Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct vm86;
11
12#include <asm/math_emu.h>
13#include <asm/segment.h>
14#include <asm/types.h>
15#include <uapi/asm/sigcontext.h>
16#include <asm/current.h>
17#include <asm/cpufeatures.h>
18#include <asm/page.h>
19#include <asm/pgtable_types.h>
20#include <asm/percpu.h>
21#include <asm/msr.h>
22#include <asm/desc_defs.h>
23#include <asm/nops.h>
24#include <asm/special_insns.h>
25#include <asm/fpu/types.h>
26#include <asm/unwind_hints.h>
27
28#include <linux/personality.h>
29#include <linux/cache.h>
30#include <linux/threads.h>
31#include <linux/math64.h>
32#include <linux/err.h>
33#include <linux/irqflags.h>
34#include <linux/mem_encrypt.h>
35
36/*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42#define NET_IP_ALIGN 0
43
44#define HBP_NUM 4
45
46/*
47 * These alignment constraints are for performance in the vSMP case,
48 * but in the task_struct case we must also meet hardware imposed
49 * alignment requirements of the FPU state:
50 */
51#ifdef CONFIG_X86_VSMP
52# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
53# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
54#else
55# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
56# define ARCH_MIN_MMSTRUCT_ALIGN 0
57#endif
58
59enum tlb_infos {
60 ENTRIES,
61 NR_INFO
62};
63
64extern u16 __read_mostly tlb_lli_4k[NR_INFO];
65extern u16 __read_mostly tlb_lli_2m[NR_INFO];
66extern u16 __read_mostly tlb_lli_4m[NR_INFO];
67extern u16 __read_mostly tlb_lld_4k[NR_INFO];
68extern u16 __read_mostly tlb_lld_2m[NR_INFO];
69extern u16 __read_mostly tlb_lld_4m[NR_INFO];
70extern u16 __read_mostly tlb_lld_1g[NR_INFO];
71
72/*
73 * CPU type and hardware bug flags. Kept separately for each CPU.
74 * Members of this structure are referenced in head_32.S, so think twice
75 * before touching them. [mj]
76 */
77
78struct cpuinfo_x86 {
79 __u8 x86; /* CPU family */
80 __u8 x86_vendor; /* CPU vendor */
81 __u8 x86_model;
82 __u8 x86_stepping;
83#ifdef CONFIG_X86_64
84 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
85 int x86_tlbsize;
86#endif
87 __u8 x86_virt_bits;
88 __u8 x86_phys_bits;
89 /* CPUID returned core id bits: */
90 __u8 x86_coreid_bits;
91 __u8 cu_id;
92 /* Max extended CPUID function supported: */
93 __u32 extended_cpuid_level;
94 /* Maximum supported CPUID level, -1=no CPUID: */
95 int cpuid_level;
96 __u32 x86_capability[NCAPINTS + NBUGINTS];
97 char x86_vendor_id[16];
98 char x86_model_id[64];
99 /* in KB - valid for CPUS which support this call: */
100 unsigned int x86_cache_size;
101 int x86_cache_alignment; /* In bytes */
102 /* Cache QoS architectural values: */
103 int x86_cache_max_rmid; /* max index */
104 int x86_cache_occ_scale; /* scale to bytes */
105 int x86_power;
106 unsigned long loops_per_jiffy;
107 /* cpuid returned max cores value: */
108 u16 x86_max_cores;
109 u16 apicid;
110 u16 initial_apicid;
111 u16 x86_clflush_size;
112 /* number of cores as seen by the OS: */
113 u16 booted_cores;
114 /* Physical processor id: */
115 u16 phys_proc_id;
116 /* Logical processor id: */
117 u16 logical_proc_id;
118 /* Core id: */
119 u16 cpu_core_id;
120 /* Index into per_cpu list: */
121 u16 cpu_index;
122 u32 microcode;
123 /* Address space bits used by the cache internally */
124 u8 x86_cache_bits;
125 unsigned initialized : 1;
126} __randomize_layout;
127
128struct cpuid_regs {
129 u32 eax, ebx, ecx, edx;
130};
131
132enum cpuid_regs_idx {
133 CPUID_EAX = 0,
134 CPUID_EBX,
135 CPUID_ECX,
136 CPUID_EDX,
137};
138
139#define X86_VENDOR_INTEL 0
