Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36#include <linux/module.h>
37#include <linux/fs.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/bio.h>
41#include <linux/genhd.h>
42#include <linux/hdreg.h>
43#include <linux/errno.h>
44#include <linux/idr.h>
45#include <linux/interrupt.h>
46#include <linux/init.h>
47#include <linux/blkdev.h>
48#include <linux/blkpg.h>
49#include <linux/blk-pm.h>
50#include <linux/delay.h>
51#include <linux/mutex.h>
52#include <linux/string_helpers.h>
53#include <linux/async.h>
54#include <linux/slab.h>
55#include <linux/sed-opal.h>
56#include <linux/pm_runtime.h>
57#include <linux/pr.h>
58#include <linux/t10-pi.h>
59#include <linux/uaccess.h>
60#include <asm/unaligned.h>
61
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_dbg.h>
65#include <scsi/scsi_device.h>
66#include <scsi/scsi_driver.h>
67#include <scsi/scsi_eh.h>
68#include <scsi/scsi_host.h>
69#include <scsi/scsi_ioctl.h>
70#include <scsi/scsicam.h>
71
72#include "sd.h"
73#include "scsi_priv.h"
74#include "scsi_logging.h"
75
76MODULE_AUTHOR("Eric Youngdale");
77MODULE_DESCRIPTION("SCSI disk (sd) driver");
78MODULE_LICENSE("GPL");
79
80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102#define SD_MINORS 16
103#else
104#define SD_MINORS 0
105#endif
106
107static void sd_config_discard(struct scsi_disk *, unsigned int);
108static void sd_config_write_same(struct scsi_disk *);
109static int sd_revalidate_disk(struct gendisk *);
110static void sd_unlock_native_capacity(struct gendisk *disk);
111static int sd_probe(struct device *);
112static int sd_remove(struct device *);
113static void sd_shutdown(struct device *);
114static int sd_suspend_system(struct device *);
115static int sd_suspend_runtime(struct device *);
116static int sd_resume(struct device *);
117static void sd_rescan(struct device *);
118static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120static int sd_done(struct scsi_cmnd *);
121static void sd_eh_reset(struct scsi_cmnd *);
122static int sd_eh_action(struct scsi_cmnd *, int);
123static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124static void scsi_disk_release(struct device *cdev);
125static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
126static void sd_print_result(const struct scsi_disk *, const char *, int);
127
128static DEFINE_IDA(sd_index_ida);
129
130/* This semaphore is used to mediate the 0->1 reference get in the
131 * face of object destruction (i.e. we can't allow a get on an
132 * object after last put) */
133static DEFINE_MUTEX(sd_ref_mutex);
134
135static struct kmem_cache *sd_cdb_cache;
136static mempool_t *sd_cdb_pool;
137static mempool_t *sd_page_pool;
138
139static const char *sd_cache_types[] = {
140 "write through", "none", "write back",
141 "write back, no read (daft)"
142};
143
144static void sd_set_flush_flag(struct scsi_disk *sdkp)
145{
146 bool wc = false, fua = false;
147
148 if (sdkp->WCE) {
149 wc = true;
150 if (sdkp->DPOFUA)
151 fua = true;
152 }
153
154 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
155}
156
157static ssize_t
158cache_type_store(struct device *dev, struct device_attribute *attr,
159 const char *buf, size_t count)
160{
161 int ct, rcd, wce, sp;
162 struct scsi_disk *sdkp = to_scsi_disk(dev);
163 struct scsi_device *sdp = sdkp->device;
164 char buffer[64];
165 char *buffer_data;
166 struct scsi_mode_data data;
167 struct scsi_sense_hdr sshdr;
168 static const char temp[] = "temporary ";
169 int len;
170
171 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
172 /* no cache control on RBC devices; theoretically they
173 * can do it, but there's probably so many exceptions
174 * it's not worth the risk */
175 return -EINVAL;
176
177 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
178 buf += sizeof(temp) - 1;
179 sdkp->cache_override = 1;
180 } else {
181 sdkp->cache_override = 0;
182 }
183
184 ct = sysfs_match_string(sd_cache_types, buf);
185 if (ct < 0)
186 return -EINVAL;
187
188 rcd = ct & 0x01 ? 1 : 0;
189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190
191 if (sdkp->cache_override) {
192 sdkp->WCE = wce;
193 sdkp->RCD = rcd;
194 sd_set_flush_flag(sdkp);
195 return count;
196 }
197
198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199 SD_MAX_RETRIES, &data, NULL))
200 return -EINVAL;
201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202 data.block_descriptor_length);
203 buffer_data = buffer + data.header_length +
204 data.block_descriptor_length;
205 buffer_data[2] &= ~0x05;
206 buffer_data[2] |= wce << 2 | rcd;
207 sp = buffer_data[0] & 0x80 ? 1 : 0;
208 buffer_data[0] &= ~0x80;
209
210 /*
211 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
212 * received mode parameter buffer before doing MODE SELECT.
213 */
214 data.device_specific = 0;
215
216 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
217 SD_MAX_RETRIES, &data, &sshdr)) {
218 if (scsi_sense_valid(&sshdr))
219 sd_print_sense_hdr(sdkp, &sshdr);
220 return -EINVAL;
221 }
222 revalidate_disk(sdkp->disk);
223 return count;
224}
225
226static ssize_t
227manage_start_stop_show(struct device *dev, struct device_attribute *attr,
228 char *buf)
229{
230 struct scsi_disk *sdkp = to_scsi_disk(dev);
231 struct scsi_device *sdp = sdkp->device;
232
233 return sprintf(buf, "%u\n", sdp->manage_start_stop);
234}
235
236static ssize_t
237manage_start_stop_store(struct device *dev, struct device_attribute *attr,
238 const char *buf, size_t count)
239{
240 struct scsi_disk *sdkp = to_scsi_disk(dev);
241 struct scsi_device *sdp = sdkp->device;
242 bool v;
243
244 if (!capable(CAP_SYS_ADMIN))
245 return -EACCES;
246
247 if (kstrtobool(buf, &v))
248 return -EINVAL;
249
250 sdp->manage_start_stop = v;
251
252 return count;
253}
254static DEVICE_ATTR_RW(manage_start_stop);
255
256static ssize_t
257allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
258{
259 struct scsi_disk *sdkp = to_scsi_disk(dev);
260
261 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
262}
263
264static ssize_t
265allow_restart_store(struct device *dev, struct device_attribute *attr,
266 const char *buf, size_t count)
267{
268 bool v;
269 struct scsi_disk *sdkp = to_scsi_disk(dev);
270 struct scsi_device *sdp = sdkp->device;
271
272 if (!capable(CAP_SYS_ADMIN))
273 return -EACCES;
274
275 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
276 return -EINVAL;
277
278 if (kstrtobool(buf, &v))
279 return -EINVAL;
280
281 sdp->allow_restart = v;
282
283 return count;
284}
285static DEVICE_ATTR_RW(allow_restart);
286
287static ssize_t
288cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
289{
290 struct scsi_disk *sdkp = to_scsi_disk(dev);
291 int ct = sdkp->RCD + 2*sdkp->WCE;
292
293 return sprintf(buf, "%s\n", sd_cache_types[ct]);
294}
295static DEVICE_ATTR_RW(cache_type);
296
297static ssize_t
298FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
299{
300 struct scsi_disk *sdkp = to_scsi_disk(dev);
301
302 return sprintf(buf, "%u\n", sdkp->DPOFUA);
303}
304static DEVICE_ATTR_RO(FUA);
305
306static ssize_t
307protection_type_show(struct device *dev, struct device_attribute *attr,
308 char *buf)
309{
310 struct scsi_disk *sdkp = to_scsi_disk(dev);
311
312 return sprintf(buf, "%u\n", sdkp->protection_type);
313}
314
315static ssize_t
316protection_type_store(struct device *dev, struct device_attribute *attr,
317 const char *buf, size_t count)
318{
319 struct scsi_disk *sdkp = to_scsi_disk(dev);
320 unsigned int val;
321 int err;
322
323 if (!capable(CAP_SYS_ADMIN))
324 return -EACCES;
325
326 err = kstrtouint(buf, 10, &val);
327
328 if (err)
329 return err;
330
331 if (val <= T10_PI_TYPE3_PROTECTION)
332 sdkp->protection_type = val;
333
334 return count;
335}
336static DEVICE_ATTR_RW(protection_type);
337
338static ssize_t
339protection_mode_show(struct device *dev, struct device_attribute *attr,
340 char *buf)
341{
342 struct scsi_disk *sdkp = to_scsi_disk(dev);
343 struct scsi_device *sdp = sdkp->device;
344 unsigned int dif, dix;
345
346 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
347 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
348
349 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
350 dif = 0;
351 dix = 1;
352 }
353
