at v5.2 379 lines 9.2 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2010 Google, Inc. 4 * 5 * Author: 6 * Colin Cross <ccross@google.com> 7 */ 8 9#include <linux/clk.h> 10#include <linux/clockchips.h> 11#include <linux/cpu.h> 12#include <linux/cpumask.h> 13#include <linux/delay.h> 14#include <linux/err.h> 15#include <linux/interrupt.h> 16#include <linux/of_address.h> 17#include <linux/of_irq.h> 18#include <linux/percpu.h> 19#include <linux/sched_clock.h> 20#include <linux/time.h> 21 22#include "timer-of.h" 23 24#ifdef CONFIG_ARM 25#include <asm/mach/time.h> 26#endif 27 28#define RTC_SECONDS 0x08 29#define RTC_SHADOW_SECONDS 0x0c 30#define RTC_MILLISECONDS 0x10 31 32#define TIMERUS_CNTR_1US 0x10 33#define TIMERUS_USEC_CFG 0x14 34#define TIMERUS_CNTR_FREEZE 0x4c 35 36#define TIMER_PTV 0x0 37#define TIMER_PTV_EN BIT(31) 38#define TIMER_PTV_PER BIT(30) 39#define TIMER_PCR 0x4 40#define TIMER_PCR_INTR_CLR BIT(30) 41 42#ifdef CONFIG_ARM 43#define TIMER_CPU0 0x50 /* TIMER3 */ 44#else 45#define TIMER_CPU0 0x90 /* TIMER10 */ 46#define TIMER10_IRQ_IDX 10 47#define IRQ_IDX_FOR_CPU(cpu) (TIMER10_IRQ_IDX + cpu) 48#endif 49#define TIMER_BASE_FOR_CPU(cpu) (TIMER_CPU0 + (cpu) * 8) 50 51static u32 usec_config; 52static void __iomem *timer_reg_base; 53#ifdef CONFIG_ARM 54static struct delay_timer tegra_delay_timer; 55#endif 56 57static int tegra_timer_set_next_event(unsigned long cycles, 58 struct clock_event_device *evt) 59{ 60 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 61 62 writel(TIMER_PTV_EN | 63 ((cycles > 1) ? (cycles - 1) : 0), /* n+1 scheme */ 64 reg_base + TIMER_PTV); 65 66 return 0; 67} 68 69static int tegra_timer_shutdown(struct clock_event_device *evt) 70{ 71 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 72 73 writel(0, reg_base + TIMER_PTV); 74 75 return 0; 76} 77 78static int tegra_timer_set_periodic(struct clock_event_device *evt) 79{ 80 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 81 82 writel(TIMER_PTV_EN | TIMER_PTV_PER | 83 ((timer_of_rate(to_timer_of(evt)) / HZ) - 1), 84 reg_base + TIMER_PTV); 85 86 return 0; 87} 88 89static irqreturn_t tegra_timer_isr(int irq, void *dev_id) 90{ 91 struct clock_event_device *evt = (struct clock_event_device *)dev_id; 92 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 93 94 writel(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); 95 evt->event_handler(evt); 96 97 return IRQ_HANDLED; 98} 99 100static void tegra_timer_suspend(struct clock_event_device *evt) 101{ 102 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 103 104 writel(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); 105} 106 107static void tegra_timer_resume(struct clock_event_device *evt) 108{ 109 writel(usec_config, timer_reg_base + TIMERUS_USEC_CFG); 110} 111 112#ifdef CONFIG_ARM64 113static DEFINE_PER_CPU(struct timer_of, tegra_to) = { 114 .flags = TIMER_OF_CLOCK | TIMER_OF_BASE, 115 116 .clkevt = { 117 .name = "tegra_timer", 118 .rating = 460, 119 .