Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/device.h>
13#include <linux/err.h>
14#include <linux/fwnode.h>
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include <linux/kdev_t.h>
20#include <linux/notifier.h>
21#include <linux/of.h>
22#include <linux/of_device.h>
23#include <linux/genhd.h>
24#include <linux/mutex.h>
25#include <linux/pm_runtime.h>
26#include <linux/netdevice.h>
27#include <linux/sched/signal.h>
28#include <linux/sysfs.h>
29
30#include "base.h"
31#include "power/power.h"
32
33#ifdef CONFIG_SYSFS_DEPRECATED
34#ifdef CONFIG_SYSFS_DEPRECATED_V2
35long sysfs_deprecated = 1;
36#else
37long sysfs_deprecated = 0;
38#endif
39static int __init sysfs_deprecated_setup(char *arg)
40{
41 return kstrtol(arg, 10, &sysfs_deprecated);
42}
43early_param("sysfs.deprecated", sysfs_deprecated_setup);
44#endif
45
46/* Device links support. */
47
48#ifdef CONFIG_SRCU
49static DEFINE_MUTEX(device_links_lock);
50DEFINE_STATIC_SRCU(device_links_srcu);
51
52static inline void device_links_write_lock(void)
53{
54 mutex_lock(&device_links_lock);
55}
56
57static inline void device_links_write_unlock(void)
58{
59 mutex_unlock(&device_links_lock);
60}
61
62int device_links_read_lock(void)
63{
64 return srcu_read_lock(&device_links_srcu);
65}
66
67void device_links_read_unlock(int idx)
68{
69 srcu_read_unlock(&device_links_srcu, idx);
70}
71#else /* !CONFIG_SRCU */
72static DECLARE_RWSEM(device_links_lock);
73
74static inline void device_links_write_lock(void)
75{
76 down_write(&device_links_lock);
77}
78
79static inline void device_links_write_unlock(void)
80{
81 up_write(&device_links_lock);
82}
83
84int device_links_read_lock(void)
85{
86 down_read(&device_links_lock);
87 return 0;
88}
89
90void device_links_read_unlock(int not_used)
91{
92 up_read(&device_links_lock);
93}
94#endif /* !CONFIG_SRCU */
95
96/**
97 * device_is_dependent - Check if one device depends on another one
98 * @dev: Device to check dependencies for.
99 * @target: Device to check against.
100 *
101 * Check if @target depends on @dev or any device dependent on it (its child or
102 * its consumer etc). Return 1 if that is the case or 0 otherwise.
103 */
104static int device_is_dependent(struct device *dev, void *target)
105{
106 struct device_link *link;
107 int ret;
108
109 if (dev == target)
110 return 1;
111
112 ret = device_for_each_child(dev, target, device_is_dependent);
113 if (ret)
114 return ret;
115
116 list_for_each_entry(link, &dev->links.consumers, s_node) {
117 if (link->consumer == target)
118 return 1;
119
120 ret = device_is_dependent(link->consumer, target);
121 if (ret)
122 break;
123 }
124 return ret;
125}
126
127static int device_reorder_to_tail(struct device *dev, void *not_used)
128{
129 struct device_link *link;
130
131 /*
132 * Devices that have not been registered yet will be put to the ends
133 * of the lists during the registration, so skip them here.
134 */
135 if (device_is_registered(dev))
136 devices_kset_move_last(dev);
137
138 if (device_pm_initialized(dev))
139 device_pm_move_last(dev);
140
141 device_for_each_child(dev, NULL, device_reorder_to_tail);
142 list_for_each_entry(link, &dev->links.consumers, s_node)
143 device_reorder_to_tail(link->consumer, NULL);
144
145 return 0;
146}
147
148/**
149 * device_pm_move_to_tail - Move set of devices to the end of device lists
150 * @dev: Device to move
151 *
152 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
153 *
154 * It moves the @dev along with all of its children and all of its consumers
155 * to the ends of the device_kset and dpm_list, recursively.
156 */
157void device_pm_move_to_tail(struct device *dev)
158{
159 int idx;
160
161 idx = device_links_read_lock();
162 device_pm_lock();
163 device_reorder_to_tail(dev, NULL);
164 device_pm_unlock();
165 device_links_read_unlock(idx);
166}
167
168/**
169 * device_link_add - Create a link between two devices.
170 * @consumer: Consumer end of the link.
171 * @supplier: Supplier end of the link.
172 * @flags: Link flags.
173 *
174 * The caller is responsible for the proper synchronization of the link creation
175 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
176 * runtime PM framework to take the link into account. Second, if the
177 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
178 * be forced into the active metastate and reference-counted upon the creation
179 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
180 * ignored.
181 *
182 * If DL_FLAG_STATELESS is set in @flags, the link is not going to be managed by
183 * the driver core and, in particular, the caller of this function is expected
184 * to drop the reference to the link acquired by it directly.
185 *
186 * If that flag is not set, however, the caller of this function is handing the
187 * management of the link over to the driver core entirely and its return value
188 * can only be used to check whether or not the link is present. In that case,
189 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
190 * flags can be used to indicate to the driver core when the link can be safely
191 * deleted. Namely, setting one of them in @flags indicates to the driver core
192 * that the link is not going to be used (by the given caller of this function)
193 * after unbinding the consumer or supplier driver, respectively, from its
194 * device, so the link can be deleted at that point. If none of them is set,
195 * the link will be maintained until one of the devices pointed to by it (either
196 * the consumer or the supplier) is unregistered.
197 *
198 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
199 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
200 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
201 * be used to request the driver core to automaticall probe for a consmer
202 * driver after successfully binding a driver to the supplier device.
203 *
204 * The combination of DL_FLAG_STATELESS and either DL_FLAG_AUTOREMOVE_CONSUMER
205 * or DL_FLAG_AUTOREMOVE_SUPPLIER set in @flags at the same time is invalid and
206 * will cause NULL to be returned upfront.
207 *
208 * A side effect of the link creation is re-ordering of dpm_list and the
209 * devices_kset list by moving the consumer device and all devices depending
210 * on it to the ends of these lists (that does not happen to devices that have
211 * not been registered when this function is called).
212 *
213 * The supplier device is required to be registered when this function is called
214 * and NULL will be returned if that is not the case. The consumer device need
215 * not be registered, however.
216 */
217struct device_link *device_link_add(struct device *consumer,
218 struct device *supplier, u32 flags)
219{
220 struct device_link *link;
221
222 if (!consumer || !supplier ||
223 (flags & DL_FLAG_STATELESS &&
224 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
225 DL_FLAG_AUTOREMOVE_SUPPLIER |
226 DL_FLAG_AUTOPROBE_CONSUMER)) ||
227 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
228 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
229 DL_FLAG_AUTOREMOVE_SUPPLIER)))
230 return NULL;
231
232 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
233 if (pm_runtime_get_sync(supplier) < 0) {
234 pm_runtime_put_noidle(supplier);
235 return NULL;
236 }
237 }
238
239 device_links_write_lock();
240 device_pm_lock();
241
242 /*
243 * If the supplier has not been fully registered yet or there is a
244 * reverse dependency between the consumer and the supplier already in
245 * the graph, return NULL.
246 */
247 if (!device_pm_initialized(supplier)
248 || device_is_dependent(consumer, supplier)) {
249 link = NULL;
250 goto out;
251 }
252
253 /*
254 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
255 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
256 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
257 */
258 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
259 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
260
261 list_for_each_entry(link, &supplier->links.consumers, s_node) {
262 if (link->consumer != consumer)
263 continue;
264
265 /*
266 * Don't return a stateless link if the caller wants a stateful
267 * one and vice versa.
268 */
269 if (WARN_ON((flags & DL_FLAG_STATELESS) != (link->flags & DL_FLAG_STATELESS))) {
270 link = NULL;
271 goto out;
272 }
273
274 if (flags & DL_FLAG_PM_RUNTIME) {
275 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
276 pm_runtime_new_link(consumer);
277 link->flags |= DL_FLAG_PM_RUNTIME;
278 }
279 if (flags & DL_FLAG_RPM_ACTIVE)
280 refcount_inc(&link->rpm_active);
281 }
282
283 if (flags & DL_FLAG_STATELESS) {
284 kref_get(&link->kref);
285 goto out;
286 }
287
288 /*
289 * If the life time of the link following from the new flags is
290 * longer than indicated by the flags of the existing link,
291 * update the existing link to stay around longer.
292 */
293 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
294 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
295 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
296 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
297 }
298 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
299 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
300 DL_FLAG_AUTOREMOVE_SUPPLIER);
301 }
302 goto out;
303 }
304
305 link = kzalloc(sizeof(*link), GFP_KERNEL);
306 if (!link)
307 goto out;
308
309 refcount_set(&link->rpm_active, 1);
310
311 if (flags & DL_FLAG_PM_RUNTIME) {
312 if (flags & DL_FLAG_RPM_ACTIVE)
313 refcount_inc(&link->rpm_active);
314
315 pm_runtime_new_link(consumer);
316 }
317
318 get_device(supplier);
319 link->supplier = supplier;
320 INIT_LIST_HEAD(&link->s_node);
321 get_device(consumer);
322 link->consumer = consumer;
323 INIT_LIST_HEAD(&link->c_node);
324 link->flags = flags;
325 kref_init(&link->kref);
326
327 /* Determine the initial link state. */
328 if (flags & DL_FLAG_STATELESS) {
329 link->status = DL_STATE_NONE;
330 } else {
331 switch (supplier->links.status) {
332 case DL_DEV_PROBING:
333 switch (consumer->links.status) {
334 case DL_DEV_PROBING:
335 /*
336 * A consumer driver can create a link to a
337 * supplier that has not completed its probing
338 * yet as long as it knows that the supplier is
339 * already functional (for example, it has just
340 * acquired some resources from the supplier).
341 */
342 link->status = DL_STATE_CONSUMER_PROBE;
343 break;
344 default:
345 link->status = DL_STATE_DORMANT;
346 break;
347 }
348 break;
349 case DL_DEV_DRIVER_BOUND:
350 switch (consumer->links.status) {
351 case DL_DEV_PROBING:
352 link->status = DL_STATE_CONSUMER_PROBE;
353 break;
354 case DL_DEV_DRIVER_BOUND:
355 link->status = DL_STATE_ACTIVE;
356 break;
357 default:
358 link->status = DL_STATE_AVAILABLE;
359 break;
360 }
361 break;
362 case DL_DEV_UNBINDING:
363 link->status = DL_STATE_SUPPLIER_UNBIND;
364 break;
365 default:
366 link->status = DL_STATE_DORMANT;
367 break;
368 }
369 }
370
371 /*
372 * Some callers expect the link creation during consumer driver probe to
373 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
374 */
375 if (link->status == DL_STATE_CONSUMER_PROBE &&
376 flags & DL_FLAG_PM_RUNTIME)
377 pm_runtime_resume(supplier);
378
379 /*
380 * Move the consumer and all of the devices depending on it to the end
381 * of dpm_list and the devices_kset list.
382 *
383 * It is necessary to hold dpm_list locked throughout all that or else
384 * we may end up suspending with a wrong ordering of it.
385 */
386 device_reorder_to_tail(consumer, NULL);
387
388 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
389 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
390
391 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
392
393 out:
394 device_pm_unlock();
395 device_links_write_unlock();
396
397 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
398 pm_runtime_put(supplier);
399
400 return link;
401}
402EXPORT_SYMBOL_GPL(device_link_add);
403
404static void device_link_free(struct device_link *link)
405{
406 while (refcount_dec_not_one(&link->rpm_active))
407 pm_runtime_put(link->supplier);
408
409 put_device(link->consumer);
410 put_device(link->supplier);
411 kfree(link);
412}
413
414#ifdef CONFIG_SRCU
415static void __device_link_free_srcu(struct rcu_head *rhead)
416{
417 device_link_free(container_of(rhead, struct device_link, rcu_head));
418}
419
420static void __device_link_del(struct kref *kref)
421{
422 struct device_link *link = container_of(kref, struct device_link, kref);
423
424 dev_dbg(link->consumer, "Dropping the link to %s\n",
425 dev_name(link->supplier));
426
427 if (link->flags & DL_FLAG_PM_RUNTIME)
428 pm_runtime_drop_link(link->consumer);
429
430 list_del_rcu(&link->s_node);
431 list_del_rcu(&link->c_node);
432 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
433}
434#else /* !CONFIG_SRCU */
435static void __device_link_del(struct kref *kref)
436{
437 struct device_link *link = container_of(kref, struct device_link, kref);
438
439 dev_info(link->consumer, "Dropping the link to %s\n",
440 dev_name(link->supplier));
441
442 if (link->flags & DL_FLAG_PM_RUNTIME)
443 pm_runtime_drop_link(link->consumer);
444
445 list_del(&link->s_node);
446 list_del(&link->c_node);
447 device_link_free(link);
448}
449#endif /* !CONFIG_SRCU */
450
451static void device_link_put_kref(struct device_link *link)
452{
453 if (link->flags & DL_FLAG_STATELESS)
454 kref_put(&link->kref, __device_link_del);
455 else
456 WARN(1, "Unable to drop a managed device link reference\n");
457}
458
459/**
460 * device_link_del - Delete a stateless link between two devices.
