Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
12 */
13#define pr_fmt(fmt) "ACPI: " fmt
14
15#include <linux/module.h>
16#include <linux/acpi.h>
17#include <linux/dmi.h>
18#include <linux/sched.h> /* need_resched() */
19#include <linux/tick.h>
20#include <linux/cpuidle.h>
21#include <linux/cpu.h>
22#include <acpi/processor.h>
23
24/*
25 * Include the apic definitions for x86 to have the APIC timer related defines
26 * available also for UP (on SMP it gets magically included via linux/smp.h).
27 * asm/acpi.h is not an option, as it would require more include magic. Also
28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29 */
30#ifdef CONFIG_X86
31#include <asm/apic.h>
32#endif
33
34#define ACPI_PROCESSOR_CLASS "processor"
35#define _COMPONENT ACPI_PROCESSOR_COMPONENT
36ACPI_MODULE_NAME("processor_idle");
37
38#define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41module_param(max_cstate, uint, 0000);
42static unsigned int nocst __read_mostly;
43module_param(nocst, uint, 0000);
44static int bm_check_disable __read_mostly;
45module_param(bm_check_disable, uint, 0000);
46
47static unsigned int latency_factor __read_mostly = 2;
48module_param(latency_factor, uint, 0644);
49
50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52struct cpuidle_driver acpi_idle_driver = {
53 .name = "acpi_idle",
54 .owner = THIS_MODULE,
55};
56
57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58static
59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61static int disabled_by_idle_boot_param(void)
62{
63 return boot_option_idle_override == IDLE_POLL ||
64 boot_option_idle_override == IDLE_HALT;
65}
66
67/*
68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69 * For now disable this. Probably a bug somewhere else.
70 *
71 * To skip this limit, boot/load with a large max_cstate limit.
72 */
73static int set_max_cstate(const struct dmi_system_id *id)
74{
75 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 return 0;
77
78 pr_notice("%s detected - limiting to C%ld max_cstate."
79 " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82 max_cstate = (long)id->driver_data;
83
84 return 0;
85}
86
87static const struct dmi_system_id processor_power_dmi_table[] = {
88 { set_max_cstate, "Clevo 5600D", {
89 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 (void *)2},
92 { set_max_cstate, "Pavilion zv5000", {
93 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 (void *)1},
96 { set_max_cstate, "Asus L8400B", {
97 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 (void *)1},
100 {},
101};
102
103
104/*
105 * Callers should disable interrupts before the call and enable
106 * interrupts after return.
107 */
108static void __cpuidle acpi_safe_halt(void)
109{
110 if (!tif_need_resched()) {
111 safe_halt();
112 local_irq_disable();
113 }
114}
115
116#ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118/*
119 * Some BIOS implementations switch to C3 in the published C2 state.
120 * This seems to be a common problem on AMD boxen, but other vendors
121 * are affected too. We pick the most conservative approach: we assume
122 * that the local APIC stops in both C2 and C3.
123 */
124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 struct acpi_processor_cx *cx)
126{
127 struct acpi_processor_power *pwr = &pr->power;
128 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 return;
132
133 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 type = ACPI_STATE_C1;
135
136 /*
137 * Check, if one of the previous states already marked the lapic
138 * unstable
139 */
140 if (pwr->timer_broadcast_on_state < state)
141 return;
142
143 if (cx->type >= type)
144 pr->power.timer_broadcast_on_state = state;
145}
146
147static void __lapic_timer_propagate_broadcast(void *arg)
148{
149 struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151 if (pr->power.timer_broadcast_on_state < INT_MAX)
152 tick_broadcast_enable();
153 else
154 tick_broadcast_disable();
155}
156
157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158{
159 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 (void *)pr, 1);
161}
162
163/* Power(C) State timer broadcast control */
164static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165 struct acpi_processor_cx *cx,
166 int broadcast)
167{
168 int state = cx - pr->power.states;
169
170 if (state >= pr->power.timer_broadcast_on_state) {
171 if (broadcast)
172 tick_broadcast_enter();
173 else
174 tick_broadcast_exit();
175 }
176}
177
178#else
179
180static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 struct acpi_processor_cx *cstate) { }
182static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184 struct acpi_processor_cx *cx,
185 int broadcast)
186{
187}
188
189#endif
190
191#if defined(CONFIG_X86)
192static void tsc_check_state(int state)
193{
194 switch (boot_cpu_data.x86_vendor) {
195 case X86_VENDOR_HYGON:
196 case X86_VENDOR_AMD:
197 case X86_VENDOR_INTEL:
198 case X86_VENDOR_CENTAUR:
199 /*
200 * AMD Fam10h TSC will tick in all
201 * C/P/S0/S1 states when this bit is set.
202 */
203 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
204 return;
205
206 /*FALL THROUGH*/
207 default:
208 /* TSC could halt in idle, so notify users */
209 if (state > ACPI_STATE_C1)
210 mark_tsc_unstable("TSC halts in idle");
211 }
212}
213#else
214static void tsc_check_state(int state) { return; }
215#endif
216
217static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
218{
219
220 if (!pr->pblk)
221 return -ENODEV;
222
223 /* if info is obtained from pblk/fadt, type equals state */
224 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
225 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
226
227#ifndef CONFIG_HOTPLUG_CPU
228 /*
229 * Check for P_LVL2_UP flag before entering C2 and above on
230 * an SMP system.