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, 120 .set_next_event = tegra_timer_set_next_event, 121 .set_state_shutdown = tegra_timer_shutdown, 122 .set_state_periodic = tegra_timer_set_periodic, 123 .set_state_oneshot = tegra_timer_shutdown, 124 .tick_resume = tegra_timer_shutdown, 125 .suspend = tegra_timer_suspend, 126 .resume = tegra_timer_resume, 127 }, 128}; 129 130static int tegra_timer_setup(unsigned int cpu) 131{ 132 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); 133 134 irq_force_affinity(to->clkevt.irq, cpumask_of(cpu)); 135 enable_irq(to->clkevt.irq); 136 137 clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 138 1, /* min */ 139 0x1fffffff); /* 29 bits */ 140 141 return 0; 142} 143 144static int tegra_timer_stop(unsigned int cpu) 145{ 146 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); 147 148 to->clkevt.set_state_shutdown(&to->clkevt); 149 disable_irq_nosync(to->clkevt.irq); 150 151 return 0; 152} 153#else /* CONFIG_ARM */ 154static struct timer_of tegra_to = { 155 .flags = TIMER_OF_CLOCK | TIMER_OF_BASE | TIMER_OF_IRQ, 156 157 .clkevt = { 158 .name = "tegra_timer", 159 .rating = 300, 160 .features = CLOCK_EVT_FEAT_ONESHOT | 161 CLOCK_EVT_FEAT_PERIODIC | 162 CLOCK_EVT_FEAT_DYNIRQ, 163 .set_next_event = tegra_timer_set_next_event, 164 .set_state_shutdown = tegra_timer_shutdown, 165 .set_state_periodic = tegra_timer_set_periodic, 166 .set_state_oneshot = tegra_timer_shutdown, 167 .tick_resume = tegra_timer_shutdown, 168 .suspend = tegra_timer_suspend, 169 .resume = tegra_timer_resume, 170 .cpumask = cpu_possible_mask, 171 }, 172 173 .of_irq = { 174 .index = 2, 175 .flags = IRQF_TIMER | IRQF_TRIGGER_HIGH, 176 .handler = tegra_timer_isr, 177 }, 178}; 179 180static u64 notrace tegra_read_sched_clock(void) 181{ 182 return readl(timer_reg_base + TIMERUS_CNTR_1US); 183} 184 185static unsigned long tegra_delay_timer_read_counter_long(void) 186{ 187 return readl(timer_reg_base + TIMERUS_CNTR_1US); 188} 189 190static struct timer_of suspend_rtc_to = { 191 .flags = TIMER_OF_BASE | TIMER_OF_CLOCK, 192}; 193 194/* 195 * tegra_rtc_read - Reads the Tegra RTC registers 196 * Care must be taken that this funciton is not called while the 197 * tegra_rtc driver could be executing to avoid race conditions 198 * on the RTC shadow register 199 */ 200static u64 tegra_rtc_read_ms(struct clocksource *cs) 201{ 202 u32 ms = readl(timer_of_base(&suspend_rtc_to) + RTC_MILLISECONDS); 203 u32 s = readl(timer_of_base(&suspend_rtc_to) + RTC_SHADOW_SECONDS); 204 return (u64)s * MSEC_PER_SEC + ms; 205} 206 207static struct clocksource suspend_rtc_clocksource = { 208 .name = "tegra_suspend_timer", 209 .rating = 200, 210 .read = tegra_rtc_read_ms, 211 .mask = CLOCKSOURCE_MASK(32), 212 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, 213}; 214#endif 215 216static int tegra_timer_common_init(struct device_node *np, struct timer_of *to) 217{ 218 int ret = 0; 219 220 ret = timer_of_init(np, to); 221 if (ret < 0) 222 goto out; 223 224 timer_reg_base = timer_of_base(to); 225 226 /* 227 * Configure microsecond timers to have 1MHz clock 228 * Config register is 0xqqww, where qq is "dividend", ww is "divisor" 229 * Uses n+1 scheme 230 */ 231 switch (timer_of_rate(to)) { 232 case 12000000: 233 usec_config = 0x000b; /* (11+1)/(0+1) */ 234 break; 235 case 12800000: 236 usec_config = 0x043f; /* (63+1)/(4+1) */ 237 break; 238 case 13000000: 239 usec_config = 0x000c; /* (12+1)/(0+1) */ 240 break; 241 case 16800000: 242 usec_config = 0x0453; /* (83+1)/(4+1) */ 243 break; 244 case 19200000: 245 usec_config = 0x045f; /* (95+1)/(4+1) */ 246 break; 247 case 26000000: 248 usec_config = 0x0019; /* (25+1)/(0+1) */ 249 break; 250 case 38400000: 251 usec_config = 