at v5.2 25 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Reset Controller framework 4 * 5 * Copyright 2013 Philipp Zabel, Pengutronix 6 */ 7#include <linux/atomic.h> 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/export.h> 11#include <linux/kernel.h> 12#include <linux/kref.h> 13#include <linux/module.h> 14#include <linux/of.h> 15#include <linux/reset.h> 16#include <linux/reset-controller.h> 17#include <linux/slab.h> 18 19static DEFINE_MUTEX(reset_list_mutex); 20static LIST_HEAD(reset_controller_list); 21 22static DEFINE_MUTEX(reset_lookup_mutex); 23static LIST_HEAD(reset_lookup_list); 24 25/** 26 * struct reset_control - a reset control 27 * @rcdev: a pointer to the reset controller device 28 * this reset control belongs to 29 * @list: list entry for the rcdev's reset controller list 30 * @id: ID of the reset controller in the reset 31 * controller device 32 * @refcnt: Number of gets of this reset_control 33 * @acquired: Only one reset_control may be acquired for a given rcdev and id. 34 * @shared: Is this a shared (1), or an exclusive (0) reset_control? 35 * @deassert_cnt: Number of times this reset line has been deasserted 36 * @triggered_count: Number of times this reset line has been reset. Currently 37 * only used for shared resets, which means that the value 38 * will be either 0 or 1. 39 */ 40struct reset_control { 41 struct reset_controller_dev *rcdev; 42 struct list_head list; 43 unsigned int id; 44 struct kref refcnt; 45 bool acquired; 46 bool shared; 47 bool array; 48 atomic_t deassert_count; 49 atomic_t triggered_count; 50}; 51 52/** 53 * struct reset_control_array - an array of reset controls 54 * @base: reset control for compatibility with reset control API functions 55 * @num_rstcs: number of reset controls 56 * @rstc: array of reset controls 57 */ 58struct reset_control_array { 59 struct reset_control base; 60 unsigned int num_rstcs; 61 struct reset_control *rstc[]; 62}; 63 64static const char *rcdev_name(struct reset_controller_dev *rcdev) 65{ 66 if (rcdev->dev) 67 return dev_name(rcdev->dev); 68 69 if (rcdev->of_node) 70 return rcdev->of_node->full_name; 71 72 return NULL; 73} 74 75/** 76 * of_reset_simple_xlate - translate reset_spec to the reset line number 77 * @rcdev: a pointer to the reset controller device 78 * @reset_spec: reset line specifier as found in the device tree 79 * @flags: a flags pointer to fill in (optional) 80 * 81 * This simple translation function should be used for reset controllers 82 * with 1:1 mapping, where reset lines can be indexed by number without gaps. 83 */ 84static int of_reset_simple_xlate(struct reset_controller_dev *rcdev, 85 const struct of_phandle_args *reset_spec) 86{ 87 if (reset_spec->args[0] >= rcdev->nr_resets) 88 return -EINVAL; 89 90 return reset_spec->args[0]; 91} 92 93/** 94 * reset_controller_register - register a reset controller device 95 * @rcdev: a pointer to the initialized reset controller device 96 */ 97int reset_controller_register(struct reset_controller_dev *rcdev) 98{ 99 if (!rcdev->of_xlate) { 100 rcdev->of_reset_n_cells = 1; 101 rcdev->of_xlate = of_reset_simple_xlate; 102 } 103 104 INIT_LIST_HEAD(&rcdev->reset_control_head); 105 106 mutex_lock(&reset_list_mutex); 107 list_add(&rcdev->list, &reset_controller_list); 108 mutex_unlock(&reset_list_mutex); 109 110 return 0; 111} 112EXPORT_SYMBOL_GPL(reset_controller_register); 113 