231 */
232 if ((num_online_cpus() > 1) &&
233 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
234 return -ENODEV;
235#endif
236
237 /* determine C2 and C3 address from pblk */
238 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
239 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
240
241 /* determine latencies from FADT */
242 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
243 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
244
245 /*
246 * FADT specified C2 latency must be less than or equal to
247 * 100 microseconds.
248 */
249 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
250 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
251 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
252 /* invalidate C2 */
253 pr->power.states[ACPI_STATE_C2].address = 0;
254 }
255
256 /*
257 * FADT supplied C3 latency must be less than or equal to
258 * 1000 microseconds.
259 */
260 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
261 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
262 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
263 /* invalidate C3 */
264 pr->power.states[ACPI_STATE_C3].address = 0;
265 }
266
267 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 "lvl2[0x%08x] lvl3[0x%08x]\n",
269 pr->power.states[ACPI_STATE_C2].address,
270 pr->power.states[ACPI_STATE_C3].address));
271
272 snprintf(pr->power.states[ACPI_STATE_C2].desc,
273 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
274 pr->power.states[ACPI_STATE_C2].address);
275 snprintf(pr->power.states[ACPI_STATE_C3].desc,
276 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
277 pr->power.states[ACPI_STATE_C3].address);
278
279 return 0;
280}
281
282static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
283{
284 if (!pr->power.states[ACPI_STATE_C1].valid) {
285 /* set the first C-State to C1 */
286 /* all processors need to support C1 */
287 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
288 pr->power.states[ACPI_STATE_C1].valid = 1;
289 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
290
291 snprintf(pr->power.states[ACPI_STATE_C1].desc,
292 ACPI_CX_DESC_LEN, "ACPI HLT");
293 }
294 /* the C0 state only exists as a filler in our array */
295 pr->power.states[ACPI_STATE_C0].valid = 1;
296 return 0;
297}
298
299static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
300{
301 acpi_status status;
302 u64 count;
303 int current_count;
304 int i, ret = 0;
305 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
306 union acpi_object *cst;
307
308 if (nocst)
309 return -ENODEV;
310
311 current_count = 0;
312
313 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
314 if (ACPI_FAILURE(status)) {
315 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
316 return -ENODEV;
317 }
318
319 cst = buffer.pointer;
320
321 /* There must be at least 2 elements */
322 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
323 pr_err("not enough elements in _CST\n");
324 ret = -EFAULT;
325 goto end;
326 }
327
328 count = cst->package.elements[0].integer.value;
329
330 /* Validate number of power states. */
331 if (count < 1 || count != cst->package.count - 1) {
332 pr_err("count given by _CST is not valid\n");
333 ret = -EFAULT;
334 goto end;
335 }
336
337 /* Tell driver that at least _CST is supported. */
338 pr->flags.has_cst = 1;
339
340 for (i = 1; i <= count; i++) {
341 union acpi_object *element;
342 union acpi_object *obj;
343 struct acpi_power_register *reg;
344 struct acpi_processor_cx cx;
345
346 memset(&cx, 0, sizeof(cx));
347
348 element = &(cst->package.elements[i]);
349 if (element->type != ACPI_TYPE_PACKAGE)
350 continue;
351
352 if (element->package.count != 4)
353 continue;
354
355 obj = &(element->package.elements[0]);
356
357 if (obj->type != ACPI_TYPE_BUFFER)
358 continue;
359
360 reg = (struct acpi_power_register *)obj->buffer.pointer;
361
362 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
363 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
364 continue;
365
366 /* There should be an easy way to extract an integer... */
367 obj = &(element->package.elements[1]);
368 if (obj->type != ACPI_TYPE_INTEGER)
369 continue;
370
371 cx.type = obj->integer.value;
372 /*
373 * Some buggy BIOSes won't list C1 in _CST -
374 * Let acpi_processor_get_power_info_default() handle them later
375 */
376 if (i == 1 && cx.type != ACPI_STATE_C1)
377 current_count++;
378
379 cx.address = reg->address;
380 cx.index = current_count + 1;
381
382 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
383 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
384 if (acpi_processor_ffh_cstate_probe
385 (pr->id, &cx, reg) == 0) {
386 cx.entry_method = ACPI_CSTATE_FFH;
387 } else if (cx.type == ACPI_STATE_C1) {
388 /*
389 * C1 is a special case where FIXED_HARDWARE
390 * can be handled in non-MWAIT way as well.
391 * In that case, save this _CST entry info.
392 * Otherwise, ignore this info and continue.
393 */
394 cx.entry_method = ACPI_CSTATE_HALT;
395 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
396 } else {
397 continue;
398 }
399 if (cx.type == ACPI_STATE_C1 &&
400 (boot_option_idle_override == IDLE_NOMWAIT)) {
401 /*
402 * In most cases the C1 space_id obtained from
403 * _CST object is FIXED_HARDWARE access mode.
