Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/kernel.h>
16#include <linux/kref.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/err.h>
22#include <linux/list.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/pinctrl/consumer.h>
26#include <linux/pinctrl/pinctrl.h>
27#include <linux/pinctrl/machine.h>
28
29#ifdef CONFIG_GPIOLIB
30#include <asm-generic/gpio.h>
31#endif
32
33#include "core.h"
34#include "devicetree.h"
35#include "pinmux.h"
36#include "pinconf.h"
37
38
39static bool pinctrl_dummy_state;
40
41/* Mutex taken to protect pinctrl_list */
42static DEFINE_MUTEX(pinctrl_list_mutex);
43
44/* Mutex taken to protect pinctrl_maps */
45DEFINE_MUTEX(pinctrl_maps_mutex);
46
47/* Mutex taken to protect pinctrldev_list */
48static DEFINE_MUTEX(pinctrldev_list_mutex);
49
50/* Global list of pin control devices (struct pinctrl_dev) */
51static LIST_HEAD(pinctrldev_list);
52
53/* List of pin controller handles (struct pinctrl) */
54static LIST_HEAD(pinctrl_list);
55
56/* List of pinctrl maps (struct pinctrl_maps) */
57LIST_HEAD(pinctrl_maps);
58
59
60/**
61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
62 *
63 * Usually this function is called by platforms without pinctrl driver support
64 * but run with some shared drivers using pinctrl APIs.
65 * After calling this function, the pinctrl core will return successfully
66 * with creating a dummy state for the driver to keep going smoothly.
67 */
68void pinctrl_provide_dummies(void)
69{
70 pinctrl_dummy_state = true;
71}
72
73const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
74{
75 /* We're not allowed to register devices without name */
76 return pctldev->desc->name;
77}
78EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
79
80const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
81{
82 return dev_name(pctldev->dev);
83}
84EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
85
86void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
87{
88 return pctldev->driver_data;
89}
90EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
91
92/**
93 * get_pinctrl_dev_from_devname() - look up pin controller device
94 * @devname: the name of a device instance, as returned by dev_name()
95 *
96 * Looks up a pin control device matching a certain device name or pure device
97 * pointer, the pure device pointer will take precedence.
98 */
99struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
100{
101 struct pinctrl_dev *pctldev = NULL;
102
103 if (!devname)
104 return NULL;
105
106 mutex_lock(&pinctrldev_list_mutex);
107
108 list_for_each_entry(pctldev, &pinctrldev_list, node) {
109 if (!strcmp(dev_name(pctldev->dev), devname)) {
110 /* Matched on device name */
111 mutex_unlock(&pinctrldev_list_mutex);
112 return pctldev;
113 }
114 }
115
116 mutex_unlock(&pinctrldev_list_mutex);
117
118 return NULL;
119}
120
121struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
122{
123 struct pinctrl_dev *pctldev;
124
125 mutex_lock(&pinctrldev_list_mutex);
126
127 list_for_each_entry(pctldev, &pinctrldev_list, node)
128 if (pctldev->dev->of_node == np) {
129 mutex_unlock(&pinctrldev_list_mutex);
130 return pctldev;
131 }
132
133 mutex_unlock(&pinctrldev_list_mutex);
134
135 return NULL;
136}
137
138/**
139 * pin_get_from_name() - look up a pin number from a name
140 * @pctldev: the pin control device to lookup the pin on
141 * @name: the name of the pin to look up
142 */
143int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
144{
145 unsigned i, pin;
146
147 /* The pin number can be retrived from the pin controller descriptor */
148 for (i = 0; i < pctldev->desc->npins; i++) {
149 struct pin_desc *desc;
150
151 pin = pctldev->desc->pins[i].number;
152 desc = pin_desc_get(pctldev, pin);
153 /* Pin space may be sparse */
154 if (desc && !strcmp(name, desc->name))
155 return pin;
156 }
157
158 return -EINVAL;
159}
160
161/**
162 * pin_get_name_from_id() - look up a pin name from a pin id
163 * @pctldev: the pin control device to lookup the pin on
164 * @name: the name of the pin to look up
165 */
166const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
167{
168 const struct pin_desc *desc;
169
170 desc = pin_desc_get(pctldev, pin);
171 if (!desc) {
172 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
173 pin);
174 return NULL;
175 }
176
177 return desc->name;
178}
179
180/**
181 * pin_is_valid() - check if pin exists on controller
182 * @pctldev: the pin control device to check the pin on
183 * @pin: pin to check, use the local pin controller index number
184 *
185 * This tells us whether a certain pin exist on a certain pin controller or
186 * not. Pin lists may be sparse, so some pins may not exist.
187 */
188bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
189{
190 struct pin_desc *pindesc;
191
192 if (pin < 0)
193 return false;
194
195 mutex_lock(&pctldev->mutex);
196 pindesc = pin_desc_get(pctldev, pin);
197 mutex_unlock(&pctldev->mutex);
198
199 return pindesc != NULL;
200}
201EXPORT_SYMBOL_GPL(pin_is_valid);
202
203/* Deletes a range of pin descriptors */
204static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pins,
206 unsigned num_pins)
207{
208 int i;
209
210 for (i = 0; i < num_pins; i++) {
211 struct pin_desc *pindesc;
212
213 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
214 pins[i].number);
215 if (pindesc) {
216 radix_tree_delete(&pctldev->pin_desc_tree,
217 pins[i].number);
218 if (pindesc->dynamic_name)
219 kfree(pindesc->name);
220 }
221 kfree(pindesc);
222 }
223}
224
225static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
226 const struct pinctrl_pin_desc *pin)
227{
228 struct pin_desc *pindesc;
229
230 pindesc = pin_desc_get(pctldev, pin->number);
231 if (pindesc) {
232 dev_err(pctldev->dev, "pin %d already registered\n",
233 pin->number);
234 return -EINVAL;
235 }
236
237 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
238 if (!pindesc)
239 return -ENOMEM;
240
241 /* Set owner */
242 pindesc->pctldev = pctldev;
243
244 /* Copy basic pin info */
245 if (pin->name) {
246 pindesc->name = pin->name;
247 } else {
248 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
249 if (!pindesc->name) {
250 kfree(pindesc);
251 return -ENOMEM;
252 }
253 pindesc->dynamic_name = true;
254 }
255
256 pindesc->drv_data = pin->drv_data;
257
258 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
259 pr_debug("registered pin %d (%s) on %s\n",
260 pin->number, pindesc->name, pctldev->desc->name);
261 return 0;
262}
263
264static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
265 const struct pinctrl_pin_desc *pins,
266 unsigned num_descs)
267{
268 unsigned i;
269 int ret = 0;
270
271 for (i = 0; i < num_descs; i++) {
272 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
273 if (ret)
274 return ret;
275 }
276
277 return 0;
278}
279
280/**
281 * gpio_to_pin() - GPIO range GPIO number to pin number translation
282 * @range: GPIO range used for the translation
283 * @gpio: gpio pin to translate to a pin number
284 *
285 * Finds the pin number for a given GPIO using the specified GPIO range
286 * as a base for translation. The distinction between linear GPIO ranges
287 * and pin list based GPIO ranges is managed correctly by this function.
288 *
289 * This function assumes the gpio is part of the specified GPIO range, use
290 * only after making sure this is the case (e.g. by calling it on the
291 * result of successful pinctrl_get_device_gpio_range calls)!