114/** 115 * reset_controller_unregister - unregister a reset controller device 116 * @rcdev: a pointer to the reset controller device 117 */ 118void reset_controller_unregister(struct reset_controller_dev *rcdev) 119{ 120 mutex_lock(&reset_list_mutex); 121 list_del(&rcdev->list); 122 mutex_unlock(&reset_list_mutex); 123} 124EXPORT_SYMBOL_GPL(reset_controller_unregister); 125 126static void devm_reset_controller_release(struct device *dev, void *res) 127{ 128 reset_controller_unregister(*(struct reset_controller_dev **)res); 129} 130 131/** 132 * devm_reset_controller_register - resource managed reset_controller_register() 133 * @dev: device that is registering this reset controller 134 * @rcdev: a pointer to the initialized reset controller device 135 * 136 * Managed reset_controller_register(). For reset controllers registered by 137 * this function, reset_controller_unregister() is automatically called on 138 * driver detach. See reset_controller_register() for more information. 139 */ 140int devm_reset_controller_register(struct device *dev, 141 struct reset_controller_dev *rcdev) 142{ 143 struct reset_controller_dev **rcdevp; 144 int ret; 145 146 rcdevp = devres_alloc(devm_reset_controller_release, sizeof(*rcdevp), 147 GFP_KERNEL); 148 if (!rcdevp) 149 return -ENOMEM; 150 151 ret = reset_controller_register(rcdev); 152 if (!ret) { 153 *rcdevp = rcdev; 154 devres_add(dev, rcdevp); 155 } else { 156 devres_free(rcdevp); 157 } 158 159 return ret; 160} 161EXPORT_SYMBOL_GPL(devm_reset_controller_register); 162 163/** 164 * reset_controller_add_lookup - register a set of lookup entries 165 * @lookup: array of reset lookup entries 166 * @num_entries: number of entries in the lookup array 167 */ 168void reset_controller_add_lookup(struct reset_control_lookup *lookup, 169 unsigned int num_entries) 170{ 171 struct reset_control_lookup *entry; 172 unsigned int i; 173 174 mutex_lock(&reset_lookup_mutex); 175 for (i = 0; i < num_entries; i++) { 176 entry = &lookup[i]; 177 178 if (!entry->dev_id || !entry->provider) { 179 pr_warn("%s(): reset lookup entry badly specified, skipping\n", 180 __func__); 181 continue; 182 } 183 184 list_add_tail(&entry->list, &reset_lookup_list); 185 } 186 mutex_unlock(&reset_lookup_mutex); 187} 188EXPORT_SYMBOL_GPL(reset_controller_add_lookup); 189 190static inline struct reset_control_array * 191rstc_to_array(struct reset_control *rstc) { 192 return container_of(rstc, struct reset_control_array, base); 193} 194 195static int reset_control_array_reset(struct reset_control_array *resets) 196{ 197 int ret, i; 198 199 for (i = 0; i < resets->num_rstcs; i++) { 200 ret = reset_control_reset(resets->rstc[i]); 201 if (ret) 202 return ret; 203 } 204 205 return 0; 206} 207 208static int reset_control_array_assert(struct reset_control_array *resets) 209{ 210 int ret, i; 211 212 for (i = 0; i < resets->num_rstcs; i++) { 213 ret = reset_control_assert(resets->rstc[i]); 214 if (ret) 215 goto err; 216 } 217 218 return 0; 219 220err: 221 while (i--) 222 reset_control_deassert(resets->rstc[i]); 223 return ret; 224} 225 226static int reset_control_array_deassert(struct reset_control_array *resets) 227{ 228 int ret, i; 229 230 for (i = 0; i < resets->num_rstcs; i++) { 231 ret = reset_control_deassert(resets->rstc[i]); 232 if (ret) 233 goto err; 234 } 235 236 return 0; 237 238err: 239 while (i--) 240 