struct ffs_io_data *io_data = req->context;
852 struct ffs_data *ffs = io_data->ffs;
853
854 ENTER();
855
856 INIT_WORK(&io_data->work, ffs_user_copy_worker);
857 queue_work(ffs->io_completion_wq, &io_data->work);
858}
859
860static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
861{
862 /*
863 * See comment in struct ffs_epfile for full read_buffer pointer
864 * synchronisation story.
865 */
866 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
867 if (buf && buf != READ_BUFFER_DROP)
868 kfree(buf);
869}
870
871/* Assumes epfile->mutex is held. */
872static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
873 struct iov_iter *iter)
874{
875 /*
876 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
877 * the buffer while we are using it. See comment in struct ffs_epfile
878 * for full read_buffer pointer synchronisation story.
879 */
880 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
881 ssize_t ret;
882 if (!buf || buf == READ_BUFFER_DROP)
883 return 0;
884
885 ret = copy_to_iter(buf->data, buf->length, iter);
886 if (buf->length == ret) {
887 kfree(buf);
888 return ret;
889 }
890
891 if (unlikely(iov_iter_count(iter))) {
892 ret = -EFAULT;
893 } else {
894 buf->length -= ret;
895 buf->data += ret;
896 }
897
898 if (cmpxchg(&epfile->read_buffer, NULL, buf))
899 kfree(buf);
900
901 return ret;
902}
903
904/* Assumes epfile->mutex is held. */
905static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
906 void *data, int data_len,
907 struct iov_iter *iter)
908{
909 struct ffs_buffer *buf;
910
911 ssize_t ret = copy_to_iter(data, data_len, iter);
912 if (likely(data_len == ret))
913 return ret;
914
915 if (unlikely(iov_iter_count(iter)))
916 return -EFAULT;
917
918 /* See ffs_copy_to_iter for more context. */
919 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
920 data_len, ret);
921
922 data_len -= ret;
923 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
924 if (!buf)
925 return -ENOMEM;
926 buf->length = data_len;
927 buf->data = buf->storage;
928 memcpy(buf->storage, data + ret, data_len);
929
930 /*
931 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
932 * ffs_func_eps_disable has been called in the meanwhile). See comment
933 * in struct ffs_epfile for full read_buffer pointer synchronisation
934 * story.
935 */
936 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
937 kfree(buf);
938
939 return ret;
940}
941
942static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
943{
944 struct ffs_epfile *epfile = file->private_data;
945 struct usb_request *req;
946 struct ffs_ep *ep;
947 char *data = NULL;
948 ssize_t ret, data_len = -EINVAL;
949 int halt;
950
951 /* Are we still active? */
952 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
953 return -ENODEV;
954
955 /* Wait for endpoint to be enabled */
956 ep = epfile->ep;
957 if (!ep) {
958 if (file->f_flags & O_NONBLOCK)
959 return -EAGAIN;
960
961 ret = wait_event_interruptible(
962 epfile->ffs->wait, (ep = epfile->ep));
963 if (ret)
964 return -EINTR;
965 }
966
967 /* Do we halt? */
968 halt = (!io_data->read == !epfile->in);
969 if (halt && epfile->isoc)
970 return -EINVAL;
971
972 /* We will be using request and read_buffer */
973 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
974 if (unlikely(ret))
975 goto error;
976
977 /* Allocate & copy */
978 if (!halt) {
979 struct usb_gadget *gadget;
980
981 /*
982 * Do we have buffered data from previous partial read? Check
983 * that for synchronous case only because we do not have
984 * facility to ‘wake up’ a pending asynchronous read and push
985 * buffered data to it which we would need to make things behave
986 * consistently.
987 */
988 if (!io_data->aio && io_data->read) {
989 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
990 if (ret)
991 goto error_mutex;
992 }
993
994 /*
995 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
996 * before the waiting completes, so do not assign to 'gadget'
997 * earlier
998 */
999 gadget = epfile->ffs->gadget;
1000 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1001
1002 spin_lock_irq(&epfile->ffs->eps_lock);
1003 /* In the meantime, endpoint got disabled or changed. */
1004 if (epfile->ep != ep) {
1005 ret = -ESHUTDOWN;
1006 goto error_lock;
1007 }
1008 data_len = iov_iter_count(&io_data->data);
1009 /*
1010 * Controller may require buffer size to be aligned to
1011 * maxpacketsize of an out endpoint.
1012 */
1013 if (io_data->read)
1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 spin_unlock_irq(&epfile->ffs->eps_lock);
1016
1017 data = ffs_alloc_buffer(io_data, data_len);
1018 if (unlikely(!data)) {
1019 ret = -ENOMEM;
1020 goto error_mutex;
1021 }
1022 if (!io_data->read &&
1023 !copy_from_iter_full(data, data_len, &io_data->data)) {
1024 ret = -EFAULT;
1025 goto error_mutex;
1026 }
1027 }
1028
1029 spin_lock_irq(&epfile->ffs->eps_lock);
1030
1031 if (epfile->ep != ep) {
1032 /* In the meantime, endpoint got disabled or changed. */
1033 ret = -ESHUTDOWN;
1034 } else if (halt) {
1035 ret = usb_ep_set_halt(ep->ep);
1036 if (!ret)
1037 ret = -EBADMSG;
1038 } else if (unlikely(data_len == -EINVAL)) {
1039 /*
1040 * Sanity Check: even though data_len can't be used
1041 * uninitialized at the time I write this comment, some
1042 * compilers complain about this situation.
1043 * In order to keep the code clean from warnings, data_len is
1044 * being initialized to -EINVAL during its declaration, which
1045 * means we can't rely on compiler anymore to warn no future
1046 * changes won't result in data_len being used uninitialized.
1047 * For such reason, we're adding this redundant sanity check
1048 * here.
1049 */
1050 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051 ret = -EINVAL;
1052 } else if (!io_data->aio) {
1053 DECLARE_COMPLETION_ONSTACK(done);
1054 bool interrupted = false;
1055
1056 req = ep->req;
1057 if (io_data->use_sg) {
1058 req->buf = NULL;
1059 req->sg = io_data->sgt.sgl;
1060 req->num_sgs = io_data->sgt.nents;
1061 } else {
1062 req->buf = data;
1063 }
1064 req->length = data_len;
1065
1066 io_data->buf = data;
1067
1068 req->context = &done;
1069 req->complete = ffs_epfile_io_complete;
1070
1071 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1072 if (unlikely(ret < 0))
1073 goto error_lock;
1074
1075 spin_unlock_irq(&epfile->ffs->eps_lock);
1076
1077 if (unlikely(wait_for_completion_interruptible(&done))) {
1078 /*
1079 * To avoid race condition with ffs_epfile_io_complete,
1080 * dequeue the request first then check
1081 * status. usb_ep_dequeue API should guarantee no race
1082 * condition with req->complete callback.
1083 */
1084 usb_ep_dequeue(ep->ep, req);
1085 wait_for_completion(&done);
1086 interrupted = ep->status < 0;
1087 }
1088
1089 if (interrupted)
1090 ret = -EINTR;
1091 else if (io_data->read && ep->status > 0)
1092 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1093 &io_data->data);
1094 else
1095 ret = ep->status;
1096 goto error_mutex;
1097 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1098 ret = -ENOMEM;
1099 } else {
1100 if (io_data->use_sg) {
1101 req->buf = NULL;
1102 req->sg = io_data->sgt.sgl;
1103 req->num_sgs = io_data->sgt.nents;
1104 } else {
1105 req->buf = data;
1106 }
1107 req->length = data_len;
1108
1109 io_data->buf = data;
1110 io_data->ep = ep->ep;
1111 io_data->req = req;
1112 io_data->ffs = epfile->ffs;
1113
1114 req->context = io_data;
1115 req->complete = ffs_epfile_async_io_complete;
1116
1117 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118 if (unlikely(ret)) {
1119 usb_ep_free_request(ep->ep, req);
1120 goto error_lock;
1121 }
1122
1123 ret = -EIOCBQUEUED;
1124 /*
1125 * Do not kfree the buffer in this function. It will be freed
1126 * by ffs_user_copy_worker.