404 * But when the option of idle=halt is added,
405 * the entry_method type should be changed from
406 * CSTATE_FFH to CSTATE_HALT.
407 * When the option of idle=nomwait is added,
408 * the C1 entry_method type should be
409 * CSTATE_HALT.
410 */
411 cx.entry_method = ACPI_CSTATE_HALT;
412 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
413 }
414 } else {
415 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
416 cx.address);
417 }
418
419 if (cx.type == ACPI_STATE_C1) {
420 cx.valid = 1;
421 }
422
423 obj = &(element->package.elements[2]);
424 if (obj->type != ACPI_TYPE_INTEGER)
425 continue;
426
427 cx.latency = obj->integer.value;
428
429 obj = &(element->package.elements[3]);
430 if (obj->type != ACPI_TYPE_INTEGER)
431 continue;
432
433 current_count++;
434 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
435
436 /*
437 * We support total ACPI_PROCESSOR_MAX_POWER - 1
438 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
439 */
440 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
441 pr_warn("Limiting number of power states to max (%d)\n",
442 ACPI_PROCESSOR_MAX_POWER);
443 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
444 break;
445 }
446 }
447
448 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
449 current_count));
450
451 /* Validate number of power states discovered */
452 if (current_count < 2)
453 ret = -EFAULT;
454
455 end:
456 kfree(buffer.pointer);
457
458 return ret;
459}
460
461static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
462 struct acpi_processor_cx *cx)
463{
464 static int bm_check_flag = -1;
465 static int bm_control_flag = -1;
466
467
468 if (!cx->address)
469 return;
470
471 /*
472 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
473 * DMA transfers are used by any ISA device to avoid livelock.
474 * Note that we could disable Type-F DMA (as recommended by
475 * the erratum), but this is known to disrupt certain ISA
476 * devices thus we take the conservative approach.
477 */
478 else if (errata.piix4.fdma) {
479 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
480 "C3 not supported on PIIX4 with Type-F DMA\n"));
481 return;
482 }
483
484 /* All the logic here assumes flags.bm_check is same across all CPUs */
485 if (bm_check_flag == -1) {
486 /* Determine whether bm_check is needed based on CPU */
487 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
488 bm_check_flag = pr->flags.bm_check;
489 bm_control_flag = pr->flags.bm_control;
490 } else {
491 pr->flags.bm_check = bm_check_flag;
492 pr->flags.bm_control = bm_control_flag;
493 }
494
495 if (pr->flags.bm_check) {
496 if (!pr->flags.bm_control) {
497 if (pr->flags.has_cst != 1) {
498 /* bus mastering control is necessary */
499 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
500 "C3 support requires BM control\n"));
501 return;
502 } else {
503 /* Here we enter C3 without bus mastering */
504 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
505 "C3 support without BM control\n"));
506 }
507 }
508 } else {
509 /*
510 * WBINVD should be set in fadt, for C3 state to be
511 * supported on when bm_check is not required.
512 */
513 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
514 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
515 "Cache invalidation should work properly"
516 " for C3 to be enabled on SMP systems\n"));
517 return;
518 }
519 }
520
521 /*
522 * Otherwise we've met all of our C3 requirements.
523 * Normalize the C3 latency to expidite policy. Enable
524 * checking of bus mastering status (bm_check) so we can
525 * use this in our C3 policy
526 */
527 cx->valid = 1;
528
529 /*
530 * On older chipsets, BM_RLD needs to be set
531 * in order for Bus Master activity to wake the
532 * system from C3. Newer chipsets handle DMA
533 * during C3 automatically and BM_RLD is a NOP.
534 * In either case, the proper way to
535 * handle BM_RLD is to set it and leave it set.
536 */
537 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
538
539 return;
540}
541
542static int acpi_processor_power_verify(struct acpi_processor *pr)
543{
544 unsigned int i;
545 unsigned int working = 0;
546
547 pr->power.timer_broadcast_on_state = INT_MAX;
548
549 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
550 struct acpi_processor_cx *cx = &pr->power.states[i];
551
552 switch (cx->type) {
553 case ACPI_STATE_C1:
554 cx->valid = 1;
555 break;
556
557 case ACPI_STATE_C2:
558 if (!cx->address)
559 break;
560 cx->valid = 1;
561 break;
562
563 case ACPI_STATE_C3:
564 acpi_processor_power_verify_c3(pr, cx);
565 break;
566 }
567 if (!cx->valid)
568 continue;
569
570 lapic_timer_check_state(i, pr, cx);
571 tsc_check_state(cx->type);
572 working++;
573 }
574
575 lapic_timer_propagate_broadcast(pr);
576
577 return (working);
578}
579
580static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
581{
582 unsigned int i;
583 int result;
584
585
586 /* NOTE: the idle thread may not be running while calling
587 * this function */
588
589 /* Zero initialize all the C-states info. */
590 memset(pr->power.states, 0, sizeof(pr->power.states));
591
592 result = acpi_processor_get_power_info_cst(pr);
593 if (result == -ENODEV)
594 result = acpi_processor_get_power_info_fadt(pr);
595
596 if (result)
597 return result;
598
599 acpi_processor_get_power_info_default(pr);
600
601 pr->power.count = acpi_processor_power_verify(pr);
602
603 /*
604 * if one state of type C2 or C3 is available, mark this
605 * CPU as being "idle manageable"
606 */
607 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
608 if (pr->power.states[i].valid) {
609 pr->power.count = i;
610 if (pr->power.states[i].type >= ACPI_STATE_C2)
611 pr->flags.power = 1;
612 }
613 }
614
615 return 0;
616}
617
618/**
619 * acpi_idle_bm_check - checks if bus master activity was detected
620 */
621static int acpi_idle_bm_check(void)
622{
623 u32 bm_status = 0;
624
625 if (bm_check_disable)
626 return 0;
627
628 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
629 if (bm_status)
630 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
631 /*
632 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
633 * the true state of bus mastering activity; forcing us to
634 * manually check the BMIDEA bit of each IDE channel.
