at v5.2-rc4 52 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_BLKDEV_H 3#define _LINUX_BLKDEV_H 4 5#include <linux/sched.h> 6#include <linux/sched/clock.h> 7 8#ifdef CONFIG_BLOCK 9 10#include <linux/major.h> 11#include <linux/genhd.h> 12#include <linux/list.h> 13#include <linux/llist.h> 14#include <linux/timer.h> 15#include <linux/workqueue.h> 16#include <linux/pagemap.h> 17#include <linux/backing-dev-defs.h> 18#include <linux/wait.h> 19#include <linux/mempool.h> 20#include <linux/pfn.h> 21#include <linux/bio.h> 22#include <linux/stringify.h> 23#include <linux/gfp.h> 24#include <linux/bsg.h> 25#include <linux/smp.h> 26#include <linux/rcupdate.h> 27#include <linux/percpu-refcount.h> 28#include <linux/scatterlist.h> 29#include <linux/blkzoned.h> 30 31struct module; 32struct scsi_ioctl_command; 33 34struct request_queue; 35struct elevator_queue; 36struct blk_trace; 37struct request; 38struct sg_io_hdr; 39struct bsg_job; 40struct blkcg_gq; 41struct blk_flush_queue; 42struct pr_ops; 43struct rq_qos; 44struct blk_queue_stats; 45struct blk_stat_callback; 46 47#define BLKDEV_MIN_RQ 4 48#define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50/* Must be consistent with blk_mq_poll_stats_bkt() */ 51#define BLK_MQ_POLL_STATS_BKTS 16 52 53/* Doing classic polling */ 54#define BLK_MQ_POLL_CLASSIC -1 55 56/* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60#define BLKCG_MAX_POLS 5 61 62typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64/* 65 * request flags */ 66typedef __u32 __bitwise req_flags_t; 67 68/* elevator knows about this request */ 69#define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70/* drive already may have started this one */ 71#define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72/* may not be passed by ioscheduler */ 73#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74/* request for flush sequence */ 75#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76/* merge of different types, fail separately */ 77#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78/* track inflight for MQ */ 79#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80/* don't call prep for this one */ 81#define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82/* set for "ide_preempt" requests and also for requests for which the SCSI 83 "quiesce" state must be ignored. */ 84#define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 85/* contains copies of user pages */ 86#define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 87/* vaguely specified driver internal error. Ignored by the block layer */ 88#define RQF_FAILED ((__force req_flags_t)(1 << 10)) 89/* don't warn about errors */ 90#define RQF_QUIET ((__force req_flags_t)(1 << 11)) 91/* elevator private data attached */ 92#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 93/* account into disk and partition IO statistics */ 94#define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 95/* request came from our alloc pool */ 96#define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 97/* runtime pm request */ 98#define RQF_PM ((__force req_flags_t)(1 << 15)) 99/* on IO scheduler merge hash */ 100#define RQF_HASHED ((__force req_flags_t)(1 << 16)) 101/* track IO completion time */ 102#define RQF_STATS ((__force req_flags_t)(1 << 17)) 103/* Look at ->special_vec for the actual data payload instead of the 104 bio chain. */ 105#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 106/* The per-zone write lock is held for this request */ 107#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 108/* already slept for hybrid poll */ 109#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 110/* ->timeout has been called, don't expire again */ 111#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 112 113/* flags that prevent us from merging requests: */ 114#define RQF_NOMERGE_FLAGS \ 115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 116 117/* 118 * Request state for blk-mq. 119 */ 120enum mq_rq_state { 121 MQ_RQ_IDLE = 0, 122 MQ_RQ_IN_FLIGHT = 1, 123 MQ_RQ_COMPLETE = 2, 124}; 125 126/* 127 * Try to put the fields that are referenced together in the same cacheline. 128 * 129 * If you modify this structure, make sure to update blk_rq_init() and 130 * especially blk_mq_rq_ctx_init() to take care of the added fields. 131 */ 132struct request { 133 struct request_queue *q; 134 struct blk_mq_ctx *mq_ctx; 135 struct blk_mq_hw_ctx *mq_hctx; 136 137 unsigned int cmd_flags; /* op and common flags */ 138 req_flags_t rq_flags; 139 140 int internal_tag; 141 142 /* the following two fields are internal, NEVER access directly */ 143 unsigned int __data_len; /* total data len */ 144 int tag; 145 sector_t __sector; /* sector cursor */ 146 147 struct bio *bio; 148 struct bio *biotail; 149 150 struct list_head queuelist; 151 152 /* 153 * The hash is used inside the scheduler, and killed once the 154 * request reaches the dispatch list. The ipi_list is only used 155 * to queue the request for softirq completion, which is long 156 * after the request has been unhashed (and even removed from 157 * the dispatch list). 158 */ 159 union { 160 struct hlist_node hash; /* merge hash */ 161 struct list_head ipi_list; 162 }; 163 164 /* 165 * The rb_node is only used inside the io scheduler, requests 166 * are pruned when moved to the dispatch queue. So let the 167 * completion_data share space with the rb_node. 168 */ 169 union { 170 struct rb_node rb_node; /* sort/lookup */ 171 struct bio_vec special_vec; 172 void *completion_data; 173 int error_count; /* for legacy drivers, don't use */ 174 }; 175 176 /* 177 * Three pointers are available for the IO schedulers, if they need 178 * more they have to dynamically allocate it. Flush requests are 179 * never put on the IO scheduler. So let the flush fields share 180 * space with the elevator data. 181 */ 182 union { 183 struct { 184 struct io_cq *icq; 185 void *priv[2]; 186 } elv; 187 188 struct { 189 unsigned int seq; 190 struct list_head list; 191 rq_end_io_fn *saved_end_io; 192 } flush; 193 }; 194 195 struct gendisk *rq_disk; 196 struct hd_struct *part; 197 /* Time that I/O was submitted to the kernel. */ 198 u64 start_time_ns; 199 /* Time that I/O was submitted to the device. */ 200 u64 io_start_time_ns; 201 202#ifdef CONFIG_BLK_WBT 203 unsigned short wbt_flags; 204#endif 205#ifdef CONFIG_BLK_DEV_THROTTLING_LOW 206 unsigned short throtl_size; 207#endif 208 209 /* 210 * Number of scatter-gather DMA addr+len pairs after 211 * physical address coalescing is performed. 212 */ 213 unsigned short nr_phys_segments; 214 215#if defined(CONFIG_BLK_DEV_INTEGRITY) 216 unsigned short nr_integrity_segments; 217#endif 218 219 unsigned short write_hint; 220 unsigned short ioprio; 221 222 unsigned int extra_len; /* length of alignment and padding */ 223 224 enum mq_rq_state state; 225 refcount_t ref; 226 227 unsigned int timeout; 228 unsigned long deadline; 229 230 union { 231 struct __call_single_data csd; 232 u64 fifo_time; 233 }; 234 235 /* 236 * completion callback. 