292 */
293static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
294 unsigned int gpio)
295{
296 unsigned int offset = gpio - range->base;
297 if (range->pins)
298 return range->pins[offset];
299 else
300 return range->pin_base + offset;
301}
302
303/**
304 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
305 * @pctldev: pin controller device to check
306 * @gpio: gpio pin to check taken from the global GPIO pin space
307 *
308 * Tries to match a GPIO pin number to the ranges handled by a certain pin
309 * controller, return the range or NULL
310 */
311static struct pinctrl_gpio_range *
312pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
313{
314 struct pinctrl_gpio_range *range = NULL;
315
316 mutex_lock(&pctldev->mutex);
317 /* Loop over the ranges */
318 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
319 /* Check if we're in the valid range */
320 if (gpio >= range->base &&
321 gpio < range->base + range->npins) {
322 mutex_unlock(&pctldev->mutex);
323 return range;
324 }
325 }
326 mutex_unlock(&pctldev->mutex);
327 return NULL;
328}
329
330/**
331 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
332 * the same GPIO chip are in range
333 * @gpio: gpio pin to check taken from the global GPIO pin space
334 *
335 * This function is complement of pinctrl_match_gpio_range(). If the return
336 * value of pinctrl_match_gpio_range() is NULL, this function could be used
337 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
338 * of the same GPIO chip don't have back-end pinctrl interface.
339 * If the return value is true, it means that pinctrl device is ready & the
340 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
341 * is false, it means that pinctrl device may not be ready.
342 */
343#ifdef CONFIG_GPIOLIB
344static bool pinctrl_ready_for_gpio_range(unsigned gpio)
345{
346 struct pinctrl_dev *pctldev;
347 struct pinctrl_gpio_range *range = NULL;
348 struct gpio_chip *chip = gpio_to_chip(gpio);
349
350 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
351 return false;
352
353 mutex_lock(&pinctrldev_list_mutex);
354
355 /* Loop over the pin controllers */
356 list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 /* Loop over the ranges */
358 mutex_lock(&pctldev->mutex);
359 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 /* Check if any gpio range overlapped with gpio chip */
361 if (range->base + range->npins - 1 < chip->base ||
362 range->base > chip->base + chip->ngpio - 1)
363 continue;
364 mutex_unlock(&pctldev->mutex);
365 mutex_unlock(&pinctrldev_list_mutex);
366 return true;
367 }
368 mutex_unlock(&pctldev->mutex);
369 }
370
371 mutex_unlock(&pinctrldev_list_mutex);
372
373 return false;
374}
375#else
376static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377#endif
378
379/**
380 * pinctrl_get_device_gpio_range() - find device for GPIO range
381 * @gpio: the pin to locate the pin controller for
382 * @outdev: the pin control device if found
383 * @outrange: the GPIO range if found
384 *
385 * Find the pin controller handling a certain GPIO pin from the pinspace of
386 * the GPIO subsystem, return the device and the matching GPIO range. Returns
387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388 * may still have not been registered.
389 */
390static int pinctrl_get_device_gpio_range(unsigned gpio,
391 struct pinctrl_dev **outdev,
392 struct pinctrl_gpio_range **outrange)
393{
394 struct pinctrl_dev *pctldev = NULL;
395
396 mutex_lock(&pinctrldev_list_mutex);
397
398 /* Loop over the pin controllers */
399 list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 struct pinctrl_gpio_range *range;
401
402 range = pinctrl_match_gpio_range(pctldev, gpio);
403 if (range) {
404 *outdev = pctldev;
405 *outrange = range;
406 mutex_unlock(&pinctrldev_list_mutex);
407 return 0;
408 }
409 }
410
411 mutex_unlock(&pinctrldev_list_mutex);
412
413 return -EPROBE_DEFER;
414}
415
416/**
417 * pinctrl_add_gpio_range() - register a GPIO range for a controller
418 * @pctldev: pin controller device to add the range to
419 * @range: the GPIO range to add
420 *
421 * This adds a range of GPIOs to be handled by a certain pin controller. Call
422 * this to register handled ranges after registering your pin controller.
423 */
424void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 struct pinctrl_gpio_range *range)
426{
427 mutex_lock(&pctldev->mutex);
428 list_add_tail(&range->node, &pctldev->gpio_ranges);
429 mutex_unlock(&pctldev->mutex);
430}
431EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432
433void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 struct pinctrl_gpio_range *ranges,
435 unsigned nranges)
436{
437 int i;
438
439 for (i = 0; i < nranges; i++)
440 pinctrl_add_gpio_range(pctldev, &ranges[i]);
441}
442EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443
444struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 struct pinctrl_gpio_range *range)
446{
447 struct pinctrl_dev *pctldev;
448
449 pctldev = get_pinctrl_dev_from_devname(devname);
450
451 /*
452 * If we can't find this device, let's assume that is because
453 * it has not probed yet, so the driver trying to register this
454 * range need to defer probing.
455 */
456 if (!pctldev) {
457 return ERR_PTR(-EPROBE_DEFER);
458 }
459 pinctrl_add_gpio_range(pctldev, range);
460
461 return pctldev;
462}
463EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464
465int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466 const unsigned **pins, unsigned *num_pins)
467{
468 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469 int gs;
470
471 if (!pctlops->get_group_pins)
472 return -EINVAL;
473
474 gs = pinctrl_get_group_selector(pctldev, pin_group);
475 if (gs < 0)
476 return gs;
477
478 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
479}
480EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
481
482struct pinctrl_gpio_range *
483pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
484 unsigned int pin)
485{
486 struct pinctrl_gpio_range *range;
487
488 /* Loop over the ranges */
489 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
490 /* Check if we're in the valid range */
491 if (range->pins) {
492 int a;
493 for (a = 0; a < range->npins; a++) {
494 if (range->pins[a] == pin)
495 return range;
496 }
497 } else if (pin >= range->pin_base &&
498 pin < range->pin_base + range->npins)
499 return range;
500 }
501
502 return NULL;
503}
504EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
505
506/**
507 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
508 * @pctldev: the pin controller device to look in
509 * @pin: a controller-local number to find the range for
510 */
511struct pinctrl_gpio_range *
512pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
513 unsigned int pin)
514{
515 struct pinctrl_gpio_range *range;
516
517 mutex_lock(&pctldev->mutex);
518 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
519 mutex_unlock(&pctldev->mutex);
520
521 return range;
522}
523EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
524
525/**
526 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
527 * @pctldev: pin controller device to remove the range from
528 * @range: the GPIO range to remove
529 */
530void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
531 struct pinctrl_gpio_range *range)
532{
533 mutex_lock(&pctldev->mutex);
534 list_del(&range->node);
535 mutex_unlock(&pctldev->mutex);
536}
537EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
538
539#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
540
541/**
542 * pinctrl_generic_get_group_count() - returns the number of pin groups
543 * @pctldev: pin controller device
544 */
545int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
546{
547 return pctldev->num_groups;
548}
549EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
550
551/**
552 * pinctrl_generic_get_group_name() - returns the name of a pin group
553 * @pctldev: pin controller device
554 * @selector: group number
555 */
556const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
557 unsigned int selector)
558{
559 struct group_desc *group;
560
561 group = radix_tree_lookup(&pctldev->pin_group_tree,
562 selector);
563 if (!group)
564 return NULL;
565
566 return group->name;
567}
568EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
569
570/**
571 * pinctrl_generic_get_group_pins() - gets the pin group pins
572 * @pctldev: pin controller device
573 * @selector: group number
574 * @pins: pins in the group
575 * @num_pins: number of pins in the group
576 */
577int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
578 unsigned int selector,
579 const unsigned int **pins,
580 unsigned int *num_pins)
581{
582 struct group_desc *group;
583
584 group = radix_tree_lookup(&pctldev->pin_group_tree,
585 selector);
586 if (!group) {
587 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
588 __func__, selector);
589 return -EINVAL;
590 }
591
592 *pins = group->pins;
593 *num_pins = group->num_pins;
594
595 return 0;
596}
597EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
598
599/**
600 * pinctrl_generic_get_group() - returns a pin group based on the number
601 * @pctldev: pin controller device
602 * @gselector: group number
603 */
604struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
605 unsigned int selector)
606{
607 struct group_desc *group;
608
609 group = radix_tree_lookup(&pctldev->pin_group_tree,
610 selector);
611 if (!group)
612 return NULL;
613
614 return group;
615}
616EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
617
618static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
619 const char *function)
620{
621 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
622 int ngroups = ops->get_groups_count(pctldev);
623 int selector = 0;
624
625 /* See if this pctldev has this group */
626 while (selector < ngroups) {
627 const char *gname = ops->get_group_name(pctldev, selector);
628
629 if (gname && !strcmp(function, gname))
630 return selector;
631
632 selector++;
633 }
634
635 return -EINVAL;
636}
637
638/**
639 * pinctrl_generic_add_group() - adds a new pin group
640 * @pctldev: pin controller device
641 * @name: name of the pin group
642 * @pins: pins in the pin group
643 * @num_pins: number of pins in the pin group
644 * @data: pin controller driver specific data
645 *
646 * Note that the caller must take care of locking.