354 if (!dif && !dix)
355 return sprintf(buf, "none\n");
356
357 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
358}
359static DEVICE_ATTR_RO(protection_mode);
360
361static ssize_t
362app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
363{
364 struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366 return sprintf(buf, "%u\n", sdkp->ATO);
367}
368static DEVICE_ATTR_RO(app_tag_own);
369
370static ssize_t
371thin_provisioning_show(struct device *dev, struct device_attribute *attr,
372 char *buf)
373{
374 struct scsi_disk *sdkp = to_scsi_disk(dev);
375
376 return sprintf(buf, "%u\n", sdkp->lbpme);
377}
378static DEVICE_ATTR_RO(thin_provisioning);
379
380/* sysfs_match_string() requires dense arrays */
381static const char *lbp_mode[] = {
382 [SD_LBP_FULL] = "full",
383 [SD_LBP_UNMAP] = "unmap",
384 [SD_LBP_WS16] = "writesame_16",
385 [SD_LBP_WS10] = "writesame_10",
386 [SD_LBP_ZERO] = "writesame_zero",
387 [SD_LBP_DISABLE] = "disabled",
388};
389
390static ssize_t
391provisioning_mode_show(struct device *dev, struct device_attribute *attr,
392 char *buf)
393{
394 struct scsi_disk *sdkp = to_scsi_disk(dev);
395
396 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
397}
398
399static ssize_t
400provisioning_mode_store(struct device *dev, struct device_attribute *attr,
401 const char *buf, size_t count)
402{
403 struct scsi_disk *sdkp = to_scsi_disk(dev);
404 struct scsi_device *sdp = sdkp->device;
405 int mode;
406
407 if (!capable(CAP_SYS_ADMIN))
408 return -EACCES;
409
410 if (sd_is_zoned(sdkp)) {
411 sd_config_discard(sdkp, SD_LBP_DISABLE);
412 return count;
413 }
414
415 if (sdp->type != TYPE_DISK)
416 return -EINVAL;
417
418 mode = sysfs_match_string(lbp_mode, buf);
419 if (mode < 0)
420 return -EINVAL;
421
422 sd_config_discard(sdkp, mode);
423
424 return count;
425}
426static DEVICE_ATTR_RW(provisioning_mode);
427
428/* sysfs_match_string() requires dense arrays */
429static const char *zeroing_mode[] = {
430 [SD_ZERO_WRITE] = "write",
431 [SD_ZERO_WS] = "writesame",
432 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
433 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
434};
435
436static ssize_t
437zeroing_mode_show(struct device *dev, struct device_attribute *attr,
438 char *buf)
439{
440 struct scsi_disk *sdkp = to_scsi_disk(dev);
441
442 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
443}
444
445static ssize_t
446zeroing_mode_store(struct device *dev, struct device_attribute *attr,
447 const char *buf, size_t count)
448{
449 struct scsi_disk *sdkp = to_scsi_disk(dev);
450 int mode;
451
452 if (!capable(CAP_SYS_ADMIN))
453 return -EACCES;
454
455 mode = sysfs_match_string(zeroing_mode, buf);
456 if (mode < 0)
457 return -EINVAL;
458
459 sdkp->zeroing_mode = mode;
460
461 return count;
462}
463static DEVICE_ATTR_RW(zeroing_mode);
464
465static ssize_t
466max_medium_access_timeouts_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468{
469 struct scsi_disk *sdkp = to_scsi_disk(dev);
470
471 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
472}
473
474static ssize_t
475max_medium_access_timeouts_store(struct device *dev,
476 struct device_attribute *attr, const char *buf,
477 size_t count)
478{
479 struct scsi_disk *sdkp = to_scsi_disk(dev);
480 int err;
481
482 if (!capable(CAP_SYS_ADMIN))
483 return -EACCES;
484
485 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
486
487 return err ? err : count;
488}
489static DEVICE_ATTR_RW(max_medium_access_timeouts);
490
491static ssize_t
492max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
493 char *buf)
494{
495 struct scsi_disk *sdkp = to_scsi_disk(dev);
496
497 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
498}
499
500static ssize_t
501max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
502 const char *buf, size_t count)
503{
504 struct scsi_disk *sdkp = to_scsi_disk(dev);
505 struct scsi_device *sdp = sdkp->device;
506 unsigned long max;
507 int err;
508
509 if (!capable(CAP_SYS_ADMIN))
510 return -EACCES;
511
512 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
513 return -EINVAL;
514
515 err = kstrtoul(buf, 10, &max);
516
517 if (err)
518 return err;
519
520 if (max == 0)
521 sdp->no_write_same = 1;
522 else if (max <= SD_MAX_WS16_BLOCKS) {
523 sdp->no_write_same = 0;
524 sdkp->max_ws_blocks = max;
525 }
526
527 sd_config_write_same(sdkp);
528
529 return count;
530}
531static DEVICE_ATTR_RW(max_write_same_blocks);
532
533static struct attribute *sd_disk_attrs[] = {
534 &dev_attr_cache_type.attr,
535 &dev_attr_FUA.attr,
536 &dev_attr_allow_restart.attr,
537 &dev_attr_manage_start_stop.attr,
538 &dev_attr_protection_type.attr,
539 &dev_attr_protection_mode.attr,
540 &dev_attr_app_tag_own.attr,
541 &dev_attr_thin_provisioning.attr,
542 &dev_attr_provisioning_mode.attr,
543 &dev_attr_zeroing_mode.attr,
544 &dev_attr_max_write_same_blocks.attr,
545 &dev_attr_max_medium_access_timeouts.attr,
546 NULL,
547};
548ATTRIBUTE_GROUPS(sd_disk);
549
550static struct class sd_disk_class = {
551 .name = "scsi_disk",
552 .owner = THIS_MODULE,
553 .dev_release = scsi_disk_release,
554 .dev_groups = sd_disk_groups,
555};
556
557static const struct dev_pm_ops sd_pm_ops = {
558 .suspend = sd_suspend_system,
559 .resume = sd_resume,
560 .poweroff = sd_suspend_system,
561 .restore = sd_resume,
562 .runtime_suspend = sd_suspend_runtime,
563 .runtime_resume = sd_resume,
564};
565
566static struct scsi_driver sd_template = {
567 .gendrv = {
568 .name = "sd",
569 .owner = THIS_MODULE,
570 .probe = sd_probe,
571 .remove = sd_remove,
572 .shutdown = sd_shutdown,
573 .pm = &sd_pm_ops,
574 },
575 .rescan = sd_rescan,
576 .init_command = sd_init_command,
577 .uninit_command = sd_uninit_command,
578 .done = sd_done,
579 .eh_action = sd_eh_action,
580 .eh_reset = sd_eh_reset,
581};
582
583/*
584 * Dummy kobj_map->probe function.
585 * The default ->probe function will call modprobe, which is
586 * pointless as this module is already loaded.
587 */
588static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
589{
590 return NULL;
591}
592
593/*
594 * Device no to disk mapping:
595 *
596 * major disc2 disc p1
597 * |............|.............|....|....| <- dev_t
598 * 31 20 19 8 7 4 3 0
599 *
600 * Inside a major, we have 16k disks, however mapped non-
601 * contiguously. The first 16 disks are for major0, the next
602 * ones with major1, ... Disk 256 is for major0 again, disk 272
603 * for major1, ...
604 * As we stay compatible with our numbering scheme, we can reuse
605 * the well-know SCSI majors 8, 65--71, 136--143.
606 */
607static int sd_major(int major_idx)
608{
609 switch (major_idx) {
610 case 0:
611 return SCSI_DISK0_MAJOR;
612 case 1 ... 7:
613 return SCSI_DISK1_MAJOR + major_idx - 1;
614 case 8 ... 15:
615 return SCSI_DISK8_MAJOR + major_idx - 8;
616 default:
617 BUG();
618 return 0; /* shut up gcc */
619 }
620}
621
622static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
623{
624 struct scsi_disk *sdkp = NULL;
625
626 mutex_lock(&sd_ref_mutex);
627
628 if (disk->private_data) {
629 sdkp = scsi_disk(disk);
630 if (scsi_device_get(sdkp->device) == 0)
631 get_device(&sdkp->dev);
632 else
633 sdkp = NULL;
634 }
635 mutex_unlock(&sd_ref_mutex);
636 return sdkp;
637}
638
639static void scsi_disk_put(struct scsi_disk *sdkp)
640{
641 struct scsi_device *sdev = sdkp->device;
642
643 mutex_lock(&sd_ref_mutex);
644 put_device(&sdkp->dev);
645 scsi_device_put(sdev);
646 mutex_unlock(&sd_ref_mutex);
647}
648
649#ifdef CONFIG_BLK_SED_OPAL
650static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
651 size_t len, bool send)
652{
653 struct scsi_device *sdev = data;
654 u8 cdb[12] = { 0, };
655 int ret;
656
657 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
658 cdb[1] = secp;
659 put_unaligned_be16(spsp, &cdb[2]);
660 put_unaligned_be32(len, &cdb[6]);
661
662 ret = scsi_execute_req(sdev, cdb,
663 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
664 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
665 return ret <= 0 ? ret : -EIO;
666}
667#endif /* CONFIG_BLK_SED_OPAL */
668
669/*
670 * Look up the DIX operation based on whether the command is read or
671 * write and whether dix and dif are enabled.
