Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * core.c -- Voltage/Current Regulator framework.
4 *
5 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 * Copyright 2008 SlimLogic Ltd.
7 *
8 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 */
10
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/debugfs.h>
14#include <linux/device.h>
15#include <linux/slab.h>
16#include <linux/async.h>
17#include <linux/err.h>
18#include <linux/mutex.h>
19#include <linux/suspend.h>
20#include <linux/delay.h>
21#include <linux/gpio/consumer.h>
22#include <linux/of.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static bool has_full_constraints;
54
55static struct dentry *debugfs_root;
56
57/*
58 * struct regulator_map
59 *
60 * Used to provide symbolic supply names to devices.
61 */
62struct regulator_map {
63 struct list_head list;
64 const char *dev_name; /* The dev_name() for the consumer */
65 const char *supply;
66 struct regulator_dev *regulator;
67};
68
69/*
70 * struct regulator_enable_gpio
71 *
72 * Management for shared enable GPIO pin
73 */
74struct regulator_enable_gpio {
75 struct list_head list;
76 struct gpio_desc *gpiod;
77 u32 enable_count; /* a number of enabled shared GPIO */
78 u32 request_count; /* a number of requested shared GPIO */
79};
80
81/*
82 * struct regulator_supply_alias
83 *
84 * Used to map lookups for a supply onto an alternative device.
85 */
86struct regulator_supply_alias {
87 struct list_head list;
88 struct device *src_dev;
89 const char *src_supply;
90 struct device *alias_dev;
91 const char *alias_supply;
92};
93
94static int _regulator_is_enabled(struct regulator_dev *rdev);
95static int _regulator_disable(struct regulator *regulator);
96static int _regulator_get_voltage(struct regulator_dev *rdev);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
106 int min_uV, int max_uV,
107 suspend_state_t state);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111static void _regulator_put(struct regulator *regulator);
112
113static const char *rdev_get_name(struct regulator_dev *rdev)
114{
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121}
122
123static bool have_full_constraints(void)
124{
125 return has_full_constraints || of_have_populated_dt();
126}
127
128static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129{
130 if (!rdev->constraints) {
131 rdev_err(rdev, "no constraints\n");
132 return false;
133 }
134
135 if (rdev->constraints->valid_ops_mask & ops)
136 return true;
137
138 return false;
139}
140
141/**
142 * regulator_lock_nested - lock a single regulator
143 * @rdev: regulator source
144 * @ww_ctx: w/w mutex acquire context
145 *
146 * This function can be called many times by one task on
147 * a single regulator and its mutex will be locked only
148 * once. If a task, which is calling this function is other
149 * than the one, which initially locked the mutex, it will
150 * wait on mutex.
151 */
152static inline int regulator_lock_nested(struct regulator_dev *rdev,
153 struct ww_acquire_ctx *ww_ctx)
154{
155 bool lock = false;
156 int ret = 0;
157
158 mutex_lock(®ulator_nesting_mutex);
159
160 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
161 if (rdev->mutex_owner == current)
162 rdev->ref_cnt++;
163 else
164 lock = true;
165
166 if (lock) {
167 mutex_unlock(®ulator_nesting_mutex);
168 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
169 mutex_lock(®ulator_nesting_mutex);
170 }
171 } else {
172 lock = true;
173 }
174
175 if (lock && ret != -EDEADLK) {
176 rdev->ref_cnt++;
177 rdev->mutex_owner = current;
178 }
179
180 mutex_unlock(®ulator_nesting_mutex);
181
182 return ret;
183}
184
185/**
186 * regulator_lock - lock a single regulator
187 * @rdev: regulator source
188 *
189 * This function can be called many times by one task on
190 * a single regulator and its mutex will be locked only
191 * once. If a task, which is calling this function is other
192 * than the one, which initially locked the mutex, it will
193 * wait on mutex.
194 */
195void regulator_lock(struct regulator_dev *rdev)
196{
197 regulator_lock_nested(rdev, NULL);
198}
199EXPORT_SYMBOL_GPL(regulator_lock);
200
201/**
202 * regulator_unlock - unlock a single regulator
203 * @rdev: regulator_source
204 *
205 * This function unlocks the mutex when the
206 * reference counter reaches 0.
207 */
208void regulator_unlock(struct regulator_dev *rdev)
209{
210 mutex_lock(®ulator_nesting_mutex);
211
212 if (--rdev->ref_cnt == 0) {
213 rdev->mutex_owner = NULL;
214 ww_mutex_unlock(&rdev->mutex);
215 }
216
217 WARN_ON_ONCE(rdev->ref_cnt < 0);
218
219 mutex_unlock(®ulator_nesting_mutex);
220}
221EXPORT_SYMBOL_GPL(regulator_unlock);
222
223static bool regulator_supply_is_couple(struct regulator_dev *rdev)
224{
225 struct regulator_dev *c_rdev;
226 int i;
227
228 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
229 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
230
231 if (rdev->supply->rdev == c_rdev)
232 return true;
233 }
234
235 return false;
236}
237
238static void regulator_unlock_recursive(struct regulator_dev *rdev,
239 unsigned int n_coupled)
240{
241 struct regulator_dev *c_rdev;
242 int i;
243
244 for (i = n_coupled; i > 0; i--) {
245 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
246
247 if (!c_rdev)
248 continue;
249
250 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
251 regulator_unlock_recursive(
252 c_rdev->supply->rdev,
253 c_rdev->coupling_desc.n_coupled);
254
255 regulator_unlock(c_rdev);
256 }
257}
258
259static int regulator_lock_recursive(struct regulator_dev *rdev,
260 struct regulator_dev **new_contended_rdev,
261 struct regulator_dev **old_contended_rdev,
262 struct ww_acquire_ctx *ww_ctx)
263{
264 struct regulator_dev *c_rdev;
265 int i, err;
266
267 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
268 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
269
270 if (!c_rdev)
271 continue;
272
273 if (c_rdev != *old_contended_rdev) {
274 err = regulator_lock_nested(c_rdev, ww_ctx);
275 if (err) {
276 if (err == -EDEADLK) {
277 *new_contended_rdev = c_rdev;
278 goto err_unlock;
279 }
280
281 /* shouldn't happen */
282 WARN_ON_ONCE(err != -EALREADY);
283 }
284 } else {
285 *old_contended_rdev = NULL;
286 }
287
288 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
289 err = regulator_lock_recursive(c_rdev->supply->rdev,
290 new_contended_rdev,
291 old_contended_rdev,
292 ww_ctx);
293 if (err) {
294 regulator_unlock(c_rdev);
295 goto err_unlock;
296 }
297 }
298 }
299
300 return 0;
301
302err_unlock:
303 regulator_unlock_recursive(rdev, i);
304
305 return err;
306}
307
308/**
309 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
310 * regulators
311 * @rdev: regulator source
312 * @ww_ctx: w/w mutex acquire context
313 *
314 * Unlock all regulators related with rdev by coupling or supplying.
315 */
316static void regulator_unlock_dependent(struct regulator_dev *rdev,
317 struct ww_acquire_ctx *ww_ctx)
318{
319 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
320 ww_acquire_fini(ww_ctx);
321}
322
323/**
324 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
325 * @rdev: regulator source
326 * @ww_ctx: w/w mutex acquire context
327 *
328 * This function as a wrapper on regulator_lock_recursive(), which locks
329 * all regulators related with rdev by coupling or supplying.
330 */
331static void regulator_lock_dependent(struct regulator_dev *rdev,
332 struct ww_acquire_ctx *ww_ctx)
333{
334 struct regulator_dev *new_contended_rdev = NULL;
335 struct regulator_dev *old_contended_rdev = NULL;
336 int err;
337
338 mutex_lock(®ulator_list_mutex);
339
340 ww_acquire_init(ww_ctx, ®ulator_ww_class);
341
342 do {
343 if (new_contended_rdev) {
344 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
345 old_contended_rdev = new_contended_rdev;
346 old_contended_rdev->ref_cnt++;
347 }
348
349 err = regulator_lock_recursive(rdev,
350 &new_contended_rdev,
351 &old_contended_rdev,
352 ww_ctx);
353
354 if (old_contended_rdev)
355 regulator_unlock(old_contended_rdev);
356
357 } while (err == -EDEADLK);
358
359 ww_acquire_done(ww_ctx);
360
361 mutex_unlock(®ulator_list_mutex);
362}
363
364/**
365 * of_get_child_regulator - get a child regulator device node
366 * based on supply name
367 * @parent: Parent device node
368 * @prop_name: Combination regulator supply name and "-supply"
369 *
370 * Traverse all child nodes.
371 * Extract the child regulator device node corresponding to the supply name.
372 * returns the device node corresponding to the regulator if found, else
373 * returns NULL.
374 */
375static struct device_node *of_get_child_regulator(struct device_node *parent,
376 const char *prop_name)
377{
378 struct device_node *regnode = NULL;
379 struct device_node *child = NULL;
380
381 for_each_child_of_node(parent, child) {
382 regnode = of_parse_phandle(child, prop_name, 0);
383
384 if (!regnode) {
385 regnode = of_get_child_regulator(child, prop_name);
386 if (regnode)
387 return regnode;
388 } else {
389 return regnode;
390 }
391 }
392 return NULL;
393}
394
395/**
396 * of_get_regulator - get a regulator device node based on supply name
397 * @dev: Device pointer for the consumer (of regulator) device
398 * @supply: regulator supply name
399 *
400 * Extract the regulator device node corresponding to the supply name.
401 * returns the device node corresponding to the regulator if found, else
402 * returns NULL.
403 */
404static struct device_node *of_get_regulator(struct device *dev, const char *supply)
405{
406 struct device_node *regnode = NULL;
407 char prop_name[32]; /* 32 is max size of property name */
408
409 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
410
411 snprintf(prop_name, 32, "%s-supply", supply);
412 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
413
414 if (!regnode) {
415 regnode = of_get_child_regulator(dev->of_node, prop_name);
416 if (regnode)
417 return regnode;
418
419 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
420 prop_name, dev->of_node);
421 return NULL;
422 }
423 return regnode;
424}
425
426/* Platform voltage constraint check */
427static int regulator_check_voltage(struct regulator_dev *rdev,
428 int *min_uV, int *max_uV)
429{
430 BUG_ON(*min_uV > *max_uV);
431
432 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
433 rdev_err(rdev, "voltage operation not allowed\n");
434 return -EPERM;
435 }
436
437 if (*max_uV > rdev->constraints->max_uV)
438 *max_uV = rdev->constraints->max_uV;
439 if (*min_uV < rdev->constraints->min_uV)
440 *min_uV = rdev->constraints->min_uV;
441
442 if (*min_uV > *max_uV) {
443 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
444 *min_uV, *max_uV);
445 return -EINVAL;
446 }
447
448 return 0;
449}
450
451/* return 0 if the state is valid */
452static int regulator_check_states(suspend_state_t state)
453{
454 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
455}
456
457/* Make sure we select a voltage that suits the needs of all
458 * regulator consumers
459 */
460static int regulator_check_consumers(struct regulator_dev *rdev,
461 int *min_uV, int *max_uV,
462 suspend_state_t state)
463{
464 struct regulator *regulator;
465 struct regulator_voltage *voltage;
466
467 list_for_each_entry(regulator, &rdev->consumer_list, list) {
468 voltage = ®ulator->voltage[state];
469 /*
470 * Assume consumers that didn't say anything are OK
471 * with anything in the constraint range.
472 */
473 if (!voltage->min_uV && !voltage->max_uV)
474 continue;
475
476 if (*max_uV > voltage->max_uV)
477 *max_uV = voltage->max_uV;
478 if (*min_uV < voltage->min_uV)
479 *min_uV = voltage->min_uV;
480 }
481
482 if (*min_uV > *max_uV) {
483 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
484 *min_uV, *max_uV);
485 return -EINVAL;
486 }
487
488 return 0;
489}
490
491/* current constraint check */
492static int regulator_check_current_limit(struct regulator_dev *rdev,
493 int *min_uA, int *max_uA)
494{
495 BUG_ON(*min_uA > *max_uA);
496
497 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
498 rdev_err(rdev, "current operation not allowed\n");
499 return -EPERM;
500 }
501
502 if (*max_uA > rdev->constraints->max_uA)
503 *max_uA = rdev->constraints->max_uA;
504 if (*min_uA < rdev->constraints->min_uA)
505 *min_uA = rdev->constraints->min_uA;
506
507 if (*min_uA > *max_uA) {
508 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
509 *min_uA, *max_uA);
510 return -EINVAL;
511 }
512
513 return 0;
514}
515
516/* operating mode constraint check */
517static int regulator_mode_constrain(struct regulator_dev *rdev,
518 unsigned int *mode)
519{
520 switch (*mode) {
521 case REGULATOR_MODE_FAST:
522 case REGULATOR_MODE_NORMAL:
523 case REGULATOR_MODE_IDLE:
524 case REGULATOR_MODE_STANDBY:
525 break;
526 default:
527 rdev_err(rdev, "invalid mode %x specified\n", *mode);
528 return -EINVAL;
529 }
530
531 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
532 rdev_err(rdev, "mode operation not allowed\n");
533 return -EPERM;
534 }
535
536 /* The modes are bitmasks, the most power hungry modes having
537 * the lowest values. If the requested mode isn't supported
538 * try higher modes. */
539 while (*mode) {
540 if (rdev->constraints->valid_modes_mask & *mode)
541 return 0;
542 *mode /= 2;
543 }
544
545 return -EINVAL;
546}
547
548static inline struct regulator_state *
549regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
550{
551 if (rdev->constraints == NULL)
552 return NULL;
553
554 switch (state) {
555 case PM_SUSPEND_STANDBY:
556 return &rdev->constraints->state_standby;
557 case PM_SUSPEND_MEM:
558 return &rdev->constraints->state_mem;
559 case PM_SUSPEND_MAX:
560 return &rdev->constraints->state_disk;
561 default:
562 return NULL;
563 }
564}
565
566static ssize_t regulator_uV_show(struct device *dev,
567 struct device_attribute *attr, char *buf)
568{
569 struct regulator_dev *rdev = dev_get_drvdata(dev);
570 ssize_t ret;
571
572 regulator_lock(rdev);
573 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
574 regulator_unlock(rdev);
575
576 return ret;
577}
578static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
579
580static ssize_t regulator_uA_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582{
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
586}
587static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
588
589static ssize_t name_show(struct device *dev, struct device_attribute *attr,
590 char *buf)
591{
592 struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594 return sprintf(buf, "%s\n", rdev_get_name(rdev));
595}
596static DEVICE_ATTR_RO(name);
597
598static const char *regulator_opmode_to_str(int mode)
599{
600 switch (mode) {
601 case REGULATOR_MODE_FAST:
602 return "fast";
603 case REGULATOR_MODE_NORMAL:
604 return "normal";
605 case REGULATOR_MODE_IDLE:
606 return "idle";
607 case REGULATOR_MODE_STANDBY:
608 return "standby";
609 }
610 return "unknown";
611}
612
613static ssize_t regulator_print_opmode(char *buf, int mode)
614{
615 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
616}
617
618static ssize_t regulator_opmode_show(struct device *dev,
619 struct device_attribute *attr, char *buf)
620{
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
624}
625static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
626
627static ssize_t regulator_print_state(char *buf, int state)
628{
629 if (state > 0)
630 return sprintf(buf, "enabled\n");
631 else if (state == 0)
632 return sprintf(buf, "disabled\n");
633 else
634 return sprintf(buf, "unknown\n");
635}
636
637static ssize_t regulator_state_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
639{
640 struct regulator_dev *rdev = dev_get_drvdata(dev);
641 ssize_t ret;
642
643 regulator_lock(rdev);
644 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
645 regulator_unlock(rdev);
646
647 return ret;
648}
649static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
650
651static ssize_t regulator_status_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
653{
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655 int status;
656 char *label;
657
658 status = rdev->desc->ops->get_status(rdev);
659 if (status < 0)
660 return status;
661
662 switch (status) {
663 case REGULATOR_STATUS_OFF:
664 label = "off";
665 break;
666 case REGULATOR_STATUS_ON:
667 label = "on";
668 break;
669 case REGULATOR_STATUS_ERROR:
670 label = "error";
671 break;
672 case REGULATOR_STATUS_FAST:
673 label = "fast";
674 break;
675 case REGULATOR_STATUS_NORMAL:
676 label = "normal";
677 break;
678 case REGULATOR_STATUS_IDLE:
679 label = "idle";
680 break;
681 case REGULATOR_STATUS_STANDBY:
682 label = "standby";
683 break;
684 case REGULATOR_STATUS_BYPASS:
685 label = "bypass";
686 break;
687 case REGULATOR_STATUS_UNDEFINED:
688 label = "undefined";
689 break;
690 default:
691 return -ERANGE;
692 }
693
694 return sprintf(buf, "%s\n", label);
695}
696static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
697
698static ssize_t regulator_min_uA_show(struct device *dev,
699 struct device_attribute *attr, char *buf)
700{
701 struct regulator_dev *rdev = dev_get_drvdata(dev);
702
703 if (!rdev->constraints)
704 return sprintf(buf, "constraint not defined\n");
705
706 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
707}
708static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
709
710static ssize_t regulator_max_uA_show(struct device *dev,
711 struct device_attribute *attr, char *buf)
712{
713 struct regulator_dev *rdev = dev_get_drvdata(dev);
714
715 if (!rdev->constraints)
716 return sprintf(buf, "constraint not defined\n");
717
718 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
719}
720static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
721
722static ssize_t regulator_min_uV_show(struct device *dev,
723 struct device_attribute *attr, char *buf)
724{
725 struct regulator_dev *rdev = dev_get_drvdata(dev);
726
727 if (!rdev->constraints)
728 return sprintf(buf, "constraint not defined\n");
729
730 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
731}
732static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
733
734static ssize_t regulator_max_uV_show(struct device *dev,
735 struct device_attribute *attr, char *buf)
736{
737 struct regulator_dev *rdev = dev_get_drvdata(dev);
738
739 if (!rdev->constraints)
740 return sprintf(buf, "constraint not defined\n");
741
742 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
743}
744static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
745
746static ssize_t regulator_total_uA_show(struct device *dev,
747 struct device_attribute *attr, char *buf)
748{
749 struct regulator_dev *rdev = dev_get_drvdata(dev);
750 struct regulator *regulator;
751 int uA = 0;
752
753 regulator_lock(rdev);
754 list_for_each_entry(regulator, &rdev->consumer_list, list) {
755 if (regulator->enable_count)
756 uA += regulator->uA_load;
757 }
758 regulator_unlock(rdev);
759 return sprintf(buf, "%d\n", uA);
760}
761static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
762
763static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
764 char *buf)
765{
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
767 return sprintf(buf, "%d\n", rdev->use_count);
768}
769static DEVICE_ATTR_RO(num_users);
770
771static ssize_t type_show(struct device *dev, struct device_attribute *attr,
772 char *buf)
773{
774 struct regulator_dev *rdev = dev_get_drvdata(dev);
775
776 switch (rdev->desc->type) {
777 case REGULATOR_VOLTAGE:
778 return sprintf(buf, "voltage\n");
779 case REGULATOR_CURRENT:
780 return sprintf(buf, "current\n");
781 }
782 return sprintf(buf, "unknown\n");
783}
784static DEVICE_ATTR_RO(type);
785
786static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
787 struct device_attribute *attr, char *buf)
788{
789 struct regulator_dev *rdev = dev_get_drvdata(dev);
790
791 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
792}
793static DEVICE_ATTR(suspend_mem_microvolts, 0444,
794 regulator_suspend_mem_uV_show, NULL);
795
796static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
797 struct device_attribute *attr, char *buf)
798{
799 struct regulator_dev *rdev = dev_get_drvdata(dev);
800
801 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
802}
803static DEVICE_ATTR(suspend_disk_microvolts, 0444,
804 regulator_suspend_disk_uV_show, NULL);
805
806static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
808{
809 struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
812}
813static DEVICE_ATTR(suspend_standby_microvolts, 0444,
814 regulator_suspend_standby_uV_show, NULL);
815
816static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
817 struct device_attribute *attr, char *buf)
818{
819 struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821 return regulator_print_opmode(buf,
822 rdev->constraints->state_mem.mode);
823}
824static DEVICE_ATTR(suspend_mem_mode, 0444,
825 regulator_suspend_mem_mode_show, NULL);
826
827static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
828 struct device_attribute *attr, char *buf)
829{
830 struct regulator_dev *rdev = dev_get_drvdata(dev);
831
832 return regulator_print_opmode(buf,
833 rdev->constraints->state_disk.mode);
834}
835static DEVICE_ATTR(suspend_disk_mode, 0444,
836 regulator_suspend_disk_mode_show, NULL);
837
838static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
839 struct device_attribute *attr, char *buf)
840{
841 struct regulator_dev *rdev = dev_get_drvdata(dev);
842
843 return regulator_print_opmode(buf,
844 rdev->constraints->state_standby.mode);
845}
846static DEVICE_ATTR(suspend_standby_mode, 0444,
847 regulator_suspend_standby_mode_show, NULL);
848
849static ssize_t regulator_suspend_mem_state_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
851{
852 struct regulator_dev *rdev = dev_get_drvdata(dev);
853
854 return regulator_print_state(buf,
855 rdev->constraints->state_mem.enabled);
856}
857static DEVICE_ATTR(suspend_mem_state, 0444,
858 regulator_suspend_mem_state_show, NULL);
859
860static ssize_t regulator_suspend_disk_state_show(struct device *dev,
861 struct device_attribute *attr, char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 return regulator_print_state(buf,
866 rdev->constraints->state_disk.enabled);
867}
868static DEVICE_ATTR(suspend_disk_state, 0444,
869 regulator_suspend_disk_state_show, NULL);
870
871static ssize_t regulator_suspend_standby_state_show(struct device *dev,
872 struct device_attribute *attr, char *buf)
873{
874 struct regulator_dev *rdev = dev_get_drvdata(dev);
875
876 return regulator_print_state(buf,
877 rdev->constraints->state_standby.enabled);
878}
879static DEVICE_ATTR(suspend_standby_state, 0444,
880 regulator_suspend_standby_state_show, NULL);
881
882static ssize_t regulator_bypass_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884{
885 struct regulator_dev *rdev = dev_get_drvdata(dev);
886 const char *report;
887 bool bypass;
888 int ret;
889
890 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
891
892 if (ret != 0)
893 report = "unknown";
894 else if (bypass)
895 report = "enabled";
896 else
897 report = "disabled";
898
899 return sprintf(buf, "%s\n", report);
900}
901static DEVICE_ATTR(bypass, 0444,
902 regulator_bypass_show, NULL);
903
904/* Calculate the new optimum regulator operating mode based on the new total
905 * consumer load. All locks held by caller */
906static int drms_uA_update(struct regulator_dev *rdev)
907{
908 struct regulator *sibling;
909 int current_uA = 0, output_uV, input_uV, err;
910 unsigned int mode;
911
912 /*
913 * first check to see if we can set modes at all, otherwise just
914 * tell the consumer everything is OK.