647 */
648int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
649 int *pins, int num_pins, void *data)
650{
651 struct group_desc *group;
652 int selector;
653
654 if (!name)
655 return -EINVAL;
656
657 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
658 if (selector >= 0)
659 return selector;
660
661 selector = pctldev->num_groups;
662
663 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
664 if (!group)
665 return -ENOMEM;
666
667 group->name = name;
668 group->pins = pins;
669 group->num_pins = num_pins;
670 group->data = data;
671
672 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
673
674 pctldev->num_groups++;
675
676 return selector;
677}
678EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
679
680/**
681 * pinctrl_generic_remove_group() - removes a numbered pin group
682 * @pctldev: pin controller device
683 * @selector: group number
684 *
685 * Note that the caller must take care of locking.
686 */
687int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
688 unsigned int selector)
689{
690 struct group_desc *group;
691
692 group = radix_tree_lookup(&pctldev->pin_group_tree,
693 selector);
694 if (!group)
695 return -ENOENT;
696
697 radix_tree_delete(&pctldev->pin_group_tree, selector);
698 devm_kfree(pctldev->dev, group);
699
700 pctldev->num_groups--;
701
702 return 0;
703}
704EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
705
706/**
707 * pinctrl_generic_free_groups() - removes all pin groups
708 * @pctldev: pin controller device
709 *
710 * Note that the caller must take care of locking. The pinctrl groups
711 * are allocated with devm_kzalloc() so no need to free them here.
712 */
713static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
714{
715 struct radix_tree_iter iter;
716 void __rcu **slot;
717
718 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
719 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
720
721 pctldev->num_groups = 0;
722}
723
724#else
725static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
726{
727}
728#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
729
730/**
731 * pinctrl_get_group_selector() - returns the group selector for a group
732 * @pctldev: the pin controller handling the group
733 * @pin_group: the pin group to look up
734 */
735int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
736 const char *pin_group)
737{
738 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
739 unsigned ngroups = pctlops->get_groups_count(pctldev);
740 unsigned group_selector = 0;
741
742 while (group_selector < ngroups) {
743 const char *gname = pctlops->get_group_name(pctldev,
744 group_selector);
745 if (gname && !strcmp(gname, pin_group)) {
746 dev_dbg(pctldev->dev,
747 "found group selector %u for %s\n",
748 group_selector,
749 pin_group);
750 return group_selector;
751 }
752
753 group_selector++;
754 }
755
756 dev_err(pctldev->dev, "does not have pin group %s\n",
757 pin_group);
758
759 return -EINVAL;
760}
761
762/**
763 * pinctrl_gpio_request() - request a single pin to be used as GPIO
764 * @gpio: the GPIO pin number from the GPIO subsystem number space
765 *
766 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
767 * as part of their gpio_request() semantics, platforms and individual drivers
768 * shall *NOT* request GPIO pins to be muxed in.
769 */
770int pinctrl_gpio_request(unsigned gpio)
771{
772 struct pinctrl_dev *pctldev;
773 struct pinctrl_gpio_range *range;
774 int ret;
775 int pin;
776
777 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
778 if (ret) {
779 if (pinctrl_ready_for_gpio_range(gpio))
780 ret = 0;
781 return ret;
782 }
783
784 mutex_lock(&pctldev->mutex);
785
786 /* Convert to the pin controllers number space */
787 pin = gpio_to_pin(range, gpio);
788
789 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
790
791 mutex_unlock(&pctldev->mutex);
792
793 return ret;
794}
795EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
796
797/**
798 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
799 * @gpio: the GPIO pin number from the GPIO subsystem number space
800 *
801 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
802 * as part of their gpio_free() semantics, platforms and individual drivers
803 * shall *NOT* request GPIO pins to be muxed out.
804 */
805void pinctrl_gpio_free(unsigned gpio)
806{
807 struct pinctrl_dev *pctldev;
808 struct pinctrl_gpio_range *range;
809 int ret;
810 int pin;
811
812 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
813 if (ret) {
814 return;
815 }
816 mutex_lock(&pctldev->mutex);
817
818 /* Convert to the pin controllers number space */
819 pin = gpio_to_pin(range, gpio);
820
821 pinmux_free_gpio(pctldev, pin, range);
822
823 mutex_unlock(&pctldev->mutex);
824}
825EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
826
827static int pinctrl_gpio_direction(unsigned gpio, bool input)
828{
829 struct pinctrl_dev *pctldev;
830 struct pinctrl_gpio_range *range;
831 int ret;
832 int pin;
833
834 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
835 if (ret) {
836 return ret;
837 }
838
839 mutex_lock(&pctldev->mutex);
840
841 /* Convert to the pin controllers number space */
842 pin = gpio_to_pin(range, gpio);
843 ret = pinmux_gpio_direction(pctldev, range, pin, input);
844
845 mutex_unlock(&pctldev->mutex);
846
847 return ret;
848}
849
850/**
851 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
852 * @gpio: the GPIO pin number from the GPIO subsystem number space
853 *
854 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
855 * as part of their gpio_direction_input() semantics, platforms and individual
856 * drivers shall *NOT* touch pin control GPIO calls.
857 */
858int pinctrl_gpio_direction_input(unsigned gpio)
859{
860 return pinctrl_gpio_direction(gpio, true);
861}
862EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
863
864/**
865 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
866 * @gpio: the GPIO pin number from the GPIO subsystem number space
867 *
868 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
869 * as part of their gpio_direction_output() semantics, platforms and individual
870 * drivers shall *NOT* touch pin control GPIO calls.
871 */
872int pinctrl_gpio_direction_output(unsigned gpio)
873{
874 return pinctrl_gpio_direction(gpio, false);
875}
876EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
877
878/**
879 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
880 * @gpio: the GPIO pin number from the GPIO subsystem number space
881 * @config: the configuration to apply to the GPIO
882 *
883 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
884 * they need to call the underlying pin controller to change GPIO config
885 * (for example set debounce time).