461 * @link: Device link to delete.
462 *
463 * The caller must ensure proper synchronization of this function with runtime
464 * PM. If the link was added multiple times, it needs to be deleted as often.
465 * Care is required for hotplugged devices: Their links are purged on removal
466 * and calling device_link_del() is then no longer allowed.
467 */
468void device_link_del(struct device_link *link)
469{
470 device_links_write_lock();
471 device_pm_lock();
472 device_link_put_kref(link);
473 device_pm_unlock();
474 device_links_write_unlock();
475}
476EXPORT_SYMBOL_GPL(device_link_del);
477
478/**
479 * device_link_remove - Delete a stateless link between two devices.
480 * @consumer: Consumer end of the link.
481 * @supplier: Supplier end of the link.
482 *
483 * The caller must ensure proper synchronization of this function with runtime
484 * PM.
485 */
486void device_link_remove(void *consumer, struct device *supplier)
487{
488 struct device_link *link;
489
490 if (WARN_ON(consumer == supplier))
491 return;
492
493 device_links_write_lock();
494 device_pm_lock();
495
496 list_for_each_entry(link, &supplier->links.consumers, s_node) {
497 if (link->consumer == consumer) {
498 device_link_put_kref(link);
499 break;
500 }
501 }
502
503 device_pm_unlock();
504 device_links_write_unlock();
505}
506EXPORT_SYMBOL_GPL(device_link_remove);
507
508static void device_links_missing_supplier(struct device *dev)
509{
510 struct device_link *link;
511
512 list_for_each_entry(link, &dev->links.suppliers, c_node)
513 if (link->status == DL_STATE_CONSUMER_PROBE)
514 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
515}
516
517/**
518 * device_links_check_suppliers - Check presence of supplier drivers.
519 * @dev: Consumer device.
520 *
521 * Check links from this device to any suppliers. Walk the list of the device's
522 * links to suppliers and see if all of them are available. If not, simply
523 * return -EPROBE_DEFER.
524 *
525 * We need to guarantee that the supplier will not go away after the check has
526 * been positive here. It only can go away in __device_release_driver() and
527 * that function checks the device's links to consumers. This means we need to
528 * mark the link as "consumer probe in progress" to make the supplier removal
529 * wait for us to complete (or bad things may happen).
530 *
531 * Links with the DL_FLAG_STATELESS flag set are ignored.
532 */
533int device_links_check_suppliers(struct device *dev)
534{
535 struct device_link *link;
536 int ret = 0;
537
538 device_links_write_lock();
539
540 list_for_each_entry(link, &dev->links.suppliers, c_node) {
541 if (link->flags & DL_FLAG_STATELESS)
542 continue;
543
544 if (link->status != DL_STATE_AVAILABLE) {
545 device_links_missing_supplier(dev);
546 ret = -EPROBE_DEFER;
547 break;
548 }
549 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
550 }
551 dev->links.status = DL_DEV_PROBING;
552
553 device_links_write_unlock();
554 return ret;
555}
556
557/**
558 * device_links_driver_bound - Update device links after probing its driver.
559 * @dev: Device to update the links for.
560 *
561 * The probe has been successful, so update links from this device to any
562 * consumers by changing their status to "available".
563 *
564 * Also change the status of @dev's links to suppliers to "active".
565 *
566 * Links with the DL_FLAG_STATELESS flag set are ignored.
567 */
568void device_links_driver_bound(struct device *dev)
569{
570 struct device_link *link;
571
572 device_links_write_lock();
573
574 list_for_each_entry(link, &dev->links.consumers, s_node) {
575 if (link->flags & DL_FLAG_STATELESS)
576 continue;
577
578 /*
579 * Links created during consumer probe may be in the "consumer
580 * probe" state to start with if the supplier is still probing
581 * when they are created and they may become "active" if the
582 * consumer probe returns first. Skip them here.
583 */
584 if (link->status == DL_STATE_CONSUMER_PROBE ||
585 link->status == DL_STATE_ACTIVE)
586 continue;
587
588 WARN_ON(link->status != DL_STATE_DORMANT);
589 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
590
591 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
592 driver_deferred_probe_add(link->consumer);
593 }
594
595 list_for_each_entry(link, &dev->links.suppliers, c_node) {
596 if (link->flags & DL_FLAG_STATELESS)
597 continue;
598
599 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
600 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
601 }
602
603 dev->links.status = DL_DEV_DRIVER_BOUND;
604
605 device_links_write_unlock();
606}
607
608/**
609 * __device_links_no_driver - Update links of a device without a driver.
610 * @dev: Device without a drvier.
611 *
612 * Delete all non-persistent links from this device to any suppliers.
613 *
614 * Persistent links stay around, but their status is changed to "available",
615 * unless they already are in the "supplier unbind in progress" state in which
616 * case they need not be updated.
617 *
618 * Links with the DL_FLAG_STATELESS flag set are ignored.
619 */
620static void __device_links_no_driver(struct device *dev)
621{
622 struct device_link *link, *ln;
623
624 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
625 if (link->flags & DL_FLAG_STATELESS)
626 continue;
627
628 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
629 __device_link_del(&link->kref);
630 else if (link->status == DL_STATE_CONSUMER_PROBE ||
631 link->status == DL_STATE_ACTIVE)
632 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
633 }
634
635 dev->links.status = DL_DEV_NO_DRIVER;
636}
637
638/**
639 * device_links_no_driver - Update links after failing driver probe.
640 * @dev: Device whose driver has just failed to probe.
641 *
642 * Clean up leftover links to consumers for @dev and invoke
643 * %__device_links_no_driver() to update links to suppliers for it as
644 * appropriate.
645 *
646 * Links with the DL_FLAG_STATELESS flag set are ignored.
647 */
648void device_links_no_driver(struct device *dev)
649{
650 struct device_link *link;
651
652 device_links_write_lock();
653
654 list_for_each_entry(link, &dev->links.consumers, s_node) {
655 if (link->flags & DL_FLAG_STATELESS)
656 continue;
657
658 /*
659 * The probe has failed, so if the status of the link is
660 * "consumer probe" or "active", it must have been added by
661 * a probing consumer while this device was still probing.
662 * Change its state to "dormant", as it represents a valid
663 * relationship, but it is not functionally meaningful.
664 */
665 if (link->status == DL_STATE_CONSUMER_PROBE ||
666 link->status == DL_STATE_ACTIVE)
667 WRITE_ONCE(link->status, DL_STATE_DORMANT);
668 }
669
670 __device_links_no_driver(dev);
671
672 device_links_write_unlock();
673}
674
675/**
676 * device_links_driver_cleanup - Update links after driver removal.
677 * @dev: Device whose driver has just gone away.
678 *
679 * Update links to consumers for @dev by changing their status to "dormant" and
680 * invoke %__device_links_no_driver() to update links to suppliers for it as
681 * appropriate.
682 *
683 * Links with the DL_FLAG_STATELESS flag set are ignored.
684 */
685void device_links_driver_cleanup(struct device *dev)
686{
687 struct device_link *link, *ln;
688
689 device_links_write_lock();
690
691 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
692 if (link->flags & DL_FLAG_STATELESS)
693 continue;
694
695 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
696 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
697
698 /*
699 * autoremove the links between this @dev and its consumer
700 * devices that are not active, i.e. where the link state
701 * has moved to DL_STATE_SUPPLIER_UNBIND.
702 */
703 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
704 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
705 __device_link_del(&link->kref);
706
707 WRITE_ONCE(link->status, DL_STATE_DORMANT);
708 }
709
710 __device_links_no_driver(dev);
711
712 device_links_write_unlock();
713}
714
715/**
716 * device_links_busy - Check if there are any busy links to consumers.
717 * @dev: Device to check.
718 *
719 * Check each consumer of the device and return 'true' if its link's status
720 * is one of "consumer probe" or "active" (meaning that the given consumer is
721 * probing right now or its driver is present). Otherwise, change the link
722 * state to "supplier unbind" to prevent the consumer from being probed
723 * successfully going forward.
724 *
725 * Return 'false' if there are no probing or active consumers.
726 *
727 * Links with the DL_FLAG_STATELESS flag set are ignored.
728 */
729bool device_links_busy(struct device *dev)
730{
731 struct device_link *link;
732 bool ret = false;
733
734 device_links_write_lock();
735
736 list_for_each_entry(link, &dev->links.consumers, s_node) {
737 if (link->flags & DL_FLAG_STATELESS)
738 continue;
739
740 if (link->status == DL_STATE_CONSUMER_PROBE
741 || link->status == DL_STATE_ACTIVE) {
742 ret = true;
743 break;
744 }
745 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
746 }
747
748 dev->links.status = DL_DEV_UNBINDING;
749
750 device_links_write_unlock();
751 return ret;
752}
753
754/**
755 * device_links_unbind_consumers - Force unbind consumers of the given device.
756 * @dev: Device to unbind the consumers of.
757 *
758 * Walk the list of links to consumers for @dev and if any of them is in the
759 * "consumer probe" state, wait for all device probes in progress to complete
760 * and start over.
761 *
762 * If that's not the case, change the status of the link to "supplier unbind"
763 * and check if the link was in the "active" state. If so, force the consumer
764 * driver to unbind and start over (the consumer will not re-probe as we have
765 * changed the state of the link already).
766 *
767 * Links with the DL_FLAG_STATELESS flag set are ignored.
768 */
769void device_links_unbind_consumers(struct device *dev)
770{
771 struct device_link *link;
772
773 start:
774 device_links_write_lock();
775
776 list_for_each_entry(link, &dev->links.consumers, s_node) {
777 enum device_link_state status;
778
779 if (link->flags & DL_FLAG_STATELESS)
780 continue;
781
782 status = link->status;
783 if (status == DL_STATE_CONSUMER_PROBE) {
784 device_links_write_unlock();
785
786 wait_for_device_probe();
787 goto start;
788 }
789 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
790 if (status == DL_STATE_ACTIVE) {
791 struct device *consumer = link->consumer;
792
793 get_device(consumer);
794
795 device_links_write_unlock();
796
797 device_release_driver_internal(consumer, NULL,
798 consumer->parent);
799 put_device(consumer);
800 goto start;
801 }
802 }
803
804 device_links_write_unlock();
805}
806
807/**
808 * device_links_purge - Delete existing links to other devices.
809 * @dev: Target device.
810 */
811static void device_links_purge(struct device *dev)
812{
813 struct device_link *link, *ln;
814
815 /*
816 * Delete all of the remaining links from this device to any other
817 * devices (either consumers or suppliers).
818 */
819 device_links_write_lock();
820
821 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
822 WARN_ON(link->status == DL_STATE_ACTIVE);
823 __device_link_del(&link->kref);
824 }
825
826 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
827 WARN_ON(link->status != DL_STATE_DORMANT &&
828 link->status != DL_STATE_NONE);
829 __device_link_del(&link->kref);
830 }
831
832 device_links_write_unlock();
833}
834
835/* Device links support end. */
836
837int (*platform_notify)(struct device *dev) = NULL;
838int (*platform_notify_remove)(struct device *dev) = NULL;
839static struct kobject *dev_kobj;
840struct kobject *sysfs_dev_char_kobj;
841struct kobject *sysfs_dev_block_kobj;
842
843static DEFINE_MUTEX(device_hotplug_lock);
844
845void lock_device_hotplug(void)
846{
847 mutex_lock(&device_hotplug_lock);
848}
849
850void unlock_device_hotplug(void)
851{
852 mutex_unlock(&device_hotplug_lock);
853}
854
855int lock_device_hotplug_sysfs(void)
856{
857 if (mutex_trylock(&device_hotplug_lock))
858 return 0;
859
860 /* Avoid busy looping (5 ms of sleep should do). */
861 msleep(5);
862 return restart_syscall();
863}
864
865#ifdef CONFIG_BLOCK
866static inline int device_is_not_partition(struct device *dev)
867{
868 return !(dev->type == &part_type);
869}
870#else
871static inline int device_is_not_partition(struct device *dev)
872{
873 return 1;
874}
875#endif
876
877static int
878device_platform_notify(struct device *dev, enum kobject_action action)
879{
880 int ret;
881
882 ret = acpi_platform_notify(dev, action);
883 if (ret)
884 return ret;
885
886 ret = software_node_notify(dev, action);
887 if (ret)
888 return ret;
889
890 if (platform_notify && action == KOBJ_ADD)
891 platform_notify(dev);
892 else if (platform_notify_remove && action == KOBJ_REMOVE)
893 platform_notify_remove(dev);
894 return 0;
895}
896
897/**
898 * dev_driver_string - Return a device's driver name, if at all possible
899 * @dev: struct device to get the name of
900 *
901 * Will return the device's driver's name if it is bound to a device. If
902 * the device is not bound to a driver, it will return the name of the bus
903 * it is attached to. If it is not attached to a bus either, an empty
904 * string will be returned.
