at v5.2-rc4 33 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <stdarg.h> 9 10#include <linux/atomic.h> 11#include <linux/refcount.h> 12#include <linux/compat.h> 13#include <linux/skbuff.h> 14#include <linux/linkage.h> 15#include <linux/printk.h> 16#include <linux/workqueue.h> 17#include <linux/sched.h> 18#include <linux/capability.h> 19#include <linux/cryptohash.h> 20#include <linux/set_memory.h> 21#include <linux/kallsyms.h> 22#include <linux/if_vlan.h> 23#include <linux/vmalloc.h> 24 25#include <net/sch_generic.h> 26 27#include <uapi/linux/filter.h> 28#include <uapi/linux/bpf.h> 29 30struct sk_buff; 31struct sock; 32struct seccomp_data; 33struct bpf_prog_aux; 34struct xdp_rxq_info; 35struct xdp_buff; 36struct sock_reuseport; 37struct ctl_table; 38struct ctl_table_header; 39 40/* ArgX, context and stack frame pointer register positions. Note, 41 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 42 * calls in BPF_CALL instruction. 43 */ 44#define BPF_REG_ARG1 BPF_REG_1 45#define BPF_REG_ARG2 BPF_REG_2 46#define BPF_REG_ARG3 BPF_REG_3 47#define BPF_REG_ARG4 BPF_REG_4 48#define BPF_REG_ARG5 BPF_REG_5 49#define BPF_REG_CTX BPF_REG_6 50#define BPF_REG_FP BPF_REG_10 51 52/* Additional register mappings for converted user programs. */ 53#define BPF_REG_A BPF_REG_0 54#define BPF_REG_X BPF_REG_7 55#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 56#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 57#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 58 59/* Kernel hidden auxiliary/helper register. */ 60#define BPF_REG_AX MAX_BPF_REG 61#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 62#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 63 64/* unused opcode to mark special call to bpf_tail_call() helper */ 65#define BPF_TAIL_CALL 0xf0 66 67/* unused opcode to mark call to interpreter with arguments */ 68#define BPF_CALL_ARGS 0xe0 69 70/* As per nm, we expose JITed images as text (code) section for 71 * kallsyms. That way, tools like perf can find it to match 72 * addresses. 73 */ 74#define BPF_SYM_ELF_TYPE 't' 75 76/* BPF program can access up to 512 bytes of stack space. */ 77#define MAX_BPF_STACK 512 78 79/* Helper macros for filter block array initializers. */ 80 81/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 82 83#define BPF_ALU64_REG(OP, DST, SRC) \ 84 ((struct bpf_insn) { \ 85 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 86 .dst_reg = DST, \ 87 .src_reg = SRC, \ 88 .off = 0, \ 89 .imm = 0 }) 90 91#define BPF_ALU32_REG(OP, DST, SRC) \ 92 ((struct bpf_insn) { \ 93 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 94 .dst_reg = DST, \ 95 .src_reg = SRC, \ 96 .off = 0, \ 97 .imm = 0 }) 98 99/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 100 101#define BPF_ALU64_IMM(OP, DST, IMM) \ 102 ((struct bpf_insn) { \ 103 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 104 .dst_reg = DST, \ 105 .src_reg = 0, \ 106 .off = 0, \ 107 .imm = IMM }) 108 109#define BPF_ALU32_IMM(OP, DST, IMM) \ 110 ((struct bpf_insn) { \ 111 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 112 .dst_reg = DST, \ 113 .src_reg = 0, \ 114 .off = 0, \ 115 .imm = IMM }) 116 117/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 118 119#define BPF_ENDIAN(TYPE, DST, LEN) \ 120 ((struct bpf_insn) { \ 121 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 122 .dst_reg = DST, \ 123 .src_reg = 0, \ 124 .off = 0, \ 125 .imm = LEN }) 126 127/* Short form of mov, dst_reg = src_reg */ 128 129#define BPF_MOV64_REG(DST, SRC) \ 130 ((struct bpf_insn) { \ 131 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 132 .dst_reg = DST, \ 133 .src_reg = SRC, \ 134 .off = 0, \ 135 .imm = 0 }) 136 137#define BPF_MOV32_REG(DST, SRC) \ 138 ((struct bpf_insn) { \ 139 .code = BPF_ALU | BPF_MOV | BPF_X, \ 140 .dst_reg = DST, \ 141 .src_reg = SRC, \ 142 .off = 0, \ 143 .imm = 0 }) 144 145/* Short form of mov, dst_reg = imm32 */ 146 147#define BPF_MOV64_IMM(DST, IMM) \ 148 ((struct bpf_insn) { \ 149 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 150 .dst_reg = DST, \ 151 .src_reg = 0, \ 152 .off = 0, \ 153 .imm = IMM }) 154 155#define BPF_MOV32_IMM(DST, IMM) \ 156 ((struct bpf_insn) { \ 157 .code = BPF_ALU | BPF_MOV | BPF_K, \ 158 .dst_reg = DST, \ 159 .src_reg = 0, \ 160 .off = 0, \ 161 .imm = IMM }) 162 163/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 164#define BPF_LD_IMM64(DST, IMM) \ 165 BPF_LD_IMM64_RAW(DST, 0, IMM) 166 167#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 168 ((struct bpf_insn) { \ 169 .code = BPF_LD | BPF_DW | BPF_IMM, \ 170 .dst_reg = DST, \ 171 .src_reg = SRC, \ 172 .off = 0, \ 173 .imm = (__u32) (IMM) }), \ 174 ((struct bpf_insn) { \ 175 .code = 0, /* zero is reserved opcode */ \ 176 .dst_reg = 0, \ 177 .src_reg = 0, \ 178 .off = 0, \ 179 .imm = ((__u64) (IMM)) >> 32 }) 180 181/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 182#define BPF_LD_MAP_FD(DST, MAP_FD) \ 183 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 184 185/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 186 187#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 188 ((struct bpf_insn) { \ 189 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 190 .dst_reg = DST, \ 191 .src_reg = SRC, \ 192 .off = 0, \ 193 .imm = IMM }) 194 195#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 196 ((struct bpf_insn) { \ 197 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 198 .dst_reg = DST, \ 199 .src_reg = SRC, \ 200 .off = 0, \ 201 .imm = IMM }) 202 203/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 204 205#define BPF_LD_ABS(SIZE, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 208 .dst_reg = 0, \ 209 .src_reg = 0, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 214 215#define BPF_LD_IND(SIZE, SRC, IMM) \ 216 ((struct bpf_insn) { \ 217 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 218 .dst_reg = 0, \ 219 .src_reg = SRC, \ 220 .off = 0, \ 221 .imm = IMM }) 222 223/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 224 225#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 226 ((struct bpf_insn) { \ 227 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 228 .dst_reg = DST, \ 229 .src_reg = SRC, \ 230 .off = OFF, \ 231 .imm = 0 }) 232 233/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 234 235#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 236 ((struct bpf_insn) { \ 237 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 238 .dst_reg = DST, \ 239 .src_reg = SRC, \ 240 .off = OFF, \ 241 .imm = 0 }) 242 243/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 244 245#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 246 ((struct bpf_insn) { \ 247 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 248 .dst_reg = DST, \ 249 .src_reg = SRC, \ 250 .off = OFF, \ 251 .imm = 0 }) 252 253/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 254 255#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 256 ((struct bpf_insn) { \ 257 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 258 .dst_reg = DST, \ 259 .src_reg = 0, \ 260 .off = OFF, \ 261 .imm = IMM }) 262 263/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 264 265#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 266 ((struct bpf_insn) { \ 267 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 268 .dst_reg = DST, \ 269 .src_reg = SRC, \ 270 .off = OFF, \ 271 .imm = 0 }) 272 273/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 274 275#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 276 ((struct bpf_insn) { \ 277 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 278 .dst_reg = DST, \ 279 .src_reg = 0, \ 280 .off = OFF, \ 281 .imm = IMM }) 282 283/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 284 285#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 286 ((struct bpf_insn) { \ 287 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 288 .dst_reg = DST, \ 289 .src_reg = SRC, \ 290 .off = OFF, \ 291 .imm = 0 }) 292 293/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 294 295#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 298 .dst_reg = DST, \ 299 .src_reg = 0, \ 300 .off = OFF, \ 301 .imm = IMM }) 302 303/* Unconditional jumps, goto pc + off16 */ 304 305#define BPF_JMP_A(OFF) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_JMP | BPF_JA, \ 308 .dst_reg = 0, \ 309 .src_reg = 0, \ 310 .off = OFF, \ 311 .imm = 0 }) 312 313/* Relative call */ 314 315#define BPF_CALL_REL(TGT) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_JMP | BPF_CALL, \ 318 .dst_reg = 0, \ 319 .src_reg = BPF_PSEUDO_CALL, \ 320 .off = 0, \ 321 .imm = TGT }) 322 323/* Function call */ 324 325#define BPF_CAST_CALL(x) \ 326 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 327 328#define BPF_EMIT_CALL(FUNC) \ 329 ((struct bpf_insn) { \ 330 .code = BPF_JMP | BPF_CALL, \ 331 .dst_reg = 0, \ 332 .src_reg = 0, \ 333 .off = 0, \ 334 .imm = ((FUNC) - __bpf_call_base) }) 335 336/* Raw code statement block */ 337 338#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 339 ((struct bpf_insn) { \ 340 .code = CODE, \ 341 .dst_reg = DST, \ 342 .src_reg = SRC, \ 343 .off = OFF, \ 344 .imm = IMM }) 345 346/* Program exit */ 347 348#define BPF_EXIT_INSN() \ 349 ((struct bpf_insn) { \ 350 .code = BPF_JMP | BPF_EXIT, \ 351 .dst_reg = 0, \ 352 .src_reg = 0, \ 353 .off = 0, \ 354 .imm = 0 }) 355 356/* Internal classic blocks for direct assignment */ 357 358#define __BPF_STMT(CODE, K) \ 359 ((struct sock_filter) BPF_STMT(CODE, K)) 360 361#define __BPF_JUMP(CODE, K, JT, JF) \ 362 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 363 364#define bytes_to_bpf_size(bytes) \ 365({ \ 366 int bpf_size = -EINVAL; \ 367 \ 368 if (bytes == sizeof(u8)) \ 369 bpf_size = BPF_B; \ 370 else if (bytes == sizeof(u16)) \ 371 bpf_size = BPF_H; \ 372 else if (bytes == sizeof(u32)) \ 373 bpf_size = BPF_W; \ 374 else if (bytes == sizeof(u64)) \ 375 bpf_size = BPF_DW; \ 376 \ 377 bpf_size; \ 378}) 379 380#define bpf_size_to_bytes(bpf_size) \ 381({ \ 382 int bytes = -EINVAL; \ 383 \ 384 if (bpf_size == BPF_B) \ 385 bytes = sizeof(u8); \ 386 else if (bpf_size == BPF_H) \ 387 bytes = sizeof(u16); \ 388 else if (bpf_size == BPF_W) \ 389 bytes = sizeof(u32); \ 390 else if (bpf_size == BPF_DW) \ 391 bytes = sizeof(u64); \ 392 \ 393 bytes; \ 394}) 395 396#define BPF_SIZEOF(type) \ 397 ({ \ 398 const int __size = bytes_to_bpf_size(sizeof(type)); \ 399 BUILD_BUG_ON(__size < 0); \ 400 __size; \ 401 }) 402 403#define BPF_FIELD_SIZEOF(type, field) \ 404 ({ \ 405 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \ 406 BUILD_BUG_ON(__size < 0); \ 407 __size; \ 408 }) 409 410#define BPF_LDST_BYTES(insn) \ 411 ({ \ 412 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 413 WARN_ON(__size < 0); \ 414 __size; \ 415 }) 416 417#define __BPF_MAP_0(m, v, ...) v 418#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 419#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 420#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 421#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 422#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 423 424#define __BPF_REG_0(...) __BPF_PAD(5) 425#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 426#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 427#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 428#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 429#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 430 431#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 432#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 433 434#define __BPF_CAST(t, a) \ 435 (__force t) \ 436 (__force \ 437 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 438 (unsigned long)0, (t)0))) a 439#define __BPF_V void 440#define __BPF_N 441 442#define __BPF_DECL_ARGS(t, a) t a 443#define __BPF_DECL_REGS(t, a) u64 a 444 445#define __BPF_PAD(n) \ 446 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 447 u64, __ur_3, u64, __ur_4, u64, __ur_5) 448 449#define BPF_CALL_x(x, name, ...) \ 450 static __always_inline \ 451 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 452 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 453 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 454 { \ 455 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 456 } \ 457 static __always_inline \ 458 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 459 460#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 461#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 462#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 463#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 464#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 465#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 