1127 */
1128 data = NULL;
1129 }
1130
1131error_lock:
1132 spin_unlock_irq(&epfile->ffs->eps_lock);
1133error_mutex:
1134 mutex_unlock(&epfile->mutex);
1135error:
1136 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1137 ffs_free_buffer(io_data);
1138 return ret;
1139}
1140
1141static int
1142ffs_epfile_open(struct inode *inode, struct file *file)
1143{
1144 struct ffs_epfile *epfile = inode->i_private;
1145
1146 ENTER();
1147
1148 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1149 return -ENODEV;
1150
1151 file->private_data = epfile;
1152 ffs_data_opened(epfile->ffs);
1153
1154 return 0;
1155}
1156
1157static int ffs_aio_cancel(struct kiocb *kiocb)
1158{
1159 struct ffs_io_data *io_data = kiocb->private;
1160 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1161 int value;
1162
1163 ENTER();
1164
1165 spin_lock_irq(&epfile->ffs->eps_lock);
1166
1167 if (likely(io_data && io_data->ep && io_data->req))
1168 value = usb_ep_dequeue(io_data->ep, io_data->req);
1169 else
1170 value = -EINVAL;
1171
1172 spin_unlock_irq(&epfile->ffs->eps_lock);
1173
1174 return value;
1175}
1176
1177static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1178{
1179 struct ffs_io_data io_data, *p = &io_data;
1180 ssize_t res;
1181
1182 ENTER();
1183
1184 if (!is_sync_kiocb(kiocb)) {
1185 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1186 if (unlikely(!p))
1187 return -ENOMEM;
1188 p->aio = true;
1189 } else {
1190 p->aio = false;
1191 }
1192
1193 p->read = false;
1194 p->kiocb = kiocb;
1195 p->data = *from;
1196 p->mm = current->mm;
1197
1198 kiocb->private = p;
1199
1200 if (p->aio)
1201 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1202
1203 res = ffs_epfile_io(kiocb->ki_filp, p);
1204 if (res == -EIOCBQUEUED)
1205 return res;
1206 if (p->aio)
1207 kfree(p);
1208 else
1209 *from = p->data;
1210 return res;
1211}
1212
1213static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1214{
1215 struct ffs_io_data io_data, *p = &io_data;
1216 ssize_t res;
1217
1218 ENTER();
1219
1220 if (!is_sync_kiocb(kiocb)) {
1221 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1222 if (unlikely(!p))
1223 return -ENOMEM;
1224 p->aio = true;
1225 } else {
1226 p->aio = false;
1227 }
1228
1229 p->read = true;
1230 p->kiocb = kiocb;
1231 if (p->aio) {
1232 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1233 if (!p->to_free) {
1234 kfree(p);
1235 return -ENOMEM;
1236 }
1237 } else {
1238 p->data = *to;
1239 p->to_free = NULL;
1240 }
1241 p->mm = current->mm;
1242
1243 kiocb->private = p;
1244
1245 if (p->aio)
1246 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1247
1248 res = ffs_epfile_io(kiocb->ki_filp, p);
1249 if (res == -EIOCBQUEUED)
1250 return res;
1251
1252 if (p->aio) {
1253 kfree(p->to_free);
1254 kfree(p);
1255 } else {
1256 *to = p->data;
1257 }
1258 return res;
1259}
1260
1261static int
1262ffs_epfile_release(struct inode *inode, struct file *file)
1263{
1264 struct ffs_epfile *epfile = inode->i_private;
1265
1266 ENTER();
1267
1268 __ffs_epfile_read_buffer_free(epfile);
1269 ffs_data_closed(epfile->ffs);
1270
1271 return 0;
1272}
1273
1274static long ffs_epfile_ioctl(struct file *file, unsigned code,
1275 unsigned long value)
1276{
1277 struct ffs_epfile *epfile = file->private_data;
1278 struct ffs_ep *ep;
1279 int ret;
1280
1281 ENTER();
1282
1283 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1284 return -ENODEV;
1285
1286 /* Wait for endpoint to be enabled */
1287 ep = epfile->ep;
1288 if (!ep) {
1289 if (file->f_flags & O_NONBLOCK)
1290 return -EAGAIN;
1291
1292 ret = wait_event_interruptible(
1293 epfile->ffs->wait, (ep = epfile->ep));
1294 if (ret)
1295 return -EINTR;
1296 }
1297
1298 spin_lock_irq(&epfile->ffs->eps_lock);
1299
1300 /* In the meantime, endpoint got disabled or changed. */
1301 if (epfile->ep != ep) {
1302 spin_unlock_irq(&epfile->ffs->eps_lock);
1303 return -ESHUTDOWN;
1304 }
1305
1306 switch (code) {
1307 case FUNCTIONFS_FIFO_STATUS:
1308 ret = usb_ep_fifo_status(epfile->ep->ep);
1309 break;
1310 case FUNCTIONFS_FIFO_FLUSH:
1311 usb_ep_fifo_flush(epfile->ep->ep);
1312 ret = 0;
1313 break;
1314 case FUNCTIONFS_CLEAR_HALT:
1315 ret = usb_ep_clear_halt(epfile->ep->ep);
1316 break;
1317 case FUNCTIONFS_ENDPOINT_REVMAP:
1318 ret = epfile->ep->num;
1319 break;
1320 case FUNCTIONFS_ENDPOINT_DESC:
1321 {
1322 int desc_idx;
1323 struct usb_endpoint_descriptor *desc;
1324
1325 switch (epfile->ffs->gadget->speed) {
1326 case USB_SPEED_SUPER:
1327 desc_idx = 2;
1328 break;
1329 case USB_SPEED_HIGH:
1330 desc_idx = 1;
1331 break;
1332 default:
1333 desc_idx = 0;
1334 }
1335 desc = epfile->ep->descs[desc_idx];
1336
1337 spin_unlock_irq(&epfile->ffs->eps_lock);
1338 ret = copy_to_user((void __user *)value, desc, desc->bLength);
1339 if (ret)
1340 ret = -EFAULT;
1341 return ret;
1342 }
1343 default:
1344 ret = -ENOTTY;
1345 }
1346 spin_unlock_irq(&epfile->ffs->eps_lock);
1347
1348 return ret;
1349}
1350
1351#ifdef CONFIG_COMPAT
1352static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1353 unsigned long value)
1354{
1355 return ffs_epfile_ioctl(file, code, value);
1356}
1357#endif
1358
1359static const struct file_operations ffs_epfile_operations = {
1360 .llseek = no_llseek,
1361
1362 .open = ffs_epfile_open,
1363 .write_iter = ffs_epfile_write_iter,
1364 .read_iter = ffs_epfile_read_iter,
1365 .release = ffs_epfile_release,
1366 .unlocked_ioctl = ffs_epfile_ioctl,
1367#ifdef CONFIG_COMPAT
1368 .compat_ioctl = ffs_epfile_compat_ioctl,
1369#endif
1370};
1371
1372
1373/* File system and super block operations ***********************************/
1374
1375/*
1376 * Mounting the file system creates a controller file, used first for
1377 * function configuration then later for event monitoring.
1378 */
1379
1380static struct inode *__must_check
1381ffs_sb_make_inode(struct super_block *sb, void *data,
1382 const struct file_operations *fops,
1383 const struct inode_operations *iops,
1384 struct ffs_file_perms *perms)
1385{
1386 struct inode *inode;
1387
1388 ENTER();
1389
1390 inode = new_inode(sb);
1391
1392 if (likely(inode)) {
1393 struct timespec64 ts = current_time(inode);
1394
1395 inode->i_ino = get_next_ino();
1396 inode->i_mode = perms->mode;
1397 inode->i_uid = perms->uid;
1398 inode->i_gid = perms->gid;
1399 inode->i_atime = ts;
1400 inode->i_mtime = ts;
1401 inode->i_ctime = ts;
1402 inode->i_private = data;
1403 if (fops)
1404 inode->i_fop = fops;
1405 if (iops)
1406 inode->i_op = iops;
1407 }
1408
1409 return inode;
1410}
1411
1412/* Create "regular" file */
1413static struct dentry *ffs_sb_create_file(struct super_block *sb,
1414 const char *name, void *data,
1415 const struct file_operations *fops)
1416{
1417 struct ffs_data *ffs = sb->s_fs_info;
1418 struct dentry *dentry;
1419 struct inode *inode;
1420
1421 ENTER();
1422
1423 dentry = d_alloc_name(sb->s_root, name);
1424 if (unlikely(!dentry))
1425 return NULL;
1426
1427 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1428 if (unlikely(!inode)) {
1429 dput(dentry);
1430 return NULL;
1431 }
1432
1433 d_add(dentry, inode);
1434 return dentry;
1435}
1436
1437/* Super block */
1438static const struct super_operations ffs_sb_operations = {
1439 .statfs = simple_statfs,
1440 .drop_inode = generic_delete_inode,
1441};
1442
1443struct ffs_sb_fill_data {
1444 struct ffs_file_perms perms;
1445 umode_t root_mode;
1446 const char *dev_name;
1447 bool no_disconnect;
1448 struct ffs_data *ffs_data;
1449};
1450
1451static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1452{
1453 struct ffs_sb_fill_data *data = _data;
1454 struct inode *inode;
1455 struct ffs_data *ffs = data->ffs_data;
1456
1457 ENTER();
1458
1459 ffs->sb = sb;
1460 data->ffs_data = NULL;
1461 sb->s_fs_info = ffs;
1462 sb->s_blocksize = PAGE_SIZE;
1463 sb->s_blocksize_bits = PAGE_SHIFT;
1464 sb->s_magic = FUNCTIONFS_MAGIC;
1465 sb->s_op = &ffs_sb_operations;
1466 sb->s_time_gran = 1;
1467
1468 /* Root inode */
1469 data->perms.mode = data->root_mode;
1470 inode = ffs_sb_make_inode(sb, NULL,
1471 &simple_dir_operations,
1472 &simple_dir_inode_operations,
1473 &data->perms);
1474 sb->s_root = d_make_root(inode);
1475 if (unlikely(!sb->s_root))
1476 return -ENOMEM;
1477
1478 /* EP0 file */
1479 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1480 &ffs_ep0_operations)))
1481 return -ENOMEM;
1482
1483 return 0;
1484}
1485
1486static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1487{
1488 ENTER();
1489
1490 if (!opts || !*opts)
1491 return 0;
1492
1493 for (;;) {
1494 unsigned long value;
1495 char *eq, *comma;
1496
1497 /* Option limit */
1498 comma = strchr(opts, ',');
1499 if (comma)
1500 *comma = 0;
1501
1502 /* Value limit */
1503 eq = strchr(opts, '=');
1504 if (unlikely(!eq)) {
1505 pr_err("'=' missing in %s\n", opts);
1506 return -EINVAL;
1507 }
1508 *eq = 0;
1509
1510 /* Parse value */
1511 if (kstrtoul(eq + 1, 0, &value)) {
1512 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1513 return -EINVAL;
1514 }
1515
1516 /* Interpret option */
1517 switch (eq - opts) {
1518 case 13:
1519 if (!memcmp(opts, "no_disconnect", 13))
1520 data->no_disconnect = !!value;
1521 else
1522 goto invalid;
1523 break;
1524 case 5:
1525 if (!memcmp(opts, "rmode", 5))
1526 data->root_mode = (value & 0555) | S_IFDIR;
1527 else if (!memcmp(opts, "fmode", 5))
1528 data->perms.mode = (value & 0666) | S_IFREG;
1529 else
1530 goto invalid;
1531 break;
1532
1533 case 4:
1534 if (!memcmp(opts, "mode", 4)) {
1535 data->root_mode = (value & 0555) | S_IFDIR;
1536 data->perms.mode = (value & 0666) | S_IFREG;
1537 } else {
1538 goto invalid;
1539 }
1540 break;
1541
1542 case 3:
1543 if (!memcmp(opts, "uid", 3)) {
1544 data->perms.uid = make_kuid(current_user_ns(), value);
1545 if (!uid_valid(data->perms.uid)) {
1546 pr_err("%s: unmapped value: %lu\n", opts, value);
1547 return -EINVAL;
1548 }
1549 } else if (!memcmp(opts, "gid", 3)) {
1550 data->perms.gid = make_kgid(current_user_ns(), value);
1551 if (!gid_valid(data->perms.gid)) {
1552 pr_err("%s: unmapped value: %lu\n", opts, value);
1553 return -EINVAL;
1554 }
1555 } else {
1556 goto invalid;
1557 }
1558 break;
1559
1560 default:
1561invalid:
1562 pr_err("%s: invalid option\n", opts);
1563 return -EINVAL;
1564 }
1565
1566 /* Next iteration */
1567 if (!comma)
1568 break;
