at v5.2-rc4 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/limits.h> 8#include <linux/linkage.h> 9#include <linux/stddef.h> 10#include <linux/types.h> 11#include <linux/compiler.h> 12#include <linux/bitops.h> 13#include <linux/log2.h> 14#include <linux/typecheck.h> 15#include <linux/printk.h> 16#include <linux/build_bug.h> 17#include <asm/byteorder.h> 18#include <asm/div64.h> 19#include <uapi/linux/kernel.h> 20#include <asm/div64.h> 21 22#define STACK_MAGIC 0xdeadbeef 23 24/** 25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 26 * @x: value to repeat 27 * 28 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 29 */ 30#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 31 32/* @a is a power of 2 value */ 33#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 34#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 35#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 36#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 38 39/* generic data direction definitions */ 40#define READ 0 41#define WRITE 1 42 43/** 44 * ARRAY_SIZE - get the number of elements in array @arr 45 * @arr: array to be sized 46 */ 47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 48 49#define u64_to_user_ptr(x) ( \ 50{ \ 51 typecheck(u64, (x)); \ 52 (void __user *)(uintptr_t)(x); \ 53} \ 54) 55 56/* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63/** 64 * round_up - round up to next specified power of 2 65 * @x: the value to round 66 * @y: multiple to round up to (must be a power of 2) 67 * 68 * Rounds @x up to next multiple of @y (which must be a power of 2). 69 * To perform arbitrary rounding up, use roundup() below. 70 */ 71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 72/** 73 * round_down - round down to next specified power of 2 74 * @x: the value to round 75 * @y: multiple to round down to (must be a power of 2) 76 * 77 * Rounds @x down to next multiple of @y (which must be a power of 2). 78 * To perform arbitrary rounding down, use rounddown() below. 79 */ 80#define round_down(x, y) ((x) & ~__round_mask(x, y)) 81 82/** 83 * FIELD_SIZEOF - get the size of a struct's field 84 * @t: the target struct 85 * @f: the target struct's field 86 * Return: the size of @f in the struct definition without having a 87 * declared instance of @t. 88 */ 89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 90 91#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 92 93#define DIV_ROUND_DOWN_ULL(ll, d) \ 94 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 95 96#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 97 98#if BITS_PER_LONG == 32 99# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 100#else 101# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 102#endif 103 104/** 105 * roundup - round up to the next specified multiple 106 * @x: the value to up 107 * @y: multiple to round up to 108 * 109 * Rounds @x up to next multiple of @y. If @y will always be a power 110 * of 2, consider using the faster round_up(). 111 */ 112#define roundup(x, y) ( \ 113{ \ 114 typeof(y) __y = y; \ 115 (((x) + (__y - 1)) / __y) * __y; \ 116} \ 117) 118/** 119 * rounddown - round down to next specified multiple 120 * @x: the value to round 121 * @y: multiple to round down to 122 * 123 * Rounds @x down to next multiple of @y. If @y will always be a power 124 * of 2, consider using the faster round_down(). 125 */ 126#define rounddown(x, y) ( \ 127{ \ 128 typeof(x) __x = (x); \ 129 __x - (__x % (y)); \ 130} \ 131) 132 133/* 134 * Divide positive or negative dividend by positive or negative divisor 135 * and round to closest integer. Result is undefined for negative 136 * divisors if the dividend variable type is unsigned and for negative 137 * dividends if the divisor variable type is unsigned. 138 */ 139#define DIV_ROUND_CLOSEST(x, divisor)( \ 140{ \ 141 typeof(x) __x = x; \ 142 typeof(divisor) __d = divisor; \ 143 (((typeof(x))-1) > 0 || \ 144 ((typeof(divisor))-1) > 0 || \ 145 (((__x) > 0) == ((__d) > 0))) ? \ 146 (((__x) + ((__d) / 2)) / (__d)) : \ 147 (((__x) - ((__d) / 2)) / (__d)); \ 148} \ 149) 150/* 151 * Same as above but for u64 dividends. divisor must be a 32-bit 152 * number. 