466 467#define bpf_ctx_range(TYPE, MEMBER) \ 468 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 469#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 470 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 471#if BITS_PER_LONG == 64 472# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 473 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 474#else 475# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 476 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 477#endif /* BITS_PER_LONG == 64 */ 478 479#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 480 ({ \ 481 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \ 482 *(PTR_SIZE) = (SIZE); \ 483 offsetof(TYPE, MEMBER); \ 484 }) 485 486#ifdef CONFIG_COMPAT 487/* A struct sock_filter is architecture independent. */ 488struct compat_sock_fprog { 489 u16 len; 490 compat_uptr_t filter; /* struct sock_filter * */ 491}; 492#endif 493 494struct sock_fprog_kern { 495 u16 len; 496 struct sock_filter *filter; 497}; 498 499struct bpf_binary_header { 500 u32 pages; 501 /* Some arches need word alignment for their instructions */ 502 u8 image[] __aligned(4); 503}; 504 505struct bpf_prog { 506 u16 pages; /* Number of allocated pages */ 507 u16 jited:1, /* Is our filter JIT'ed? */ 508 jit_requested:1,/* archs need to JIT the prog */ 509 gpl_compatible:1, /* Is filter GPL compatible? */ 510 cb_access:1, /* Is control block accessed? */ 511 dst_needed:1, /* Do we need dst entry? */ 512 blinded:1, /* Was blinded */ 513 is_func:1, /* program is a bpf function */ 514 kprobe_override:1, /* Do we override a kprobe? */ 515 has_callchain_buf:1; /* callchain buffer allocated? */ 516 enum bpf_prog_type type; /* Type of BPF program */ 517 enum bpf_attach_type expected_attach_type; /* For some prog types */ 518 u32 len; /* Number of filter blocks */ 519 u32 jited_len; /* Size of jited insns in bytes */ 520 u8 tag[BPF_TAG_SIZE]; 521 struct bpf_prog_aux *aux; /* Auxiliary fields */ 522 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 523 unsigned int (*bpf_func)(const void *ctx, 524 const struct bpf_insn *insn); 525 /* Instructions for interpreter */ 526 union { 527 struct sock_filter insns[0]; 528 struct bpf_insn insnsi[0]; 529 }; 530}; 531 532struct sk_filter { 533 refcount_t refcnt; 534 struct rcu_head rcu; 535 struct bpf_prog *prog; 536}; 537 538DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 539 540#define BPF_PROG_RUN(prog, ctx) ({ \ 541 u32 ret; \ 542 cant_sleep(); \ 543 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 544 struct bpf_prog_stats *stats; \ 545 u64 start = sched_clock(); \ 546 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 547 stats = this_cpu_ptr(prog->aux->stats); \ 548 u64_stats_update_begin(&stats->syncp); \ 549 stats->cnt++; \ 550 stats->nsecs += sched_clock() - start; \ 551 u64_stats_update_end(&stats->syncp); \ 552 } else { \ 553 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 554 } \ 555 ret; }) 556 557#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 558 559struct bpf_skb_data_end { 560 struct qdisc_skb_cb qdisc_cb; 561 void *data_meta; 562 void *data_end; 563}; 564 565struct bpf_redirect_info { 566 u32 ifindex; 567 u32 flags; 568 struct bpf_map *map; 569 struct bpf_map *map_to_flush; 570 u32 kern_flags; 571}; 572 573DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 574 575/* flags for bpf_redirect_info kern_flags */ 576#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 577 578/* Compute the linear packet data range [data, data_end) which 579 * will be accessed by various program types (cls_bpf, act_bpf, 580 * lwt, ...). Subsystems allowing direct data access must (!) 581 * ensure that cb[] area can be written to when BPF program is 582 * invoked (otherwise cb[] save/restore is necessary). 583 */ 584static inline void bpf_compute_data_pointers(struct sk_buff *skb) 585{ 586 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 587 588 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb)); 589 cb->data_meta = skb->data - skb_metadata_len(skb); 590 cb->data_end = skb->data + skb_headlen(skb); 591} 592 593/* Similar to bpf_compute_data_pointers(), except that save orginal 594 * data in cb->data and cb->meta_data for restore. 