1569 opts = comma + 1;
1570 }
1571
1572 return 0;
1573}
1574
1575/* "mount -t functionfs dev_name /dev/function" ends up here */
1576
1577static struct dentry *
1578ffs_fs_mount(struct file_system_type *t, int flags,
1579 const char *dev_name, void *opts)
1580{
1581 struct ffs_sb_fill_data data = {
1582 .perms = {
1583 .mode = S_IFREG | 0600,
1584 .uid = GLOBAL_ROOT_UID,
1585 .gid = GLOBAL_ROOT_GID,
1586 },
1587 .root_mode = S_IFDIR | 0500,
1588 .no_disconnect = false,
1589 };
1590 struct dentry *rv;
1591 int ret;
1592 void *ffs_dev;
1593 struct ffs_data *ffs;
1594
1595 ENTER();
1596
1597 ret = ffs_fs_parse_opts(&data, opts);
1598 if (unlikely(ret < 0))
1599 return ERR_PTR(ret);
1600
1601 ffs = ffs_data_new(dev_name);
1602 if (unlikely(!ffs))
1603 return ERR_PTR(-ENOMEM);
1604 ffs->file_perms = data.perms;
1605 ffs->no_disconnect = data.no_disconnect;
1606
1607 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1608 if (unlikely(!ffs->dev_name)) {
1609 ffs_data_put(ffs);
1610 return ERR_PTR(-ENOMEM);
1611 }
1612
1613 ffs_dev = ffs_acquire_dev(dev_name);
1614 if (IS_ERR(ffs_dev)) {
1615 ffs_data_put(ffs);
1616 return ERR_CAST(ffs_dev);
1617 }
1618 ffs->private_data = ffs_dev;
1619 data.ffs_data = ffs;
1620
1621 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1622 if (IS_ERR(rv) && data.ffs_data) {
1623 ffs_release_dev(data.ffs_data);
1624 ffs_data_put(data.ffs_data);
1625 }
1626 return rv;
1627}
1628
1629static void
1630ffs_fs_kill_sb(struct super_block *sb)
1631{
1632 ENTER();
1633
1634 kill_litter_super(sb);
1635 if (sb->s_fs_info) {
1636 ffs_release_dev(sb->s_fs_info);
1637 ffs_data_closed(sb->s_fs_info);
1638 }
1639}
1640
1641static struct file_system_type ffs_fs_type = {
1642 .owner = THIS_MODULE,
1643 .name = "functionfs",
1644 .mount = ffs_fs_mount,
1645 .kill_sb = ffs_fs_kill_sb,
1646};
1647MODULE_ALIAS_FS("functionfs");
1648
1649
1650/* Driver's main init/cleanup functions *************************************/
1651
1652static int functionfs_init(void)
1653{
1654 int ret;
1655
1656 ENTER();
1657
1658 ret = register_filesystem(&ffs_fs_type);
1659 if (likely(!ret))
1660 pr_info("file system registered\n");
1661 else
1662 pr_err("failed registering file system (%d)\n", ret);
1663
1664 return ret;
1665}
1666
1667static void functionfs_cleanup(void)
1668{
1669 ENTER();
1670
1671 pr_info("unloading\n");
1672 unregister_filesystem(&ffs_fs_type);
1673}
1674
1675
1676/* ffs_data and ffs_function construction and destruction code **************/
1677
1678static void ffs_data_clear(struct ffs_data *ffs);
1679static void ffs_data_reset(struct ffs_data *ffs);
1680
1681static void ffs_data_get(struct ffs_data *ffs)
1682{
1683 ENTER();
1684
1685 refcount_inc(&ffs->ref);
1686}
1687
1688static void ffs_data_opened(struct ffs_data *ffs)
1689{
1690 ENTER();
1691
1692 refcount_inc(&ffs->ref);
1693 if (atomic_add_return(1, &ffs->opened) == 1 &&
1694 ffs->state == FFS_DEACTIVATED) {
1695 ffs->state = FFS_CLOSING;
1696 ffs_data_reset(ffs);
1697 }
1698}
1699
1700static void ffs_data_put(struct ffs_data *ffs)
1701{
1702 ENTER();
1703
1704 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1705 pr_info("%s(): freeing\n", __func__);
1706 ffs_data_clear(ffs);
1707 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1708 waitqueue_active(&ffs->ep0req_completion.wait) ||
1709 waitqueue_active(&ffs->wait));
1710 destroy_workqueue(ffs->io_completion_wq);
1711 kfree(ffs->dev_name);
1712 kfree(ffs);
1713 }
1714}
1715
1716static void ffs_data_closed(struct ffs_data *ffs)
1717{
1718 ENTER();
1719
1720 if (atomic_dec_and_test(&ffs->opened)) {
1721 if (ffs->no_disconnect) {
1722 ffs->state = FFS_DEACTIVATED;
1723 if (ffs->epfiles) {
1724 ffs_epfiles_destroy(ffs->epfiles,
1725 ffs->eps_count);
1726 ffs->epfiles = NULL;
1727 }
1728 if (ffs->setup_state == FFS_SETUP_PENDING)
1729 __ffs_ep0_stall(ffs);
1730 } else {
1731 ffs->state = FFS_CLOSING;
1732 ffs_data_reset(ffs);
1733 }
1734 }
1735 if (atomic_read(&ffs->opened) < 0) {
1736 ffs->state = FFS_CLOSING;
1737 ffs_data_reset(ffs);
1738 }
1739
1740 ffs_data_put(ffs);
1741}
1742
1743static struct ffs_data *ffs_data_new(const char *dev_name)
1744{
1745 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1746 if (unlikely(!ffs))
1747 return NULL;
1748
1749 ENTER();
1750
1751 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1752 if (!ffs->io_completion_wq) {
1753 kfree(ffs);
1754 return NULL;
1755 }
1756
1757 refcount_set(&ffs->ref, 1);
1758 atomic_set(&ffs->opened, 0);
1759 ffs->state = FFS_READ_DESCRIPTORS;
1760 mutex_init(&ffs->mutex);
1761 spin_lock_init(&ffs->eps_lock);
1762 init_waitqueue_head(&ffs->ev.waitq);
1763 init_waitqueue_head(&ffs->wait);
1764 init_completion(&ffs->ep0req_completion);
1765
1766 /* XXX REVISIT need to update it in some places, or do we? */
1767 ffs->ev.can_stall = 1;
1768
1769 return ffs;
1770}
1771
1772static void ffs_data_clear(struct ffs_data *ffs)
1773{
1774 ENTER();
1775
1776 ffs_closed(ffs);
1777
1778 BUG_ON(ffs->gadget);
1779
1780 if (ffs->epfiles)
1781 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1782
1783 if (ffs->ffs_eventfd)
1784 eventfd_ctx_put(ffs->ffs_eventfd);
1785
1786 kfree(ffs->raw_descs_data);
1787 kfree(ffs->raw_strings);
1788 kfree(ffs->stringtabs);
1789}
1790
1791static void ffs_data_reset(struct ffs_data *ffs)
1792{
1793 ENTER();
1794
1795 ffs_data_clear(ffs);
1796
1797 ffs->epfiles = NULL;
1798 ffs->raw_descs_data = NULL;
1799 ffs->raw_descs = NULL;
1800 ffs->raw_strings = NULL;
1801 ffs->stringtabs = NULL;
1802
1803 ffs->raw_descs_length = 0;
1804 ffs->fs_descs_count = 0;
1805 ffs->hs_descs_count = 0;
1806 ffs->ss_descs_count = 0;
1807
1808 ffs->strings_count = 0;
1809 ffs->interfaces_count = 0;
1810 ffs->eps_count = 0;
1811
1812 ffs->ev.count = 0;
1813
1814 ffs->state = FFS_READ_DESCRIPTORS;
1815 ffs->setup_state = FFS_NO_SETUP;
1816 ffs->flags = 0;
1817}
1818
1819
1820static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1821{
1822 struct usb_gadget_strings **lang;
1823 int first_id;
1824
1825 ENTER();
1826
1827 if (WARN_ON(ffs->state != FFS_ACTIVE
1828 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1829 return -EBADFD;
1830
1831 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1832 if (unlikely(first_id < 0))
1833 return first_id;
1834
1835 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1836 if (unlikely(!ffs->ep0req))
1837 return -ENOMEM;
1838 ffs->ep0req->complete = ffs_ep0_complete;
1839 ffs->ep0req->context = ffs;
1840
1841 lang = ffs->stringtabs;
1842 if (lang) {
1843 for (; *lang; ++lang) {
1844 struct usb_string *str = (*lang)->strings;
1845 int id = first_id;
1846 for (; str->s; ++id, ++str)
1847 str->id = id;
1848 }
1849 }
1850
1851 ffs->gadget = cdev->gadget;
1852 ffs_data_get(ffs);
1853 return 0;
1854}
1855
1856static void functionfs_unbind(struct ffs_data *ffs)
1857{
1858 ENTER();
1859
1860 if (!WARN_ON(!ffs->gadget)) {
1861 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1862 ffs->ep0req = NULL;
1863 ffs->gadget = NULL;
1864 clear_bit(FFS_FL_BOUND, &ffs->flags);
1865 ffs_data_put(ffs);
1866 }
1867}
1868
1869static int ffs_epfiles_create(struct ffs_data *ffs)
1870{
1871 struct ffs_epfile *epfile, *epfiles;
1872 unsigned i, count;
1873
1874 ENTER();
1875
1876 count = ffs->eps_count;
1877 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1878 if (!epfiles)
1879 return -ENOMEM;
1880
1881 epfile = epfiles;
1882 for (i = 1; i <= count; ++i, ++epfile) {
1883 epfile->ffs = ffs;
1884 mutex_init(&epfile->mutex);
1885 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1886 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1887 else
1888 sprintf(epfile->name, "ep%u", i);
1889 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1890 epfile,
1891 &ffs_epfile_operations);
1892 if (unlikely(!epfile->dentry)) {
1893 ffs_epfiles_destroy(epfiles, i - 1);
1894 return -ENOMEM;
1895 }
1896 }
1897
1898 ffs->epfiles = epfiles;
1899 return 0;
1900}
1901
1902static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1903{
1904 struct ffs_epfile *epfile = epfiles;
1905
1906 ENTER();
1907
1908 for (; count; --count, ++epfile) {
1909 BUG_ON(mutex_is_locked(&epfile->mutex));
1910 if (epfile->dentry) {
1911 d_delete(epfile->dentry);
1912 dput(epfile->dentry);
1913 epfile->dentry = NULL;
1914 }
1915 }
1916
1917 kfree(epfiles);
1918}
1919
1920static void ffs_func_eps_disable(struct ffs_function *func)
1921{
1922 struct ffs_ep *ep = func->eps;
1923 struct ffs_epfile *epfile = func->ffs->epfiles;
1924 unsigned count = func->ffs->eps_count;
1925 unsigned long flags;
1926
1927 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1928 while (count--) {
1929 /* pending requests get nuked */
1930 if (likely(ep->ep))
1931 usb_ep_disable(ep->ep);
1932 ++ep;
1933
1934 if (epfile) {
1935 epfile->ep = NULL;
1936 __ffs_epfile_read_buffer_free(epfile);
1937 ++epfile;
1938 }
1939 }
1940 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1941}
1942
1943static int ffs_func_eps_enable(struct ffs_function *func)
1944{
1945 struct ffs_data *ffs = func->ffs;
1946 struct ffs_ep *ep = func->eps;
1947 struct ffs_epfile *epfile = ffs->epfiles;
1948 unsigned count = ffs->eps_count;
1949 unsigned long flags;
1950 int ret = 0;
1951
1952 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1953 while(count--) {
1954 ep->ep->driver_data = ep;
1955
1956 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1957 if (ret) {
1958 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1959 __func__, ep->ep->name, ret);
1960 break;
1961 }
1962
1963 ret = usb_ep_enable(ep->ep);
1964 if (likely(!ret)) {
1965 epfile->ep = ep;
1966 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1967 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1968 } else {
1969 break;
1970 }
1971
1972 ++ep;
1973 ++epfile;
1974 }
1975
1976 wake_up_interruptible(&ffs->wait);
1977 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1978
1979 return ret;
1980}
1981
1982
1983/* Parsing and building descriptors and strings *****************************/
1984
1985/*
1986 * This validates if data pointed by data is a valid USB descriptor as
1987 * well as record how many interfaces, endpoints and strings are
1988 * required by given configuration. Returns address after the
1989 * descriptor or NULL if data is invalid.