672 */
673static unsigned int sd_prot_op(bool write, bool dix, bool dif)
674{
675 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
676 static const unsigned int ops[] = { /* wrt dix dif */
677 SCSI_PROT_NORMAL, /* 0 0 0 */
678 SCSI_PROT_READ_STRIP, /* 0 0 1 */
679 SCSI_PROT_READ_INSERT, /* 0 1 0 */
680 SCSI_PROT_READ_PASS, /* 0 1 1 */
681 SCSI_PROT_NORMAL, /* 1 0 0 */
682 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
683 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
684 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
685 };
686
687 return ops[write << 2 | dix << 1 | dif];
688}
689
690/*
691 * Returns a mask of the protection flags that are valid for a given DIX
692 * operation.
693 */
694static unsigned int sd_prot_flag_mask(unsigned int prot_op)
695{
696 static const unsigned int flag_mask[] = {
697 [SCSI_PROT_NORMAL] = 0,
698
699 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
700 SCSI_PROT_GUARD_CHECK |
701 SCSI_PROT_REF_CHECK |
702 SCSI_PROT_REF_INCREMENT,
703
704 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
705 SCSI_PROT_IP_CHECKSUM,
706
707 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
708 SCSI_PROT_GUARD_CHECK |
709 SCSI_PROT_REF_CHECK |
710 SCSI_PROT_REF_INCREMENT |
711 SCSI_PROT_IP_CHECKSUM,
712
713 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
714 SCSI_PROT_REF_INCREMENT,
715
716 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
717 SCSI_PROT_REF_CHECK |
718 SCSI_PROT_REF_INCREMENT |
719 SCSI_PROT_IP_CHECKSUM,
720
721 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
722 SCSI_PROT_GUARD_CHECK |
723 SCSI_PROT_REF_CHECK |
724 SCSI_PROT_REF_INCREMENT |
725 SCSI_PROT_IP_CHECKSUM,
726 };
727
728 return flag_mask[prot_op];
729}
730
731static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
732 unsigned int dix, unsigned int dif)
733{
734 struct bio *bio = scmd->request->bio;
735 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
736 unsigned int protect = 0;
737
738 if (dix) { /* DIX Type 0, 1, 2, 3 */
739 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
740 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
741
742 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
743 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
744 }
745
746 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
747 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
748
749 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
750 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
751 }
752
753 if (dif) { /* DIX/DIF Type 1, 2, 3 */
754 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
755
756 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
757 protect = 3 << 5; /* Disable target PI checking */
758 else
759 protect = 1 << 5; /* Enable target PI checking */
760 }
761
762 scsi_set_prot_op(scmd, prot_op);
763 scsi_set_prot_type(scmd, dif);
764 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
765
766 return protect;
767}
768
769static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
770{
771 struct request_queue *q = sdkp->disk->queue;
772 unsigned int logical_block_size = sdkp->device->sector_size;
773 unsigned int max_blocks = 0;
774
775 q->limits.discard_alignment =
776 sdkp->unmap_alignment * logical_block_size;
777 q->limits.discard_granularity =
778 max(sdkp->physical_block_size,
779 sdkp->unmap_granularity * logical_block_size);
780 sdkp->provisioning_mode = mode;
781
782 switch (mode) {
783
784 case SD_LBP_FULL:
785 case SD_LBP_DISABLE:
786 blk_queue_max_discard_sectors(q, 0);
787 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
788 return;
789
790 case SD_LBP_UNMAP:
791 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
792 (u32)SD_MAX_WS16_BLOCKS);
793 break;
794
795 case SD_LBP_WS16:
796 if (sdkp->device->unmap_limit_for_ws)
797 max_blocks = sdkp->max_unmap_blocks;
798 else
799 max_blocks = sdkp->max_ws_blocks;
800
801 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
802 break;
803
804 case SD_LBP_WS10:
805 if (sdkp->device->unmap_limit_for_ws)
806 max_blocks = sdkp->max_unmap_blocks;
807 else
808 max_blocks = sdkp->max_ws_blocks;
809
810 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
811 break;
812
813 case SD_LBP_ZERO:
814 max_blocks = min_not_zero(sdkp->max_ws_blocks,
815 (u32)SD_MAX_WS10_BLOCKS);
816 break;
817 }
818
819 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
820 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
821}
822
823static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
824{
825 struct scsi_device *sdp = cmd->device;
826 struct request *rq = cmd->request;
827 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
828 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
829 unsigned int data_len = 24;
830 char *buf;
831
832 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
833 if (!rq->special_vec.bv_page)
834 return BLK_STS_RESOURCE;
835 clear_highpage(rq->special_vec.bv_page);
836 rq->special_vec.bv_offset = 0;
837 rq->special_vec.bv_len = data_len;
838 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
839
840 cmd->cmd_len = 10;
841 cmd->cmnd[0] = UNMAP;
842 cmd->cmnd[8] = 24;
843
844 buf = page_address(rq->special_vec.bv_page);
845 put_unaligned_be16(6 + 16, &buf[0]);
846 put_unaligned_be16(16, &buf[2]);
847 put_unaligned_be64(lba, &buf[8]);
848 put_unaligned_be32(nr_blocks, &buf[16]);
849
850 cmd->allowed = SD_MAX_RETRIES;
851 cmd->transfersize = data_len;
852 rq->timeout = SD_TIMEOUT;
853
854 return scsi_init_io(cmd);
855}
856
857static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
858 bool unmap)
859{
860 struct scsi_device *sdp = cmd->device;
861 struct request *rq = cmd->request;
862 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
863 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
864 u32 data_len = sdp->sector_size;
865
866 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
867 if (!rq->special_vec.bv_page)
868 return BLK_STS_RESOURCE;
869 clear_highpage(rq->special_vec.bv_page);
870 rq->special_vec.bv_offset = 0;
871 rq->special_vec.bv_len = data_len;
872 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
873
874 cmd->cmd_len = 16;
875 cmd->cmnd[0] = WRITE_SAME_16;
876 if (unmap)
877 cmd->cmnd[1] = 0x8; /* UNMAP */
878 put_unaligned_be64(lba, &cmd->cmnd[2]);
879 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
880
881 cmd->allowed = SD_MAX_RETRIES;
882 cmd->transfersize = data_len;
883 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
884
885 return scsi_init_io(cmd);
886}
887
888static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
889 bool unmap)
890{
891 struct scsi_device *sdp = cmd->device;
892 struct request *rq = cmd->request;
893 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
894 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
895 u32 data_len = sdp->sector_size;
896
897 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
898 if (!rq->special_vec.bv_page)
899 return BLK_STS_RESOURCE;
900 clear_highpage(rq->special_vec.bv_page);
901 rq->special_vec.bv_offset = 0;
902 rq->special_vec.bv_len = data_len;
903 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
904
905 cmd->cmd_len = 10;
906 cmd->cmnd[0] = WRITE_SAME;
907 if (unmap)
908 cmd->cmnd[1] = 0x8; /* UNMAP */
909 put_unaligned_be32(lba, &cmd->cmnd[2]);
910 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
911
912 cmd->allowed = SD_MAX_RETRIES;
913 cmd->transfersize = data_len;
914 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
915
916 return scsi_init_io(cmd);
917}
918
919static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
920{
921 struct request *rq = cmd->request;
922 struct scsi_device *sdp = cmd->device;
923 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
924 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
925 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
926
927 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
928 switch (sdkp->zeroing_mode) {
929 case SD_ZERO_WS16_UNMAP:
930 return sd_setup_write_same16_cmnd(cmd, true);
931 case SD_ZERO_WS10_UNMAP:
932 return sd_setup_write_same10_cmnd(cmd, true);
933 }
934 }
935
936 if (sdp->no_write_same)
937 return BLK_STS_TARGET;
938
939 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
940 return sd_setup_write_same16_cmnd(cmd, false);
941
942 return sd_setup_write_same10_cmnd(cmd, false);
943}
944
945static void sd_config_write_same(struct scsi_disk *sdkp)
946{
947 struct request_queue *q = sdkp->disk->queue;
948 unsigned int logical_block_size = sdkp->device->sector_size;
949
950 if (sdkp->device->no_write_same) {
951 sdkp->max_ws_blocks = 0;
952 goto out;
953 }
954
955 /* Some devices can not handle block counts above 0xffff despite
956 * supporting WRITE SAME(16). Consequently we default to 64k
957 * blocks per I/O unless the device explicitly advertises a
958 * bigger limit.