140#define X86_VENDOR_CYRIX 1
141#define X86_VENDOR_AMD 2
142#define X86_VENDOR_UMC 3
143#define X86_VENDOR_CENTAUR 5
144#define X86_VENDOR_TRANSMETA 7
145#define X86_VENDOR_NSC 8
146#define X86_VENDOR_HYGON 9
147#define X86_VENDOR_NUM 10
148
149#define X86_VENDOR_UNKNOWN 0xff
150
151/*
152 * capabilities of CPUs
153 */
154extern struct cpuinfo_x86 boot_cpu_data;
155extern struct cpuinfo_x86 new_cpu_data;
156
157extern struct x86_hw_tss doublefault_tss;
158extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
159extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
160
161#ifdef CONFIG_SMP
162DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
163#define cpu_data(cpu) per_cpu(cpu_info, cpu)
164#else
165#define cpu_info boot_cpu_data
166#define cpu_data(cpu) boot_cpu_data
167#endif
168
169extern const struct seq_operations cpuinfo_op;
170
171#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
172
173extern void cpu_detect(struct cpuinfo_x86 *c);
174
175static inline unsigned long long l1tf_pfn_limit(void)
176{
177 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
178}
179
180extern void early_cpu_init(void);
181extern void identify_boot_cpu(void);
182extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183extern void print_cpu_info(struct cpuinfo_x86 *);
184void print_cpu_msr(struct cpuinfo_x86 *);
185
186#ifdef CONFIG_X86_32
187extern int have_cpuid_p(void);
188#else
189static inline int have_cpuid_p(void)
190{
191 return 1;
192}
193#endif
194static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
195 unsigned int *ecx, unsigned int *edx)
196{
197 /* ecx is often an input as well as an output. */
198 asm volatile("cpuid"
199 : "=a" (*eax),
200 "=b" (*ebx),
201 "=c" (*ecx),
202 "=d" (*edx)
203 : "0" (*eax), "2" (*ecx)
204 : "memory");
205}
206
207#define native_cpuid_reg(reg) \
208static inline unsigned int native_cpuid_##reg(unsigned int op) \
209{ \
210 unsigned int eax = op, ebx, ecx = 0, edx; \
211 \
212 native_cpuid(&eax, &ebx, &ecx, &edx); \
213 \
214 return reg; \
215}
216
217/*
218 * Native CPUID functions returning a single datum.
219 */
220native_cpuid_reg(eax)
221native_cpuid_reg(ebx)
222native_cpuid_reg(ecx)
223native_cpuid_reg(edx)
224
225/*
226 * Friendlier CR3 helpers.
227 */
228static inline unsigned long read_cr3_pa(void)
229{
230 return __read_cr3() & CR3_ADDR_MASK;
231}
232
233static inline unsigned long native_read_cr3_pa(void)
234{
235 return __native_read_cr3() & CR3_ADDR_MASK;
236}
237
238static inline void load_cr3(pgd_t *pgdir)
239{
240 write_cr3(__sme_pa(pgdir));
241}
242
243/*
244 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
245 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
246 * unrelated to the task-switch mechanism:
247 */
248#ifdef CONFIG_X86_32
249/* This is the TSS defined by the hardware. */
250struct x86_hw_tss {
251 unsigned short back_link, __blh;
252 unsigned long sp0;
253 unsigned short ss0, __ss0h;
254 unsigned long sp1;
255
256 /*
257 * We don't use ring 1, so ss1 is a convenient scratch space in
258 * the same cacheline as sp0. We use ss1 to cache the value in
259 * MSR_IA32_SYSENTER_CS. When we context switch
260 * MSR_IA32_SYSENTER_CS, we first check if the new value being
261 * written matches ss1, and, if it's not, then we wrmsr the new
262 * value and update ss1.
263 *
264 * The only reason we context switch MSR_IA32_SYSENTER_CS is
265 * that we set it to zero in vm86 tasks to avoid corrupting the
266 * stack if we were to go through the sysenter path from vm86
267 * mode.