905 */
906const char *dev_driver_string(const struct device *dev)
907{
908 struct device_driver *drv;
909
910 /* dev->driver can change to NULL underneath us because of unbinding,
911 * so be careful about accessing it. dev->bus and dev->class should
912 * never change once they are set, so they don't need special care.
913 */
914 drv = READ_ONCE(dev->driver);
915 return drv ? drv->name :
916 (dev->bus ? dev->bus->name :
917 (dev->class ? dev->class->name : ""));
918}
919EXPORT_SYMBOL(dev_driver_string);
920
921#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
922
923static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
924 char *buf)
925{
926 struct device_attribute *dev_attr = to_dev_attr(attr);
927 struct device *dev = kobj_to_dev(kobj);
928 ssize_t ret = -EIO;
929
930 if (dev_attr->show)
931 ret = dev_attr->show(dev, dev_attr, buf);
932 if (ret >= (ssize_t)PAGE_SIZE) {
933 printk("dev_attr_show: %pS returned bad count\n",
934 dev_attr->show);
935 }
936 return ret;
937}
938
939static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
940 const char *buf, size_t count)
941{
942 struct device_attribute *dev_attr = to_dev_attr(attr);
943 struct device *dev = kobj_to_dev(kobj);
944 ssize_t ret = -EIO;
945
946 if (dev_attr->store)
947 ret = dev_attr->store(dev, dev_attr, buf, count);
948 return ret;
949}
950
951static const struct sysfs_ops dev_sysfs_ops = {
952 .show = dev_attr_show,
953 .store = dev_attr_store,
954};
955
956#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
957
958ssize_t device_store_ulong(struct device *dev,
959 struct device_attribute *attr,
960 const char *buf, size_t size)
961{
962 struct dev_ext_attribute *ea = to_ext_attr(attr);
963 int ret;
964 unsigned long new;
965
966 ret = kstrtoul(buf, 0, &new);
967 if (ret)
968 return ret;
969 *(unsigned long *)(ea->var) = new;
970 /* Always return full write size even if we didn't consume all */
971 return size;
972}
973EXPORT_SYMBOL_GPL(device_store_ulong);
974
975ssize_t device_show_ulong(struct device *dev,
976 struct device_attribute *attr,
977 char *buf)
978{
979 struct dev_ext_attribute *ea = to_ext_attr(attr);
980 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
981}
982EXPORT_SYMBOL_GPL(device_show_ulong);
983
984ssize_t device_store_int(struct device *dev,
985 struct device_attribute *attr,
986 const char *buf, size_t size)
987{
988 struct dev_ext_attribute *ea = to_ext_attr(attr);
989 int ret;
990 long new;
991
992 ret = kstrtol(buf, 0, &new);
993 if (ret)
994 return ret;
995
996 if (new > INT_MAX || new < INT_MIN)
997 return -EINVAL;
998 *(int *)(ea->var) = new;
999 /* Always return full write size even if we didn't consume all */
1000 return size;
1001}
1002EXPORT_SYMBOL_GPL(device_store_int);
1003
1004ssize_t device_show_int(struct device *dev,
1005 struct device_attribute *attr,
1006 char *buf)
1007{
1008 struct dev_ext_attribute *ea = to_ext_attr(attr);
1009
1010 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1011}
1012EXPORT_SYMBOL_GPL(device_show_int);
1013
1014ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1015 const char *buf, size_t size)
1016{
1017 struct dev_ext_attribute *ea = to_ext_attr(attr);
1018
1019 if (strtobool(buf, ea->var) < 0)
1020 return -EINVAL;
1021
1022 return size;
1023}
1024EXPORT_SYMBOL_GPL(device_store_bool);
1025
1026ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1027 char *buf)
1028{
1029 struct dev_ext_attribute *ea = to_ext_attr(attr);
1030
1031 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1032}
1033EXPORT_SYMBOL_GPL(device_show_bool);
1034
1035/**
1036 * device_release - free device structure.
1037 * @kobj: device's kobject.
1038 *
1039 * This is called once the reference count for the object
1040 * reaches 0. We forward the call to the device's release
1041 * method, which should handle actually freeing the structure.
1042 */
1043static void device_release(struct kobject *kobj)
1044{
1045 struct device *dev = kobj_to_dev(kobj);
1046 struct device_private *p = dev->p;
1047
1048 /*
1049 * Some platform devices are driven without driver attached
1050 * and managed resources may have been acquired. Make sure
1051 * all resources are released.
1052 *
1053 * Drivers still can add resources into device after device
1054 * is deleted but alive, so release devres here to avoid
1055 * possible memory leak.
1056 */
1057 devres_release_all(dev);
1058
1059 if (dev->release)
1060 dev->release(dev);
1061 else if (dev->type && dev->type->release)
1062 dev->type->release(dev);
1063 else if (dev->class && dev->class->dev_release)
1064 dev->class->dev_release(dev);
1065 else
1066 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1067 dev_name(dev));
1068 kfree(p);
1069}
1070
1071static const void *device_namespace(struct kobject *kobj)
1072{
1073 struct device *dev = kobj_to_dev(kobj);
1074 const void *ns = NULL;
1075
1076 if (dev->class && dev->class->ns_type)
1077 ns = dev->class->namespace(dev);
1078
1079 return ns;
1080}
1081
1082static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1083{
1084 struct device *dev = kobj_to_dev(kobj);
1085
1086 if (dev->class && dev->class->get_ownership)
1087 dev->class->get_ownership(dev, uid, gid);
1088}
1089
1090static struct kobj_type device_ktype = {
1091 .release = device_release,
1092 .sysfs_ops = &dev_sysfs_ops,
1093 .namespace = device_namespace,
1094 .get_ownership = device_get_ownership,
1095};
1096
1097
1098static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1099{
1100 struct kobj_type *ktype = get_ktype(kobj);
1101
1102 if (ktype == &device_ktype) {
1103 struct device *dev = kobj_to_dev(kobj);
1104 if (dev->bus)
1105 return 1;
1106 if (dev->class)
1107 return 1;
1108 }
1109 return 0;
1110}
1111
1112static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1113{
1114 struct device *dev = kobj_to_dev(kobj);
1115
1116 if (dev->bus)
1117 return dev->bus->name;
1118 if (dev->class)
1119 return dev->class->name;
1120 return NULL;
1121}
1122
1123static int dev_uevent(struct kset *kset, struct kobject *kobj,
1124 struct kobj_uevent_env *env)
1125{
1126 struct device *dev = kobj_to_dev(kobj);
1127 int retval = 0;
1128
1129 /* add device node properties if present */
1130 if (MAJOR(dev->devt)) {
1131 const char *tmp;
1132 const char *name;
1133 umode_t mode = 0;
1134 kuid_t uid = GLOBAL_ROOT_UID;
1135 kgid_t gid = GLOBAL_ROOT_GID;
1136
1137 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1138 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1139 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1140 if (name) {
1141 add_uevent_var(env, "DEVNAME=%s", name);
1142 if (mode)
1143 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1144 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1145 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1146 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1147 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1148 kfree(tmp);
1149 }
1150 }
1151
1152 if (dev->type && dev->type->name)
1153 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1154
1155 if (dev->driver)
1156 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1157
1158 /* Add common DT information about the device */
1159 of_device_uevent(dev, env);
1160
1161 /* have the bus specific function add its stuff */
1162 if (dev->bus && dev->bus->uevent) {
1163 retval = dev->bus->uevent(dev, env);
1164 if (retval)
1165 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1166 dev_name(dev), __func__, retval);
1167 }
1168
1169 /* have the class specific function add its stuff */
1170 if (dev->class && dev->class->dev_uevent) {
1171 retval = dev->class->dev_uevent(dev, env);
1172 if (retval)
1173 pr_debug("device: '%s': %s: class uevent() "
1174 "returned %d\n", dev_name(dev),
1175 __func__, retval);
1176 }
1177
1178 /* have the device type specific function add its stuff */
1179 if (dev->type && dev->type->uevent) {
1180 retval = dev->type->uevent(dev, env);
1181 if (retval)
1182 pr_debug("device: '%s': %s: dev_type uevent() "
1183 "returned %d\n", dev_name(dev),
1184 __func__, retval);
1185 }
1186
1187 return retval;
1188}
1189
1190static const struct kset_uevent_ops device_uevent_ops = {
1191 .filter = dev_uevent_filter,
1192 .name = dev_uevent_name,
1193 .uevent = dev_uevent,
1194};
1195
1196static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1197 char *buf)
1198{
1199 struct kobject *top_kobj;
1200 struct kset *kset;
1201 struct kobj_uevent_env *env = NULL;
1202 int i;
1203 size_t count = 0;
1204 int retval;
1205
1206 /* search the kset, the device belongs to */
1207 top_kobj = &dev->kobj;
1208 while (!top_kobj->kset && top_kobj->parent)
1209 top_kobj = top_kobj->parent;
1210 if (!top_kobj->kset)
1211 goto out;
1212
1213 kset = top_kobj->kset;
1214 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1215 goto out;
1216
1217 /* respect filter */
1218 if (kset->uevent_ops && kset->uevent_ops->filter)
1219 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1220 goto out;
1221
1222 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1223 if (!env)
1224 return -ENOMEM;
1225
1226 /* let the kset specific function add its keys */
1227 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1228 if (retval)
1229 goto out;
1230
1231 /* copy keys to file */
1232 for (i = 0; i < env->envp_idx; i++)
1233 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1234out:
1235 kfree(env);
1236 return count;
1237}
1238
1239static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1240 const char *buf, size_t count)
1241{
1242 int rc;
1243
1244 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1245
1246 if (rc) {
1247 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1248 return rc;
1249 }
1250
1251 return count;
1252}
1253static DEVICE_ATTR_RW(uevent);
1254
1255static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1256 char *buf)
1257{
1258 bool val;
1259
1260 device_lock(dev);
1261 val = !dev->offline;
1262 device_unlock(dev);
1263 return sprintf(buf, "%u\n", val);
1264}
1265
1266static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1267 const char *buf, size_t count)
1268{
1269 bool val;
1270 int ret;
1271
1272 ret = strtobool(buf, &val);
1273 if (ret < 0)
1274 return ret;
1275
1276 ret = lock_device_hotplug_sysfs();
1277 if (ret)
1278 return ret;
1279
1280 ret = val ? device_online(dev) : device_offline(dev);
1281 unlock_device_hotplug();
1282 return ret < 0 ? ret : count;
1283}
1284static DEVICE_ATTR_RW(online);
1285
1286int device_add_groups(struct device *dev, const struct attribute_group **groups)
1287{
1288 return sysfs_create_groups(&dev->kobj, groups);
1289}
1290EXPORT_SYMBOL_GPL(device_add_groups);
1291
1292void device_remove_groups(struct device *dev,
1293 const struct attribute_group **groups)
1294{
1295 sysfs_remove_groups(&dev->kobj, groups);
1296}
1297EXPORT_SYMBOL_GPL(device_remove_groups);
1298
1299union device_attr_group_devres {
1300 const struct attribute_group *group;
1301 const struct attribute_group **groups;
1302};
1303
1304static int devm_attr_group_match(struct device *dev, void *res, void *data)
1305{
1306 return ((union device_attr_group_devres *)res)->group == data;
1307}
1308
1309static void devm_attr_group_remove(struct device *dev, void *res)
1310{
1311 union device_attr_group_devres *devres = res;
1312 const struct attribute_group *group = devres->group;
1313
1314 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1315 sysfs_remove_group(&dev->kobj, group);
1316}
1317
1318static void devm_attr_groups_remove(struct device *dev, void *res)
1319{
1320 union device_attr_group_devres *devres = res;
1321 const struct attribute_group **groups = devres->groups;
1322
1323 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1324 sysfs_remove_groups(&dev->kobj, groups);
1325}
1326
1327/**
1328 * devm_device_add_group - given a device, create a managed attribute group
1329 * @dev: The device to create the group for
1330 * @grp: The attribute group to create
1331 *
1332 * This function creates a group for the first time. It will explicitly
1333 * warn and error if any of the attribute files being created already exist.