915 */
916 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
917 rdev_dbg(rdev, "DRMS operation not allowed\n");
918 return 0;
919 }
920
921 if (!rdev->desc->ops->get_optimum_mode &&
922 !rdev->desc->ops->set_load)
923 return 0;
924
925 if (!rdev->desc->ops->set_mode &&
926 !rdev->desc->ops->set_load)
927 return -EINVAL;
928
929 /* calc total requested load */
930 list_for_each_entry(sibling, &rdev->consumer_list, list) {
931 if (sibling->enable_count)
932 current_uA += sibling->uA_load;
933 }
934
935 current_uA += rdev->constraints->system_load;
936
937 if (rdev->desc->ops->set_load) {
938 /* set the optimum mode for our new total regulator load */
939 err = rdev->desc->ops->set_load(rdev, current_uA);
940 if (err < 0)
941 rdev_err(rdev, "failed to set load %d\n", current_uA);
942 } else {
943 /* get output voltage */
944 output_uV = _regulator_get_voltage(rdev);
945 if (output_uV <= 0) {
946 rdev_err(rdev, "invalid output voltage found\n");
947 return -EINVAL;
948 }
949
950 /* get input voltage */
951 input_uV = 0;
952 if (rdev->supply)
953 input_uV = regulator_get_voltage(rdev->supply);
954 if (input_uV <= 0)
955 input_uV = rdev->constraints->input_uV;
956 if (input_uV <= 0) {
957 rdev_err(rdev, "invalid input voltage found\n");
958 return -EINVAL;
959 }
960
961 /* now get the optimum mode for our new total regulator load */
962 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
963 output_uV, current_uA);
964
965 /* check the new mode is allowed */
966 err = regulator_mode_constrain(rdev, &mode);
967 if (err < 0) {
968 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
969 current_uA, input_uV, output_uV);
970 return err;
971 }
972
973 err = rdev->desc->ops->set_mode(rdev, mode);
974 if (err < 0)
975 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
976 }
977
978 return err;
979}
980
981static int suspend_set_state(struct regulator_dev *rdev,
982 suspend_state_t state)
983{
984 int ret = 0;
985 struct regulator_state *rstate;
986
987 rstate = regulator_get_suspend_state(rdev, state);
988 if (rstate == NULL)
989 return 0;
990
991 /* If we have no suspend mode configuration don't set anything;
992 * only warn if the driver implements set_suspend_voltage or
993 * set_suspend_mode callback.
994 */
995 if (rstate->enabled != ENABLE_IN_SUSPEND &&
996 rstate->enabled != DISABLE_IN_SUSPEND) {
997 if (rdev->desc->ops->set_suspend_voltage ||
998 rdev->desc->ops->set_suspend_mode)
999 rdev_warn(rdev, "No configuration\n");
1000 return 0;
1001 }
1002
1003 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1004 rdev->desc->ops->set_suspend_enable)
1005 ret = rdev->desc->ops->set_suspend_enable(rdev);
1006 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1007 rdev->desc->ops->set_suspend_disable)
1008 ret = rdev->desc->ops->set_suspend_disable(rdev);
1009 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1010 ret = 0;
1011
1012 if (ret < 0) {
1013 rdev_err(rdev, "failed to enabled/disable\n");
1014 return ret;
1015 }
1016
1017 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1018 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to set voltage\n");
1021 return ret;
1022 }
1023 }
1024
1025 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1026 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1027 if (ret < 0) {
1028 rdev_err(rdev, "failed to set mode\n");
1029 return ret;
1030 }
1031 }
1032
1033 return ret;
1034}
1035
1036static void print_constraints(struct regulator_dev *rdev)
1037{
1038 struct regulation_constraints *constraints = rdev->constraints;
1039 char buf[160] = "";
1040 size_t len = sizeof(buf) - 1;
1041 int count = 0;
1042 int ret;
1043
1044 if (constraints->min_uV && constraints->max_uV) {
1045 if (constraints->min_uV == constraints->max_uV)
1046 count += scnprintf(buf + count, len - count, "%d mV ",
1047 constraints->min_uV / 1000);
1048 else
1049 count += scnprintf(buf + count, len - count,
1050 "%d <--> %d mV ",
1051 constraints->min_uV / 1000,
1052 constraints->max_uV / 1000);
1053 }
1054
1055 if (!constraints->min_uV ||
1056 constraints->min_uV != constraints->max_uV) {
1057 ret = _regulator_get_voltage(rdev);
1058 if (ret > 0)
1059 count += scnprintf(buf + count, len - count,
1060 "at %d mV ", ret / 1000);
1061 }
1062
1063 if (constraints->uV_offset)
1064 count += scnprintf(buf + count, len - count, "%dmV offset ",
1065 constraints->uV_offset / 1000);
1066
1067 if (constraints->min_uA && constraints->max_uA) {
1068 if (constraints->min_uA == constraints->max_uA)
1069 count += scnprintf(buf + count, len - count, "%d mA ",
1070 constraints->min_uA / 1000);
1071 else
1072 count += scnprintf(buf + count, len - count,
1073 "%d <--> %d mA ",
1074 constraints->min_uA / 1000,
1075 constraints->max_uA / 1000);
1076 }
1077
1078 if (!constraints->min_uA ||
1079 constraints->min_uA != constraints->max_uA) {
1080 ret = _regulator_get_current_limit(rdev);
1081 if (ret > 0)
1082 count += scnprintf(buf + count, len - count,
1083 "at %d mA ", ret / 1000);
1084 }
1085
1086 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1087 count += scnprintf(buf + count, len - count, "fast ");
1088 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1089 count += scnprintf(buf + count, len - count, "normal ");
1090 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1091 count += scnprintf(buf + count, len - count, "idle ");
1092 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1093 count += scnprintf(buf + count, len - count, "standby");
1094
1095 if (!count)
1096 scnprintf(buf, len, "no parameters");
1097
1098 rdev_dbg(rdev, "%s\n", buf);
1099
1100 if ((constraints->min_uV != constraints->max_uV) &&
1101 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1102 rdev_warn(rdev,
1103 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1104}
1105
1106static int machine_constraints_voltage(struct regulator_dev *rdev,
1107 struct regulation_constraints *constraints)
1108{
1109 const struct regulator_ops *ops = rdev->desc->ops;
1110 int ret;
1111
1112 /* do we need to apply the constraint voltage */
1113 if (rdev->constraints->apply_uV &&
1114 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1115 int target_min, target_max;
1116 int current_uV = _regulator_get_voltage(rdev);
1117
1118 if (current_uV == -ENOTRECOVERABLE) {
1119 /* This regulator can't be read and must be initialized */
1120 rdev_info(rdev, "Setting %d-%duV\n",
1121 rdev->constraints->min_uV,
1122 rdev->constraints->max_uV);
1123 _regulator_do_set_voltage(rdev,
1124 rdev->constraints->min_uV,
1125 rdev->constraints->max_uV);
1126 current_uV = _regulator_get_voltage(rdev);
1127 }
1128
1129 if (current_uV < 0) {
1130 rdev_err(rdev,
1131 "failed to get the current voltage(%d)\n",
1132 current_uV);
1133 return current_uV;
1134 }
1135
1136 /*
1137 * If we're below the minimum voltage move up to the
1138 * minimum voltage, if we're above the maximum voltage
1139 * then move down to the maximum.
1140 */
1141 target_min = current_uV;
1142 target_max = current_uV;
1143
1144 if (current_uV < rdev->constraints->min_uV) {
1145 target_min = rdev->constraints->min_uV;
1146 target_max = rdev->constraints->min_uV;
1147 }
1148
1149 if (current_uV > rdev->constraints->max_uV) {
1150 target_min = rdev->constraints->max_uV;
1151 target_max = rdev->constraints->max_uV;
1152 }
1153
1154 if (target_min != current_uV || target_max != current_uV) {
1155 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1156 current_uV, target_min, target_max);
1157 ret = _regulator_do_set_voltage(
1158 rdev, target_min, target_max);
1159 if (ret < 0) {
1160 rdev_err(rdev,
1161 "failed to apply %d-%duV constraint(%d)\n",
1162 target_min, target_max, ret);
1163 return ret;
1164 }
1165 }
1166 }
1167
1168 /* constrain machine-level voltage specs to fit
1169 * the actual range supported by this regulator.
1170 */
1171 if (ops->list_voltage && rdev->desc->n_voltages) {
1172 int count = rdev->desc->n_voltages;
1173 int i;
1174 int min_uV = INT_MAX;
1175 int max_uV = INT_MIN;
1176 int cmin = constraints->min_uV;
1177 int cmax = constraints->max_uV;
1178
1179 /* it's safe to autoconfigure fixed-voltage supplies
1180 and the constraints are used by list_voltage. */
1181 if (count == 1 && !cmin) {
1182 cmin = 1;
1183 cmax = INT_MAX;
1184 constraints->min_uV = cmin;
1185 constraints->max_uV = cmax;
1186 }
1187
1188 /* voltage constraints are optional */
1189 if ((cmin == 0) && (cmax == 0))
1190 return 0;
1191
1192 /* else require explicit machine-level constraints */
1193 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1194 rdev_err(rdev, "invalid voltage constraints\n");
1195 return -EINVAL;
1196 }
1197
1198 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1199 for (i = 0; i < count; i++) {
1200 int value;
1201
1202 value = ops->list_voltage(rdev, i);
1203 if (value <= 0)
1204 continue;
1205
1206 /* maybe adjust [min_uV..max_uV] */
1207 if (value >= cmin && value < min_uV)
1208 min_uV = value;
1209 if (value <= cmax && value > max_uV)
1210 max_uV = value;
1211 }
1212
1213 /* final: [min_uV..max_uV] valid iff constraints valid */
1214 if (max_uV < min_uV) {
1215 rdev_err(rdev,
1216 "unsupportable voltage constraints %u-%uuV\n",
1217 min_uV, max_uV);
1218 return -EINVAL;
1219 }
1220
1221 /* use regulator's subset of machine constraints */
1222 if (constraints->min_uV < min_uV) {
1223 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1224 constraints->min_uV, min_uV);
1225 constraints->min_uV = min_uV;
1226 }
1227 if (constraints->max_uV > max_uV) {
1228 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1229 constraints->max_uV, max_uV);
1230 constraints->max_uV = max_uV;
1231 }
1232 }
1233
1234 return 0;
1235}
1236
1237static int machine_constraints_current(struct regulator_dev *rdev,
1238 struct regulation_constraints *constraints)
1239{
1240 const struct regulator_ops *ops = rdev->desc->ops;
1241 int ret;
1242
1243 if (!constraints->min_uA && !constraints->max_uA)
1244 return 0;
1245
1246 if (constraints->min_uA > constraints->max_uA) {
1247 rdev_err(rdev, "Invalid current constraints\n");
1248 return -EINVAL;
1249 }
1250
1251 if (!ops->set_current_limit || !ops->get_current_limit) {
1252 rdev_warn(rdev, "Operation of current configuration missing\n");
1253 return 0;
1254 }
1255
1256 /* Set regulator current in constraints range */
1257 ret = ops->set_current_limit(rdev, constraints->min_uA,
1258 constraints->max_uA);
1259 if (ret < 0) {
1260 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1261 return ret;
1262 }
1263
1264 return 0;
1265}
1266
1267static int _regulator_do_enable(struct regulator_dev *rdev);
1268
1269/**
1270 * set_machine_constraints - sets regulator constraints
1271 * @rdev: regulator source
1272 * @constraints: constraints to apply
1273 *
1274 * Allows platform initialisation code to define and constrain
1275 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1276 * Constraints *must* be set by platform code in order for some
1277 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1278 * set_mode.
1279 */
1280static int set_machine_constraints(struct regulator_dev *rdev,
1281 const struct regulation_constraints *constraints)
1282{
1283 int ret = 0;
1284 const struct regulator_ops *ops = rdev->desc->ops;
1285
1286 if (constraints)
1287 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1288 GFP_KERNEL);
1289 else
1290 rdev->constraints = kzalloc(sizeof(*constraints),
1291 GFP_KERNEL);
1292 if (!rdev->constraints)
1293 return -ENOMEM;
1294
1295 ret = machine_constraints_voltage(rdev, rdev->constraints);
1296 if (ret != 0)
1297 return ret;
1298
1299 ret = machine_constraints_current(rdev, rdev->constraints);
1300 if (ret != 0)
1301 return ret;
1302
1303 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1304 ret = ops->set_input_current_limit(rdev,
1305 rdev->constraints->ilim_uA);
1306 if (ret < 0) {
1307 rdev_err(rdev, "failed to set input limit\n");
1308 return ret;
1309 }
1310 }
1311
1312 /* do we need to setup our suspend state */
1313 if (rdev->constraints->initial_state) {
1314 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1315 if (ret < 0) {
1316 rdev_err(rdev, "failed to set suspend state\n");
1317 return ret;
1318 }
1319 }
1320
1321 if (rdev->constraints->initial_mode) {
1322 if (!ops->set_mode) {
1323 rdev_err(rdev, "no set_mode operation\n");
1324 return -EINVAL;
1325 }
1326
1327 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1328 if (ret < 0) {
1329 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1330 return ret;
1331 }
1332 } else if (rdev->constraints->system_load) {
1333 /*
1334 * We'll only apply the initial system load if an
1335 * initial mode wasn't specified.
1336 */
1337 drms_uA_update(rdev);
1338 }
1339
1340 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1341 && ops->set_ramp_delay) {
1342 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1343 if (ret < 0) {
1344 rdev_err(rdev, "failed to set ramp_delay\n");
1345 return ret;
1346 }
1347 }
1348
1349 if (rdev->constraints->pull_down && ops->set_pull_down) {
1350 ret = ops->set_pull_down(rdev);
1351 if (ret < 0) {
1352 rdev_err(rdev, "failed to set pull down\n");
1353 return ret;
1354 }
1355 }
1356
1357 if (rdev->constraints->soft_start && ops->set_soft_start) {
1358 ret = ops->set_soft_start(rdev);
1359 if (ret < 0) {
1360 rdev_err(rdev, "failed to set soft start\n");
1361 return ret;
1362 }
1363 }
1364
1365 if (rdev->constraints->over_current_protection
1366 && ops->set_over_current_protection) {
1367 ret = ops->set_over_current_protection(rdev);
1368 if (ret < 0) {
1369 rdev_err(rdev, "failed to set over current protection\n");
1370 return ret;
1371 }
1372 }
1373
1374 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1375 bool ad_state = (rdev->constraints->active_discharge ==
1376 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1377
1378 ret = ops->set_active_discharge(rdev, ad_state);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set active discharge\n");
1381 return ret;
1382 }
1383 }
1384
1385 /* If the constraints say the regulator should be on at this point
1386 * and we have control then make sure it is enabled.
1387 */
1388 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1389 if (rdev->supply) {
1390 ret = regulator_enable(rdev->supply);
1391 if (ret < 0) {
1392 _regulator_put(rdev->supply);
1393 rdev->supply = NULL;
1394 return ret;
1395 }
1396 }
1397
1398 ret = _regulator_do_enable(rdev);
1399 if (ret < 0 && ret != -EINVAL) {
1400 rdev_err(rdev, "failed to enable\n");
1401 return ret;
1402 }
1403 rdev->use_count++;
1404 }
1405
1406 print_constraints(rdev);
1407 return 0;
1408}
1409
1410/**
1411 * set_supply - set regulator supply regulator
1412 * @rdev: regulator name
1413 * @supply_rdev: supply regulator name
1414 *
1415 * Called by platform initialisation code to set the supply regulator for this
1416 * regulator. This ensures that a regulators supply will also be enabled by the
1417 * core if it's child is enabled.
1418 */
1419static int set_supply(struct regulator_dev *rdev,
1420 struct regulator_dev *supply_rdev)
1421{
1422 int err;
1423
1424 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1425
1426 if (!try_module_get(supply_rdev->owner))
1427 return -ENODEV;
1428
1429 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1430 if (rdev->supply == NULL) {
1431 err = -ENOMEM;
1432 return err;
1433 }
1434 supply_rdev->open_count++;
1435
1436 return 0;
1437}
1438
1439/**
1440 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1441 * @rdev: regulator source
1442 * @consumer_dev_name: dev_name() string for device supply applies to
1443 * @supply: symbolic name for supply
1444 *
1445 * Allows platform initialisation code to map physical regulator
1446 * sources to symbolic names for supplies for use by devices. Devices
1447 * should use these symbolic names to request regulators, avoiding the
1448 * need to provide board-specific regulator names as platform data.