237 */ 238 rq_end_io_fn *end_io; 239 void *end_io_data; 240}; 241 242static inline bool blk_op_is_scsi(unsigned int op) 243{ 244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 245} 246 247static inline bool blk_op_is_private(unsigned int op) 248{ 249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 250} 251 252static inline bool blk_rq_is_scsi(struct request *rq) 253{ 254 return blk_op_is_scsi(req_op(rq)); 255} 256 257static inline bool blk_rq_is_private(struct request *rq) 258{ 259 return blk_op_is_private(req_op(rq)); 260} 261 262static inline bool blk_rq_is_passthrough(struct request *rq) 263{ 264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 265} 266 267static inline bool bio_is_passthrough(struct bio *bio) 268{ 269 unsigned op = bio_op(bio); 270 271 return blk_op_is_scsi(op) || blk_op_is_private(op); 272} 273 274static inline unsigned short req_get_ioprio(struct request *req) 275{ 276 return req->ioprio; 277} 278 279#include <linux/elevator.h> 280 281struct blk_queue_ctx; 282 283typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 284 285struct bio_vec; 286typedef int (dma_drain_needed_fn)(struct request *); 287 288enum blk_eh_timer_return { 289 BLK_EH_DONE, /* drivers has completed the command */ 290 BLK_EH_RESET_TIMER, /* reset timer and try again */ 291}; 292 293enum blk_queue_state { 294 Queue_down, 295 Queue_up, 296}; 297 298#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 299#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 300 301#define BLK_SCSI_MAX_CMDS (256) 302#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 303 304/* 305 * Zoned block device models (zoned limit). 306 */ 307enum blk_zoned_model { 308 BLK_ZONED_NONE, /* Regular block device */ 309 BLK_ZONED_HA, /* Host-aware zoned block device */ 310 BLK_ZONED_HM, /* Host-managed zoned block device */ 311}; 312 313struct queue_limits { 314 unsigned long bounce_pfn; 315 unsigned long seg_boundary_mask; 316 unsigned long virt_boundary_mask; 317 318 unsigned int max_hw_sectors; 319 unsigned int max_dev_sectors; 320 unsigned int chunk_sectors; 321 unsigned int max_sectors; 322 unsigned int max_segment_size; 323 unsigned int physical_block_size; 324 unsigned int alignment_offset; 325 unsigned int io_min; 326 unsigned int io_opt; 327 unsigned int max_discard_sectors; 328 unsigned int max_hw_discard_sectors; 329 unsigned int max_write_same_sectors; 330 unsigned int max_write_zeroes_sectors; 331 unsigned int discard_granularity; 332 unsigned int discard_alignment; 333 334 unsigned short logical_block_size; 335 unsigned short max_segments; 336 unsigned short max_integrity_segments; 337 unsigned short max_discard_segments; 338 339 unsigned char misaligned; 340 unsigned char discard_misaligned; 341 unsigned char raid_partial_stripes_expensive; 342 enum blk_zoned_model zoned; 343}; 344 345#ifdef CONFIG_BLK_DEV_ZONED 346 347extern unsigned int blkdev_nr_zones(struct block_device *bdev); 348extern int blkdev_report_zones(struct block_device *bdev, 349 sector_t sector, struct blk_zone *zones, 350 unsigned int *nr_zones, gfp_t gfp_mask); 351extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 352 sector_t nr_sectors, gfp_t gfp_mask); 353extern int blk_revalidate_disk_zones(struct gendisk *disk); 354 355extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 356 unsigned int cmd, unsigned long arg); 357extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 358 unsigned int cmd, unsigned long arg); 359 360#else /* CONFIG_BLK_DEV_ZONED */ 361 362static inline unsigned int blkdev_nr_zones(struct block_device *bdev) 363{ 364 return 0; 365} 366 367static inline int blk_revalidate_disk_zones(struct gendisk *disk) 368{ 369 return 0; 370} 371 372static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 373 fmode_t mode, unsigned int cmd, 374 unsigned long arg) 375{ 376 return -ENOTTY; 377} 378 379static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 380 fmode_t mode, unsigned int cmd, 381 unsigned long arg) 382{ 383 return -ENOTTY; 384} 385 386#endif /* CONFIG_BLK_DEV_ZONED */ 387 388struct request_queue { 389 /* 390 * Together with queue_head for cacheline sharing 391 */ 392 struct list_head queue_head; 393 struct request *last_merge; 394 struct elevator_queue *elevator; 395 396 struct blk_queue_stats *stats; 397 struct rq_qos *rq_qos; 398 399 make_request_fn *make_request_fn; 400 dma_drain_needed_fn *dma_drain_needed; 401 402 const struct blk_mq_ops *mq_ops; 403 404 /* sw queues */ 405 struct blk_mq_ctx __percpu *queue_ctx; 406 unsigned int nr_queues; 407 408 unsigned int queue_depth; 409 410 /* hw dispatch queues */ 411 struct blk_mq_hw_ctx **queue_hw_ctx; 412 unsigned int nr_hw_queues; 413 414 struct backing_dev_info *backing_dev_info; 415 416 /* 417 * The queue owner gets to use this for whatever they like. 418 * ll_rw_blk doesn't touch it. 419 */ 420 void *queuedata; 421 422 /* 423 * various queue flags, see QUEUE_* below 424 */ 425 unsigned long queue_flags; 426 /* 427 * Number of contexts that have called blk_set_pm_only(). If this 428 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 429 * processed. 430 */ 431 atomic_t pm_only; 432 433 /* 434 * ida allocated id for this queue. Used to index queues from 435 * ioctx. 436 */ 437 int id; 438 439 /* 440 * queue needs bounce pages for pages above this limit 441 */ 442 gfp_t bounce_gfp; 443 444 spinlock_t queue_lock; 445 446 /* 447 * queue kobject 448 */ 449 struct kobject kobj; 450 451 /* 452 * mq queue kobject 453 */ 454 struct kobject *mq_kobj; 455 456#ifdef CONFIG_BLK_DEV_INTEGRITY 457 struct blk_integrity integrity; 458#endif /* CONFIG_BLK_DEV_INTEGRITY */ 459 460#ifdef CONFIG_PM 461 struct device *dev; 462 int rpm_status; 463 unsigned int nr_pending; 464#endif 465 466 /* 467 * queue settings 468 */ 469 unsigned long nr_requests; /* Max # of requests */ 470 471 unsigned int dma_drain_size; 472 void *dma_drain_buffer; 473 unsigned int dma_pad_mask; 474 unsigned int dma_alignment; 475 476 unsigned int rq_timeout; 477 int poll_nsec; 478 479 struct blk_stat_callback *poll_cb; 480 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 481 482 struct timer_list timeout; 483 struct work_struct timeout_work; 484 485 struct list_head icq_list; 486#ifdef CONFIG_BLK_CGROUP 487 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 488 struct blkcg_gq *root_blkg; 489 struct list_head blkg_list; 490#endif 491 492 struct queue_limits limits; 493 494#ifdef CONFIG_BLK_DEV_ZONED 495 /* 496 * Zoned block device information for request dispatch control. 