Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 */
6
7/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
8 * programmed to go from @count to @limit and optionally interrupt.
9 * We've designated TIMER0 for clockevents and TIMER1 for clocksource
10 *
11 * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
12 * which are suitable for UP and SMP based clocksources respectively
13 */
14
15#include <linux/interrupt.h>
16#include <linux/clk.h>
17#include <linux/clk-provider.h>
18#include <linux/clocksource.h>
19#include <linux/clockchips.h>
20#include <linux/cpu.h>
21#include <linux/of.h>
22#include <linux/of_irq.h>
23#include <linux/sched_clock.h>
24
25#include <soc/arc/timers.h>
26#include <soc/arc/mcip.h>
27
28
29static unsigned long arc_timer_freq;
30
31static int noinline arc_get_timer_clk(struct device_node *node)
32{
33 struct clk *clk;
34 int ret;
35
36 clk = of_clk_get(node, 0);
37 if (IS_ERR(clk)) {
38 pr_err("timer missing clk\n");
39 return PTR_ERR(clk);
40 }
41
42 ret = clk_prepare_enable(clk);
43 if (ret) {
44 pr_err("Couldn't enable parent clk\n");
45 return ret;
46 }
47
48 arc_timer_freq = clk_get_rate(clk);
49
50 return 0;
51}
52
53/********** Clock Source Device *********/
54
55#ifdef CONFIG_ARC_TIMERS_64BIT
56
57static u64 arc_read_gfrc(struct clocksource *cs)
58{
59 unsigned long flags;
60 u32 l, h;
61
62 /*
63 * From a programming model pov, there seems to be just one instance of
64 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
65 * an instance PER ARC CORE (not per cluster), and there are dedicated
66 * hardware decode logic (per core) inside ARConnect to handle
67 * simultaneous read/write accesses from cores via those two registers.
68 * So several concurrent commands to ARConnect are OK if they are
69 * trying to access two different sub-components (like GFRC,
70 * inter-core interrupt, etc...). HW also supports simultaneously
71 * accessing GFRC by multiple cores.
72 * That's why it is safe to disable hard interrupts on the local CPU
73 * before access to GFRC instead of taking global MCIP spinlock
74 * defined in arch/arc/kernel/mcip.c
75 */
76 local_irq_save(flags);
77
78 __mcip_cmd(CMD_GFRC_READ_LO, 0);
79 l = read_aux_reg(ARC_REG_MCIP_READBACK);
80
81 __mcip_cmd(CMD_GFRC_READ_HI, 0);
82 h = read_aux_reg(ARC_REG_MCIP_READBACK);
83
84 local_irq_restore(flags);
85
86 return (((u64)h) << 32) | l;
87}
88
89static notrace u64 arc_gfrc_clock_read(void)
90{
91 return arc_read_gfrc(NULL);
92}
93
94static struct clocksource arc_counter_gfrc = {
95 .name = "ARConnect GFRC",
96 .rating = 400,
97 .read = arc_read_gfrc,
98 .mask = CLOCKSOURCE_MASK(64),
99 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
100};
101
102static int __init arc_cs_setup_gfrc(struct device_node *node)
103{
104 struct mcip_bcr mp;
105 int ret;
106
107 READ_BCR(ARC_REG_MCIP_BCR, mp);
108 if (!mp.gfrc) {
109 pr_warn("Global-64-bit-Ctr clocksource not detected\n");
110 return -ENXIO;
111 }
112
113 ret = arc_get_timer_clk(node);
114 if (ret)
115 return ret;
116
117 sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
118
119 return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
120}
121TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
122
123#define AUX_RTC_CTRL 0x103
124#define AUX_RTC_LOW 0x104
125#define AUX_RTC_HIGH 0x105
126
127static u64 arc_read_rtc(struct clocksource *cs)
128{
129 unsigned long status;
130 u32 l, h;
131
132 /*
133 * hardware has an internal state machine which tracks readout of
134 * low/high and updates the CTRL.status if
135 * - interrupt/exception taken between the two reads
136 * - high increments after low has been read
137 */
138 do {
139 l = read_aux_reg(AUX_RTC_LOW);
140 h = read_aux_reg(AUX_RTC_HIGH);
141 status = read_aux_reg(AUX_RTC_CTRL);
142 } while (!(status & _BITUL(31)));
143
144 return (((u64)h) << 32) | l;
145}
146
147static notrace u64 arc_rtc_clock_read(void)
148{
149 return arc_read_rtc(NULL);
150}
151
152static struct clocksource arc_counter_rtc = {
153 .name = "ARCv2 RTC",
154 .rating = 350,
155 .read = arc_read_rtc,
156 .mask = CLOCKSOURCE_MASK(64),
157 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
158};
159
160static int __init arc_cs_setup_rtc(struct device_node *node)
161{
162 struct bcr_timer timer;
163 int ret;
164
165 READ_BCR(ARC_REG_TIMERS_BCR, timer);
166 if (!timer.rtc) {
167 pr_warn("Local-64-bit-Ctr clocksource not detected\n");
168 return -ENXIO;
169 }
170
171 /* Local to CPU hence not usable in SMP */
172 if (IS_ENABLED(CONFIG_SMP)) {
173 pr_warn("Local-64-bit-Ctr not usable in SMP\n");
174 return -EINVAL;
175 }
176
177 ret = arc_get_timer_clk(node);
178 if (ret)
179 return ret;
180
181 write_aux_reg(AUX_RTC_CTRL, 1);
182
183 sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
184
185 return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
186}
187TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
188
189#endif