1449 */
1450static int set_consumer_device_supply(struct regulator_dev *rdev,
1451 const char *consumer_dev_name,
1452 const char *supply)
1453{
1454 struct regulator_map *node;
1455 int has_dev;
1456
1457 if (supply == NULL)
1458 return -EINVAL;
1459
1460 if (consumer_dev_name != NULL)
1461 has_dev = 1;
1462 else
1463 has_dev = 0;
1464
1465 list_for_each_entry(node, ®ulator_map_list, list) {
1466 if (node->dev_name && consumer_dev_name) {
1467 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1468 continue;
1469 } else if (node->dev_name || consumer_dev_name) {
1470 continue;
1471 }
1472
1473 if (strcmp(node->supply, supply) != 0)
1474 continue;
1475
1476 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1477 consumer_dev_name,
1478 dev_name(&node->regulator->dev),
1479 node->regulator->desc->name,
1480 supply,
1481 dev_name(&rdev->dev), rdev_get_name(rdev));
1482 return -EBUSY;
1483 }
1484
1485 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1486 if (node == NULL)
1487 return -ENOMEM;
1488
1489 node->regulator = rdev;
1490 node->supply = supply;
1491
1492 if (has_dev) {
1493 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1494 if (node->dev_name == NULL) {
1495 kfree(node);
1496 return -ENOMEM;
1497 }
1498 }
1499
1500 list_add(&node->list, ®ulator_map_list);
1501 return 0;
1502}
1503
1504static void unset_regulator_supplies(struct regulator_dev *rdev)
1505{
1506 struct regulator_map *node, *n;
1507
1508 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1509 if (rdev == node->regulator) {
1510 list_del(&node->list);
1511 kfree(node->dev_name);
1512 kfree(node);
1513 }
1514 }
1515}
1516
1517#ifdef CONFIG_DEBUG_FS
1518static ssize_t constraint_flags_read_file(struct file *file,
1519 char __user *user_buf,
1520 size_t count, loff_t *ppos)
1521{
1522 const struct regulator *regulator = file->private_data;
1523 const struct regulation_constraints *c = regulator->rdev->constraints;
1524 char *buf;
1525 ssize_t ret;
1526
1527 if (!c)
1528 return 0;
1529
1530 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1531 if (!buf)
1532 return -ENOMEM;
1533
1534 ret = snprintf(buf, PAGE_SIZE,
1535 "always_on: %u\n"
1536 "boot_on: %u\n"
1537 "apply_uV: %u\n"
1538 "ramp_disable: %u\n"
1539 "soft_start: %u\n"
1540 "pull_down: %u\n"
1541 "over_current_protection: %u\n",
1542 c->always_on,
1543 c->boot_on,
1544 c->apply_uV,
1545 c->ramp_disable,
1546 c->soft_start,
1547 c->pull_down,
1548 c->over_current_protection);
1549
1550 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1551 kfree(buf);
1552
1553 return ret;
1554}
1555
1556#endif
1557
1558static const struct file_operations constraint_flags_fops = {
1559#ifdef CONFIG_DEBUG_FS
1560 .open = simple_open,
1561 .read = constraint_flags_read_file,
1562 .llseek = default_llseek,
1563#endif
1564};
1565
1566#define REG_STR_SIZE 64
1567
1568static struct regulator *create_regulator(struct regulator_dev *rdev,
1569 struct device *dev,
1570 const char *supply_name)
1571{
1572 struct regulator *regulator;
1573 char buf[REG_STR_SIZE];
1574 int err, size;
1575
1576 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1577 if (regulator == NULL)
1578 return NULL;
1579
1580 regulator_lock(rdev);
1581 regulator->rdev = rdev;
1582 list_add(®ulator->list, &rdev->consumer_list);
1583
1584 if (dev) {
1585 regulator->dev = dev;
1586
1587 /* Add a link to the device sysfs entry */
1588 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1589 dev->kobj.name, supply_name);
1590 if (size >= REG_STR_SIZE)
1591 goto overflow_err;
1592
1593 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1594 if (regulator->supply_name == NULL)
1595 goto overflow_err;
1596
1597 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1598 buf);
1599 if (err) {
1600 rdev_dbg(rdev, "could not add device link %s err %d\n",
1601 dev->kobj.name, err);
1602 /* non-fatal */
1603 }
1604 } else {
1605 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1606 if (regulator->supply_name == NULL)
1607 goto overflow_err;
1608 }
1609
1610 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1611 rdev->debugfs);
1612 if (!regulator->debugfs) {
1613 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1614 } else {
1615 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1616 ®ulator->uA_load);
1617 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1618 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1619 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1620 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1621 debugfs_create_file("constraint_flags", 0444,
1622 regulator->debugfs, regulator,
1623 &constraint_flags_fops);
1624 }
1625
1626 /*
1627 * Check now if the regulator is an always on regulator - if
1628 * it is then we don't need to do nearly so much work for
1629 * enable/disable calls.
1630 */
1631 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1632 _regulator_is_enabled(rdev))
1633 regulator->always_on = true;
1634
1635 regulator_unlock(rdev);
1636 return regulator;
1637overflow_err:
1638 list_del(®ulator->list);
1639 kfree(regulator);
1640 regulator_unlock(rdev);
1641 return NULL;
1642}
1643
1644static int _regulator_get_enable_time(struct regulator_dev *rdev)
1645{
1646 if (rdev->constraints && rdev->constraints->enable_time)
1647 return rdev->constraints->enable_time;
1648 if (!rdev->desc->ops->enable_time)
1649 return rdev->desc->enable_time;
1650 return rdev->desc->ops->enable_time(rdev);
1651}
1652
1653static struct regulator_supply_alias *regulator_find_supply_alias(
1654 struct device *dev, const char *supply)
1655{
1656 struct regulator_supply_alias *map;
1657
1658 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1659 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1660 return map;
1661
1662 return NULL;
1663}
1664
1665static void regulator_supply_alias(struct device **dev, const char **supply)
1666{
1667 struct regulator_supply_alias *map;
1668
1669 map = regulator_find_supply_alias(*dev, *supply);
1670 if (map) {
1671 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1672 *supply, map->alias_supply,
1673 dev_name(map->alias_dev));
1674 *dev = map->alias_dev;
1675 *supply = map->alias_supply;
1676 }
1677}
1678
1679static int regulator_match(struct device *dev, const void *data)
1680{
1681 struct regulator_dev *r = dev_to_rdev(dev);
1682
1683 return strcmp(rdev_get_name(r), data) == 0;
1684}
1685
1686static struct regulator_dev *regulator_lookup_by_name(const char *name)
1687{
1688 struct device *dev;
1689
1690 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1691
1692 return dev ? dev_to_rdev(dev) : NULL;
1693}
1694
1695/**
1696 * regulator_dev_lookup - lookup a regulator device.
1697 * @dev: device for regulator "consumer".
1698 * @supply: Supply name or regulator ID.
1699 *
1700 * If successful, returns a struct regulator_dev that corresponds to the name
1701 * @supply and with the embedded struct device refcount incremented by one.
1702 * The refcount must be dropped by calling put_device().
1703 * On failure one of the following ERR-PTR-encoded values is returned:
1704 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1705 * in the future.
1706 */
1707static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1708 const char *supply)
1709{
1710 struct regulator_dev *r = NULL;
1711 struct device_node *node;
1712 struct regulator_map *map;
1713 const char *devname = NULL;
1714
1715 regulator_supply_alias(&dev, &supply);
1716
1717 /* first do a dt based lookup */
1718 if (dev && dev->of_node) {
1719 node = of_get_regulator(dev, supply);
1720 if (node) {
1721 r = of_find_regulator_by_node(node);
1722 if (r)
1723 return r;
1724
1725 /*
1726 * We have a node, but there is no device.
1727 * assume it has not registered yet.
1728 */
1729 return ERR_PTR(-EPROBE_DEFER);
1730 }
1731 }
1732
1733 /* if not found, try doing it non-dt way */
1734 if (dev)
1735 devname = dev_name(dev);
1736
1737 mutex_lock(®ulator_list_mutex);
1738 list_for_each_entry(map, ®ulator_map_list, list) {
1739 /* If the mapping has a device set up it must match */
1740 if (map->dev_name &&
1741 (!devname || strcmp(map->dev_name, devname)))
1742 continue;
1743
1744 if (strcmp(map->supply, supply) == 0 &&
1745 get_device(&map->regulator->dev)) {
1746 r = map->regulator;
1747 break;
1748 }
1749 }
1750 mutex_unlock(®ulator_list_mutex);
1751
1752 if (r)
1753 return r;
1754
1755 r = regulator_lookup_by_name(supply);
1756 if (r)
1757 return r;
1758
1759 return ERR_PTR(-ENODEV);
1760}
1761
1762static int regulator_resolve_supply(struct regulator_dev *rdev)
1763{
1764 struct regulator_dev *r;
1765 struct device *dev = rdev->dev.parent;
1766 int ret;
1767
1768 /* No supply to resolve? */
1769 if (!rdev->supply_name)
1770 return 0;
1771
1772 /* Supply already resolved? */
1773 if (rdev->supply)
1774 return 0;
1775
1776 r = regulator_dev_lookup(dev, rdev->supply_name);
1777 if (IS_ERR(r)) {
1778 ret = PTR_ERR(r);
1779
1780 /* Did the lookup explicitly defer for us? */
1781 if (ret == -EPROBE_DEFER)
1782 return ret;
1783
1784 if (have_full_constraints()) {
1785 r = dummy_regulator_rdev;
1786 get_device(&r->dev);
1787 } else {
1788 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1789 rdev->supply_name, rdev->desc->name);
1790 return -EPROBE_DEFER;
1791 }
1792 }
1793
1794 /*
1795 * If the supply's parent device is not the same as the
1796 * regulator's parent device, then ensure the parent device
1797 * is bound before we resolve the supply, in case the parent
1798 * device get probe deferred and unregisters the supply.
1799 */
1800 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1801 if (!device_is_bound(r->dev.parent)) {
1802 put_device(&r->dev);
1803 return -EPROBE_DEFER;
1804 }
1805 }
1806
1807 /* Recursively resolve the supply of the supply */
1808 ret = regulator_resolve_supply(r);
1809 if (ret < 0) {
1810 put_device(&r->dev);
1811 return ret;
1812 }
1813
1814 ret = set_supply(rdev, r);
1815 if (ret < 0) {
1816 put_device(&r->dev);
1817 return ret;
1818 }
1819
1820 /*
1821 * In set_machine_constraints() we may have turned this regulator on
1822 * but we couldn't propagate to the supply if it hadn't been resolved
1823 * yet. Do it now.
1824 */
1825 if (rdev->use_count) {
1826 ret = regulator_enable(rdev->supply);
1827 if (ret < 0) {
1828 _regulator_put(rdev->supply);
1829 rdev->supply = NULL;
1830 return ret;
1831 }
1832 }
1833
1834 return 0;
1835}
1836
1837/* Internal regulator request function */
1838struct regulator *_regulator_get(struct device *dev, const char *id,
1839 enum regulator_get_type get_type)
1840{
1841 struct regulator_dev *rdev;
1842 struct regulator *regulator;
1843 const char *devname = dev ? dev_name(dev) : "deviceless";
1844 int ret;
1845
1846 if (get_type >= MAX_GET_TYPE) {
1847 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1848 return ERR_PTR(-EINVAL);
1849 }
1850
1851 if (id == NULL) {
1852 pr_err("get() with no identifier\n");
1853 return ERR_PTR(-EINVAL);
1854 }
1855
1856 rdev = regulator_dev_lookup(dev, id);
1857 if (IS_ERR(rdev)) {
1858 ret = PTR_ERR(rdev);
1859
1860 /*
1861 * If regulator_dev_lookup() fails with error other
1862 * than -ENODEV our job here is done, we simply return it.
1863 */
1864 if (ret != -ENODEV)
1865 return ERR_PTR(ret);
1866
1867 if (!have_full_constraints()) {
1868 dev_warn(dev,
1869 "incomplete constraints, dummy supplies not allowed\n");
1870 return ERR_PTR(-ENODEV);
1871 }
1872
1873 switch (get_type) {
1874 case NORMAL_GET:
1875 /*
1876 * Assume that a regulator is physically present and
1877 * enabled, even if it isn't hooked up, and just
1878 * provide a dummy.
1879 */
1880 dev_warn(dev,
1881 "%s supply %s not found, using dummy regulator\n",
1882 devname, id);
1883 rdev = dummy_regulator_rdev;
1884 get_device(&rdev->dev);
1885 break;
1886
1887 case EXCLUSIVE_GET:
1888 dev_warn(dev,
1889 "dummy supplies not allowed for exclusive requests\n");
1890 /* fall through */
1891
1892 default:
1893 return ERR_PTR(-ENODEV);
1894 }
1895 }
1896
1897 if (rdev->exclusive) {
1898 regulator = ERR_PTR(-EPERM);
1899 put_device(&rdev->dev);
1900 return regulator;
1901 }
1902
1903 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1904 regulator = ERR_PTR(-EBUSY);
1905 put_device(&rdev->dev);
1906 return regulator;
1907 }
1908
1909 mutex_lock(®ulator_list_mutex);
1910 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1911 mutex_unlock(®ulator_list_mutex);
1912
1913 if (ret != 0) {
1914 regulator = ERR_PTR(-EPROBE_DEFER);
1915 put_device(&rdev->dev);
1916 return regulator;
1917 }
1918
1919 ret = regulator_resolve_supply(rdev);
1920 if (ret < 0) {
1921 regulator = ERR_PTR(ret);
1922 put_device(&rdev->dev);
1923 return regulator;
1924 }
1925
1926 if (!try_module_get(rdev->owner)) {
1927 regulator = ERR_PTR(-EPROBE_DEFER);
1928 put_device(&rdev->dev);
1929 return regulator;
1930 }
1931
1932 regulator = create_regulator(rdev, dev, id);
1933 if (regulator == NULL) {
1934 regulator = ERR_PTR(-ENOMEM);
1935 put_device(&rdev->dev);
1936 module_put(rdev->owner);
1937 return regulator;
1938 }
1939
1940 rdev->open_count++;
1941 if (get_type == EXCLUSIVE_GET) {
1942 rdev->exclusive = 1;
1943
1944 ret = _regulator_is_enabled(rdev);
1945 if (ret > 0)
1946 rdev->use_count = 1;
1947 else
1948 rdev->use_count = 0;
1949 }
1950
1951 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1952
1953 return regulator;
1954}
1955
1956/**
1957 * regulator_get - lookup and obtain a reference to a regulator.
1958 * @dev: device for regulator "consumer"
1959 * @id: Supply name or regulator ID.
1960 *
1961 * Returns a struct regulator corresponding to the regulator producer,
1962 * or IS_ERR() condition containing errno.
1963 *
1964 * Use of supply names configured via regulator_set_device_supply() is
1965 * strongly encouraged. It is recommended that the supply name used
1966 * should match the name used for the supply and/or the relevant
1967 * device pins in the datasheet.
1968 */
1969struct regulator *regulator_get(struct device *dev, const char *id)
1970{
1971 return _regulator_get(dev, id, NORMAL_GET);
1972}
1973EXPORT_SYMBOL_GPL(regulator_get);
1974
1975/**
1976 * regulator_get_exclusive - obtain exclusive access to a regulator.
1977 * @dev: device for regulator "consumer"
1978 * @id: Supply name or regulator ID.
1979 *
1980 * Returns a struct regulator corresponding to the regulator producer,
1981 * or IS_ERR() condition containing errno. Other consumers will be
1982 * unable to obtain this regulator while this reference is held and the
1983 * use count for the regulator will be initialised to reflect the current
1984 * state of the regulator.
1985 *
1986 * This is intended for use by consumers which cannot tolerate shared
1987 * use of the regulator such as those which need to force the
1988 * regulator off for correct operation of the hardware they are
1989 * controlling.
1990 *
1991 * Use of supply names configured via regulator_set_device_supply() is
1992 * strongly encouraged. It is recommended that the supply name used
1993 * should match the name used for the supply and/or the relevant
1994 * device pins in the datasheet.
1995 */
1996struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1997{
1998 return _regulator_get(dev, id, EXCLUSIVE_GET);
1999}
2000EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2001
2002/**
2003 * regulator_get_optional - obtain optional access to a regulator.
2004 * @dev: device for regulator "consumer"
2005 * @id: Supply name or regulator ID.
2006 *
2007 * Returns a struct regulator corresponding to the regulator producer,
2008 * or IS_ERR() condition containing errno.
2009 *
2010 * This is intended for use by consumers for devices which can have
2011 * some supplies unconnected in normal use, such as some MMC devices.
2012 * It can allow the regulator core to provide stub supplies for other
2013 * supplies requested using normal regulator_get() calls without
2014 * disrupting the operation of drivers that can handle absent
2015 * supplies.
2016 *
2017 * Use of supply names configured via regulator_set_device_supply() is
2018 * strongly encouraged. It is recommended that the supply name used
2019 * should match the name used for the supply and/or the relevant
2020 * device pins in the datasheet.
2021 */
2022struct regulator *regulator_get_optional(struct device *dev, const char *id)
2023{
2024 return _regulator_get(dev, id, OPTIONAL_GET);
2025}
2026EXPORT_SYMBOL_GPL(regulator_get_optional);
2027
2028/* regulator_list_mutex lock held by regulator_put() */
2029static void _regulator_put(struct regulator *regulator)
2030{
2031 struct regulator_dev *rdev;
2032
2033 if (IS_ERR_OR_NULL(regulator))
2034 return;
2035
2036 lockdep_assert_held_once(®ulator_list_mutex);
2037
2038 /* Docs say you must disable before calling regulator_put() */
2039 WARN_ON(regulator->enable_count);
2040
2041 rdev = regulator->rdev;
2042
2043 debugfs_remove_recursive(regulator->debugfs);
2044
2045 if (regulator->dev) {
2046 device_link_remove(regulator->dev, &rdev->dev);
2047
2048 /* remove any sysfs entries */
2049 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2050 }
2051
2052 regulator_lock(rdev);
2053 list_del(®ulator->list);
2054
2055 rdev->open_count--;
2056 rdev->exclusive = 0;
2057 put_device(&rdev->dev);
2058 regulator_unlock(rdev);
2059
2060 kfree_const(regulator->supply_name);
2061 kfree(regulator);
2062
2063 module_put(rdev->owner);
2064}
2065
2066/**
2067 * regulator_put - "free" the regulator source
2068 * @regulator: regulator source
2069 *
2070 * Note: drivers must ensure that all regulator_enable calls made on this
2071 * regulator source are balanced by regulator_disable calls prior to calling
2072 * this function.
2073 */
2074void regulator_put(struct regulator *regulator)
2075{
2076 mutex_lock(®ulator_list_mutex);
2077 _regulator_put(regulator);
2078 mutex_unlock(®ulator_list_mutex);
2079}
2080EXPORT_SYMBOL_GPL(regulator_put);
2081
2082/**
2083 * regulator_register_supply_alias - Provide device alias for supply lookup
2084 *
2085 * @dev: device that will be given as the regulator "consumer"
2086 * @id: Supply name or regulator ID
2087 * @alias_dev: device that should be used to lookup the supply
2088 * @alias_id: Supply name or regulator ID that should be used to lookup the
2089 * supply
2090 *
2091 * All lookups for id on dev will instead be conducted for alias_id on
2092 * alias_dev.
2093 */
2094int regulator_register_supply_alias(struct device *dev, const char *id,
2095 struct device *alias_dev,
2096 const char *alias_id)
2097{
2098 struct regulator_supply_alias *map;
2099
2100 map = regulator_find_supply_alias(dev, id);
2101 if (map)
2102 return -EEXIST;
2103
2104 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2105 if (!map)
2106 return -ENOMEM;
2107
2108 map->src_dev = dev;
2109 map->src_supply = id;
2110 map->alias_dev = alias_dev;
2111 map->alias_supply = alias_id;
2112
2113 list_add(&map->list, ®ulator_supply_alias_list);
2114
2115 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2116 id, dev_name(dev), alias_id, dev_name(alias_dev));
2117
2118 return 0;
2119}
2120EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2121
2122/**
2123 * regulator_unregister_supply_alias - Remove device alias
2124 *
2125 * @dev: device that will be given as the regulator "consumer"
2126 * @id: Supply name or regulator ID
2127 *
2128 * Remove a lookup alias if one exists for id on dev.
2129 */
2130void regulator_unregister_supply_alias(struct device *dev, const char *id)
2131{
2132 struct regulator_supply_alias *map;
2133
2134 map = regulator_find_supply_alias(dev, id);
2135 if (map) {
2136 list_del(&map->list);
2137 kfree(map);
2138 }
2139}
2140EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2141
2142/**
2143 * regulator_bulk_register_supply_alias - register multiple aliases
2144 *
2145 * @dev: device that will be given as the regulator "consumer"
2146 * @id: List of supply names or regulator IDs
2147 * @alias_dev: device that should be used to lookup the supply
2148 * @alias_id: List of supply names or regulator IDs that should be used to
2149 * lookup the supply
2150 * @num_id: Number of aliases to register
2151 *
2152 * @return 0 on success, an errno on failure.
2153 *
2154 * This helper function allows drivers to register several supply
2155 * aliases in one operation. If any of the aliases cannot be
2156 * registered any aliases that were registered will be removed
2157 * before returning to the caller.
2158 */
2159int regulator_bulk_register_supply_alias(struct device *dev,
2160 const char *const *id,
2161 struct device *alias_dev,
2162 const char *const *alias_id,
2163 int num_id)
2164{
2165 int i;
2166 int ret;
2167
2168 for (i = 0; i < num_id; ++i) {
2169 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2170 alias_id[i]);
2171 if (ret < 0)
2172 goto err;
2173 }
2174
2175 return 0;
2176
2177err:
2178 dev_err(dev,
2179 "Failed to create supply alias %s,%s -> %s,%s\n",
2180 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2181
2182 while (--i >= 0)
2183 regulator_unregister_supply_alias(dev, id[i]);
2184
2185 return ret;
2186}
2187EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2188
2189/**
2190 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2191 *
2192 * @dev: device that will be given as the regulator "consumer"
2193 * @id: List of supply names or regulator IDs
2194 * @num_id: Number of aliases to unregister
2195 *
2196 * This helper function allows drivers to unregister several supply
2197 * aliases in one operation.