886 */
887int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
888{
889 unsigned long configs[] = { config };
890 struct pinctrl_gpio_range *range;
891 struct pinctrl_dev *pctldev;
892 int ret, pin;
893
894 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
895 if (ret)
896 return ret;
897
898 mutex_lock(&pctldev->mutex);
899 pin = gpio_to_pin(range, gpio);
900 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
901 mutex_unlock(&pctldev->mutex);
902
903 return ret;
904}
905EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
906
907static struct pinctrl_state *find_state(struct pinctrl *p,
908 const char *name)
909{
910 struct pinctrl_state *state;
911
912 list_for_each_entry(state, &p->states, node)
913 if (!strcmp(state->name, name))
914 return state;
915
916 return NULL;
917}
918
919static struct pinctrl_state *create_state(struct pinctrl *p,
920 const char *name)
921{
922 struct pinctrl_state *state;
923
924 state = kzalloc(sizeof(*state), GFP_KERNEL);
925 if (!state)
926 return ERR_PTR(-ENOMEM);
927
928 state->name = name;
929 INIT_LIST_HEAD(&state->settings);
930
931 list_add_tail(&state->node, &p->states);
932
933 return state;
934}
935
936static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
937 const struct pinctrl_map *map)
938{
939 struct pinctrl_state *state;
940 struct pinctrl_setting *setting;
941 int ret;
942
943 state = find_state(p, map->name);
944 if (!state)
945 state = create_state(p, map->name);
946 if (IS_ERR(state))
947 return PTR_ERR(state);
948
949 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
950 return 0;
951
952 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
953 if (!setting)
954 return -ENOMEM;
955
956 setting->type = map->type;
957
958 if (pctldev)
959 setting->pctldev = pctldev;
960 else
961 setting->pctldev =
962 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
963 if (!setting->pctldev) {
964 kfree(setting);
965 /* Do not defer probing of hogs (circular loop) */
966 if (!strcmp(map->ctrl_dev_name, map->dev_name))
967 return -ENODEV;
968 /*
969 * OK let us guess that the driver is not there yet, and
970 * let's defer obtaining this pinctrl handle to later...
971 */
972 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
973 map->ctrl_dev_name);
974 return -EPROBE_DEFER;
975 }
976
977 setting->dev_name = map->dev_name;
978
979 switch (map->type) {
980 case PIN_MAP_TYPE_MUX_GROUP:
981 ret = pinmux_map_to_setting(map, setting);
982 break;
983 case PIN_MAP_TYPE_CONFIGS_PIN:
984 case PIN_MAP_TYPE_CONFIGS_GROUP:
985 ret = pinconf_map_to_setting(map, setting);
986 break;
987 default:
988 ret = -EINVAL;
989 break;
990 }
991 if (ret < 0) {
992 kfree(setting);
993 return ret;
994 }
995
996 list_add_tail(&setting->node, &state->settings);
997
998 return 0;
999}
1000
1001static struct pinctrl *find_pinctrl(struct device *dev)
1002{
1003 struct pinctrl *p;
1004
1005 mutex_lock(&pinctrl_list_mutex);
1006 list_for_each_entry(p, &pinctrl_list, node)
1007 if (p->dev == dev) {
1008 mutex_unlock(&pinctrl_list_mutex);
1009 return p;
1010 }
1011
1012 mutex_unlock(&pinctrl_list_mutex);
1013 return NULL;
1014}
1015
1016static void pinctrl_free(struct pinctrl *p, bool inlist);
1017
1018static struct pinctrl *create_pinctrl(struct device *dev,
1019 struct pinctrl_dev *pctldev)
1020{
1021 struct pinctrl *p;
1022 const char *devname;
1023 struct pinctrl_maps *maps_node;
1024 int i;
1025 const struct pinctrl_map *map;
1026 int ret;
1027
1028 /*
1029 * create the state cookie holder struct pinctrl for each
1030 * mapping, this is what consumers will get when requesting
1031 * a pin control handle with pinctrl_get()
1032 */
1033 p = kzalloc(sizeof(*p), GFP_KERNEL);
1034 if (!p)
1035 return ERR_PTR(-ENOMEM);
1036 p->dev = dev;
1037 INIT_LIST_HEAD(&p->states);
1038 INIT_LIST_HEAD(&p->dt_maps);
1039
1040 ret = pinctrl_dt_to_map(p, pctldev);
1041 if (ret < 0) {
1042 kfree(p);
1043 return ERR_PTR(ret);
1044 }
1045
1046 devname = dev_name(dev);
1047
1048 mutex_lock(&pinctrl_maps_mutex);
1049 /* Iterate over the pin control maps to locate the right ones */
1050 for_each_maps(maps_node, i, map) {
1051 /* Map must be for this device */
1052 if (strcmp(map->dev_name, devname))
1053 continue;
1054 /*
1055 * If pctldev is not null, we are claiming hog for it,
1056 * that means, setting that is served by pctldev by itself.
1057 *
1058 * Thus we must skip map that is for this device but is served
1059 * by other device.
1060 */
1061 if (pctldev &&
1062 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1063 continue;
1064
1065 ret = add_setting(p, pctldev, map);
1066 /*
1067 * At this point the adding of a setting may:
1068 *
1069 * - Defer, if the pinctrl device is not yet available
1070 * - Fail, if the pinctrl device is not yet available,
1071 * AND the setting is a hog. We cannot defer that, since
1072 * the hog will kick in immediately after the device
1073 * is registered.
1074 *
1075 * If the error returned was not -EPROBE_DEFER then we
1076 * accumulate the errors to see if we end up with
1077 * an -EPROBE_DEFER later, as that is the worst case.
1078 */
1079 if (ret == -EPROBE_DEFER) {
1080 pinctrl_free(p, false);
1081 mutex_unlock(&pinctrl_maps_mutex);
1082 return ERR_PTR(ret);
1083 }
1084 }
1085 mutex_unlock(&pinctrl_maps_mutex);
1086
1087 if (ret < 0) {
1088 /* If some other error than deferral occurred, return here */
1089 pinctrl_free(p, false);
1090 return ERR_PTR(ret);
1091 }
1092
1093 kref_init(&p->users);
1094
1095 /* Add the pinctrl handle to the global list */
1096 mutex_lock(&pinctrl_list_mutex);
1097 list_add_tail(&p->node, &pinctrl_list);
1098 mutex_unlock(&pinctrl_list_mutex);
1099
1100 return p;
1101}
1102
1103/**
1104 * pinctrl_get() - retrieves the pinctrl handle for a device
1105 * @dev: the device to obtain the handle for
1106 */
1107struct pinctrl *pinctrl_get(struct device *dev)
1108{
1109 struct pinctrl *p;
1110
1111 if (WARN_ON(!dev))
1112 return ERR_PTR(-EINVAL);
1113
1114 /*
1115 * See if somebody else (such as the device core) has already
1116 * obtained a handle to the pinctrl for this device. In that case,
1117 * return another pointer to it.
1118 */
1119 p = find_pinctrl(dev);
1120 if (p) {
1121 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1122 kref_get(&p->users);
1123 return p;
1124 }
1125
1126 return create_pinctrl(dev, NULL);
1127}
1128EXPORT_SYMBOL_GPL(pinctrl_get);
1129
1130static void pinctrl_free_setting(bool disable_setting,
1131 struct pinctrl_setting *setting)
1132{
1133 switch (setting->type) {
1134 case PIN_MAP_TYPE_MUX_GROUP:
1135 if (disable_setting)
1136 pinmux_disable_setting(setting);
1137 pinmux_free_setting(setting);
1138 break;
1139 case PIN_MAP_TYPE_CONFIGS_PIN:
1140 case PIN_MAP_TYPE_CONFIGS_GROUP:
1141 pinconf_free_setting(setting);
1142 break;
1143 default:
1144 break;
1145 }
1146}
1147
1148static void pinctrl_free(struct pinctrl *p, bool inlist)
1149{
1150 struct pinctrl_state *state, *n1;
1151 struct pinctrl_setting *setting, *n2;
1152
1153 mutex_lock(&pinctrl_list_mutex);
1154 list_for_each_entry_safe(state, n1, &p->states, node) {
1155 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1156 pinctrl_free_setting(state == p->state, setting);
1157 list_del(&setting->node);
1158 kfree(setting);
1159 }
1160 list_del(&state->node);
1161 kfree(state);
1162 }
1163
1164 pinctrl_dt_free_maps(p);
1165
1166 if (inlist)
1167 list_del(&p->node);
1168 kfree(p);
1169 mutex_unlock(&pinctrl_list_mutex);
1170}
1171
1172/**
1173 * pinctrl_release() - release the pinctrl handle
1174 * @kref: the kref in the pinctrl being released
1175 */
1176static void pinctrl_release(struct kref *kref)
1177{
1178 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1179
1180 pinctrl_free(p, true);
1181}
1182
1183/**
1184 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1185 * @p: the pinctrl handle to release
1186 */
1187void pinctrl_put(struct pinctrl *p)
1188{
1189 kref_put(&p->users, pinctrl_release);
1190}
1191EXPORT_SYMBOL_GPL(pinctrl_put);
1192
1193/**
1194 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1195 * @p: the pinctrl handle to retrieve the state from
1196 * @name: the state name to retrieve
1197 */
1198struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1199 const char *name)
1200{
1201 struct pinctrl_state *state;
1202
1203 state = find_state(p, name);
1204 if (!state) {
1205 if (pinctrl_dummy_state) {
1206 /* create dummy state */
1207 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1208 name);
1209 state = create_state(p, name);
1210 } else
1211 state = ERR_PTR(-ENODEV);
1212 }
1213
1214 return state;
1215}
1216EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1217
1218/**
1219 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1220 * @p: the pinctrl handle for the device that requests configuration
1221 * @state: the state handle to select/activate/program
1222 */
1223static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1224{
1225 struct pinctrl_setting *setting, *setting2;
1226 struct pinctrl_state *old_state = p->state;
1227 int ret;
1228
1229 if (p->state) {
1230 /*
1231 * For each pinmux setting in the old state, forget SW's record
1232 * of mux owner for that pingroup. Any pingroups which are
1233 * still owned by the new state will be re-acquired by the call
1234 * to pinmux_enable_setting() in the loop below.