1990 */
1991
1992enum ffs_entity_type {
1993 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1994};
1995
1996enum ffs_os_desc_type {
1997 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1998};
1999
2000typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2001 u8 *valuep,
2002 struct usb_descriptor_header *desc,
2003 void *priv);
2004
2005typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2006 struct usb_os_desc_header *h, void *data,
2007 unsigned len, void *priv);
2008
2009static int __must_check ffs_do_single_desc(char *data, unsigned len,
2010 ffs_entity_callback entity,
2011 void *priv, int *current_class)
2012{
2013 struct usb_descriptor_header *_ds = (void *)data;
2014 u8 length;
2015 int ret;
2016
2017 ENTER();
2018
2019 /* At least two bytes are required: length and type */
2020 if (len < 2) {
2021 pr_vdebug("descriptor too short\n");
2022 return -EINVAL;
2023 }
2024
2025 /* If we have at least as many bytes as the descriptor takes? */
2026 length = _ds->bLength;
2027 if (len < length) {
2028 pr_vdebug("descriptor longer then available data\n");
2029 return -EINVAL;
2030 }
2031
2032#define __entity_check_INTERFACE(val) 1
2033#define __entity_check_STRING(val) (val)
2034#define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2035#define __entity(type, val) do { \
2036 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2037 if (unlikely(!__entity_check_ ##type(val))) { \
2038 pr_vdebug("invalid entity's value\n"); \
2039 return -EINVAL; \
2040 } \
2041 ret = entity(FFS_ ##type, &val, _ds, priv); \
2042 if (unlikely(ret < 0)) { \
2043 pr_debug("entity " #type "(%02x); ret = %d\n", \
2044 (val), ret); \
2045 return ret; \
2046 } \
2047 } while (0)
2048
2049 /* Parse descriptor depending on type. */
2050 switch (_ds->bDescriptorType) {
2051 case USB_DT_DEVICE:
2052 case USB_DT_CONFIG:
2053 case USB_DT_STRING:
2054 case USB_DT_DEVICE_QUALIFIER:
2055 /* function can't have any of those */
2056 pr_vdebug("descriptor reserved for gadget: %d\n",
2057 _ds->bDescriptorType);
2058 return -EINVAL;
2059
2060 case USB_DT_INTERFACE: {
2061 struct usb_interface_descriptor *ds = (void *)_ds;
2062 pr_vdebug("interface descriptor\n");
2063 if (length != sizeof *ds)
2064 goto inv_length;
2065
2066 __entity(INTERFACE, ds->bInterfaceNumber);
2067 if (ds->iInterface)
2068 __entity(STRING, ds->iInterface);
2069 *current_class = ds->bInterfaceClass;
2070 }
2071 break;
2072
2073 case USB_DT_ENDPOINT: {
2074 struct usb_endpoint_descriptor *ds = (void *)_ds;
2075 pr_vdebug("endpoint descriptor\n");
2076 if (length != USB_DT_ENDPOINT_SIZE &&
2077 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2078 goto inv_length;
2079 __entity(ENDPOINT, ds->bEndpointAddress);
2080 }
2081 break;
2082
2083 case USB_TYPE_CLASS | 0x01:
2084 if (*current_class == USB_INTERFACE_CLASS_HID) {
2085 pr_vdebug("hid descriptor\n");
2086 if (length != sizeof(struct hid_descriptor))
2087 goto inv_length;
2088 break;
2089 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2090 pr_vdebug("ccid descriptor\n");
2091 if (length != sizeof(struct ccid_descriptor))
2092 goto inv_length;
2093 break;
2094 } else {
2095 pr_vdebug("unknown descriptor: %d for class %d\n",
2096 _ds->bDescriptorType, *current_class);
2097 return -EINVAL;
2098 }
2099
2100 case USB_DT_OTG:
2101 if (length != sizeof(struct usb_otg_descriptor))
2102 goto inv_length;
2103 break;
2104
2105 case USB_DT_INTERFACE_ASSOCIATION: {
2106 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2107 pr_vdebug("interface association descriptor\n");
2108 if (length != sizeof *ds)
2109 goto inv_length;
2110 if (ds->iFunction)
2111 __entity(STRING, ds->iFunction);
2112 }
2113 break;
2114
2115 case USB_DT_SS_ENDPOINT_COMP:
2116 pr_vdebug("EP SS companion descriptor\n");
2117 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2118 goto inv_length;
2119 break;
2120
2121 case USB_DT_OTHER_SPEED_CONFIG:
2122 case USB_DT_INTERFACE_POWER:
2123 case USB_DT_DEBUG:
2124 case USB_DT_SECURITY:
2125 case USB_DT_CS_RADIO_CONTROL:
2126 /* TODO */
2127 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2128 return -EINVAL;
2129
2130 default:
2131 /* We should never be here */
2132 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2133 return -EINVAL;
2134
2135inv_length:
2136 pr_vdebug("invalid length: %d (descriptor %d)\n",
2137 _ds->bLength, _ds->bDescriptorType);
2138 return -EINVAL;
2139 }
2140
2141#undef __entity
2142#undef __entity_check_DESCRIPTOR
2143#undef __entity_check_INTERFACE
2144#undef __entity_check_STRING
2145#undef __entity_check_ENDPOINT
2146
2147 return length;
2148}
2149
2150static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2151 ffs_entity_callback entity, void *priv)
2152{
2153 const unsigned _len = len;
2154 unsigned long num = 0;
2155 int current_class = -1;
2156
2157 ENTER();
2158
2159 for (;;) {
2160 int ret;
2161
2162 if (num == count)
2163 data = NULL;
2164
2165 /* Record "descriptor" entity */
2166 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2167 if (unlikely(ret < 0)) {
2168 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2169 num, ret);
2170 return ret;
2171 }
2172
2173 if (!data)
2174 return _len - len;
2175
2176 ret = ffs_do_single_desc(data, len, entity, priv,
2177 ¤t_class);
2178 if (unlikely(ret < 0)) {
2179 pr_debug("%s returns %d\n", __func__, ret);
2180 return ret;
2181 }
2182
2183 len -= ret;
2184 data += ret;
2185 ++num;
2186 }
2187}
2188
2189static int __ffs_data_do_entity(enum ffs_entity_type type,
2190 u8 *valuep, struct usb_descriptor_header *desc,
2191 void *priv)
2192{
2193 struct ffs_desc_helper *helper = priv;
2194 struct usb_endpoint_descriptor *d;
2195
2196 ENTER();
2197
2198 switch (type) {
2199 case FFS_DESCRIPTOR:
2200 break;
2201
2202 case FFS_INTERFACE:
2203 /*
2204 * Interfaces are indexed from zero so if we
2205 * encountered interface "n" then there are at least
2206 * "n+1" interfaces.
2207 */
2208 if (*valuep >= helper->interfaces_count)
2209 helper->interfaces_count = *valuep + 1;
2210 break;
2211
2212 case FFS_STRING:
2213 /*
2214 * Strings are indexed from 1 (0 is reserved
2215 * for languages list)
2216 */
2217 if (*valuep > helper->ffs->strings_count)
2218 helper->ffs->strings_count = *valuep;
2219 break;
2220
2221 case FFS_ENDPOINT:
2222 d = (void *)desc;
2223 helper->eps_count++;
2224 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2225 return -EINVAL;
2226 /* Check if descriptors for any speed were already parsed */
2227 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2228 helper->ffs->eps_addrmap[helper->eps_count] =
2229 d->bEndpointAddress;
2230 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2231 d->bEndpointAddress)
2232 return -EINVAL;
2233 break;
2234 }
2235
2236 return 0;
2237}
2238
2239static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2240 struct usb_os_desc_header *desc)
2241{
2242 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2243 u16 w_index = le16_to_cpu(desc->wIndex);
2244
2245 if (bcd_version != 1) {
2246 pr_vdebug("unsupported os descriptors version: %d",
2247 bcd_version);
2248 return -EINVAL;
2249 }
2250 switch (w_index) {
2251 case 0x4:
2252 *next_type = FFS_OS_DESC_EXT_COMPAT;
2253 break;
2254 case 0x5:
2255 *next_type = FFS_OS_DESC_EXT_PROP;
2256 break;
2257 default:
2258 pr_vdebug("unsupported os descriptor type: %d", w_index);
2259 return -EINVAL;
2260 }
2261
2262 return sizeof(*desc);
2263}
2264
2265/*
2266 * Process all extended compatibility/extended property descriptors
2267 * of a feature descriptor
2268 */
2269static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2270 enum ffs_os_desc_type type,
2271 u16 feature_count,
2272 ffs_os_desc_callback entity,
2273 void *priv,
2274 struct usb_os_desc_header *h)
2275{
2276 int ret;
2277 const unsigned _len = len;
2278
2279 ENTER();
2280
2281 /* loop over all ext compat/ext prop descriptors */
2282 while (feature_count--) {
2283 ret = entity(type, h, data, len, priv);
2284 if (unlikely(ret < 0)) {
2285 pr_debug("bad OS descriptor, type: %d\n", type);
2286 return ret;
2287 }
2288 data += ret;
2289 len -= ret;
2290 }
2291 return _len - len;
2292}
2293
2294/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2295static int __must_check ffs_do_os_descs(unsigned count,
2296 char *data, unsigned len,
2297 ffs_os_desc_callback entity, void *priv)
2298{
2299 const unsigned _len = len;
2300 unsigned long num = 0;
2301
2302 ENTER();
2303
2304 for (num = 0; num < count; ++num) {
2305 int ret;
2306 enum ffs_os_desc_type type;
2307 u16 feature_count;
2308 struct usb_os_desc_header *desc = (void *)data;
2309
2310 if (len < sizeof(*desc))
2311 return -EINVAL;
2312
2313 /*
2314 * Record "descriptor" entity.
2315 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2316 * Move the data pointer to the beginning of extended
2317 * compatibilities proper or extended properties proper
2318 * portions of the data
2319 */
2320 if (le32_to_cpu(desc->dwLength) > len)
2321 return -EINVAL;
2322
2323 ret = __ffs_do_os_desc_header(&type, desc);
2324 if (unlikely(ret < 0)) {
2325 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2326 num, ret);
2327 return ret;
2328 }
2329 /*
2330 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2331 */
2332 feature_count = le16_to_cpu(desc->wCount);
2333 if (type == FFS_OS_DESC_EXT_COMPAT &&
2334 (feature_count > 255 || desc->Reserved))
2335 return -EINVAL;
2336 len -= ret;
2337 data += ret;
2338
2339 /*
2340 * Process all function/property descriptors
2341 * of this Feature Descriptor
2342 */
2343 ret = ffs_do_single_os_desc(data, len, type,
2344 feature_count, entity, priv, desc);
2345 if (unlikely(ret < 0)) {
2346 pr_debug("%s returns %d\n", __func__, ret);
2347 return ret;
2348 }
2349
2350 len -= ret;
2351 data += ret;
2352 }
2353 return _len - len;
2354}
2355
2356/**
2357 * Validate contents of the buffer from userspace related to OS descriptors.