2198 */
2199void regulator_bulk_unregister_supply_alias(struct device *dev,
2200 const char *const *id,
2201 int num_id)
2202{
2203 int i;
2204
2205 for (i = 0; i < num_id; ++i)
2206 regulator_unregister_supply_alias(dev, id[i]);
2207}
2208EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2209
2210
2211/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2212static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2213 const struct regulator_config *config)
2214{
2215 struct regulator_enable_gpio *pin;
2216 struct gpio_desc *gpiod;
2217
2218 gpiod = config->ena_gpiod;
2219
2220 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2221 if (pin->gpiod == gpiod) {
2222 rdev_dbg(rdev, "GPIO is already used\n");
2223 goto update_ena_gpio_to_rdev;
2224 }
2225 }
2226
2227 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2228 if (pin == NULL)
2229 return -ENOMEM;
2230
2231 pin->gpiod = gpiod;
2232 list_add(&pin->list, ®ulator_ena_gpio_list);
2233
2234update_ena_gpio_to_rdev:
2235 pin->request_count++;
2236 rdev->ena_pin = pin;
2237 return 0;
2238}
2239
2240static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2241{
2242 struct regulator_enable_gpio *pin, *n;
2243
2244 if (!rdev->ena_pin)
2245 return;
2246
2247 /* Free the GPIO only in case of no use */
2248 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2249 if (pin->gpiod == rdev->ena_pin->gpiod) {
2250 if (pin->request_count <= 1) {
2251 pin->request_count = 0;
2252 gpiod_put(pin->gpiod);
2253 list_del(&pin->list);
2254 kfree(pin);
2255 rdev->ena_pin = NULL;
2256 return;
2257 } else {
2258 pin->request_count--;
2259 }
2260 }
2261 }
2262}
2263
2264/**
2265 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2266 * @rdev: regulator_dev structure
2267 * @enable: enable GPIO at initial use?
2268 *
2269 * GPIO is enabled in case of initial use. (enable_count is 0)
2270 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2271 */
2272static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2273{
2274 struct regulator_enable_gpio *pin = rdev->ena_pin;
2275
2276 if (!pin)
2277 return -EINVAL;
2278
2279 if (enable) {
2280 /* Enable GPIO at initial use */
2281 if (pin->enable_count == 0)
2282 gpiod_set_value_cansleep(pin->gpiod, 1);
2283
2284 pin->enable_count++;
2285 } else {
2286 if (pin->enable_count > 1) {
2287 pin->enable_count--;
2288 return 0;
2289 }
2290
2291 /* Disable GPIO if not used */
2292 if (pin->enable_count <= 1) {
2293 gpiod_set_value_cansleep(pin->gpiod, 0);
2294 pin->enable_count = 0;
2295 }
2296 }
2297
2298 return 0;
2299}
2300
2301/**
2302 * _regulator_enable_delay - a delay helper function
2303 * @delay: time to delay in microseconds
2304 *
2305 * Delay for the requested amount of time as per the guidelines in:
2306 *
2307 * Documentation/timers/timers-howto.txt
2308 *
2309 * The assumption here is that regulators will never be enabled in
2310 * atomic context and therefore sleeping functions can be used.
2311 */
2312static void _regulator_enable_delay(unsigned int delay)
2313{
2314 unsigned int ms = delay / 1000;
2315 unsigned int us = delay % 1000;
2316
2317 if (ms > 0) {
2318 /*
2319 * For small enough values, handle super-millisecond
2320 * delays in the usleep_range() call below.
2321 */
2322 if (ms < 20)
2323 us += ms * 1000;
2324 else
2325 msleep(ms);
2326 }
2327
2328 /*
2329 * Give the scheduler some room to coalesce with any other
2330 * wakeup sources. For delays shorter than 10 us, don't even
2331 * bother setting up high-resolution timers and just busy-
2332 * loop.
2333 */
2334 if (us >= 10)
2335 usleep_range(us, us + 100);
2336 else
2337 udelay(us);
2338}
2339
2340static int _regulator_do_enable(struct regulator_dev *rdev)
2341{
2342 int ret, delay;
2343
2344 /* Query before enabling in case configuration dependent. */
2345 ret = _regulator_get_enable_time(rdev);
2346 if (ret >= 0) {
2347 delay = ret;
2348 } else {
2349 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2350 delay = 0;
2351 }
2352
2353 trace_regulator_enable(rdev_get_name(rdev));
2354
2355 if (rdev->desc->off_on_delay) {
2356 /* if needed, keep a distance of off_on_delay from last time
2357 * this regulator was disabled.
2358 */
2359 unsigned long start_jiffy = jiffies;
2360 unsigned long intended, max_delay, remaining;
2361
2362 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2363 intended = rdev->last_off_jiffy + max_delay;
2364
2365 if (time_before(start_jiffy, intended)) {
2366 /* calc remaining jiffies to deal with one-time
2367 * timer wrapping.
2368 * in case of multiple timer wrapping, either it can be
2369 * detected by out-of-range remaining, or it cannot be
2370 * detected and we get a penalty of
2371 * _regulator_enable_delay().
2372 */
2373 remaining = intended - start_jiffy;
2374 if (remaining <= max_delay)
2375 _regulator_enable_delay(
2376 jiffies_to_usecs(remaining));
2377 }
2378 }
2379
2380 if (rdev->ena_pin) {
2381 if (!rdev->ena_gpio_state) {
2382 ret = regulator_ena_gpio_ctrl(rdev, true);
2383 if (ret < 0)
2384 return ret;
2385 rdev->ena_gpio_state = 1;
2386 }
2387 } else if (rdev->desc->ops->enable) {
2388 ret = rdev->desc->ops->enable(rdev);
2389 if (ret < 0)
2390 return ret;
2391 } else {
2392 return -EINVAL;
2393 }
2394
2395 /* Allow the regulator to ramp; it would be useful to extend
2396 * this for bulk operations so that the regulators can ramp
2397 * together. */
2398 trace_regulator_enable_delay(rdev_get_name(rdev));
2399
2400 _regulator_enable_delay(delay);
2401
2402 trace_regulator_enable_complete(rdev_get_name(rdev));
2403
2404 return 0;
2405}
2406
2407/**
2408 * _regulator_handle_consumer_enable - handle that a consumer enabled
2409 * @regulator: regulator source
2410 *
2411 * Some things on a regulator consumer (like the contribution towards total
2412 * load on the regulator) only have an effect when the consumer wants the
2413 * regulator enabled. Explained in example with two consumers of the same
2414 * regulator:
2415 * consumer A: set_load(100); => total load = 0
2416 * consumer A: regulator_enable(); => total load = 100
2417 * consumer B: set_load(1000); => total load = 100
2418 * consumer B: regulator_enable(); => total load = 1100
2419 * consumer A: regulator_disable(); => total_load = 1000
2420 *
2421 * This function (together with _regulator_handle_consumer_disable) is
2422 * responsible for keeping track of the refcount for a given regulator consumer
2423 * and applying / unapplying these things.
2424 *
2425 * Returns 0 upon no error; -error upon error.
2426 */
2427static int _regulator_handle_consumer_enable(struct regulator *regulator)
2428{
2429 struct regulator_dev *rdev = regulator->rdev;
2430
2431 lockdep_assert_held_once(&rdev->mutex.base);
2432
2433 regulator->enable_count++;
2434 if (regulator->uA_load && regulator->enable_count == 1)
2435 return drms_uA_update(rdev);
2436
2437 return 0;
2438}
2439
2440/**
2441 * _regulator_handle_consumer_disable - handle that a consumer disabled
2442 * @regulator: regulator source
2443 *
2444 * The opposite of _regulator_handle_consumer_enable().
2445 *
2446 * Returns 0 upon no error; -error upon error.
2447 */
2448static int _regulator_handle_consumer_disable(struct regulator *regulator)
2449{
2450 struct regulator_dev *rdev = regulator->rdev;
2451
2452 lockdep_assert_held_once(&rdev->mutex.base);
2453
2454 if (!regulator->enable_count) {
2455 rdev_err(rdev, "Underflow of regulator enable count\n");
2456 return -EINVAL;
2457 }
2458
2459 regulator->enable_count--;
2460 if (regulator->uA_load && regulator->enable_count == 0)
2461 return drms_uA_update(rdev);
2462
2463 return 0;
2464}
2465
2466/* locks held by regulator_enable() */
2467static int _regulator_enable(struct regulator *regulator)
2468{
2469 struct regulator_dev *rdev = regulator->rdev;
2470 int ret;
2471
2472 lockdep_assert_held_once(&rdev->mutex.base);
2473
2474 if (rdev->use_count == 0 && rdev->supply) {
2475 ret = _regulator_enable(rdev->supply);
2476 if (ret < 0)
2477 return ret;
2478 }
2479
2480 /* balance only if there are regulators coupled */
2481 if (rdev->coupling_desc.n_coupled > 1) {
2482 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2483 if (ret < 0)
2484 goto err_disable_supply;
2485 }
2486
2487 ret = _regulator_handle_consumer_enable(regulator);
2488 if (ret < 0)
2489 goto err_disable_supply;
2490
2491 if (rdev->use_count == 0) {
2492 /* The regulator may on if it's not switchable or left on */
2493 ret = _regulator_is_enabled(rdev);
2494 if (ret == -EINVAL || ret == 0) {
2495 if (!regulator_ops_is_valid(rdev,
2496 REGULATOR_CHANGE_STATUS)) {
2497 ret = -EPERM;
2498 goto err_consumer_disable;
2499 }
2500
2501 ret = _regulator_do_enable(rdev);
2502 if (ret < 0)
2503 goto err_consumer_disable;
2504
2505 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2506 NULL);
2507 } else if (ret < 0) {
2508 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2509 goto err_consumer_disable;
2510 }
2511 /* Fallthrough on positive return values - already enabled */
2512 }
2513
2514 rdev->use_count++;
2515
2516 return 0;
2517
2518err_consumer_disable:
2519 _regulator_handle_consumer_disable(regulator);
2520
2521err_disable_supply:
2522 if (rdev->use_count == 0 && rdev->supply)
2523 _regulator_disable(rdev->supply);
2524
2525 return ret;
2526}
2527
2528/**
2529 * regulator_enable - enable regulator output
2530 * @regulator: regulator source
2531 *
2532 * Request that the regulator be enabled with the regulator output at
2533 * the predefined voltage or current value. Calls to regulator_enable()
2534 * must be balanced with calls to regulator_disable().
2535 *
2536 * NOTE: the output value can be set by other drivers, boot loader or may be
2537 * hardwired in the regulator.
2538 */
2539int regulator_enable(struct regulator *regulator)
2540{
2541 struct regulator_dev *rdev = regulator->rdev;
2542 struct ww_acquire_ctx ww_ctx;
2543 int ret;
2544
2545 regulator_lock_dependent(rdev, &ww_ctx);
2546 ret = _regulator_enable(regulator);
2547 regulator_unlock_dependent(rdev, &ww_ctx);
2548
2549 return ret;
2550}
2551EXPORT_SYMBOL_GPL(regulator_enable);
2552
2553static int _regulator_do_disable(struct regulator_dev *rdev)
2554{
2555 int ret;
2556
2557 trace_regulator_disable(rdev_get_name(rdev));
2558
2559 if (rdev->ena_pin) {
2560 if (rdev->ena_gpio_state) {
2561 ret = regulator_ena_gpio_ctrl(rdev, false);
2562 if (ret < 0)
2563 return ret;
2564 rdev->ena_gpio_state = 0;
2565 }
2566
2567 } else if (rdev->desc->ops->disable) {
2568 ret = rdev->desc->ops->disable(rdev);
2569 if (ret != 0)
2570 return ret;
2571 }
2572
2573 /* cares about last_off_jiffy only if off_on_delay is required by
2574 * device.
2575 */
2576 if (rdev->desc->off_on_delay)
2577 rdev->last_off_jiffy = jiffies;
2578
2579 trace_regulator_disable_complete(rdev_get_name(rdev));
2580
2581 return 0;
2582}
2583
2584/* locks held by regulator_disable() */
2585static int _regulator_disable(struct regulator *regulator)
2586{
2587 struct regulator_dev *rdev = regulator->rdev;
2588 int ret = 0;
2589
2590 lockdep_assert_held_once(&rdev->mutex.base);
2591
2592 if (WARN(rdev->use_count <= 0,
2593 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2594 return -EIO;
2595
2596 /* are we the last user and permitted to disable ? */
2597 if (rdev->use_count == 1 &&
2598 (rdev->constraints && !rdev->constraints->always_on)) {
2599
2600 /* we are last user */
2601 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2602 ret = _notifier_call_chain(rdev,
2603 REGULATOR_EVENT_PRE_DISABLE,
2604 NULL);
2605 if (ret & NOTIFY_STOP_MASK)
2606 return -EINVAL;
2607
2608 ret = _regulator_do_disable(rdev);
2609 if (ret < 0) {
2610 rdev_err(rdev, "failed to disable\n");
2611 _notifier_call_chain(rdev,
2612 REGULATOR_EVENT_ABORT_DISABLE,
2613 NULL);
2614 return ret;
2615 }
2616 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2617 NULL);
2618 }
2619
2620 rdev->use_count = 0;
2621 } else if (rdev->use_count > 1) {
2622 rdev->use_count--;
2623 }
2624
2625 if (ret == 0)
2626 ret = _regulator_handle_consumer_disable(regulator);
2627
2628 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2629 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2630
2631 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2632 ret = _regulator_disable(rdev->supply);
2633
2634 return ret;
2635}
2636
2637/**
2638 * regulator_disable - disable regulator output
2639 * @regulator: regulator source
2640 *
2641 * Disable the regulator output voltage or current. Calls to
2642 * regulator_enable() must be balanced with calls to
2643 * regulator_disable().
2644 *
2645 * NOTE: this will only disable the regulator output if no other consumer
2646 * devices have it enabled, the regulator device supports disabling and
2647 * machine constraints permit this operation.
2648 */
2649int regulator_disable(struct regulator *regulator)
2650{
2651 struct regulator_dev *rdev = regulator->rdev;
2652 struct ww_acquire_ctx ww_ctx;
2653 int ret;
2654
2655 regulator_lock_dependent(rdev, &ww_ctx);
2656 ret = _regulator_disable(regulator);
2657 regulator_unlock_dependent(rdev, &ww_ctx);
2658
2659 return ret;
2660}
2661EXPORT_SYMBOL_GPL(regulator_disable);
2662
2663/* locks held by regulator_force_disable() */
2664static int _regulator_force_disable(struct regulator_dev *rdev)
2665{
2666 int ret = 0;
2667
2668 lockdep_assert_held_once(&rdev->mutex.base);
2669
2670 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2671 REGULATOR_EVENT_PRE_DISABLE, NULL);
2672 if (ret & NOTIFY_STOP_MASK)
2673 return -EINVAL;
2674
2675 ret = _regulator_do_disable(rdev);
2676 if (ret < 0) {
2677 rdev_err(rdev, "failed to force disable\n");
2678 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2679 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2680 return ret;
2681 }
2682
2683 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2684 REGULATOR_EVENT_DISABLE, NULL);
2685
2686 return 0;
2687}
2688
2689/**
2690 * regulator_force_disable - force disable regulator output
2691 * @regulator: regulator source
2692 *
2693 * Forcibly disable the regulator output voltage or current.
2694 * NOTE: this *will* disable the regulator output even if other consumer
2695 * devices have it enabled. This should be used for situations when device
2696 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2697 */
2698int regulator_force_disable(struct regulator *regulator)
2699{
2700 struct regulator_dev *rdev = regulator->rdev;
2701 struct ww_acquire_ctx ww_ctx;
2702 int ret;
2703
2704 regulator_lock_dependent(rdev, &ww_ctx);
2705
2706 ret = _regulator_force_disable(regulator->rdev);
2707
2708 if (rdev->coupling_desc.n_coupled > 1)
2709 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2710
2711 if (regulator->uA_load) {
2712 regulator->uA_load = 0;
2713 ret = drms_uA_update(rdev);
2714 }
2715
2716 if (rdev->use_count != 0 && rdev->supply)
2717 _regulator_disable(rdev->supply);
2718
2719 regulator_unlock_dependent(rdev, &ww_ctx);
2720
2721 return ret;
2722}
2723EXPORT_SYMBOL_GPL(regulator_force_disable);
2724
2725static void regulator_disable_work(struct work_struct *work)
2726{
2727 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2728 disable_work.work);
2729 struct ww_acquire_ctx ww_ctx;
2730 int count, i, ret;
2731 struct regulator *regulator;
2732 int total_count = 0;
2733
2734 regulator_lock_dependent(rdev, &ww_ctx);
2735
2736 /*
2737 * Workqueue functions queue the new work instance while the previous
2738 * work instance is being processed. Cancel the queued work instance
2739 * as the work instance under processing does the job of the queued
2740 * work instance.
2741 */
2742 cancel_delayed_work(&rdev->disable_work);
2743
2744 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2745 count = regulator->deferred_disables;
2746
2747 if (!count)
2748 continue;
2749
2750 total_count += count;
2751 regulator->deferred_disables = 0;
2752
2753 for (i = 0; i < count; i++) {
2754 ret = _regulator_disable(regulator);
2755 if (ret != 0)
2756 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2757 }
2758 }
2759 WARN_ON(!total_count);
2760
2761 if (rdev->coupling_desc.n_coupled > 1)
2762 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2763
2764 regulator_unlock_dependent(rdev, &ww_ctx);
2765}
2766
2767/**
2768 * regulator_disable_deferred - disable regulator output with delay
2769 * @regulator: regulator source
2770 * @ms: milliseconds until the regulator is disabled
2771 *
2772 * Execute regulator_disable() on the regulator after a delay. This
2773 * is intended for use with devices that require some time to quiesce.
2774 *
2775 * NOTE: this will only disable the regulator output if no other consumer
2776 * devices have it enabled, the regulator device supports disabling and
2777 * machine constraints permit this operation.
2778 */
2779int regulator_disable_deferred(struct regulator *regulator, int ms)
2780{
2781 struct regulator_dev *rdev = regulator->rdev;
2782
2783 if (!ms)
2784 return regulator_disable(regulator);
2785
2786 regulator_lock(rdev);
2787 regulator->deferred_disables++;
2788 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2789 msecs_to_jiffies(ms));
2790 regulator_unlock(rdev);
2791
2792 return 0;
2793}
2794EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2795
2796static int _regulator_is_enabled(struct regulator_dev *rdev)
2797{
2798 /* A GPIO control always takes precedence */
2799 if (rdev->ena_pin)
2800 return rdev->ena_gpio_state;
2801
2802 /* If we don't know then assume that the regulator is always on */
2803 if (!rdev->desc->ops->is_enabled)
2804 return 1;
2805
2806 return rdev->desc->ops->is_enabled(rdev);
2807}
2808
2809static int _regulator_list_voltage(struct regulator_dev *rdev,
2810 unsigned selector, int lock)
2811{
2812 const struct regulator_ops *ops = rdev->desc->ops;
2813 int ret;
2814
2815 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2816 return rdev->desc->fixed_uV;
2817
2818 if (ops->list_voltage) {
2819 if (selector >= rdev->desc->n_voltages)
2820 return -EINVAL;
2821 if (lock)
2822 regulator_lock(rdev);
2823 ret = ops->list_voltage(rdev, selector);
2824 if (lock)
2825 regulator_unlock(rdev);
2826 } else if (rdev->is_switch && rdev->supply) {
2827 ret = _regulator_list_voltage(rdev->supply->rdev,
2828 selector, lock);
2829 } else {
2830 return -EINVAL;
2831 }
2832
2833 if (ret > 0) {
2834 if (ret < rdev->constraints->min_uV)
2835 ret = 0;
2836 else if (ret > rdev->constraints->max_uV)
2837 ret = 0;
2838 }
2839
2840 return ret;
2841}
2842
2843/**
2844 * regulator_is_enabled - is the regulator output enabled
2845 * @regulator: regulator source
2846 *
2847 * Returns positive if the regulator driver backing the source/client
2848 * has requested that the device be enabled, zero if it hasn't, else a
2849 * negative errno code.
2850 *
2851 * Note that the device backing this regulator handle can have multiple
2852 * users, so it might be enabled even if regulator_enable() was never
2853 * called for this particular source.