190
191/*
192 * 32bit TIMER1 to keep counting monotonically and wraparound
193 */
194
195static u64 arc_read_timer1(struct clocksource *cs)
196{
197 return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
198}
199
200static notrace u64 arc_timer1_clock_read(void)
201{
202 return arc_read_timer1(NULL);
203}
204
205static struct clocksource arc_counter_timer1 = {
206 .name = "ARC Timer1",
207 .rating = 300,
208 .read = arc_read_timer1,
209 .mask = CLOCKSOURCE_MASK(32),
210 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
211};
212
213static int __init arc_cs_setup_timer1(struct device_node *node)
214{
215 int ret;
216
217 /* Local to CPU hence not usable in SMP */
218 if (IS_ENABLED(CONFIG_SMP))
219 return -EINVAL;
220
221 ret = arc_get_timer_clk(node);
222 if (ret)
223 return ret;
224
225 write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
226 write_aux_reg(ARC_REG_TIMER1_CNT, 0);
227 write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
228
229 sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
230
231 return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
232}
233
234/********** Clock Event Device *********/
235
236static int arc_timer_irq;
237
238/*
239 * Arm the timer to interrupt after @cycles
240 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
241 */
242static void arc_timer_event_setup(unsigned int cycles)
243{
244 write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
245 write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
246
247 write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
248}
249
250
251static int arc_clkevent_set_next_event(unsigned long delta,
252 struct clock_event_device *dev)
253{
254 arc_timer_event_setup(delta);
255 return 0;
256}
257
258static int arc_clkevent_set_periodic(struct clock_event_device *dev)
259{
260 /*
261 * At X Hz, 1 sec = 1000ms -> X cycles;
262 * 10ms -> X / 100 cycles
263 */
264 arc_timer_event_setup(arc_timer_freq / HZ);
265 return 0;
266}
267
268static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
269 .name = "ARC Timer0",
270 .features = CLOCK_EVT_FEAT_ONESHOT |
271 CLOCK_EVT_FEAT_PERIODIC,
272 .rating = 300,
273 .set_next_event = arc_clkevent_set_next_event,
274 .set_state_periodic = arc_clkevent_set_periodic,
275};
276
277static irqreturn_t timer_irq_handler(int irq, void *dev_id)
278{
279 /*
280 * Note that generic IRQ core could have passed @evt for @dev_id if
281 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
282 */
283 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
284 int irq_reenable = clockevent_state_periodic(evt);
285
286 /*
287 * 1. ACK the interrupt
288 * - For ARC700, any write to CTRL reg ACKs it, so just rewrite
289 * Count when [N]ot [H]alted bit.
290 * - For HS3x, it is a bit subtle. On taken count-down interrupt,
291 * IP bit [3] is set, which needs to be cleared for ACK'ing.
292 * The write below can only update the other two bits, hence
293 * explicitly clears IP bit
294 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
295 */
296 write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
297
298 evt->event_handler(evt);
299
300 return IRQ_HANDLED;
301}
302
303
304static int arc_timer_starting_cpu(unsigned int cpu)
305{
306 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
307
308 evt->cpumask = cpumask_of(smp_processor_id());
309
310 clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
311 enable_percpu_irq(arc_timer_irq, 0);
312 return 0;
313}
314
315static int arc_timer_dying_cpu(unsigned int cpu)
316{
317 disable_percpu_irq(arc_timer_irq);
318 return 0;
319}
320
321/*
322 * clockevent setup for boot CPU
323 */
324static int __init arc_clockevent_setup(struct device_node *node)
325{
326 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
327 int ret;
328
329 arc_timer_irq = irq_of_parse_and_map(node, 0);
330 if (arc_timer_irq <= 0) {
331 pr_err("clockevent: missing irq\n");
332 return -EINVAL;
333 }
334
335 ret = arc_get_timer_clk(node);
336 if (ret) {
337 pr_err("clockevent: missing clk\n");
338 return ret;
339 }
340
341 /* Needs apriori irq_set_percpu_devid() done in intc map function */
342 ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
343 "Timer0 (per-cpu-tick)", evt);
344 if (ret) {
345 pr_err("clockevent: unable to request irq\n");
346 return ret;
347 }
348
349 ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
350 "clockevents/arc/timer:starting",
351 arc_timer_starting_cpu,
352 arc_timer_dying_cpu);
353 if (ret) {
354 pr_err("Failed to setup hotplug state\n");
355 return ret;
356 }
357 return 0;
358}
359
360static int __init arc_of_timer_init(struct device_node *np)
361{
362 static int init_count = 0;
363 int ret;
364
365 if (!init_count) {
366 init_count = 1;
367 ret = arc_clockevent_setup(np);
368 } else {
369 ret = arc_cs_setup_timer1(np);
370 }
371
372 return ret;
373}
374TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);