reset_control_assert(resets->rstc[i]); 241 return ret; 242} 243 244static int reset_control_array_acquire(struct reset_control_array *resets) 245{ 246 unsigned int i; 247 int err; 248 249 for (i = 0; i < resets->num_rstcs; i++) { 250 err = reset_control_acquire(resets->rstc[i]); 251 if (err < 0) 252 goto release; 253 } 254 255 return 0; 256 257release: 258 while (i--) 259 reset_control_release(resets->rstc[i]); 260 261 return err; 262} 263 264static void reset_control_array_release(struct reset_control_array *resets) 265{ 266 unsigned int i; 267 268 for (i = 0; i < resets->num_rstcs; i++) 269 reset_control_release(resets->rstc[i]); 270} 271 272static inline bool reset_control_is_array(struct reset_control *rstc) 273{ 274 return rstc->array; 275} 276 277/** 278 * reset_control_reset - reset the controlled device 279 * @rstc: reset controller 280 * 281 * On a shared reset line the actual reset pulse is only triggered once for the 282 * lifetime of the reset_control instance: for all but the first caller this is 283 * a no-op. 284 * Consumers must not use reset_control_(de)assert on shared reset lines when 285 * reset_control_reset has been used. 286 * 287 * If rstc is NULL it is an optional reset and the function will just 288 * return 0. 289 */ 290int reset_control_reset(struct reset_control *rstc) 291{ 292 int ret; 293 294 if (!rstc) 295 return 0; 296 297 if (WARN_ON(IS_ERR(rstc))) 298 return -EINVAL; 299 300 if (reset_control_is_array(rstc)) 301 return reset_control_array_reset(rstc_to_array(rstc)); 302 303 if (!rstc->rcdev->ops->reset) 304 return -ENOTSUPP; 305 306 if (rstc->shared) { 307 if (WARN_ON(atomic_read(&rstc->deassert_count) != 0)) 308 return -EINVAL; 309 310 if (atomic_inc_return(&rstc->triggered_count) != 1) 311 return 0; 312 } else { 313 if (!rstc->acquired) 314 return -EPERM; 315 } 316 317 ret = rstc->rcdev->ops->reset(rstc->rcdev, rstc->id); 318 if (rstc->shared && ret) 319 atomic_dec(&rstc->triggered_count); 320 321 return ret; 322} 323EXPORT_SYMBOL_GPL(reset_control_reset); 324 325/** 326 * reset_control_assert - asserts the reset line 327 * @rstc: reset controller 328 * 329 * Calling this on an exclusive reset controller guarantees that the reset 330 * will be asserted. When called on a shared reset controller the line may 331 * still be deasserted, as long as other users keep it so. 332 * 333 * For shared reset controls a driver cannot expect the hw's registers and 334 * internal state to be reset, but must be prepared for this to happen. 335 * Consumers must not use reset_control_reset on shared reset lines when 336 * reset_control_(de)assert has been used. 337 * return 0. 338 * 339 * If rstc is NULL it is an optional reset and the function will just 340 * return 0. 341 */ 342int reset_control_assert(struct reset_control *rstc) 343{ 344 if (!rstc) 345 return 0; 346 347 if (WARN_ON(IS_ERR(rstc))) 348 return -EINVAL; 349 350 if (reset_control_is_array(rstc)) 351 return reset_control_array_assert(rstc_to_array(rstc)); 352 353 if (rstc->shared) { 354 if (WARN_ON(atomic_read(&rstc->triggered_count) != 0)) 355 return -EINVAL; 356 357 if (WARN_ON(atomic_read(&rstc->deassert_count) == 0)) 358 return -EINVAL; 359 360 if (atomic_dec_return(&rstc->deassert_count) != 0) 361 return 0; 362 363 /* 364 * Shared reset controls allow the reset line to be in any state 365 * after this call, so doing nothing is a valid option. 