268 */
269 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
270
271 unsigned short __ss1h;
272 unsigned long sp2;
273 unsigned short ss2, __ss2h;
274 unsigned long __cr3;
275 unsigned long ip;
276 unsigned long flags;
277 unsigned long ax;
278 unsigned long cx;
279 unsigned long dx;
280 unsigned long bx;
281 unsigned long sp;
282 unsigned long bp;
283 unsigned long si;
284 unsigned long di;
285 unsigned short es, __esh;
286 unsigned short cs, __csh;
287 unsigned short ss, __ssh;
288 unsigned short ds, __dsh;
289 unsigned short fs, __fsh;
290 unsigned short gs, __gsh;
291 unsigned short ldt, __ldth;
292 unsigned short trace;
293 unsigned short io_bitmap_base;
294
295} __attribute__((packed));
296#else
297struct x86_hw_tss {
298 u32 reserved1;
299 u64 sp0;
300
301 /*
302 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
303 * Linux does not use ring 1, so sp1 is not otherwise needed.
304 */
305 u64 sp1;
306
307 /*
308 * Since Linux does not use ring 2, the 'sp2' slot is unused by
309 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
310 * the user RSP value.
311 */
312 u64 sp2;
313
314 u64 reserved2;
315 u64 ist[7];
316 u32 reserved3;
317 u32 reserved4;
318 u16 reserved5;
319 u16 io_bitmap_base;
320
321} __attribute__((packed));
322#endif
323
324/*
325 * IO-bitmap sizes:
326 */
327#define IO_BITMAP_BITS 65536
328#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
329#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
330#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
331#define INVALID_IO_BITMAP_OFFSET 0x8000
332
333struct entry_stack {
334 unsigned long words[64];
335};
336
337struct entry_stack_page {
338 struct entry_stack stack;
339} __aligned(PAGE_SIZE);
340
341struct tss_struct {
342 /*
343 * The fixed hardware portion. This must not cross a page boundary
344 * at risk of violating the SDM's advice and potentially triggering
345 * errata.
346 */
347 struct x86_hw_tss x86_tss;
348
349 /*
350 * The extra 1 is there because the CPU will access an
351 * additional byte beyond the end of the IO permission
352 * bitmap. The extra byte must be all 1 bits, and must
353 * be within the limit.
354 */
355 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
356} __aligned(PAGE_SIZE);
357
358DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
359
360/*
361 * sizeof(unsigned long) coming from an extra "long" at the end
362 * of the iobitmap.
363 *
364 * -1? seg base+limit should be pointing to the address of the
365 * last valid byte
366 */
367#define __KERNEL_TSS_LIMIT \
368 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
369
370/* Per CPU interrupt stacks */
371struct irq_stack {
372 char stack[IRQ_STACK_SIZE];
373} __aligned(IRQ_STACK_SIZE);
374
375DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
376
377#ifdef CONFIG_X86_32
378DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
379#else
380/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
381#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
382#endif
383
384#ifdef CONFIG_X86_64
385struct fixed_percpu_data {
386 /*
387 * GCC hardcodes the stack canary as %gs:40. Since the
388 * irq_stack is the object at %gs:0, we reserve the bottom
389 * 48 bytes of the irq stack for the canary.
390 */
391 char gs_base[40];
392 unsigned long stack_canary;
393};
394
395DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
396DECLARE_INIT_PER_CPU(fixed_percpu_data);
397
398static inline unsigned long cpu_kernelmode_gs_base(int cpu)
399{
400 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
401}
402
403DECLARE_PER_CPU(unsigned int, irq_count);
404extern asmlinkage void ignore_sysret(void);
405
406#if IS_ENABLED(CONFIG_KVM)
407/* Save actual FS/GS selectors and bases to current->thread */
408void save_fsgs_for_kvm(void);
409#endif
410#else /* X86_64 */
411#ifdef CONFIG_STACKPROTECTOR
412/*
413 * Make sure stack canary segment base is cached-aligned:
414 * "For Intel Atom processors, avoid non zero segment base address
415 * that is not aligned to cache line boundary at all cost."