635 */
636 else if (errata.piix4.bmisx) {
637 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
638 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
639 bm_status = 1;
640 }
641 return bm_status;
642}
643
644/**
645 * acpi_idle_do_entry - enter idle state using the appropriate method
646 * @cx: cstate data
647 *
648 * Caller disables interrupt before call and enables interrupt after return.
649 */
650static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
651{
652 if (cx->entry_method == ACPI_CSTATE_FFH) {
653 /* Call into architectural FFH based C-state */
654 acpi_processor_ffh_cstate_enter(cx);
655 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
656 acpi_safe_halt();
657 } else {
658 /* IO port based C-state */
659 inb(cx->address);
660 /* Dummy wait op - must do something useless after P_LVL2 read
661 because chipsets cannot guarantee that STPCLK# signal
662 gets asserted in time to freeze execution properly. */
663 inl(acpi_gbl_FADT.xpm_timer_block.address);
664 }
665}
666
667/**
668 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
669 * @dev: the target CPU
670 * @index: the index of suggested state
671 */
672static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
673{
674 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
675
676 ACPI_FLUSH_CPU_CACHE();
677
678 while (1) {
679
680 if (cx->entry_method == ACPI_CSTATE_HALT)
681 safe_halt();
682 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
683 inb(cx->address);
684 /* See comment in acpi_idle_do_entry() */
685 inl(acpi_gbl_FADT.xpm_timer_block.address);
686 } else
687 return -ENODEV;
688 }
689
690 /* Never reached */
691 return 0;
692}
693
694static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
695{
696 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
697 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
698}
699
700static int c3_cpu_count;
701static DEFINE_RAW_SPINLOCK(c3_lock);
702
703/**
704 * acpi_idle_enter_bm - enters C3 with proper BM handling
705 * @pr: Target processor
706 * @cx: Target state context
707 * @timer_bc: Whether or not to change timer mode to broadcast
708 */
709static void acpi_idle_enter_bm(struct acpi_processor *pr,
710 struct acpi_processor_cx *cx, bool timer_bc)
711{
712 acpi_unlazy_tlb(smp_processor_id());
713
714 /*
715 * Must be done before busmaster disable as we might need to
716 * access HPET !
717 */
718 if (timer_bc)
719 lapic_timer_state_broadcast(pr, cx, 1);
720
721 /*
722 * disable bus master
723 * bm_check implies we need ARB_DIS
724 * bm_control implies whether we can do ARB_DIS
725 *
726 * That leaves a case where bm_check is set and bm_control is
727 * not set. In that case we cannot do much, we enter C3
728 * without doing anything.
729 */
730 if (pr->flags.bm_control) {
731 raw_spin_lock(&c3_lock);
732 c3_cpu_count++;
733 /* Disable bus master arbitration when all CPUs are in C3 */
734 if (c3_cpu_count == num_online_cpus())
735 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
736 raw_spin_unlock(&c3_lock);
737 }
738
739 acpi_idle_do_entry(cx);
740
741 /* Re-enable bus master arbitration */
742 if (pr->flags.bm_control) {
743 raw_spin_lock(&c3_lock);
744 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
745 c3_cpu_count--;
746 raw_spin_unlock(&c3_lock);
747 }
748
749 if (timer_bc)
750 lapic_timer_state_broadcast(pr, cx, 0);
751}
752
753static int acpi_idle_enter(struct cpuidle_device *dev,
754 struct cpuidle_driver *drv, int index)
755{
756 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
757 struct acpi_processor *pr;
758
759 pr = __this_cpu_read(processors);
760 if (unlikely(!pr))
761 return -EINVAL;
762
763 if (cx->type != ACPI_STATE_C1) {
764 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
765 index = ACPI_IDLE_STATE_START;
766 cx = per_cpu(acpi_cstate[index], dev->cpu);
767 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
768 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
769 acpi_idle_enter_bm(pr, cx, true);
770 return index;
771 } else if (drv->safe_state_index >= 0) {
772 index = drv->safe_state_index;
773 cx = per_cpu(acpi_cstate[index], dev->cpu);
774 } else {
775 acpi_safe_halt();
776 return -EBUSY;
777 }
778 }
779 }
780
781 lapic_timer_state_broadcast(pr, cx, 1);
782
783 if (cx->type == ACPI_STATE_C3)
784 ACPI_FLUSH_CPU_CACHE();
785
786 acpi_idle_do_entry(cx);
787
788 lapic_timer_state_broadcast(pr, cx, 0);
789
790 return index;
791}
792
793static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
794 struct cpuidle_driver *drv, int index)
795{
796 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
797
798 if (cx->type == ACPI_STATE_C3) {
799 struct acpi_processor *pr = __this_cpu_read(processors);
800
801 if (unlikely(!pr))
802 return;
803