366 */ 367 if (!rstc->rcdev->ops->assert) 368 return 0; 369 } else { 370 /* 371 * If the reset controller does not implement .assert(), there 372 * is no way to guarantee that the reset line is asserted after 373 * this call. 374 */ 375 if (!rstc->rcdev->ops->assert) 376 return -ENOTSUPP; 377 378 if (!rstc->acquired) { 379 WARN(1, "reset %s (ID: %u) is not acquired\n", 380 rcdev_name(rstc->rcdev), rstc->id); 381 return -EPERM; 382 } 383 } 384 385 return rstc->rcdev->ops->assert(rstc->rcdev, rstc->id); 386} 387EXPORT_SYMBOL_GPL(reset_control_assert); 388 389/** 390 * reset_control_deassert - deasserts the reset line 391 * @rstc: reset controller 392 * 393 * After calling this function, the reset is guaranteed to be deasserted. 394 * Consumers must not use reset_control_reset on shared reset lines when 395 * reset_control_(de)assert has been used. 396 * return 0. 397 * 398 * If rstc is NULL it is an optional reset and the function will just 399 * return 0. 400 */ 401int reset_control_deassert(struct reset_control *rstc) 402{ 403 if (!rstc) 404 return 0; 405 406 if (WARN_ON(IS_ERR(rstc))) 407 return -EINVAL; 408 409 if (reset_control_is_array(rstc)) 410 return reset_control_array_deassert(rstc_to_array(rstc)); 411 412 if (rstc->shared) { 413 if (WARN_ON(atomic_read(&rstc->triggered_count) != 0)) 414 return -EINVAL; 415 416 if (atomic_inc_return(&rstc->deassert_count) != 1) 417 return 0; 418 } else { 419 if (!rstc->acquired) { 420 WARN(1, "reset %s (ID: %u) is not acquired\n", 421 rcdev_name(rstc->rcdev), rstc->id); 422 return -EPERM; 423 } 424 } 425 426 /* 427 * If the reset controller does not implement .deassert(), we assume 428 * that it handles self-deasserting reset lines via .reset(). In that 429 * case, the reset lines are deasserted by default. If that is not the 430 * case, the reset controller driver should implement .deassert() and 431 * return -ENOTSUPP. 432 */ 433 if (!rstc->rcdev->ops->deassert) 434 return 0; 435 436 return rstc->rcdev->ops->deassert(rstc->rcdev, rstc->id); 437} 438EXPORT_SYMBOL_GPL(reset_control_deassert); 439 440/** 441 * reset_control_status - returns a negative errno if not supported, a 442 * positive value if the reset line is asserted, or zero if the reset 443 * line is not asserted or if the desc is NULL (optional reset). 444 * @rstc: reset controller 445 */ 446int reset_control_status(struct reset_control *rstc) 447{ 448 if (!rstc) 449 return 0; 450 451 if (WARN_ON(IS_ERR(rstc)) || reset_control_is_array(rstc)) 452 return -EINVAL; 453 454 if (rstc->rcdev->ops->status) 455 return rstc->rcdev->ops->status(rstc->rcdev, rstc->id); 456 457 return -ENOTSUPP; 458} 459EXPORT_SYMBOL_GPL(reset_control_status); 460 461/** 462 * reset_control_acquire() - acquires a reset control for exclusive use 463 * @rstc: reset control 464 * 465 * This is used to explicitly acquire a reset control for exclusive use. Note 466 * that exclusive resets are requested as acquired by default. In order for a 467 * second consumer to be able to control the reset, the first consumer has to 468 * release it first. Typically the easiest way to achieve this is to call the 469 * reset_control_get_exclusive_released() to obtain an instance of the reset 470 * control. Such reset controls are not acquired by default. 