153 */ 154#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 155{ \ 156 typeof(divisor) __d = divisor; \ 157 unsigned long long _tmp = (x) + (__d) / 2; \ 158 do_div(_tmp, __d); \ 159 _tmp; \ 160} \ 161) 162 163/* 164 * Multiplies an integer by a fraction, while avoiding unnecessary 165 * overflow or loss of precision. 166 */ 167#define mult_frac(x, numer, denom)( \ 168{ \ 169 typeof(x) quot = (x) / (denom); \ 170 typeof(x) rem = (x) % (denom); \ 171 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 172} \ 173) 174 175 176#define _RET_IP_ (unsigned long)__builtin_return_address(0) 177#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 178 179#define sector_div(a, b) do_div(a, b) 180 181/** 182 * upper_32_bits - return bits 32-63 of a number 183 * @n: the number we're accessing 184 * 185 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 186 * the "right shift count >= width of type" warning when that quantity is 187 * 32-bits. 188 */ 189#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 190 191/** 192 * lower_32_bits - return bits 0-31 of a number 193 * @n: the number we're accessing 194 */ 195#define lower_32_bits(n) ((u32)(n)) 196 197struct completion; 198struct pt_regs; 199struct user; 200 201#ifdef CONFIG_PREEMPT_VOLUNTARY 202extern int _cond_resched(void); 203# define might_resched() _cond_resched() 204#else 205# define might_resched() do { } while (0) 206#endif 207 208#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 209extern void ___might_sleep(const char *file, int line, int preempt_offset); 210extern void __might_sleep(const char *file, int line, int preempt_offset); 211extern void __cant_sleep(const char *file, int line, int preempt_offset); 212 213/** 214 * might_sleep - annotation for functions that can sleep 215 * 216 * this macro will print a stack trace if it is executed in an atomic 217 * context (spinlock, irq-handler, ...). 218 * 219 * This is a useful debugging help to be able to catch problems early and not 220 * be bitten later when the calling function happens to sleep when it is not 221 * supposed to. 222 */ 223# define might_sleep() \ 224 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 225/** 226 * cant_sleep - annotation for functions that cannot sleep 227 * 228 * this macro will print a stack trace if it is executed with preemption enabled 229 */ 230# define cant_sleep() \ 231 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 232# define sched_annotate_sleep() (current->task_state_change = 0) 233#else 234 static inline void ___might_sleep(const char *file, int line, 235 int preempt_offset) { } 236 static inline void __might_sleep(const char *file, int line, 237 int preempt_offset) { } 238# define might_sleep() do { might_resched(); } while (0) 239# define cant_sleep() do { } while (0) 240# define sched_annotate_sleep() do { } while (0) 241#endif 242 243#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 244 245/** 246 * abs - return absolute value of an argument 247 * @x: the value. If it is unsigned type, it is converted to signed type first. 248 * char is treated as if it was signed (regardless of whether it really is) 249 * but the macro's return type is preserved as char. 250 * 251 * Return: an absolute value of x. 252 */ 253#define abs(x) __abs_choose_expr(x, long long, \ 254 __abs_choose_expr(x, long, \ 255 __abs_choose_expr(x, int, \ 256 __abs_choose_expr(x, short, \ 257 __abs_choose_expr(x, char, \ 258 __builtin_choose_expr( \ 259 __builtin_types_compatible_p(typeof(x), char), \ 260 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 261 ((void)0))))))) 262 263#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 264 __builtin_types_compatible_p(typeof(x), signed type) || \ 265 __builtin_types_compatible_p(typeof(x), unsigned type), \ 266 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 267 268/** 269 * reciprocal_scale - "scale" a value into range [0, ep_ro) 270 * @val: value 271 * @ep_ro: right open interval endpoint 272 * 273 * Perform a "reciprocal multiplication" in order to "scale" a value into 274 * range [0, @ep_ro), where the upper interval endpoint is right-open. 275 * This is useful, e.g. for accessing a index of an array containing 276 * @ep_ro elements, for example. Think of it as sort of modulus, only that 277 * the result isn't that of modulo. ;) Note that if initial input is a 278 * small value, then result will return 0. 