2854 */
2855int regulator_is_enabled(struct regulator *regulator)
2856{
2857 int ret;
2858
2859 if (regulator->always_on)
2860 return 1;
2861
2862 regulator_lock(regulator->rdev);
2863 ret = _regulator_is_enabled(regulator->rdev);
2864 regulator_unlock(regulator->rdev);
2865
2866 return ret;
2867}
2868EXPORT_SYMBOL_GPL(regulator_is_enabled);
2869
2870/**
2871 * regulator_count_voltages - count regulator_list_voltage() selectors
2872 * @regulator: regulator source
2873 *
2874 * Returns number of selectors, or negative errno. Selectors are
2875 * numbered starting at zero, and typically correspond to bitfields
2876 * in hardware registers.
2877 */
2878int regulator_count_voltages(struct regulator *regulator)
2879{
2880 struct regulator_dev *rdev = regulator->rdev;
2881
2882 if (rdev->desc->n_voltages)
2883 return rdev->desc->n_voltages;
2884
2885 if (!rdev->is_switch || !rdev->supply)
2886 return -EINVAL;
2887
2888 return regulator_count_voltages(rdev->supply);
2889}
2890EXPORT_SYMBOL_GPL(regulator_count_voltages);
2891
2892/**
2893 * regulator_list_voltage - enumerate supported voltages
2894 * @regulator: regulator source
2895 * @selector: identify voltage to list
2896 * Context: can sleep
2897 *
2898 * Returns a voltage that can be passed to @regulator_set_voltage(),
2899 * zero if this selector code can't be used on this system, or a
2900 * negative errno.
2901 */
2902int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2903{
2904 return _regulator_list_voltage(regulator->rdev, selector, 1);
2905}
2906EXPORT_SYMBOL_GPL(regulator_list_voltage);
2907
2908/**
2909 * regulator_get_regmap - get the regulator's register map
2910 * @regulator: regulator source
2911 *
2912 * Returns the register map for the given regulator, or an ERR_PTR value
2913 * if the regulator doesn't use regmap.
2914 */
2915struct regmap *regulator_get_regmap(struct regulator *regulator)
2916{
2917 struct regmap *map = regulator->rdev->regmap;
2918
2919 return map ? map : ERR_PTR(-EOPNOTSUPP);
2920}
2921
2922/**
2923 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2924 * @regulator: regulator source
2925 * @vsel_reg: voltage selector register, output parameter
2926 * @vsel_mask: mask for voltage selector bitfield, output parameter
2927 *
2928 * Returns the hardware register offset and bitmask used for setting the
2929 * regulator voltage. This might be useful when configuring voltage-scaling
2930 * hardware or firmware that can make I2C requests behind the kernel's back,
2931 * for example.
2932 *
2933 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2934 * and 0 is returned, otherwise a negative errno is returned.
2935 */
2936int regulator_get_hardware_vsel_register(struct regulator *regulator,
2937 unsigned *vsel_reg,
2938 unsigned *vsel_mask)
2939{
2940 struct regulator_dev *rdev = regulator->rdev;
2941 const struct regulator_ops *ops = rdev->desc->ops;
2942
2943 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2944 return -EOPNOTSUPP;
2945
2946 *vsel_reg = rdev->desc->vsel_reg;
2947 *vsel_mask = rdev->desc->vsel_mask;
2948
2949 return 0;
2950}
2951EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2952
2953/**
2954 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2955 * @regulator: regulator source
2956 * @selector: identify voltage to list
2957 *
2958 * Converts the selector to a hardware-specific voltage selector that can be
2959 * directly written to the regulator registers. The address of the voltage
2960 * register can be determined by calling @regulator_get_hardware_vsel_register.
2961 *
2962 * On error a negative errno is returned.
2963 */
2964int regulator_list_hardware_vsel(struct regulator *regulator,
2965 unsigned selector)
2966{
2967 struct regulator_dev *rdev = regulator->rdev;
2968 const struct regulator_ops *ops = rdev->desc->ops;
2969
2970 if (selector >= rdev->desc->n_voltages)
2971 return -EINVAL;
2972 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2973 return -EOPNOTSUPP;
2974
2975 return selector;
2976}
2977EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2978
2979/**
2980 * regulator_get_linear_step - return the voltage step size between VSEL values
2981 * @regulator: regulator source
2982 *
2983 * Returns the voltage step size between VSEL values for linear
2984 * regulators, or return 0 if the regulator isn't a linear regulator.
2985 */
2986unsigned int regulator_get_linear_step(struct regulator *regulator)
2987{
2988 struct regulator_dev *rdev = regulator->rdev;
2989
2990 return rdev->desc->uV_step;
2991}
2992EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2993
2994/**
2995 * regulator_is_supported_voltage - check if a voltage range can be supported
2996 *
2997 * @regulator: Regulator to check.
2998 * @min_uV: Minimum required voltage in uV.
2999 * @max_uV: Maximum required voltage in uV.
3000 *
3001 * Returns a boolean.
3002 */
3003int regulator_is_supported_voltage(struct regulator *regulator,
3004 int min_uV, int max_uV)
3005{
3006 struct regulator_dev *rdev = regulator->rdev;
3007 int i, voltages, ret;
3008
3009 /* If we can't change voltage check the current voltage */
3010 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3011 ret = regulator_get_voltage(regulator);
3012 if (ret >= 0)
3013 return min_uV <= ret && ret <= max_uV;
3014 else
3015 return ret;
3016 }
3017
3018 /* Any voltage within constrains range is fine? */
3019 if (rdev->desc->continuous_voltage_range)
3020 return min_uV >= rdev->constraints->min_uV &&
3021 max_uV <= rdev->constraints->max_uV;
3022
3023 ret = regulator_count_voltages(regulator);
3024 if (ret < 0)
3025 return 0;
3026 voltages = ret;
3027
3028 for (i = 0; i < voltages; i++) {
3029 ret = regulator_list_voltage(regulator, i);
3030
3031 if (ret >= min_uV && ret <= max_uV)
3032 return 1;
3033 }
3034
3035 return 0;
3036}
3037EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3038
3039static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3040 int max_uV)
3041{
3042 const struct regulator_desc *desc = rdev->desc;
3043
3044 if (desc->ops->map_voltage)
3045 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3046
3047 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3048 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3049
3050 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3051 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3052
3053 if (desc->ops->list_voltage ==
3054 regulator_list_voltage_pickable_linear_range)
3055 return regulator_map_voltage_pickable_linear_range(rdev,
3056 min_uV, max_uV);
3057
3058 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3059}
3060
3061static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3062 int min_uV, int max_uV,
3063 unsigned *selector)
3064{
3065 struct pre_voltage_change_data data;
3066 int ret;
3067
3068 data.old_uV = _regulator_get_voltage(rdev);
3069 data.min_uV = min_uV;
3070 data.max_uV = max_uV;
3071 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3072 &data);
3073 if (ret & NOTIFY_STOP_MASK)
3074 return -EINVAL;
3075
3076 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3077 if (ret >= 0)
3078 return ret;
3079
3080 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3081 (void *)data.old_uV);
3082
3083 return ret;
3084}
3085
3086static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3087 int uV, unsigned selector)
3088{
3089 struct pre_voltage_change_data data;
3090 int ret;
3091
3092 data.old_uV = _regulator_get_voltage(rdev);
3093 data.min_uV = uV;
3094 data.max_uV = uV;
3095 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3096 &data);
3097 if (ret & NOTIFY_STOP_MASK)
3098 return -EINVAL;
3099
3100 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3101 if (ret >= 0)
3102 return ret;
3103
3104 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3105 (void *)data.old_uV);
3106
3107 return ret;
3108}
3109
3110static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3111 int old_uV, int new_uV)
3112{
3113 unsigned int ramp_delay = 0;
3114
3115 if (rdev->constraints->ramp_delay)
3116 ramp_delay = rdev->constraints->ramp_delay;
3117 else if (rdev->desc->ramp_delay)
3118 ramp_delay = rdev->desc->ramp_delay;
3119 else if (rdev->constraints->settling_time)
3120 return rdev->constraints->settling_time;
3121 else if (rdev->constraints->settling_time_up &&
3122 (new_uV > old_uV))
3123 return rdev->constraints->settling_time_up;
3124 else if (rdev->constraints->settling_time_down &&
3125 (new_uV < old_uV))
3126 return rdev->constraints->settling_time_down;
3127
3128 if (ramp_delay == 0) {
3129 rdev_dbg(rdev, "ramp_delay not set\n");
3130 return 0;
3131 }
3132
3133 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3134}
3135
3136static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3137 int min_uV, int max_uV)
3138{
3139 int ret;
3140 int delay = 0;
3141 int best_val = 0;
3142 unsigned int selector;
3143 int old_selector = -1;
3144 const struct regulator_ops *ops = rdev->desc->ops;
3145 int old_uV = _regulator_get_voltage(rdev);
3146
3147 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3148
3149 min_uV += rdev->constraints->uV_offset;
3150 max_uV += rdev->constraints->uV_offset;
3151
3152 /*
3153 * If we can't obtain the old selector there is not enough
3154 * info to call set_voltage_time_sel().
3155 */
3156 if (_regulator_is_enabled(rdev) &&
3157 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3158 old_selector = ops->get_voltage_sel(rdev);
3159 if (old_selector < 0)
3160 return old_selector;
3161 }
3162
3163 if (ops->set_voltage) {
3164 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3165 &selector);
3166
3167 if (ret >= 0) {
3168 if (ops->list_voltage)
3169 best_val = ops->list_voltage(rdev,
3170 selector);
3171 else
3172 best_val = _regulator_get_voltage(rdev);
3173 }
3174
3175 } else if (ops->set_voltage_sel) {
3176 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3177 if (ret >= 0) {
3178 best_val = ops->list_voltage(rdev, ret);
3179 if (min_uV <= best_val && max_uV >= best_val) {
3180 selector = ret;
3181 if (old_selector == selector)
3182 ret = 0;
3183 else
3184 ret = _regulator_call_set_voltage_sel(
3185 rdev, best_val, selector);
3186 } else {
3187 ret = -EINVAL;
3188 }
3189 }
3190 } else {
3191 ret = -EINVAL;
3192 }
3193
3194 if (ret)
3195 goto out;
3196
3197 if (ops->set_voltage_time_sel) {
3198 /*
3199 * Call set_voltage_time_sel if successfully obtained
3200 * old_selector
3201 */
3202 if (old_selector >= 0 && old_selector != selector)
3203 delay = ops->set_voltage_time_sel(rdev, old_selector,
3204 selector);
3205 } else {
3206 if (old_uV != best_val) {
3207 if (ops->set_voltage_time)
3208 delay = ops->set_voltage_time(rdev, old_uV,
3209 best_val);
3210 else
3211 delay = _regulator_set_voltage_time(rdev,
3212 old_uV,
3213 best_val);
3214 }
3215 }
3216
3217 if (delay < 0) {
3218 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3219 delay = 0;
3220 }
3221
3222 /* Insert any necessary delays */
3223 if (delay >= 1000) {
3224 mdelay(delay / 1000);
3225 udelay(delay % 1000);
3226 } else if (delay) {
3227 udelay(delay);
3228 }
3229
3230 if (best_val >= 0) {
3231 unsigned long data = best_val;
3232
3233 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3234 (void *)data);
3235 }
3236
3237out:
3238 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3239
3240 return ret;
3241}
3242
3243static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3244 int min_uV, int max_uV, suspend_state_t state)
3245{
3246 struct regulator_state *rstate;
3247 int uV, sel;
3248
3249 rstate = regulator_get_suspend_state(rdev, state);
3250 if (rstate == NULL)
3251 return -EINVAL;
3252
3253 if (min_uV < rstate->min_uV)
3254 min_uV = rstate->min_uV;
3255 if (max_uV > rstate->max_uV)
3256 max_uV = rstate->max_uV;
3257
3258 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3259 if (sel < 0)
3260 return sel;
3261
3262 uV = rdev->desc->ops->list_voltage(rdev, sel);
3263 if (uV >= min_uV && uV <= max_uV)
3264 rstate->uV = uV;
3265
3266 return 0;
3267}
3268
3269static int regulator_set_voltage_unlocked(struct regulator *regulator,
3270 int min_uV, int max_uV,
3271 suspend_state_t state)
3272{
3273 struct regulator_dev *rdev = regulator->rdev;
3274 struct regulator_voltage *voltage = ®ulator->voltage[state];
3275 int ret = 0;
3276 int old_min_uV, old_max_uV;
3277 int current_uV;
3278
3279 /* If we're setting the same range as last time the change
3280 * should be a noop (some cpufreq implementations use the same
3281 * voltage for multiple frequencies, for example).
3282 */
3283 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3284 goto out;
3285
3286 /* If we're trying to set a range that overlaps the current voltage,
3287 * return successfully even though the regulator does not support
3288 * changing the voltage.
3289 */
3290 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3291 current_uV = _regulator_get_voltage(rdev);
3292 if (min_uV <= current_uV && current_uV <= max_uV) {
3293 voltage->min_uV = min_uV;
3294 voltage->max_uV = max_uV;
3295 goto out;
3296 }
3297 }
3298
3299 /* sanity check */
3300 if (!rdev->desc->ops->set_voltage &&
3301 !rdev->desc->ops->set_voltage_sel) {
3302 ret = -EINVAL;
3303 goto out;
3304 }
3305
3306 /* constraints check */
3307 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3308 if (ret < 0)
3309 goto out;
3310
3311 /* restore original values in case of error */
3312 old_min_uV = voltage->min_uV;
3313 old_max_uV = voltage->max_uV;
3314 voltage->min_uV = min_uV;
3315 voltage->max_uV = max_uV;
3316
3317 /* for not coupled regulators this will just set the voltage */
3318 ret = regulator_balance_voltage(rdev, state);
3319 if (ret < 0) {
3320 voltage->min_uV = old_min_uV;
3321 voltage->max_uV = old_max_uV;
3322 }
3323
3324out:
3325 return ret;
3326}
3327
3328static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3329 int max_uV, suspend_state_t state)
3330{
3331 int best_supply_uV = 0;
3332 int supply_change_uV = 0;
3333 int ret;
3334
3335 if (rdev->supply &&
3336 regulator_ops_is_valid(rdev->supply->rdev,
3337 REGULATOR_CHANGE_VOLTAGE) &&
3338 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3339 rdev->desc->ops->get_voltage_sel))) {
3340 int current_supply_uV;
3341 int selector;
3342
3343 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3344 if (selector < 0) {
3345 ret = selector;
3346 goto out;
3347 }
3348
3349 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3350 if (best_supply_uV < 0) {
3351 ret = best_supply_uV;
3352 goto out;
3353 }
3354
3355 best_supply_uV += rdev->desc->min_dropout_uV;
3356
3357 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3358 if (current_supply_uV < 0) {
3359 ret = current_supply_uV;
3360 goto out;
3361 }
3362
3363 supply_change_uV = best_supply_uV - current_supply_uV;
3364 }
3365
3366 if (supply_change_uV > 0) {
3367 ret = regulator_set_voltage_unlocked(rdev->supply,
3368 best_supply_uV, INT_MAX, state);
3369 if (ret) {
3370 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3371 ret);
3372 goto out;
3373 }
3374 }
3375
3376 if (state == PM_SUSPEND_ON)
3377 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3378 else
3379 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3380 max_uV, state);
3381 if (ret < 0)
3382 goto out;
3383
3384 if (supply_change_uV < 0) {
3385 ret = regulator_set_voltage_unlocked(rdev->supply,
3386 best_supply_uV, INT_MAX, state);
3387 if (ret)
3388 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3389 ret);
3390 /* No need to fail here */
3391 ret = 0;
3392 }
3393
3394out:
3395 return ret;
3396}
3397
3398static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3399 int *current_uV, int *min_uV)
3400{
3401 struct regulation_constraints *constraints = rdev->constraints;
3402
3403 /* Limit voltage change only if necessary */
3404 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3405 return 1;
3406
3407 if (*current_uV < 0) {
3408 *current_uV = _regulator_get_voltage(rdev);
3409
3410 if (*current_uV < 0)
3411 return *current_uV;
3412 }
3413
3414 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3415 return 1;
3416
3417 /* Clamp target voltage within the given step */
3418 if (*current_uV < *min_uV)
3419 *min_uV = min(*current_uV + constraints->max_uV_step,
3420 *min_uV);
3421 else
3422 *min_uV = max(*current_uV - constraints->max_uV_step,
3423 *min_uV);
3424
3425 return 0;
3426}
3427
3428static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3429 int *current_uV,
3430 int *min_uV, int *max_uV,
3431 suspend_state_t state,
3432 int n_coupled)
3433{
3434 struct coupling_desc *c_desc = &rdev->coupling_desc;
3435 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3436 struct regulation_constraints *constraints = rdev->constraints;
3437 int max_spread = constraints->max_spread;
3438 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3439 int max_current_uV = 0, min_current_uV = INT_MAX;
3440 int highest_min_uV = 0, target_uV, possible_uV;
3441 int i, ret;
3442 bool done;
3443
3444 *current_uV = -1;
3445
3446 /*
3447 * If there are no coupled regulators, simply set the voltage
3448 * demanded by consumers.
3449 */
3450 if (n_coupled == 1) {
3451 /*
3452 * If consumers don't provide any demands, set voltage
3453 * to min_uV
3454 */
3455 desired_min_uV = constraints->min_uV;
3456 desired_max_uV = constraints->max_uV;
3457
3458 ret = regulator_check_consumers(rdev,
3459 &desired_min_uV,
3460 &desired_max_uV, state);
3461 if (ret < 0)
3462 return ret;
3463
3464 possible_uV = desired_min_uV;
3465 done = true;
3466
3467 goto finish;
3468 }
3469
3470 /* Find highest min desired voltage */
3471 for (i = 0; i < n_coupled; i++) {
3472 int tmp_min = 0;
3473 int tmp_max = INT_MAX;
3474
3475 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3476
3477 ret = regulator_check_consumers(c_rdevs[i],
3478 &tmp_min,
3479 &tmp_max, state);
3480 if (ret < 0)
3481 return ret;
3482
3483 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3484 if (ret < 0)
3485 return ret;
3486
3487 highest_min_uV = max(highest_min_uV, tmp_min);
3488
3489 if (i == 0) {
3490 desired_min_uV = tmp_min;
3491 desired_max_uV = tmp_max;
3492 }
3493 }
3494
3495 /*
3496 * Let target_uV be equal to the desired one if possible.
3497 * If not, set it to minimum voltage, allowed by other coupled
3498 * regulators.
3499 */
3500 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3501
3502 /*
3503 * Find min and max voltages, which currently aren't violating
3504 * max_spread.
3505 */
3506 for (i = 1; i < n_coupled; i++) {
3507 int tmp_act;
3508
3509 if (!_regulator_is_enabled(c_rdevs[i]))
3510 continue;
3511
3512 tmp_act = _regulator_get_voltage(c_rdevs[i]);
3513 if (tmp_act < 0)
3514 return tmp_act;
3515
3516 min_current_uV = min(tmp_act, min_current_uV);
3517 max_current_uV = max(tmp_act, max_current_uV);
3518 }
3519
3520 /* There aren't any other regulators enabled */
3521 if (max_current_uV == 0) {
3522 possible_uV = target_uV;
3523 } else {
3524 /*
3525 * Correct target voltage, so as it currently isn't
3526 * violating max_spread
3527 */
3528 possible_uV = max(target_uV, max_current_uV - max_spread);
3529 possible_uV = min(possible_uV, min_current_uV + max_spread);
3530 }
3531
3532 if (possible_uV > desired_max_uV)
3533 return -EINVAL;
3534
3535 done = (possible_uV == target_uV);
3536 desired_min_uV = possible_uV;
3537
3538finish:
3539 /* Apply max_uV_step constraint if necessary */
3540 if (state == PM_SUSPEND_ON) {
3541 ret = regulator_limit_voltage_step(rdev, current_uV,
3542 &desired_min_uV);
3543 if (ret < 0)
3544 return ret;
3545
3546 if (ret == 0)
3547 done = false;
3548 }
3549
3550 /* Set current_uV if wasn't done earlier in the code and if necessary */
3551 if (n_coupled > 1 && *current_uV == -1) {
3552
3553 if (_regulator_is_enabled(rdev)) {
3554 ret = _regulator_get_voltage(rdev);
3555 if (ret < 0)
3556 return ret;
3557
3558 *current_uV = ret;
3559 } else {
3560 *current_uV = desired_min_uV;
3561 }
3562 }
3563
3564 *min_uV = desired_min_uV;
3565 *max_uV = desired_max_uV;
3566
3567 return done;
3568}
3569
3570static int regulator_balance_voltage(struct regulator_dev *rdev,
3571 suspend_state_t state)
3572{
3573 struct regulator_dev **c_rdevs;
3574 struct regulator_dev *best_rdev;
3575 struct coupling_desc *c_desc = &rdev->coupling_desc;
3576 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3577 bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
3578 unsigned int delta, best_delta;
3579
3580 c_rdevs = c_desc->coupled_rdevs;
3581 n_coupled = c_desc->n_coupled;
3582
3583 /*
3584 * If system is in a state other than PM_SUSPEND_ON, don't check
3585 * other coupled regulators.