471 * 472 * Consumers implementing shared access to an exclusive reset need to follow 473 * a specific protocol in order to work together. Before consumers can change 474 * a reset they must acquire exclusive access using reset_control_acquire(). 475 * After they are done operating the reset, they must release exclusive access 476 * with a call to reset_control_release(). Consumers are not granted exclusive 477 * access to the reset as long as another consumer hasn't released a reset. 478 * 479 * See also: reset_control_release() 480 */ 481int reset_control_acquire(struct reset_control *rstc) 482{ 483 struct reset_control *rc; 484 485 if (!rstc) 486 return 0; 487 488 if (WARN_ON(IS_ERR(rstc))) 489 return -EINVAL; 490 491 if (reset_control_is_array(rstc)) 492 return reset_control_array_acquire(rstc_to_array(rstc)); 493 494 mutex_lock(&reset_list_mutex); 495 496 if (rstc->acquired) { 497 mutex_unlock(&reset_list_mutex); 498 return 0; 499 } 500 501 list_for_each_entry(rc, &rstc->rcdev->reset_control_head, list) { 502 if (rstc != rc && rstc->id == rc->id) { 503 if (rc->acquired) { 504 mutex_unlock(&reset_list_mutex); 505 return -EBUSY; 506 } 507 } 508 } 509 510 rstc->acquired = true; 511 512 mutex_unlock(&reset_list_mutex); 513 return 0; 514} 515EXPORT_SYMBOL_GPL(reset_control_acquire); 516 517/** 518 * reset_control_release() - releases exclusive access to a reset control 519 * @rstc: reset control 520 * 521 * Releases exclusive access right to a reset control previously obtained by a 522 * call to reset_control_acquire(). Until a consumer calls this function, no 523 * other consumers will be granted exclusive access. 524 * 525 * See also: reset_control_acquire() 526 */ 527void reset_control_release(struct reset_control *rstc) 528{ 529 if (!rstc || WARN_ON(IS_ERR(rstc))) 530 return; 531 532 if (reset_control_is_array(rstc)) 533 reset_control_array_release(rstc_to_array(rstc)); 534 else 535 rstc->acquired = false; 536} 537EXPORT_SYMBOL_GPL(reset_control_release); 538 539static struct reset_control *__reset_control_get_internal( 540 struct reset_controller_dev *rcdev, 541 unsigned int index, bool shared, bool acquired) 542{ 543 struct reset_control *rstc; 544 545 lockdep_assert_held(&reset_list_mutex); 546 547 list_for_each_entry(rstc, &rcdev->reset_control_head, list) { 548 if (rstc->id == index) { 549 /* 550 * Allow creating a secondary exclusive reset_control 551 * that is initially not acquired for an already 552 * controlled reset line. 553 */ 554 if (!rstc->shared && !shared && !acquired) 555 break; 556 557 if (WARN_ON(!rstc->shared || !shared)) 558 return ERR_PTR(-EBUSY); 559 560 kref_get(&rstc->refcnt); 561 return rstc; 562 } 563 } 564 565 rstc = kzalloc(sizeof(*rstc), GFP_KERNEL); 566 if (!rstc) 567 return ERR_PTR(-ENOMEM); 568 569 try_module_get(rcdev->owner); 570 571 rstc->rcdev = rcdev; 572 list_add(&rstc->list, &rcdev->reset_control_head); 573 rstc->id = index; 574 kref_init(&rstc->refcnt); 575 rstc->acquired = acquired; 576 rstc->shared = shared; 577 578 return rstc; 579} 580 581static void __reset_control_release(struct kref *kref) 582{ 583 struct reset_control *rstc = container_of(kref, struct reset_control, 584 refcnt); 585 586 lockdep_assert_held(&reset_list_mutex); 587 588 module_put(rstc->rcdev->owner); 589 590 list_del(&rstc->list); 591 kfree(rstc); 592} 593 594static void __reset_control_put_internal(struct reset_control *rstc) 595{ 596 lockdep_assert_held(&reset_list_mutex); 597 598 kref_put(&rstc->refcnt, __reset_control_release); 