2358 */
2359static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2360 struct usb_os_desc_header *h, void *data,
2361 unsigned len, void *priv)
2362{
2363 struct ffs_data *ffs = priv;
2364 u8 length;
2365
2366 ENTER();
2367
2368 switch (type) {
2369 case FFS_OS_DESC_EXT_COMPAT: {
2370 struct usb_ext_compat_desc *d = data;
2371 int i;
2372
2373 if (len < sizeof(*d) ||
2374 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2375 return -EINVAL;
2376 if (d->Reserved1 != 1) {
2377 /*
2378 * According to the spec, Reserved1 must be set to 1
2379 * but older kernels incorrectly rejected non-zero
2380 * values. We fix it here to avoid returning EINVAL
2381 * in response to values we used to accept.
2382 */
2383 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2384 d->Reserved1 = 1;
2385 }
2386 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2387 if (d->Reserved2[i])
2388 return -EINVAL;
2389
2390 length = sizeof(struct usb_ext_compat_desc);
2391 }
2392 break;
2393 case FFS_OS_DESC_EXT_PROP: {
2394 struct usb_ext_prop_desc *d = data;
2395 u32 type, pdl;
2396 u16 pnl;
2397
2398 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2399 return -EINVAL;
2400 length = le32_to_cpu(d->dwSize);
2401 if (len < length)
2402 return -EINVAL;
2403 type = le32_to_cpu(d->dwPropertyDataType);
2404 if (type < USB_EXT_PROP_UNICODE ||
2405 type > USB_EXT_PROP_UNICODE_MULTI) {
2406 pr_vdebug("unsupported os descriptor property type: %d",
2407 type);
2408 return -EINVAL;
2409 }
2410 pnl = le16_to_cpu(d->wPropertyNameLength);
2411 if (length < 14 + pnl) {
2412 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2413 length, pnl, type);
2414 return -EINVAL;
2415 }
2416 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2417 if (length != 14 + pnl + pdl) {
2418 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2419 length, pnl, pdl, type);
2420 return -EINVAL;
2421 }
2422 ++ffs->ms_os_descs_ext_prop_count;
2423 /* property name reported to the host as "WCHAR"s */
2424 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2425 ffs->ms_os_descs_ext_prop_data_len += pdl;
2426 }
2427 break;
2428 default:
2429 pr_vdebug("unknown descriptor: %d\n", type);
2430 return -EINVAL;
2431 }
2432 return length;
2433}
2434
2435static int __ffs_data_got_descs(struct ffs_data *ffs,
2436 char *const _data, size_t len)
2437{
2438 char *data = _data, *raw_descs;
2439 unsigned os_descs_count = 0, counts[3], flags;
2440 int ret = -EINVAL, i;
2441 struct ffs_desc_helper helper;
2442
2443 ENTER();
2444
2445 if (get_unaligned_le32(data + 4) != len)
2446 goto error;
2447
2448 switch (get_unaligned_le32(data)) {
2449 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2450 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2451 data += 8;
2452 len -= 8;
2453 break;
2454 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2455 flags = get_unaligned_le32(data + 8);
2456 ffs->user_flags = flags;
2457 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2458 FUNCTIONFS_HAS_HS_DESC |
2459 FUNCTIONFS_HAS_SS_DESC |
2460 FUNCTIONFS_HAS_MS_OS_DESC |
2461 FUNCTIONFS_VIRTUAL_ADDR |
2462 FUNCTIONFS_EVENTFD |
2463 FUNCTIONFS_ALL_CTRL_RECIP |
2464 FUNCTIONFS_CONFIG0_SETUP)) {
2465 ret = -ENOSYS;
2466 goto error;
2467 }
2468 data += 12;
2469 len -= 12;
2470 break;
2471 default:
2472 goto error;
2473 }
2474
2475 if (flags & FUNCTIONFS_EVENTFD) {
2476 if (len < 4)
2477 goto error;
2478 ffs->ffs_eventfd =
2479 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2480 if (IS_ERR(ffs->ffs_eventfd)) {
2481 ret = PTR_ERR(ffs->ffs_eventfd);
2482 ffs->ffs_eventfd = NULL;
2483 goto error;
2484 }
2485 data += 4;
2486 len -= 4;
2487 }
2488
2489 /* Read fs_count, hs_count and ss_count (if present) */
2490 for (i = 0; i < 3; ++i) {
2491 if (!(flags & (1 << i))) {
2492 counts[i] = 0;
2493 } else if (len < 4) {
2494 goto error;
2495 } else {
2496 counts[i] = get_unaligned_le32(data);
2497 data += 4;
2498 len -= 4;
2499 }
2500 }
2501 if (flags & (1 << i)) {
2502 if (len < 4) {
2503 goto error;
2504 }
2505 os_descs_count = get_unaligned_le32(data);
2506 data += 4;
2507 len -= 4;
2508 };
2509
2510 /* Read descriptors */
2511 raw_descs = data;
2512 helper.ffs = ffs;
2513 for (i = 0; i < 3; ++i) {
2514 if (!counts[i])
2515 continue;
2516 helper.interfaces_count = 0;
2517 helper.eps_count = 0;
2518 ret = ffs_do_descs(counts[i], data, len,
2519 __ffs_data_do_entity, &helper);
2520 if (ret < 0)
2521 goto error;
2522 if (!ffs->eps_count && !ffs->interfaces_count) {
2523 ffs->eps_count = helper.eps_count;
2524 ffs->interfaces_count = helper.interfaces_count;
2525 } else {
2526 if (ffs->eps_count != helper.eps_count) {
2527 ret = -EINVAL;
2528 goto error;
2529 }
2530 if (ffs->interfaces_count != helper.interfaces_count) {
2531 ret = -EINVAL;
2532 goto error;
2533 }
2534 }
2535 data += ret;
2536 len -= ret;
2537 }
2538 if (os_descs_count) {
2539 ret = ffs_do_os_descs(os_descs_count, data, len,
2540 __ffs_data_do_os_desc, ffs);
2541 if (ret < 0)
2542 goto error;
2543 data += ret;
2544 len -= ret;
2545 }
2546
2547 if (raw_descs == data || len) {
2548 ret = -EINVAL;
2549 goto error;
2550 }
2551
2552 ffs->raw_descs_data = _data;
2553 ffs->raw_descs = raw_descs;
2554 ffs->raw_descs_length = data - raw_descs;
2555 ffs->fs_descs_count = counts[0];
2556 ffs->hs_descs_count = counts[1];
2557 ffs->ss_descs_count = counts[2];
2558 ffs->ms_os_descs_count = os_descs_count;
2559
2560 return 0;
2561
2562error:
2563 kfree(_data);
2564 return ret;
2565}
2566
2567static int __ffs_data_got_strings(struct ffs_data *ffs,
2568 char *const _data, size_t len)
2569{
2570 u32 str_count, needed_count, lang_count;
2571 struct usb_gadget_strings **stringtabs, *t;
2572 const char *data = _data;
2573 struct usb_string *s;
2574
2575 ENTER();
2576
2577 if (unlikely(len < 16 ||
2578 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2579 get_unaligned_le32(data + 4) != len))
2580 goto error;
2581 str_count = get_unaligned_le32(data + 8);
2582 lang_count = get_unaligned_le32(data + 12);
2583
2584 /* if one is zero the other must be zero */
2585 if (unlikely(!str_count != !lang_count))
2586 goto error;
2587
2588 /* Do we have at least as many strings as descriptors need? */
2589 needed_count = ffs->strings_count;
2590 if (unlikely(str_count < needed_count))
2591 goto error;
2592
2593 /*
2594 * If we don't need any strings just return and free all
2595 * memory.
2596 */
2597 if (!needed_count) {
2598 kfree(_data);
2599 return 0;
2600 }
2601
2602 /* Allocate everything in one chunk so there's less maintenance. */
2603 {
2604 unsigned i = 0;
2605 vla_group(d);
2606 vla_item(d, struct usb_gadget_strings *, stringtabs,
2607 lang_count + 1);
2608 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2609 vla_item(d, struct usb_string, strings,
2610 lang_count*(needed_count+1));
2611
2612 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2613
2614 if (unlikely(!vlabuf)) {
2615 kfree(_data);
2616 return -ENOMEM;
2617 }
2618
2619 /* Initialize the VLA pointers */
2620 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2621 t = vla_ptr(vlabuf, d, stringtab);
2622 i = lang_count;
2623 do {
2624 *stringtabs++ = t++;
2625 } while (--i);
2626 *stringtabs = NULL;
2627
2628 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2629 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2630 t = vla_ptr(vlabuf, d, stringtab);
2631 s = vla_ptr(vlabuf, d, strings);
2632 }
2633
2634 /* For each language */
2635 data += 16;
2636 len -= 16;
2637
2638 do { /* lang_count > 0 so we can use do-while */
2639 unsigned needed = needed_count;
2640
2641 if (unlikely(len < 3))
2642 goto error_free;
2643 t->language = get_unaligned_le16(data);
2644 t->strings = s;
2645 ++t;
2646
2647 data += 2;
2648 len -= 2;
2649
2650 /* For each string */
2651 do { /* str_count > 0 so we can use do-while */
2652 size_t length = strnlen(data, len);
2653
2654 if (unlikely(length == len))
2655 goto error_free;
2656
2657 /*
2658 * User may provide more strings then we need,
2659 * if that's the case we simply ignore the
2660 * rest
2661 */
2662 if (likely(needed)) {
2663 /*
2664 * s->id will be set while adding
2665 * function to configuration so for
2666 * now just leave garbage here.
2667 */
2668 s->s = data;
2669 --needed;
2670 ++s;
2671 }
2672
2673 data += length + 1;
2674 len -= length + 1;
2675 } while (--str_count);
2676
2677 s->id = 0; /* terminator */
2678 s->s = NULL;
2679 ++s;
2680
2681 } while (--lang_count);
2682
2683 /* Some garbage left? */
2684 if (unlikely(len))
2685 goto error_free;
2686
2687 /* Done! */
2688 ffs->stringtabs = stringtabs;
2689 ffs->raw_strings = _data;
2690
2691 return 0;
2692
2693error_free:
2694 kfree(stringtabs);
2695error:
2696 kfree(_data);
2697 return -EINVAL;
2698}
2699
2700
2701/* Events handling and management *******************************************/
2702
2703static void __ffs_event_add(struct ffs_data *ffs,
2704 enum usb_functionfs_event_type type)
2705{
2706 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2707 int neg = 0;
2708
2709 /*
2710 * Abort any unhandled setup
2711 *
2712 * We do not need to worry about some cmpxchg() changing value
2713 * of ffs->setup_state without holding the lock because when
2714 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2715 * the source does nothing.
2716 */
2717 if (ffs->setup_state == FFS_SETUP_PENDING)
2718 ffs->setup_state = FFS_SETUP_CANCELLED;
2719
2720 /*
2721 * Logic of this function guarantees that there are at most four pending
2722 * evens on ffs->ev.types queue. This is important because the queue
2723 * has space for four elements only and __ffs_ep0_read_events function
2724 * depends on that limit as well. If more event types are added, those
2725 * limits have to be revisited or guaranteed to still hold.
