at v5.2 35 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 4 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 5 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 6 */ 7 8#include <linux/module.h> 9#include <linux/kernel.h> 10#include <linux/slab.h> 11#include <linux/netdevice.h> 12#include <linux/if_arp.h> 13#include <linux/workqueue.h> 14#include <linux/can.h> 15#include <linux/can/dev.h> 16#include <linux/can/skb.h> 17#include <linux/can/netlink.h> 18#include <linux/can/led.h> 19#include <linux/of.h> 20#include <net/rtnetlink.h> 21 22#define MOD_DESC "CAN device driver interface" 23 24MODULE_DESCRIPTION(MOD_DESC); 25MODULE_LICENSE("GPL v2"); 26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 27 28/* CAN DLC to real data length conversion helpers */ 29 30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 31 8, 12, 16, 20, 24, 32, 48, 64}; 32 33/* get data length from can_dlc with sanitized can_dlc */ 34u8 can_dlc2len(u8 can_dlc) 35{ 36 return dlc2len[can_dlc & 0x0F]; 37} 38EXPORT_SYMBOL_GPL(can_dlc2len); 39 40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 41 9, 9, 9, 9, /* 9 - 12 */ 42 10, 10, 10, 10, /* 13 - 16 */ 43 11, 11, 11, 11, /* 17 - 20 */ 44 12, 12, 12, 12, /* 21 - 24 */ 45 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 46 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 47 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 48 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 49 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 50 51/* map the sanitized data length to an appropriate data length code */ 52u8 can_len2dlc(u8 len) 53{ 54 if (unlikely(len > 64)) 55 return 0xF; 56 57 return len2dlc[len]; 58} 59EXPORT_SYMBOL_GPL(can_len2dlc); 60 61#ifdef CONFIG_CAN_CALC_BITTIMING 62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 63#define CAN_CALC_SYNC_SEG 1 64 65/* 66 * Bit-timing calculation derived from: 67 * 68 * Code based on LinCAN sources and H8S2638 project 69 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 70 * Copyright 2005 Stanislav Marek 71 * email: pisa@cmp.felk.cvut.cz 72 * 73 * Calculates proper bit-timing parameters for a specified bit-rate 74 * and sample-point, which can then be used to set the bit-timing 75 * registers of the CAN controller. You can find more information 76 * in the header file linux/can/netlink.h. 77 */ 78static int can_update_sample_point(const struct can_bittiming_const *btc, 79 unsigned int sample_point_nominal, unsigned int tseg, 80 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 81 unsigned int *sample_point_error_ptr) 82{ 83 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 84 unsigned int sample_point, best_sample_point = 0; 85 unsigned int tseg1, tseg2; 86 int i; 87 88 for (i = 0; i <= 1; i++) { 89 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i; 90 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 91 tseg1 = tseg - tseg2; 92 if (tseg1 > btc->tseg1_max) { 93 tseg1 = btc->tseg1_max; 94 tseg2 = tseg - tseg1; 95 } 96 97 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG); 98 sample_point_error = abs(sample_point_nominal - sample_point); 99 100 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) { 101 best_sample_point = sample_point; 102 best_sample_point_error = sample_point_error; 103 *tseg1_ptr = tseg1; 104 *tseg2_ptr = tseg2; 105 } 106 } 107 108 if (sample_point_error_ptr) 109 *sample_point_error_ptr = best_sample_point_error; 110 111 return best_sample_point; 112} 113 114static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 115 const struct can_bittiming_const *btc) 116{ 117 struct can_priv *priv = netdev_priv(dev); 118 unsigned int bitrate; /* current bitrate */ 119 unsigned int bitrate_error; /* difference between current and nominal value */ 120 unsigned int best_bitrate_error = UINT_MAX; 121 unsigned int sample_point_error; /* difference between current and nominal value */ 122 unsigned int best_sample_point_error = UINT_MAX; 123 unsigned int sample_point_nominal; /* nominal sample point */ 124 unsigned int best_tseg = 0; /* current best value for tseg */ 125 unsigned int best_brp = 0; /* current best value for brp */ 126 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 127 u64 v64; 128 129 /* Use CiA recommended sample points */ 130 if (bt->sample_point) { 131 sample_point_nominal = bt->sample_point; 132 } else { 133 if (bt->bitrate > 800000) 134 sample_point_nominal = 750; 135 else if (bt->bitrate > 500000) 136 sample_point_nominal = 800; 137 else 138 sample_point_nominal = 875; 139 } 140 141 /* tseg even = round down, odd = round up */ 142 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 