3586 */
3587 if (state != PM_SUSPEND_ON)
3588 n_coupled = 1;
3589
3590 if (c_desc->n_resolved < n_coupled) {
3591 rdev_err(rdev, "Not all coupled regulators registered\n");
3592 return -EPERM;
3593 }
3594
3595 for (i = 0; i < n_coupled; i++)
3596 c_rdev_done[i] = false;
3597
3598 /*
3599 * Find the best possible voltage change on each loop. Leave the loop
3600 * if there isn't any possible change.
3601 */
3602 do {
3603 best_c_rdev_done = false;
3604 best_delta = 0;
3605 best_min_uV = 0;
3606 best_max_uV = 0;
3607 best_c_rdev = 0;
3608 best_rdev = NULL;
3609
3610 /*
3611 * Find highest difference between optimal voltage
3612 * and current voltage.
3613 */
3614 for (i = 0; i < n_coupled; i++) {
3615 /*
3616 * optimal_uV is the best voltage that can be set for
3617 * i-th regulator at the moment without violating
3618 * max_spread constraint in order to balance
3619 * the coupled voltages.
3620 */
3621 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3622
3623 if (c_rdev_done[i])
3624 continue;
3625
3626 ret = regulator_get_optimal_voltage(c_rdevs[i],
3627 ¤t_uV,
3628 &optimal_uV,
3629 &optimal_max_uV,
3630 state, n_coupled);
3631 if (ret < 0)
3632 goto out;
3633
3634 delta = abs(optimal_uV - current_uV);
3635
3636 if (delta && best_delta <= delta) {
3637 best_c_rdev_done = ret;
3638 best_delta = delta;
3639 best_rdev = c_rdevs[i];
3640 best_min_uV = optimal_uV;
3641 best_max_uV = optimal_max_uV;
3642 best_c_rdev = i;
3643 }
3644 }
3645
3646 /* Nothing to change, return successfully */
3647 if (!best_rdev) {
3648 ret = 0;
3649 goto out;
3650 }
3651
3652 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3653 best_max_uV, state);
3654
3655 if (ret < 0)
3656 goto out;
3657
3658 c_rdev_done[best_c_rdev] = best_c_rdev_done;
3659
3660 } while (n_coupled > 1);
3661
3662out:
3663 return ret;
3664}
3665
3666/**
3667 * regulator_set_voltage - set regulator output voltage
3668 * @regulator: regulator source
3669 * @min_uV: Minimum required voltage in uV
3670 * @max_uV: Maximum acceptable voltage in uV
3671 *
3672 * Sets a voltage regulator to the desired output voltage. This can be set
3673 * during any regulator state. IOW, regulator can be disabled or enabled.
3674 *
3675 * If the regulator is enabled then the voltage will change to the new value
3676 * immediately otherwise if the regulator is disabled the regulator will
3677 * output at the new voltage when enabled.
3678 *
3679 * NOTE: If the regulator is shared between several devices then the lowest
3680 * request voltage that meets the system constraints will be used.
3681 * Regulator system constraints must be set for this regulator before
3682 * calling this function otherwise this call will fail.
3683 */
3684int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3685{
3686 struct ww_acquire_ctx ww_ctx;
3687 int ret;
3688
3689 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3690
3691 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3692 PM_SUSPEND_ON);
3693
3694 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3695
3696 return ret;
3697}
3698EXPORT_SYMBOL_GPL(regulator_set_voltage);
3699
3700static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3701 suspend_state_t state, bool en)
3702{
3703 struct regulator_state *rstate;
3704
3705 rstate = regulator_get_suspend_state(rdev, state);
3706 if (rstate == NULL)
3707 return -EINVAL;
3708
3709 if (!rstate->changeable)
3710 return -EPERM;
3711
3712 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3713
3714 return 0;
3715}
3716
3717int regulator_suspend_enable(struct regulator_dev *rdev,
3718 suspend_state_t state)
3719{
3720 return regulator_suspend_toggle(rdev, state, true);
3721}
3722EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3723
3724int regulator_suspend_disable(struct regulator_dev *rdev,
3725 suspend_state_t state)
3726{
3727 struct regulator *regulator;
3728 struct regulator_voltage *voltage;
3729
3730 /*
3731 * if any consumer wants this regulator device keeping on in
3732 * suspend states, don't set it as disabled.
3733 */
3734 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3735 voltage = ®ulator->voltage[state];
3736 if (voltage->min_uV || voltage->max_uV)
3737 return 0;
3738 }
3739
3740 return regulator_suspend_toggle(rdev, state, false);
3741}
3742EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3743
3744static int _regulator_set_suspend_voltage(struct regulator *regulator,
3745 int min_uV, int max_uV,
3746 suspend_state_t state)
3747{
3748 struct regulator_dev *rdev = regulator->rdev;
3749 struct regulator_state *rstate;
3750
3751 rstate = regulator_get_suspend_state(rdev, state);
3752 if (rstate == NULL)
3753 return -EINVAL;
3754
3755 if (rstate->min_uV == rstate->max_uV) {
3756 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3757 return -EPERM;
3758 }
3759
3760 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3761}
3762
3763int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3764 int max_uV, suspend_state_t state)
3765{
3766 struct ww_acquire_ctx ww_ctx;
3767 int ret;
3768
3769 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3770 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3771 return -EINVAL;
3772
3773 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3774
3775 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3776 max_uV, state);
3777
3778 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3779
3780 return ret;
3781}
3782EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3783
3784/**
3785 * regulator_set_voltage_time - get raise/fall time
3786 * @regulator: regulator source
3787 * @old_uV: starting voltage in microvolts
3788 * @new_uV: target voltage in microvolts
3789 *
3790 * Provided with the starting and ending voltage, this function attempts to
3791 * calculate the time in microseconds required to rise or fall to this new
3792 * voltage.
3793 */
3794int regulator_set_voltage_time(struct regulator *regulator,
3795 int old_uV, int new_uV)
3796{
3797 struct regulator_dev *rdev = regulator->rdev;
3798 const struct regulator_ops *ops = rdev->desc->ops;
3799 int old_sel = -1;
3800 int new_sel = -1;
3801 int voltage;
3802 int i;
3803
3804 if (ops->set_voltage_time)
3805 return ops->set_voltage_time(rdev, old_uV, new_uV);
3806 else if (!ops->set_voltage_time_sel)
3807 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3808
3809 /* Currently requires operations to do this */
3810 if (!ops->list_voltage || !rdev->desc->n_voltages)
3811 return -EINVAL;
3812
3813 for (i = 0; i < rdev->desc->n_voltages; i++) {
3814 /* We only look for exact voltage matches here */
3815 voltage = regulator_list_voltage(regulator, i);
3816 if (voltage < 0)
3817 return -EINVAL;
3818 if (voltage == 0)
3819 continue;
3820 if (voltage == old_uV)
3821 old_sel = i;
3822 if (voltage == new_uV)
3823 new_sel = i;
3824 }
3825
3826 if (old_sel < 0 || new_sel < 0)
3827 return -EINVAL;
3828
3829 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3830}
3831EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3832
3833/**
3834 * regulator_set_voltage_time_sel - get raise/fall time
3835 * @rdev: regulator source device
3836 * @old_selector: selector for starting voltage
3837 * @new_selector: selector for target voltage
3838 *
3839 * Provided with the starting and target voltage selectors, this function
3840 * returns time in microseconds required to rise or fall to this new voltage
3841 *
3842 * Drivers providing ramp_delay in regulation_constraints can use this as their
3843 * set_voltage_time_sel() operation.
3844 */
3845int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3846 unsigned int old_selector,
3847 unsigned int new_selector)
3848{
3849 int old_volt, new_volt;
3850
3851 /* sanity check */
3852 if (!rdev->desc->ops->list_voltage)
3853 return -EINVAL;
3854
3855 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3856 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3857
3858 if (rdev->desc->ops->set_voltage_time)
3859 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3860 new_volt);
3861 else
3862 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3865
3866/**
3867 * regulator_sync_voltage - re-apply last regulator output voltage
3868 * @regulator: regulator source
3869 *
3870 * Re-apply the last configured voltage. This is intended to be used
3871 * where some external control source the consumer is cooperating with
3872 * has caused the configured voltage to change.
3873 */
3874int regulator_sync_voltage(struct regulator *regulator)
3875{
3876 struct regulator_dev *rdev = regulator->rdev;
3877 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
3878 int ret, min_uV, max_uV;
3879
3880 regulator_lock(rdev);
3881
3882 if (!rdev->desc->ops->set_voltage &&
3883 !rdev->desc->ops->set_voltage_sel) {
3884 ret = -EINVAL;
3885 goto out;
3886 }
3887
3888 /* This is only going to work if we've had a voltage configured. */
3889 if (!voltage->min_uV && !voltage->max_uV) {
3890 ret = -EINVAL;
3891 goto out;
3892 }
3893
3894 min_uV = voltage->min_uV;
3895 max_uV = voltage->max_uV;
3896
3897 /* This should be a paranoia check... */
3898 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3899 if (ret < 0)
3900 goto out;
3901
3902 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3903 if (ret < 0)
3904 goto out;
3905
3906 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3907
3908out:
3909 regulator_unlock(rdev);
3910 return ret;
3911}
3912EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3913
3914static int _regulator_get_voltage(struct regulator_dev *rdev)
3915{
3916 int sel, ret;
3917 bool bypassed;
3918
3919 if (rdev->desc->ops->get_bypass) {
3920 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3921 if (ret < 0)
3922 return ret;
3923 if (bypassed) {
3924 /* if bypassed the regulator must have a supply */
3925 if (!rdev->supply) {
3926 rdev_err(rdev,
3927 "bypassed regulator has no supply!\n");
3928 return -EPROBE_DEFER;
3929 }
3930
3931 return _regulator_get_voltage(rdev->supply->rdev);
3932 }
3933 }
3934
3935 if (rdev->desc->ops->get_voltage_sel) {
3936 sel = rdev->desc->ops->get_voltage_sel(rdev);
3937 if (sel < 0)
3938 return sel;
3939 ret = rdev->desc->ops->list_voltage(rdev, sel);
3940 } else if (rdev->desc->ops->get_voltage) {
3941 ret = rdev->desc->ops->get_voltage(rdev);
3942 } else if (rdev->desc->ops->list_voltage) {
3943 ret = rdev->desc->ops->list_voltage(rdev, 0);
3944 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3945 ret = rdev->desc->fixed_uV;
3946 } else if (rdev->supply) {
3947 ret = _regulator_get_voltage(rdev->supply->rdev);
3948 } else {
3949 return -EINVAL;
3950 }
3951
3952 if (ret < 0)
3953 return ret;
3954 return ret - rdev->constraints->uV_offset;
3955}
3956
3957/**
3958 * regulator_get_voltage - get regulator output voltage
3959 * @regulator: regulator source
3960 *
3961 * This returns the current regulator voltage in uV.
3962 *
3963 * NOTE: If the regulator is disabled it will return the voltage value. This
3964 * function should not be used to determine regulator state.
3965 */
3966int regulator_get_voltage(struct regulator *regulator)
3967{
3968 struct ww_acquire_ctx ww_ctx;
3969 int ret;
3970
3971 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3972 ret = _regulator_get_voltage(regulator->rdev);
3973 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3974
3975 return ret;
3976}
3977EXPORT_SYMBOL_GPL(regulator_get_voltage);
3978
3979/**
3980 * regulator_set_current_limit - set regulator output current limit
3981 * @regulator: regulator source
3982 * @min_uA: Minimum supported current in uA
3983 * @max_uA: Maximum supported current in uA
3984 *
3985 * Sets current sink to the desired output current. This can be set during
3986 * any regulator state. IOW, regulator can be disabled or enabled.
3987 *
3988 * If the regulator is enabled then the current will change to the new value
3989 * immediately otherwise if the regulator is disabled the regulator will
3990 * output at the new current when enabled.
3991 *
3992 * NOTE: Regulator system constraints must be set for this regulator before
3993 * calling this function otherwise this call will fail.
3994 */
3995int regulator_set_current_limit(struct regulator *regulator,
3996 int min_uA, int max_uA)
3997{
3998 struct regulator_dev *rdev = regulator->rdev;
3999 int ret;
4000
4001 regulator_lock(rdev);
4002
4003 /* sanity check */
4004 if (!rdev->desc->ops->set_current_limit) {
4005 ret = -EINVAL;
4006 goto out;
4007 }
4008
4009 /* constraints check */
4010 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4011 if (ret < 0)
4012 goto out;
4013
4014 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4015out:
4016 regulator_unlock(rdev);
4017 return ret;
4018}
4019EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4020
4021static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4022{
4023 /* sanity check */
4024 if (!rdev->desc->ops->get_current_limit)
4025 return -EINVAL;
4026
4027 return rdev->desc->ops->get_current_limit(rdev);
4028}
4029
4030static int _regulator_get_current_limit(struct regulator_dev *rdev)
4031{
4032 int ret;
4033
4034 regulator_lock(rdev);
4035 ret = _regulator_get_current_limit_unlocked(rdev);
4036 regulator_unlock(rdev);
4037
4038 return ret;
4039}
4040
4041/**
4042 * regulator_get_current_limit - get regulator output current
4043 * @regulator: regulator source
4044 *
4045 * This returns the current supplied by the specified current sink in uA.
4046 *
4047 * NOTE: If the regulator is disabled it will return the current value. This
4048 * function should not be used to determine regulator state.
4049 */
4050int regulator_get_current_limit(struct regulator *regulator)
4051{
4052 return _regulator_get_current_limit(regulator->rdev);
4053}
4054EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4055
4056/**
4057 * regulator_set_mode - set regulator operating mode
4058 * @regulator: regulator source
4059 * @mode: operating mode - one of the REGULATOR_MODE constants
4060 *
4061 * Set regulator operating mode to increase regulator efficiency or improve
4062 * regulation performance.
4063 *
4064 * NOTE: Regulator system constraints must be set for this regulator before
4065 * calling this function otherwise this call will fail.
4066 */
4067int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4068{
4069 struct regulator_dev *rdev = regulator->rdev;
4070 int ret;
4071 int regulator_curr_mode;
4072
4073 regulator_lock(rdev);
4074
4075 /* sanity check */
4076 if (!rdev->desc->ops->set_mode) {
4077 ret = -EINVAL;
4078 goto out;
4079 }
4080
4081 /* return if the same mode is requested */
4082 if (rdev->desc->ops->get_mode) {
4083 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4084 if (regulator_curr_mode == mode) {
4085 ret = 0;
4086 goto out;
4087 }
4088 }
4089
4090 /* constraints check */
4091 ret = regulator_mode_constrain(rdev, &mode);
4092 if (ret < 0)
4093 goto out;
4094
4095 ret = rdev->desc->ops->set_mode(rdev, mode);
4096out:
4097 regulator_unlock(rdev);
4098 return ret;
4099}
4100EXPORT_SYMBOL_GPL(regulator_set_mode);
4101
4102static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4103{
4104 /* sanity check */
4105 if (!rdev->desc->ops->get_mode)
4106 return -EINVAL;
4107
4108 return rdev->desc->ops->get_mode(rdev);
4109}
4110
4111static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4112{
4113 int ret;
4114
4115 regulator_lock(rdev);
4116 ret = _regulator_get_mode_unlocked(rdev);
4117 regulator_unlock(rdev);
4118
4119 return ret;
4120}
4121
4122/**
4123 * regulator_get_mode - get regulator operating mode
4124 * @regulator: regulator source
4125 *
4126 * Get the current regulator operating mode.
4127 */
4128unsigned int regulator_get_mode(struct regulator *regulator)
4129{
4130 return _regulator_get_mode(regulator->rdev);
4131}
4132EXPORT_SYMBOL_GPL(regulator_get_mode);
4133
4134static int _regulator_get_error_flags(struct regulator_dev *rdev,
4135 unsigned int *flags)
4136{
4137 int ret;
4138
4139 regulator_lock(rdev);
4140
4141 /* sanity check */
4142 if (!rdev->desc->ops->get_error_flags) {
4143 ret = -EINVAL;
4144 goto out;
4145 }
4146
4147 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4148out:
4149 regulator_unlock(rdev);
4150 return ret;
4151}
4152
4153/**
4154 * regulator_get_error_flags - get regulator error information
4155 * @regulator: regulator source
4156 * @flags: pointer to store error flags
4157 *
4158 * Get the current regulator error information.
4159 */
4160int regulator_get_error_flags(struct regulator *regulator,
4161 unsigned int *flags)
4162{
4163 return _regulator_get_error_flags(regulator->rdev, flags);
4164}
4165EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4166
4167/**
4168 * regulator_set_load - set regulator load
4169 * @regulator: regulator source
4170 * @uA_load: load current
4171 *
4172 * Notifies the regulator core of a new device load. This is then used by
4173 * DRMS (if enabled by constraints) to set the most efficient regulator
4174 * operating mode for the new regulator loading.
4175 *
4176 * Consumer devices notify their supply regulator of the maximum power
4177 * they will require (can be taken from device datasheet in the power
4178 * consumption tables) when they change operational status and hence power
4179 * state. Examples of operational state changes that can affect power
4180 * consumption are :-
4181 *
4182 * o Device is opened / closed.
4183 * o Device I/O is about to begin or has just finished.
4184 * o Device is idling in between work.
4185 *
4186 * This information is also exported via sysfs to userspace.
4187 *
4188 * DRMS will sum the total requested load on the regulator and change
4189 * to the most efficient operating mode if platform constraints allow.
4190 *
4191 * NOTE: when a regulator consumer requests to have a regulator
4192 * disabled then any load that consumer requested no longer counts
4193 * toward the total requested load. If the regulator is re-enabled
4194 * then the previously requested load will start counting again.
4195 *
4196 * If a regulator is an always-on regulator then an individual consumer's
4197 * load will still be removed if that consumer is fully disabled.
4198 *
4199 * On error a negative errno is returned.
4200 */
4201int regulator_set_load(struct regulator *regulator, int uA_load)
4202{
4203 struct regulator_dev *rdev = regulator->rdev;
4204 int old_uA_load;
4205 int ret = 0;
4206
4207 regulator_lock(rdev);
4208 old_uA_load = regulator->uA_load;
4209 regulator->uA_load = uA_load;
4210 if (regulator->enable_count && old_uA_load != uA_load) {
4211 ret = drms_uA_update(rdev);
4212 if (ret < 0)
4213 regulator->uA_load = old_uA_load;
4214 }
4215 regulator_unlock(rdev);
4216
4217 return ret;
4218}
4219EXPORT_SYMBOL_GPL(regulator_set_load);
4220
4221/**
4222 * regulator_allow_bypass - allow the regulator to go into bypass mode
4223 *
4224 * @regulator: Regulator to configure
4225 * @enable: enable or disable bypass mode
4226 *
4227 * Allow the regulator to go into bypass mode if all other consumers
4228 * for the regulator also enable bypass mode and the machine
4229 * constraints allow this. Bypass mode means that the regulator is
4230 * simply passing the input directly to the output with no regulation.
4231 */
4232int regulator_allow_bypass(struct regulator *regulator, bool enable)
4233{
4234 struct regulator_dev *rdev = regulator->rdev;
4235 int ret = 0;
4236
4237 if (!rdev->desc->ops->set_bypass)
4238 return 0;
4239
4240 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4241 return 0;
4242
4243 regulator_lock(rdev);
4244
4245 if (enable && !regulator->bypass) {
4246 rdev->bypass_count++;
4247
4248 if (rdev->bypass_count == rdev->open_count) {
4249 ret = rdev->desc->ops->set_bypass(rdev, enable);
4250 if (ret != 0)
4251 rdev->bypass_count--;
4252 }
4253
4254 } else if (!enable && regulator->bypass) {
4255 rdev->bypass_count--;
4256
4257 if (rdev->bypass_count != rdev->open_count) {
4258 ret = rdev->desc->ops->set_bypass(rdev, enable);
4259 if (ret != 0)
4260 rdev->bypass_count++;
4261 }
4262 }
4263
4264 if (ret == 0)
4265 regulator->bypass = enable;
4266
4267 regulator_unlock(rdev);
4268
4269 return ret;
4270}
4271EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4272
4273/**
4274 * regulator_register_notifier - register regulator event notifier
4275 * @regulator: regulator source
4276 * @nb: notifier block
4277 *
4278 * Register notifier block to receive regulator events.