804 if (pr->flags.bm_check) {
805 acpi_idle_enter_bm(pr, cx, false);
806 return;
807 } else {
808 ACPI_FLUSH_CPU_CACHE();
809 }
810 }
811 acpi_idle_do_entry(cx);
812}
813
814static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
815 struct cpuidle_device *dev)
816{
817 int i, count = ACPI_IDLE_STATE_START;
818 struct acpi_processor_cx *cx;
819
820 if (max_cstate == 0)
821 max_cstate = 1;
822
823 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
824 cx = &pr->power.states[i];
825
826 if (!cx->valid)
827 continue;
828
829 per_cpu(acpi_cstate[count], dev->cpu) = cx;
830
831 count++;
832 if (count == CPUIDLE_STATE_MAX)
833 break;
834 }
835
836 if (!count)
837 return -EINVAL;
838
839 return 0;
840}
841
842static int acpi_processor_setup_cstates(struct acpi_processor *pr)
843{
844 int i, count;
845 struct acpi_processor_cx *cx;
846 struct cpuidle_state *state;
847 struct cpuidle_driver *drv = &acpi_idle_driver;
848
849 if (max_cstate == 0)
850 max_cstate = 1;
851
852 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
853 cpuidle_poll_state_init(drv);
854 count = 1;
855 } else {
856 count = 0;
857 }
858
859 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
860 cx = &pr->power.states[i];
861
862 if (!cx->valid)
863 continue;
864
865 state = &drv->states[count];
866 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
867 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
868 state->exit_latency = cx->latency;
869 state->target_residency = cx->latency * latency_factor;
870 state->enter = acpi_idle_enter;
871
872 state->flags = 0;
873 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
874 state->enter_dead = acpi_idle_play_dead;
875 drv->safe_state_index = count;
876 }
877 /*
878 * Halt-induced C1 is not good for ->enter_s2idle, because it
879 * re-enables interrupts on exit. Moreover, C1 is generally not
880 * particularly interesting from the suspend-to-idle angle, so
881 * avoid C1 and the situations in which we may need to fall back
882 * to it altogether.
883 */
884 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
885 state->enter_s2idle = acpi_idle_enter_s2idle;
886
887 count++;
888 if (count == CPUIDLE_STATE_MAX)
889 break;
890 }
891
892 drv->state_count = count;
893
894 if (!count)
895 return -EINVAL;
896
897 return 0;
898}
899
900static inline void acpi_processor_cstate_first_run_checks(void)
901{
902 acpi_status status;
903 static int first_run;
904
905 if (first_run)
906 return;
907 dmi_check_system(processor_power_dmi_table);
908 max_cstate = acpi_processor_cstate_check(max_cstate);
909 if (max_cstate < ACPI_C_STATES_MAX)
910 pr_notice("ACPI: processor limited to max C-state %d\n",
911 max_cstate);
912 first_run++;
913
914 if (acpi_gbl_FADT.cst_control && !nocst) {
915 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
916 acpi_gbl_FADT.cst_control, 8);
917 if (ACPI_FAILURE(status))
918 ACPI_EXCEPTION((AE_INFO, status,
919 "Notifying BIOS of _CST ability failed"));
920 }
921}
922#else
923
924static inline int disabled_by_idle_boot_param(void) { return 0; }
925static inline void acpi_processor_cstate_first_run_checks(void) { }
926static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
927{
928 return -ENODEV;
929}
930
931static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
932 struct cpuidle_device *dev)
933{
934 return -EINVAL;
935}
936
937static int acpi_processor_setup_cstates(struct acpi_processor *pr)
938{
939 return -EINVAL;
940}
941
942#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
943
944struct acpi_lpi_states_array {
945 unsigned int size;
946 unsigned int composite_states_size;
947 struct acpi_lpi_state *entries;
948 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
949};
950
951static int obj_get_integer(union acpi_object *obj, u32 *value)
952{
953 if (obj->type != ACPI_TYPE_INTEGER)
954 return -EINVAL;
955
956 *value = obj->integer.value;
957 return 0;
958}
959
960static int acpi_processor_evaluate_lpi(acpi_handle handle,
961 struct acpi_lpi_states_array *info)
962{
963 acpi_status status;
964 int ret = 0;
965 int pkg_count, state_idx = 1, loop;
966 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
967 union acpi_object *lpi_data;
968 struct acpi_lpi_state *lpi_state;
969
970 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
971 if (ACPI_FAILURE(status)) {
972 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
973 return -ENODEV;
974 }
975
976 lpi_data = buffer.pointer;
977
978 /* There must be at least 4 elements = 3 elements + 1 package */
979 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
980 lpi_data->package.count < 4) {
981 pr_debug("not enough elements in _LPI\n");
982 ret = -ENODATA;
983 goto end;
984 }
985
986 pkg_count = lpi_data->package.elements[2].integer.value;
987