595 */ 596static inline void bpf_compute_and_save_data_end( 597 struct sk_buff *skb, void **saved_data_end) 598{ 599 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 600 601 *saved_data_end = cb->data_end; 602 cb->data_end = skb->data + skb_headlen(skb); 603} 604 605/* Restore data saved by bpf_compute_data_pointers(). */ 606static inline void bpf_restore_data_end( 607 struct sk_buff *skb, void *saved_data_end) 608{ 609 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 610 611 cb->data_end = saved_data_end; 612} 613 614static inline u8 *bpf_skb_cb(struct sk_buff *skb) 615{ 616 /* eBPF programs may read/write skb->cb[] area to transfer meta 617 * data between tail calls. Since this also needs to work with 618 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 619 * 620 * In some socket filter cases, the cb unfortunately needs to be 621 * saved/restored so that protocol specific skb->cb[] data won't 622 * be lost. In any case, due to unpriviledged eBPF programs 623 * attached to sockets, we need to clear the bpf_skb_cb() area 624 * to not leak previous contents to user space. 625 */ 626 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 627 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != 628 FIELD_SIZEOF(struct qdisc_skb_cb, data)); 629 630 return qdisc_skb_cb(skb)->data; 631} 632 633static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 634 struct sk_buff *skb) 635{ 636 u8 *cb_data = bpf_skb_cb(skb); 637 u8 cb_saved[BPF_SKB_CB_LEN]; 638 u32 res; 639 640 if (unlikely(prog->cb_access)) { 641 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 642 memset(cb_data, 0, sizeof(cb_saved)); 643 } 644 645 res = BPF_PROG_RUN(prog, skb); 646 647 if (unlikely(prog->cb_access)) 648 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 649 650 return res; 651} 652 653static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 654 struct sk_buff *skb) 655{ 656 u32 res; 657 658 preempt_disable(); 659 res = __bpf_prog_run_save_cb(prog, skb); 660 preempt_enable(); 661 return res; 662} 663 664static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 665 struct sk_buff *skb) 666{ 667 u8 *cb_data = bpf_skb_cb(skb); 668 u32 res; 669 670 if (unlikely(prog->cb_access)) 671 memset(cb_data, 0, BPF_SKB_CB_LEN); 672 673 preempt_disable(); 674 res = BPF_PROG_RUN(prog, skb); 675 preempt_enable(); 676 return res; 677} 678 679static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 680 struct xdp_buff *xdp) 681{ 682 /* Caller needs to hold rcu_read_lock() (!), otherwise program 683 * can be released while still running, or map elements could be 684 * freed early while still having concurrent users. XDP fastpath 685 * already takes rcu_read_lock() when fetching the program, so 686 * it's not necessary here anymore. 687 */ 688 return BPF_PROG_RUN(prog, xdp); 689} 690 691static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 692{ 693 return prog->len * sizeof(struct bpf_insn); 694} 695 696static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 697{ 698 return round_up(bpf_prog_insn_size(prog) + 699 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 700} 701 702static inline unsigned int bpf_prog_size(unsigned int proglen) 703{ 704 return max(sizeof(struct bpf_prog), 705 offsetof(struct bpf_prog, insns[proglen])); 706} 707 708static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 709{ 710 /* When classic BPF programs have been loaded and the arch 711 * does not have a classic BPF JIT (anymore), they have been 712 * converted via bpf_migrate_filter() to eBPF and thus always 713 * have an unspec program type. 714 */ 715 return prog->type == BPF_PROG_TYPE_UNSPEC; 716} 717 718static inline u32 bpf_ctx_off_adjust_machine(u32 size) 719{ 720 const u32 size_machine = sizeof(unsigned long); 721 722 if (size > size_machine && size % size_machine == 0) 723 size = size_machine; 724 725 return size; 726} 727 728static inline bool 729bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 730{ 731 return size <= size_default && (size & (size - 1)) == 0; 732} 733 734#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 735 736static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 737{ 738 set_vm_flush_reset_perms(fp); 739 set_memory_ro((unsigned