at v5.2 472 lines 14 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Page table support for the Hexagon architecture 4 * 5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 6 */ 7 8#ifndef _ASM_PGTABLE_H 9#define _ASM_PGTABLE_H 10 11/* 12 * Page table definitions for Qualcomm Hexagon processor. 13 */ 14#include <asm/page.h> 15#define __ARCH_USE_5LEVEL_HACK 16#include <asm-generic/pgtable-nopmd.h> 17 18/* A handy thing to have if one has the RAM. Declared in head.S */ 19extern unsigned long empty_zero_page; 20 21/* 22 * The PTE model described here is that of the Hexagon Virtual Machine, 23 * which autonomously walks 2-level page tables. At a lower level, we 24 * also describe the RISCish software-loaded TLB entry structure of 25 * the underlying Hexagon processor. A kernel built to run on the 26 * virtual machine has no need to know about the underlying hardware. 27 */ 28#include <asm/vm_mmu.h> 29 30/* 31 * To maximize the comfort level for the PTE manipulation macros, 32 * define the "well known" architecture-specific bits. 33 */ 34#define _PAGE_READ __HVM_PTE_R 35#define _PAGE_WRITE __HVM_PTE_W 36#define _PAGE_EXECUTE __HVM_PTE_X 37#define _PAGE_USER __HVM_PTE_U 38 39/* 40 * We have a total of 4 "soft" bits available in the abstract PTE. 41 * The two mandatory software bits are Dirty and Accessed. 42 * To make nonlinear swap work according to the more recent 43 * model, we want a low order "Present" bit to indicate whether 44 * the PTE describes MMU programming or swap space. 45 */ 46#define _PAGE_PRESENT (1<<0) 47#define _PAGE_DIRTY (1<<1) 48#define _PAGE_ACCESSED (1<<2) 49 50/* 51 * For now, let's say that Valid and Present are the same thing. 52 * Alternatively, we could say that it's the "or" of R, W, and X 53 * permissions. 54 */ 55#define _PAGE_VALID _PAGE_PRESENT 56 57/* 58 * We're not defining _PAGE_GLOBAL here, since there's no concept 59 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 60 * and we want to use the same page table structures and macros in 61 * the native kernel as we do in the virtual machine kernel. 62 * So we'll put up with a bit of inefficiency for now... 63 */ 64 65/* 66 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 67 * only the second from the bottom, pgd and pud both being collapsed. 68 * Each entry represents 4MB of virtual address space, 4K of table 69 * thus maps the full 4GB. 70 */ 71#define PGDIR_SHIFT 22 72#define PTRS_PER_PGD 1024 73 74#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 75#define PGDIR_MASK (~(PGDIR_SIZE-1)) 76 77#ifdef CONFIG_PAGE_SIZE_4KB 78#define PTRS_PER_PTE 1024 79#endif 80 81#ifdef CONFIG_PAGE_SIZE_16KB 82#define PTRS_PER_PTE 256 83#endif 84 85#ifdef CONFIG_PAGE_SIZE_64KB 86#define PTRS_PER_PTE 64 87#endif 88 89#ifdef CONFIG_PAGE_SIZE_256KB 90#define PTRS_PER_PTE 16 91#endif 92 93#ifdef CONFIG_PAGE_SIZE_1MB 94#define PTRS_PER_PTE 4 95#endif 96 97/* Any bigger and the PTE disappears. */ 98#define pgd_ERROR(e) \ 99 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 100 pgd_val(e)) 101 102/* 103 * Page Protection Constants. Includes (in this variant) cache attributes. 104 */ 105extern unsigned long _dflt_cache_att; 106 107#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 108 _dflt_cache_att) 109#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 110 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 111#define PAGE_COPY PAGE_READONLY 112#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 113 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 114#define PAGE_COPY_EXEC PAGE_EXEC 115#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 116 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 117#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 118 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 119 120 121/* 122 * Aliases for mapping mmap() protection bits to page protections. 123 * These get used for static initialization, so using the _dflt_cache_att 124 * variable for the default cache attribute isn't workable. If the 125 * default gets changed at boot time, the boot option code has to 126 * update data structures like the protaction_map[] array. 127 */ 128#define CACHEDEF (CACHE_DEFAULT << 6) 129 130/* Private (copy-on-write) page protections. */ 131#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 132#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 133#define __P010 __P000 /* Write-only copy-on-write */ 134#define __P011 __P001 /* Read/Write copy-on-write */ 135#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 136 _PAGE_EXECUTE | CACHEDEF) 137#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 138 _PAGE_READ | CACHEDEF) 139#define __P110 __P100 /* Write/execute copy-on-write */ 140#define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 141 142/* Shared page protections. */ 143#define __S000 __P000 144#define __S001 __P001 