2726 */
2727 switch (type) {
2728 case FUNCTIONFS_RESUME:
2729 rem_type2 = FUNCTIONFS_SUSPEND;
2730 /* FALL THROUGH */
2731 case FUNCTIONFS_SUSPEND:
2732 case FUNCTIONFS_SETUP:
2733 rem_type1 = type;
2734 /* Discard all similar events */
2735 break;
2736
2737 case FUNCTIONFS_BIND:
2738 case FUNCTIONFS_UNBIND:
2739 case FUNCTIONFS_DISABLE:
2740 case FUNCTIONFS_ENABLE:
2741 /* Discard everything other then power management. */
2742 rem_type1 = FUNCTIONFS_SUSPEND;
2743 rem_type2 = FUNCTIONFS_RESUME;
2744 neg = 1;
2745 break;
2746
2747 default:
2748 WARN(1, "%d: unknown event, this should not happen\n", type);
2749 return;
2750 }
2751
2752 {
2753 u8 *ev = ffs->ev.types, *out = ev;
2754 unsigned n = ffs->ev.count;
2755 for (; n; --n, ++ev)
2756 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2757 *out++ = *ev;
2758 else
2759 pr_vdebug("purging event %d\n", *ev);
2760 ffs->ev.count = out - ffs->ev.types;
2761 }
2762
2763 pr_vdebug("adding event %d\n", type);
2764 ffs->ev.types[ffs->ev.count++] = type;
2765 wake_up_locked(&ffs->ev.waitq);
2766 if (ffs->ffs_eventfd)
2767 eventfd_signal(ffs->ffs_eventfd, 1);
2768}
2769
2770static void ffs_event_add(struct ffs_data *ffs,
2771 enum usb_functionfs_event_type type)
2772{
2773 unsigned long flags;
2774 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2775 __ffs_event_add(ffs, type);
2776 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2777}
2778
2779/* Bind/unbind USB function hooks *******************************************/
2780
2781static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2782{
2783 int i;
2784
2785 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2786 if (ffs->eps_addrmap[i] == endpoint_address)
2787 return i;
2788 return -ENOENT;
2789}
2790
2791static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2792 struct usb_descriptor_header *desc,
2793 void *priv)
2794{
2795 struct usb_endpoint_descriptor *ds = (void *)desc;
2796 struct ffs_function *func = priv;
2797 struct ffs_ep *ffs_ep;
2798 unsigned ep_desc_id;
2799 int idx;
2800 static const char *speed_names[] = { "full", "high", "super" };
2801
2802 if (type != FFS_DESCRIPTOR)
2803 return 0;
2804
2805 /*
2806 * If ss_descriptors is not NULL, we are reading super speed
2807 * descriptors; if hs_descriptors is not NULL, we are reading high
2808 * speed descriptors; otherwise, we are reading full speed
2809 * descriptors.
2810 */
2811 if (func->function.ss_descriptors) {
2812 ep_desc_id = 2;
2813 func->function.ss_descriptors[(long)valuep] = desc;
2814 } else if (func->function.hs_descriptors) {
2815 ep_desc_id = 1;
2816 func->function.hs_descriptors[(long)valuep] = desc;
2817 } else {
2818 ep_desc_id = 0;
2819 func->function.fs_descriptors[(long)valuep] = desc;
2820 }
2821
2822 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2823 return 0;
2824
2825 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2826 if (idx < 0)
2827 return idx;
2828
2829 ffs_ep = func->eps + idx;
2830
2831 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2832 pr_err("two %sspeed descriptors for EP %d\n",
2833 speed_names[ep_desc_id],
2834 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2835 return -EINVAL;
2836 }
2837 ffs_ep->descs[ep_desc_id] = ds;
2838
2839 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2840 if (ffs_ep->ep) {
2841 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2842 if (!ds->wMaxPacketSize)
2843 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2844 } else {
2845 struct usb_request *req;
2846 struct usb_ep *ep;
2847 u8 bEndpointAddress;
2848 u16 wMaxPacketSize;
2849
2850 /*
2851 * We back up bEndpointAddress because autoconfig overwrites
2852 * it with physical endpoint address.
2853 */
2854 bEndpointAddress = ds->bEndpointAddress;
2855 /*
2856 * We back up wMaxPacketSize because autoconfig treats
2857 * endpoint descriptors as if they were full speed.
2858 */
2859 wMaxPacketSize = ds->wMaxPacketSize;
2860 pr_vdebug("autoconfig\n");
2861 ep = usb_ep_autoconfig(func->gadget, ds);
2862 if (unlikely(!ep))
2863 return -ENOTSUPP;
2864 ep->driver_data = func->eps + idx;
2865
2866 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2867 if (unlikely(!req))
2868 return -ENOMEM;
2869
2870 ffs_ep->ep = ep;
2871 ffs_ep->req = req;
2872 func->eps_revmap[ds->bEndpointAddress &
2873 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2874 /*
2875 * If we use virtual address mapping, we restore
2876 * original bEndpointAddress value.
2877 */
2878 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2879 ds->bEndpointAddress = bEndpointAddress;
2880 /*
2881 * Restore wMaxPacketSize which was potentially
2882 * overwritten by autoconfig.
2883 */
2884 ds->wMaxPacketSize = wMaxPacketSize;
2885 }
2886 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2887
2888 return 0;
2889}
2890
2891static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2892 struct usb_descriptor_header *desc,
2893 void *priv)
2894{
2895 struct ffs_function *func = priv;
2896 unsigned idx;
2897 u8 newValue;
2898
2899 switch (type) {
2900 default:
2901 case FFS_DESCRIPTOR:
2902 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2903 return 0;
2904
2905 case FFS_INTERFACE:
2906 idx = *valuep;
2907 if (func->interfaces_nums[idx] < 0) {
2908 int id = usb_interface_id(func->conf, &func->function);
2909 if (unlikely(id < 0))
2910 return id;
2911 func->interfaces_nums[idx] = id;
2912 }
2913 newValue = func->interfaces_nums[idx];
2914 break;
2915
2916 case FFS_STRING:
2917 /* String' IDs are allocated when fsf_data is bound to cdev */
2918 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2919 break;
2920
2921 case FFS_ENDPOINT:
2922 /*
2923 * USB_DT_ENDPOINT are handled in
2924 * __ffs_func_bind_do_descs().
2925 */
2926 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2927 return 0;
2928
2929 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2930 if (unlikely(!func->eps[idx].ep))
2931 return -EINVAL;
2932
2933 {
2934 struct usb_endpoint_descriptor **descs;
2935 descs = func->eps[idx].descs;
2936 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2937 }
2938 break;
2939 }
2940
2941 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2942 *valuep = newValue;
2943 return 0;
2944}
2945
2946static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2947 struct usb_os_desc_header *h, void *data,
2948 unsigned len, void *priv)
2949{
2950 struct ffs_function *func = priv;
2951 u8 length = 0;
2952
2953 switch (type) {
2954 case FFS_OS_DESC_EXT_COMPAT: {
2955 struct usb_ext_compat_desc *desc = data;
2956 struct usb_os_desc_table *t;
2957
2958 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2959 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2960 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2961 ARRAY_SIZE(desc->CompatibleID) +
2962 ARRAY_SIZE(desc->SubCompatibleID));
2963 length = sizeof(*desc);
2964 }
2965 break;
2966 case FFS_OS_DESC_EXT_PROP: {
2967 struct usb_ext_prop_desc *desc = data;
2968 struct usb_os_desc_table *t;
2969 struct usb_os_desc_ext_prop *ext_prop;
2970 char *ext_prop_name;
2971 char *ext_prop_data;
2972
2973 t = &func->function.os_desc_table[h->interface];
2974 t->if_id = func->interfaces_nums[h->interface];
2975
2976 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2977 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2978
2979 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2980 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2981 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2982 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2983 length = ext_prop->name_len + ext_prop->data_len + 14;
2984
2985 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2986 func->ffs->ms_os_descs_ext_prop_name_avail +=
2987 ext_prop->name_len;
2988
2989 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2990 func->ffs->ms_os_descs_ext_prop_data_avail +=
2991 ext_prop->data_len;
2992 memcpy(ext_prop_data,
2993 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2994 ext_prop->data_len);
2995 /* unicode data reported to the host as "WCHAR"s */
2996 switch (ext_prop->type) {
2997 case USB_EXT_PROP_UNICODE:
2998 case USB_EXT_PROP_UNICODE_ENV:
2999 case USB_EXT_PROP_UNICODE_LINK:
3000 case USB_EXT_PROP_UNICODE_MULTI:
3001 ext_prop->data_len *= 2;
3002 break;
3003 }
3004 ext_prop->data = ext_prop_data;
3005
3006 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3007 ext_prop->name_len);
3008 /* property name reported to the host as "WCHAR"s */
3009 ext_prop->name_len *= 2;
3010 ext_prop->name = ext_prop_name;
3011
3012 t->os_desc->ext_prop_len +=
3013 ext_prop->name_len + ext_prop->data_len + 14;
3014 ++t->os_desc->ext_prop_count;
3015 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3016 }
3017 break;
3018 default:
3019 pr_vdebug("unknown descriptor: %d\n", type);
3020 }
3021
3022 return length;
3023}
3024
3025static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3026 struct usb_configuration *c)
3027{
3028 struct ffs_function *func = ffs_func_from_usb(f);
3029 struct f_fs_opts *ffs_opts =
3030 container_of(f->fi, struct f_fs_opts, func_inst);
3031 int ret;
3032
3033 ENTER();
3034
3035 /*
3036 * Legacy gadget triggers binding in functionfs_ready_callback,
3037 * which already uses locking; taking the same lock here would
3038 * cause a deadlock.
3039 *
3040 * Configfs-enabled gadgets however do need ffs_dev_lock.