long)fp, fp->pages); 740} 741 742static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 743{ 744 set_vm_flush_reset_perms(hdr); 745 set_memory_ro((unsigned long)hdr, hdr->pages); 746 set_memory_x((unsigned long)hdr, hdr->pages); 747} 748 749static inline struct bpf_binary_header * 750bpf_jit_binary_hdr(const struct bpf_prog *fp) 751{ 752 unsigned long real_start = (unsigned long)fp->bpf_func; 753 unsigned long addr = real_start & PAGE_MASK; 754 755 return (void *)addr; 756} 757 758int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 759static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 760{ 761 return sk_filter_trim_cap(sk, skb, 1); 762} 763 764struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 765void bpf_prog_free(struct bpf_prog *fp); 766 767bool bpf_opcode_in_insntable(u8 code); 768 769void bpf_prog_free_linfo(struct bpf_prog *prog); 770void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 771 const u32 *insn_to_jit_off); 772int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 773void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 774void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 775 776struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 777struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 778struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 779 gfp_t gfp_extra_flags); 780void __bpf_prog_free(struct bpf_prog *fp); 781 782static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 783{ 784 __bpf_prog_free(fp); 785} 786 787typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 788 unsigned int flen); 789 790int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 791int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 792 bpf_aux_classic_check_t trans, bool save_orig); 793void bpf_prog_destroy(struct bpf_prog *fp); 794 795int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 796int sk_attach_bpf(u32 ufd, struct sock *sk); 797int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 798int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 799void sk_reuseport_prog_free(struct bpf_prog *prog); 800int sk_detach_filter(struct sock *sk); 801int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 802 unsigned int len); 803 804bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 805void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 806 807u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 808#define __bpf_call_base_args \ 809 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 810 __bpf_call_base) 811 812struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 813void bpf_jit_compile(struct bpf_prog *prog); 814bool bpf_helper_changes_pkt_data(void *func); 815 816static inline bool bpf_dump_raw_ok(void) 817{ 818 /* Reconstruction of call-sites is dependent on kallsyms, 819 * thus make dump the same restriction. 820 */ 821 return kallsyms_show_value() == 1; 822} 823 824struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 825 const struct bpf_insn *patch, u32 len); 826int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 827 828void bpf_clear_redirect_map(struct bpf_map *map); 829 830static inline bool xdp_return_frame_no_direct(void) 831{ 832 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 833 834 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 835} 836 837static inline void xdp_set_return_frame_no_direct(void) 838{ 839 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 840 841 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 842} 843 844static inline void xdp_clear_return_frame_no_direct(void) 845{ 846 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 847 848 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 849} 850 851static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 852 unsigned int pktlen) 853{ 854 unsigned int len; 855 856 if (unlikely(!(fwd->flags & IFF_UP))) 857 return -ENETDOWN; 858 859 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 860 if (pktlen > len) 861 return -EMSGSIZE; 862 863 return 0; 864} 865 866/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 867 * same cpu context. Further for best results no more than a single map 868 * for the do_redirect/do_flush pair should be used. This limitation is 869 * because we only track one map and force a flush when the map changes. 