145#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 146 _PAGE_WRITE | CACHEDEF) 147#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 148 _PAGE_WRITE | CACHEDEF) 149#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 150 _PAGE_EXECUTE | CACHEDEF) 151#define __S101 __P101 152#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 153 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 154#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 155 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 156 157extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 158 159/* Seems to be zero even in architectures where the zero page is firewalled? */ 160#define FIRST_USER_ADDRESS 0UL 161#define pte_special(pte) 0 162#define pte_mkspecial(pte) (pte) 163 164/* HUGETLB not working currently */ 165#ifdef CONFIG_HUGETLB_PAGE 166#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 167#endif 168 169/* 170 * For now, assume that higher-level code will do TLB/MMU invalidations 171 * and don't insert that overhead into this low-level function. 172 */ 173extern void sync_icache_dcache(pte_t pte); 174 175#define pte_present_exec_user(pte) \ 176 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 177 (_PAGE_EXECUTE | _PAGE_USER)) 178 179static inline void set_pte(pte_t *ptep, pte_t pteval) 180{ 181 /* should really be using pte_exec, if it weren't declared later. */ 182 if (pte_present_exec_user(pteval)) 183 sync_icache_dcache(pteval); 184 185 *ptep = pteval; 186} 187 188/* 189 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 190 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 191 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 192 * as a universal null entry, but some of those least significant bits 193 * are interpreted by software. 194 */ 195#define _NULL_PMD 0x7 196#define _NULL_PTE 0x0 197 198static inline void pmd_clear(pmd_t *pmd_entry_ptr) 199{ 200 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 201} 202 203/* 204 * Conveniently, a null PTE value is invalid. 205 */ 206static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 207 pte_t *ptep) 208{ 209 pte_val(*ptep) = _NULL_PTE; 210} 211 212#ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL 213/** 214 * pmd_index - returns the index of the entry in the PMD page 215 * which would control the given virtual address 216 */ 217#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 218 219#endif 220 221/** 222 * pgd_index - returns the index of the entry in the PGD page 223 * which would control the given virtual address 224 * 225 * This returns the *index* for the address in the pgd_t 226 */ 227#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 228 229/* 230 * pgd_offset - find an offset in a page-table-directory 231 */ 232#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) 233 234/* 235 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr 236 */ 237#define pgd_offset_k(address) pgd_offset(&init_mm, address) 238 239/** 240 * pmd_none - check if pmd_entry is mapped 241 * @pmd_entry: pmd entry 242 * 243 * MIPS checks it against that "invalid pte table" thing. 244 */ 245static inline int pmd_none(pmd_t pmd) 246{ 247 return pmd_val(pmd) == _NULL_PMD; 248} 249 250/** 251 * pmd_present - is there a page table behind this? 252 * Essentially the inverse of pmd_none. We maybe 253 * save an inline instruction by defining it this 254 * way, instead of simply "!pmd_none". 255 */ 256static inline int pmd_present(pmd_t pmd) 257{ 258 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 259} 260 261/** 262 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 263 * As we have no known cause of badness, it's null, as it is for many 264 * architectures. 265 */ 266static inline int pmd_bad(pmd_t pmd) 267{ 268 return 0; 269} 270 271/* 272 * pmd_page - converts a PMD entry to a page pointer 273 */ 274#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 275#define pmd_pgtable(pmd) pmd_page(pmd) 276 277/** 278 * pte_none - check if pte is mapped 279 * @pte: pte_t entry 280 */ 281static inline int pte_none(pte_t pte) 282{ 283 return pte_val(pte) == _NULL_PTE; 284}; 285 286/* 287 * pte_present - check if page is present 288 */ 289static inline int pte_present(pte_t pte) 290{ 291 return pte_val(pte) & _PAGE_PRESENT; 292} 293 294/* mk_pte - make a PTE out of a page pointer and protection bits */ 295#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 296 297/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 298#define pte_page(x) pfn_to_page(pte_pfn(x)) 299 300/* pte_mkold - mark PTE as not recently accessed */ 301static inline pte_t pte_mkold(pte_t pte) 302{ 303 pte_val(pte) &= ~_PAGE_ACCESSED; 304 return pte; 305} 306 307/* pte_mkyoung - mark PTE as recently accessed */ 308static inline pte_t pte_mkyoung(pte_t pte) 309{ 310 pte_val(pte) |= _PAGE_ACCESSED; 311 return pte; 312} 313 314/* pte_mkclean - mark page as in sync with backing store */ 