1334 *
1335 * Returns 0 on success or error code on failure.
1336 */
1337int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1338{
1339 union device_attr_group_devres *devres;
1340 int error;
1341
1342 devres = devres_alloc(devm_attr_group_remove,
1343 sizeof(*devres), GFP_KERNEL);
1344 if (!devres)
1345 return -ENOMEM;
1346
1347 error = sysfs_create_group(&dev->kobj, grp);
1348 if (error) {
1349 devres_free(devres);
1350 return error;
1351 }
1352
1353 devres->group = grp;
1354 devres_add(dev, devres);
1355 return 0;
1356}
1357EXPORT_SYMBOL_GPL(devm_device_add_group);
1358
1359/**
1360 * devm_device_remove_group: remove a managed group from a device
1361 * @dev: device to remove the group from
1362 * @grp: group to remove
1363 *
1364 * This function removes a group of attributes from a device. The attributes
1365 * previously have to have been created for this group, otherwise it will fail.
1366 */
1367void devm_device_remove_group(struct device *dev,
1368 const struct attribute_group *grp)
1369{
1370 WARN_ON(devres_release(dev, devm_attr_group_remove,
1371 devm_attr_group_match,
1372 /* cast away const */ (void *)grp));
1373}
1374EXPORT_SYMBOL_GPL(devm_device_remove_group);
1375
1376/**
1377 * devm_device_add_groups - create a bunch of managed attribute groups
1378 * @dev: The device to create the group for
1379 * @groups: The attribute groups to create, NULL terminated
1380 *
1381 * This function creates a bunch of managed attribute groups. If an error
1382 * occurs when creating a group, all previously created groups will be
1383 * removed, unwinding everything back to the original state when this
1384 * function was called. It will explicitly warn and error if any of the
1385 * attribute files being created already exist.
1386 *
1387 * Returns 0 on success or error code from sysfs_create_group on failure.
1388 */
1389int devm_device_add_groups(struct device *dev,
1390 const struct attribute_group **groups)
1391{
1392 union device_attr_group_devres *devres;
1393 int error;
1394
1395 devres = devres_alloc(devm_attr_groups_remove,
1396 sizeof(*devres), GFP_KERNEL);
1397 if (!devres)
1398 return -ENOMEM;
1399
1400 error = sysfs_create_groups(&dev->kobj, groups);
1401 if (error) {
1402 devres_free(devres);
1403 return error;
1404 }
1405
1406 devres->groups = groups;
1407 devres_add(dev, devres);
1408 return 0;
1409}
1410EXPORT_SYMBOL_GPL(devm_device_add_groups);
1411
1412/**
1413 * devm_device_remove_groups - remove a list of managed groups
1414 *
1415 * @dev: The device for the groups to be removed from
1416 * @groups: NULL terminated list of groups to be removed
1417 *
1418 * If groups is not NULL, remove the specified groups from the device.
1419 */
1420void devm_device_remove_groups(struct device *dev,
1421 const struct attribute_group **groups)
1422{
1423 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1424 devm_attr_group_match,
1425 /* cast away const */ (void *)groups));
1426}
1427EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1428
1429static int device_add_attrs(struct device *dev)
1430{
1431 struct class *class = dev->class;
1432 const struct device_type *type = dev->type;
1433 int error;
1434
1435 if (class) {
1436 error = device_add_groups(dev, class->dev_groups);
1437 if (error)
1438 return error;
1439 }
1440
1441 if (type) {
1442 error = device_add_groups(dev, type->groups);
1443 if (error)
1444 goto err_remove_class_groups;
1445 }
1446
1447 error = device_add_groups(dev, dev->groups);
1448 if (error)
1449 goto err_remove_type_groups;
1450
1451 if (device_supports_offline(dev) && !dev->offline_disabled) {
1452 error = device_create_file(dev, &dev_attr_online);
1453 if (error)
1454 goto err_remove_dev_groups;
1455 }
1456
1457 return 0;
1458
1459 err_remove_dev_groups:
1460 device_remove_groups(dev, dev->groups);
1461 err_remove_type_groups:
1462 if (type)
1463 device_remove_groups(dev, type->groups);
1464 err_remove_class_groups:
1465 if (class)
1466 device_remove_groups(dev, class->dev_groups);
1467
1468 return error;
1469}
1470
1471static void device_remove_attrs(struct device *dev)
1472{
1473 struct class *class = dev->class;
1474 const struct device_type *type = dev->type;
1475
1476 device_remove_file(dev, &dev_attr_online);
1477 device_remove_groups(dev, dev->groups);
1478
1479 if (type)
1480 device_remove_groups(dev, type->groups);
1481
1482 if (class)
1483 device_remove_groups(dev, class->dev_groups);
1484}
1485
1486static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1487 char *buf)
1488{
1489 return print_dev_t(buf, dev->devt);
1490}
1491static DEVICE_ATTR_RO(dev);
1492
1493/* /sys/devices/ */
1494struct kset *devices_kset;
1495
1496/**
1497 * devices_kset_move_before - Move device in the devices_kset's list.
1498 * @deva: Device to move.
1499 * @devb: Device @deva should come before.
1500 */
1501static void devices_kset_move_before(struct device *deva, struct device *devb)
1502{
1503 if (!devices_kset)
1504 return;
1505 pr_debug("devices_kset: Moving %s before %s\n",
1506 dev_name(deva), dev_name(devb));
1507 spin_lock(&devices_kset->list_lock);
1508 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1509 spin_unlock(&devices_kset->list_lock);
1510}
1511
1512/**
1513 * devices_kset_move_after - Move device in the devices_kset's list.
1514 * @deva: Device to move
1515 * @devb: Device @deva should come after.
1516 */
1517static void devices_kset_move_after(struct device *deva, struct device *devb)
1518{
1519 if (!devices_kset)
1520 return;
1521 pr_debug("devices_kset: Moving %s after %s\n",
1522 dev_name(deva), dev_name(devb));
1523 spin_lock(&devices_kset->list_lock);
1524 list_move(&deva->kobj.entry, &devb->kobj.entry);
1525 spin_unlock(&devices_kset->list_lock);
1526}
1527
1528/**
1529 * devices_kset_move_last - move the device to the end of devices_kset's list.
1530 * @dev: device to move
1531 */
1532void devices_kset_move_last(struct device *dev)
1533{
1534 if (!devices_kset)
1535 return;
1536 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1537 spin_lock(&devices_kset->list_lock);
1538 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1539 spin_unlock(&devices_kset->list_lock);
1540}
1541
1542/**
1543 * device_create_file - create sysfs attribute file for device.
1544 * @dev: device.
1545 * @attr: device attribute descriptor.
1546 */
1547int device_create_file(struct device *dev,
1548 const struct device_attribute *attr)
1549{
1550 int error = 0;
1551
1552 if (dev) {
1553 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1554 "Attribute %s: write permission without 'store'\n",
1555 attr->attr.name);
1556 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1557 "Attribute %s: read permission without 'show'\n",
1558 attr->attr.name);
1559 error = sysfs_create_file(&dev->kobj, &attr->attr);
1560 }
1561
1562 return error;
1563}
1564EXPORT_SYMBOL_GPL(device_create_file);
1565
1566/**
1567 * device_remove_file - remove sysfs attribute file.
1568 * @dev: device.
1569 * @attr: device attribute descriptor.
1570 */
1571void device_remove_file(struct device *dev,
1572 const struct device_attribute *attr)
1573{
1574 if (dev)
1575 sysfs_remove_file(&dev->kobj, &attr->attr);
1576}
1577EXPORT_SYMBOL_GPL(device_remove_file);
1578
1579/**
1580 * device_remove_file_self - remove sysfs attribute file from its own method.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 *
1584 * See kernfs_remove_self() for details.
1585 */
1586bool device_remove_file_self(struct device *dev,
1587 const struct device_attribute *attr)
1588{
1589 if (dev)
1590 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1591 else
1592 return false;
1593}
1594EXPORT_SYMBOL_GPL(device_remove_file_self);
1595
1596/**
1597 * device_create_bin_file - create sysfs binary attribute file for device.
1598 * @dev: device.
1599 * @attr: device binary attribute descriptor.
1600 */
1601int device_create_bin_file(struct device *dev,
1602 const struct bin_attribute *attr)
1603{
1604 int error = -EINVAL;
1605 if (dev)
1606 error = sysfs_create_bin_file(&dev->kobj, attr);
1607 return error;
1608}
1609EXPORT_SYMBOL_GPL(device_create_bin_file);
1610
1611/**
1612 * device_remove_bin_file - remove sysfs binary attribute file
1613 * @dev: device.
1614 * @attr: device binary attribute descriptor.
1615 */
1616void device_remove_bin_file(struct device *dev,
1617 const struct bin_attribute *attr)
1618{
1619 if (dev)
1620 sysfs_remove_bin_file(&dev->kobj, attr);
1621}
1622EXPORT_SYMBOL_GPL(device_remove_bin_file);
1623
1624static void klist_children_get(struct klist_node *n)
1625{
1626 struct device_private *p = to_device_private_parent(n);
1627 struct device *dev = p->device;
1628
1629 get_device(dev);
1630}
1631
1632static void klist_children_put(struct klist_node *n)
1633{
1634 struct device_private *p = to_device_private_parent(n);
1635 struct device *dev = p->device;
1636
1637 put_device(dev);
1638}
1639
1640/**
1641 * device_initialize - init device structure.
1642 * @dev: device.
1643 *
1644 * This prepares the device for use by other layers by initializing
1645 * its fields.
1646 * It is the first half of device_register(), if called by
1647 * that function, though it can also be called separately, so one
1648 * may use @dev's fields. In particular, get_device()/put_device()
1649 * may be used for reference counting of @dev after calling this
1650 * function.
1651 *
1652 * All fields in @dev must be initialized by the caller to 0, except
1653 * for those explicitly set to some other value. The simplest
1654 * approach is to use kzalloc() to allocate the structure containing
1655 * @dev.
1656 *
1657 * NOTE: Use put_device() to give up your reference instead of freeing
1658 * @dev directly once you have called this function.
1659 */
1660void device_initialize(struct device *dev)
1661{
1662 dev->kobj.kset = devices_kset;
1663 kobject_init(&dev->kobj, &device_ktype);
1664 INIT_LIST_HEAD(&dev->dma_pools);
1665 mutex_init(&dev->mutex);
1666 lockdep_set_novalidate_class(&dev->mutex);
1667 spin_lock_init(&dev->devres_lock);
1668 INIT_LIST_HEAD(&dev->devres_head);
1669 device_pm_init(dev);
1670 set_dev_node(dev, -1);
1671#ifdef CONFIG_GENERIC_MSI_IRQ
1672 INIT_LIST_HEAD(&dev->msi_list);
1673#endif
1674 INIT_LIST_HEAD(&dev->links.consumers);
1675 INIT_LIST_HEAD(&dev->links.suppliers);
1676 dev->links.status = DL_DEV_NO_DRIVER;
1677}
1678EXPORT_SYMBOL_GPL(device_initialize);
1679
1680struct kobject *virtual_device_parent(struct device *dev)
1681{
1682 static struct kobject *virtual_dir = NULL;
1683
1684 if (!virtual_dir)
1685 virtual_dir = kobject_create_and_add("virtual",
1686 &devices_kset->kobj);
1687
1688 return virtual_dir;
1689}
1690
1691struct class_dir {
1692 struct kobject kobj;
1693 struct class *class;
1694};
1695
1696#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1697
1698static void class_dir_release(struct kobject *kobj)
1699{
1700 struct class_dir *dir = to_class_dir(kobj);
1701 kfree(dir);
1702}
1703
1704static const
1705struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1706{
1707 struct class_dir *dir = to_class_dir(kobj);
1708 return dir->class->ns_type;
1709}
1710
1711static struct kobj_type class_dir_ktype = {
1712 .release = class_dir_release,
1713 .sysfs_ops = &kobj_sysfs_ops,
1714 .child_ns_type = class_dir_child_ns_type
1715};
1716
1717static struct kobject *
1718class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1719{
1720 struct class_dir *dir;
1721 int retval;
1722
1723 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1724 if (!dir)
1725 return ERR_PTR(-ENOMEM);
1726
1727 dir->class = class;
1728 kobject_init(&dir->kobj, &class_dir_ktype);
1729
1730 dir->kobj.kset = &class->p->glue_dirs;
1731
1732 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1733 if (retval < 0) {
1734 kobject_put(&dir->kobj);
1735 return ERR_PTR(retval);
1736 }
1737 return &dir->kobj;
1738}
1739
1740static DEFINE_MUTEX(gdp_mutex);
1741
1742static struct kobject *get_device_parent(struct device *dev,
1743 struct device *parent)
1744{
1745 if (dev->class) {
1746 struct kobject *kobj = NULL;
1747 struct kobject *parent_kobj;
1748 struct kobject *k;
1749
1750#ifdef CONFIG_BLOCK
1751 /* block disks show up in /sys/block */
1752 if (sysfs_deprecated && dev->class == &block_class) {
1753 if (parent && parent->class == &block_class)
1754 return &parent->kobj;
1755 return &block_class.p->subsys.kobj;
1756 }
1757#endif
1758
1759 /*
1760 * If we have no parent, we live in "virtual".