143 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 144 tsegall = CAN_CALC_SYNC_SEG + tseg / 2; 145 146 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 147 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 148 149 /* choose brp step which is possible in system */ 150 brp = (brp / btc->brp_inc) * btc->brp_inc; 151 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 152 continue; 153 154 bitrate = priv->clock.freq / (brp * tsegall); 155 bitrate_error = abs(bt->bitrate - bitrate); 156 157 /* tseg brp biterror */ 158 if (bitrate_error > best_bitrate_error) 159 continue; 160 161 /* reset sample point error if we have a better bitrate */ 162 if (bitrate_error < best_bitrate_error) 163 best_sample_point_error = UINT_MAX; 164 165 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error); 166 if (sample_point_error > best_sample_point_error) 167 continue; 168 169 best_sample_point_error = sample_point_error; 170 best_bitrate_error = bitrate_error; 171 best_tseg = tseg / 2; 172 best_brp = brp; 173 174 if (bitrate_error == 0 && sample_point_error == 0) 175 break; 176 } 177 178 if (best_bitrate_error) { 179 /* Error in one-tenth of a percent */ 180 v64 = (u64)best_bitrate_error * 1000; 181 do_div(v64, bt->bitrate); 182 bitrate_error = (u32)v64; 183 if (bitrate_error > CAN_CALC_MAX_ERROR) { 184 netdev_err(dev, 185 "bitrate error %d.%d%% too high\n", 186 bitrate_error / 10, bitrate_error % 10); 187 return -EDOM; 188 } 189 netdev_warn(dev, "bitrate error %d.%d%%\n", 190 bitrate_error / 10, bitrate_error % 10); 191 } 192 193 /* real sample point */ 194 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg, 195 &tseg1, &tseg2, NULL); 196 197 v64 = (u64)best_brp * 1000 * 1000 * 1000; 198 do_div(v64, priv->clock.freq); 199 bt->tq = (u32)v64; 200 bt->prop_seg = tseg1 / 2; 201 bt->phase_seg1 = tseg1 - bt->prop_seg; 202 bt->phase_seg2 = tseg2; 203 204 /* check for sjw user settings */ 205 if (!bt->sjw || !btc->sjw_max) { 206 bt->sjw = 1; 207 } else { 208 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 209 if (bt->sjw > btc->sjw_max) 210 bt->sjw = btc->sjw_max; 211 /* bt->sjw must not be higher than tseg2 */ 212 if (tseg2 < bt->sjw) 213 bt->sjw = tseg2; 214 } 215 216 bt->brp = best_brp; 217 218 /* real bitrate */ 219 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); 220 221 return 0; 222} 223#else /* !CONFIG_CAN_CALC_BITTIMING */ 224static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 225 const struct can_bittiming_const *btc) 226{ 227 netdev_err(dev, "bit-timing calculation not available\n"); 228 return -EINVAL; 229} 230#endif /* CONFIG_CAN_CALC_BITTIMING */ 231 232/* 233 * Checks the validity of the specified bit-timing parameters prop_seg, 234 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 235 * prescaler value brp. You can find more information in the header 236 * file linux/can/netlink.h. 237 */ 238static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 239 const struct can_bittiming_const *btc) 240{ 241 struct can_priv *priv = netdev_priv(dev); 242 int tseg1, alltseg; 243 u64 brp64; 244 245 tseg1 = bt->prop_seg + bt->phase_seg1; 246 if (!bt->sjw) 247 bt->sjw = 1; 248 if (bt->sjw > btc->sjw_max || 249 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 250 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 251 return -ERANGE; 252 253 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 254 if (btc->brp_inc > 1) 255 do_div(brp64, btc->brp_inc); 256 brp64 += 500000000UL - 1; 257 do_div(brp64, 1000000000UL); /* the practicable BRP */ 258 if (btc->brp_inc > 1) 259 brp64 *= btc->brp_inc; 260 bt->brp = (u32)brp64; 261 262 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 263 return -EINVAL; 264 265 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 266 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 267 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 268 269 return 0; 270} 271 272/* Checks the validity of predefined bitrate settings */ 273static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 274 const u32 *bitrate_const, 275 const unsigned int bitrate_const_cnt) 276{ 277 struct can_priv *priv = netdev_priv(dev); 278 unsigned int i; 279 280 for (i = 0; i < bitrate_const_cnt; i++) { 281 if (bt->bitrate == bitrate_const[i]) 282 break; 283 } 284 285 if (i >= priv->bitrate_const_cnt) 286 return -EINVAL; 287 288 return 0; 289} 290 291static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 292 const struct can_bittiming_const *btc, 293 const u32 *bitrate_const, 294 const unsigned int bitrate_const_cnt) 295{ 296 int err; 297 298 /* 299 * Depending on the given can_bittiming