497 * nr_zones is the total number of zones of the device. This is always 498 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 499 * bits which indicates if a zone is conventional (bit clear) or 500 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 501 * bits which indicates if a zone is write locked, that is, if a write 502 * request targeting the zone was dispatched. All three fields are 503 * initialized by the low level device driver (e.g. scsi/sd.c). 504 * Stacking drivers (device mappers) may or may not initialize 505 * these fields. 506 * 507 * Reads of this information must be protected with blk_queue_enter() / 508 * blk_queue_exit(). Modifying this information is only allowed while 509 * no requests are being processed. See also blk_mq_freeze_queue() and 510 * blk_mq_unfreeze_queue(). 511 */ 512 unsigned int nr_zones; 513 unsigned long *seq_zones_bitmap; 514 unsigned long *seq_zones_wlock; 515#endif /* CONFIG_BLK_DEV_ZONED */ 516 517 /* 518 * sg stuff 519 */ 520 unsigned int sg_timeout; 521 unsigned int sg_reserved_size; 522 int node; 523#ifdef CONFIG_BLK_DEV_IO_TRACE 524 struct blk_trace *blk_trace; 525 struct mutex blk_trace_mutex; 526#endif 527 /* 528 * for flush operations 529 */ 530 struct blk_flush_queue *fq; 531 532 struct list_head requeue_list; 533 spinlock_t requeue_lock; 534 struct delayed_work requeue_work; 535 536 struct mutex sysfs_lock; 537 538 /* 539 * for reusing dead hctx instance in case of updating 540 * nr_hw_queues 541 */ 542 struct list_head unused_hctx_list; 543 spinlock_t unused_hctx_lock; 544 545 int mq_freeze_depth; 546 547#if defined(CONFIG_BLK_DEV_BSG) 548 struct bsg_class_device bsg_dev; 549#endif 550 551#ifdef CONFIG_BLK_DEV_THROTTLING 552 /* Throttle data */ 553 struct throtl_data *td; 554#endif 555 struct rcu_head rcu_head; 556 wait_queue_head_t mq_freeze_wq; 557 /* 558 * Protect concurrent access to q_usage_counter by 559 * percpu_ref_kill() and percpu_ref_reinit(). 560 */ 561 struct mutex mq_freeze_lock; 562 struct percpu_ref q_usage_counter; 563 564 struct blk_mq_tag_set *tag_set; 565 struct list_head tag_set_list; 566 struct bio_set bio_split; 567 568#ifdef CONFIG_BLK_DEBUG_FS 569 struct dentry *debugfs_dir; 570 struct dentry *sched_debugfs_dir; 571 struct dentry *rqos_debugfs_dir; 572#endif 573 574 bool mq_sysfs_init_done; 575 576 size_t cmd_size; 577 578 struct work_struct release_work; 579 580#define BLK_MAX_WRITE_HINTS 5 581 u64 write_hints[BLK_MAX_WRITE_HINTS]; 582}; 583 584#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 585#define QUEUE_FLAG_DYING 1 /* queue being torn down */ 586#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 587#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 588#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 589#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 590#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 591#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 592#define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 593#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 594#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 595#define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 596#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 597#define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 598#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 599#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 600#define QUEUE_FLAG_WC 17 /* Write back caching */ 601#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 602#define QUEUE_FLAG_DAX 19 /* device supports DAX */ 603#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 604#define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 605#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 606#define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 607#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 608#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 609 610#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 611 (1 << QUEUE_FLAG_SAME_COMP)) 612 613void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 614void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 615bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 616 617#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 618#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 619#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 620#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 621#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 622#define blk_queue_noxmerges(q) \ 623 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 624#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 625#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 626#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 627#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 628#define blk_queue_secure_erase(q) \ 629 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 630#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 631#define blk_queue_scsi_passthrough(q) \ 632 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 633#define blk_queue_pci_p2pdma(q) \ 634 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 635 636#define blk_noretry_request(rq) \ 637 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 638 REQ_FAILFAST_DRIVER)) 639#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 640#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 641#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 642 643extern void blk_set_pm_only(struct request_queue *q); 644extern void blk_clear_pm_only(struct request_queue *q); 645 646static inline bool blk_account_rq(struct request *rq) 647{ 648 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 649} 650 651#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 652 653#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 654 655#define rq_dma_dir(rq) \ 656 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 657 658#define dma_map_bvec(dev, bv, dir, attrs) \ 659 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 660 (dir), (attrs)) 661 662static inline bool queue_is_mq(struct request_queue *q) 663{ 664 return q->mq_ops; 665} 666 667static inline enum blk_zoned_model 668blk_queue_zoned_model(struct request_queue *q) 669{ 670 return q->limits.zoned; 671} 672 673static inline bool blk_queue_is_zoned(struct request_queue *q) 674{ 675 switch (blk_queue_zoned_model(q)) { 676 case BLK_ZONED_HA: 677 case BLK_ZONED_HM: 678 return true; 679 default: 680 return false; 681 } 682} 683 684static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 685{ 686 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 687} 688 689#ifdef CONFIG_BLK_DEV_ZONED 690static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 691{ 692 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 693} 694 695static inline unsigned int blk_queue_zone_no(struct request_queue *q, 696 sector_t sector) 697{ 698 if (!blk_queue_is_zoned(q)) 699 return 0; 700 return sector >> ilog2(q->limits.chunk_sectors); 701} 702 703static inline bool blk_queue_zone_is_seq(struct request_queue *q, 704 sector_t sector) 705{ 706 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 707 return false; 708 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 709} 710#else /* CONFIG_BLK_DEV_ZONED */ 711static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 712{ 713 return 0; 714} 715#endif /* CONFIG_BLK_DEV_ZONED */ 716 717static inline bool rq_is_sync(struct request *rq) 718{ 719 return op_is_sync(rq->cmd_flags); 720} 721 722static inline bool rq_mergeable(struct request *rq) 723{ 724 if (blk_rq_is_passthrough(rq)) 725 return false; 726 727 if (req_op(rq) == REQ_OP_FLUSH) 728 return false; 729 730 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 731 return false; 732 733 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 734 return false; 735 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 736 return false; 737 738 return true; 739} 740 741static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 742{ 743 if (bio_page(a) == bio_page(b) && 744 bio_offset(a) == bio_offset(b)) 745 return true; 746 747 return false; 748} 749 750static inline unsigned int blk_queue_depth(struct request_queue *q) 751{ 752 if (q->queue_depth) 753 return q->queue_depth; 754 755 return q->nr_requests; 756} 757 758extern unsigned long blk_max_low_pfn, blk_max_pfn; 759 760/* 761 * standard bounce addresses: 762 * 763 * BLK_BOUNCE_HIGH : bounce all highmem pages 764 * BLK_BOUNCE_ANY : don't bounce anything 765 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 766 */ 767 768#if BITS_PER_LONG == 32 769#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 770#else 771#define BLK_BOUNCE_HIGH -1ULL 772#endif 773#define BLK_BOUNCE_ANY (-1ULL) 774#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 775 776/* 777 * default timeout for SG_IO if none specified 778 */ 779#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 780#define BLK_MIN_SG_TIMEOUT (7 * HZ) 781 782struct rq_map_data { 783 struct page **pages; 784 int page_order; 785 int nr_entries; 786 unsigned long offset; 787 int null_mapped; 788 int from_user; 789}; 790 791struct req_iterator { 792 struct bvec_iter iter; 793 struct bio *bio; 794}; 795 796/* This should not be used directly - use rq_for_each_segment */ 797#define for_each_bio(_bio) \ 798 for (; _bio; _bio = _bio->bi_next) 799#define __rq_for_each_bio(_bio, rq) \ 800 if ((rq->bio)) \ 801 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 802 803#define rq_for_each_segment(bvl, _rq, _iter) \ 804 __rq_for_each_bio(_iter.bio, _rq) \ 805 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 806 807#define rq_for_each_bvec(bvl, _rq, _iter) \ 808 __rq_for_each_bio(_iter.bio, _rq) \ 809 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 810 811#define rq_iter_last(bvec, _iter) \ 812 (_iter.bio->bi_next == NULL && \ 813 bio_iter_last(bvec, _iter.iter)) 814 815#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 816# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 817#endif 818#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 819extern void rq_flush_dcache_pages(struct request *rq); 820#else 821static inline void rq_flush_dcache_pages(struct request *rq) 822{ 823} 824#endif 825 826extern int blk_register_queue(struct gendisk *disk); 827extern void blk_unregister_queue(struct gendisk *disk); 828extern blk_qc_t generic_make_request(struct bio *bio); 829extern blk_qc_t direct_make_request(struct bio *bio); 830extern void blk_rq_init(struct request_queue *q, struct request *rq); 831extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 832extern void blk_put_request(struct request *); 833extern struct request *blk_get_request(struct request_queue *, unsigned int op, 834 blk_mq_req_flags_t flags); 835extern int blk_lld_busy(struct request_queue *q); 836extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 837 struct bio_set *bs, gfp_t gfp_mask, 838 int (*bio_ctr)(struct bio *, struct bio *, void *), 839 void *data); 840extern void blk_rq_unprep_clone(struct request *rq); 841extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 842 struct request *rq); 843extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 844extern void blk_queue_split(struct request_queue *, struct bio **); 845extern void blk_recount_segments(struct request_queue *, struct bio *); 846extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 847extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 848 unsigned int, void __user *); 849extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 850 unsigned int, void __user *); 851extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 852 struct scsi_ioctl_command __user *); 853 854extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 855extern void blk_queue_exit(struct request_queue *q); 856extern void blk_sync_queue(struct request_queue *q); 857extern int blk_rq_map_user(struct request_queue *, struct request *, 858 struct rq_map_data *, void __user *, unsigned long, 859 gfp_t); 860extern int blk_rq_unmap_user(struct bio *); 861extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 862extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 863 struct rq_map_data *, const struct iov_iter *, 864 gfp_t); 865extern void blk_execute_rq(struct request_queue *, struct gendisk *, 866 struct request *, int); 867extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 868 struct request *, int, rq_end_io_fn *); 869 870int blk_status_to_errno(blk_status_t status); 871blk_status_t errno_to_blk_status(int errno); 872 873int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 874 875static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 876{ 877 return bdev->bd_disk->queue; /* this is never NULL */ 878} 879 880/* 881 * The basic unit of block I/O is a sector. It is used in a number of contexts 882 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 883 * bytes. Variables of type sector_t represent an offset or size that is a 884 * multiple of 512 bytes. Hence these two constants. 