988 /* Validate number of power states. */
989 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
990 pr_debug("count given by _LPI is not valid\n");
991 ret = -ENODATA;
992 goto end;
993 }
994
995 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
996 if (!lpi_state) {
997 ret = -ENOMEM;
998 goto end;
999 }
1000
1001 info->size = pkg_count;
1002 info->entries = lpi_state;
1003
1004 /* LPI States start at index 3 */
1005 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1006 union acpi_object *element, *pkg_elem, *obj;
1007
1008 element = &lpi_data->package.elements[loop];
1009 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1010 continue;
1011
1012 pkg_elem = element->package.elements;
1013
1014 obj = pkg_elem + 6;
1015 if (obj->type == ACPI_TYPE_BUFFER) {
1016 struct acpi_power_register *reg;
1017
1018 reg = (struct acpi_power_register *)obj->buffer.pointer;
1019 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1020 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1021 continue;
1022
1023 lpi_state->address = reg->address;
1024 lpi_state->entry_method =
1025 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1026 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1027 } else if (obj->type == ACPI_TYPE_INTEGER) {
1028 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1029 lpi_state->address = obj->integer.value;
1030 } else {
1031 continue;
1032 }
1033
1034 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1035
1036 obj = pkg_elem + 9;
1037 if (obj->type == ACPI_TYPE_STRING)
1038 strlcpy(lpi_state->desc, obj->string.pointer,
1039 ACPI_CX_DESC_LEN);
1040
1041 lpi_state->index = state_idx;
1042 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1043 pr_debug("No min. residency found, assuming 10 us\n");
1044 lpi_state->min_residency = 10;
1045 }
1046
1047 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1048 pr_debug("No wakeup residency found, assuming 10 us\n");
1049 lpi_state->wake_latency = 10;
1050 }
1051
1052 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1053 lpi_state->flags = 0;
1054
1055 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1056 lpi_state->arch_flags = 0;
1057
1058 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1059 lpi_state->res_cnt_freq = 1;
1060
1061 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1062 lpi_state->enable_parent_state = 0;
1063 }
1064
1065 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1066end:
1067 kfree(buffer.pointer);
1068 return ret;
1069}
1070
1071/*
1072 * flat_state_cnt - the number of composite LPI states after the process of flattening
1073 */
1074static int flat_state_cnt;
1075
1076/**
1077 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1078 *
1079 * @local: local LPI state
1080 * @parent: parent LPI state
1081 * @result: composite LPI state
1082 */
1083static bool combine_lpi_states(struct acpi_lpi_state *local,
1084 struct acpi_lpi_state *parent,
1085 struct acpi_lpi_state *result)
1086{
1087 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1088 if (!parent->address) /* 0 means autopromotable */
1089 return false;
1090 result->address = local->address + parent->address;
1091 } else {
1092 result->address = parent->address;
1093 }
1094
1095 result->min_residency = max(local->min_residency, parent->min_residency);
1096 result->wake_latency = local->wake_latency + parent->wake_latency;
1097 result->enable_parent_state = parent->enable_parent_state;
1098 result->entry_method = local->entry_method;
1099
1100 result->flags = parent->flags;
1101 result->arch_flags = parent->arch_flags;
1102 result->index = parent->index;
1103
1104 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1105 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1106 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1107 return true;
1108}
1109
1110#define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1111
1112static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1113 struct acpi_lpi_state *t)
1114{
1115 curr_level->composite_states[curr_level->composite_states_size++] = t;
1116}
1117
1118static int flatten_lpi_states(struct acpi_processor *pr,
1119 struct acpi_lpi_states_array *curr_level,
1120 struct acpi_lpi_states_array *prev_level)
1121{
1122 int i, j, state_count = curr_level->size;
1123 struct acpi_lpi_state *p, *t = curr_level->entries;
1124
1125 curr_level->composite_states_size = 0;
1126 for (j = 0; j < state_count; j++, t++) {
1127 struct acpi_lpi_state *flpi;
1128
1129 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1130 continue;
1131
1132 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1133 pr_warn("Limiting number of LPI states to max (%d)\n",
1134 ACPI_PROCESSOR_MAX_POWER);
1135 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1136 break;