959 */
960 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
961 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
962 (u32)SD_MAX_WS16_BLOCKS);
963 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
964 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
965 (u32)SD_MAX_WS10_BLOCKS);
966 else {
967 sdkp->device->no_write_same = 1;
968 sdkp->max_ws_blocks = 0;
969 }
970
971 if (sdkp->lbprz && sdkp->lbpws)
972 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
973 else if (sdkp->lbprz && sdkp->lbpws10)
974 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
975 else if (sdkp->max_ws_blocks)
976 sdkp->zeroing_mode = SD_ZERO_WS;
977 else
978 sdkp->zeroing_mode = SD_ZERO_WRITE;
979
980 if (sdkp->max_ws_blocks &&
981 sdkp->physical_block_size > logical_block_size) {
982 /*
983 * Reporting a maximum number of blocks that is not aligned
984 * on the device physical size would cause a large write same
985 * request to be split into physically unaligned chunks by
986 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
987 * even if the caller of these functions took care to align the
988 * large request. So make sure the maximum reported is aligned
989 * to the device physical block size. This is only an optional
990 * optimization for regular disks, but this is mandatory to
991 * avoid failure of large write same requests directed at
992 * sequential write required zones of host-managed ZBC disks.
993 */
994 sdkp->max_ws_blocks =
995 round_down(sdkp->max_ws_blocks,
996 bytes_to_logical(sdkp->device,
997 sdkp->physical_block_size));
998 }
999
1000out:
1001 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1002 (logical_block_size >> 9));
1003 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1004 (logical_block_size >> 9));
1005}
1006
1007/**
1008 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1009 * @cmd: command to prepare
1010 *
1011 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1012 * the preference indicated by the target device.
1013 **/
1014static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1015{
1016 struct request *rq = cmd->request;
1017 struct scsi_device *sdp = cmd->device;
1018 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1019 struct bio *bio = rq->bio;
1020 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1021 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1022 blk_status_t ret;
1023
1024 if (sdkp->device->no_write_same)
1025 return BLK_STS_TARGET;
1026
1027 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1028
1029 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1030
1031 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1032 cmd->cmd_len = 16;
1033 cmd->cmnd[0] = WRITE_SAME_16;
1034 put_unaligned_be64(lba, &cmd->cmnd[2]);
1035 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1036 } else {
1037 cmd->cmd_len = 10;
1038 cmd->cmnd[0] = WRITE_SAME;
1039 put_unaligned_be32(lba, &cmd->cmnd[2]);
1040 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1041 }
1042
1043 cmd->transfersize = sdp->sector_size;
1044 cmd->allowed = SD_MAX_RETRIES;
1045
1046 /*
1047 * For WRITE SAME the data transferred via the DATA OUT buffer is
1048 * different from the amount of data actually written to the target.
1049 *
1050 * We set up __data_len to the amount of data transferred via the
1051 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1052 * to transfer a single sector of data first, but then reset it to
1053 * the amount of data to be written right after so that the I/O path
1054 * knows how much to actually write.
1055 */
1056 rq->__data_len = sdp->sector_size;
1057 ret = scsi_init_io(cmd);
1058 rq->__data_len = blk_rq_bytes(rq);
1059
1060 return ret;
1061}
1062
1063static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1064{
1065 struct request *rq = cmd->request;
1066
1067 /* flush requests don't perform I/O, zero the S/G table */
1068 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069
1070 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1071 cmd->cmd_len = 10;
1072 cmd->transfersize = 0;
1073 cmd->allowed = SD_MAX_RETRIES;
1074
1075 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1076 return BLK_STS_OK;
1077}
1078
1079static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1080 sector_t lba, unsigned int nr_blocks,
1081 unsigned char flags)
1082{
1083 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1084 if (unlikely(cmd->cmnd == NULL))
1085 return BLK_STS_RESOURCE;
1086
1087 cmd->cmd_len = SD_EXT_CDB_SIZE;
1088 memset(cmd->cmnd, 0, cmd->cmd_len);
1089
1090 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1091 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1092 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1093 cmd->cmnd[10] = flags;
1094 put_unaligned_be64(lba, &cmd->cmnd[12]);
1095 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1096 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1097
1098 return BLK_STS_OK;
1099}
1100
1101static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1102 sector_t lba, unsigned int nr_blocks,
1103 unsigned char flags)
1104{
1105 cmd->cmd_len = 16;
1106 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1107 cmd->cmnd[1] = flags;
1108 cmd->cmnd[14] = 0;
1109 cmd->cmnd[15] = 0;
1110 put_unaligned_be64(lba, &cmd->cmnd[2]);
1111 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1112
1113 return BLK_STS_OK;
1114}
1115
1116static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1117 sector_t lba, unsigned int nr_blocks,
1118 unsigned char flags)
1119{
1120 cmd->cmd_len = 10;
1121 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1122 cmd->cmnd[1] = flags;
1123 cmd->cmnd[6] = 0;
1124 cmd->cmnd[9] = 0;
1125 put_unaligned_be32(lba, &cmd->cmnd[2]);
1126 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1127
1128 return BLK_STS_OK;
1129}
1130
1131static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1132 sector_t lba, unsigned int nr_blocks,
1133 unsigned char flags)
1134{
1135 /* Avoid that 0 blocks gets translated into 256 blocks. */
1136 if (WARN_ON_ONCE(nr_blocks == 0))
1137 return BLK_STS_IOERR;
1138
1139 if (unlikely(flags & 0x8)) {
1140 /*
1141 * This happens only if this drive failed 10byte rw
1142 * command with ILLEGAL_REQUEST during operation and
1143 * thus turned off use_10_for_rw.
1144 */
1145 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1146 return BLK_STS_IOERR;
1147 }
1148
1149 cmd->cmd_len = 6;
1150 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1151 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1152 cmd->cmnd[2] = (lba >> 8) & 0xff;
1153 cmd->cmnd[3] = lba & 0xff;
1154 cmd->cmnd[4] = nr_blocks;
1155 cmd->cmnd[5] = 0;
1156
1157 return BLK_STS_OK;
1158}
1159
1160static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1161{
1162 struct request *rq = cmd->request;
1163 struct scsi_device *sdp = cmd->device;
1164 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1165 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1166 sector_t threshold;
1167 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1168 bool dif, dix;
1169 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1170 bool write = rq_data_dir(rq) == WRITE;
1171 unsigned char protect, fua;
1172 blk_status_t ret;
1173
1174 ret = scsi_init_io(cmd);
1175 if (ret != BLK_STS_OK)
1176 return ret;
1177
1178 if (!scsi_device_online(sdp) || sdp->changed) {
1179 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1180 return BLK_STS_IOERR;
1181 }
1182
1183 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1184 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1185 return BLK_STS_IOERR;
1186 }
1187
1188 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1189 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1190 return BLK_STS_IOERR;
1191 }
1192
1193 /*
1194 * Some SD card readers can't handle accesses which touch the
1195 * last one or two logical blocks. Split accesses as needed.
1196 */
1197 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1198
1199 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1200 if (lba < threshold) {
1201 /* Access up to the threshold but not beyond */
1202 nr_blocks = threshold - lba;
1203 } else {
1204 /* Access only a single logical block */
1205 nr_blocks = 1;
1206 }
1207 }
1208
1209 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1210 dix = scsi_prot_sg_count(cmd);
1211 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1212
1213 if (write && dix)
1214 t10_pi_prepare(cmd->request, sdkp->protection_type);
1215
1216 if (dif || dix)
1217 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1218 else
1219 protect = 0;
1220
1221 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1222 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1223 protect | fua);
1224 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1225 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1226 protect | fua);
1227 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1228 sdp->use_10_for_rw || protect) {
1229 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1230 protect | fua);
1231 } else {
1232 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1233 protect | fua);
1234 }
1235
1236 if (unlikely(ret != BLK_STS_OK))
1237 return ret;
1238
1239 /*
1240 * We shouldn't disconnect in the middle of a sector, so with a dumb
1241 * host adapter, it's safe to assume that we can at least transfer
1242 * this many bytes between each connect / disconnect.
1243 */
1244 cmd->transfersize = sdp->sector_size;
1245 cmd->underflow = nr_blocks << 9;
1246 cmd->allowed = SD_MAX_RETRIES;
1247 cmd->sdb.length = nr_blocks * sdp->sector_size;
1248
1249 SCSI_LOG_HLQUEUE(1,
1250 scmd_printk(KERN_INFO, cmd,
1251 "%s: block=%llu, count=%d\n", __func__,
1252 (unsigned long long)blk_rq_pos(rq),
1253 blk_rq_sectors(rq)));
1254 SCSI_LOG_HLQUEUE(2,
1255 scmd_printk(KERN_INFO, cmd,
1256 "%s %d/%u 512 byte blocks.\n",
1257 write ? "writing" : "reading", nr_blocks,
1258 blk_rq_sectors(rq)));
1259
1260 /*
1261 * This indicates that the command is ready from our end to be
1262 * queued.