3041 */
3042 if (!ffs_opts->no_configfs)
3043 ffs_dev_lock();
3044 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3045 func->ffs = ffs_opts->dev->ffs_data;
3046 if (!ffs_opts->no_configfs)
3047 ffs_dev_unlock();
3048 if (ret)
3049 return ERR_PTR(ret);
3050
3051 func->conf = c;
3052 func->gadget = c->cdev->gadget;
3053
3054 /*
3055 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3056 * configurations are bound in sequence with list_for_each_entry,
3057 * in each configuration its functions are bound in sequence
3058 * with list_for_each_entry, so we assume no race condition
3059 * with regard to ffs_opts->bound access
3060 */
3061 if (!ffs_opts->refcnt) {
3062 ret = functionfs_bind(func->ffs, c->cdev);
3063 if (ret)
3064 return ERR_PTR(ret);
3065 }
3066 ffs_opts->refcnt++;
3067 func->function.strings = func->ffs->stringtabs;
3068
3069 return ffs_opts;
3070}
3071
3072static int _ffs_func_bind(struct usb_configuration *c,
3073 struct usb_function *f)
3074{
3075 struct ffs_function *func = ffs_func_from_usb(f);
3076 struct ffs_data *ffs = func->ffs;
3077
3078 const int full = !!func->ffs->fs_descs_count;
3079 const int high = !!func->ffs->hs_descs_count;
3080 const int super = !!func->ffs->ss_descs_count;
3081
3082 int fs_len, hs_len, ss_len, ret, i;
3083 struct ffs_ep *eps_ptr;
3084
3085 /* Make it a single chunk, less management later on */
3086 vla_group(d);
3087 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3088 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3089 full ? ffs->fs_descs_count + 1 : 0);
3090 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3091 high ? ffs->hs_descs_count + 1 : 0);
3092 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3093 super ? ffs->ss_descs_count + 1 : 0);
3094 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3095 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3096 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3097 vla_item_with_sz(d, char[16], ext_compat,
3098 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3099 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3100 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3101 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3102 ffs->ms_os_descs_ext_prop_count);
3103 vla_item_with_sz(d, char, ext_prop_name,
3104 ffs->ms_os_descs_ext_prop_name_len);
3105 vla_item_with_sz(d, char, ext_prop_data,
3106 ffs->ms_os_descs_ext_prop_data_len);
3107 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3108 char *vlabuf;
3109
3110 ENTER();
3111
3112 /* Has descriptors only for speeds gadget does not support */
3113 if (unlikely(!(full | high | super)))
3114 return -ENOTSUPP;
3115
3116 /* Allocate a single chunk, less management later on */
3117 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3118 if (unlikely(!vlabuf))
3119 return -ENOMEM;
3120
3121 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3122 ffs->ms_os_descs_ext_prop_name_avail =
3123 vla_ptr(vlabuf, d, ext_prop_name);
3124 ffs->ms_os_descs_ext_prop_data_avail =
3125 vla_ptr(vlabuf, d, ext_prop_data);
3126
3127 /* Copy descriptors */
3128 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3129 ffs->raw_descs_length);
3130
3131 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3132 eps_ptr = vla_ptr(vlabuf, d, eps);
3133 for (i = 0; i < ffs->eps_count; i++)
3134 eps_ptr[i].num = -1;
3135
3136 /* Save pointers
3137 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3138 */
3139 func->eps = vla_ptr(vlabuf, d, eps);
3140 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3141
3142 /*
3143 * Go through all the endpoint descriptors and allocate
3144 * endpoints first, so that later we can rewrite the endpoint
3145 * numbers without worrying that it may be described later on.
3146 */
3147 if (likely(full)) {
3148 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3149 fs_len = ffs_do_descs(ffs->fs_descs_count,
3150 vla_ptr(vlabuf, d, raw_descs),
3151 d_raw_descs__sz,
3152 __ffs_func_bind_do_descs, func);
3153 if (unlikely(fs_len < 0)) {
3154 ret = fs_len;
3155 goto error;
3156 }
3157 } else {
3158 fs_len = 0;
3159 }
3160
3161 if (likely(high)) {
3162 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3163 hs_len = ffs_do_descs(ffs->hs_descs_count,
3164 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3165 d_raw_descs__sz - fs_len,
3166 __ffs_func_bind_do_descs, func);
3167 if (unlikely(hs_len < 0)) {
3168 ret = hs_len;
3169 goto error;
3170 }
3171 } else {
3172 hs_len = 0;
3173 }
3174
3175 if (likely(super)) {
3176 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3177 ss_len = ffs_do_descs(ffs->ss_descs_count,
3178 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3179 d_raw_descs__sz - fs_len - hs_len,
3180 __ffs_func_bind_do_descs, func);
3181 if (unlikely(ss_len < 0)) {
3182 ret = ss_len;
3183 goto error;
3184 }
3185 } else {
3186 ss_len = 0;
3187 }
3188
3189 /*
3190 * Now handle interface numbers allocation and interface and
3191 * endpoint numbers rewriting. We can do that in one go
3192 * now.
3193 */
3194 ret = ffs_do_descs(ffs->fs_descs_count +
3195 (high ? ffs->hs_descs_count : 0) +
3196 (super ? ffs->ss_descs_count : 0),
3197 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3198 __ffs_func_bind_do_nums, func);
3199 if (unlikely(ret < 0))
3200 goto error;
3201
3202 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3203 if (c->cdev->use_os_string) {
3204 for (i = 0; i < ffs->interfaces_count; ++i) {
3205 struct usb_os_desc *desc;
3206
3207 desc = func->function.os_desc_table[i].os_desc =
3208 vla_ptr(vlabuf, d, os_desc) +
3209 i * sizeof(struct usb_os_desc);
3210 desc->ext_compat_id =
3211 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3212 INIT_LIST_HEAD(&desc->ext_prop);
3213 }
3214 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3215 vla_ptr(vlabuf, d, raw_descs) +
3216 fs_len + hs_len + ss_len,
3217 d_raw_descs__sz - fs_len - hs_len -
3218 ss_len,
3219 __ffs_func_bind_do_os_desc, func);
3220 if (unlikely(ret < 0))
3221 goto error;
3222 }
3223 func->function.os_desc_n =
3224 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3225
3226 /* And we're done */
3227 ffs_event_add(ffs, FUNCTIONFS_BIND);
3228 return 0;
3229
3230error:
3231 /* XXX Do we need to release all claimed endpoints here? */
3232 return ret;
3233}
3234
3235static int ffs_func_bind(struct usb_configuration *c,
3236 struct usb_function *f)
3237{
3238 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3239 struct ffs_function *func = ffs_func_from_usb(f);
3240 int ret;
3241
3242 if (IS_ERR(ffs_opts))
3243 return PTR_ERR(ffs_opts);
3244
3245 ret = _ffs_func_bind(c, f);
3246 if (ret && !--ffs_opts->refcnt)
3247 functionfs_unbind(func->ffs);
3248
3249 return ret;
3250}
3251
3252
3253/* Other USB function hooks *************************************************/
3254
3255static void ffs_reset_work(struct work_struct *work)
3256{
3257 struct ffs_data *ffs = container_of(work,
3258 struct ffs_data, reset_work);
3259 ffs_data_reset(ffs);
3260}
3261
3262static int ffs_func_set_alt(struct usb_function *f,
3263 unsigned interface, unsigned alt)
3264{
3265 struct ffs_function *func = ffs_func_from_usb(f);
3266 struct ffs_data *ffs = func->ffs;
3267 int ret = 0, intf;
3268
3269 if (alt != (unsigned)-1) {
3270 intf = ffs_func_revmap_intf(func, interface);
3271 if (unlikely(intf < 0))
3272 return intf;
3273 }
3274
3275 if (ffs->func)
3276 ffs_func_eps_disable(ffs->func);
3277
3278 if (ffs->state == FFS_DEACTIVATED) {
3279 ffs->state = FFS_CLOSING;
3280 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3281 schedule_work(&ffs->reset_work);
3282 return -ENODEV;
3283 }
3284
3285 if (ffs->state != FFS_ACTIVE)
3286 return -ENODEV;
3287
3288 if (alt == (unsigned)-1) {
3289 ffs->func = NULL;
3290 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3291 return 0;
3292 }
3293
3294 ffs->func = func;
3295 ret = ffs_func_eps_enable(func);
3296 if (likely(ret >= 0))
3297 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3298 return ret;
3299}
3300
3301static void ffs_func_disable(struct usb_function *f)
3302{
3303 ffs_func_set_alt(f, 0, (unsigned)-1);
3304}
3305
3306static int ffs_func_setup(struct usb_function *f,
3307 const struct usb_ctrlrequest *creq)
3308{
3309 struct ffs_function *func = ffs_func_from_usb(f);
3310 struct ffs_data *ffs = func->ffs;
3311 unsigned long flags;
3312 int ret;
3313
3314 ENTER();
3315
3316 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3317 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3318 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3319 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3320 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3321
3322 /*
3323 * Most requests directed to interface go through here
3324 * (notable exceptions are set/get interface) so we need to
3325 * handle them. All other either handled by composite or
3326 * passed to usb_configuration->setup() (if one is set). No
3327 * matter, we will handle requests directed to endpoint here
3328 * as well (as it's straightforward). Other request recipient
3329 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3330 * is being used.