1137 }
1138
1139 flpi = &pr->power.lpi_states[flat_state_cnt];
1140
1141 if (!prev_level) { /* leaf/processor node */
1142 memcpy(flpi, t, sizeof(*t));
1143 stash_composite_state(curr_level, flpi);
1144 flat_state_cnt++;
1145 continue;
1146 }
1147
1148 for (i = 0; i < prev_level->composite_states_size; i++) {
1149 p = prev_level->composite_states[i];
1150 if (t->index <= p->enable_parent_state &&
1151 combine_lpi_states(p, t, flpi)) {
1152 stash_composite_state(curr_level, flpi);
1153 flat_state_cnt++;
1154 flpi++;
1155 }
1156 }
1157 }
1158
1159 kfree(curr_level->entries);
1160 return 0;
1161}
1162
1163static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1164{
1165 int ret, i;
1166 acpi_status status;
1167 acpi_handle handle = pr->handle, pr_ahandle;
1168 struct acpi_device *d = NULL;
1169 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1170
1171 if (!osc_pc_lpi_support_confirmed)
1172 return -EOPNOTSUPP;
1173
1174 if (!acpi_has_method(handle, "_LPI"))
1175 return -EINVAL;
1176
1177 flat_state_cnt = 0;
1178 prev = &info[0];
1179 curr = &info[1];
1180 handle = pr->handle;
1181 ret = acpi_processor_evaluate_lpi(handle, prev);
1182 if (ret)
1183 return ret;
1184 flatten_lpi_states(pr, prev, NULL);
1185
1186 status = acpi_get_parent(handle, &pr_ahandle);
1187 while (ACPI_SUCCESS(status)) {
1188 acpi_bus_get_device(pr_ahandle, &d);
1189 handle = pr_ahandle;
1190
1191 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1192 break;
1193
1194 /* can be optional ? */
1195 if (!acpi_has_method(handle, "_LPI"))
1196 break;
1197
1198 ret = acpi_processor_evaluate_lpi(handle, curr);
1199 if (ret)
1200 break;
1201
1202 /* flatten all the LPI states in this level of hierarchy */
1203 flatten_lpi_states(pr, curr, prev);
1204
1205 tmp = prev, prev = curr, curr = tmp;
1206
1207 status = acpi_get_parent(handle, &pr_ahandle);
1208 }
1209
1210 pr->power.count = flat_state_cnt;
1211 /* reset the index after flattening */
1212 for (i = 0; i < pr->power.count; i++)
1213 pr->power.lpi_states[i].index = i;
1214
1215 /* Tell driver that _LPI is supported. */
1216 pr->flags.has_lpi = 1;
1217 pr->flags.power = 1;
1218
1219 return 0;
1220}
1221
1222int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1223{
1224 return -ENODEV;
1225}
1226
1227int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1228{
1229 return -ENODEV;
1230}
1231
1232/**
1233 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1234 * @dev: the target CPU
1235 * @drv: cpuidle driver containing cpuidle state info
1236 * @index: index of target state
1237 *
1238 * Return: 0 for success or negative value for error
1239 */
1240static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1241 struct cpuidle_driver *drv, int index)
1242{
1243 struct acpi_processor *pr;
1244 struct acpi_lpi_state *lpi;
1245
1246 pr = __this_cpu_read(processors);
1247
1248 if (unlikely(!pr))
1249 return -EINVAL;
1250
1251 lpi = &pr->power.lpi_states[index];
1252 if (lpi->entry_method == ACPI_CSTATE_FFH)
1253 return acpi_processor_ffh_lpi_enter(lpi);
1254
1255 return -EINVAL;
1256}
1257
1258static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1259{
1260 int i;
1261 struct acpi_lpi_state *lpi;
1262 struct cpuidle_state *state;
1263 struct cpuidle_driver *drv = &acpi_idle_driver;
1264
1265 if (!pr->flags.has_lpi)
1266 return -EOPNOTSUPP;
1267
1268 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1269 lpi = &pr->power.lpi_states[i];
1270
1271 state = &drv->states[i];
1272 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1273 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1274 state->exit_latency = lpi->wake_latency;
1275 state->target_residency = lpi->min_residency;
1276 if (lpi->arch_flags)
1277 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1278 state->enter = acpi_idle_lpi_enter;
1279 drv->safe_state_index = i;
1280 }
1281
1282 drv->state_count = i;
1283
1284 return 0;
1285}
1286
1287/**
1288 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1289 * global state data i.e. idle routines
1290 *
1291 * @pr: the ACPI processor
1292 */
1293static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1294{
1295 int i;
1296 struct cpuidle_driver *drv = &acpi_idle_driver;
1297
1298 if (!pr->flags.power_setup_done || !pr->flags.power)
1299 return -EINVAL;
1300
1301 drv->safe_state_index = -1;
1302 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1303 drv->states[i].name[0] = '\0';
1304 drv->states[i].desc[0] = '\0';
1305 }
1306
1307 if (pr->flags.has_lpi)
1308 return acpi_processor_setup_lpi_states(pr);
1309
1310 return acpi_processor_setup_cstates(pr);
1311}
1312
1313/**
1314 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1315 * device i.e. per-cpu data
1316 *