1761 * Class-devices with a non class-device as parent, live
1762 * in a "glue" directory to prevent namespace collisions.
1763 */
1764 if (parent == NULL)
1765 parent_kobj = virtual_device_parent(dev);
1766 else if (parent->class && !dev->class->ns_type)
1767 return &parent->kobj;
1768 else
1769 parent_kobj = &parent->kobj;
1770
1771 mutex_lock(&gdp_mutex);
1772
1773 /* find our class-directory at the parent and reference it */
1774 spin_lock(&dev->class->p->glue_dirs.list_lock);
1775 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1776 if (k->parent == parent_kobj) {
1777 kobj = kobject_get(k);
1778 break;
1779 }
1780 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1781 if (kobj) {
1782 mutex_unlock(&gdp_mutex);
1783 return kobj;
1784 }
1785
1786 /* or create a new class-directory at the parent device */
1787 k = class_dir_create_and_add(dev->class, parent_kobj);
1788 /* do not emit an uevent for this simple "glue" directory */
1789 mutex_unlock(&gdp_mutex);
1790 return k;
1791 }
1792
1793 /* subsystems can specify a default root directory for their devices */
1794 if (!parent && dev->bus && dev->bus->dev_root)
1795 return &dev->bus->dev_root->kobj;
1796
1797 if (parent)
1798 return &parent->kobj;
1799 return NULL;
1800}
1801
1802static inline bool live_in_glue_dir(struct kobject *kobj,
1803 struct device *dev)
1804{
1805 if (!kobj || !dev->class ||
1806 kobj->kset != &dev->class->p->glue_dirs)
1807 return false;
1808 return true;
1809}
1810
1811static inline struct kobject *get_glue_dir(struct device *dev)
1812{
1813 return dev->kobj.parent;
1814}
1815
1816/*
1817 * make sure cleaning up dir as the last step, we need to make
1818 * sure .release handler of kobject is run with holding the
1819 * global lock
1820 */
1821static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1822{
1823 /* see if we live in a "glue" directory */
1824 if (!live_in_glue_dir(glue_dir, dev))
1825 return;
1826
1827 mutex_lock(&gdp_mutex);
1828 if (!kobject_has_children(glue_dir))
1829 kobject_del(glue_dir);
1830 kobject_put(glue_dir);
1831 mutex_unlock(&gdp_mutex);
1832}
1833
1834static int device_add_class_symlinks(struct device *dev)
1835{
1836 struct device_node *of_node = dev_of_node(dev);
1837 int error;
1838
1839 if (of_node) {
1840 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1841 if (error)
1842 dev_warn(dev, "Error %d creating of_node link\n",error);
1843 /* An error here doesn't warrant bringing down the device */
1844 }
1845
1846 if (!dev->class)
1847 return 0;
1848
1849 error = sysfs_create_link(&dev->kobj,
1850 &dev->class->p->subsys.kobj,
1851 "subsystem");
1852 if (error)
1853 goto out_devnode;
1854
1855 if (dev->parent && device_is_not_partition(dev)) {
1856 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1857 "device");
1858 if (error)
1859 goto out_subsys;
1860 }
1861
1862#ifdef CONFIG_BLOCK
1863 /* /sys/block has directories and does not need symlinks */
1864 if (sysfs_deprecated && dev->class == &block_class)
1865 return 0;
1866#endif
1867
1868 /* link in the class directory pointing to the device */
1869 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1870 &dev->kobj, dev_name(dev));
1871 if (error)
1872 goto out_device;
1873
1874 return 0;
1875
1876out_device:
1877 sysfs_remove_link(&dev->kobj, "device");
1878
1879out_subsys:
1880 sysfs_remove_link(&dev->kobj, "subsystem");
1881out_devnode:
1882 sysfs_remove_link(&dev->kobj, "of_node");
1883 return error;
1884}
1885
1886static void device_remove_class_symlinks(struct device *dev)
1887{
1888 if (dev_of_node(dev))
1889 sysfs_remove_link(&dev->kobj, "of_node");
1890
1891 if (!dev->class)
1892 return;
1893
1894 if (dev->parent && device_is_not_partition(dev))
1895 sysfs_remove_link(&dev->kobj, "device");
1896 sysfs_remove_link(&dev->kobj, "subsystem");
1897#ifdef CONFIG_BLOCK
1898 if (sysfs_deprecated && dev->class == &block_class)
1899 return;
1900#endif
1901 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1902}
1903
1904/**
1905 * dev_set_name - set a device name
1906 * @dev: device
1907 * @fmt: format string for the device's name
1908 */
1909int dev_set_name(struct device *dev, const char *fmt, ...)
1910{
1911 va_list vargs;
1912 int err;
1913
1914 va_start(vargs, fmt);
1915 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1916 va_end(vargs);
1917 return err;
1918}
1919EXPORT_SYMBOL_GPL(dev_set_name);
1920
1921/**
1922 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1923 * @dev: device
1924 *
1925 * By default we select char/ for new entries. Setting class->dev_obj
1926 * to NULL prevents an entry from being created. class->dev_kobj must
1927 * be set (or cleared) before any devices are registered to the class
1928 * otherwise device_create_sys_dev_entry() and
1929 * device_remove_sys_dev_entry() will disagree about the presence of
1930 * the link.
1931 */
1932static struct kobject *device_to_dev_kobj(struct device *dev)
1933{
1934 struct kobject *kobj;
1935
1936 if (dev->class)
1937 kobj = dev->class->dev_kobj;
1938 else
1939 kobj = sysfs_dev_char_kobj;
1940
1941 return kobj;
1942}
1943
1944static int device_create_sys_dev_entry(struct device *dev)
1945{
1946 struct kobject *kobj = device_to_dev_kobj(dev);
1947 int error = 0;
1948 char devt_str[15];
1949
1950 if (kobj) {
1951 format_dev_t(devt_str, dev->devt);
1952 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1953 }
1954
1955 return error;
1956}
1957
1958static void device_remove_sys_dev_entry(struct device *dev)
1959{
1960 struct kobject *kobj = device_to_dev_kobj(dev);
1961 char devt_str[15];
1962
1963 if (kobj) {
1964 format_dev_t(devt_str, dev->devt);
1965 sysfs_remove_link(kobj, devt_str);
1966 }
1967}
1968
1969static int device_private_init(struct device *dev)
1970{
1971 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1972 if (!dev->p)
1973 return -ENOMEM;
1974 dev->p->device = dev;
1975 klist_init(&dev->p->klist_children, klist_children_get,
1976 klist_children_put);
1977 INIT_LIST_HEAD(&dev->p->deferred_probe);
1978 return 0;
1979}
1980
1981/**
1982 * device_add - add device to device hierarchy.
1983 * @dev: device.
1984 *
1985 * This is part 2 of device_register(), though may be called
1986 * separately _iff_ device_initialize() has been called separately.
1987 *
1988 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1989 * to the global and sibling lists for the device, then
1990 * adds it to the other relevant subsystems of the driver model.
1991 *
1992 * Do not call this routine or device_register() more than once for
1993 * any device structure. The driver model core is not designed to work
1994 * with devices that get unregistered and then spring back to life.
1995 * (Among other things, it's very hard to guarantee that all references
1996 * to the previous incarnation of @dev have been dropped.) Allocate
1997 * and register a fresh new struct device instead.
1998 *
1999 * NOTE: _Never_ directly free @dev after calling this function, even
2000 * if it returned an error! Always use put_device() to give up your
2001 * reference instead.
2002 *
2003 * Rule of thumb is: if device_add() succeeds, you should call
2004 * device_del() when you want to get rid of it. If device_add() has
2005 * *not* succeeded, use *only* put_device() to drop the reference
2006 * count.
2007 */
2008int device_add(struct device *dev)
2009{
2010 struct device *parent;
2011 struct kobject *kobj;
2012 struct class_interface *class_intf;
2013 int error = -EINVAL;
2014 struct kobject *glue_dir = NULL;
2015
2016 dev = get_device(dev);
2017 if (!dev)
2018 goto done;
2019
2020 if (!dev->p) {
2021 error = device_private_init(dev);
2022 if (error)
2023 goto done;
2024 }
2025
2026 /*
2027 * for statically allocated devices, which should all be converted
2028 * some day, we need to initialize the name. We prevent reading back
2029 * the name, and force the use of dev_name()
2030 */
2031 if (dev->init_name) {
2032 dev_set_name(dev, "%s", dev->init_name);
2033 dev->init_name = NULL;
2034 }
2035
2036 /* subsystems can specify simple device enumeration */
2037 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2038 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2039
2040 if (!dev_name(dev)) {
2041 error = -EINVAL;
2042 goto name_error;
2043 }
2044
2045 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2046
2047 parent = get_device(dev->parent);
2048 kobj = get_device_parent(dev, parent);
2049 if (IS_ERR(kobj)) {
2050 error = PTR_ERR(kobj);
2051 goto parent_error;
2052 }
2053 if (kobj)
2054 dev->kobj.parent = kobj;
2055
2056 /* use parent numa_node */
2057 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2058 set_dev_node(dev, dev_to_node(parent));
2059
2060 /* first, register with generic layer. */
2061 /* we require the name to be set before, and pass NULL */
2062 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2063 if (error) {
2064 glue_dir = get_glue_dir(dev);
2065 goto Error;
2066 }
2067
2068 /* notify platform of device entry */
2069 error = device_platform_notify(dev, KOBJ_ADD);
2070 if (error)
2071 goto platform_error;
2072
2073 error = device_create_file(dev, &dev_attr_uevent);
2074 if (error)
2075 goto attrError;
2076
2077 error = device_add_class_symlinks(dev);
2078 if (error)
2079 goto SymlinkError;
2080 error = device_add_attrs(dev);
2081 if (error)
2082 goto AttrsError;
2083 error = bus_add_device(dev);
2084 if (error)
2085 goto BusError;
2086 error = dpm_sysfs_add(dev);
2087 if (error)
2088 goto DPMError;
2089 device_pm_add(dev);
2090
2091 if (MAJOR(dev->devt)) {
2092 error = device_create_file(dev, &dev_attr_dev);
2093 if (error)
2094 goto DevAttrError;
2095
2096 error = device_create_sys_dev_entry(dev);
2097 if (error)
2098 goto SysEntryError;
2099
2100 devtmpfs_create_node(dev);
2101 }
2102
2103 /* Notify clients of device addition. This call must come
2104 * after dpm_sysfs_add() and before kobject_uevent().