315static inline pte_t pte_mkclean(pte_t pte) 316{ 317 pte_val(pte) &= ~_PAGE_DIRTY; 318 return pte; 319} 320 321/* pte_mkdirty - mark page as modified */ 322static inline pte_t pte_mkdirty(pte_t pte) 323{ 324 pte_val(pte) |= _PAGE_DIRTY; 325 return pte; 326} 327 328/* pte_young - "is PTE marked as accessed"? */ 329static inline int pte_young(pte_t pte) 330{ 331 return pte_val(pte) & _PAGE_ACCESSED; 332} 333 334/* pte_dirty - "is PTE dirty?" */ 335static inline int pte_dirty(pte_t pte) 336{ 337 return pte_val(pte) & _PAGE_DIRTY; 338} 339 340/* pte_modify - set protection bits on PTE */ 341static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 342{ 343 pte_val(pte) &= PAGE_MASK; 344 pte_val(pte) |= pgprot_val(prot); 345 return pte; 346} 347 348/* pte_wrprotect - mark page as not writable */ 349static inline pte_t pte_wrprotect(pte_t pte) 350{ 351 pte_val(pte) &= ~_PAGE_WRITE; 352 return pte; 353} 354 355/* pte_mkwrite - mark page as writable */ 356static inline pte_t pte_mkwrite(pte_t pte) 357{ 358 pte_val(pte) |= _PAGE_WRITE; 359 return pte; 360} 361 362/* pte_mkexec - mark PTE as executable */ 363static inline pte_t pte_mkexec(pte_t pte) 364{ 365 pte_val(pte) |= _PAGE_EXECUTE; 366 return pte; 367} 368 369/* pte_read - "is PTE marked as readable?" */ 370static inline int pte_read(pte_t pte) 371{ 372 return pte_val(pte) & _PAGE_READ; 373} 374 375/* pte_write - "is PTE marked as writable?" */ 376static inline int pte_write(pte_t pte) 377{ 378 return pte_val(pte) & _PAGE_WRITE; 379} 380 381 382/* pte_exec - "is PTE marked as executable?" */ 383static inline int pte_exec(pte_t pte) 384{ 385 return pte_val(pte) & _PAGE_EXECUTE; 386} 387 388/* __pte_to_swp_entry - extract swap entry from PTE */ 389#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 390 391/* __swp_entry_to_pte - extract PTE from swap entry */ 392#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 393 394/* pfn_pte - convert page number and protection value to page table entry */ 395#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 396 397/* pte_pfn - convert pte to page frame number */ 398#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 399#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 400 401/* 402 * set_pte_at - update page table and do whatever magic may be 403 * necessary to make the underlying hardware/firmware take note. 404 * 405 * VM may require a virtual instruction to alert the MMU. 406 */ 407#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 408 409/* 410 * May need to invoke the virtual machine as well... 411 */ 412#define pte_unmap(pte) do { } while (0) 413#define pte_unmap_nested(pte) do { } while (0) 414 415/* 416 * pte_offset_map - returns the linear address of the page table entry 417 * corresponding to an address 418 */ 419#define pte_offset_map(dir, address) \ 420 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 421 422#define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr) 423 424/* pte_offset_kernel - kernel version of pte_offset */ 425#define pte_offset_kernel(dir, address) \ 426 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \ 427 + __pte_offset(address)) 428 429/* ZERO_PAGE - returns the globally shared zero page */ 430#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 431 432#define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 433 434/* I think this is in case we have page table caches; needed by init/main.c */ 435#define pgtable_cache_init() do { } while (0) 436 437/* 438 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 439 * interpreted as swap information. The remaining free bits are interpreted as 440 * swap type/offset tuple. Rather than have the TLB fill handler test 441 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 442 * all zeros for swap entries, which speeds up the miss handler at the cost of 443 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 444 * processor architecture and target applications suggest a lot of TLB misses 445 * and not much swap space. 446 * 447 * Format of swap PTE: 448 * bit 0: Present (zero) 449 * bits 1-5: swap type (arch independent layer uses 5 bits max) 450 * bits 6-9: bits 3:0 of offset 451 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 452 * bits 13-31: bits 22:4 of swap offset 453 * 454 * The split offset makes some of the following macros a little gnarly, 455 * but there's plenty of precedent for this sort of thing. 456 */ 457 458/* Used for swap PTEs */ 459#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 460 461#define __swp_offset(swp_pte) \ 462 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) 463 464#define __swp_entry(type, offset) \ 465 ((swp_entry_t) { \ 466 ((type << 1) | \ 467 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) 468 469/* Oh boy. There are a lot of possible arch overrides found in this file. */ 470#include <asm-generic/pgtable.h> 471 472#endif