279 * 280 * Return: a result based on @val in interval [0, @ep_ro). 281 */ 282static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 283{ 284 return (u32)(((u64) val * ep_ro) >> 32); 285} 286 287#if defined(CONFIG_MMU) && \ 288 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 289#define might_fault() __might_fault(__FILE__, __LINE__) 290void __might_fault(const char *file, int line); 291#else 292static inline void might_fault(void) { } 293#endif 294 295extern struct atomic_notifier_head panic_notifier_list; 296extern long (*panic_blink)(int state); 297__printf(1, 2) 298void panic(const char *fmt, ...) __noreturn __cold; 299void nmi_panic(struct pt_regs *regs, const char *msg); 300extern void oops_enter(void); 301extern void oops_exit(void); 302void print_oops_end_marker(void); 303extern int oops_may_print(void); 304void do_exit(long error_code) __noreturn; 305void complete_and_exit(struct completion *, long) __noreturn; 306 307#ifdef CONFIG_ARCH_HAS_REFCOUNT 308void refcount_error_report(struct pt_regs *regs, const char *err); 309#else 310static inline void refcount_error_report(struct pt_regs *regs, const char *err) 311{ } 312#endif 313 314/* Internal, do not use. */ 315int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 316int __must_check _kstrtol(const char *s, unsigned int base, long *res); 317 318int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 319int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 320 321/** 322 * kstrtoul - convert a string to an unsigned long 323 * @s: The start of the string. The string must be null-terminated, and may also 324 * include a single newline before its terminating null. The first character 325 * may also be a plus sign, but not a minus sign. 326 * @base: The number base to use. The maximum supported base is 16. If base is 327 * given as 0, then the base of the string is automatically detected with the 328 * conventional semantics - If it begins with 0x the number will be parsed as a 329 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 330 * parsed as an octal number. Otherwise it will be parsed as a decimal. 331 * @res: Where to write the result of the conversion on success. 332 * 333 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 334 * Used as a replacement for the obsolete simple_strtoull. Return code must 335 * be checked. 336*/ 337static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 338{ 339 /* 340 * We want to shortcut function call, but 341 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 342 */ 343 if (sizeof(unsigned long) == sizeof(unsigned long long) && 344 __alignof__(unsigned long) == __alignof__(unsigned long long)) 345 return kstrtoull(s, base, (unsigned long long *)res); 346 else 347 return _kstrtoul(s, base, res); 348} 349 350/** 351 * kstrtol - convert a string to a long 352 * @s: The start of the string. The string must be null-terminated, and may also 353 * include a single newline before its terminating null. The first character 354 * may also be a plus sign or a minus sign. 355 * @base: The number base to use. The maximum supported base is 16. If base is 356 * given as 0, then the base of the string is automatically detected with the 357 * conventional semantics - If it begins with 0x the number will be parsed as a 358 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 359 * parsed as an octal number. Otherwise it will be parsed as a decimal. 360 * @res: Where to write the result of the conversion on success. 361 * 362 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 363 * Used as a replacement for the obsolete simple_strtoull. Return code must 364 * be checked. 365 */ 366static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 367{ 368 /* 369 * We want to shortcut function call, but 370 * __builtin_types_compatible_p(long, long long) = 0. 