1317 * @pr: the ACPI processor
1318 * @dev : the cpuidle device
1319 */
1320static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1321 struct cpuidle_device *dev)
1322{
1323 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1324 return -EINVAL;
1325
1326 dev->cpu = pr->id;
1327 if (pr->flags.has_lpi)
1328 return acpi_processor_ffh_lpi_probe(pr->id);
1329
1330 return acpi_processor_setup_cpuidle_cx(pr, dev);
1331}
1332
1333static int acpi_processor_get_power_info(struct acpi_processor *pr)
1334{
1335 int ret;
1336
1337 ret = acpi_processor_get_lpi_info(pr);
1338 if (ret)
1339 ret = acpi_processor_get_cstate_info(pr);
1340
1341 return ret;
1342}
1343
1344int acpi_processor_hotplug(struct acpi_processor *pr)
1345{
1346 int ret = 0;
1347 struct cpuidle_device *dev;
1348
1349 if (disabled_by_idle_boot_param())
1350 return 0;
1351
1352 if (!pr->flags.power_setup_done)
1353 return -ENODEV;
1354
1355 dev = per_cpu(acpi_cpuidle_device, pr->id);
1356 cpuidle_pause_and_lock();
1357 cpuidle_disable_device(dev);
1358 ret = acpi_processor_get_power_info(pr);
1359 if (!ret && pr->flags.power) {
1360 acpi_processor_setup_cpuidle_dev(pr, dev);
1361 ret = cpuidle_enable_device(dev);
1362 }
1363 cpuidle_resume_and_unlock();
1364
1365 return ret;
1366}
1367
1368int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1369{
1370 int cpu;
1371 struct acpi_processor *_pr;
1372 struct cpuidle_device *dev;
1373
1374 if (disabled_by_idle_boot_param())
1375 return 0;
1376
1377 if (!pr->flags.power_setup_done)
1378 return -ENODEV;
1379
1380 /*
1381 * FIXME: Design the ACPI notification to make it once per
1382 * system instead of once per-cpu. This condition is a hack
1383 * to make the code that updates C-States be called once.
1384 */
1385
1386 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1387
1388 /* Protect against cpu-hotplug */
1389 get_online_cpus();
1390 cpuidle_pause_and_lock();
1391
1392 /* Disable all cpuidle devices */
1393 for_each_online_cpu(cpu) {
1394 _pr = per_cpu(processors, cpu);
1395 if (!_pr || !_pr->flags.power_setup_done)
1396 continue;
1397 dev = per_cpu(acpi_cpuidle_device, cpu);
1398 cpuidle_disable_device(dev);
1399 }
1400
1401 /* Populate Updated C-state information */
1402 acpi_processor_get_power_info(pr);
1403 acpi_processor_setup_cpuidle_states(pr);
1404
1405 /* Enable all cpuidle devices */
1406 for_each_online_cpu(cpu) {
1407 _pr = per_cpu(processors, cpu);
1408 if (!_pr || !_pr->flags.power_setup_done)
1409 continue;
1410 acpi_processor_get_power_info(_pr);
1411 if (_pr->flags.power) {
1412 dev = per_cpu(acpi_cpuidle_device, cpu);
1413 acpi_processor_setup_cpuidle_dev(_pr, dev);
1414 cpuidle_enable_device(dev);
1415 }
1416 }
1417 cpuidle_resume_and_unlock();
1418 put_online_cpus();
1419 }
1420
1421 return 0;
1422}
1423
1424static int acpi_processor_registered;
1425
1426int acpi_processor_power_init(struct acpi_processor *pr)
1427{
1428 int retval;
1429 struct cpuidle_device *dev;
1430
1431 if (disabled_by_idle_boot_param())
1432 return 0;
1433
1434 acpi_processor_cstate_first_run_checks();
1435
1436 if (!acpi_processor_get_power_info(pr))
1437 pr->flags.power_setup_done = 1;
1438
1439 /*
1440 * Install the idle handler if processor power management is supported.
1441 * Note that we use previously set idle handler will be used on
1442 * platforms that only support C1.
1443 */
1444 if (pr->flags.power) {
1445 /* Register acpi_idle_driver if not already registered */
1446 if (!acpi_processor_registered) {
1447 acpi_processor_setup_cpuidle_states(pr);
1448 retval = cpuidle_register_driver(&acpi_idle_driver);
1449 if (retval)
1450 return retval;
1451 pr_debug("%s registered with cpuidle\n",
1452 acpi_idle_driver.name);
1453 }
1454
1455 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1456 if (!dev)
1457 return -ENOMEM;
1458 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1459
1460 acpi_processor_setup_cpuidle_dev(pr, dev);
1461
1462 /* Register per-cpu cpuidle_device. Cpuidle driver
1463 * must already be registered before registering device
1464 */
1465 retval = cpuidle_register_device(dev);
1466 if (retval) {
1467 if (acpi_processor_registered == 0)
1468 cpuidle_unregister_driver(&acpi_idle_driver);
1469 return retval;
1470 }
1471 acpi_processor_registered++;
1472 }
1473 return 0;
1474}
1475
1476int acpi_processor_power_exit(struct acpi_processor *pr)
1477{
1478 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1479
1480 if (disabled_by_idle_boot_param())
1481 return 0;
1482
1483 if (pr->flags.power) {
1484 cpuidle_unregister_device(dev);
1485 acpi_processor_registered--;
1486 if (acpi_processor_registered == 0)
1487 cpuidle_unregister_driver(&acpi_idle_driver);
1488 }
1489
1490 pr->flags.power_setup_done = 0;
1491 return 0;
1492}