885 */ 886#ifndef SECTOR_SHIFT 887#define SECTOR_SHIFT 9 888#endif 889#ifndef SECTOR_SIZE 890#define SECTOR_SIZE (1 << SECTOR_SHIFT) 891#endif 892 893/* 894 * blk_rq_pos() : the current sector 895 * blk_rq_bytes() : bytes left in the entire request 896 * blk_rq_cur_bytes() : bytes left in the current segment 897 * blk_rq_err_bytes() : bytes left till the next error boundary 898 * blk_rq_sectors() : sectors left in the entire request 899 * blk_rq_cur_sectors() : sectors left in the current segment 900 */ 901static inline sector_t blk_rq_pos(const struct request *rq) 902{ 903 return rq->__sector; 904} 905 906static inline unsigned int blk_rq_bytes(const struct request *rq) 907{ 908 return rq->__data_len; 909} 910 911static inline int blk_rq_cur_bytes(const struct request *rq) 912{ 913 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 914} 915 916extern unsigned int blk_rq_err_bytes(const struct request *rq); 917 918static inline unsigned int blk_rq_sectors(const struct request *rq) 919{ 920 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 921} 922 923static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 924{ 925 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 926} 927 928#ifdef CONFIG_BLK_DEV_ZONED 929static inline unsigned int blk_rq_zone_no(struct request *rq) 930{ 931 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 932} 933 934static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 935{ 936 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 937} 938#endif /* CONFIG_BLK_DEV_ZONED */ 939 940/* 941 * Some commands like WRITE SAME have a payload or data transfer size which 942 * is different from the size of the request. Any driver that supports such 943 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 944 * calculate the data transfer size. 945 */ 946static inline unsigned int blk_rq_payload_bytes(struct request *rq) 947{ 948 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 949 return rq->special_vec.bv_len; 950 return blk_rq_bytes(rq); 951} 952 953/* 954 * Return the first full biovec in the request. The caller needs to check that 955 * there are any bvecs before calling this helper. 956 */ 957static inline struct bio_vec req_bvec(struct request *rq) 958{ 959 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 960 return rq->special_vec; 961 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 962} 963 964static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 965 int op) 966{ 967 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 968 return min(q->limits.max_discard_sectors, 969 UINT_MAX >> SECTOR_SHIFT); 970 971 if (unlikely(op == REQ_OP_WRITE_SAME)) 972 return q->limits.max_write_same_sectors; 973 974 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 975 return q->limits.max_write_zeroes_sectors; 976 977 return q->limits.max_sectors; 978} 979 980/* 981 * Return maximum size of a request at given offset. Only valid for 982 * file system requests. 983 */ 984static inline unsigned int blk_max_size_offset(struct request_queue *q, 985 sector_t offset) 986{ 987 if (!q->limits.chunk_sectors) 988 return q->limits.max_sectors; 989 990 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 991 (offset & (q->limits.chunk_sectors - 1)))); 992} 993 994static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 995 sector_t offset) 996{ 997 struct request_queue *q = rq->q; 998 999 if (blk_rq_is_passthrough(rq)) 1000 return q->limits.max_hw_sectors; 1001 1002 if (!q->limits.chunk_sectors || 1003 req_op(rq) == REQ_OP_DISCARD || 1004 req_op(rq) == REQ_OP_SECURE_ERASE) 1005 return blk_queue_get_max_sectors(q, req_op(rq)); 1006 1007 return min(blk_max_size_offset(q, offset), 1008 blk_queue_get_max_sectors(q, req_op(rq))); 1009} 1010 1011static inline unsigned int blk_rq_count_bios(struct request *rq) 1012{ 1013 unsigned int nr_bios = 0; 1014 struct bio *bio; 1015 1016 __rq_for_each_bio(bio, rq) 1017 nr_bios++; 1018 1019 return nr_bios; 1020} 1021 1022void blk_steal_bios(struct bio_list *list, struct request *rq); 1023 1024/* 1025 * Request completion related functions. 1026 * 1027 * blk_update_request() completes given number of bytes and updates 1028 * the request without completing it. 1029 * 1030 * blk_end_request() and friends. __blk_end_request() must be called 1031 * with the request queue spinlock acquired. 1032 * 1033 * Several drivers define their own end_request and call 1034 * blk_end_request() for parts of the original function. 1035 * This prevents code duplication in drivers. 1036 */ 1037extern bool blk_update_request(struct request *rq, blk_status_t error, 1038 unsigned int nr_bytes); 1039extern void blk_end_request_all(struct request *rq, blk_status_t error); 1040extern bool __blk_end_request(struct request *rq, blk_status_t error, 1041 unsigned int nr_bytes); 1042extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1043extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1044 1045extern void __blk_complete_request(struct request *); 1046extern void blk_abort_request(struct request *); 1047 1048/* 1049 * Access functions for manipulating queue properties 1050 */ 1051extern void blk_cleanup_queue(struct request_queue *); 1052extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1053extern void blk_queue_bounce_limit(struct request_queue *, u64); 1054extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1055extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1056extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1057extern void blk_queue_max_discard_segments(struct request_queue *, 1058 unsigned short); 1059extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1060extern void blk_queue_max_discard_sectors(struct request_queue *q, 1061 unsigned int max_discard_sectors); 1062extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1063 unsigned int max_write_same_sectors); 1064extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1065 unsigned int max_write_same_sectors); 1066extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1067extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1068extern void blk_queue_alignment_offset(struct request_queue *q, 1069 unsigned int alignment); 1070extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1071extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1072extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1073extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1074extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1075extern void blk_set_default_limits(struct queue_limits *lim); 1076extern void blk_set_stacking_limits(struct queue_limits *lim); 1077extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1078 sector_t offset); 1079extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1080 sector_t offset); 1081extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1082 sector_t offset); 1083extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1084extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1085extern int blk_queue_dma_drain(struct request_queue *q, 1086 dma_drain_needed_fn *dma_drain_needed, 1087 void *buf, unsigned int size); 1088extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1089extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1090extern void blk_queue_dma_alignment(struct request_queue *, int); 1091extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1092extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1093extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1094 1095/* 1096 * Number of physical segments as sent to the device. 