parameter structure the CAN 300 * timing parameters are calculated based on the provided bitrate OR 301 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 302 * provided directly which are then checked and fixed up. 303 */ 304 if (!bt->tq && bt->bitrate && btc) 305 err = can_calc_bittiming(dev, bt, btc); 306 else if (bt->tq && !bt->bitrate && btc) 307 err = can_fixup_bittiming(dev, bt, btc); 308 else if (!bt->tq && bt->bitrate && bitrate_const) 309 err = can_validate_bitrate(dev, bt, bitrate_const, 310 bitrate_const_cnt); 311 else 312 err = -EINVAL; 313 314 return err; 315} 316 317static void can_update_state_error_stats(struct net_device *dev, 318 enum can_state new_state) 319{ 320 struct can_priv *priv = netdev_priv(dev); 321 322 if (new_state <= priv->state) 323 return; 324 325 switch (new_state) { 326 case CAN_STATE_ERROR_WARNING: 327 priv->can_stats.error_warning++; 328 break; 329 case CAN_STATE_ERROR_PASSIVE: 330 priv->can_stats.error_passive++; 331 break; 332 case CAN_STATE_BUS_OFF: 333 priv->can_stats.bus_off++; 334 break; 335 default: 336 break; 337 } 338} 339 340static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 341{ 342 switch (state) { 343 case CAN_STATE_ERROR_ACTIVE: 344 return CAN_ERR_CRTL_ACTIVE; 345 case CAN_STATE_ERROR_WARNING: 346 return CAN_ERR_CRTL_TX_WARNING; 347 case CAN_STATE_ERROR_PASSIVE: 348 return CAN_ERR_CRTL_TX_PASSIVE; 349 default: 350 return 0; 351 } 352} 353 354static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 355{ 356 switch (state) { 357 case CAN_STATE_ERROR_ACTIVE: 358 return CAN_ERR_CRTL_ACTIVE; 359 case CAN_STATE_ERROR_WARNING: 360 return CAN_ERR_CRTL_RX_WARNING; 361 case CAN_STATE_ERROR_PASSIVE: 362 return CAN_ERR_CRTL_RX_PASSIVE; 363 default: 364 return 0; 365 } 366} 367 368void can_change_state(struct net_device *dev, struct can_frame *cf, 369 enum can_state tx_state, enum can_state rx_state) 370{ 371 struct can_priv *priv = netdev_priv(dev); 372 enum can_state new_state = max(tx_state, rx_state); 373 374 if (unlikely(new_state == priv->state)) { 375 netdev_warn(dev, "%s: oops, state did not change", __func__); 376 return; 377 } 378 379 netdev_dbg(dev, "New error state: %d\n", new_state); 380 381 can_update_state_error_stats(dev, new_state); 382 priv->state = new_state; 383 384 if (!cf) 385 return; 386 387 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 388 cf->can_id |= CAN_ERR_BUSOFF; 389 return; 390 } 391 392 cf->can_id |= CAN_ERR_CRTL; 393 cf->data[1] |= tx_state >= rx_state ? 394 can_tx_state_to_frame(dev, tx_state) : 0; 395 cf->data[1] |= tx_state <= rx_state ? 396 can_rx_state_to_frame(dev, rx_state) : 0; 397} 398EXPORT_SYMBOL_GPL(can_change_state); 399 400/* 401 * Local echo of CAN messages 402 * 403 * CAN network devices *should* support a local echo functionality 404 * (see Documentation/networking/can.rst). To test the handling of CAN 405 * interfaces that do not support the local echo both driver types are 406 * implemented. In the case that the driver does not support the echo 407 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 408 * to perform the echo as a fallback solution. 409 */ 410static void can_flush_echo_skb(struct net_device *dev) 411{ 412 struct can_priv *priv = netdev_priv(dev); 413 struct net_device_stats *stats = &dev->stats; 414 int i; 415 416 for (i = 0; i < priv->echo_skb_max; i++) { 417 if (priv->echo_skb[i]) { 418 kfree_skb(priv->echo_skb[i]); 419 priv->echo_skb[i] = NULL; 420 stats->tx_dropped++; 421 stats->tx_aborted_errors++; 422 } 423 } 424} 425 426/* 427 * Put the skb on the stack to be looped backed locally lateron 428 * 429 * The function is typically called in the start_xmit function 430 * of the device driver. The driver must protect access to 431 * priv->echo_skb, if necessary. 432 */ 433void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 434 unsigned int idx) 435{ 436 struct can_priv *priv = netdev_priv(dev); 437 438 BUG_ON(idx >= priv->echo_skb_max); 439 440 /* check flag whether this packet has to be looped back */ 441 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 442 (skb->protocol != htons(ETH_P_CAN) && 443 skb->protocol != htons(ETH_P_CANFD))) { 444 kfree_skb(skb); 445 return; 446 } 447 448 if (!priv->echo_skb[idx]) { 449 450 skb = can_create_echo_skb(skb); 451 if (!skb) 452 return; 453 454 /* make settings for echo to reduce code in irq context */ 455 skb->pkt_type = PACKET_BROADCAST; 456 skb->ip_summed = CHECKSUM_UNNECESSARY; 457 skb->dev = dev; 458 459 /* save this skb for tx interrupt echo handling */ 460 priv->echo_skb[idx] = skb; 461 } else { 462 /* locking problem with netif_stop_queue() ?? */ 463 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 464 kfree_skb(skb); 465 } 466} 467EXPORT_SYMBOL_GPL(can_put_echo_skb); 468 469struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr) 470{ 471 struct can_priv *priv = netdev_priv(dev); 472 473 if (idx >= priv->echo_skb_max) { 474 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", 475 __func__, idx, priv->echo_skb_max); 476 return NULL; 477 } 478 479 if (priv->echo_skb[idx]) { 480 /* Using "struct canfd_frame::len" for the frame 481 * length is supported on both CAN and CANFD frames. 