371 */ 372 if (sizeof(long) == sizeof(long long) && 373 __alignof__(long) == __alignof__(long long)) 374 return kstrtoll(s, base, (long long *)res); 375 else 376 return _kstrtol(s, base, res); 377} 378 379int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 380int __must_check kstrtoint(const char *s, unsigned int base, int *res); 381 382static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 383{ 384 return kstrtoull(s, base, res); 385} 386 387static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 388{ 389 return kstrtoll(s, base, res); 390} 391 392static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 393{ 394 return kstrtouint(s, base, res); 395} 396 397static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 398{ 399 return kstrtoint(s, base, res); 400} 401 402int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 403int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 404int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 405int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 406int __must_check kstrtobool(const char *s, bool *res); 407 408int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 409int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 410int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 411int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 412int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 413int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 414int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 415int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 416int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 417int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 418int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 419 420static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 421{ 422 return kstrtoull_from_user(s, count, base, res); 423} 424 425static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 426{ 427 return kstrtoll_from_user(s, count, base, res); 428} 429 430static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 431{ 432 return kstrtouint_from_user(s, count, base, res); 433} 434 435static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 436{ 437 return kstrtoint_from_user(s, count, base, res); 438} 439 440/* Obsolete, do not use. Use kstrto<foo> instead */ 441 442extern unsigned long simple_strtoul(const char *,char **,unsigned int); 443extern long simple_strtol(const char *,char **,unsigned int); 444extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 445extern long long simple_strtoll(const char *,char **,unsigned int); 446 447extern int num_to_str(char *buf, int size, 448 unsigned long long num, unsigned int width); 449 450/* lib/printf utilities */ 451 452extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 453extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 454extern __printf(3, 4) 455int snprintf(char *buf, size_t size, const char *fmt, ...); 456extern __printf(3, 0) 457int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 458extern __printf(3, 4) 459int scnprintf(char *buf, size_t size, const char *fmt, ...); 460extern __printf(3, 0) 461int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 462extern __printf(2, 3) __malloc 463char *kasprintf(gfp_t gfp, const char *fmt, ...); 464extern __printf(2, 0) __malloc 465char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 466extern __printf(2, 0) 467const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 468 469extern __scanf(2, 3) 470int sscanf(const char *, const char *, ...); 471extern __scanf(2, 0) 472int vsscanf(const char *, const char *, va_list); 473 474extern int get_option(char **str, int *pint); 475extern char *get_options(const char *str, int nints, int *ints); 476extern unsigned long long memparse(const char *ptr, char **retptr); 477extern bool parse_option_str(const char *str, const char *option); 478extern char *next_arg(char *args, char **param, char **val); 479 480extern int core_kernel_text(unsigned long addr); 481extern int init_kernel_text(unsigned long addr); 482extern int core_kernel_data(unsigned long addr); 483extern int __kernel_text_address(unsigned long addr); 484extern int kernel_text_address(unsigned long addr); 485extern int func_ptr_is_kernel_text(void *ptr); 486 487u64 int_pow(u64 base, unsigned int exp); 488unsigned long int_sqrt(unsigned long); 489 490#if BITS_PER_LONG < 64 491u32 int_sqrt64(u64 x); 492#else 493static inline u32 int_sqrt64(u64 x) 494{ 495 return (u32)int_sqrt(x); 496} 497#endif 498 499extern void bust_spinlocks(int yes); 500extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 501extern int panic_timeout; 502extern unsigned long panic_print; 503extern int panic_on_oops; 504extern int panic_on_unrecovered_nmi; 505extern