1263 */
1264 return BLK_STS_OK;
1265}
1266
1267static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1268{
1269 struct request *rq = cmd->request;
1270
1271 switch (req_op(rq)) {
1272 case REQ_OP_DISCARD:
1273 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1274 case SD_LBP_UNMAP:
1275 return sd_setup_unmap_cmnd(cmd);
1276 case SD_LBP_WS16:
1277 return sd_setup_write_same16_cmnd(cmd, true);
1278 case SD_LBP_WS10:
1279 return sd_setup_write_same10_cmnd(cmd, true);
1280 case SD_LBP_ZERO:
1281 return sd_setup_write_same10_cmnd(cmd, false);
1282 default:
1283 return BLK_STS_TARGET;
1284 }
1285 case REQ_OP_WRITE_ZEROES:
1286 return sd_setup_write_zeroes_cmnd(cmd);
1287 case REQ_OP_WRITE_SAME:
1288 return sd_setup_write_same_cmnd(cmd);
1289 case REQ_OP_FLUSH:
1290 return sd_setup_flush_cmnd(cmd);
1291 case REQ_OP_READ:
1292 case REQ_OP_WRITE:
1293 return sd_setup_read_write_cmnd(cmd);
1294 case REQ_OP_ZONE_RESET:
1295 return sd_zbc_setup_reset_cmnd(cmd);
1296 default:
1297 WARN_ON_ONCE(1);
1298 return BLK_STS_NOTSUPP;
1299 }
1300}
1301
1302static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1303{
1304 struct request *rq = SCpnt->request;
1305 u8 *cmnd;
1306
1307 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1308 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1309
1310 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1311 cmnd = SCpnt->cmnd;
1312 SCpnt->cmnd = NULL;
1313 SCpnt->cmd_len = 0;
1314 mempool_free(cmnd, sd_cdb_pool);
1315 }
1316}
1317
1318/**
1319 * sd_open - open a scsi disk device
1320 * @bdev: Block device of the scsi disk to open
1321 * @mode: FMODE_* mask
1322 *
1323 * Returns 0 if successful. Returns a negated errno value in case
1324 * of error.
1325 *
1326 * Note: This can be called from a user context (e.g. fsck(1) )
1327 * or from within the kernel (e.g. as a result of a mount(1) ).
1328 * In the latter case @inode and @filp carry an abridged amount
1329 * of information as noted above.
1330 *
1331 * Locking: called with bdev->bd_mutex held.
1332 **/
1333static int sd_open(struct block_device *bdev, fmode_t mode)
1334{
1335 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1336 struct scsi_device *sdev;
1337 int retval;
1338
1339 if (!sdkp)
1340 return -ENXIO;
1341
1342 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1343
1344 sdev = sdkp->device;
1345
1346 /*
1347 * If the device is in error recovery, wait until it is done.
1348 * If the device is offline, then disallow any access to it.
1349 */
1350 retval = -ENXIO;
1351 if (!scsi_block_when_processing_errors(sdev))
1352 goto error_out;
1353
1354 if (sdev->removable || sdkp->write_prot)
1355 check_disk_change(bdev);
1356
1357 /*
1358 * If the drive is empty, just let the open fail.
1359 */
1360 retval = -ENOMEDIUM;
1361 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1362 goto error_out;
1363
1364 /*
1365 * If the device has the write protect tab set, have the open fail
1366 * if the user expects to be able to write to the thing.
1367 */
1368 retval = -EROFS;
1369 if (sdkp->write_prot && (mode & FMODE_WRITE))
1370 goto error_out;
1371
1372 /*
1373 * It is possible that the disk changing stuff resulted in
1374 * the device being taken offline. If this is the case,
1375 * report this to the user, and don't pretend that the
1376 * open actually succeeded.
1377 */
1378 retval = -ENXIO;
1379 if (!scsi_device_online(sdev))
1380 goto error_out;
1381
1382 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1383 if (scsi_block_when_processing_errors(sdev))
1384 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1385 }
1386
1387 return 0;
1388
1389error_out:
1390 scsi_disk_put(sdkp);
1391 return retval;
1392}
1393
1394/**
1395 * sd_release - invoked when the (last) close(2) is called on this
1396 * scsi disk.
1397 * @disk: disk to release
1398 * @mode: FMODE_* mask
1399 *
1400 * Returns 0.
1401 *
1402 * Note: may block (uninterruptible) if error recovery is underway
1403 * on this disk.
1404 *
1405 * Locking: called with bdev->bd_mutex held.
1406 **/
1407static void sd_release(struct gendisk *disk, fmode_t mode)
1408{
1409 struct scsi_disk *sdkp = scsi_disk(disk);
1410 struct scsi_device *sdev = sdkp->device;
1411
1412 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1413
1414 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1415 if (scsi_block_when_processing_errors(sdev))
1416 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1417 }
1418
1419 scsi_disk_put(sdkp);
1420}
1421
1422static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1423{
1424 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1425 struct scsi_device *sdp = sdkp->device;
1426 struct Scsi_Host *host = sdp->host;
1427 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1428 int diskinfo[4];
1429
1430 /* default to most commonly used values */
1431 diskinfo[0] = 0x40; /* 1 << 6 */
1432 diskinfo[1] = 0x20; /* 1 << 5 */
1433 diskinfo[2] = capacity >> 11;
1434
1435 /* override with calculated, extended default, or driver values */
1436 if (host->hostt->bios_param)
1437 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1438 else
1439 scsicam_bios_param(bdev, capacity, diskinfo);
1440
1441 geo->heads = diskinfo[0];
1442 geo->sectors = diskinfo[1];
1443 geo->cylinders = diskinfo[2];
1444 return 0;
1445}
1446
1447/**
1448 * sd_ioctl - process an ioctl
1449 * @bdev: target block device
1450 * @mode: FMODE_* mask
1451 * @cmd: ioctl command number
1452 * @arg: this is third argument given to ioctl(2) system call.
1453 * Often contains a pointer.
1454 *
1455 * Returns 0 if successful (some ioctls return positive numbers on
1456 * success as well). Returns a negated errno value in case of error.
1457 *
1458 * Note: most ioctls are forward onto the block subsystem or further
1459 * down in the scsi subsystem.
1460 **/
1461static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1462 unsigned int cmd, unsigned long arg)
1463{
1464 struct gendisk *disk = bdev->bd_disk;
1465 struct scsi_disk *sdkp = scsi_disk(disk);
1466 struct scsi_device *sdp = sdkp->device;
1467 void __user *p = (void __user *)arg;
1468 int error;
1469
1470 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1471 "cmd=0x%x\n", disk->disk_name, cmd));
1472
1473 error = scsi_verify_blk_ioctl(bdev, cmd);
1474 if (error < 0)
1475 return error;
1476
1477 /*
1478 * If we are in the middle of error recovery, don't let anyone
1479 * else try and use this device. Also, if error recovery fails, it
1480 * may try and take the device offline, in which case all further
1481 * access to the device is prohibited.
1482 */
1483 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1484 (mode & FMODE_NDELAY) != 0);
1485 if (error)
1486 goto out;
1487
1488 if (is_sed_ioctl(cmd))
1489 return sed_ioctl(sdkp->opal_dev, cmd, p);
1490
1491 /*
1492 * Send SCSI addressing ioctls directly to mid level, send other
1493 * ioctls to block level and then onto mid level if they can't be
1494 * resolved.
1495 */
1496 switch (cmd) {
1497 case SCSI_IOCTL_GET_IDLUN:
1498 case SCSI_IOCTL_GET_BUS_NUMBER:
1499 error = scsi_ioctl(sdp, cmd, p);
1500 break;
1501 default:
1502 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1503 if (error != -ENOTTY)
1504 break;
1505 error = scsi_ioctl(sdp, cmd, p);
1506 break;
1507 }
1508out:
1509 return error;
1510}
1511
1512static void set_media_not_present(struct scsi_disk *sdkp)
1513{
1514 if (sdkp->media_present)
1515 sdkp->device->changed = 1;
1516
1517 if (sdkp->device->removable) {
1518 sdkp->media_present = 0;
1519 sdkp->capacity = 0;
1520 }
1521}
1522
1523static int media_not_present(struct scsi_disk *sdkp,
1524 struct scsi_sense_hdr *sshdr)
1525{
1526 if (!scsi_sense_valid(sshdr))
1527 return 0;
1528
1529 /* not invoked for commands that could return deferred errors */
1530 switch (sshdr->sense_key) {
1531 case UNIT_ATTENTION:
1532 case NOT_READY:
1533 /* medium not present */
1534 if (sshdr->asc == 0x3A) {
1535 set_media_not_present(sdkp);
1536 return 1;
1537 }
1538 }
1539 return 0;
1540}
1541
1542/**
1543 * sd_check_events - check media events
1544 * @disk: kernel device descriptor
1545 * @clearing: disk events currently being cleared
1546 *
1547 * Returns mask of DISK_EVENT_*.