482 */ 483 struct sk_buff *skb = priv->echo_skb[idx]; 484 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 485 u8 len = cf->len; 486 487 *len_ptr = len; 488 priv->echo_skb[idx] = NULL; 489 490 return skb; 491 } 492 493 return NULL; 494} 495 496/* 497 * Get the skb from the stack and loop it back locally 498 * 499 * The function is typically called when the TX done interrupt 500 * is handled in the device driver. The driver must protect 501 * access to priv->echo_skb, if necessary. 502 */ 503unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 504{ 505 struct sk_buff *skb; 506 u8 len; 507 508 skb = __can_get_echo_skb(dev, idx, &len); 509 if (!skb) 510 return 0; 511 512 netif_rx(skb); 513 514 return len; 515} 516EXPORT_SYMBOL_GPL(can_get_echo_skb); 517 518/* 519 * Remove the skb from the stack and free it. 520 * 521 * The function is typically called when TX failed. 522 */ 523void can_free_echo_skb(struct net_device *dev, unsigned int idx) 524{ 525 struct can_priv *priv = netdev_priv(dev); 526 527 BUG_ON(idx >= priv->echo_skb_max); 528 529 if (priv->echo_skb[idx]) { 530 dev_kfree_skb_any(priv->echo_skb[idx]); 531 priv->echo_skb[idx] = NULL; 532 } 533} 534EXPORT_SYMBOL_GPL(can_free_echo_skb); 535 536/* 537 * CAN device restart for bus-off recovery 538 */ 539static void can_restart(struct net_device *dev) 540{ 541 struct can_priv *priv = netdev_priv(dev); 542 struct net_device_stats *stats = &dev->stats; 543 struct sk_buff *skb; 544 struct can_frame *cf; 545 int err; 546 547 BUG_ON(netif_carrier_ok(dev)); 548 549 /* 550 * No synchronization needed because the device is bus-off and 551 * no messages can come in or go out. 552 */ 553 can_flush_echo_skb(dev); 554 555 /* send restart message upstream */ 556 skb = alloc_can_err_skb(dev, &cf); 557 if (skb == NULL) { 558 err = -ENOMEM; 559 goto restart; 560 } 561 cf->can_id |= CAN_ERR_RESTARTED; 562 563 netif_rx(skb); 564 565 stats->rx_packets++; 566 stats->rx_bytes += cf->can_dlc; 567 568restart: 569 netdev_dbg(dev, "restarted\n"); 570 priv->can_stats.restarts++; 571 572 /* Now restart the device */ 573 err = priv->do_set_mode(dev, CAN_MODE_START); 574 575 netif_carrier_on(dev); 576 if (err) 577 netdev_err(dev, "Error %d during restart", err); 578} 579 580static void can_restart_work(struct work_struct *work) 581{ 582 struct delayed_work *dwork = to_delayed_work(work); 583 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work); 584 585 can_restart(priv->dev); 586} 587 588int can_restart_now(struct net_device *dev) 589{ 590 struct can_priv *priv = netdev_priv(dev); 591 592 /* 593 * A manual restart is only permitted if automatic restart is 594 * disabled and the device is in the bus-off state 595 */ 596 if (priv->restart_ms) 597 return -EINVAL; 598 if (priv->state != CAN_STATE_BUS_OFF) 599 return -EBUSY; 600 601 cancel_delayed_work_sync(&priv->restart_work); 602 can_restart(dev); 603 604 return 0; 605} 606 607/* 608 * CAN bus-off 609 * 610 * This functions should be called when the device goes bus-off to 611 * tell the netif layer that no more packets can be sent or received. 612 * If enabled, a timer is started to trigger bus-off recovery. 613 */ 614void can_bus_off(struct net_device *dev) 615{ 616 struct can_priv *priv = netdev_priv(dev); 617 618 netdev_info(dev, "bus-off\n"); 619 620 netif_carrier_off(dev); 621 622 if (priv->restart_ms) 623 schedule_delayed_work(&priv->restart_work, 624 msecs_to_jiffies(priv->restart_ms)); 625} 626EXPORT_SYMBOL_GPL(can_bus_off); 627 628static void can_setup(struct net_device *dev) 629{ 630 dev->type = ARPHRD_CAN; 631 dev->mtu = CAN_MTU; 632 dev->hard_header_len = 0; 633 dev->addr_len = 0; 634 dev->tx_queue_len = 10; 635 636 /* New-style flags. */ 637 dev->flags = IFF_NOARP; 638 dev->features = NETIF_F_HW_CSUM; 639} 640 641struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 642{ 643 struct sk_buff *skb; 644 645 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 646 sizeof(struct can_frame)); 647 if (unlikely(!skb)) 648 return NULL; 649 650 skb->protocol = htons(ETH_P_CAN); 651 skb->pkt_type = PACKET_BROADCAST; 