2105 */
2106 if (dev->bus)
2107 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2108 BUS_NOTIFY_ADD_DEVICE, dev);
2109
2110 kobject_uevent(&dev->kobj, KOBJ_ADD);
2111 bus_probe_device(dev);
2112 if (parent)
2113 klist_add_tail(&dev->p->knode_parent,
2114 &parent->p->klist_children);
2115
2116 if (dev->class) {
2117 mutex_lock(&dev->class->p->mutex);
2118 /* tie the class to the device */
2119 klist_add_tail(&dev->p->knode_class,
2120 &dev->class->p->klist_devices);
2121
2122 /* notify any interfaces that the device is here */
2123 list_for_each_entry(class_intf,
2124 &dev->class->p->interfaces, node)
2125 if (class_intf->add_dev)
2126 class_intf->add_dev(dev, class_intf);
2127 mutex_unlock(&dev->class->p->mutex);
2128 }
2129done:
2130 put_device(dev);
2131 return error;
2132 SysEntryError:
2133 if (MAJOR(dev->devt))
2134 device_remove_file(dev, &dev_attr_dev);
2135 DevAttrError:
2136 device_pm_remove(dev);
2137 dpm_sysfs_remove(dev);
2138 DPMError:
2139 bus_remove_device(dev);
2140 BusError:
2141 device_remove_attrs(dev);
2142 AttrsError:
2143 device_remove_class_symlinks(dev);
2144 SymlinkError:
2145 device_remove_file(dev, &dev_attr_uevent);
2146 attrError:
2147 device_platform_notify(dev, KOBJ_REMOVE);
2148platform_error:
2149 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2150 glue_dir = get_glue_dir(dev);
2151 kobject_del(&dev->kobj);
2152 Error:
2153 cleanup_glue_dir(dev, glue_dir);
2154parent_error:
2155 put_device(parent);
2156name_error:
2157 kfree(dev->p);
2158 dev->p = NULL;
2159 goto done;
2160}
2161EXPORT_SYMBOL_GPL(device_add);
2162
2163/**
2164 * device_register - register a device with the system.
2165 * @dev: pointer to the device structure
2166 *
2167 * This happens in two clean steps - initialize the device
2168 * and add it to the system. The two steps can be called
2169 * separately, but this is the easiest and most common.
2170 * I.e. you should only call the two helpers separately if
2171 * have a clearly defined need to use and refcount the device
2172 * before it is added to the hierarchy.
2173 *
2174 * For more information, see the kerneldoc for device_initialize()
2175 * and device_add().
2176 *
2177 * NOTE: _Never_ directly free @dev after calling this function, even
2178 * if it returned an error! Always use put_device() to give up the
2179 * reference initialized in this function instead.
2180 */
2181int device_register(struct device *dev)
2182{
2183 device_initialize(dev);
2184 return device_add(dev);
2185}
2186EXPORT_SYMBOL_GPL(device_register);
2187
2188/**
2189 * get_device - increment reference count for device.
2190 * @dev: device.
2191 *
2192 * This simply forwards the call to kobject_get(), though
2193 * we do take care to provide for the case that we get a NULL
2194 * pointer passed in.
2195 */
2196struct device *get_device(struct device *dev)
2197{
2198 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2199}
2200EXPORT_SYMBOL_GPL(get_device);
2201
2202/**
2203 * put_device - decrement reference count.
2204 * @dev: device in question.
2205 */
2206void put_device(struct device *dev)
2207{
2208 /* might_sleep(); */
2209 if (dev)
2210 kobject_put(&dev->kobj);
2211}
2212EXPORT_SYMBOL_GPL(put_device);
2213
2214/**
2215 * device_del - delete device from system.
2216 * @dev: device.
2217 *
2218 * This is the first part of the device unregistration
2219 * sequence. This removes the device from the lists we control
2220 * from here, has it removed from the other driver model
2221 * subsystems it was added to in device_add(), and removes it
2222 * from the kobject hierarchy.
2223 *
2224 * NOTE: this should be called manually _iff_ device_add() was
2225 * also called manually.
2226 */
2227void device_del(struct device *dev)
2228{
2229 struct device *parent = dev->parent;
2230 struct kobject *glue_dir = NULL;
2231 struct class_interface *class_intf;
2232
2233 /*
2234 * Hold the device lock and set the "dead" flag to guarantee that
2235 * the update behavior is consistent with the other bitfields near
2236 * it and that we cannot have an asynchronous probe routine trying
2237 * to run while we are tearing out the bus/class/sysfs from
2238 * underneath the device.
2239 */
2240 device_lock(dev);
2241 dev->p->dead = true;
2242 device_unlock(dev);
2243
2244 /* Notify clients of device removal. This call must come
2245 * before dpm_sysfs_remove().
2246 */
2247 if (dev->bus)
2248 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2249 BUS_NOTIFY_DEL_DEVICE, dev);
2250
2251 dpm_sysfs_remove(dev);
2252 if (parent)
2253 klist_del(&dev->p->knode_parent);
2254 if (MAJOR(dev->devt)) {
2255 devtmpfs_delete_node(dev);
2256 device_remove_sys_dev_entry(dev);
2257 device_remove_file(dev, &dev_attr_dev);
2258 }
2259 if (dev->class) {
2260 device_remove_class_symlinks(dev);
2261
2262 mutex_lock(&dev->class->p->mutex);
2263 /* notify any interfaces that the device is now gone */
2264 list_for_each_entry(class_intf,
2265 &dev->class->p->interfaces, node)
2266 if (class_intf->remove_dev)
2267 class_intf->remove_dev(dev, class_intf);
2268 /* remove the device from the class list */
2269 klist_del(&dev->p->knode_class);
2270 mutex_unlock(&dev->class->p->mutex);
2271 }
2272 device_remove_file(dev, &dev_attr_uevent);
2273 device_remove_attrs(dev);
2274 bus_remove_device(dev);
2275 device_pm_remove(dev);
2276 driver_deferred_probe_del(dev);
2277 device_platform_notify(dev, KOBJ_REMOVE);
2278 device_remove_properties(dev);
2279 device_links_purge(dev);
2280
2281 if (dev->bus)
2282 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2283 BUS_NOTIFY_REMOVED_DEVICE, dev);
2284 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2285 glue_dir = get_glue_dir(dev);
2286 kobject_del(&dev->kobj);
2287 cleanup_glue_dir(dev, glue_dir);
2288 put_device(parent);
2289}
2290EXPORT_SYMBOL_GPL(device_del);
2291
2292/**
2293 * device_unregister - unregister device from system.
2294 * @dev: device going away.
2295 *
2296 * We do this in two parts, like we do device_register(). First,
2297 * we remove it from all the subsystems with device_del(), then
2298 * we decrement the reference count via put_device(). If that
2299 * is the final reference count, the device will be cleaned up
2300 * via device_release() above. Otherwise, the structure will
2301 * stick around until the final reference to the device is dropped.
2302 */
2303void device_unregister(struct device *dev)
2304{
2305 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2306 device_del(dev);
2307 put_device(dev);
2308}
2309EXPORT_SYMBOL_GPL(device_unregister);
2310
2311static struct device *prev_device(struct klist_iter *i)
2312{
2313 struct klist_node *n = klist_prev(i);
2314 struct device *dev = NULL;
2315 struct device_private *p;
2316
2317 if (n) {
2318 p = to_device_private_parent(n);
2319 dev = p->device;
2320 }
2321 return dev;
2322}
2323
2324static struct device *next_device(struct klist_iter *i)
2325{
2326 struct klist_node *n = klist_next(i);
2327 struct device *dev = NULL;
2328 struct device_private *p;
2329
2330 if (n) {
2331 p = to_device_private_parent(n);
2332 dev = p->device;
2333 }
2334 return dev;
2335}
2336
2337/**
2338 * device_get_devnode - path of device node file
2339 * @dev: device
2340 * @mode: returned file access mode
2341 * @uid: returned file owner
2342 * @gid: returned file group
2343 * @tmp: possibly allocated string
2344 *
2345 * Return the relative path of a possible device node.
2346 * Non-default names may need to allocate a memory to compose
2347 * a name. This memory is returned in tmp and needs to be
2348 * freed by the caller.
2349 */
2350const char *device_get_devnode(struct device *dev,
2351 umode_t *mode, kuid_t *uid, kgid_t *gid,
2352 const char **tmp)
2353{
2354 char *s;
2355
2356 *tmp = NULL;
2357
2358 /* the device type may provide a specific name */
2359 if (dev->type && dev->type->devnode)
2360 *tmp = dev->type->devnode(dev, mode, uid, gid);
2361 if (*tmp)
2362 return *tmp;
2363
2364 /* the class may provide a specific name */
2365 if (dev->class && dev->class->devnode)
2366 *tmp = dev->class->devnode(dev, mode);
2367 if (*tmp)
2368 return *tmp;
2369
2370 /* return name without allocation, tmp == NULL */
2371 if (strchr(dev_name(dev), '!') == NULL)
2372 return dev_name(dev);
2373
2374 /* replace '!' in the name with '/' */
2375 s = kstrdup(dev_name(dev), GFP_KERNEL);
2376 if (!s)
2377 return NULL;
2378 strreplace(s, '!', '/');
2379 return *tmp = s;
2380}
2381
2382/**
2383 * device_for_each_child - device child iterator.
2384 * @parent: parent struct device.
2385 * @fn: function to be called for each device.
2386 * @data: data for the callback.
2387 *
2388 * Iterate over @parent's child devices, and call @fn for each,
2389 * passing it @data.
2390 *
2391 * We check the return of @fn each time. If it returns anything
2392 * other than 0, we break out and return that value.
2393 */
2394int device_for_each_child(struct device *parent, void *data,
2395 int (*fn)(struct device *dev, void *data))
2396{
2397 struct klist_iter i;
2398 struct device *child;
2399 int error = 0;
2400
2401 if (!parent->p)
2402 return 0;
2403
2404 klist_iter_init(&parent->p->klist_children, &i);
2405 while (!error && (child = next_device(&i)))
2406 error = fn(child, data);
2407 klist_iter_exit(&i);
2408 return error;
2409}
2410EXPORT_SYMBOL_GPL(device_for_each_child);
2411
2412/**
2413 * device_for_each_child_reverse - device child iterator in reversed order.
2414 * @parent: parent struct device.
2415 * @fn: function to be called for each device.
2416 * @data: data for the callback.
2417 *
2418 * Iterate over @parent's child devices, and call @fn for each,
2419 * passing it @data.
2420 *
2421 * We check the return of @fn each time. If it returns anything
2422 * other than 0, we break out and return that value.
2423 */
2424int device_for_each_child_reverse(struct device *parent, void *data,
2425 int (*fn)(struct device *dev, void *data))
2426{
2427 struct klist_iter i;
2428 struct device *child;
2429 int error = 0;
2430
2431 if (!parent->p)
2432 return 0;
2433
2434 klist_iter_init(&parent->p->klist_children, &i);
2435 while ((child = prev_device(&i)) && !error)
2436 error = fn(child, data);
2437 klist_iter_exit(&i);
2438 return error;
2439}
2440EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2441
2442/**
2443 * device_find_child - device iterator for locating a particular device.
2444 * @parent: parent struct device
2445 * @match: Callback function to check device
2446 * @data: Data to pass to match function
2447 *
2448 * This is similar to the device_for_each_child() function above, but it
2449 * returns a reference to a device that is 'found' for later use, as
2450 * determined by the @match callback.
2451 *
2452 * The callback should return 0 if the device doesn't match and non-zero
2453 * if it does. If the callback returns non-zero and a reference to the
2454 * current device can be obtained, this function will return to the caller
2455 * and not iterate over any more devices.
2456 *
2457 * NOTE: you will need to drop the reference with put_device() after use.
2458 */
2459struct device *device_find_child(struct device *parent, void *data,
2460 int (*match)(struct device *dev, void *data))
2461{
2462 struct klist_iter i;
2463 struct device *child;
2464
2465 if (!parent)
2466 return NULL;
2467
2468 klist_iter_init(&parent->p->klist_children, &i);
2469 while ((child = next_device(&i)))
2470 if (match(child, data) && get_device(child))
2471 break;
2472 klist_iter_exit(&i);
2473 return child;
2474}
2475EXPORT_SYMBOL_GPL(device_find_child);
2476
2477int __init devices_init(void)
2478{
2479 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2480 if (!devices_kset)
2481 return -ENOMEM;
2482 dev_kobj = kobject_create_and_add("dev", NULL);
2483 if (!dev_kobj)
2484 goto dev_kobj_err;
2485 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2486 if (!sysfs_dev_block_kobj)
2487 goto block_kobj_err;
2488 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2489 if (!sysfs_dev_char_kobj)
2490 goto char_kobj_err;
2491
2492 return 0;
2493
2494 char_kobj_err:
2495 kobject_put(sysfs_dev_block_kobj);
2496 block_kobj_err:
2497 kobject_put(dev_kobj);
2498 dev_kobj_err:
2499 kset_unregister(devices_kset);
2500 return -ENOMEM;
2501}
2502
2503static int device_check_offline(struct device *dev, void *not_used)
2504{
2505 int ret;
2506
2507 ret = device_for_each_child(dev, NULL, device_check_offline);
2508 if (ret)
2509 return ret;
2510
2511 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2512}
2513
2514/**
2515 * device_offline - Prepare the device for hot-removal.
2516 * @dev: Device to be put offline.
2517 *
2518 * Execute the device bus type's .offline() callback, if present, to prepare
2519 * the device for a subsequent hot-removal. If that succeeds, the device must
2520 * not be used until either it is removed or its bus type's .online() callback
2521 * is executed.