1548 *
1549 * Note: this function is invoked from the block subsystem.
1550 **/
1551static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1552{
1553 struct scsi_disk *sdkp = scsi_disk_get(disk);
1554 struct scsi_device *sdp;
1555 int retval;
1556
1557 if (!sdkp)
1558 return 0;
1559
1560 sdp = sdkp->device;
1561 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1562
1563 /*
1564 * If the device is offline, don't send any commands - just pretend as
1565 * if the command failed. If the device ever comes back online, we
1566 * can deal with it then. It is only because of unrecoverable errors
1567 * that we would ever take a device offline in the first place.
1568 */
1569 if (!scsi_device_online(sdp)) {
1570 set_media_not_present(sdkp);
1571 goto out;
1572 }
1573
1574 /*
1575 * Using TEST_UNIT_READY enables differentiation between drive with
1576 * no cartridge loaded - NOT READY, drive with changed cartridge -
1577 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1578 *
1579 * Drives that auto spin down. eg iomega jaz 1G, will be started
1580 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1581 * sd_revalidate() is called.
1582 */
1583 if (scsi_block_when_processing_errors(sdp)) {
1584 struct scsi_sense_hdr sshdr = { 0, };
1585
1586 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1587 &sshdr);
1588
1589 /* failed to execute TUR, assume media not present */
1590 if (host_byte(retval)) {
1591 set_media_not_present(sdkp);
1592 goto out;
1593 }
1594
1595 if (media_not_present(sdkp, &sshdr))
1596 goto out;
1597 }
1598
1599 /*
1600 * For removable scsi disk we have to recognise the presence
1601 * of a disk in the drive.
1602 */
1603 if (!sdkp->media_present)
1604 sdp->changed = 1;
1605 sdkp->media_present = 1;
1606out:
1607 /*
1608 * sdp->changed is set under the following conditions:
1609 *
1610 * Medium present state has changed in either direction.
1611 * Device has indicated UNIT_ATTENTION.
1612 */
1613 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1614 sdp->changed = 0;
1615 scsi_disk_put(sdkp);
1616 return retval;
1617}
1618
1619static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1620{
1621 int retries, res;
1622 struct scsi_device *sdp = sdkp->device;
1623 const int timeout = sdp->request_queue->rq_timeout
1624 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1625 struct scsi_sense_hdr my_sshdr;
1626
1627 if (!scsi_device_online(sdp))
1628 return -ENODEV;
1629
1630 /* caller might not be interested in sense, but we need it */
1631 if (!sshdr)
1632 sshdr = &my_sshdr;
1633
1634 for (retries = 3; retries > 0; --retries) {
1635 unsigned char cmd[10] = { 0 };
1636
1637 cmd[0] = SYNCHRONIZE_CACHE;
1638 /*
1639 * Leave the rest of the command zero to indicate
1640 * flush everything.
1641 */
1642 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1643 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1644 if (res == 0)
1645 break;
1646 }
1647
1648 if (res) {
1649 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1650
1651 if (driver_byte(res) == DRIVER_SENSE)
1652 sd_print_sense_hdr(sdkp, sshdr);
1653
1654 /* we need to evaluate the error return */
1655 if (scsi_sense_valid(sshdr) &&
1656 (sshdr->asc == 0x3a || /* medium not present */
1657 sshdr->asc == 0x20)) /* invalid command */
1658 /* this is no error here */
1659 return 0;
1660
1661 switch (host_byte(res)) {
1662 /* ignore errors due to racing a disconnection */
1663 case DID_BAD_TARGET:
1664 case DID_NO_CONNECT:
1665 return 0;
1666 /* signal the upper layer it might try again */
1667 case DID_BUS_BUSY:
1668 case DID_IMM_RETRY:
1669 case DID_REQUEUE:
1670 case DID_SOFT_ERROR:
1671 return -EBUSY;
1672 default:
1673 return -EIO;
1674 }
1675 }
1676 return 0;
1677}
1678
1679static void sd_rescan(struct device *dev)
1680{
1681 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1682
1683 revalidate_disk(sdkp->disk);
1684}
1685
1686
1687#ifdef CONFIG_COMPAT
1688/*
1689 * This gets directly called from VFS. When the ioctl
1690 * is not recognized we go back to the other translation paths.
1691 */
1692static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1693 unsigned int cmd, unsigned long arg)
1694{
1695 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1696 int error;
1697
1698 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1699 (mode & FMODE_NDELAY) != 0);
1700 if (error)
1701 return error;
1702
1703 /*
1704 * Let the static ioctl translation table take care of it.
1705 */
1706 if (!sdev->host->hostt->compat_ioctl)
1707 return -ENOIOCTLCMD;
1708 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1709}
1710#endif
1711
1712static char sd_pr_type(enum pr_type type)
1713{
1714 switch (type) {
1715 case PR_WRITE_EXCLUSIVE:
1716 return 0x01;
1717 case PR_EXCLUSIVE_ACCESS:
1718 return 0x03;
1719 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1720 return 0x05;
1721 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1722 return 0x06;
1723 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1724 return 0x07;
1725 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1726 return 0x08;
1727 default:
1728 return 0;
1729 }
1730};
1731
1732static int sd_pr_command(struct block_device *bdev, u8 sa,
1733 u64 key, u64 sa_key, u8 type, u8 flags)
1734{
1735 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1736 struct scsi_sense_hdr sshdr;
1737 int result;
1738 u8 cmd[16] = { 0, };
1739 u8 data[24] = { 0, };
1740
1741 cmd[0] = PERSISTENT_RESERVE_OUT;
1742 cmd[1] = sa;
1743 cmd[2] = type;
1744 put_unaligned_be32(sizeof(data), &cmd[5]);
1745
1746 put_unaligned_be64(key, &data[0]);
1747 put_unaligned_be64(sa_key, &data[8]);
1748 data[20] = flags;
1749
1750 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1751 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1752
1753 if (driver_byte(result) == DRIVER_SENSE &&
1754 scsi_sense_valid(&sshdr)) {
1755 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1756 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1757 }
1758
1759 return result;
1760}
1761
1762static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1763 u32 flags)
1764{
1765 if (flags & ~PR_FL_IGNORE_KEY)
1766 return -EOPNOTSUPP;
1767 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1768 old_key, new_key, 0,
1769 (1 << 0) /* APTPL */);
1770}
1771
1772static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1773 u32 flags)
1774{
1775 if (flags)
1776 return -EOPNOTSUPP;
1777 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1778}
1779
1780static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1781{
1782 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1783}
1784
1785static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1786 enum pr_type type, bool abort)
1787{
1788 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1789 sd_pr_type(type), 0);
1790}
1791
1792static int sd_pr_clear(struct block_device *bdev, u64 key)
1793{
1794 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1795}
1796
1797static const struct pr_ops sd_pr_ops = {
1798 .pr_register = sd_pr_register,
1799 .pr_reserve = sd_pr_reserve,
1800 .pr_release = sd_pr_release,
1801 .pr_preempt = sd_pr_preempt,
1802 .pr_clear = sd_pr_clear,
1803};
1804
1805static const struct block_device_operations sd_fops = {
1806 .owner = THIS_MODULE,
1807 .open = sd_open,
1808 .release = sd_release,
1809 .ioctl = sd_ioctl,
1810 .getgeo = sd_getgeo,
1811#ifdef CONFIG_COMPAT
1812 .compat_ioctl = sd_compat_ioctl,
1813#endif
1814 .check_events = sd_check_events,
1815 .revalidate_disk = sd_revalidate_disk,
1816 .unlock_native_capacity = sd_unlock_native_capacity,
1817 .report_zones = sd_zbc_report_zones,
1818 .pr_ops = &sd_pr_ops,
1819};
1820
1821/**
1822 * sd_eh_reset - reset error handling callback
1823 * @scmd: sd-issued command that has failed
1824 *
1825 * This function is called by the SCSI midlayer before starting
1826 * SCSI EH. When counting medium access failures we have to be
1827 * careful to register it only only once per device and SCSI EH run;
1828 * there might be several timed out commands which will cause the
1829 * 'max_medium_access_timeouts' counter to trigger after the first
1830 * SCSI EH run already and set the device to offline.
1831 * So this function resets the internal counter before starting SCSI EH.
1832 **/
1833static void sd_eh_reset(struct scsi_cmnd *scmd)
1834{
1835 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1836
1837 /* New SCSI EH run, reset gate variable */
1838 sdkp->ignore_medium_access_errors = false;
1839}
1840
1841/**
1842 * sd_eh_action - error handling callback
1843 * @scmd: sd-issued command that has failed
1844 * @eh_disp: The recovery disposition suggested by the midlayer
1845 *
1846 * This function is called by the SCSI midlayer upon completion of an
1847 * error test command (currently TEST UNIT READY). The result of sending
1848 * the eh command is passed in eh_disp. We're looking for devices that
1849 * fail medium access commands but are OK with non access commands like
1850 * test unit ready (so wrongly see the device as having a successful
1851 * recovery)
1852 **/
1853static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1854{
1855 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1856 struct scsi_device *sdev = scmd->device;
1857
1858 if (!scsi_device_online(sdev) ||
1859 !scsi_medium_access_command(scmd) ||
1860 host_byte(scmd->result) != DID_TIME_OUT ||
1861 eh_disp != SUCCESS)
1862 return eh_disp;
1863
1864 /*
1865 * The device has timed out executing a medium access command.