599} 600 601struct reset_control *__of_reset_control_get(struct device_node *node, 602 const char *id, int index, bool shared, 603 bool optional, bool acquired) 604{ 605 struct reset_control *rstc; 606 struct reset_controller_dev *r, *rcdev; 607 struct of_phandle_args args; 608 int rstc_id; 609 int ret; 610 611 if (!node) 612 return ERR_PTR(-EINVAL); 613 614 if (id) { 615 index = of_property_match_string(node, 616 "reset-names", id); 617 if (index == -EILSEQ) 618 return ERR_PTR(index); 619 if (index < 0) 620 return optional ? NULL : ERR_PTR(-ENOENT); 621 } 622 623 ret = of_parse_phandle_with_args(node, "resets", "#reset-cells", 624 index, &args); 625 if (ret == -EINVAL) 626 return ERR_PTR(ret); 627 if (ret) 628 return optional ? NULL : ERR_PTR(ret); 629 630 mutex_lock(&reset_list_mutex); 631 rcdev = NULL; 632 list_for_each_entry(r, &reset_controller_list, list) { 633 if (args.np == r->of_node) { 634 rcdev = r; 635 break; 636 } 637 } 638 639 if (!rcdev) { 640 rstc = ERR_PTR(-EPROBE_DEFER); 641 goto out; 642 } 643 644 if (WARN_ON(args.args_count != rcdev->of_reset_n_cells)) { 645 rstc = ERR_PTR(-EINVAL); 646 goto out; 647 } 648 649 rstc_id = rcdev->of_xlate(rcdev, &args); 650 if (rstc_id < 0) { 651 rstc = ERR_PTR(rstc_id); 652 goto out; 653 } 654 655 /* reset_list_mutex also protects the rcdev's reset_control list */ 656 rstc = __reset_control_get_internal(rcdev, rstc_id, shared, acquired); 657 658out: 659 mutex_unlock(&reset_list_mutex); 660 of_node_put(args.np); 661 662 return rstc; 663} 664EXPORT_SYMBOL_GPL(__of_reset_control_get); 665 666static struct reset_controller_dev * 667__reset_controller_by_name(const char *name) 668{ 669 struct reset_controller_dev *rcdev; 670 671 lockdep_assert_held(&reset_list_mutex); 672 673 list_for_each_entry(rcdev, &reset_controller_list, list) { 674 if (!rcdev->dev) 675 continue; 676 677 if (!strcmp(name, dev_name(rcdev->dev))) 678 return rcdev; 679 } 680 681 return NULL; 682} 683 684static struct reset_control * 685__reset_control_get_from_lookup(struct device *dev, const char *con_id, 686 bool shared, bool optional, bool acquired) 687{ 688 const struct reset_control_lookup *lookup; 689 struct reset_controller_dev *rcdev; 690 const char *dev_id = dev_name(dev); 691 struct reset_control *rstc = NULL; 692 693 if (!dev) 694 return ERR_PTR(-EINVAL); 695 696 mutex_lock(&reset_lookup_mutex); 697 698 list_for_each_entry(lookup, &reset_lookup_list, list) { 699 if (strcmp(lookup->dev_id, dev_id)) 700 continue; 701 702 if ((!con_id && !lookup->con_id) || 703 ((con_id && lookup->con_id) && 704 !strcmp(con_id, lookup->con_id))) { 705 mutex_lock(&reset_list_mutex); 706 rcdev = __reset_controller_by_name(lookup->provider); 707 if (!rcdev) { 708 mutex_unlock(&reset_list_mutex); 709 mutex_unlock(&reset_lookup_mutex); 710 /* Reset provider may not be ready yet. */ 711 return ERR_PTR(-EPROBE_DEFER); 712 } 713 714 rstc = __reset_control_get_internal(rcdev, 715 lookup->index, 716 shared, acquired); 717 mutex_unlock(&reset_list_mutex); 718 break; 719 } 720 } 721 722 mutex_unlock(&reset_lookup_mutex); 723 724 if (!rstc) 725 return optional ? NULL : ERR_PTR(-ENOENT); 726 727 return rstc; 728} 729 730struct reset_control *__reset_control_get(struct device *dev, const char *id, 731 int index, bool shared, bool optional, 732 bool acquired) 733{ 734 if (WARN_ON(shared && acquired)) 735 return