4279 */
4280int regulator_register_notifier(struct regulator *regulator,
4281 struct notifier_block *nb)
4282{
4283 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4284 nb);
4285}
4286EXPORT_SYMBOL_GPL(regulator_register_notifier);
4287
4288/**
4289 * regulator_unregister_notifier - unregister regulator event notifier
4290 * @regulator: regulator source
4291 * @nb: notifier block
4292 *
4293 * Unregister regulator event notifier block.
4294 */
4295int regulator_unregister_notifier(struct regulator *regulator,
4296 struct notifier_block *nb)
4297{
4298 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4299 nb);
4300}
4301EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4302
4303/* notify regulator consumers and downstream regulator consumers.
4304 * Note mutex must be held by caller.
4305 */
4306static int _notifier_call_chain(struct regulator_dev *rdev,
4307 unsigned long event, void *data)
4308{
4309 /* call rdev chain first */
4310 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4311}
4312
4313/**
4314 * regulator_bulk_get - get multiple regulator consumers
4315 *
4316 * @dev: Device to supply
4317 * @num_consumers: Number of consumers to register
4318 * @consumers: Configuration of consumers; clients are stored here.
4319 *
4320 * @return 0 on success, an errno on failure.
4321 *
4322 * This helper function allows drivers to get several regulator
4323 * consumers in one operation. If any of the regulators cannot be
4324 * acquired then any regulators that were allocated will be freed
4325 * before returning to the caller.
4326 */
4327int regulator_bulk_get(struct device *dev, int num_consumers,
4328 struct regulator_bulk_data *consumers)
4329{
4330 int i;
4331 int ret;
4332
4333 for (i = 0; i < num_consumers; i++)
4334 consumers[i].consumer = NULL;
4335
4336 for (i = 0; i < num_consumers; i++) {
4337 consumers[i].consumer = regulator_get(dev,
4338 consumers[i].supply);
4339 if (IS_ERR(consumers[i].consumer)) {
4340 ret = PTR_ERR(consumers[i].consumer);
4341 consumers[i].consumer = NULL;
4342 goto err;
4343 }
4344 }
4345
4346 return 0;
4347
4348err:
4349 if (ret != -EPROBE_DEFER)
4350 dev_err(dev, "Failed to get supply '%s': %d\n",
4351 consumers[i].supply, ret);
4352 else
4353 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4354 consumers[i].supply);
4355
4356 while (--i >= 0)
4357 regulator_put(consumers[i].consumer);
4358
4359 return ret;
4360}
4361EXPORT_SYMBOL_GPL(regulator_bulk_get);
4362
4363static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4364{
4365 struct regulator_bulk_data *bulk = data;
4366
4367 bulk->ret = regulator_enable(bulk->consumer);
4368}
4369
4370/**
4371 * regulator_bulk_enable - enable multiple regulator consumers
4372 *
4373 * @num_consumers: Number of consumers
4374 * @consumers: Consumer data; clients are stored here.
4375 * @return 0 on success, an errno on failure
4376 *
4377 * This convenience API allows consumers to enable multiple regulator
4378 * clients in a single API call. If any consumers cannot be enabled
4379 * then any others that were enabled will be disabled again prior to
4380 * return.
4381 */
4382int regulator_bulk_enable(int num_consumers,
4383 struct regulator_bulk_data *consumers)
4384{
4385 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4386 int i;
4387 int ret = 0;
4388
4389 for (i = 0; i < num_consumers; i++) {
4390 async_schedule_domain(regulator_bulk_enable_async,
4391 &consumers[i], &async_domain);
4392 }
4393
4394 async_synchronize_full_domain(&async_domain);
4395
4396 /* If any consumer failed we need to unwind any that succeeded */
4397 for (i = 0; i < num_consumers; i++) {
4398 if (consumers[i].ret != 0) {
4399 ret = consumers[i].ret;
4400 goto err;
4401 }
4402 }
4403
4404 return 0;
4405
4406err:
4407 for (i = 0; i < num_consumers; i++) {
4408 if (consumers[i].ret < 0)
4409 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4410 consumers[i].ret);
4411 else
4412 regulator_disable(consumers[i].consumer);
4413 }
4414
4415 return ret;
4416}
4417EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4418
4419/**
4420 * regulator_bulk_disable - disable multiple regulator consumers
4421 *
4422 * @num_consumers: Number of consumers
4423 * @consumers: Consumer data; clients are stored here.
4424 * @return 0 on success, an errno on failure
4425 *
4426 * This convenience API allows consumers to disable multiple regulator
4427 * clients in a single API call. If any consumers cannot be disabled
4428 * then any others that were disabled will be enabled again prior to
4429 * return.
4430 */
4431int regulator_bulk_disable(int num_consumers,
4432 struct regulator_bulk_data *consumers)
4433{
4434 int i;
4435 int ret, r;
4436
4437 for (i = num_consumers - 1; i >= 0; --i) {
4438 ret = regulator_disable(consumers[i].consumer);
4439 if (ret != 0)
4440 goto err;
4441 }
4442
4443 return 0;
4444
4445err:
4446 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4447 for (++i; i < num_consumers; ++i) {
4448 r = regulator_enable(consumers[i].consumer);
4449 if (r != 0)
4450 pr_err("Failed to re-enable %s: %d\n",
4451 consumers[i].supply, r);
4452 }
4453
4454 return ret;
4455}
4456EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4457
4458/**
4459 * regulator_bulk_force_disable - force disable multiple regulator consumers
4460 *
4461 * @num_consumers: Number of consumers
4462 * @consumers: Consumer data; clients are stored here.
4463 * @return 0 on success, an errno on failure
4464 *
4465 * This convenience API allows consumers to forcibly disable multiple regulator
4466 * clients in a single API call.
4467 * NOTE: This should be used for situations when device damage will
4468 * likely occur if the regulators are not disabled (e.g. over temp).
4469 * Although regulator_force_disable function call for some consumers can
4470 * return error numbers, the function is called for all consumers.
4471 */
4472int regulator_bulk_force_disable(int num_consumers,
4473 struct regulator_bulk_data *consumers)
4474{
4475 int i;
4476 int ret = 0;
4477
4478 for (i = 0; i < num_consumers; i++) {
4479 consumers[i].ret =
4480 regulator_force_disable(consumers[i].consumer);
4481
4482 /* Store first error for reporting */
4483 if (consumers[i].ret && !ret)
4484 ret = consumers[i].ret;
4485 }
4486
4487 return ret;
4488}
4489EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4490
4491/**
4492 * regulator_bulk_free - free multiple regulator consumers
4493 *
4494 * @num_consumers: Number of consumers
4495 * @consumers: Consumer data; clients are stored here.
4496 *
4497 * This convenience API allows consumers to free multiple regulator
4498 * clients in a single API call.
4499 */
4500void regulator_bulk_free(int num_consumers,
4501 struct regulator_bulk_data *consumers)
4502{
4503 int i;
4504
4505 for (i = 0; i < num_consumers; i++) {
4506 regulator_put(consumers[i].consumer);
4507 consumers[i].consumer = NULL;
4508 }
4509}
4510EXPORT_SYMBOL_GPL(regulator_bulk_free);
4511
4512/**
4513 * regulator_notifier_call_chain - call regulator event notifier
4514 * @rdev: regulator source
4515 * @event: notifier block
4516 * @data: callback-specific data.
4517 *
4518 * Called by regulator drivers to notify clients a regulator event has
4519 * occurred. We also notify regulator clients downstream.
4520 * Note lock must be held by caller.
4521 */
4522int regulator_notifier_call_chain(struct regulator_dev *rdev,
4523 unsigned long event, void *data)
4524{
4525 lockdep_assert_held_once(&rdev->mutex.base);
4526
4527 _notifier_call_chain(rdev, event, data);
4528 return NOTIFY_DONE;
4529
4530}
4531EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4532
4533/**
4534 * regulator_mode_to_status - convert a regulator mode into a status
4535 *
4536 * @mode: Mode to convert
4537 *
4538 * Convert a regulator mode into a status.
4539 */
4540int regulator_mode_to_status(unsigned int mode)
4541{
4542 switch (mode) {
4543 case REGULATOR_MODE_FAST:
4544 return REGULATOR_STATUS_FAST;
4545 case REGULATOR_MODE_NORMAL:
4546 return REGULATOR_STATUS_NORMAL;
4547 case REGULATOR_MODE_IDLE:
4548 return REGULATOR_STATUS_IDLE;
4549 case REGULATOR_MODE_STANDBY:
4550 return REGULATOR_STATUS_STANDBY;
4551 default:
4552 return REGULATOR_STATUS_UNDEFINED;
4553 }
4554}
4555EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4556
4557static struct attribute *regulator_dev_attrs[] = {
4558 &dev_attr_name.attr,
4559 &dev_attr_num_users.attr,
4560 &dev_attr_type.attr,
4561 &dev_attr_microvolts.attr,
4562 &dev_attr_microamps.attr,
4563 &dev_attr_opmode.attr,
4564 &dev_attr_state.attr,
4565 &dev_attr_status.attr,
4566 &dev_attr_bypass.attr,
4567 &dev_attr_requested_microamps.attr,
4568 &dev_attr_min_microvolts.attr,
4569 &dev_attr_max_microvolts.attr,
4570 &dev_attr_min_microamps.attr,
4571 &dev_attr_max_microamps.attr,
4572 &dev_attr_suspend_standby_state.attr,
4573 &dev_attr_suspend_mem_state.attr,
4574 &dev_attr_suspend_disk_state.attr,
4575 &dev_attr_suspend_standby_microvolts.attr,
4576 &dev_attr_suspend_mem_microvolts.attr,
4577 &dev_attr_suspend_disk_microvolts.attr,
4578 &dev_attr_suspend_standby_mode.attr,
4579 &dev_attr_suspend_mem_mode.attr,
4580 &dev_attr_suspend_disk_mode.attr,
4581 NULL
4582};
4583
4584/*
4585 * To avoid cluttering sysfs (and memory) with useless state, only
4586 * create attributes that can be meaningfully displayed.
4587 */
4588static umode_t regulator_attr_is_visible(struct kobject *kobj,
4589 struct attribute *attr, int idx)
4590{
4591 struct device *dev = kobj_to_dev(kobj);
4592 struct regulator_dev *rdev = dev_to_rdev(dev);
4593 const struct regulator_ops *ops = rdev->desc->ops;
4594 umode_t mode = attr->mode;
4595
4596 /* these three are always present */
4597 if (attr == &dev_attr_name.attr ||
4598 attr == &dev_attr_num_users.attr ||
4599 attr == &dev_attr_type.attr)
4600 return mode;
4601
4602 /* some attributes need specific methods to be displayed */
4603 if (attr == &dev_attr_microvolts.attr) {
4604 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4605 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4606 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4607 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4608 return mode;
4609 return 0;
4610 }
4611
4612 if (attr == &dev_attr_microamps.attr)
4613 return ops->get_current_limit ? mode : 0;
4614
4615 if (attr == &dev_attr_opmode.attr)
4616 return ops->get_mode ? mode : 0;
4617
4618 if (attr == &dev_attr_state.attr)
4619 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4620
4621 if (attr == &dev_attr_status.attr)
4622 return ops->get_status ? mode : 0;
4623
4624 if (attr == &dev_attr_bypass.attr)
4625 return ops->get_bypass ? mode : 0;
4626
4627 /* constraints need specific supporting methods */
4628 if (attr == &dev_attr_min_microvolts.attr ||
4629 attr == &dev_attr_max_microvolts.attr)
4630 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4631
4632 if (attr == &dev_attr_min_microamps.attr ||
4633 attr == &dev_attr_max_microamps.attr)
4634 return ops->set_current_limit ? mode : 0;
4635
4636 if (attr == &dev_attr_suspend_standby_state.attr ||
4637 attr == &dev_attr_suspend_mem_state.attr ||
4638 attr == &dev_attr_suspend_disk_state.attr)
4639 return mode;
4640
4641 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4642 attr == &dev_attr_suspend_mem_microvolts.attr ||
4643 attr == &dev_attr_suspend_disk_microvolts.attr)
4644 return ops->set_suspend_voltage ? mode : 0;
4645
4646 if (attr == &dev_attr_suspend_standby_mode.attr ||
4647 attr == &dev_attr_suspend_mem_mode.attr ||
4648 attr == &dev_attr_suspend_disk_mode.attr)
4649 return ops->set_suspend_mode ? mode : 0;
4650
4651 return mode;
4652}
4653
4654static const struct attribute_group regulator_dev_group = {
4655 .attrs = regulator_dev_attrs,
4656 .is_visible = regulator_attr_is_visible,
4657};
4658
4659static const struct attribute_group *regulator_dev_groups[] = {
4660 ®ulator_dev_group,
4661 NULL
4662};
4663
4664static void regulator_dev_release(struct device *dev)
4665{
4666 struct regulator_dev *rdev = dev_get_drvdata(dev);
4667
4668 kfree(rdev->constraints);
4669 of_node_put(rdev->dev.of_node);
4670 kfree(rdev);
4671}
4672
4673static void rdev_init_debugfs(struct regulator_dev *rdev)
4674{
4675 struct device *parent = rdev->dev.parent;
4676 const char *rname = rdev_get_name(rdev);
4677 char name[NAME_MAX];
4678
4679 /* Avoid duplicate debugfs directory names */
4680 if (parent && rname == rdev->desc->name) {
4681 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4682 rname);
4683 rname = name;
4684 }
4685
4686 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4687 if (!rdev->debugfs) {
4688 rdev_warn(rdev, "Failed to create debugfs directory\n");
4689 return;
4690 }
4691
4692 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4693 &rdev->use_count);
4694 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4695 &rdev->open_count);
4696 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4697 &rdev->bypass_count);
4698}
4699
4700static int regulator_register_resolve_supply(struct device *dev, void *data)
4701{
4702 struct regulator_dev *rdev = dev_to_rdev(dev);
4703
4704 if (regulator_resolve_supply(rdev))
4705 rdev_dbg(rdev, "unable to resolve supply\n");
4706
4707 return 0;
4708}
4709
4710static void regulator_resolve_coupling(struct regulator_dev *rdev)
4711{
4712 struct coupling_desc *c_desc = &rdev->coupling_desc;
4713 int n_coupled = c_desc->n_coupled;
4714 struct regulator_dev *c_rdev;
4715 int i;
4716
4717 for (i = 1; i < n_coupled; i++) {
4718 /* already resolved */
4719 if (c_desc->coupled_rdevs[i])
4720 continue;
4721
4722 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4723
4724 if (!c_rdev)
4725 continue;
4726
4727 regulator_lock(c_rdev);
4728
4729 c_desc->coupled_rdevs[i] = c_rdev;
4730 c_desc->n_resolved++;
4731
4732 regulator_unlock(c_rdev);
4733
4734 regulator_resolve_coupling(c_rdev);
4735 }
4736}
4737
4738static void regulator_remove_coupling(struct regulator_dev *rdev)
4739{
4740 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4741 struct regulator_dev *__c_rdev, *c_rdev;
4742 unsigned int __n_coupled, n_coupled;
4743 int i, k;
4744
4745 n_coupled = c_desc->n_coupled;
4746
4747 for (i = 1; i < n_coupled; i++) {
4748 c_rdev = c_desc->coupled_rdevs[i];
4749
4750 if (!c_rdev)
4751 continue;
4752
4753 regulator_lock(c_rdev);
4754
4755 __c_desc = &c_rdev->coupling_desc;
4756 __n_coupled = __c_desc->n_coupled;
4757
4758 for (k = 1; k < __n_coupled; k++) {
4759 __c_rdev = __c_desc->coupled_rdevs[k];
4760
4761 if (__c_rdev == rdev) {
4762 __c_desc->coupled_rdevs[k] = NULL;
4763 __c_desc->n_resolved--;
4764 break;
4765 }
4766 }
4767
4768 regulator_unlock(c_rdev);
4769
4770 c_desc->coupled_rdevs[i] = NULL;
4771 c_desc->n_resolved--;
4772 }
4773}
4774
4775static int regulator_init_coupling(struct regulator_dev *rdev)
4776{
4777 int n_phandles;
4778
4779 if (!IS_ENABLED(CONFIG_OF))
4780 n_phandles = 0;
4781 else
4782 n_phandles = of_get_n_coupled(rdev);
4783
4784 if (n_phandles + 1 > MAX_COUPLED) {
4785 rdev_err(rdev, "too many regulators coupled\n");
4786 return -EPERM;
4787 }
4788
4789 /*
4790 * Every regulator should always have coupling descriptor filled with
4791 * at least pointer to itself.
4792 */
4793 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4794 rdev->coupling_desc.n_coupled = n_phandles + 1;
4795 rdev->coupling_desc.n_resolved++;
4796
4797 /* regulator isn't coupled */
4798 if (n_phandles == 0)
4799 return 0;
4800
4801 /* regulator, which can't change its voltage, can't be coupled */
4802 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4803 rdev_err(rdev, "voltage operation not allowed\n");
4804 return -EPERM;
4805 }
4806
4807 if (rdev->constraints->max_spread <= 0) {
4808 rdev_err(rdev, "wrong max_spread value\n");
4809 return -EPERM;
4810 }
4811
4812 if (!of_check_coupling_data(rdev))
4813 return -EPERM;
4814
4815 return 0;
4816}
4817
4818/**
4819 * regulator_register - register regulator
4820 * @regulator_desc: regulator to register
4821 * @cfg: runtime configuration for regulator
4822 *
4823 * Called by regulator drivers to register a regulator.
4824 * Returns a valid pointer to struct regulator_dev on success
4825 * or an ERR_PTR() on error.
4826 */
4827struct regulator_dev *
4828regulator_register(const struct regulator_desc *regulator_desc,
4829 const struct regulator_config *cfg)
4830{
4831 const struct regulation_constraints *constraints = NULL;
4832 const struct regulator_init_data *init_data;
4833 struct regulator_config *config = NULL;
4834 static atomic_t regulator_no = ATOMIC_INIT(-1);
4835 struct regulator_dev *rdev;
4836 bool dangling_cfg_gpiod = false;
4837 bool dangling_of_gpiod = false;
4838 struct device *dev;
4839 int ret, i;
4840
4841 if (cfg == NULL)
4842 return ERR_PTR(-EINVAL);
4843 if (cfg->ena_gpiod)
4844 dangling_cfg_gpiod = true;
4845 if (regulator_desc == NULL) {
4846 ret = -EINVAL;
4847 goto rinse;
4848 }
4849
4850 dev = cfg->dev;
4851 WARN_ON(!dev);
4852
4853 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
4854 ret = -EINVAL;
4855 goto rinse;
4856 }
4857
4858 if (regulator_desc->type != REGULATOR_VOLTAGE &&
4859 regulator_desc->type != REGULATOR_CURRENT) {
4860 ret = -EINVAL;
4861 goto rinse;
4862 }
4863
4864 /* Only one of each should be implemented */
4865 WARN_ON(regulator_desc->ops->get_voltage &&
4866 regulator_desc->ops->get_voltage_sel);
4867 WARN_ON(regulator_desc->ops->set_voltage &&
4868 regulator_desc->ops->set_voltage_sel);
4869
4870 /* If we're using selectors we must implement list_voltage. */
4871 if (regulator_desc->ops->get_voltage_sel &&
4872 !regulator_desc->ops->list_voltage) {
4873 ret = -EINVAL;
4874 goto rinse;
4875 }
4876 if (regulator_desc->ops->set_voltage_sel &&
4877 !regulator_desc->ops->list_voltage) {
4878 ret = -EINVAL;
4879 goto rinse;
4880 }
4881
4882 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4883 if (rdev == NULL) {
4884 ret = -ENOMEM;
4885 goto rinse;
4886 }
4887
4888 /*
4889 * Duplicate the config so the driver could override it after
4890 * parsing init data.
4891 */
4892 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4893 if (config == NULL) {
4894 kfree(rdev);
4895 ret = -ENOMEM;
4896 goto rinse;
4897 }
4898
4899 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4900 &rdev->dev.of_node);
4901 /*
4902 * We need to keep track of any GPIO descriptor coming from the
4903 * device tree until we have handled it over to the core. If the
4904 * config that was passed in to this function DOES NOT contain
4905 * a descriptor, and the config after this call DOES contain
4906 * a descriptor, we definitely got one from parsing the device
4907 * tree.