1866 * However, the TEST UNIT READY command sent during error
1867 * handling completed successfully. Either the device is in the
1868 * process of recovering or has it suffered an internal failure
1869 * that prevents access to the storage medium.
1870 */
1871 if (!sdkp->ignore_medium_access_errors) {
1872 sdkp->medium_access_timed_out++;
1873 sdkp->ignore_medium_access_errors = true;
1874 }
1875
1876 /*
1877 * If the device keeps failing read/write commands but TEST UNIT
1878 * READY always completes successfully we assume that medium
1879 * access is no longer possible and take the device offline.
1880 */
1881 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1882 scmd_printk(KERN_ERR, scmd,
1883 "Medium access timeout failure. Offlining disk!\n");
1884 mutex_lock(&sdev->state_mutex);
1885 scsi_device_set_state(sdev, SDEV_OFFLINE);
1886 mutex_unlock(&sdev->state_mutex);
1887
1888 return SUCCESS;
1889 }
1890
1891 return eh_disp;
1892}
1893
1894static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1895{
1896 struct request *req = scmd->request;
1897 struct scsi_device *sdev = scmd->device;
1898 unsigned int transferred, good_bytes;
1899 u64 start_lba, end_lba, bad_lba;
1900
1901 /*
1902 * Some commands have a payload smaller than the device logical
1903 * block size (e.g. INQUIRY on a 4K disk).
1904 */
1905 if (scsi_bufflen(scmd) <= sdev->sector_size)
1906 return 0;
1907
1908 /* Check if we have a 'bad_lba' information */
1909 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1910 SCSI_SENSE_BUFFERSIZE,
1911 &bad_lba))
1912 return 0;
1913
1914 /*
1915 * If the bad lba was reported incorrectly, we have no idea where
1916 * the error is.
1917 */
1918 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1919 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1920 if (bad_lba < start_lba || bad_lba >= end_lba)
1921 return 0;
1922
1923 /*
1924 * resid is optional but mostly filled in. When it's unused,
1925 * its value is zero, so we assume the whole buffer transferred
1926 */
1927 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1928
1929 /* This computation should always be done in terms of the
1930 * resolution of the device's medium.
1931 */
1932 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1933
1934 return min(good_bytes, transferred);
1935}
1936
1937/**
1938 * sd_done - bottom half handler: called when the lower level
1939 * driver has completed (successfully or otherwise) a scsi command.
1940 * @SCpnt: mid-level's per command structure.
1941 *
1942 * Note: potentially run from within an ISR. Must not block.
1943 **/
1944static int sd_done(struct scsi_cmnd *SCpnt)
1945{
1946 int result = SCpnt->result;
1947 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1948 unsigned int sector_size = SCpnt->device->sector_size;
1949 unsigned int resid;
1950 struct scsi_sense_hdr sshdr;
1951 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1952 struct request *req = SCpnt->request;
1953 int sense_valid = 0;
1954 int sense_deferred = 0;
1955
1956 switch (req_op(req)) {
1957 case REQ_OP_DISCARD:
1958 case REQ_OP_WRITE_ZEROES:
1959 case REQ_OP_WRITE_SAME:
1960 case REQ_OP_ZONE_RESET:
1961 if (!result) {
1962 good_bytes = blk_rq_bytes(req);
1963 scsi_set_resid(SCpnt, 0);
1964 } else {
1965 good_bytes = 0;
1966 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1967 }
1968 break;
1969 default:
1970 /*
1971 * In case of bogus fw or device, we could end up having
1972 * an unaligned partial completion. Check this here and force
1973 * alignment.
1974 */
1975 resid = scsi_get_resid(SCpnt);
1976 if (resid & (sector_size - 1)) {
1977 sd_printk(KERN_INFO, sdkp,
1978 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1979 resid, sector_size);
1980 resid = min(scsi_bufflen(SCpnt),
1981 round_up(resid, sector_size));
1982 scsi_set_resid(SCpnt, resid);
1983 }
1984 }
1985
1986 if (result) {
1987 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1988 if (sense_valid)
1989 sense_deferred = scsi_sense_is_deferred(&sshdr);
1990 }
1991 sdkp->medium_access_timed_out = 0;
1992
1993 if (driver_byte(result) != DRIVER_SENSE &&
1994 (!sense_valid || sense_deferred))
1995 goto out;
1996
1997 switch (sshdr.sense_key) {
1998 case HARDWARE_ERROR:
1999 case MEDIUM_ERROR:
2000 good_bytes = sd_completed_bytes(SCpnt);
2001 break;
2002 case RECOVERED_ERROR:
2003 good_bytes = scsi_bufflen(SCpnt);
2004 break;
2005 case NO_SENSE:
2006 /* This indicates a false check condition, so ignore it. An
2007 * unknown amount of data was transferred so treat it as an
2008 * error.
2009 */
2010 SCpnt->result = 0;
2011 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2012 break;
2013 case ABORTED_COMMAND:
2014 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2015 good_bytes = sd_completed_bytes(SCpnt);
2016 break;
2017 case ILLEGAL_REQUEST:
2018 switch (sshdr.asc) {
2019 case 0x10: /* DIX: Host detected corruption */
2020 good_bytes = sd_completed_bytes(SCpnt);
2021 break;
2022 case 0x20: /* INVALID COMMAND OPCODE */
2023 case 0x24: /* INVALID FIELD IN CDB */
2024 switch (SCpnt->cmnd[0]) {
2025 case UNMAP:
2026 sd_config_discard(sdkp, SD_LBP_DISABLE);
2027 break;
2028 case WRITE_SAME_16:
2029 case WRITE_SAME:
2030 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2031 sd_config_discard(sdkp, SD_LBP_DISABLE);
2032 } else {
2033 sdkp->device->no_write_same = 1;
2034 sd_config_write_same(sdkp);
2035 req->rq_flags |= RQF_QUIET;
2036 }
2037 break;
2038 }
2039 }
2040 break;
2041 default:
2042 break;
2043 }
2044
2045 out:
2046 if (sd_is_zoned(sdkp))
2047 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2048
2049 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2050 "sd_done: completed %d of %d bytes\n",
2051 good_bytes, scsi_bufflen(SCpnt)));
2052
2053 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2054 good_bytes)
2055 t10_pi_complete(SCpnt->request, sdkp->protection_type,
2056 good_bytes / scsi_prot_interval(SCpnt));
2057
2058 return good_bytes;
2059}
2060
2061/*
2062 * spinup disk - called only in sd_revalidate_disk()
2063 */
2064static void
2065sd_spinup_disk(struct scsi_disk *sdkp)
2066{
2067 unsigned char cmd[10];
2068 unsigned long spintime_expire = 0;
2069 int retries, spintime;
2070 unsigned int the_result;
2071 struct scsi_sense_hdr sshdr;
2072 int sense_valid = 0;
2073
2074 spintime = 0;
2075
2076 /* Spin up drives, as required. Only do this at boot time */
2077 /* Spinup needs to be done for module loads too. */
2078 do {
2079 retries = 0;
2080
2081 do {
2082 cmd[0] = TEST_UNIT_READY;
2083 memset((void *) &cmd[1], 0, 9);
2084
2085 the_result = scsi_execute_req(sdkp->device, cmd,
2086 DMA_NONE, NULL, 0,
2087 &sshdr, SD_TIMEOUT,
2088 SD_MAX_RETRIES, NULL);
2089
2090 /*
2091 * If the drive has indicated to us that it
2092 * doesn't have any media in it, don't bother
2093 * with any more polling.
2094 */
2095 if (media_not_present(sdkp, &sshdr))
2096 return;
2097
2098 if (the_result)
2099 sense_valid = scsi_sense_valid(&sshdr);
2100 retries++;
2101 } while (retries < 3 &&
2102 (!scsi_status_is_good(the_result) ||
2103 ((driver_byte(the_result) == DRIVER_SENSE) &&
2104 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2105
2106 if (driver_byte(the_result) != DRIVER_SENSE) {
2107 /* no sense, TUR either succeeded or failed
2108 * with a status error */
2109 if(!spintime && !scsi_status_is_good(the_result)) {
2110 sd_print_result(sdkp, "Test Unit Ready failed",
2111 the_result);
2112 }
2113 break;
2114 }
2115
2116 /*
2117 * The device does not want the automatic start to be issued.