ERR_PTR(-EINVAL); 736 737 if (dev->of_node) 738 return __of_reset_control_get(dev->of_node, id, index, shared, 739 optional, acquired); 740 741 return __reset_control_get_from_lookup(dev, id, shared, optional, 742 acquired); 743} 744EXPORT_SYMBOL_GPL(__reset_control_get); 745 746static void reset_control_array_put(struct reset_control_array *resets) 747{ 748 int i; 749 750 mutex_lock(&reset_list_mutex); 751 for (i = 0; i < resets->num_rstcs; i++) 752 __reset_control_put_internal(resets->rstc[i]); 753 mutex_unlock(&reset_list_mutex); 754} 755 756/** 757 * reset_control_put - free the reset controller 758 * @rstc: reset controller 759 */ 760void reset_control_put(struct reset_control *rstc) 761{ 762 if (IS_ERR_OR_NULL(rstc)) 763 return; 764 765 if (reset_control_is_array(rstc)) { 766 reset_control_array_put(rstc_to_array(rstc)); 767 return; 768 } 769 770 mutex_lock(&reset_list_mutex); 771 __reset_control_put_internal(rstc); 772 mutex_unlock(&reset_list_mutex); 773} 774EXPORT_SYMBOL_GPL(reset_control_put); 775 776static void devm_reset_control_release(struct device *dev, void *res) 777{ 778 reset_control_put(*(struct reset_control **)res); 779} 780 781struct reset_control *__devm_reset_control_get(struct device *dev, 782 const char *id, int index, bool shared, 783 bool optional, bool acquired) 784{ 785 struct reset_control **ptr, *rstc; 786 787 ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr), 788 GFP_KERNEL); 789 if (!ptr) 790 return ERR_PTR(-ENOMEM); 791 792 rstc = __reset_control_get(dev, id, index, shared, optional, acquired); 793 if (!IS_ERR(rstc)) { 794 *ptr = rstc; 795 devres_add(dev, ptr); 796 } else { 797 devres_free(ptr); 798 } 799 800 return rstc; 801} 802EXPORT_SYMBOL_GPL(__devm_reset_control_get); 803 804/** 805 * device_reset - find reset controller associated with the device 806 * and perform reset 807 * @dev: device to be reset by the controller 808 * @optional: whether it is optional to reset the device 809 * 810 * Convenience wrapper for __reset_control_get() and reset_control_reset(). 811 * This is useful for the common case of devices with single, dedicated reset 812 * lines. 813 */ 814int __device_reset(struct device *dev, bool optional) 815{ 816 struct reset_control *rstc; 817 int ret; 818 819 rstc = __reset_control_get(dev, NULL, 0, 0, optional, true); 820 if (IS_ERR(rstc)) 821 return PTR_ERR(rstc); 822 823 ret = reset_control_reset(rstc); 824 825 reset_control_put(rstc); 826 827 return ret; 828} 829EXPORT_SYMBOL_GPL(__device_reset); 830 831/** 832 * APIs to manage an array of reset controls. 833 */ 834/** 835 * of_reset_control_get_count - Count number of resets available with a device 836 * 837 * @node: device node that contains 'resets'. 838 * 839 * Returns positive reset count on success, or error number on failure and 840 * on count being zero. 841 */ 842static int of_reset_control_get_count(struct device_node *node) 843{ 844 int count; 845 846 if (!node) 847 return -EINVAL; 848 849 count = of_count_phandle_with_args(node, "resets", "#reset-cells"); 850 if (count == 0) 851 count = -ENOENT; 852 853 return count; 854} 855 856/** 857 * of_reset_control_array_get - Get a list of reset controls using 858 * device node. 859 * 860 * @np: device node for the device that requests the reset controls array 861 * @shared: whether reset controls are shared or not 862 * @optional: whether it is optional to