416 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
417 */
418struct stack_canary {
419 char __pad[20]; /* canary at %gs:20 */
420 unsigned long canary;
421};
422DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
423#endif
424/* Per CPU softirq stack pointer */
425DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
426#endif /* X86_64 */
427
428extern unsigned int fpu_kernel_xstate_size;
429extern unsigned int fpu_user_xstate_size;
430
431struct perf_event;
432
433typedef struct {
434 unsigned long seg;
435} mm_segment_t;
436
437struct thread_struct {
438 /* Cached TLS descriptors: */
439 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
440#ifdef CONFIG_X86_32
441 unsigned long sp0;
442#endif
443 unsigned long sp;
444#ifdef CONFIG_X86_32
445 unsigned long sysenter_cs;
446#else
447 unsigned short es;
448 unsigned short ds;
449 unsigned short fsindex;
450 unsigned short gsindex;
451#endif
452
453#ifdef CONFIG_X86_64
454 unsigned long fsbase;
455 unsigned long gsbase;
456#else
457 /*
458 * XXX: this could presumably be unsigned short. Alternatively,
459 * 32-bit kernels could be taught to use fsindex instead.
460 */
461 unsigned long fs;
462 unsigned long gs;
463#endif
464
465 /* Save middle states of ptrace breakpoints */
466 struct perf_event *ptrace_bps[HBP_NUM];
467 /* Debug status used for traps, single steps, etc... */
468 unsigned long debugreg6;
469 /* Keep track of the exact dr7 value set by the user */
470 unsigned long ptrace_dr7;
471 /* Fault info: */
472 unsigned long cr2;
473 unsigned long trap_nr;
474 unsigned long error_code;
475#ifdef CONFIG_VM86
476 /* Virtual 86 mode info */
477 struct vm86 *vm86;
478#endif
479 /* IO permissions: */
480 unsigned long *io_bitmap_ptr;
481 unsigned long iopl;
482 /* Max allowed port in the bitmap, in bytes: */
483 unsigned io_bitmap_max;
484
485 mm_segment_t addr_limit;
486
487 unsigned int sig_on_uaccess_err:1;
488 unsigned int uaccess_err:1; /* uaccess failed */
489
490 /* Floating point and extended processor state */
491 struct fpu fpu;
492 /*
493 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
494 * the end.
495 */
496};
497
498/* Whitelist the FPU state from the task_struct for hardened usercopy. */
499static inline void arch_thread_struct_whitelist(unsigned long *offset,
500 unsigned long *size)
501{
502 *offset = offsetof(struct thread_struct, fpu.state);
503 *size = fpu_kernel_xstate_size;
504}
505
506/*
507 * Thread-synchronous status.
508 *
509 * This is different from the flags in that nobody else
510 * ever touches our thread-synchronous status, so we don't
511 * have to worry about atomic accesses.
512 */
513#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
514
515/*
516 * Set IOPL bits in EFLAGS from given mask
517 */
518static inline void native_set_iopl_mask(unsigned mask)
519{
520#ifdef CONFIG_X86_32
521 unsigned int reg;
522
523 asm volatile ("pushfl;"
524 "popl %0;"
525 "andl %1, %0;"
526 "orl %2, %0;"
527 "pushl %0;"
528 "popfl"
529 : "=&r" (reg)
530 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
531#endif
532}
533
534static inline void
535native_load_sp0(unsigned long sp0)
536{
537 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
538}
539
540static inline void native_swapgs(void)
541{
542#ifdef CONFIG_X86_64
543 asm volatile("swapgs" ::: "memory");
544#endif
545}
546
547static inline unsigned long current_top_of_stack(void)
548{
549 /*
550 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
551 * and around vm86 mode and sp0 on x86_64 is special because of the
552 * entry trampoline.
553 */
554 return this_cpu_read_stable(cpu_current_top_of_stack);
555}
556
557static inline bool on_thread_stack(void)
558{
559 return (unsigned long)(current_top_of_stack() -
560 current_stack_pointer) < THREAD_SIZE;
561}
562
563#ifdef CONFIG_PARAVIRT_XXL
564#include <asm/paravirt.h>
565#else
566#define __cpuid native_cpuid
567
568static inline void load_sp0(unsigned long sp0)
569{
570 native_load_sp0(sp0);
571}
572
573#define set_iopl_mask native_set_iopl_mask
574#endif /* CONFIG_PARAVIRT_XXL */
575
576/* Free all resources held by a thread. */
577extern void release_thread(struct task_struct *);
578
579unsigned long get_wchan(struct task_struct *p);
580
581/*
582 * Generic CPUID function
583 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
584 * resulting in stale register contents being returned.