3331 */
3332 if (ffs->state != FFS_ACTIVE)
3333 return -ENODEV;
3334
3335 switch (creq->bRequestType & USB_RECIP_MASK) {
3336 case USB_RECIP_INTERFACE:
3337 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3338 if (unlikely(ret < 0))
3339 return ret;
3340 break;
3341
3342 case USB_RECIP_ENDPOINT:
3343 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3344 if (unlikely(ret < 0))
3345 return ret;
3346 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3347 ret = func->ffs->eps_addrmap[ret];
3348 break;
3349
3350 default:
3351 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3352 ret = le16_to_cpu(creq->wIndex);
3353 else
3354 return -EOPNOTSUPP;
3355 }
3356
3357 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3358 ffs->ev.setup = *creq;
3359 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3360 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3361 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3362
3363 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3364}
3365
3366static bool ffs_func_req_match(struct usb_function *f,
3367 const struct usb_ctrlrequest *creq,
3368 bool config0)
3369{
3370 struct ffs_function *func = ffs_func_from_usb(f);
3371
3372 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3373 return false;
3374
3375 switch (creq->bRequestType & USB_RECIP_MASK) {
3376 case USB_RECIP_INTERFACE:
3377 return (ffs_func_revmap_intf(func,
3378 le16_to_cpu(creq->wIndex)) >= 0);
3379 case USB_RECIP_ENDPOINT:
3380 return (ffs_func_revmap_ep(func,
3381 le16_to_cpu(creq->wIndex)) >= 0);
3382 default:
3383 return (bool) (func->ffs->user_flags &
3384 FUNCTIONFS_ALL_CTRL_RECIP);
3385 }
3386}
3387
3388static void ffs_func_suspend(struct usb_function *f)
3389{
3390 ENTER();
3391 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3392}
3393
3394static void ffs_func_resume(struct usb_function *f)
3395{
3396 ENTER();
3397 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3398}
3399
3400
3401/* Endpoint and interface numbers reverse mapping ***************************/
3402
3403static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3404{
3405 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3406 return num ? num : -EDOM;
3407}
3408
3409static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3410{
3411 short *nums = func->interfaces_nums;
3412 unsigned count = func->ffs->interfaces_count;
3413
3414 for (; count; --count, ++nums) {
3415 if (*nums >= 0 && *nums == intf)
3416 return nums - func->interfaces_nums;
3417 }
3418
3419 return -EDOM;
3420}
3421
3422
3423/* Devices management *******************************************************/
3424
3425static LIST_HEAD(ffs_devices);
3426
3427static struct ffs_dev *_ffs_do_find_dev(const char *name)
3428{
3429 struct ffs_dev *dev;
3430
3431 if (!name)
3432 return NULL;
3433
3434 list_for_each_entry(dev, &ffs_devices, entry) {
3435 if (strcmp(dev->name, name) == 0)
3436 return dev;
3437 }
3438
3439 return NULL;
3440}
3441
3442/*
3443 * ffs_lock must be taken by the caller of this function
3444 */
3445static struct ffs_dev *_ffs_get_single_dev(void)
3446{
3447 struct ffs_dev *dev;
3448
3449 if (list_is_singular(&ffs_devices)) {
3450 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3451 if (dev->single)
3452 return dev;
3453 }
3454
3455 return NULL;
3456}
3457
3458/*
3459 * ffs_lock must be taken by the caller of this function
3460 */
3461static struct ffs_dev *_ffs_find_dev(const char *name)
3462{
3463 struct ffs_dev *dev;
3464
3465 dev = _ffs_get_single_dev();
3466 if (dev)
3467 return dev;
3468
3469 return _ffs_do_find_dev(name);
3470}
3471
3472/* Configfs support *********************************************************/
3473
3474static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3475{
3476 return container_of(to_config_group(item), struct f_fs_opts,
3477 func_inst.group);
3478}
3479
3480static void ffs_attr_release(struct config_item *item)
3481{
3482 struct f_fs_opts *opts = to_ffs_opts(item);
3483
3484 usb_put_function_instance(&opts->func_inst);
3485}
3486
3487static struct configfs_item_operations ffs_item_ops = {
3488 .release = ffs_attr_release,
3489};
3490
3491static const struct config_item_type ffs_func_type = {
3492 .ct_item_ops = &ffs_item_ops,
3493 .ct_owner = THIS_MODULE,
3494};
3495
3496
3497/* Function registration interface ******************************************/
3498
3499static void ffs_free_inst(struct usb_function_instance *f)
3500{
3501 struct f_fs_opts *opts;
3502
3503 opts = to_f_fs_opts(f);
3504 ffs_dev_lock();
3505 _ffs_free_dev(opts->dev);
3506 ffs_dev_unlock();
3507 kfree(opts);
3508}
3509
3510static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3511{
3512 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3513 return -ENAMETOOLONG;
3514 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3515}
3516
3517static struct usb_function_instance *ffs_alloc_inst(void)
3518{
3519 struct f_fs_opts *opts;
3520 struct ffs_dev *dev;
3521
3522 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3523 if (!opts)
3524 return ERR_PTR(-ENOMEM);
3525
3526 opts->func_inst.set_inst_name = ffs_set_inst_name;
3527 opts->func_inst.free_func_inst = ffs_free_inst;
3528 ffs_dev_lock();
3529 dev = _ffs_alloc_dev();
3530 ffs_dev_unlock();
3531 if (IS_ERR(dev)) {
3532 kfree(opts);
3533 return ERR_CAST(dev);
3534 }
3535 opts->dev = dev;
3536 dev->opts = opts;
3537
3538 config_group_init_type_name(&opts->func_inst.group, "",
3539 &ffs_func_type);
3540 return &opts->func_inst;
3541}
3542
3543static void ffs_free(struct usb_function *f)
3544{
3545 kfree(ffs_func_from_usb(f));
3546}
3547
3548static void ffs_func_unbind(struct usb_configuration *c,
3549 struct usb_function *f)
3550{
3551 struct ffs_function *func = ffs_func_from_usb(f);
3552 struct ffs_data *ffs = func->ffs;
3553 struct f_fs_opts *opts =
3554 container_of(f->fi, struct f_fs_opts, func_inst);
3555 struct ffs_ep *ep = func->eps;
3556 unsigned count = ffs->eps_count;
3557 unsigned long flags;
3558
3559 ENTER();
3560 if (ffs->func == func) {
3561 ffs_func_eps_disable(func);
3562 ffs->func = NULL;
3563 }
3564
3565 if (!--opts->refcnt)
3566 functionfs_unbind(ffs);
3567
3568 /* cleanup after autoconfig */
3569 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3570 while (count--) {
3571 if (ep->ep && ep->req)
3572 usb_ep_free_request(ep->ep, ep->req);
3573 ep->req = NULL;
3574 ++ep;
3575 }
3576 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3577 kfree(func->eps);
3578 func->eps = NULL;
3579 /*
3580 * eps, descriptors and interfaces_nums are allocated in the
3581 * same chunk so only one free is required.
3582 */
3583 func->function.fs_descriptors = NULL;
3584 func->function.hs_descriptors = NULL;
3585 func->function.ss_descriptors = NULL;
3586 func->interfaces_nums = NULL;
3587
3588 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3589}
3590
3591static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3592{
3593 struct ffs_function *func;
3594
3595 ENTER();
3596
3597 func = kzalloc(sizeof(*func), GFP_KERNEL);
3598 if (unlikely(!func))
3599 return ERR_PTR(-ENOMEM);
3600
3601 func->function.name = "Function FS Gadget";
3602
3603 func->function.bind = ffs_func_bind;
3604 func->function.unbind = ffs_func_unbind;
3605 func->function.set_alt = ffs_func_set_alt;
3606 func->function.disable = ffs_func_disable;
3607 func->function.setup = ffs_func_setup;
3608 func->function.req_match = ffs_func_req_match;
3609 func->function.suspend = ffs_func_suspend;
3610 func->function.resume = ffs_func_resume;
3611 func->function.free_func = ffs_free;
3612
3613 return &func->function;
3614}
3615
3616/*
3617 * ffs_lock must be taken by the caller of this function
3618 */
3619static struct ffs_dev *_ffs_alloc_dev(void)
3620{
3621 struct ffs_dev *dev;
3622 int ret;
3623
3624 if (_ffs_get_single_dev())
3625 return ERR_PTR(-EBUSY);
3626
3627 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3628 if (!dev)
3629 return ERR_PTR(-ENOMEM);
3630
3631 if (list_empty(&ffs_devices)) {
3632 ret = functionfs_init();
3633 if (ret) {
3634 kfree(dev);
3635 return ERR_PTR(ret);
3636 }
3637 }
3638
3639 list_add(&dev->entry, &ffs_devices);
3640
3641 return dev;
3642}
3643
3644int ffs_name_dev(struct ffs_dev *dev, const char *name)
3645{
3646 struct ffs_dev *existing;
3647 int ret = 0;
3648
3649 ffs_dev_lock();
3650
3651 existing = _ffs_do_find_dev(name);
3652 if (!existing)
3653 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3654 else if (existing != dev)
3655 ret = -EBUSY;
3656
3657 ffs_dev_unlock();
3658
3659 return ret;
3660}
3661EXPORT_SYMBOL_GPL(ffs_name_dev);
3662
3663int ffs_single_dev(struct ffs_dev *dev)
3664{
3665 int ret;
3666
3667 ret = 0;
3668 ffs_dev_lock();
3669
3670 if (!list_is_singular(&ffs_devices))
3671 ret = -EBUSY;
3672 else
3673 dev->single = true;
3674
3675 ffs_dev_unlock();
3676 return ret;
3677}
3678EXPORT_SYMBOL_GPL(ffs_single_dev);
3679
3680/*
3681 * ffs_lock must be taken by the caller of this function
3682 */
3683static void _ffs_free_dev(struct ffs_dev *dev)
3684{
3685 list_del(&dev->entry);
3686
3687 /* Clear the private_data pointer to stop incorrect dev access */
3688 if (dev->ffs_data)
3689 dev->ffs_data->private_data = NULL;
3690
3691 kfree(dev);
3692 if (list_empty(&ffs_devices))
3693 functionfs_cleanup();
3694}
3695
3696static void *ffs_acquire_dev(const char *dev_name)
3697{
3698 struct ffs_dev *ffs_dev;
3699
3700 ENTER();
3701 ffs_dev_lock();
3702
3703 ffs_dev = _ffs_find_dev(dev_name);
3704 if (!ffs_dev)
3705 ffs_dev = ERR_PTR(-ENOENT);
3706 else if (ffs_dev->mounted)
3707 ffs_dev = ERR_PTR(-EBUSY);
3708 else if (ffs_dev->ffs_acquire_dev_callback &&
3709 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3710 ffs_dev = ERR_PTR(-ENOENT);
3711 else
3712 ffs_dev->mounted = true;
3713
3714 ffs_dev_unlock();
3715 return ffs_dev;
3716}
3717
3718static void ffs_release_dev(struct ffs_data *ffs_data)
3719{
3720 struct ffs_dev *ffs_dev;
3721
3722 ENTER();
3723 ffs_dev_lock();
3724
3725 ffs_dev = ffs_data->private_data;
3726 if (ffs_dev) {
3727 ffs_dev->mounted = false;
3728
3729 if (ffs_dev->ffs_release_dev_callback)
3730 ffs_dev->ffs_release_dev_callback(ffs_dev);
3731 }
3732
3733 ffs_dev_unlock();
3734}
3735
3736static int ffs_ready(struct ffs_data *ffs)
3737{
3738 struct ffs_dev *ffs_obj;
3739 int ret = 0;
3740
3741 ENTER();
3742 ffs_dev_lock();
3743
3744 ffs_obj = ffs->private_data;
3745 if (!ffs_obj) {
3746 ret = -EINVAL;
3747 goto done;
3748 }
3749 if (WARN_ON(ffs_obj->desc_ready)) {
3750 ret = -EBUSY;
3751 goto done;
3752 }
3753
3754 ffs_obj->desc_ready = true;
3755 ffs_obj->ffs_data = ffs;
3756
3757 if (ffs_obj->ffs_ready_callback) {
3758 ret = ffs_obj->ffs_ready_callback(ffs);
3759 if (ret)
3760 goto done;
3761 }
3762
3763 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3764done:
3765 ffs_dev_unlock();
3766 return ret;
3767}
3768
3769static void ffs_closed(struct ffs_data *ffs)
3770{
3771 struct ffs_dev *ffs_obj;
3772 struct f_fs_opts *opts;
3773 struct config_item *ci;
3774
3775 ENTER();
3776 ffs_dev_lock();
3777
3778 ffs_obj = ffs->private_data;
3779 if (!ffs_obj)
3780 goto done;
3781
3782 ffs_obj->desc_ready = false;
3783 ffs_obj->ffs_data = NULL;
3784
3785 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3786 ffs_obj->ffs_closed_callback)
3787 ffs_obj->ffs_closed_callback(ffs);
3788
3789 if (ffs_obj->opts)
3790 opts = ffs_obj->opts;
3791 else
3792 goto done;
3793
3794 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3795 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3796 goto done;
3797
3798 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3799 ffs_dev_unlock();
3800
3801 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3802 unregister_gadget_item(ci);
3803 return;
3804done:
3805 ffs_dev_unlock();
3806}
3807
3808/* Misc helper functions ****************************************************/
3809
3810static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3811{
3812 return nonblock
3813 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3814 : mutex_lock_interruptible(mutex);
3815}
3816
3817static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3818{
3819 char *data;
3820
3821 if (unlikely(!len))
3822 return NULL;
3823
3824 data = kmalloc(len, GFP_KERNEL);
3825 if (unlikely(!data))
3826 return ERR_PTR(-ENOMEM);
3827
3828 if (unlikely(copy_from_user(data, buf, len))) {
3829 kfree(data);
3830 return ERR_PTR(-EFAULT);
3831 }
3832
3833 pr_vdebug("Buffer from user space:\n");
3834 ffs_dump_mem("", data, len);
3835
3836 return data;
3837}
3838
3839DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3840MODULE_LICENSE("GPL");
3841MODULE_AUTHOR("Michal Nazarewicz");