870 * This does not appear to be a real limitation for existing software. 871 */ 872int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 873 struct xdp_buff *xdp, struct bpf_prog *prog); 874int xdp_do_redirect(struct net_device *dev, 875 struct xdp_buff *xdp, 876 struct bpf_prog *prog); 877void xdp_do_flush_map(void); 878 879void bpf_warn_invalid_xdp_action(u32 act); 880 881#ifdef CONFIG_INET 882struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 883 struct bpf_prog *prog, struct sk_buff *skb, 884 u32 hash); 885#else 886static inline struct sock * 887bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 888 struct bpf_prog *prog, struct sk_buff *skb, 889 u32 hash) 890{ 891 return NULL; 892} 893#endif 894 895#ifdef CONFIG_BPF_JIT 896extern int bpf_jit_enable; 897extern int bpf_jit_harden; 898extern int bpf_jit_kallsyms; 899extern long bpf_jit_limit; 900 901typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 902 903struct bpf_binary_header * 904bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 905 unsigned int alignment, 906 bpf_jit_fill_hole_t bpf_fill_ill_insns); 907void bpf_jit_binary_free(struct bpf_binary_header *hdr); 908u64 bpf_jit_alloc_exec_limit(void); 909void *bpf_jit_alloc_exec(unsigned long size); 910void bpf_jit_free_exec(void *addr); 911void bpf_jit_free(struct bpf_prog *fp); 912 913int bpf_jit_get_func_addr(const struct bpf_prog *prog, 914 const struct bpf_insn *insn, bool extra_pass, 915 u64 *func_addr, bool *func_addr_fixed); 916 917struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 918void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 919 920static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 921 u32 pass, void *image) 922{ 923 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 924 proglen, pass, image, current->comm, task_pid_nr(current)); 925 926 if (image) 927 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 928 16, 1, image, proglen, false); 929} 930 931static inline bool bpf_jit_is_ebpf(void) 932{ 933# ifdef CONFIG_HAVE_EBPF_JIT 934 return true; 935# else 936 return false; 937# endif 938} 939 940static inline bool ebpf_jit_enabled(void) 941{ 942 return bpf_jit_enable && bpf_jit_is_ebpf(); 943} 944 945static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 946{ 947 return fp->jited && bpf_jit_is_ebpf(); 948} 949 950static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 951{ 952 /* These are the prerequisites, should someone ever have the 953 * idea to call blinding outside of them, we make sure to 954 * bail out. 955 */ 956 if (!bpf_jit_is_ebpf()) 957 return false; 958 if (!prog->jit_requested) 959 return false; 960 if (!bpf_jit_harden) 961 return false; 962 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 963 return false; 964 965 return true; 966} 967 968static inline bool bpf_jit_kallsyms_enabled(void) 969{ 970 /* There are a couple of corner cases where kallsyms should 971 * not be enabled f.e. on hardening. 972 */ 973 if (bpf_jit_harden) 974 return false; 975 if (!bpf_jit_kallsyms) 976 return false; 977 if (bpf_jit_kallsyms == 1) 978 return true; 979 980 return false; 981} 982 983const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 984 unsigned long *off, char *sym); 985bool is_bpf_text_address(unsigned long addr); 986int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 987 char *sym); 988 989static inline const char * 990bpf_address_lookup(unsigned long addr, unsigned long *size, 991 unsigned long *off, char **modname, char *sym) 992{ 993 const char *ret = __bpf_address_lookup(addr, size, off, sym); 994 995 if (ret && modname) 996 *modname = NULL; 997 return ret; 998} 999 1000void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1001void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1002void bpf_get_prog_name(const struct bpf_prog *prog, char *sym); 1003 1004#else /* CONFIG_BPF_JIT */ 1005 1006static inline bool ebpf_jit_enabled(void) 1007{ 1008 return false; 1009} 1010 1011static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1012{ 1013 return false; 1014} 1015 1016static inline void bpf_jit_free(struct bpf_prog *fp) 1017{ 1018 bpf_prog_unlock_free(fp); 