585 */
586static inline void cpuid(unsigned int op,
587 unsigned int *eax, unsigned int *ebx,
588 unsigned int *ecx, unsigned int *edx)
589{
590 *eax = op;
591 *ecx = 0;
592 __cpuid(eax, ebx, ecx, edx);
593}
594
595/* Some CPUID calls want 'count' to be placed in ecx */
596static inline void cpuid_count(unsigned int op, int count,
597 unsigned int *eax, unsigned int *ebx,
598 unsigned int *ecx, unsigned int *edx)
599{
600 *eax = op;
601 *ecx = count;
602 __cpuid(eax, ebx, ecx, edx);
603}
604
605/*
606 * CPUID functions returning a single datum
607 */
608static inline unsigned int cpuid_eax(unsigned int op)
609{
610 unsigned int eax, ebx, ecx, edx;
611
612 cpuid(op, &eax, &ebx, &ecx, &edx);
613
614 return eax;
615}
616
617static inline unsigned int cpuid_ebx(unsigned int op)
618{
619 unsigned int eax, ebx, ecx, edx;
620
621 cpuid(op, &eax, &ebx, &ecx, &edx);
622
623 return ebx;
624}
625
626static inline unsigned int cpuid_ecx(unsigned int op)
627{
628 unsigned int eax, ebx, ecx, edx;
629
630 cpuid(op, &eax, &ebx, &ecx, &edx);
631
632 return ecx;
633}
634
635static inline unsigned int cpuid_edx(unsigned int op)
636{
637 unsigned int eax, ebx, ecx, edx;
638
639 cpuid(op, &eax, &ebx, &ecx, &edx);
640
641 return edx;
642}
643
644/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
645static __always_inline void rep_nop(void)
646{
647 asm volatile("rep; nop" ::: "memory");
648}
649
650static __always_inline void cpu_relax(void)
651{
652 rep_nop();
653}
654
655/*
656 * This function forces the icache and prefetched instruction stream to
657 * catch up with reality in two very specific cases:
658 *
659 * a) Text was modified using one virtual address and is about to be executed
660 * from the same physical page at a different virtual address.
661 *
662 * b) Text was modified on a different CPU, may subsequently be
663 * executed on this CPU, and you want to make sure the new version
664 * gets executed. This generally means you're calling this in a IPI.
665 *
666 * If you're calling this for a different reason, you're probably doing
667 * it wrong.
668 */
669static inline void sync_core(void)
670{
671 /*
672 * There are quite a few ways to do this. IRET-to-self is nice
673 * because it works on every CPU, at any CPL (so it's compatible
674 * with paravirtualization), and it never exits to a hypervisor.
675 * The only down sides are that it's a bit slow (it seems to be
676 * a bit more than 2x slower than the fastest options) and that
677 * it unmasks NMIs. The "push %cs" is needed because, in
678 * paravirtual environments, __KERNEL_CS may not be a valid CS
679 * value when we do IRET directly.
680 *
681 * In case NMI unmasking or performance ever becomes a problem,
682 * the next best option appears to be MOV-to-CR2 and an
683 * unconditional jump. That sequence also works on all CPUs,
684 * but it will fault at CPL3 (i.e. Xen PV).
685 *
686 * CPUID is the conventional way, but it's nasty: it doesn't
687 * exist on some 486-like CPUs, and it usually exits to a
688 * hypervisor.
689 *
690 * Like all of Linux's memory ordering operations, this is a
691 * compiler barrier as well.