2522 *
2523 * Call under device_hotplug_lock.
2524 */
2525int device_offline(struct device *dev)
2526{
2527 int ret;
2528
2529 if (dev->offline_disabled)
2530 return -EPERM;
2531
2532 ret = device_for_each_child(dev, NULL, device_check_offline);
2533 if (ret)
2534 return ret;
2535
2536 device_lock(dev);
2537 if (device_supports_offline(dev)) {
2538 if (dev->offline) {
2539 ret = 1;
2540 } else {
2541 ret = dev->bus->offline(dev);
2542 if (!ret) {
2543 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2544 dev->offline = true;
2545 }
2546 }
2547 }
2548 device_unlock(dev);
2549
2550 return ret;
2551}
2552
2553/**
2554 * device_online - Put the device back online after successful device_offline().
2555 * @dev: Device to be put back online.
2556 *
2557 * If device_offline() has been successfully executed for @dev, but the device
2558 * has not been removed subsequently, execute its bus type's .online() callback
2559 * to indicate that the device can be used again.
2560 *
2561 * Call under device_hotplug_lock.
2562 */
2563int device_online(struct device *dev)
2564{
2565 int ret = 0;
2566
2567 device_lock(dev);
2568 if (device_supports_offline(dev)) {
2569 if (dev->offline) {
2570 ret = dev->bus->online(dev);
2571 if (!ret) {
2572 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2573 dev->offline = false;
2574 }
2575 } else {
2576 ret = 1;
2577 }
2578 }
2579 device_unlock(dev);
2580
2581 return ret;
2582}
2583
2584struct root_device {
2585 struct device dev;
2586 struct module *owner;
2587};
2588
2589static inline struct root_device *to_root_device(struct device *d)
2590{
2591 return container_of(d, struct root_device, dev);
2592}
2593
2594static void root_device_release(struct device *dev)
2595{
2596 kfree(to_root_device(dev));
2597}
2598
2599/**
2600 * __root_device_register - allocate and register a root device
2601 * @name: root device name
2602 * @owner: owner module of the root device, usually THIS_MODULE
2603 *
2604 * This function allocates a root device and registers it
2605 * using device_register(). In order to free the returned
2606 * device, use root_device_unregister().
2607 *
2608 * Root devices are dummy devices which allow other devices
2609 * to be grouped under /sys/devices. Use this function to
2610 * allocate a root device and then use it as the parent of
2611 * any device which should appear under /sys/devices/{name}
2612 *
2613 * The /sys/devices/{name} directory will also contain a
2614 * 'module' symlink which points to the @owner directory
2615 * in sysfs.
2616 *
2617 * Returns &struct device pointer on success, or ERR_PTR() on error.
2618 *
2619 * Note: You probably want to use root_device_register().
2620 */
2621struct device *__root_device_register(const char *name, struct module *owner)
2622{
2623 struct root_device *root;
2624 int err = -ENOMEM;
2625
2626 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2627 if (!root)
2628 return ERR_PTR(err);
2629
2630 err = dev_set_name(&root->dev, "%s", name);
2631 if (err) {
2632 kfree(root);
2633 return ERR_PTR(err);
2634 }
2635
2636 root->dev.release = root_device_release;
2637
2638 err = device_register(&root->dev);
2639 if (err) {
2640 put_device(&root->dev);
2641 return ERR_PTR(err);
2642 }
2643
2644#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2645 if (owner) {
2646 struct module_kobject *mk = &owner->mkobj;
2647
2648 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2649 if (err) {
2650 device_unregister(&root->dev);
2651 return ERR_PTR(err);
2652 }
2653 root->owner = owner;
2654 }
2655#endif
2656
2657 return &root->dev;
2658}
2659EXPORT_SYMBOL_GPL(__root_device_register);
2660
2661/**
2662 * root_device_unregister - unregister and free a root device
2663 * @dev: device going away
2664 *
2665 * This function unregisters and cleans up a device that was created by
2666 * root_device_register().
2667 */
2668void root_device_unregister(struct device *dev)
2669{
2670 struct root_device *root = to_root_device(dev);
2671
2672 if (root->owner)
2673 sysfs_remove_link(&root->dev.kobj, "module");
2674
2675 device_unregister(dev);
2676}
2677EXPORT_SYMBOL_GPL(root_device_unregister);
2678
2679
2680static void device_create_release(struct device *dev)
2681{
2682 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2683 kfree(dev);
2684}
2685
2686static __printf(6, 0) struct device *
2687device_create_groups_vargs(struct class *class, struct device *parent,
2688 dev_t devt, void *drvdata,
2689 const struct attribute_group **groups,
2690 const char *fmt, va_list args)
2691{
2692 struct device *dev = NULL;
2693 int retval = -ENODEV;
2694
2695 if (class == NULL || IS_ERR(class))
2696 goto error;
2697
2698 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2699 if (!dev) {
2700 retval = -ENOMEM;
2701 goto error;
2702 }
2703
2704 device_initialize(dev);
2705 dev->devt = devt;
2706 dev->class = class;
2707 dev->parent = parent;
2708 dev->groups = groups;
2709 dev->release = device_create_release;
2710 dev_set_drvdata(dev, drvdata);
2711
2712 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2713 if (retval)
2714 goto error;
2715
2716 retval = device_add(dev);
2717 if (retval)
2718 goto error;
2719
2720 return dev;
2721
2722error:
2723 put_device(dev);
2724 return ERR_PTR(retval);
2725}
2726
2727/**
2728 * device_create_vargs - creates a device and registers it with sysfs
2729 * @class: pointer to the struct class that this device should be registered to
2730 * @parent: pointer to the parent struct device of this new device, if any
2731 * @devt: the dev_t for the char device to be added
2732 * @drvdata: the data to be added to the device for callbacks
2733 * @fmt: string for the device's name
2734 * @args: va_list for the device's name
2735 *
2736 * This function can be used by char device classes. A struct device
2737 * will be created in sysfs, registered to the specified class.
2738 *
2739 * A "dev" file will be created, showing the dev_t for the device, if
2740 * the dev_t is not 0,0.
2741 * If a pointer to a parent struct device is passed in, the newly created
2742 * struct device will be a child of that device in sysfs.
2743 * The pointer to the struct device will be returned from the call.
2744 * Any further sysfs files that might be required can be created using this
2745 * pointer.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: the struct class passed to this function must have previously
2750 * been created with a call to class_create().
2751 */
2752struct device *device_create_vargs(struct class *class, struct device *parent,
2753 dev_t devt, void *drvdata, const char *fmt,
2754 va_list args)
2755{
2756 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2757 fmt, args);
2758}
2759EXPORT_SYMBOL_GPL(device_create_vargs);
2760
2761/**
2762 * device_create - creates a device and registers it with sysfs
2763 * @class: pointer to the struct class that this device should be registered to
2764 * @parent: pointer to the parent struct device of this new device, if any
2765 * @devt: the dev_t for the char device to be added
2766 * @drvdata: the data to be added to the device for callbacks
2767 * @fmt: string for the device's name
2768 *
2769 * This function can be used by char device classes. A struct device
2770 * will be created in sysfs, registered to the specified class.
2771 *
2772 * A "dev" file will be created, showing the dev_t for the device, if
2773 * the dev_t is not 0,0.
2774 * If a pointer to a parent struct device is passed in, the newly created
2775 * struct device will be a child of that device in sysfs.
2776 * The pointer to the struct device will be returned from the call.
2777 * Any further sysfs files that might be required can be created using this
2778 * pointer.
2779 *
2780 * Returns &struct device pointer on success, or ERR_PTR() on error.
2781 *
2782 * Note: the struct class passed to this function must have previously
2783 * been created with a call to class_create().
2784 */
2785struct device *device_create(struct class *class, struct device *parent,
2786 dev_t devt, void *drvdata, const char *fmt, ...)
2787{
2788 va_list vargs;
2789 struct device *dev;
2790
2791 va_start(vargs, fmt);
2792 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2793 va_end(vargs);
2794 return dev;
2795}
2796EXPORT_SYMBOL_GPL(device_create);
2797
2798/**
2799 * device_create_with_groups - creates a device and registers it with sysfs
2800 * @class: pointer to the struct class that this device should be registered to
2801 * @parent: pointer to the parent struct device of this new device, if any
2802 * @devt: the dev_t for the char device to be added
2803 * @drvdata: the data to be added to the device for callbacks
2804 * @groups: NULL-terminated list of attribute groups to be created
2805 * @fmt: string for the device's name
2806 *
2807 * This function can be used by char device classes. A struct device
2808 * will be created in sysfs, registered to the specified class.
2809 * Additional attributes specified in the groups parameter will also
2810 * be created automatically.
2811 *
2812 * A "dev" file will be created, showing the dev_t for the device, if
2813 * the dev_t is not 0,0.
2814 * If a pointer to a parent struct device is passed in, the newly created
2815 * struct device will be a child of that device in sysfs.
2816 * The pointer to the struct device will be returned from the call.
2817 * Any further sysfs files that might be required can be created using this
2818 * pointer.
2819 *
2820 * Returns &struct device pointer on success, or ERR_PTR() on error.
2821 *
2822 * Note: the struct class passed to this function must have previously
2823 * been created with a call to class_create().
2824 */
2825struct device *device_create_with_groups(struct class *class,
2826 struct device *parent, dev_t devt,
2827 void *drvdata,
2828 const struct attribute_group **groups,
2829 const char *fmt, ...)
2830{
2831 va_list vargs;
2832 struct device *dev;
2833
2834 va_start(vargs, fmt);
2835 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2836 fmt, vargs);
2837 va_end(vargs);
2838 return dev;
2839}
2840EXPORT_SYMBOL_GPL(device_create_with_groups);
2841
2842static int __match_devt(struct device *dev, const void *data)
2843{
2844 const dev_t *devt = data;
2845
2846 return dev->devt == *devt;
2847}
2848
2849/**
2850 * device_destroy - removes a device that was created with device_create()
2851 * @class: pointer to the struct class that this device was registered with
2852 * @devt: the dev_t of the device that was previously registered
2853 *
2854 * This call unregisters and cleans up a device that was created with a
2855 * call to device_create().
2856 */
2857void device_destroy(struct class *class, dev_t devt)
2858{
2859 struct device *dev;
2860
2861 dev = class_find_device(class, NULL, &devt, __match_devt);
2862 if (dev) {
2863 put_device(dev);
2864 device_unregister(dev);
2865 }
2866}
2867EXPORT_SYMBOL_GPL(device_destroy);
2868
2869/**
2870 * device_rename - renames a device
2871 * @dev: the pointer to the struct device to be renamed
2872 * @new_name: the new name of the device
2873 *
2874 * It is the responsibility of the caller to provide mutual
2875 * exclusion between two different calls of device_rename
2876 * on the same device to ensure that new_name is valid and
2877 * won't conflict with other devices.
2878 *
2879 * Note: Don't call this function. Currently, the networking layer calls this
2880 * function, but that will change. The following text from Kay Sievers offers
2881 * some insight:
2882 *
2883 * Renaming devices is racy at many levels, symlinks and other stuff are not
2884 * replaced atomically, and you get a "move" uevent, but it's not easy to
2885 * connect the event to the old and new device. Device nodes are not renamed at
2886 * all, there isn't even support for that in the kernel now.
2887 *
2888 * In the meantime, during renaming, your target name might be taken by another
2889 * driver, creating conflicts. Or the old name is taken directly after you
2890 * renamed it -- then you get events for the same DEVPATH, before you even see
2891 * the "move" event. It's just a mess, and nothing new should ever rely on
2892 * kernel device renaming. Besides that, it's not even implemented now for
2893 * other things than (driver-core wise very simple) network devices.
2894 *
2895 * We are currently about to change network renaming in udev to completely
2896 * disallow renaming of devices in the same namespace as the kernel uses,
2897 * because we can't solve the problems properly, that arise with swapping names
2898 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2899 * be allowed to some other name than eth[0-9]*, for the aforementioned
2900 * reasons.