0x04bf; /* (191+1)/(4+1) */ 252 break; 253 case 48000000: 254 usec_config = 0x002f; /* (47+1)/(0+1) */ 255 break; 256 default: 257 ret = -EINVAL; 258 goto out; 259 } 260 261 writel(usec_config, timer_of_base(to) + TIMERUS_USEC_CFG); 262 263out: 264 return ret; 265} 266 267#ifdef CONFIG_ARM64 268static int __init tegra_init_timer(struct device_node *np) 269{ 270 int cpu, ret = 0; 271 struct timer_of *to; 272 273 to = this_cpu_ptr(&tegra_to); 274 ret = tegra_timer_common_init(np, to); 275 if (ret < 0) 276 goto out; 277 278 for_each_possible_cpu(cpu) { 279 struct timer_of *cpu_to; 280 281 cpu_to = per_cpu_ptr(&tegra_to, cpu); 282 cpu_to->of_base.base = timer_reg_base + TIMER_BASE_FOR_CPU(cpu); 283 cpu_to->of_clk.rate = timer_of_rate(to); 284 cpu_to->clkevt.cpumask = cpumask_of(cpu); 285 cpu_to->clkevt.irq = 286 irq_of_parse_and_map(np, IRQ_IDX_FOR_CPU(cpu)); 287 if (!cpu_to->clkevt.irq) { 288 pr_err("%s: can't map IRQ for CPU%d\n", 289 __func__, cpu); 290 ret = -EINVAL; 291 goto out; 292 } 293 294 irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN); 295 ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, 296 IRQF_TIMER | IRQF_NOBALANCING, 297 cpu_to->clkevt.name, &cpu_to->clkevt); 298 if (ret) { 299 pr_err("%s: cannot setup irq %d for CPU%d\n", 300 __func__, cpu_to->clkevt.irq, cpu); 301 ret = -EINVAL; 302 goto out_irq; 303 } 304 } 305 306 cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING, 307 "AP_TEGRA_TIMER_STARTING", tegra_timer_setup, 308 tegra_timer_stop); 309 310 return ret; 311out_irq: 312 for_each_possible_cpu(cpu) { 313 struct timer_of *cpu_to; 314 315 cpu_to = per_cpu_ptr(&tegra_to, cpu); 316 if (cpu_to->clkevt.irq) { 317 free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt); 318 irq_dispose_mapping(cpu_to->clkevt.irq); 319 } 320 } 321out: 322 timer_of_cleanup(to); 323 return ret; 324} 325#else /* CONFIG_ARM */ 326static int __init tegra_init_timer(struct device_node *np) 327{ 328 int ret = 0; 329 330 ret = tegra_timer_common_init(np, &tegra_to); 331 if (ret < 0) 332 goto out; 333 334 tegra_to.of_base.base = timer_reg_base + TIMER_BASE_FOR_CPU(0); 335 tegra_to.of_clk.rate = 1000000; /* microsecond timer */ 336 337 sched_clock_register(tegra_read_sched_clock, 32, 338 timer_of_rate(&tegra_to)); 339 ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, 340 "timer_us", timer_of_rate(&tegra_to), 341 300, 32, clocksource_mmio_readl_up); 342 if (ret) { 343 pr_err("Failed to register clocksource\n"); 344 goto out; 345 } 346 347 tegra_delay_timer.read_current_timer = 348 tegra_delay_timer_read_counter_long; 349 tegra_delay_timer.freq = timer_of_rate(&tegra_to); 350 register_current_timer_delay(&tegra_delay_timer); 351 352 clockevents_config_and_register(&tegra_to.clkevt, 353 timer_of_rate(&tegra_to), 354 0x1, 355 0x1fffffff); 356 357 return ret; 358out: 359 timer_of_cleanup(&tegra_to); 360 361 return ret; 362} 363 364static int __init tegra20_init_rtc(struct device_node *np) 365{ 366 int ret; 367 368 ret = timer_of_init(np, &suspend_rtc_to); 369 if (ret) 370 return ret; 371 372 clocksource_register_hz(&suspend_rtc_clocksource, 1000); 373 374 return 0; 375} 376TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc); 377#endif 378TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra_init_timer); 379TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra_init_timer);