1019} 1020 1021static inline bool bpf_jit_kallsyms_enabled(void) 1022{ 1023 return false; 1024} 1025 1026static inline const char * 1027__bpf_address_lookup(unsigned long addr, unsigned long *size, 1028 unsigned long *off, char *sym) 1029{ 1030 return NULL; 1031} 1032 1033static inline bool is_bpf_text_address(unsigned long addr) 1034{ 1035 return false; 1036} 1037 1038static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1039 char *type, char *sym) 1040{ 1041 return -ERANGE; 1042} 1043 1044static inline const char * 1045bpf_address_lookup(unsigned long addr, unsigned long *size, 1046 unsigned long *off, char **modname, char *sym) 1047{ 1048 return NULL; 1049} 1050 1051static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1052{ 1053} 1054 1055static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1056{ 1057} 1058 1059static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 1060{ 1061 sym[0] = '\0'; 1062} 1063 1064#endif /* CONFIG_BPF_JIT */ 1065 1066void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp); 1067void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1068 1069#define BPF_ANC BIT(15) 1070 1071static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1072{ 1073 switch (first->code) { 1074 case BPF_RET | BPF_K: 1075 case BPF_LD | BPF_W | BPF_LEN: 1076 return false; 1077 1078 case BPF_LD | BPF_W | BPF_ABS: 1079 case BPF_LD | BPF_H | BPF_ABS: 1080 case BPF_LD | BPF_B | BPF_ABS: 1081 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1082 return true; 1083 return false; 1084 1085 default: 1086 return true; 1087 } 1088} 1089 1090static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1091{ 1092 BUG_ON(ftest->code & BPF_ANC); 1093 1094 switch (ftest->code) { 1095 case BPF_LD | BPF_W | BPF_ABS: 1096 case BPF_LD | BPF_H | BPF_ABS: 1097 case BPF_LD | BPF_B | BPF_ABS: 1098#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1099 return BPF_ANC | SKF_AD_##CODE 1100 switch (ftest->k) { 1101 BPF_ANCILLARY(PROTOCOL); 1102 BPF_ANCILLARY(PKTTYPE); 1103 BPF_ANCILLARY(IFINDEX); 1104 BPF_ANCILLARY(NLATTR); 1105 BPF_ANCILLARY(NLATTR_NEST); 1106 BPF_ANCILLARY(MARK); 1107 BPF_ANCILLARY(QUEUE); 1108 BPF_ANCILLARY(HATYPE); 1109 BPF_ANCILLARY(RXHASH); 1110 BPF_ANCILLARY(CPU); 1111 BPF_ANCILLARY(ALU_XOR_X); 1112 BPF_ANCILLARY(VLAN_TAG); 1113 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1114 BPF_ANCILLARY(PAY_OFFSET); 1115 BPF_ANCILLARY(RANDOM); 1116 BPF_ANCILLARY(VLAN_TPID); 1117 } 1118 /* Fallthrough. */ 1119 default: 1120 return ftest->code; 1121 } 1122} 1123 1124void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1125 int k, unsigned int size); 1126 1127static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1128 unsigned int size, void *buffer) 1129{ 1130 if (k >= 0) 1131 return skb_header_pointer(skb, k, size, buffer); 1132 1133 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1134} 1135 1136static inline int bpf_tell_extensions(void) 1137{ 1138 return SKF_AD_MAX; 1139} 1140 1141struct bpf_sock_addr_kern { 1142 struct sock *sk; 1143 struct sockaddr *uaddr; 1144 /* Temporary "register" to make indirect stores to nested structures 1145 * defined above. We need three registers to make such a store, but 1146 * only two (src and dst) are available at convert_ctx_access time 1147 */ 1148 u64 tmp_reg; 1149 void *t_ctx; /* Attach type specific context. */ 1150}; 1151 1152struct bpf_sock_ops_kern { 1153 struct sock *sk; 1154 u32 op; 1155 union { 1156 u32 args[4]; 1157 u32 reply; 1158 u32 replylong[4]; 1159 }; 1160 u32 is_fullsock; 1161 u64 temp; /* temp and everything after is not 1162 * initialized to 0 before calling 1163 * the BPF program. New fields that 1164 * should be initialized to 0 should 1165 * be inserted before temp. 1166 * temp is scratch storage used by 1167 * sock_ops_convert_ctx_access 1168 * as temporary storage of a register. 1169 */ 1170}; 1171 1172struct bpf_sysctl_kern { 1173 struct ctl_table_header *head; 1174 struct ctl_table *table; 1175 void *cur_val; 1176 size_t cur_len; 1177 void *new_val; 1178 size_t new_len; 1179 int new_updated; 1180 int write; 1181 loff_t *ppos; 1182 /* Temporary "register" for indirect stores to ppos. */ 1183 u64 tmp_reg; 1184}; 1185 1186#endif /* __LINUX_FILTER_H__ */