int panic_on_io_nmi; 506extern int panic_on_warn; 507extern int sysctl_panic_on_rcu_stall; 508extern int sysctl_panic_on_stackoverflow; 509 510extern bool crash_kexec_post_notifiers; 511 512/* 513 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 514 * holds a CPU number which is executing panic() currently. A value of 515 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 516 */ 517extern atomic_t panic_cpu; 518#define PANIC_CPU_INVALID -1 519 520/* 521 * Only to be used by arch init code. If the user over-wrote the default 522 * CONFIG_PANIC_TIMEOUT, honor it. 523 */ 524static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 525{ 526 if (panic_timeout == arch_default_timeout) 527 panic_timeout = timeout; 528} 529extern const char *print_tainted(void); 530enum lockdep_ok { 531 LOCKDEP_STILL_OK, 532 LOCKDEP_NOW_UNRELIABLE 533}; 534extern void add_taint(unsigned flag, enum lockdep_ok); 535extern int test_taint(unsigned flag); 536extern unsigned long get_taint(void); 537extern int root_mountflags; 538 539extern bool early_boot_irqs_disabled; 540 541/* 542 * Values used for system_state. Ordering of the states must not be changed 543 * as code checks for <, <=, >, >= STATE. 544 */ 545extern enum system_states { 546 SYSTEM_BOOTING, 547 SYSTEM_SCHEDULING, 548 SYSTEM_RUNNING, 549 SYSTEM_HALT, 550 SYSTEM_POWER_OFF, 551 SYSTEM_RESTART, 552 SYSTEM_SUSPEND, 553} system_state; 554 555/* This cannot be an enum because some may be used in assembly source. */ 556#define TAINT_PROPRIETARY_MODULE 0 557#define TAINT_FORCED_MODULE 1 558#define TAINT_CPU_OUT_OF_SPEC 2 559#define TAINT_FORCED_RMMOD 3 560#define TAINT_MACHINE_CHECK 4 561#define TAINT_BAD_PAGE 5 562#define TAINT_USER 6 563#define TAINT_DIE 7 564#define TAINT_OVERRIDDEN_ACPI_TABLE 8 565#define TAINT_WARN 9 566#define TAINT_CRAP 10 567#define TAINT_FIRMWARE_WORKAROUND 11 568#define TAINT_OOT_MODULE 12 569#define TAINT_UNSIGNED_MODULE 13 570#define TAINT_SOFTLOCKUP 14 571#define TAINT_LIVEPATCH 15 572#define TAINT_AUX 16 573#define TAINT_RANDSTRUCT 17 574#define TAINT_FLAGS_COUNT 18 575 576struct taint_flag { 577 char c_true; /* character printed when tainted */ 578 char c_false; /* character printed when not tainted */ 579 bool module; /* also show as a per-module taint flag */ 580}; 581 582extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 583 584extern const char hex_asc[]; 585#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 586#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 587 588static inline char *hex_byte_pack(char *buf, u8 byte) 589{ 590 *buf++ = hex_asc_hi(byte); 591 *buf++ = hex_asc_lo(byte); 592 return buf; 593} 594 595extern const char hex_asc_upper[]; 596#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 597#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 598 599static inline char *hex_byte_pack_upper(char *buf, u8 byte) 600{ 601 *buf++ = hex_asc_upper_hi(byte); 602 *buf++ = hex_asc_upper_lo(byte); 603 return buf; 604} 605 606extern int hex_to_bin(char ch); 607extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 608extern char *bin2hex(char *dst, const void *src, size_t count); 609 610bool mac_pton(const char *s, u8 *mac); 611 612/* 613 * General tracing related utility functions - trace_printk(), 614 * tracing_on/tracing_off and tracing_start()/tracing_stop 615 * 616 * Use tracing_on/tracing_off when you want to quickly turn on or off 617 * tracing. It simply enables or disables the recording of the trace events. 618 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 619 * file, which gives a means for the kernel and userspace to interact. 620 * Place a tracing_off() in the kernel where you want tracing to end. 621 * From user space, examine the trace, and then echo 1 > tracing_on 622 * to continue tracing. 623 * 624 * tracing_stop/tracing_start has slightly more overhead. It is used 625 * by things like suspend to ram where disabling the recording of the 626 * trace is not enough, but tracing must actually stop because things 627 * like calling smp_processor_id() may crash the system. 