692 */
693#ifdef CONFIG_X86_32
694 asm volatile (
695 "pushfl\n\t"
696 "pushl %%cs\n\t"
697 "pushl $1f\n\t"
698 "iret\n\t"
699 "1:"
700 : ASM_CALL_CONSTRAINT : : "memory");
701#else
702 unsigned int tmp;
703
704 asm volatile (
705 UNWIND_HINT_SAVE
706 "mov %%ss, %0\n\t"
707 "pushq %q0\n\t"
708 "pushq %%rsp\n\t"
709 "addq $8, (%%rsp)\n\t"
710 "pushfq\n\t"
711 "mov %%cs, %0\n\t"
712 "pushq %q0\n\t"
713 "pushq $1f\n\t"
714 "iretq\n\t"
715 UNWIND_HINT_RESTORE
716 "1:"
717 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
718#endif
719}
720
721extern void select_idle_routine(const struct cpuinfo_x86 *c);
722extern void amd_e400_c1e_apic_setup(void);
723
724extern unsigned long boot_option_idle_override;
725
726enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
727 IDLE_POLL};
728
729extern void enable_sep_cpu(void);
730extern int sysenter_setup(void);
731
732
733/* Defined in head.S */
734extern struct desc_ptr early_gdt_descr;
735
736extern void switch_to_new_gdt(int);
737extern void load_direct_gdt(int);
738extern void load_fixmap_gdt(int);
739extern void load_percpu_segment(int);
740extern void cpu_init(void);
741
742static inline unsigned long get_debugctlmsr(void)
743{
744 unsigned long debugctlmsr = 0;
745
746#ifndef CONFIG_X86_DEBUGCTLMSR
747 if (boot_cpu_data.x86 < 6)
748 return 0;
749#endif
750 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
751
752 return debugctlmsr;
753}
754
755static inline void update_debugctlmsr(unsigned long debugctlmsr)
756{
757#ifndef CONFIG_X86_DEBUGCTLMSR
758 if (boot_cpu_data.x86 < 6)
759 return;
760#endif
761 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
762}
763
764extern void set_task_blockstep(struct task_struct *task, bool on);
765
766/* Boot loader type from the setup header: */
767extern int bootloader_type;
768extern int bootloader_version;
769
770extern char ignore_fpu_irq;
771
772#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
773#define ARCH_HAS_PREFETCHW
774#define ARCH_HAS_SPINLOCK_PREFETCH
775
776#ifdef CONFIG_X86_32
777# define BASE_PREFETCH ""
778# define ARCH_HAS_PREFETCH
779#else
780# define BASE_PREFETCH "prefetcht0 %P1"
781#endif
782
783/*
784 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
785 *
786 * It's not worth to care about 3dnow prefetches for the K6
787 * because they are microcoded there and very slow.
788 */
789static inline void prefetch(const void *x)
790{
791 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
792 X86_FEATURE_XMM,
793 "m" (*(const char *)x));
794}
795
796/*
797 * 3dnow prefetch to get an exclusive cache line.
798 * Useful for spinlocks to avoid one state transition in the
799 * cache coherency protocol:
800 */
801static inline void prefetchw(const void *x)
802{
803 alternative_input(BASE_PREFETCH, "prefetchw %P1",
804 X86_FEATURE_3DNOWPREFETCH,
805 "m" (*(const char *)x));
806}
807
808static inline void spin_lock_prefetch(const void *x)
809{
810 prefetchw(x);
811}
812
813#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
814 TOP_OF_KERNEL_STACK_PADDING)
815
816#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
817
818#define task_pt_regs(task) \
819({ \
820 unsigned long __ptr = (unsigned long)task_stack_page(task); \
821 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
822 ((struct pt_regs *)__ptr) - 1; \
823})
824
825#ifdef CONFIG_X86_32
826/*
827 * User space process size: 3GB (default).
828 */
829#define IA32_PAGE_OFFSET PAGE_OFFSET
830#define TASK_SIZE PAGE_OFFSET
831#define TASK_SIZE_LOW TASK_SIZE
832#define TASK_SIZE_MAX TASK_SIZE
833#define DEFAULT_MAP_WINDOW TASK_SIZE
834#define STACK_TOP TASK_SIZE
835#define STACK_TOP_MAX STACK_TOP
836
837#define INIT_THREAD { \
838 .sp0 = TOP_OF_INIT_STACK, \
839 .sysenter_cs = __KERNEL_CS, \
840 .io_bitmap_ptr = NULL, \
841 .addr_limit = KERNEL_DS, \
842}
843
844#define KSTK_ESP(task) (task_pt_regs(task)->sp)
845
846#else
847/*
848 * User space process size. This is the first address outside the user range.