1097 * 1098 * Normally this is the number of discontiguous data segments sent by the 1099 * submitter. But for data-less command like discard we might have no 1100 * actual data segments submitted, but the driver might have to add it's 1101 * own special payload. In that case we still return 1 here so that this 1102 * special payload will be mapped. 1103 */ 1104static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1105{ 1106 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1107 return 1; 1108 return rq->nr_phys_segments; 1109} 1110 1111/* 1112 * Number of discard segments (or ranges) the driver needs to fill in. 1113 * Each discard bio merged into a request is counted as one segment. 1114 */ 1115static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1116{ 1117 return max_t(unsigned short, rq->nr_phys_segments, 1); 1118} 1119 1120extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1121extern void blk_dump_rq_flags(struct request *, char *); 1122extern long nr_blockdev_pages(void); 1123 1124bool __must_check blk_get_queue(struct request_queue *); 1125struct request_queue *blk_alloc_queue(gfp_t); 1126struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id); 1127extern void blk_put_queue(struct request_queue *); 1128extern void blk_set_queue_dying(struct request_queue *); 1129 1130/* 1131 * blk_plug permits building a queue of related requests by holding the I/O 1132 * fragments for a short period. This allows merging of sequential requests 1133 * into single larger request. As the requests are moved from a per-task list to 1134 * the device's request_queue in a batch, this results in improved scalability 1135 * as the lock contention for request_queue lock is reduced. 1136 * 1137 * It is ok not to disable preemption when adding the request to the plug list 1138 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1139 * the plug list when the task sleeps by itself. For details, please see 1140 * schedule() where blk_schedule_flush_plug() is called. 1141 */ 1142struct blk_plug { 1143 struct list_head mq_list; /* blk-mq requests */ 1144 struct list_head cb_list; /* md requires an unplug callback */ 1145 unsigned short rq_count; 1146 bool multiple_queues; 1147}; 1148#define BLK_MAX_REQUEST_COUNT 16 1149#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1150 1151struct blk_plug_cb; 1152typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1153struct blk_plug_cb { 1154 struct list_head list; 1155 blk_plug_cb_fn callback; 1156 void *data; 1157}; 1158extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1159 void *data, int size); 1160extern void blk_start_plug(struct blk_plug *); 1161extern void blk_finish_plug(struct blk_plug *); 1162extern void blk_flush_plug_list(struct blk_plug *, bool); 1163 1164static inline void blk_flush_plug(struct task_struct *tsk) 1165{ 1166 struct blk_plug *plug = tsk->plug; 1167 1168 if (plug) 1169 blk_flush_plug_list(plug, false); 1170} 1171 1172static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1173{ 1174 struct blk_plug *plug = tsk->plug; 1175 1176 if (plug) 1177 blk_flush_plug_list(plug, true); 1178} 1179 1180static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1181{ 1182 struct blk_plug *plug = tsk->plug; 1183 1184 return plug && 1185 (!list_empty(&plug->mq_list) || 1186 !list_empty(&plug->cb_list)); 1187} 1188 1189extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1190extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1191 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1192 1193#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1194 1195extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1196 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1197extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1198 sector_t nr_sects, gfp_t gfp_mask, int flags, 1199 struct bio **biop); 1200 1201#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1202#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1203 1204extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1205 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1206 unsigned flags); 1207extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1208 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1209 1210static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1211 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1212{ 1213 return blkdev_issue_discard(sb->s_bdev, 1214 block << (sb->s_blocksize_bits - 1215 SECTOR_SHIFT), 1216 nr_blocks << (sb->s_blocksize_bits - 1217 SECTOR_SHIFT), 1218 gfp_mask, flags); 1219} 1220static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1221 sector_t nr_blocks, gfp_t gfp_mask) 1222{ 1223 return blkdev_issue_zeroout(sb->s_bdev, 1224 block << (sb->s_blocksize_bits - 1225 SECTOR_SHIFT), 1226 nr_blocks << (sb->s_blocksize_bits - 1227 SECTOR_SHIFT), 1228 gfp_mask, 0); 1229} 1230 1231extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1232 1233enum blk_default_limits { 1234 BLK_MAX_SEGMENTS = 128, 1235 BLK_SAFE_MAX_SECTORS = 255, 1236 BLK_DEF_MAX_SECTORS = 2560, 1237 BLK_MAX_SEGMENT_SIZE = 65536, 1238 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1239}; 1240 1241static inline unsigned long queue_segment_boundary(struct request_queue *q) 1242{ 1243 return q->limits.seg_boundary_mask; 1244} 1245 1246static inline unsigned long queue_virt_boundary(struct request_queue *q) 1247{ 1248 return q->limits.virt_boundary_mask; 1249} 1250 1251static inline unsigned int queue_max_sectors(struct request_queue *q) 1252{ 1253 return q->limits.max_sectors; 1254} 1255 1256static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1257{ 1258 return q->limits.max_hw_sectors; 1259} 1260 1261static inline unsigned short queue_max_segments(struct request_queue *q) 1262{ 1263 return q->limits.max_segments; 1264} 1265 1266static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1267{ 1268 return q->limits.max_discard_segments; 1269} 1270 1271static inline unsigned int queue_max_segment_size(struct request_queue *q) 1272{ 1273 return q->limits.max_segment_size; 1274} 1275 1276static inline unsigned short queue_logical_block_size(struct request_queue *q) 1277{ 1278 int retval = 512; 1279 1280 if (q && q->limits.logical_block_size) 1281 retval = q->limits.logical_block_size; 1282 1283 return retval; 1284} 1285 1286static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1287{ 1288 return queue_logical_block_size(bdev_get_queue(bdev)); 1289} 1290 1291static inline unsigned int queue_physical_block_size(struct request_queue *q) 1292{ 1293 return q->limits.physical_block_size; 1294} 1295 1296static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1297{ 1298 return queue_physical_block_size(bdev_get_queue(bdev)); 1299} 1300 1301static inline unsigned int queue_io_min(struct request_queue *q) 1302{ 1303 return