628 * 629 * Most likely, you want to use tracing_on/tracing_off. 630 */ 631 632enum ftrace_dump_mode { 633 DUMP_NONE, 634 DUMP_ALL, 635 DUMP_ORIG, 636}; 637 638#ifdef CONFIG_TRACING 639void tracing_on(void); 640void tracing_off(void); 641int tracing_is_on(void); 642void tracing_snapshot(void); 643void tracing_snapshot_alloc(void); 644 645extern void tracing_start(void); 646extern void tracing_stop(void); 647 648static inline __printf(1, 2) 649void ____trace_printk_check_format(const char *fmt, ...) 650{ 651} 652#define __trace_printk_check_format(fmt, args...) \ 653do { \ 654 if (0) \ 655 ____trace_printk_check_format(fmt, ##args); \ 656} while (0) 657 658/** 659 * trace_printk - printf formatting in the ftrace buffer 660 * @fmt: the printf format for printing 661 * 662 * Note: __trace_printk is an internal function for trace_printk() and 663 * the @ip is passed in via the trace_printk() macro. 664 * 665 * This function allows a kernel developer to debug fast path sections 666 * that printk is not appropriate for. By scattering in various 667 * printk like tracing in the code, a developer can quickly see 668 * where problems are occurring. 669 * 670 * This is intended as a debugging tool for the developer only. 671 * Please refrain from leaving trace_printks scattered around in 672 * your code. (Extra memory is used for special buffers that are 673 * allocated when trace_printk() is used.) 674 * 675 * A little optimization trick is done here. If there's only one 676 * argument, there's no need to scan the string for printf formats. 677 * The trace_puts() will suffice. But how can we take advantage of 678 * using trace_puts() when trace_printk() has only one argument? 679 * By stringifying the args and checking the size we can tell 680 * whether or not there are args. __stringify((__VA_ARGS__)) will 681 * turn into "()\0" with a size of 3 when there are no args, anything 682 * else will be bigger. All we need to do is define a string to this, 683 * and then take its size and compare to 3. If it's bigger, use 684 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 685 * let gcc optimize the rest. 686 */ 687 688#define trace_printk(fmt, ...) \ 689do { \ 690 char _______STR[] = __stringify((__VA_ARGS__)); \ 691 if (sizeof(_______STR) > 3) \ 692 do_trace_printk(fmt, ##__VA_ARGS__); \ 693 else \ 694 trace_puts(fmt); \ 695} while (0) 696 697#define do_trace_printk(fmt, args...) \ 698do { \ 699 static const char *trace_printk_fmt __used \ 700 __attribute__((section("__trace_printk_fmt"))) = \ 701 __builtin_constant_p(fmt) ? fmt : NULL; \ 702 \ 703 __trace_printk_check_format(fmt, ##args); \ 704 \ 705 if (__builtin_constant_p(fmt)) \ 706 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 707 else \ 708 __trace_printk(_THIS_IP_, fmt, ##args); \ 709} while (0) 710 711extern __printf(2, 3) 712int __trace_bprintk(unsigned long ip, const char *fmt, ...); 713 714extern __printf(2, 3) 715int __trace_printk(unsigned long ip, const char *fmt, ...); 716 717/** 718 * trace_puts - write a string into the ftrace buffer 719 * @str: the string to record 720 * 721 * Note: __trace_bputs is an internal function for trace_puts and 722 * the @ip is passed in via the trace_puts macro. 723 * 724 * This is similar to trace_printk() but is made for those really fast 725 * paths that a developer wants the least amount of "Heisenbug" effects, 726 * where the processing of the print format is still too much. 727 * 728 * This function allows a kernel developer to debug fast path sections 729 * that printk is not appropriate for. By scattering in various 730 * printk like tracing in the code, a developer can quickly see 731 * where problems are occurring. 732 * 733 * This is intended as a debugging tool for the developer only. 734 * Please refrain from leaving trace_puts scattered around in 735 * your code. (Extra memory is used for special buffers that are 736 * allocated when trace_puts() is used.) 737 * 738 * Returns: 0 if nothing was written, positive # if string was. 739 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 740 */ 741 742#define trace_puts(str) ({ \ 743 static const char *trace_printk_fmt __used \ 744 __attribute__((section("__trace_printk_fmt"))) = \ 745 __builtin_constant_p(str) ? str : NULL; \ 746 \ 747 if (__builtin_constant_p(str)) \ 748 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 749 else \ 750 __trace_puts(_THIS_IP_, str, strlen(str)); \ 751}) 752extern int __trace_bputs(unsigned long ip, const char *str); 753extern int __trace_puts(unsigned long ip, const char *str, int size); 754 755extern void trace_dump_stack(int skip); 756 757/* 758 * The double __builtin_constant_p is because gcc will give us an error 759 * if we try to allocate the static variable to fmt if it is not a 760 * constant. Even with the outer if statement. 