849 * There are a few constraints that determine this:
850 *
851 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
852 * address, then that syscall will enter the kernel with a
853 * non-canonical return address, and SYSRET will explode dangerously.
854 * We avoid this particular problem by preventing anything executable
855 * from being mapped at the maximum canonical address.
856 *
857 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
858 * CPUs malfunction if they execute code from the highest canonical page.
859 * They'll speculate right off the end of the canonical space, and
860 * bad things happen. This is worked around in the same way as the
861 * Intel problem.
862 *
863 * With page table isolation enabled, we map the LDT in ... [stay tuned]
864 */
865#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
866
867#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
868
869/* This decides where the kernel will search for a free chunk of vm
870 * space during mmap's.
871 */
872#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
873 0xc0000000 : 0xFFFFe000)
874
875#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
876 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
877#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
878 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
879#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
880 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
881
882#define STACK_TOP TASK_SIZE_LOW
883#define STACK_TOP_MAX TASK_SIZE_MAX
884
885#define INIT_THREAD { \
886 .addr_limit = KERNEL_DS, \
887}
888
889extern unsigned long KSTK_ESP(struct task_struct *task);
890
891#endif /* CONFIG_X86_64 */
892
893extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
894 unsigned long new_sp);
895
896/*
897 * This decides where the kernel will search for a free chunk of vm
898 * space during mmap's.
899 */
900#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
901#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
902
903#define KSTK_EIP(task) (task_pt_regs(task)->ip)
904
905/* Get/set a process' ability to use the timestamp counter instruction */
906#define GET_TSC_CTL(adr) get_tsc_mode((adr))
907#define SET_TSC_CTL(val) set_tsc_mode((val))
908
909extern int get_tsc_mode(unsigned long adr);
910extern int set_tsc_mode(unsigned int val);
911
912DECLARE_PER_CPU(u64, msr_misc_features_shadow);
913
914/* Register/unregister a process' MPX related resource */
915#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
916#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
917
918#ifdef CONFIG_X86_INTEL_MPX
919extern int mpx_enable_management(void);
920extern int mpx_disable_management(void);
921#else
922static inline int mpx_enable_management(void)
923{
924 return -EINVAL;
925}
926static inline int mpx_disable_management(void)
927{
928 return -EINVAL;
929}
930#endif /* CONFIG_X86_INTEL_MPX */
931
932#ifdef CONFIG_CPU_SUP_AMD
933extern u16 amd_get_nb_id(int cpu);
934extern u32 amd_get_nodes_per_socket(void);
935#else
936static inline u16 amd_get_nb_id(int cpu) { return 0; }
937static inline u32 amd_get_nodes_per_socket(void) { return 0; }
938#endif
939
940static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
941{
942 uint32_t base, eax, signature[3];
943
944 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
945 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
946
947 if (!memcmp(sig, signature, 12) &&
948 (leaves == 0 || ((eax - base) >= leaves)))
949 return base;
950 }
951
952 return 0;
953}
954
955extern unsigned long arch_align_stack(unsigned long sp);
956void free_init_pages(const char *what, unsigned long begin, unsigned long end);
957extern void free_kernel_image_pages(void *begin, void *end);
958
959void default_idle(void);
960#ifdef CONFIG_XEN
961bool xen_set_default_idle(void);
962#else
963#define xen_set_default_idle 0
964#endif
965
966void stop_this_cpu(void *dummy);
967void df_debug(struct pt_regs *regs, long error_code);
968void microcode_check(void);
969
970enum l1tf_mitigations {
971 L1TF_MITIGATION_OFF,
972 L1TF_MITIGATION_FLUSH_NOWARN,
973 L1TF_MITIGATION_FLUSH,
974 L1TF_MITIGATION_FLUSH_NOSMT,
975 L1TF_MITIGATION_FULL,
976 L1TF_MITIGATION_FULL_FORCE
977};
978
979extern enum l1tf_mitigations l1tf_mitigation;
980
981enum mds_mitigations {
982 MDS_MITIGATION_OFF,
983 MDS_MITIGATION_FULL,
984 MDS_MITIGATION_VMWERV,
985};
986
987#endif /* _ASM_X86_PROCESSOR_H */