get the reset controls 863 * @acquired: only one reset control may be acquired for a given controller 864 * and ID 865 * 866 * Returns pointer to allocated reset_control_array on success or 867 * error on failure 868 */ 869struct reset_control * 870of_reset_control_array_get(struct device_node *np, bool shared, bool optional, 871 bool acquired) 872{ 873 struct reset_control_array *resets; 874 struct reset_control *rstc; 875 int num, i; 876 877 num = of_reset_control_get_count(np); 878 if (num < 0) 879 return optional ? NULL : ERR_PTR(num); 880 881 resets = kzalloc(struct_size(resets, rstc, num), GFP_KERNEL); 882 if (!resets) 883 return ERR_PTR(-ENOMEM); 884 885 for (i = 0; i < num; i++) { 886 rstc = __of_reset_control_get(np, NULL, i, shared, optional, 887 acquired); 888 if (IS_ERR(rstc)) 889 goto err_rst; 890 resets->rstc[i] = rstc; 891 } 892 resets->num_rstcs = num; 893 resets->base.array = true; 894 895 return &resets->base; 896 897err_rst: 898 mutex_lock(&reset_list_mutex); 899 while (--i >= 0) 900 __reset_control_put_internal(resets->rstc[i]); 901 mutex_unlock(&reset_list_mutex); 902 903 kfree(resets); 904 905 return rstc; 906} 907EXPORT_SYMBOL_GPL(of_reset_control_array_get); 908 909/** 910 * devm_reset_control_array_get - Resource managed reset control array get 911 * 912 * @dev: device that requests the list of reset controls 913 * @shared: whether reset controls are shared or not 914 * @optional: whether it is optional to get the reset controls 915 * 916 * The reset control array APIs are intended for a list of resets 917 * that just have to be asserted or deasserted, without any 918 * requirements on the order. 919 * 920 * Returns pointer to allocated reset_control_array on success or 921 * error on failure 922 */ 923struct reset_control * 924devm_reset_control_array_get(struct device *dev, bool shared, bool optional) 925{ 926 struct reset_control **devres; 927 struct reset_control *rstc; 928 929 devres = devres_alloc(devm_reset_control_release, sizeof(*devres), 930 GFP_KERNEL); 931 if (!devres) 932 return ERR_PTR(-ENOMEM); 933 934 rstc = of_reset_control_array_get(dev->of_node, shared, optional, true); 935 if (IS_ERR(rstc)) { 936 devres_free(devres); 937 return rstc; 938 } 939 940 *devres = rstc; 941 devres_add(dev, devres); 942 943 return rstc; 944} 945EXPORT_SYMBOL_GPL(devm_reset_control_array_get); 946 947static int reset_control_get_count_from_lookup(struct device *dev) 948{ 949 const struct reset_control_lookup *lookup; 950 const char *dev_id; 951 int count = 0; 952 953 if (!dev) 954 return -EINVAL; 955 956 dev_id = dev_name(dev); 957 mutex_lock(&reset_lookup_mutex); 958 959 list_for_each_entry(lookup, &reset_lookup_list, list) { 960 if (!strcmp(lookup->dev_id, dev_id)) 961 count++; 962 } 963 964 mutex_unlock(&reset_lookup_mutex); 965 966 if (count == 0) 967 count = -ENOENT; 968 969 return count; 970} 971 972/** 973 * reset_control_get_count - Count number of resets available with a device 974 * 975 * @dev: device for which to return the number of resets 976 * 977 * Returns positive reset count on success, or error number on failure and 978 * on count being zero. 979 */ 980int reset_control_get_count(struct device *dev) 981{ 982 if (dev->of_node) 983 return of_reset_control_get_count(dev->of_node); 984 985 return reset_control_get_count_from_lookup(dev); 986} 987EXPORT_SYMBOL_GPL(reset_control_get_count);