761 */ 762#define ftrace_vprintk(fmt, vargs) \ 763do { \ 764 if (__builtin_constant_p(fmt)) { \ 765 static const char *trace_printk_fmt __used \ 766 __attribute__((section("__trace_printk_fmt"))) = \ 767 __builtin_constant_p(fmt) ? fmt : NULL; \ 768 \ 769 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 770 } else \ 771 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 772} while (0) 773 774extern __printf(2, 0) int 775__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 776 777extern __printf(2, 0) int 778__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 779 780extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 781#else 782static inline void tracing_start(void) { } 783static inline void tracing_stop(void) { } 784static inline void trace_dump_stack(int skip) { } 785 786static inline void tracing_on(void) { } 787static inline void tracing_off(void) { } 788static inline int tracing_is_on(void) { return 0; } 789static inline void tracing_snapshot(void) { } 790static inline void tracing_snapshot_alloc(void) { } 791 792static inline __printf(1, 2) 793int trace_printk(const char *fmt, ...) 794{ 795 return 0; 796} 797static __printf(1, 0) inline int 798ftrace_vprintk(const char *fmt, va_list ap) 799{ 800 return 0; 801} 802static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 803#endif /* CONFIG_TRACING */ 804 805/* 806 * min()/max()/clamp() macros must accomplish three things: 807 * 808 * - avoid multiple evaluations of the arguments (so side-effects like 809 * "x++" happen only once) when non-constant. 810 * - perform strict type-checking (to generate warnings instead of 811 * nasty runtime surprises). See the "unnecessary" pointer comparison 812 * in __typecheck(). 813 * - retain result as a constant expressions when called with only 814 * constant expressions (to avoid tripping VLA warnings in stack 815 * allocation usage). 816 */ 817#define __typecheck(x, y) \ 818 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 819 820/* 821 * This returns a constant expression while determining if an argument is 822 * a constant expression, most importantly without evaluating the argument. 823 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 824 */ 825#define __is_constexpr(x) \ 826 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 827 828#define __no_side_effects(x, y) \ 829 (__is_constexpr(x) && __is_constexpr(y)) 830 831#define __safe_cmp(x, y) \ 832 (__typecheck(x, y) && __no_side_effects(x, y)) 833 834#define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 835 836#define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 837 typeof(x) unique_x = (x); \ 838 typeof(y) unique_y = (y); \ 839 __cmp(unique_x, unique_y, op); }) 840 841#define __careful_cmp(x, y, op) \ 842 __builtin_choose_expr(__safe_cmp(x, y), \ 843 __cmp(x, y, op), \ 844 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 845 846/** 847 * min - return minimum of two values of the same or compatible types 848 * @x: first value 849 * @y: second value 850 */ 851#define min(x, y) __careful_cmp(x, y, <) 852 853/** 854 * max - return maximum of two values of the same or compatible types 855 * @x: first value 856 * @y: second value 857 */ 858#define max(x, y) __careful_cmp(x, y, >) 859 860/** 861 * min3 - return minimum of three values 862 * @x: first value 863 * @y: second value 864 * @z: third value 865 */ 866#define min3(x, y, z) min((typeof(x))min(x, y), z) 867 868/** 869 * max3 - return maximum of three values 870 * @x: first value 871 * @y: second value 872 * @z: third value 873 */ 874#define max3(x, y, z) max((typeof(x))max(x, y), z) 875 876/** 877 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 878 * @x: value1 879 * @y: value2 880 */ 881#define min_not_zero(x, y) ({ \ 882 typeof(x) __x = (x); \ 883 typeof(y) __y = (y); \ 884 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 885 886/** 887 * clamp - return a value clamped to a given range with strict typechecking 888 * @val: current value 889 * @lo: lowest allowable value 890 * @hi: highest allowable value 891 * 892 * This macro does strict typechecking of @lo/@hi to make sure they are of the 893 * same type as @val. See the unnecessary pointer comparisons. 