q->limits.io_min; 1304} 1305 1306static inline int bdev_io_min(struct block_device *bdev) 1307{ 1308 return queue_io_min(bdev_get_queue(bdev)); 1309} 1310 1311static inline unsigned int queue_io_opt(struct request_queue *q) 1312{ 1313 return q->limits.io_opt; 1314} 1315 1316static inline int bdev_io_opt(struct block_device *bdev) 1317{ 1318 return queue_io_opt(bdev_get_queue(bdev)); 1319} 1320 1321static inline int queue_alignment_offset(struct request_queue *q) 1322{ 1323 if (q->limits.misaligned) 1324 return -1; 1325 1326 return q->limits.alignment_offset; 1327} 1328 1329static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1330{ 1331 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1332 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1333 << SECTOR_SHIFT; 1334 1335 return (granularity + lim->alignment_offset - alignment) % granularity; 1336} 1337 1338static inline int bdev_alignment_offset(struct block_device *bdev) 1339{ 1340 struct request_queue *q = bdev_get_queue(bdev); 1341 1342 if (q->limits.misaligned) 1343 return -1; 1344 1345 if (bdev != bdev->bd_contains) 1346 return bdev->bd_part->alignment_offset; 1347 1348 return q->limits.alignment_offset; 1349} 1350 1351static inline int queue_discard_alignment(struct request_queue *q) 1352{ 1353 if (q->limits.discard_misaligned) 1354 return -1; 1355 1356 return q->limits.discard_alignment; 1357} 1358 1359static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1360{ 1361 unsigned int alignment, granularity, offset; 1362 1363 if (!lim->max_discard_sectors) 1364 return 0; 1365 1366 /* Why are these in bytes, not sectors? */ 1367 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1368 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1369 if (!granularity) 1370 return 0; 1371 1372 /* Offset of the partition start in 'granularity' sectors */ 1373 offset = sector_div(sector, granularity); 1374 1375 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1376 offset = (granularity + alignment - offset) % granularity; 1377 1378 /* Turn it back into bytes, gaah */ 1379 return offset << SECTOR_SHIFT; 1380} 1381 1382static inline int bdev_discard_alignment(struct block_device *bdev) 1383{ 1384 struct request_queue *q = bdev_get_queue(bdev); 1385 1386 if (bdev != bdev->bd_contains) 1387 return bdev->bd_part->discard_alignment; 1388 1389 return q->limits.discard_alignment; 1390} 1391 1392static inline unsigned int bdev_write_same(struct block_device *bdev) 1393{ 1394 struct request_queue *q = bdev_get_queue(bdev); 1395 1396 if (q) 1397 return q->limits.max_write_same_sectors; 1398 1399 return 0; 1400} 1401 1402static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1403{ 1404 struct request_queue *q = bdev_get_queue(bdev); 1405 1406 if (q) 1407 return q->limits.max_write_zeroes_sectors; 1408 1409 return 0; 1410} 1411 1412static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1413{ 1414 struct request_queue *q = bdev_get_queue(bdev); 1415 1416 if (q) 1417 return blk_queue_zoned_model(q); 1418 1419 return BLK_ZONED_NONE; 1420} 1421 1422static inline bool bdev_is_zoned(struct block_device *bdev) 1423{ 1424 struct request_queue *q = bdev_get_queue(bdev); 1425 1426 if (q) 1427 return blk_queue_is_zoned(q); 1428 1429 return false; 1430} 1431 1432static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1433{ 1434 struct request_queue *q = bdev_get_queue(bdev); 1435 1436 if (q) 1437 return blk_queue_zone_sectors(q); 1438 return 0; 1439} 1440 1441static inline int queue_dma_alignment(struct request_queue *q) 1442{ 1443 return q ? q->dma_alignment : 511; 1444} 1445 1446static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1447 unsigned int len) 1448{ 1449 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1450 return !(addr & alignment) && !(len & alignment); 1451} 1452 1453/* assumes size > 256 */ 1454static inline unsigned int blksize_bits(unsigned int size) 1455{ 1456 unsigned int bits = 8; 1457 do { 1458 bits++; 1459 size >>= 1; 1460 } while (size > 256); 1461 return bits; 1462} 1463 1464static inline unsigned int block_size(struct block_device *bdev) 1465{ 1466 return bdev->bd_block_size; 1467} 1468 1469typedef struct {struct page *v;} Sector; 1470 1471unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1472 1473static inline void put_dev_sector(Sector p) 1474{ 1475 put_page(p.v); 1476} 1477 1478int kblockd_schedule_work(struct work_struct *work); 1479int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1480int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1481 1482#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1483 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1484#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1485 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1486 1487#if defined(CONFIG_BLK_DEV_INTEGRITY) 1488 1489enum blk_integrity_flags { 1490 BLK_INTEGRITY_VERIFY = 1 << 0, 1491 BLK_INTEGRITY_GENERATE = 1 << 1, 1492 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1493 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1494}; 1495 1496struct blk_integrity_iter { 1497 void *prot_buf; 1498 void *data_buf; 1499 sector_t seed; 1500 unsigned int data_size; 1501 unsigned short interval; 1502 const char *disk_name; 1503}; 1504 1505typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1506 1507struct blk_integrity_profile { 1508 integrity_processing_fn *generate_fn; 1509 integrity_processing_fn *verify_fn; 1510 const char *name; 1511}; 1512 1513extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1514extern void blk_integrity_unregister(struct gendisk *); 1515extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1516extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1517 struct scatterlist *); 1518extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1519extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1520 struct request *); 1521extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1522 struct bio *); 1523 1524static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1525{ 1526 struct blk_integrity *bi = &disk->queue->integrity; 1527 1528 if (!bi->profile) 1529 return NULL; 1530 1531 return bi; 1532} 1533 1534static inline 1535struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1536{ 1537 return blk_get_integrity(bdev->bd_disk); 1538} 1539 1540static inline bool blk_integrity_rq(struct request *rq) 1541{ 1542 return rq->cmd_flags & REQ_INTEGRITY; 1543} 1544 1545static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1546 unsigned int segs) 1547{ 1548 q->limits.max_integrity_segments = segs; 1549} 1550 1551static inline unsigned short 1552queue_max_integrity_segments(struct request_queue *q) 1553{ 1554 return q->limits.max_integrity_segments; 1555} 1556 1557/** 1558 * bio_integrity_intervals - Return number of integrity intervals for a bio 1559 * @bi: blk_integrity profile for device 1560 * @sectors: Size of the bio in 512-byte sectors 1561 * 1562 * Description: The block layer calculates everything in 512 byte 1563 * sectors but integrity metadata is done in terms of the data integrity 1564 * interval size of the storage device. Convert the block layer sectors 1565 * to the appropriate number of integrity intervals. 