652 skb->ip_summed = CHECKSUM_UNNECESSARY; 653 654 skb_reset_mac_header(skb); 655 skb_reset_network_header(skb); 656 skb_reset_transport_header(skb); 657 658 can_skb_reserve(skb); 659 can_skb_prv(skb)->ifindex = dev->ifindex; 660 can_skb_prv(skb)->skbcnt = 0; 661 662 *cf = skb_put_zero(skb, sizeof(struct can_frame)); 663 664 return skb; 665} 666EXPORT_SYMBOL_GPL(alloc_can_skb); 667 668struct sk_buff *alloc_canfd_skb(struct net_device *dev, 669 struct canfd_frame **cfd) 670{ 671 struct sk_buff *skb; 672 673 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 674 sizeof(struct canfd_frame)); 675 if (unlikely(!skb)) 676 return NULL; 677 678 skb->protocol = htons(ETH_P_CANFD); 679 skb->pkt_type = PACKET_BROADCAST; 680 skb->ip_summed = CHECKSUM_UNNECESSARY; 681 682 skb_reset_mac_header(skb); 683 skb_reset_network_header(skb); 684 skb_reset_transport_header(skb); 685 686 can_skb_reserve(skb); 687 can_skb_prv(skb)->ifindex = dev->ifindex; 688 can_skb_prv(skb)->skbcnt = 0; 689 690 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame)); 691 692 return skb; 693} 694EXPORT_SYMBOL_GPL(alloc_canfd_skb); 695 696struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 697{ 698 struct sk_buff *skb; 699 700 skb = alloc_can_skb(dev, cf); 701 if (unlikely(!skb)) 702 return NULL; 703 704 (*cf)->can_id = CAN_ERR_FLAG; 705 (*cf)->can_dlc = CAN_ERR_DLC; 706 707 return skb; 708} 709EXPORT_SYMBOL_GPL(alloc_can_err_skb); 710 711/* 712 * Allocate and setup space for the CAN network device 713 */ 714struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max, 715 unsigned int txqs, unsigned int rxqs) 716{ 717 struct net_device *dev; 718 struct can_priv *priv; 719 int size; 720 721 if (echo_skb_max) 722 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 723 echo_skb_max * sizeof(struct sk_buff *); 724 else 725 size = sizeof_priv; 726 727 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup, 728 txqs, rxqs); 729 if (!dev) 730 return NULL; 731 732 priv = netdev_priv(dev); 733 priv->dev = dev; 734 735 if (echo_skb_max) { 736 priv->echo_skb_max = echo_skb_max; 737 priv->echo_skb = (void *)priv + 738 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 739 } 740 741 priv->state = CAN_STATE_STOPPED; 742 743 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 744 745 return dev; 746} 747EXPORT_SYMBOL_GPL(alloc_candev_mqs); 748 749/* 750 * Free space of the CAN network device 751 */ 752void free_candev(struct net_device *dev) 753{ 754 free_netdev(dev); 755} 756EXPORT_SYMBOL_GPL(free_candev); 757 758/* 759 * changing MTU and control mode for CAN/CANFD devices 760 */ 761int can_change_mtu(struct net_device *dev, int new_mtu) 762{ 763 struct can_priv *priv = netdev_priv(dev); 764 765 /* Do not allow changing the MTU while running */ 766 if (dev->flags & IFF_UP) 767 return -EBUSY; 768 769 /* allow change of MTU according to the CANFD ability of the device */ 770 switch (new_mtu) { 771 case CAN_MTU: 772 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 773 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 774 return -EINVAL; 775 776 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 777 break; 778 779 case CANFD_MTU: 780 /* check for potential CANFD ability */ 781 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 782 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 783 return -EINVAL; 784 785 priv->ctrlmode |= CAN_CTRLMODE_FD; 786 break; 787 788 default: 789 return -EINVAL; 790 } 791 792 dev->mtu = new_mtu; 793 return 0; 794} 795EXPORT_SYMBOL_GPL(can_change_mtu); 796 797/* 798 * Common open function when the device gets opened. 799 * 800 * This function should be called in the open function of the device 801 * driver. 802 */ 803int open_candev(struct net_device *dev) 804{ 805 struct can_priv *priv = netdev_priv(dev); 806 807 if (!priv->bittiming.bitrate) { 808 netdev_err(dev, "bit-timing not yet defined\n"); 809 return -EINVAL; 810 } 811 812 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 813 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 814 (!priv->data_bittiming.bitrate || 815 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 816 netdev_err(dev, "incorrect/missing data bit-timing\n"); 817 return -EINVAL; 818 } 819 820 /* Switch carrier on if device was stopped while in bus-off state */ 821 if (!netif_carrier_ok(dev)) 822 netif_carrier_on(dev); 823 824 return 0; 825} 826EXPORT_SYMBOL_GPL(open_candev); 827 828#ifdef CONFIG_OF 829/* Common function that can be used to understand the limitation of 830 * a transceiver when it provides no means to determine these limitations 831 * at runtime. 