1235 */
1236 list_for_each_entry(setting, &p->state->settings, node) {
1237 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1238 continue;
1239 pinmux_disable_setting(setting);
1240 }
1241 }
1242
1243 p->state = NULL;
1244
1245 /* Apply all the settings for the new state */
1246 list_for_each_entry(setting, &state->settings, node) {
1247 switch (setting->type) {
1248 case PIN_MAP_TYPE_MUX_GROUP:
1249 ret = pinmux_enable_setting(setting);
1250 break;
1251 case PIN_MAP_TYPE_CONFIGS_PIN:
1252 case PIN_MAP_TYPE_CONFIGS_GROUP:
1253 ret = pinconf_apply_setting(setting);
1254 break;
1255 default:
1256 ret = -EINVAL;
1257 break;
1258 }
1259
1260 if (ret < 0) {
1261 goto unapply_new_state;
1262 }
1263 }
1264
1265 p->state = state;
1266
1267 return 0;
1268
1269unapply_new_state:
1270 dev_err(p->dev, "Error applying setting, reverse things back\n");
1271
1272 list_for_each_entry(setting2, &state->settings, node) {
1273 if (&setting2->node == &setting->node)
1274 break;
1275 /*
1276 * All we can do here is pinmux_disable_setting.
1277 * That means that some pins are muxed differently now
1278 * than they were before applying the setting (We can't
1279 * "unmux a pin"!), but it's not a big deal since the pins
1280 * are free to be muxed by another apply_setting.
1281 */
1282 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1283 pinmux_disable_setting(setting2);
1284 }
1285
1286 /* There's no infinite recursive loop here because p->state is NULL */
1287 if (old_state)
1288 pinctrl_select_state(p, old_state);
1289
1290 return ret;
1291}
1292
1293/**
1294 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1295 * @p: the pinctrl handle for the device that requests configuration
1296 * @state: the state handle to select/activate/program
1297 */
1298int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1299{
1300 if (p->state == state)
1301 return 0;
1302
1303 return pinctrl_commit_state(p, state);
1304}
1305EXPORT_SYMBOL_GPL(pinctrl_select_state);
1306
1307static void devm_pinctrl_release(struct device *dev, void *res)
1308{
1309 pinctrl_put(*(struct pinctrl **)res);
1310}
1311
1312/**
1313 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1314 * @dev: the device to obtain the handle for
1315 *
1316 * If there is a need to explicitly destroy the returned struct pinctrl,
1317 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1318 */
1319struct pinctrl *devm_pinctrl_get(struct device *dev)
1320{
1321 struct pinctrl **ptr, *p;
1322
1323 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1324 if (!ptr)
1325 return ERR_PTR(-ENOMEM);
1326
1327 p = pinctrl_get(dev);
1328 if (!IS_ERR(p)) {
1329 *ptr = p;
1330 devres_add(dev, ptr);
1331 } else {
1332 devres_free(ptr);
1333 }
1334
1335 return p;
1336}
1337EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1338
1339static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1340{
1341 struct pinctrl **p = res;
1342
1343 return *p == data;
1344}
1345
1346/**
1347 * devm_pinctrl_put() - Resource managed pinctrl_put()
1348 * @p: the pinctrl handle to release
1349 *
1350 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1351 * this function will not need to be called and the resource management
1352 * code will ensure that the resource is freed.
1353 */
1354void devm_pinctrl_put(struct pinctrl *p)
1355{
1356 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1357 devm_pinctrl_match, p));
1358}
1359EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1360
1361int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1362 bool dup)
1363{
1364 int i, ret;
1365 struct pinctrl_maps *maps_node;
1366
1367 pr_debug("add %u pinctrl maps\n", num_maps);
1368
1369 /* First sanity check the new mapping */
1370 for (i = 0; i < num_maps; i++) {
1371 if (!maps[i].dev_name) {
1372 pr_err("failed to register map %s (%d): no device given\n",
1373 maps[i].name, i);
1374 return -EINVAL;
1375 }
1376
1377 if (!maps[i].name) {
1378 pr_err("failed to register map %d: no map name given\n",
1379 i);
1380 return -EINVAL;
1381 }
1382
1383 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1384 !maps[i].ctrl_dev_name) {
1385 pr_err("failed to register map %s (%d): no pin control device given\n",
1386 maps[i].name, i);
1387 return -EINVAL;
1388 }
1389
1390 switch (maps[i].type) {
1391 case PIN_MAP_TYPE_DUMMY_STATE:
1392 break;
1393 case PIN_MAP_TYPE_MUX_GROUP:
1394 ret = pinmux_validate_map(&maps[i], i);
1395 if (ret < 0)
1396 return ret;
1397 break;
1398 case PIN_MAP_TYPE_CONFIGS_PIN:
1399 case PIN_MAP_TYPE_CONFIGS_GROUP:
1400 ret = pinconf_validate_map(&maps[i], i);
1401 if (ret < 0)
1402 return ret;
1403 break;
1404 default:
1405 pr_err("failed to register map %s (%d): invalid type given\n",
1406 maps[i].name, i);
1407 return -EINVAL;
1408 }
1409 }
1410
1411 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1412 if (!maps_node)
1413 return -ENOMEM;
1414
1415 maps_node->num_maps = num_maps;
1416 if (dup) {
1417 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1418 GFP_KERNEL);
1419 if (!maps_node->maps) {
1420 kfree(maps_node);
1421 return -ENOMEM;
1422 }
1423 } else {
1424 maps_node->maps = maps;
1425 }
1426
1427 mutex_lock(&pinctrl_maps_mutex);
1428 list_add_tail(&maps_node->node, &pinctrl_maps);
1429 mutex_unlock(&pinctrl_maps_mutex);
1430
1431 return 0;
1432}
1433
1434/**
1435 * pinctrl_register_mappings() - register a set of pin controller mappings
1436 * @maps: the pincontrol mappings table to register. This should probably be
1437 * marked with __initdata so it can be discarded after boot. This
1438 * function will perform a shallow copy for the mapping entries.