4908 */
4909 if (!cfg->ena_gpiod && config->ena_gpiod)
4910 dangling_of_gpiod = true;
4911 if (!init_data) {
4912 init_data = config->init_data;
4913 rdev->dev.of_node = of_node_get(config->of_node);
4914 }
4915
4916 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
4917 rdev->reg_data = config->driver_data;
4918 rdev->owner = regulator_desc->owner;
4919 rdev->desc = regulator_desc;
4920 if (config->regmap)
4921 rdev->regmap = config->regmap;
4922 else if (dev_get_regmap(dev, NULL))
4923 rdev->regmap = dev_get_regmap(dev, NULL);
4924 else if (dev->parent)
4925 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4926 INIT_LIST_HEAD(&rdev->consumer_list);
4927 INIT_LIST_HEAD(&rdev->list);
4928 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4929 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4930
4931 /* preform any regulator specific init */
4932 if (init_data && init_data->regulator_init) {
4933 ret = init_data->regulator_init(rdev->reg_data);
4934 if (ret < 0)
4935 goto clean;
4936 }
4937
4938 if (config->ena_gpiod) {
4939 mutex_lock(®ulator_list_mutex);
4940 ret = regulator_ena_gpio_request(rdev, config);
4941 mutex_unlock(®ulator_list_mutex);
4942 if (ret != 0) {
4943 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
4944 ret);
4945 goto clean;
4946 }
4947 /* The regulator core took over the GPIO descriptor */
4948 dangling_cfg_gpiod = false;
4949 dangling_of_gpiod = false;
4950 }
4951
4952 /* register with sysfs */
4953 rdev->dev.class = ®ulator_class;
4954 rdev->dev.parent = dev;
4955 dev_set_name(&rdev->dev, "regulator.%lu",
4956 (unsigned long) atomic_inc_return(®ulator_no));
4957
4958 /* set regulator constraints */
4959 if (init_data)
4960 constraints = &init_data->constraints;
4961
4962 if (init_data && init_data->supply_regulator)
4963 rdev->supply_name = init_data->supply_regulator;
4964 else if (regulator_desc->supply_name)
4965 rdev->supply_name = regulator_desc->supply_name;
4966
4967 /*
4968 * Attempt to resolve the regulator supply, if specified,
4969 * but don't return an error if we fail because we will try
4970 * to resolve it again later as more regulators are added.
4971 */
4972 if (regulator_resolve_supply(rdev))
4973 rdev_dbg(rdev, "unable to resolve supply\n");
4974
4975 ret = set_machine_constraints(rdev, constraints);
4976 if (ret < 0)
4977 goto wash;
4978
4979 ret = regulator_init_coupling(rdev);
4980 if (ret < 0)
4981 goto wash;
4982
4983 /* add consumers devices */
4984 if (init_data) {
4985 mutex_lock(®ulator_list_mutex);
4986 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4987 ret = set_consumer_device_supply(rdev,
4988 init_data->consumer_supplies[i].dev_name,
4989 init_data->consumer_supplies[i].supply);
4990 if (ret < 0) {
4991 mutex_unlock(®ulator_list_mutex);
4992 dev_err(dev, "Failed to set supply %s\n",
4993 init_data->consumer_supplies[i].supply);
4994 goto unset_supplies;
4995 }
4996 }
4997 mutex_unlock(®ulator_list_mutex);
4998 }
4999
5000 if (!rdev->desc->ops->get_voltage &&
5001 !rdev->desc->ops->list_voltage &&
5002 !rdev->desc->fixed_uV)
5003 rdev->is_switch = true;
5004
5005 dev_set_drvdata(&rdev->dev, rdev);
5006 ret = device_register(&rdev->dev);
5007 if (ret != 0) {
5008 put_device(&rdev->dev);
5009 goto unset_supplies;
5010 }
5011
5012 rdev_init_debugfs(rdev);
5013
5014 /* try to resolve regulators coupling since a new one was registered */
5015 mutex_lock(®ulator_list_mutex);
5016 regulator_resolve_coupling(rdev);
5017 mutex_unlock(®ulator_list_mutex);
5018
5019 /* try to resolve regulators supply since a new one was registered */
5020 class_for_each_device(®ulator_class, NULL, NULL,
5021 regulator_register_resolve_supply);
5022 kfree(config);
5023 return rdev;
5024
5025unset_supplies:
5026 mutex_lock(®ulator_list_mutex);
5027 unset_regulator_supplies(rdev);
5028 mutex_unlock(®ulator_list_mutex);
5029wash:
5030 kfree(rdev->constraints);
5031 mutex_lock(®ulator_list_mutex);
5032 regulator_ena_gpio_free(rdev);
5033 mutex_unlock(®ulator_list_mutex);
5034clean:
5035 if (dangling_of_gpiod)
5036 gpiod_put(config->ena_gpiod);
5037 kfree(rdev);
5038 kfree(config);
5039rinse:
5040 if (dangling_cfg_gpiod)
5041 gpiod_put(cfg->ena_gpiod);
5042 return ERR_PTR(ret);
5043}
5044EXPORT_SYMBOL_GPL(regulator_register);
5045
5046/**
5047 * regulator_unregister - unregister regulator
5048 * @rdev: regulator to unregister
5049 *
5050 * Called by regulator drivers to unregister a regulator.
5051 */
5052void regulator_unregister(struct regulator_dev *rdev)
5053{
5054 if (rdev == NULL)
5055 return;
5056
5057 if (rdev->supply) {
5058 while (rdev->use_count--)
5059 regulator_disable(rdev->supply);
5060 regulator_put(rdev->supply);
5061 }
5062
5063 flush_work(&rdev->disable_work.work);
5064
5065 mutex_lock(®ulator_list_mutex);
5066
5067 debugfs_remove_recursive(rdev->debugfs);
5068 WARN_ON(rdev->open_count);
5069 regulator_remove_coupling(rdev);
5070 unset_regulator_supplies(rdev);
5071 list_del(&rdev->list);
5072 regulator_ena_gpio_free(rdev);
5073 device_unregister(&rdev->dev);
5074
5075 mutex_unlock(®ulator_list_mutex);
5076}
5077EXPORT_SYMBOL_GPL(regulator_unregister);
5078
5079#ifdef CONFIG_SUSPEND
5080/**
5081 * regulator_suspend - prepare regulators for system wide suspend
5082 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5083 *
5084 * Configure each regulator with it's suspend operating parameters for state.
5085 */
5086static int regulator_suspend(struct device *dev)
5087{
5088 struct regulator_dev *rdev = dev_to_rdev(dev);
5089 suspend_state_t state = pm_suspend_target_state;
5090 int ret;
5091
5092 regulator_lock(rdev);
5093 ret = suspend_set_state(rdev, state);
5094 regulator_unlock(rdev);
5095
5096 return ret;
5097}
5098
5099static int regulator_resume(struct device *dev)
5100{
5101 suspend_state_t state = pm_suspend_target_state;
5102 struct regulator_dev *rdev = dev_to_rdev(dev);
5103 struct regulator_state *rstate;
5104 int ret = 0;
5105
5106 rstate = regulator_get_suspend_state(rdev, state);
5107 if (rstate == NULL)
5108 return 0;
5109
5110 regulator_lock(rdev);
5111
5112 if (rdev->desc->ops->resume &&
5113 (rstate->enabled == ENABLE_IN_SUSPEND ||
5114 rstate->enabled == DISABLE_IN_SUSPEND))
5115 ret = rdev->desc->ops->resume(rdev);
5116
5117 regulator_unlock(rdev);
5118
5119 return ret;
5120}
5121#else /* !CONFIG_SUSPEND */
5122
5123#define regulator_suspend NULL
5124#define regulator_resume NULL
5125
5126#endif /* !CONFIG_SUSPEND */
5127
5128#ifdef CONFIG_PM
5129static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5130 .suspend = regulator_suspend,
5131 .resume = regulator_resume,
5132};
5133#endif
5134
5135struct class regulator_class = {
5136 .name = "regulator",
5137 .dev_release = regulator_dev_release,
5138 .dev_groups = regulator_dev_groups,
5139#ifdef CONFIG_PM
5140 .pm = ®ulator_pm_ops,
5141#endif
5142};
5143/**
5144 * regulator_has_full_constraints - the system has fully specified constraints
5145 *
5146 * Calling this function will cause the regulator API to disable all
5147 * regulators which have a zero use count and don't have an always_on
5148 * constraint in a late_initcall.
5149 *
5150 * The intention is that this will become the default behaviour in a
5151 * future kernel release so users are encouraged to use this facility
5152 * now.
5153 */
5154void regulator_has_full_constraints(void)
5155{
5156 has_full_constraints = 1;
5157}
5158EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5159
5160/**
5161 * rdev_get_drvdata - get rdev regulator driver data
5162 * @rdev: regulator
5163 *
5164 * Get rdev regulator driver private data. This call can be used in the
5165 * regulator driver context.
5166 */
5167void *rdev_get_drvdata(struct regulator_dev *rdev)
5168{
5169 return rdev->reg_data;
5170}
5171EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5172
5173/**
5174 * regulator_get_drvdata - get regulator driver data
5175 * @regulator: regulator
5176 *
5177 * Get regulator driver private data. This call can be used in the consumer
5178 * driver context when non API regulator specific functions need to be called.
5179 */
5180void *regulator_get_drvdata(struct regulator *regulator)
5181{
5182 return regulator->rdev->reg_data;
5183}
5184EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5185
5186/**
5187 * regulator_set_drvdata - set regulator driver data
5188 * @regulator: regulator
5189 * @data: data
5190 */
5191void regulator_set_drvdata(struct regulator *regulator, void *data)
5192{
5193 regulator->rdev->reg_data = data;
5194}
5195EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5196
5197/**
5198 * regulator_get_id - get regulator ID
5199 * @rdev: regulator
5200 */
5201int rdev_get_id(struct regulator_dev *rdev)
5202{
5203 return rdev->desc->id;
5204}
5205EXPORT_SYMBOL_GPL(rdev_get_id);
5206
5207struct device *rdev_get_dev(struct regulator_dev *rdev)
5208{
5209 return &rdev->dev;
5210}
5211EXPORT_SYMBOL_GPL(rdev_get_dev);
5212
5213struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5214{
5215 return rdev->regmap;
5216}
5217EXPORT_SYMBOL_GPL(rdev_get_regmap);
5218
5219void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5220{
5221 return reg_init_data->driver_data;
5222}
5223EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5224
5225#ifdef CONFIG_DEBUG_FS
5226static int supply_map_show(struct seq_file *sf, void *data)
5227{
5228 struct regulator_map *map;
5229
5230 list_for_each_entry(map, ®ulator_map_list, list) {
5231 seq_printf(sf, "%s -> %s.%s\n",
5232 rdev_get_name(map->regulator), map->dev_name,
5233 map->supply);
5234 }
5235
5236 return 0;
5237}
5238DEFINE_SHOW_ATTRIBUTE(supply_map);
5239
5240struct summary_data {
5241 struct seq_file *s;
5242 struct regulator_dev *parent;
5243 int level;
5244};
5245
5246static void regulator_summary_show_subtree(struct seq_file *s,
5247 struct regulator_dev *rdev,
5248 int level);
5249
5250static int regulator_summary_show_children(struct device *dev, void *data)
5251{
5252 struct regulator_dev *rdev = dev_to_rdev(dev);
5253 struct summary_data *summary_data = data;
5254
5255 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5256 regulator_summary_show_subtree(summary_data->s, rdev,
5257 summary_data->level + 1);
5258
5259 return 0;
5260}
5261
5262static void regulator_summary_show_subtree(struct seq_file *s,
5263 struct regulator_dev *rdev,
5264 int level)
5265{
5266 struct regulation_constraints *c;
5267 struct regulator *consumer;
5268 struct summary_data summary_data;
5269 unsigned int opmode;
5270
5271 if (!rdev)
5272 return;
5273
5274 opmode = _regulator_get_mode_unlocked(rdev);
5275 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5276 level * 3 + 1, "",
5277 30 - level * 3, rdev_get_name(rdev),
5278 rdev->use_count, rdev->open_count, rdev->bypass_count,
5279 regulator_opmode_to_str(opmode));
5280
5281 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5282 seq_printf(s, "%5dmA ",
5283 _regulator_get_current_limit_unlocked(rdev) / 1000);
5284
5285 c = rdev->constraints;
5286 if (c) {
5287 switch (rdev->desc->type) {
5288 case REGULATOR_VOLTAGE:
5289 seq_printf(s, "%5dmV %5dmV ",
5290 c->min_uV / 1000, c->max_uV / 1000);
5291 break;
5292 case REGULATOR_CURRENT:
5293 seq_printf(s, "%5dmA %5dmA ",
5294 c->min_uA / 1000, c->max_uA / 1000);
5295 break;
5296 }
5297 }
5298
5299 seq_puts(s, "\n");
5300
5301 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5302 if (consumer->dev && consumer->dev->class == ®ulator_class)
5303 continue;
5304
5305 seq_printf(s, "%*s%-*s ",
5306 (level + 1) * 3 + 1, "",
5307 30 - (level + 1) * 3,
5308 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5309
5310 switch (rdev->desc->type) {
5311 case REGULATOR_VOLTAGE:
5312 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5313 consumer->enable_count,
5314 consumer->uA_load / 1000,
5315 consumer->uA_load && !consumer->enable_count ?
5316 '*' : ' ',
5317 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5318 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5319 break;
5320 case REGULATOR_CURRENT:
5321 break;
5322 }
5323
5324 seq_puts(s, "\n");
5325 }
5326
5327 summary_data.s = s;
5328 summary_data.level = level;
5329 summary_data.parent = rdev;
5330
5331 class_for_each_device(®ulator_class, NULL, &summary_data,
5332 regulator_summary_show_children);
5333}
5334
5335struct summary_lock_data {
5336 struct ww_acquire_ctx *ww_ctx;
5337 struct regulator_dev **new_contended_rdev;
5338 struct regulator_dev **old_contended_rdev;
5339};
5340
5341static int regulator_summary_lock_one(struct device *dev, void *data)
5342{
5343 struct regulator_dev *rdev = dev_to_rdev(dev);
5344 struct summary_lock_data *lock_data = data;
5345 int ret = 0;
5346
5347 if (rdev != *lock_data->old_contended_rdev) {
5348 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5349
5350 if (ret == -EDEADLK)
5351 *lock_data->new_contended_rdev = rdev;
5352 else
5353 WARN_ON_ONCE(ret);
5354 } else {
5355 *lock_data->old_contended_rdev = NULL;
5356 }
5357
5358 return ret;
5359}
5360
5361static int regulator_summary_unlock_one(struct device *dev, void *data)
5362{
5363 struct regulator_dev *rdev = dev_to_rdev(dev);
5364 struct summary_lock_data *lock_data = data;
5365
5366 if (lock_data) {
5367 if (rdev == *lock_data->new_contended_rdev)
5368 return -EDEADLK;
5369 }
5370
5371 regulator_unlock(rdev);
5372
5373 return 0;
5374}
5375
5376static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5377 struct regulator_dev **new_contended_rdev,
5378 struct regulator_dev **old_contended_rdev)
5379{
5380 struct summary_lock_data lock_data;
5381 int ret;
5382
5383 lock_data.ww_ctx = ww_ctx;
5384 lock_data.new_contended_rdev = new_contended_rdev;
5385 lock_data.old_contended_rdev = old_contended_rdev;
5386
5387 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5388 regulator_summary_lock_one);
5389 if (ret)
5390 class_for_each_device(®ulator_class, NULL, &lock_data,
5391 regulator_summary_unlock_one);
5392
5393 return ret;
5394}
5395
5396static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5397{
5398 struct regulator_dev *new_contended_rdev = NULL;
5399 struct regulator_dev *old_contended_rdev = NULL;
5400 int err;
5401
5402 mutex_lock(®ulator_list_mutex);
5403
5404 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5405
5406 do {
5407 if (new_contended_rdev) {
5408 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5409 old_contended_rdev = new_contended_rdev;
5410 old_contended_rdev->ref_cnt++;
5411 }
5412
5413 err = regulator_summary_lock_all(ww_ctx,
5414 &new_contended_rdev,
5415 &old_contended_rdev);
5416
5417 if (old_contended_rdev)
5418 regulator_unlock(old_contended_rdev);
5419
5420 } while (err == -EDEADLK);
5421
5422 ww_acquire_done(ww_ctx);
5423}
5424
5425static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5426{
5427 class_for_each_device(®ulator_class, NULL, NULL,
5428 regulator_summary_unlock_one);
5429 ww_acquire_fini(ww_ctx);
5430
5431 mutex_unlock(®ulator_list_mutex);
5432}
5433
5434static int regulator_summary_show_roots(struct device *dev, void *data)
5435{
5436 struct regulator_dev *rdev = dev_to_rdev(dev);
5437 struct seq_file *s = data;
5438
5439 if (!rdev->supply)
5440 regulator_summary_show_subtree(s, rdev, 0);
5441
5442 return 0;
5443}
5444
5445static int regulator_summary_show(struct seq_file *s, void *data)
5446{
5447 struct ww_acquire_ctx ww_ctx;
5448
5449 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5450 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5451
5452 regulator_summary_lock(&ww_ctx);
5453
5454 class_for_each_device(®ulator_class, NULL, s,
5455 regulator_summary_show_roots);
5456
5457 regulator_summary_unlock(&ww_ctx);
5458
5459 return 0;
5460}
5461DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5462#endif /* CONFIG_DEBUG_FS */
5463
5464static int __init regulator_init(void)
5465{
5466 int ret;
5467
5468 ret = class_register(®ulator_class);
5469
5470 debugfs_root = debugfs_create_dir("regulator", NULL);
5471 if (!debugfs_root)
5472 pr_warn("regulator: Failed to create debugfs directory\n");
5473
5474#ifdef CONFIG_DEBUG_FS
5475 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5476 &supply_map_fops);
5477
5478 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5479 NULL, ®ulator_summary_fops);
5480#endif
5481 regulator_dummy_init();
5482
5483 return ret;
5484}
5485
5486/* init early to allow our consumers to complete system booting */
5487core_initcall(regulator_init);
5488
5489static int __init regulator_late_cleanup(struct device *dev, void *data)
5490{
5491 struct regulator_dev *rdev = dev_to_rdev(dev);
5492 const struct regulator_ops *ops = rdev->desc->ops;
5493 struct regulation_constraints *c = rdev->constraints;
5494 int enabled, ret;
5495
5496 if (c && c->always_on)
5497 return 0;
5498
5499 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5500 return 0;
5501
5502 regulator_lock(rdev);
5503
5504 if (rdev->use_count)
5505 goto unlock;
5506
5507 /* If we can't read the status assume it's on. */
5508 if (ops->is_enabled)
5509 enabled = ops->is_enabled(rdev);
5510 else
5511 enabled = 1;
5512
5513 if (!enabled)
5514 goto unlock;
5515
5516 if (have_full_constraints()) {
5517 /* We log since this may kill the system if it goes
5518 * wrong. */
5519 rdev_info(rdev, "disabling\n");
5520 ret = _regulator_do_disable(rdev);
5521 if (ret != 0)
5522 rdev_err(rdev, "couldn't disable: %d\n", ret);
5523 } else {
5524 /* The intention is that in future we will
5525 * assume that full constraints are provided
5526 * so warn even if we aren't going to do
5527 * anything here.
5528 */
5529 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5530 }
5531
5532unlock:
5533 regulator_unlock(rdev);
5534
5535 return 0;
5536}
5537
5538static int __init regulator_init_complete(void)
5539{
5540 /*
5541 * Since DT doesn't provide an idiomatic mechanism for
5542 * enabling full constraints and since it's much more natural
5543 * with DT to provide them just assume that a DT enabled
5544 * system has full constraints.
5545 */
5546 if (of_have_populated_dt())
5547 has_full_constraints = true;
5548
5549 /*
5550 * Regulators may had failed to resolve their input supplies
5551 * when were registered, either because the input supply was
5552 * not registered yet or because its parent device was not
5553 * bound yet. So attempt to resolve the input supplies for
5554 * pending regulators before trying to disable unused ones.
5555 */
5556 class_for_each_device(®ulator_class, NULL, NULL,
5557 regulator_register_resolve_supply);
5558
5559 /* If we have a full configuration then disable any regulators
5560 * we have permission to change the status for and which are
5561 * not in use or always_on. This is effectively the default
5562 * for DT and ACPI as they have full constraints.
5563 */
5564 class_for_each_device(®ulator_class, NULL, NULL,
5565 regulator_late_cleanup);
5566
5567 return 0;
5568}
5569late_initcall_sync(regulator_init_complete);