832 */ 833void of_can_transceiver(struct net_device *dev) 834{ 835 struct device_node *dn; 836 struct can_priv *priv = netdev_priv(dev); 837 struct device_node *np = dev->dev.parent->of_node; 838 int ret; 839 840 dn = of_get_child_by_name(np, "can-transceiver"); 841 if (!dn) 842 return; 843 844 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max); 845 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max)) 846 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n"); 847} 848EXPORT_SYMBOL_GPL(of_can_transceiver); 849#endif 850 851/* 852 * Common close function for cleanup before the device gets closed. 853 * 854 * This function should be called in the close function of the device 855 * driver. 856 */ 857void close_candev(struct net_device *dev) 858{ 859 struct can_priv *priv = netdev_priv(dev); 860 861 cancel_delayed_work_sync(&priv->restart_work); 862 can_flush_echo_skb(dev); 863} 864EXPORT_SYMBOL_GPL(close_candev); 865 866/* 867 * CAN netlink interface 868 */ 869static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 870 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 871 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 872 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 873 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 874 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 875 [IFLA_CAN_BITTIMING_CONST] 876 = { .len = sizeof(struct can_bittiming_const) }, 877 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 878 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 879 [IFLA_CAN_DATA_BITTIMING] 880 = { .len = sizeof(struct can_bittiming) }, 881 [IFLA_CAN_DATA_BITTIMING_CONST] 882 = { .len = sizeof(struct can_bittiming_const) }, 883}; 884 885static int can_validate(struct nlattr *tb[], struct nlattr *data[], 886 struct netlink_ext_ack *extack) 887{ 888 bool is_can_fd = false; 889 890 /* Make sure that valid CAN FD configurations always consist of 891 * - nominal/arbitration bittiming 892 * - data bittiming 893 * - control mode with CAN_CTRLMODE_FD set 894 */ 895 896 if (!data) 897 return 0; 898 899 if (data[IFLA_CAN_CTRLMODE]) { 900 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 901 902 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 903 } 904 905 if (is_can_fd) { 906 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 907 return -EOPNOTSUPP; 908 } 909 910 if (data[IFLA_CAN_DATA_BITTIMING]) { 911 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 912 return -EOPNOTSUPP; 913 } 914 915 return 0; 916} 917 918static int can_changelink(struct net_device *dev, struct nlattr *tb[], 919 struct nlattr *data[], 920 struct netlink_ext_ack *extack) 921{ 922 struct can_priv *priv = netdev_priv(dev); 923 int err; 924 925 /* We need synchronization with dev->stop() */ 926 ASSERT_RTNL(); 927 928 if (data[IFLA_CAN_BITTIMING]) { 929 struct can_bittiming bt; 930 931 /* Do not allow changing bittiming while running */ 932 if (dev->flags & IFF_UP) 933 return -EBUSY; 934 935 /* Calculate bittiming parameters based on 936 * bittiming_const if set, otherwise pass bitrate 937 * directly via do_set_bitrate(). Bail out if neither 938 * is given. 939 */ 940 if (!priv->bittiming_const && !priv->do_set_bittiming) 941 return -EOPNOTSUPP; 942 943 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 944 err = can_get_bittiming(dev, &bt, 945 priv->bittiming_const, 946 priv->bitrate_const, 947 priv->bitrate_const_cnt); 948 if (err) 949 return err; 950 951 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) { 952 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n", 953 priv->bitrate_max); 954 return -EINVAL; 955 } 956 957 memcpy(&priv->bittiming, &bt, sizeof(bt)); 958 959 if (priv->do_set_bittiming) { 960 /* Finally, set the bit-timing registers */ 961 err = priv->do_set_bittiming(dev); 962 if (err) 963 return err; 964 } 965 } 966 967 if (data[IFLA_CAN_CTRLMODE]) { 968 struct can_ctrlmode *cm; 969 u32 ctrlstatic; 970 u32 maskedflags; 971 972 /* Do not allow changing controller mode while running */ 973 if (dev->flags & IFF_UP) 974 return -EBUSY; 975 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 976 ctrlstatic = priv->ctrlmode_static; 977 maskedflags = cm->flags & cm->mask; 978 979 /* check whether provided bits are allowed to be passed */ 980 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 981 return -EOPNOTSUPP; 982 983 /* do not check for static fd-non-iso if 'fd' is disabled */ 984 if (!