1439 * @num_maps: the number of maps in the mapping table
1440 */
1441int pinctrl_register_mappings(const struct pinctrl_map *maps,
1442 unsigned num_maps)
1443{
1444 return pinctrl_register_map(maps, num_maps, true);
1445}
1446EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1447
1448void pinctrl_unregister_map(const struct pinctrl_map *map)
1449{
1450 struct pinctrl_maps *maps_node;
1451
1452 mutex_lock(&pinctrl_maps_mutex);
1453 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1454 if (maps_node->maps == map) {
1455 list_del(&maps_node->node);
1456 kfree(maps_node);
1457 mutex_unlock(&pinctrl_maps_mutex);
1458 return;
1459 }
1460 }
1461 mutex_unlock(&pinctrl_maps_mutex);
1462}
1463
1464/**
1465 * pinctrl_force_sleep() - turn a given controller device into sleep state
1466 * @pctldev: pin controller device
1467 */
1468int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1469{
1470 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1471 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1472 return 0;
1473}
1474EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1475
1476/**
1477 * pinctrl_force_default() - turn a given controller device into default state
1478 * @pctldev: pin controller device
1479 */
1480int pinctrl_force_default(struct pinctrl_dev *pctldev)
1481{
1482 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1483 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1484 return 0;
1485}
1486EXPORT_SYMBOL_GPL(pinctrl_force_default);
1487
1488/**
1489 * pinctrl_init_done() - tell pinctrl probe is done
1490 *
1491 * We'll use this time to switch the pins from "init" to "default" unless the
1492 * driver selected some other state.
1493 *
1494 * @dev: device to that's done probing
1495 */
1496int pinctrl_init_done(struct device *dev)
1497{
1498 struct dev_pin_info *pins = dev->pins;
1499 int ret;
1500
1501 if (!pins)
1502 return 0;
1503
1504 if (IS_ERR(pins->init_state))
1505 return 0; /* No such state */
1506
1507 if (pins->p->state != pins->init_state)
1508 return 0; /* Not at init anyway */
1509
1510 if (IS_ERR(pins->default_state))
1511 return 0; /* No default state */
1512
1513 ret = pinctrl_select_state(pins->p, pins->default_state);
1514 if (ret)
1515 dev_err(dev, "failed to activate default pinctrl state\n");
1516
1517 return ret;
1518}
1519
1520#ifdef CONFIG_PM
1521
1522/**
1523 * pinctrl_pm_select_state() - select pinctrl state for PM
1524 * @dev: device to select default state for
1525 * @state: state to set
1526 */
1527static int pinctrl_pm_select_state(struct device *dev,
1528 struct pinctrl_state *state)
1529{
1530 struct dev_pin_info *pins = dev->pins;
1531 int ret;
1532
1533 if (IS_ERR(state))
1534 return 0; /* No such state */
1535 ret = pinctrl_select_state(pins->p, state);
1536 if (ret)
1537 dev_err(dev, "failed to activate pinctrl state %s\n",
1538 state->name);
1539 return ret;
1540}
1541
1542/**
1543 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1544 * @dev: device to select default state for
1545 */
1546int pinctrl_pm_select_default_state(struct device *dev)
1547{
1548 if (!dev->pins)
1549 return 0;
1550
1551 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1552}
1553EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1554
1555/**
1556 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1557 * @dev: device to select sleep state for
1558 */
1559int pinctrl_pm_select_sleep_state(struct device *dev)
1560{
1561 if (!dev->pins)
1562 return 0;
1563
1564 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1565}
1566EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1567
1568/**
1569 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1570 * @dev: device to select idle state for
1571 */
1572int pinctrl_pm_select_idle_state(struct device *dev)
1573{
1574 if (!dev->pins)
1575 return 0;
1576
1577 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1578}
1579EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1580#endif
1581
1582#ifdef CONFIG_DEBUG_FS
1583
1584static int pinctrl_pins_show(struct seq_file *s, void *what)
1585{
1586 struct pinctrl_dev *pctldev = s->private;
1587 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1588 unsigned i, pin;
1589
1590 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1591
1592 mutex_lock(&pctldev->mutex);
1593
1594 /* The pin number can be retrived from the pin controller descriptor */
1595 for (i = 0; i < pctldev->desc->npins; i++) {
1596 struct pin_desc *desc;
1597
1598 pin = pctldev->desc->pins[i].number;
1599 desc = pin_desc_get(pctldev, pin);
1600 /* Pin space may be sparse */
1601 if (!desc)
1602 continue;
1603
1604 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1605
1606 /* Driver-specific info per pin */
1607 if (ops->pin_dbg_show)
1608 ops->pin_dbg_show(pctldev, s, pin);
1609
1610 seq_puts(s, "\n");
1611 }
1612
1613 mutex_unlock(&pctldev->mutex);
1614
1615 return 0;
1616}
1617DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1618
1619static int pinctrl_groups_show(struct seq_file *s, void *what)
1620{
1621 struct pinctrl_dev *pctldev = s->private;
1622 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1623 unsigned ngroups, selector = 0;
1624
1625 mutex_lock(&pctldev->mutex);
1626
1627 ngroups = ops->get_groups_count(pctldev);
1628
1629 seq_puts(s, "registered pin groups:\n");
1630 while (selector < ngroups) {
1631 const unsigned *pins = NULL;
1632 unsigned num_pins = 0;
1633 const char *gname = ops->get_group_name(pctldev, selector);
1634 const char *pname;
1635 int ret = 0;
1636 int i;
1637
1638 if (ops->get_group_pins)
1639 ret = ops->get_group_pins(pctldev, selector,
1640 &pins, &num_pins);
1641 if (ret)
1642 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1643 gname);
1644 else {
1645 seq_printf(s, "group: %s\n", gname);
1646 for (i = 0; i < num_pins; i++) {
1647 pname = pin_get_name(pctldev, pins[i]);
1648 if (WARN_ON(!pname)) {
1649 mutex_unlock(&pctldev->mutex);
1650 return -EINVAL;
1651 }
1652 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1653 }
1654 seq_puts(s, "\n");
1655 }
1656 selector++;
1657 }
1658
1659 mutex_unlock(&pctldev->mutex);
1660
1661 return 0;
1662}
1663DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1664
1665static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1666{
1667 struct pinctrl_dev *pctldev = s->private;
1668 struct pinctrl_gpio_range *range = NULL;
1669
1670 seq_puts(s, "GPIO ranges handled:\n");
1671
1672 mutex_lock(&pctldev->mutex);
1673
1674 /* Loop over the ranges */
1675 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1676 if (range->pins) {
1677 int a;
1678 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1679 range->id, range->name,
1680 range->base, (range->base + range->npins - 1));
1681 for (a = 0; a < range->npins - 1; a++)
1682 seq_printf(s, "%u, ", range->pins[a]);
1683 seq_printf(s, "%u}\n", range->pins[a]);
1684 }
1685 else
1686 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1687 range->id, range->name,
1688 range->base, (range->base + range->npins - 1),
1689 range->pin_base,
1690 (range->pin_base + range->npins - 1));
1691 }
1692
1693 mutex_unlock(&pctldev->mutex);
1694
1695 return 0;
1696}
1697DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1698
1699static int pinctrl_devices_show(struct seq_file *s, void *what)
1700{
1701 struct pinctrl_dev *pctldev;
1702
1703 seq_puts(s, "name [pinmux] [pinconf]\n");
1704
1705 mutex_lock(&pinctrldev_list_mutex);
1706
1707 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1708 seq_printf(s, "%s ", pctldev->desc->name);
1709 if (pctldev->desc->pmxops)
1710 seq_puts(s, "yes ");
1711 else
1712 seq_puts(s, "no ");
1713 if (pctldev->desc->confops)
1714 seq_puts(s, "yes");
1715 else
1716 seq_puts(s, "no");
1717 seq_puts(s, "\n");
1718 }
1719
1720 mutex_unlock(&pinctrldev_list_mutex);
1721
1722 return 0;
1723}
1724DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1725
1726static inline const char *map_type(enum pinctrl_map_type type)
1727{
1728 static const char * const names[] = {
1729 "INVALID",
1730 "DUMMY_STATE",
1731 "MUX_GROUP",
1732 "CONFIGS_PIN",
1733 "CONFIGS_GROUP",
1734 };
1735
1736 if (type >= ARRAY_SIZE(names))
1737 return "UNKNOWN";
1738
1739 return names[type];
1740}
1741
1742static int pinctrl_maps_show(struct seq_file *s, void *what)
1743{
1744 struct pinctrl_maps *maps_node;
1745 int i;
1746 const struct pinctrl_map *map;
1747
1748 seq_puts(s, "Pinctrl maps:\n");
1749
1750 mutex_lock(&pinctrl_maps_mutex);
1751 for_each_maps(maps_node, i, map) {
1752 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1753 map->dev_name, map->name, map_type(map->type),
1754 map->type);
1755
1756 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1757 seq_printf(s, "controlling device %s\n",