1566 */ 1567static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1568 unsigned int sectors) 1569{ 1570 return sectors >> (bi->interval_exp - 9); 1571} 1572 1573static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1574 unsigned int sectors) 1575{ 1576 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1577} 1578 1579/* 1580 * Return the first bvec that contains integrity data. Only drivers that are 1581 * limited to a single integrity segment should use this helper. 1582 */ 1583static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1584{ 1585 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1586 return NULL; 1587 return rq->bio->bi_integrity->bip_vec; 1588} 1589 1590#else /* CONFIG_BLK_DEV_INTEGRITY */ 1591 1592struct bio; 1593struct block_device; 1594struct gendisk; 1595struct blk_integrity; 1596 1597static inline int blk_integrity_rq(struct request *rq) 1598{ 1599 return 0; 1600} 1601static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1602 struct bio *b) 1603{ 1604 return 0; 1605} 1606static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1607 struct bio *b, 1608 struct scatterlist *s) 1609{ 1610 return 0; 1611} 1612static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1613{ 1614 return NULL; 1615} 1616static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1617{ 1618 return NULL; 1619} 1620static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1621{ 1622 return 0; 1623} 1624static inline void blk_integrity_register(struct gendisk *d, 1625 struct blk_integrity *b) 1626{ 1627} 1628static inline void blk_integrity_unregister(struct gendisk *d) 1629{ 1630} 1631static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1632 unsigned int segs) 1633{ 1634} 1635static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1636{ 1637 return 0; 1638} 1639static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1640 struct request *r1, 1641 struct request *r2) 1642{ 1643 return true; 1644} 1645static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1646 struct request *r, 1647 struct bio *b) 1648{ 1649 return true; 1650} 1651 1652static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1653 unsigned int sectors) 1654{ 1655 return 0; 1656} 1657 1658static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1659 unsigned int sectors) 1660{ 1661 return 0; 1662} 1663 1664static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1665{ 1666 return NULL; 1667} 1668 1669#endif /* CONFIG_BLK_DEV_INTEGRITY */ 1670 1671struct block_device_operations { 1672 int (*open) (struct block_device *, fmode_t); 1673 void (*release) (struct gendisk *, fmode_t); 1674 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1675 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1676 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1677 unsigned int (*check_events) (struct gendisk *disk, 1678 unsigned int clearing); 1679 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1680 int (*media_changed) (struct gendisk *); 1681 void (*unlock_native_capacity) (struct gendisk *); 1682 int (*revalidate_disk) (struct gendisk *); 1683 int (*getgeo)(struct block_device *, struct hd_geometry *); 1684 /* this callback is with swap_lock and sometimes page table lock held */ 1685 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1686 int (*report_zones)(struct gendisk *, sector_t sector, 1687 struct blk_zone *zones, unsigned int *nr_zones, 1688 gfp_t gfp_mask); 1689 struct module *owner; 1690 const struct pr_ops *pr_ops; 1691}; 1692 1693extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1694 unsigned long); 1695extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1696extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1697 struct writeback_control *); 1698 1699#ifdef CONFIG_BLK_DEV_ZONED 1700bool blk_req_needs_zone_write_lock(struct request *rq); 1701void __blk_req_zone_write_lock(struct request *rq); 1702void __blk_req_zone_write_unlock(struct request *rq); 1703 1704static inline void blk_req_zone_write_lock(struct request *rq) 1705{ 1706 if (blk_req_needs_zone_write_lock(rq)) 1707 __blk_req_zone_write_lock(rq); 1708} 1709 1710static inline void blk_req_zone_write_unlock(struct request *rq) 1711{ 1712 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1713 __blk_req_zone_write_unlock(rq); 1714} 1715 1716static inline bool blk_req_zone_is_write_locked(struct request *rq) 1717{ 1718 return rq->q->seq_zones_wlock && 1719 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1720} 1721 1722static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1723{ 1724 if (!blk_req_needs_zone_write_lock(rq)) 1725 return true; 1726 return !blk_req_zone_is_write_locked(rq); 1727} 1728#else 1729static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1730{ 1731 return false; 1732} 1733 1734static inline void blk_req_zone_write_lock(struct request *rq) 1735{ 1736} 1737 1738static inline void blk_req_zone_write_unlock(struct request *rq) 1739{ 1740} 1741static inline bool blk_req_zone_is_write_locked(struct request *rq) 1742{ 1743 return false; 1744} 1745 1746static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1747{ 1748 return true; 1749} 1750#endif /* CONFIG_BLK_DEV_ZONED */ 1751 1752#else /* CONFIG_BLOCK */ 1753 1754struct block_device; 1755 1756/* 1757 * stubs for when the block layer is configured out 1758 */ 1759#define buffer_heads_over_limit 0 1760 1761static inline long nr_blockdev_pages(void) 1762{ 1763 return 0; 1764} 1765 1766struct blk_plug { 1767}; 1768 1769static inline void blk_start_plug(struct blk_plug *plug) 1770{ 1771} 1772 1773static inline void blk_finish_plug(struct blk_plug *plug) 1774{ 1775} 1776 1777static inline void blk_flush_plug(struct task_struct *task) 1778{ 1779} 1780 1781static inline void blk_schedule_flush_plug(struct task_struct *task) 1782{ 1783} 1784 1785 1786static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1787{ 1788 return false; 1789} 1790 1791static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1792 sector_t *error_sector) 1793{ 1794 return 0; 1795} 1796 1797#endif /* CONFIG_BLOCK */ 1798 1799static inline void blk_wake_io_task(struct task_struct *waiter) 1800{ 1801 /* 1802 * If we're polling, the task itself is doing the completions. For 1803 * that case, we don't need to signal a wakeup, it's enough to just 1804 * mark us as RUNNING. 1805 */ 1806 if (waiter == current) 1807 __set_current_state(TASK_RUNNING); 1808 else 1809 wake_up_process(waiter); 1810} 1811 1812#endif