894 */ 895#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 896 897/* 898 * ..and if you can't take the strict 899 * types, you can specify one yourself. 900 * 901 * Or not use min/max/clamp at all, of course. 902 */ 903 904/** 905 * min_t - return minimum of two values, using the specified type 906 * @type: data type to use 907 * @x: first value 908 * @y: second value 909 */ 910#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 911 912/** 913 * max_t - return maximum of two values, using the specified type 914 * @type: data type to use 915 * @x: first value 916 * @y: second value 917 */ 918#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 919 920/** 921 * clamp_t - return a value clamped to a given range using a given type 922 * @type: the type of variable to use 923 * @val: current value 924 * @lo: minimum allowable value 925 * @hi: maximum allowable value 926 * 927 * This macro does no typechecking and uses temporary variables of type 928 * @type to make all the comparisons. 929 */ 930#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 931 932/** 933 * clamp_val - return a value clamped to a given range using val's type 934 * @val: current value 935 * @lo: minimum allowable value 936 * @hi: maximum allowable value 937 * 938 * This macro does no typechecking and uses temporary variables of whatever 939 * type the input argument @val is. This is useful when @val is an unsigned 940 * type and @lo and @hi are literals that will otherwise be assigned a signed 941 * integer type. 942 */ 943#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 944 945 946/** 947 * swap - swap values of @a and @b 948 * @a: first value 949 * @b: second value 950 */ 951#define swap(a, b) \ 952 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 953 954/* This counts to 12. Any more, it will return 13th argument. */ 955#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 956#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 957 958#define __CONCAT(a, b) a ## b 959#define CONCATENATE(a, b) __CONCAT(a, b) 960 961/** 962 * container_of - cast a member of a structure out to the containing structure 963 * @ptr: the pointer to the member. 964 * @type: the type of the container struct this is embedded in. 965 * @member: the name of the member within the struct. 966 * 967 */ 968#define container_of(ptr, type, member) ({ \ 969 void *__mptr = (void *)(ptr); \ 970 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 971 !__same_type(*(ptr), void), \ 972 "pointer type mismatch in container_of()"); \ 973 ((type *)(__mptr - offsetof(type, member))); }) 974 975/** 976 * container_of_safe - cast a member of a structure out to the containing structure 977 * @ptr: the pointer to the member. 978 * @type: the type of the container struct this is embedded in. 979 * @member: the name of the member within the struct. 980 * 981 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 982 */ 983#define container_of_safe(ptr, type, member) ({ \ 984 void *__mptr = (void *)(ptr); \ 985 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 986 !__same_type(*(ptr), void), \ 987 "pointer type mismatch in container_of()"); \ 988 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 989 ((type *)(__mptr - offsetof(type, member))); }) 990 991/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 992#ifdef CONFIG_FTRACE_MCOUNT_RECORD 993# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 994#endif 995 996/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 997#define VERIFY_OCTAL_PERMISSIONS(perms) \ 998 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 999 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1000 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1001 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1002 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1003 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1004 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1005 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1006 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1007 (perms)) 1008#endif