1758 map->ctrl_dev_name);
1759
1760 switch (map->type) {
1761 case PIN_MAP_TYPE_MUX_GROUP:
1762 pinmux_show_map(s, map);
1763 break;
1764 case PIN_MAP_TYPE_CONFIGS_PIN:
1765 case PIN_MAP_TYPE_CONFIGS_GROUP:
1766 pinconf_show_map(s, map);
1767 break;
1768 default:
1769 break;
1770 }
1771
1772 seq_putc(s, '\n');
1773 }
1774 mutex_unlock(&pinctrl_maps_mutex);
1775
1776 return 0;
1777}
1778DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1779
1780static int pinctrl_show(struct seq_file *s, void *what)
1781{
1782 struct pinctrl *p;
1783 struct pinctrl_state *state;
1784 struct pinctrl_setting *setting;
1785
1786 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1787
1788 mutex_lock(&pinctrl_list_mutex);
1789
1790 list_for_each_entry(p, &pinctrl_list, node) {
1791 seq_printf(s, "device: %s current state: %s\n",
1792 dev_name(p->dev),
1793 p->state ? p->state->name : "none");
1794
1795 list_for_each_entry(state, &p->states, node) {
1796 seq_printf(s, " state: %s\n", state->name);
1797
1798 list_for_each_entry(setting, &state->settings, node) {
1799 struct pinctrl_dev *pctldev = setting->pctldev;
1800
1801 seq_printf(s, " type: %s controller %s ",
1802 map_type(setting->type),
1803 pinctrl_dev_get_name(pctldev));
1804
1805 switch (setting->type) {
1806 case PIN_MAP_TYPE_MUX_GROUP:
1807 pinmux_show_setting(s, setting);
1808 break;
1809 case PIN_MAP_TYPE_CONFIGS_PIN:
1810 case PIN_MAP_TYPE_CONFIGS_GROUP:
1811 pinconf_show_setting(s, setting);
1812 break;
1813 default:
1814 break;
1815 }
1816 }
1817 }
1818 }
1819
1820 mutex_unlock(&pinctrl_list_mutex);
1821
1822 return 0;
1823}
1824DEFINE_SHOW_ATTRIBUTE(pinctrl);
1825
1826static struct dentry *debugfs_root;
1827
1828static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1829{
1830 struct dentry *device_root;
1831 const char *debugfs_name;
1832
1833 if (pctldev->desc->name &&
1834 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1835 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1836 "%s-%s", dev_name(pctldev->dev),
1837 pctldev->desc->name);
1838 if (!debugfs_name) {
1839 pr_warn("failed to determine debugfs dir name for %s\n",
1840 dev_name(pctldev->dev));
1841 return;
1842 }
1843 } else {
1844 debugfs_name = dev_name(pctldev->dev);
1845 }
1846
1847 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1848 pctldev->device_root = device_root;
1849
1850 if (IS_ERR(device_root) || !device_root) {
1851 pr_warn("failed to create debugfs directory for %s\n",
1852 dev_name(pctldev->dev));
1853 return;
1854 }
1855 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1856 device_root, pctldev, &pinctrl_pins_fops);
1857 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1858 device_root, pctldev, &pinctrl_groups_fops);
1859 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1860 device_root, pctldev, &pinctrl_gpioranges_fops);
1861 if (pctldev->desc->pmxops)
1862 pinmux_init_device_debugfs(device_root, pctldev);
1863 if (pctldev->desc->confops)
1864 pinconf_init_device_debugfs(device_root, pctldev);
1865}
1866
1867static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1868{
1869 debugfs_remove_recursive(pctldev->device_root);
1870}
1871
1872static void pinctrl_init_debugfs(void)
1873{
1874 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1875 if (IS_ERR(debugfs_root) || !debugfs_root) {
1876 pr_warn("failed to create debugfs directory\n");
1877 debugfs_root = NULL;
1878 return;
1879 }
1880
1881 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1882 debugfs_root, NULL, &pinctrl_devices_fops);
1883 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1884 debugfs_root, NULL, &pinctrl_maps_fops);
1885 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1886 debugfs_root, NULL, &pinctrl_fops);
1887}
1888
1889#else /* CONFIG_DEBUG_FS */
1890
1891static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1892{
1893}
1894
1895static void pinctrl_init_debugfs(void)
1896{
1897}
1898
1899static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1900{
1901}
1902
1903#endif
1904
1905static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1906{
1907 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1908
1909 if (!ops ||
1910 !ops->get_groups_count ||
1911 !ops->get_group_name)
1912 return -EINVAL;
1913
1914 return 0;
1915}
1916
1917/**
1918 * pinctrl_init_controller() - init a pin controller device
1919 * @pctldesc: descriptor for this pin controller
1920 * @dev: parent device for this pin controller
1921 * @driver_data: private pin controller data for this pin controller
1922 */
1923static struct pinctrl_dev *
1924pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1925 void *driver_data)
1926{
1927 struct pinctrl_dev *pctldev;
1928 int ret;
1929
1930 if (!pctldesc)
1931 return ERR_PTR(-EINVAL);
1932 if (!pctldesc->name)
1933 return ERR_PTR(-EINVAL);
1934
1935 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1936 if (!pctldev)
1937 return ERR_PTR(-ENOMEM);
1938
1939 /* Initialize pin control device struct */
1940 pctldev->owner = pctldesc->owner;
1941 pctldev->desc = pctldesc;
1942 pctldev->driver_data = driver_data;
1943 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1944#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1945 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1946#endif
1947#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1948 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1949#endif
1950 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1951 INIT_LIST_HEAD(&pctldev->node);
1952 pctldev->dev = dev;
1953 mutex_init(&pctldev->mutex);
1954
1955 /* check core ops for sanity */
1956 ret = pinctrl_check_ops(pctldev);
1957 if (ret) {
1958 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1959 goto out_err;
1960 }
1961
1962 /* If we're implementing pinmuxing, check the ops for sanity */
1963 if (pctldesc->pmxops) {
1964 ret = pinmux_check_ops(pctldev);
1965 if (ret)
1966 goto out_err;
1967 }
1968
1969 /* If we're implementing pinconfig, check the ops for sanity */
1970 if (pctldesc->confops) {
1971 ret = pinconf_check_ops(pctldev);
1972 if (ret)
1973 goto out_err;
1974 }
1975
1976 /* Register all the pins */
1977 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1978 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1979 if (ret) {
1980 dev_err(dev, "error during pin registration\n");
1981 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1982 pctldesc->npins);
1983 goto out_err;
1984 }
1985
1986 return pctldev;
1987
1988out_err:
1989 mutex_destroy(&pctldev->mutex);
1990 kfree(pctldev);
1991 return ERR_PTR(ret);
1992}
1993
1994static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
1995{
1996 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
1997 if (PTR_ERR(pctldev->p) == -ENODEV) {
1998 dev_dbg(pctldev->dev, "no hogs found\n");
1999
2000 return 0;
2001 }
2002
2003 if (IS_ERR(pctldev->p)) {
2004 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2005 PTR_ERR(pctldev->p));
2006
2007 return PTR_ERR(pctldev->p);
2008 }
2009
2010 kref_get(&pctldev->p->users);
2011 pctldev->hog_default =
2012 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2013 if (IS_ERR(pctldev->hog_default)) {
2014 dev_dbg(pctldev->dev,
2015 "failed to lookup the default state\n");
2016 } else {
2017 if (pinctrl_select_state(pctldev->p,
2018 pctldev->hog_default))
2019 dev_err(pctldev->dev,
2020 "failed to select default state\n");
2021 }
2022
2023 pctldev->hog_sleep =
2024 pinctrl_lookup_state(pctldev->p,
2025 PINCTRL_STATE_SLEEP);
2026 if (IS_ERR(pctldev->hog_sleep))
2027 dev_dbg(pctldev->dev,
2028 "failed to lookup the sleep state\n");
2029
2030 return 0;
2031}
2032
2033int pinctrl_enable(struct pinctrl_dev *pctldev)
2034{
2035 int error;
2036
2037 error = pinctrl_claim_hogs(pctldev);
2038 if (error) {
2039 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2040 error);
2041 mutex_destroy(&pctldev->mutex);
2042 kfree(pctldev);
2043
2044 return error;
2045 }
2046
2047 mutex_lock(&pinctrldev_list_mutex);
2048 list_add_tail(&pctldev->node, &pinctrldev_list);
2049 mutex_unlock(&pinctrldev_list_mutex);
2050
2051 pinctrl_init_device_debugfs(pctldev);
2052
2053 return 0;
2054}
2055EXPORT_SYMBOL_GPL(pinctrl_enable);
2056
2057/**
2058 * pinctrl_register() - register a pin controller device
2059 * @pctldesc: descriptor for this pin controller
2060 * @dev: parent device for this pin controller
2061 * @driver_data: private pin controller data for this pin controller
2062 *
2063 * Note that pinctrl_register() is known to have problems as the pin
2064 * controller driver functions are called before the driver has a
2065 * struct pinctrl_dev handle. To avoid issues later on, please use the
2066 * new pinctrl_register_and_init() below instead.