2901 *
2902 * Make up a "real" name in the driver before you register anything, or add
2903 * some other attributes for userspace to find the device, or use udev to add
2904 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2905 * don't even want to get into that and try to implement the missing pieces in
2906 * the core. We really have other pieces to fix in the driver core mess. :)
2907 */
2908int device_rename(struct device *dev, const char *new_name)
2909{
2910 struct kobject *kobj = &dev->kobj;
2911 char *old_device_name = NULL;
2912 int error;
2913
2914 dev = get_device(dev);
2915 if (!dev)
2916 return -EINVAL;
2917
2918 dev_dbg(dev, "renaming to %s\n", new_name);
2919
2920 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2921 if (!old_device_name) {
2922 error = -ENOMEM;
2923 goto out;
2924 }
2925
2926 if (dev->class) {
2927 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2928 kobj, old_device_name,
2929 new_name, kobject_namespace(kobj));
2930 if (error)
2931 goto out;
2932 }
2933
2934 error = kobject_rename(kobj, new_name);
2935 if (error)
2936 goto out;
2937
2938out:
2939 put_device(dev);
2940
2941 kfree(old_device_name);
2942
2943 return error;
2944}
2945EXPORT_SYMBOL_GPL(device_rename);
2946
2947static int device_move_class_links(struct device *dev,
2948 struct device *old_parent,
2949 struct device *new_parent)
2950{
2951 int error = 0;
2952
2953 if (old_parent)
2954 sysfs_remove_link(&dev->kobj, "device");
2955 if (new_parent)
2956 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2957 "device");
2958 return error;
2959}
2960
2961/**
2962 * device_move - moves a device to a new parent
2963 * @dev: the pointer to the struct device to be moved
2964 * @new_parent: the new parent of the device (can be NULL)
2965 * @dpm_order: how to reorder the dpm_list
2966 */
2967int device_move(struct device *dev, struct device *new_parent,
2968 enum dpm_order dpm_order)
2969{
2970 int error;
2971 struct device *old_parent;
2972 struct kobject *new_parent_kobj;
2973
2974 dev = get_device(dev);
2975 if (!dev)
2976 return -EINVAL;
2977
2978 device_pm_lock();
2979 new_parent = get_device(new_parent);
2980 new_parent_kobj = get_device_parent(dev, new_parent);
2981 if (IS_ERR(new_parent_kobj)) {
2982 error = PTR_ERR(new_parent_kobj);
2983 put_device(new_parent);
2984 goto out;
2985 }
2986
2987 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2988 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2989 error = kobject_move(&dev->kobj, new_parent_kobj);
2990 if (error) {
2991 cleanup_glue_dir(dev, new_parent_kobj);
2992 put_device(new_parent);
2993 goto out;
2994 }
2995 old_parent = dev->parent;
2996 dev->parent = new_parent;
2997 if (old_parent)
2998 klist_remove(&dev->p->knode_parent);
2999 if (new_parent) {
3000 klist_add_tail(&dev->p->knode_parent,
3001 &new_parent->p->klist_children);
3002 set_dev_node(dev, dev_to_node(new_parent));
3003 }
3004
3005 if (dev->class) {
3006 error = device_move_class_links(dev, old_parent, new_parent);
3007 if (error) {
3008 /* We ignore errors on cleanup since we're hosed anyway... */
3009 device_move_class_links(dev, new_parent, old_parent);
3010 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3011 if (new_parent)
3012 klist_remove(&dev->p->knode_parent);
3013 dev->parent = old_parent;
3014 if (old_parent) {
3015 klist_add_tail(&dev->p->knode_parent,
3016 &old_parent->p->klist_children);
3017 set_dev_node(dev, dev_to_node(old_parent));
3018 }
3019 }
3020 cleanup_glue_dir(dev, new_parent_kobj);
3021 put_device(new_parent);
3022 goto out;
3023 }
3024 }
3025 switch (dpm_order) {
3026 case DPM_ORDER_NONE:
3027 break;
3028 case DPM_ORDER_DEV_AFTER_PARENT:
3029 device_pm_move_after(dev, new_parent);
3030 devices_kset_move_after(dev, new_parent);
3031 break;
3032 case DPM_ORDER_PARENT_BEFORE_DEV:
3033 device_pm_move_before(new_parent, dev);
3034 devices_kset_move_before(new_parent, dev);
3035 break;
3036 case DPM_ORDER_DEV_LAST:
3037 device_pm_move_last(dev);
3038 devices_kset_move_last(dev);
3039 break;
3040 }
3041
3042 put_device(old_parent);
3043out:
3044 device_pm_unlock();
3045 put_device(dev);
3046 return error;
3047}
3048EXPORT_SYMBOL_GPL(device_move);
3049
3050/**
3051 * device_shutdown - call ->shutdown() on each device to shutdown.
3052 */
3053void device_shutdown(void)
3054{
3055 struct device *dev, *parent;
3056
3057 wait_for_device_probe();
3058 device_block_probing();
3059
3060 spin_lock(&devices_kset->list_lock);
3061 /*
3062 * Walk the devices list backward, shutting down each in turn.
3063 * Beware that device unplug events may also start pulling
3064 * devices offline, even as the system is shutting down.
3065 */
3066 while (!list_empty(&devices_kset->list)) {
3067 dev = list_entry(devices_kset->list.prev, struct device,
3068 kobj.entry);
3069
3070 /*
3071 * hold reference count of device's parent to
3072 * prevent it from being freed because parent's
3073 * lock is to be held
3074 */
3075 parent = get_device(dev->parent);
3076 get_device(dev);
3077 /*
3078 * Make sure the device is off the kset list, in the
3079 * event that dev->*->shutdown() doesn't remove it.
3080 */
3081 list_del_init(&dev->kobj.entry);
3082 spin_unlock(&devices_kset->list_lock);
3083
3084 /* hold lock to avoid race with probe/release */
3085 if (parent)
3086 device_lock(parent);
3087 device_lock(dev);
3088
3089 /* Don't allow any more runtime suspends */
3090 pm_runtime_get_noresume(dev);
3091 pm_runtime_barrier(dev);
3092
3093 if (dev->class && dev->class->shutdown_pre) {
3094 if (initcall_debug)
3095 dev_info(dev, "shutdown_pre\n");
3096 dev->class->shutdown_pre(dev);
3097 }
3098 if (dev->bus && dev->bus->shutdown) {
3099 if (initcall_debug)
3100 dev_info(dev, "shutdown\n");
3101 dev->bus->shutdown(dev);
3102 } else if (dev->driver && dev->driver->shutdown) {
3103 if (initcall_debug)
3104 dev_info(dev, "shutdown\n");
3105 dev->driver->shutdown(dev);
3106 }
3107
3108 device_unlock(dev);
3109 if (parent)
3110 device_unlock(parent);
3111
3112 put_device(dev);
3113 put_device(parent);
3114
3115 spin_lock(&devices_kset->list_lock);
3116 }
3117 spin_unlock(&devices_kset->list_lock);
3118}
3119
3120/*
3121 * Device logging functions
3122 */
3123
3124#ifdef CONFIG_PRINTK
3125static int
3126create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3127{
3128 const char *subsys;
3129 size_t pos = 0;
3130
3131 if (dev->class)
3132 subsys = dev->class->name;
3133 else if (dev->bus)
3134 subsys = dev->bus->name;
3135 else
3136 return 0;
3137
3138 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3139 if (pos >= hdrlen)
3140 goto overflow;
3141
3142 /*
3143 * Add device identifier DEVICE=:
3144 * b12:8 block dev_t
3145 * c127:3 char dev_t
3146 * n8 netdev ifindex
3147 * +sound:card0 subsystem:devname
3148 */
3149 if (MAJOR(dev->devt)) {
3150 char c;
3151
3152 if (strcmp(subsys, "block") == 0)
3153 c = 'b';
3154 else
3155 c = 'c';
3156 pos++;
3157 pos += snprintf(hdr + pos, hdrlen - pos,
3158 "DEVICE=%c%u:%u",
3159 c, MAJOR(dev->devt), MINOR(dev->devt));
3160 } else if (strcmp(subsys, "net") == 0) {
3161 struct net_device *net = to_net_dev(dev);
3162
3163 pos++;
3164 pos += snprintf(hdr + pos, hdrlen - pos,
3165 "DEVICE=n%u", net->ifindex);
3166 } else {
3167 pos++;
3168 pos += snprintf(hdr + pos, hdrlen - pos,
3169 "DEVICE=+%s:%s", subsys, dev_name(dev));
3170 }
3171
3172 if (pos >= hdrlen)
3173 goto overflow;
3174
3175 return pos;
3176
3177overflow:
3178 dev_WARN(dev, "device/subsystem name too long");
3179 return 0;
3180}
3181
3182int dev_vprintk_emit(int level, const struct device *dev,
3183 const char *fmt, va_list args)
3184{
3185 char hdr[128];
3186 size_t hdrlen;
3187
3188 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3189
3190 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3191}
3192EXPORT_SYMBOL(dev_vprintk_emit);
3193
3194int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3195{
3196 va_list args;
3197 int r;
3198
3199 va_start(args, fmt);
3200
3201 r = dev_vprintk_emit(level, dev, fmt, args);
3202
3203 va_end(args);
3204
3205 return r;
3206}
3207EXPORT_SYMBOL(dev_printk_emit);
3208
3209static void __dev_printk(const char *level, const struct device *dev,
3210 struct va_format *vaf)
3211{
3212 if (dev)
3213 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3214 dev_driver_string(dev), dev_name(dev), vaf);
3215 else
3216 printk("%s(NULL device *): %pV", level, vaf);
3217}
3218
3219void dev_printk(const char *level, const struct device *dev,
3220 const char *fmt, ...)
3221{
3222 struct va_format vaf;
3223 va_list args;
3224
3225 va_start(args, fmt);
3226
3227 vaf.fmt = fmt;
3228 vaf.va = &args;
3229
3230 __dev_printk(level, dev, &vaf);
3231
3232 va_end(args);
3233}
3234EXPORT_SYMBOL(dev_printk);
3235
3236#define define_dev_printk_level(func, kern_level) \
3237void func(const struct device *dev, const char *fmt, ...) \
3238{ \
3239 struct va_format vaf; \
3240 va_list args; \
3241 \
3242 va_start(args, fmt); \
3243 \
3244 vaf.fmt = fmt; \
3245 vaf.va = &args; \
3246 \
3247 __dev_printk(kern_level, dev, &vaf); \
3248 \
3249 va_end(args); \
3250} \
3251EXPORT_SYMBOL(func);
3252
3253define_dev_printk_level(_dev_emerg, KERN_EMERG);
3254define_dev_printk_level(_dev_alert, KERN_ALERT);
3255define_dev_printk_level(_dev_crit, KERN_CRIT);
3256define_dev_printk_level(_dev_err, KERN_ERR);
3257define_dev_printk_level(_dev_warn, KERN_WARNING);
3258define_dev_printk_level(_dev_notice, KERN_NOTICE);
3259define_dev_printk_level(_dev_info, KERN_INFO);
3260
3261#endif
3262
3263static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3264{
3265 return fwnode && !IS_ERR(fwnode->secondary);
3266}
3267
3268/**
3269 * set_primary_fwnode - Change the primary firmware node of a given device.
3270 * @dev: Device to handle.
3271 * @fwnode: New primary firmware node of the device.
3272 *
3273 * Set the device's firmware node pointer to @fwnode, but if a secondary
3274 * firmware node of the device is present, preserve it.
3275 */
3276void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3277{
3278 if (fwnode) {
3279 struct fwnode_handle *fn = dev->fwnode;
3280
3281 if (fwnode_is_primary(fn))
3282 fn = fn->secondary;
3283
3284 if (fn) {
3285 WARN_ON(fwnode->secondary);
3286 fwnode->secondary = fn;
3287 }
3288 dev->fwnode = fwnode;
3289 } else {
3290 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3291 dev->fwnode->secondary : NULL;
3292 }
3293}
3294EXPORT_SYMBOL_GPL(set_primary_fwnode);
3295
3296/**
3297 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3298 * @dev: Device to handle.
3299 * @fwnode: New secondary firmware node of the device.
3300 *
3301 * If a primary firmware node of the device is present, set its secondary
3302 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3303 * @fwnode.
3304 */
3305void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3306{
3307 if (fwnode)
3308 fwnode->secondary = ERR_PTR(-ENODEV);
3309
3310 if (fwnode_is_primary(dev->fwnode))
3311 dev->fwnode->secondary = fwnode;
3312 else
3313 dev->fwnode = fwnode;
3314}
3315
3316/**
3317 * device_set_of_node_from_dev - reuse device-tree node of another device
3318 * @dev: device whose device-tree node is being set
3319 * @dev2: device whose device-tree node is being reused
3320 *
3321 * Takes another reference to the new device-tree node after first dropping
3322 * any reference held to the old node.
3323 */
3324void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3325{
3326 of_node_put(dev->of_node);
3327 dev->of_node = of_node_get(dev2->of_node);
3328 dev->of_node_reused = true;
3329}
3330EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);