(maskedflags & CAN_CTRLMODE_FD)) 985 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 986 987 /* make sure static options are provided by configuration */ 988 if ((maskedflags & ctrlstatic) != ctrlstatic) 989 return -EOPNOTSUPP; 990 991 /* clear bits to be modified and copy the flag values */ 992 priv->ctrlmode &= ~cm->mask; 993 priv->ctrlmode |= maskedflags; 994 995 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 996 if (priv->ctrlmode & CAN_CTRLMODE_FD) 997 dev->mtu = CANFD_MTU; 998 else 999 dev->mtu = CAN_MTU; 1000 } 1001 1002 if (data[IFLA_CAN_RESTART_MS]) { 1003 /* Do not allow changing restart delay while running */ 1004 if (dev->flags & IFF_UP) 1005 return -EBUSY; 1006 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 1007 } 1008 1009 if (data[IFLA_CAN_RESTART]) { 1010 /* Do not allow a restart while not running */ 1011 if (!(dev->flags & IFF_UP)) 1012 return -EINVAL; 1013 err = can_restart_now(dev); 1014 if (err) 1015 return err; 1016 } 1017 1018 if (data[IFLA_CAN_DATA_BITTIMING]) { 1019 struct can_bittiming dbt; 1020 1021 /* Do not allow changing bittiming while running */ 1022 if (dev->flags & IFF_UP) 1023 return -EBUSY; 1024 1025 /* Calculate bittiming parameters based on 1026 * data_bittiming_const if set, otherwise pass bitrate 1027 * directly via do_set_bitrate(). Bail out if neither 1028 * is given. 1029 */ 1030 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 1031 return -EOPNOTSUPP; 1032 1033 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 1034 sizeof(dbt)); 1035 err = can_get_bittiming(dev, &dbt, 1036 priv->data_bittiming_const, 1037 priv->data_bitrate_const, 1038 priv->data_bitrate_const_cnt); 1039 if (err) 1040 return err; 1041 1042 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) { 1043 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n", 1044 priv->bitrate_max); 1045 return -EINVAL; 1046 } 1047 1048 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 1049 1050 if (priv->do_set_data_bittiming) { 1051 /* Finally, set the bit-timing registers */ 1052 err = priv->do_set_data_bittiming(dev); 1053 if (err) 1054 return err; 1055 } 1056 } 1057 1058 if (data[IFLA_CAN_TERMINATION]) { 1059 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1060 const unsigned int num_term = priv->termination_const_cnt; 1061 unsigned int i; 1062 1063 if (!priv->do_set_termination) 1064 return -EOPNOTSUPP; 1065 1066 /* check whether given value is supported by the interface */ 1067 for (i = 0; i < num_term; i++) { 1068 if (termval == priv->termination_const[i]) 1069 break; 1070 } 1071 if (i >= num_term) 1072 return -EINVAL; 1073 1074 /* Finally, set the termination value */ 1075 err = priv->do_set_termination(dev, termval); 1076 if (err) 1077 return err; 1078 1079 priv->termination = termval; 1080 } 1081 1082 return 0; 1083} 1084 1085static size_t can_get_size(const struct net_device *dev) 1086{ 1087 struct can_priv *priv = netdev_priv(dev); 1088 size_t size = 0; 1089 1090 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1091 size += nla_total_size(sizeof(struct can_bittiming)); 1092 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1093 size += nla_total_size(sizeof(struct can_bittiming_const)); 1094 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1095 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1096 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1097 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1098 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1099 size += nla_total_size(sizeof(struct can_berr_counter)); 1100 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1101 size += nla_total_size(sizeof(struct can_bittiming)); 1102 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1103 size += nla_total_size(sizeof(struct can_bittiming_const)); 1104 if (priv->termination_const) { 1105 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1106 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1107 priv->termination_const_cnt); 1108 } 1109 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1110 size += nla_total_size(sizeof(*priv->bitrate_const) * 1111 priv->bitrate_const_cnt); 1112 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1113 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1114 priv->data_bitrate_const_cnt); 1115 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */ 1116 1117 return size; 1118} 1119 1120static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1121{ 1122 struct can_priv *priv = netdev_priv(dev); 1123 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1124 struct can_berr_counter bec; 1125 enum can_state state = priv->state; 1126 1127 if (priv->do_get_state) 1128 priv->do_get_state(dev, &state); 1129 1130 if ((priv->bittiming.bitrate && 1131 nla_put(skb, IFLA_CAN_BITTIMING, 1132 sizeof(priv->bittiming), &priv->bittiming)) || 1133 1134 (priv->bittiming_const && 1135 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1136 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1137 1138 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1139 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1140 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1141 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1142 1143 (priv->do_get_berr_counter && 1144 !priv->do_get_berr_counter(dev, &bec) && 1145 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1146 1147 (priv->data_bittiming.bitrate && 1148 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1149 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1150 1151 (priv->data_bittiming_const && 1152 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1153 sizeof(*priv->data_bittiming_const), 1154 priv->data_bittiming_const)) || 1155 1156 (priv->termination_const && 1157 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1158 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1159 sizeof(*priv->termination_const) * 1160 priv->termination_const_cnt, 1161 priv->termination_const))) || 1162 1163 (priv->bitrate_const && 1164 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1165 sizeof(*priv->bitrate_const) * 1166 priv->bitrate_const_cnt, 1167 priv->bitrate_const)) || 1168 1169 (priv->data_bitrate_const && 1170 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1171 sizeof(*priv->data_bitrate_const) * 1172 priv->data_bitrate_const_cnt, 1173 priv->data_bitrate_const)) || 1174 1175 (nla_put(skb, IFLA_CAN_BITRATE_MAX, 1176 sizeof(priv->bitrate_max), 1177 &priv->bitrate_max)) 1178 ) 1179 1180 return -EMSGSIZE; 1181 1182 return 0; 1183} 1184 1185static size_t can_get_xstats_size(const struct net_device *dev) 1186{ 1187 return sizeof(struct can_device_stats); 1188} 1189 1190static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1191{ 1192 struct can_priv *priv = netdev_priv(dev); 1193 1194 if (nla_put(skb, IFLA_INFO_XSTATS, 1195 sizeof(priv->can_stats), &priv->can_stats)) 1196 goto nla_put_failure; 1197 return 0; 1198 1199nla_put_failure: 1200 return -EMSGSIZE; 1201} 1202 1203static int can_newlink(struct net *src_net, struct net_device *dev, 1204 struct nlattr *tb[], struct nlattr *data[], 1205 struct netlink_ext_ack *extack) 1206{ 1207 return -EOPNOTSUPP; 1208} 1209 1210static void can_dellink(struct net_device *dev, struct list_head *head) 1211{ 1212 return; 1213} 1214 1215static struct rtnl_link_ops can_link_ops __read_mostly = { 1216 .kind = "can", 1217 .maxtype = IFLA_CAN_MAX, 1218 .policy = can_policy, 1219 .setup = can_setup, 1220 .validate = can_validate, 1221 .newlink = can_newlink, 1222 .changelink = can_changelink, 1223 .dellink = can_dellink, 1224 .get_size = can_get_size, 1225 .fill_info = can_fill_info, 1226 .get_xstats_size = can_get_xstats_size, 1227 .fill_xstats = can_fill_xstats, 1228}; 1229 1230/* 1231 * Register the CAN network device 1232 */ 1233int register_candev(struct net_device *dev) 1234{ 1235 struct can_priv *priv = netdev_priv(dev); 1236 1237 /* Ensure termination_const, termination_const_cnt and 1238 * do_set_termination consistency. All must be either set or 1239 * unset. 1240 */ 1241 if ((!priv->termination_const != !priv->termination_const_cnt) || 1242 (!priv->termination_const != !priv->do_set_termination)) 1243 return -EINVAL; 1244 1245 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1246 return -EINVAL; 1247 1248 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1249 return -EINVAL; 1250 1251 dev->rtnl_link_ops = &can_link_ops; 1252 return register_netdev(dev); 1253} 1254EXPORT_SYMBOL_GPL(register_candev); 1255 1256/* 1257 * Unregister the CAN network device 1258 */ 1259void unregister_candev(struct net_device *dev) 1260{ 1261 unregister_netdev(dev); 1262} 1263EXPORT_SYMBOL_GPL(unregister_candev); 1264 1265/* 1266 * Test if a network device is a candev based device 1267 * and return the can_priv* if so. 1268 */ 1269struct can_priv *safe_candev_priv(struct net_device *dev) 1270{ 1271 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 1272 return NULL; 1273 1274 return netdev_priv(dev); 1275} 1276EXPORT_SYMBOL_GPL(safe_candev_priv); 1277 1278static __init int can_dev_init(void) 1279{ 1280 int err; 1281 1282 can_led_notifier_init(); 1283 1284 err = rtnl_link_register(&can_link_ops); 1285 if (!err) 1286 printk(KERN_INFO MOD_DESC "\n"); 1287 1288 return err; 1289} 1290module_init(can_dev_init); 1291 1292static __exit void can_dev_exit(void) 1293{ 1294 rtnl_link_unregister(&can_link_ops); 1295 1296 can_led_notifier_exit(); 1297} 1298module_exit(can_dev_exit); 1299 1300MODULE_ALIAS_RTNL_LINK("can");