2067 */
2068struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2069 struct device *dev, void *driver_data)
2070{
2071 struct pinctrl_dev *pctldev;
2072 int error;
2073
2074 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2075 if (IS_ERR(pctldev))
2076 return pctldev;
2077
2078 error = pinctrl_enable(pctldev);
2079 if (error)
2080 return ERR_PTR(error);
2081
2082 return pctldev;
2083
2084}
2085EXPORT_SYMBOL_GPL(pinctrl_register);
2086
2087/**
2088 * pinctrl_register_and_init() - register and init pin controller device
2089 * @pctldesc: descriptor for this pin controller
2090 * @dev: parent device for this pin controller
2091 * @driver_data: private pin controller data for this pin controller
2092 * @pctldev: pin controller device
2093 *
2094 * Note that pinctrl_enable() still needs to be manually called after
2095 * this once the driver is ready.
2096 */
2097int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2098 struct device *dev, void *driver_data,
2099 struct pinctrl_dev **pctldev)
2100{
2101 struct pinctrl_dev *p;
2102
2103 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2104 if (IS_ERR(p))
2105 return PTR_ERR(p);
2106
2107 /*
2108 * We have pinctrl_start() call functions in the pin controller
2109 * driver with create_pinctrl() for at least dt_node_to_map(). So
2110 * let's make sure pctldev is properly initialized for the
2111 * pin controller driver before we do anything.
2112 */
2113 *pctldev = p;
2114
2115 return 0;
2116}
2117EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2118
2119/**
2120 * pinctrl_unregister() - unregister pinmux
2121 * @pctldev: pin controller to unregister
2122 *
2123 * Called by pinmux drivers to unregister a pinmux.
2124 */
2125void pinctrl_unregister(struct pinctrl_dev *pctldev)
2126{
2127 struct pinctrl_gpio_range *range, *n;
2128
2129 if (!pctldev)
2130 return;
2131
2132 mutex_lock(&pctldev->mutex);
2133 pinctrl_remove_device_debugfs(pctldev);
2134 mutex_unlock(&pctldev->mutex);
2135
2136 if (!IS_ERR_OR_NULL(pctldev->p))
2137 pinctrl_put(pctldev->p);
2138
2139 mutex_lock(&pinctrldev_list_mutex);
2140 mutex_lock(&pctldev->mutex);
2141 /* TODO: check that no pinmuxes are still active? */
2142 list_del(&pctldev->node);
2143 pinmux_generic_free_functions(pctldev);
2144 pinctrl_generic_free_groups(pctldev);
2145 /* Destroy descriptor tree */
2146 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2147 pctldev->desc->npins);
2148 /* remove gpio ranges map */
2149 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2150 list_del(&range->node);
2151
2152 mutex_unlock(&pctldev->mutex);
2153 mutex_destroy(&pctldev->mutex);
2154 kfree(pctldev);
2155 mutex_unlock(&pinctrldev_list_mutex);
2156}
2157EXPORT_SYMBOL_GPL(pinctrl_unregister);
2158
2159static void devm_pinctrl_dev_release(struct device *dev, void *res)
2160{
2161 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2162
2163 pinctrl_unregister(pctldev);
2164}
2165
2166static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2167{
2168 struct pctldev **r = res;
2169
2170 if (WARN_ON(!r || !*r))
2171 return 0;
2172
2173 return *r == data;
2174}
2175
2176/**
2177 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2178 * @dev: parent device for this pin controller
2179 * @pctldesc: descriptor for this pin controller
2180 * @driver_data: private pin controller data for this pin controller
2181 *
2182 * Returns an error pointer if pincontrol register failed. Otherwise
2183 * it returns valid pinctrl handle.
2184 *
2185 * The pinctrl device will be automatically released when the device is unbound.
2186 */
2187struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2188 struct pinctrl_desc *pctldesc,
2189 void *driver_data)
2190{
2191 struct pinctrl_dev **ptr, *pctldev;
2192
2193 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2194 if (!ptr)
2195 return ERR_PTR(-ENOMEM);
2196
2197 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2198 if (IS_ERR(pctldev)) {
2199 devres_free(ptr);
2200 return pctldev;
2201 }
2202
2203 *ptr = pctldev;
2204 devres_add(dev, ptr);
2205
2206 return pctldev;
2207}
2208EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2209
2210/**
2211 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2212 * @dev: parent device for this pin controller
2213 * @pctldesc: descriptor for this pin controller
2214 * @driver_data: private pin controller data for this pin controller
2215 *
2216 * Returns an error pointer if pincontrol register failed. Otherwise
2217 * it returns valid pinctrl handle.
2218 *
2219 * The pinctrl device will be automatically released when the device is unbound.
2220 */
2221int devm_pinctrl_register_and_init(struct device *dev,
2222 struct pinctrl_desc *pctldesc,
2223 void *driver_data,
2224 struct pinctrl_dev **pctldev)
2225{
2226 struct pinctrl_dev **ptr;
2227 int error;
2228
2229 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2230 if (!ptr)
2231 return -ENOMEM;
2232
2233 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2234 if (error) {
2235 devres_free(ptr);
2236 return error;
2237 }
2238
2239 *ptr = *pctldev;
2240 devres_add(dev, ptr);
2241
2242 return 0;
2243}
2244EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2245
2246/**
2247 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2248 * @dev: device for which which resource was allocated
2249 * @pctldev: the pinctrl device to unregister.
2250 */
2251void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2252{
2253 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2254 devm_pinctrl_dev_match, pctldev));
2255}
2256EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2257
2258static int __init pinctrl_init(void)
2259{
2260 pr_info("initialized pinctrl subsystem\n");
2261 pinctrl_init_debugfs();
2262 return 0;
2263}
2264
2265/* init early since many drivers really need to initialized pinmux early */
2266core_initcall(pinctrl_init);