2118 */
2119 if (sdkp->device->no_start_on_add)
2120 break;
2121
2122 if (sense_valid && sshdr.sense_key == NOT_READY) {
2123 if (sshdr.asc == 4 && sshdr.ascq == 3)
2124 break; /* manual intervention required */
2125 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2126 break; /* standby */
2127 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2128 break; /* unavailable */
2129 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2130 break; /* sanitize in progress */
2131 /*
2132 * Issue command to spin up drive when not ready
2133 */
2134 if (!spintime) {
2135 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2136 cmd[0] = START_STOP;
2137 cmd[1] = 1; /* Return immediately */
2138 memset((void *) &cmd[2], 0, 8);
2139 cmd[4] = 1; /* Start spin cycle */
2140 if (sdkp->device->start_stop_pwr_cond)
2141 cmd[4] |= 1 << 4;
2142 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2143 NULL, 0, &sshdr,
2144 SD_TIMEOUT, SD_MAX_RETRIES,
2145 NULL);
2146 spintime_expire = jiffies + 100 * HZ;
2147 spintime = 1;
2148 }
2149 /* Wait 1 second for next try */
2150 msleep(1000);
2151 printk(KERN_CONT ".");
2152
2153 /*
2154 * Wait for USB flash devices with slow firmware.
2155 * Yes, this sense key/ASC combination shouldn't
2156 * occur here. It's characteristic of these devices.
2157 */
2158 } else if (sense_valid &&
2159 sshdr.sense_key == UNIT_ATTENTION &&
2160 sshdr.asc == 0x28) {
2161 if (!spintime) {
2162 spintime_expire = jiffies + 5 * HZ;
2163 spintime = 1;
2164 }
2165 /* Wait 1 second for next try */
2166 msleep(1000);
2167 } else {
2168 /* we don't understand the sense code, so it's
2169 * probably pointless to loop */
2170 if(!spintime) {
2171 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2172 sd_print_sense_hdr(sdkp, &sshdr);
2173 }
2174 break;
2175 }
2176
2177 } while (spintime && time_before_eq(jiffies, spintime_expire));
2178
2179 if (spintime) {
2180 if (scsi_status_is_good(the_result))
2181 printk(KERN_CONT "ready\n");
2182 else
2183 printk(KERN_CONT "not responding...\n");
2184 }
2185}
2186
2187/*
2188 * Determine whether disk supports Data Integrity Field.
2189 */
2190static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2191{
2192 struct scsi_device *sdp = sdkp->device;
2193 u8 type;
2194 int ret = 0;
2195
2196 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2197 return ret;
2198
2199 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2200
2201 if (type > T10_PI_TYPE3_PROTECTION)
2202 ret = -ENODEV;
2203 else if (scsi_host_dif_capable(sdp->host, type))
2204 ret = 1;
2205
2206 if (sdkp->first_scan || type != sdkp->protection_type)
2207 switch (ret) {
2208 case -ENODEV:
2209 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2210 " protection type %u. Disabling disk!\n",
2211 type);
2212 break;
2213 case 1:
2214 sd_printk(KERN_NOTICE, sdkp,
2215 "Enabling DIF Type %u protection\n", type);
2216 break;
2217 case 0:
2218 sd_printk(KERN_NOTICE, sdkp,
2219 "Disabling DIF Type %u protection\n", type);
2220 break;
2221 }
2222
2223 sdkp->protection_type = type;
2224
2225 return ret;
2226}
2227
2228static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2229 struct scsi_sense_hdr *sshdr, int sense_valid,
2230 int the_result)
2231{
2232 if (driver_byte(the_result) == DRIVER_SENSE)
2233 sd_print_sense_hdr(sdkp, sshdr);
2234 else
2235 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2236
2237 /*
2238 * Set dirty bit for removable devices if not ready -
2239 * sometimes drives will not report this properly.
2240 */
2241 if (sdp->removable &&
2242 sense_valid && sshdr->sense_key == NOT_READY)
2243 set_media_not_present(sdkp);
2244
2245 /*
2246 * We used to set media_present to 0 here to indicate no media
2247 * in the drive, but some drives fail read capacity even with
2248 * media present, so we can't do that.
2249 */
2250 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2251}
2252
2253#define RC16_LEN 32
2254#if RC16_LEN > SD_BUF_SIZE
2255#error RC16_LEN must not be more than SD_BUF_SIZE
2256#endif
2257
2258#define READ_CAPACITY_RETRIES_ON_RESET 10
2259
2260static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2261 unsigned char *buffer)
2262{
2263 unsigned char cmd[16];
2264 struct scsi_sense_hdr sshdr;
2265 int sense_valid = 0;
2266 int the_result;
2267 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2268 unsigned int alignment;
2269 unsigned long long lba;
2270 unsigned sector_size;
2271
2272 if (sdp->no_read_capacity_16)
2273 return -EINVAL;
2274
2275 do {
2276 memset(cmd, 0, 16);
2277 cmd[0] = SERVICE_ACTION_IN_16;
2278 cmd[1] = SAI_READ_CAPACITY_16;
2279 cmd[13] = RC16_LEN;
2280 memset(buffer, 0, RC16_LEN);
2281
2282 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2283 buffer, RC16_LEN, &sshdr,
2284 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2285
2286 if (media_not_present(sdkp, &sshdr))
2287 return -ENODEV;
2288
2289 if (the_result) {
2290 sense_valid = scsi_sense_valid(&sshdr);
2291 if (sense_valid &&
2292 sshdr.sense_key == ILLEGAL_REQUEST &&
2293 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2294 sshdr.ascq == 0x00)
2295 /* Invalid Command Operation Code or
2296 * Invalid Field in CDB, just retry
2297 * silently with RC10 */
2298 return -EINVAL;
2299 if (sense_valid &&
2300 sshdr.sense_key == UNIT_ATTENTION &&
2301 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2302 /* Device reset might occur several times,
2303 * give it one more chance */
2304 if (--reset_retries > 0)
2305 continue;
2306 }
2307 retries--;
2308
2309 } while (the_result && retries);
2310
2311 if (the_result) {
2312 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2313 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2314 return -EINVAL;
2315 }
2316
2317 sector_size = get_unaligned_be32(&buffer[8]);
2318 lba = get_unaligned_be64(&buffer[0]);
2319
2320 if (sd_read_protection_type(sdkp, buffer) < 0) {
2321 sdkp->capacity = 0;
2322 return -ENODEV;
2323 }
2324
2325 /* Logical blocks per physical block exponent */
2326 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2327
2328 /* RC basis */
2329 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2330
2331 /* Lowest aligned logical block */
2332 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2333 blk_queue_alignment_offset(sdp->request_queue, alignment);
2334 if (alignment && sdkp->first_scan)
2335 sd_printk(KERN_NOTICE, sdkp,
2336 "physical block alignment offset: %u\n", alignment);
2337
2338 if (buffer[14] & 0x80) { /* LBPME */
2339 sdkp->lbpme = 1;
2340
2341 if (buffer[14] & 0x40) /* LBPRZ */
2342 sdkp->lbprz = 1;
2343
2344 sd_config_discard(sdkp, SD_LBP_WS16);
2345 }
2346
2347 sdkp->capacity = lba + 1;
2348 return sector_size;
2349}
2350
2351static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2352 unsigned char *buffer)
2353{
2354 unsigned char cmd[16];
2355 struct scsi_sense_hdr sshdr;
2356 int sense_valid = 0;
2357 int the_result;
2358 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2359 sector_t lba;
2360 unsigned sector_size;
2361
2362 do {
2363 cmd[0] = READ_CAPACITY;
2364 memset(&cmd[1], 0, 9);
2365 memset(buffer, 0, 8);
2366
2367 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2368 buffer, 8, &sshdr,
2369 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2370
2371 if (media_not_present(sdkp, &sshdr))
2372 return -ENODEV;
2373
2374 if (the_result) {
2375 sense_valid = scsi_sense_valid(&sshdr);
2376 if (sense_valid &&
2377 sshdr.sense_key == UNIT_ATTENTION &&
2378 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2379 /* Device reset might occur several times,
2380 * give it one more chance */
2381 if (--reset_retries > 0)
2382 continue;
2383 }
2384 retries--;
2385
2386 } while (the_result && retries);
2387
2388 if (the_result) {
2389 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2390 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2391 return -EINVAL;
2392 }
2393
2394 sector_size = get_unaligned_be32(&buffer[4]);
2395 lba = get_unaligned_be32(&buffer[0]);
2396
2397 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2398 /* Some buggy (usb cardreader) devices return an lba of
2399 0xffffffff when the want to report a size of 0 (with
2400 which they really mean no media is present) */
2401 sdkp->capacity = 0;
2402 sdkp->physical_block_size = sector_size;
2403 return sector_size;
2404 }
2405
2406 sdkp->capacity = lba + 1;
2407 sdkp->physical_block_size = sector_size;
2408 return sector_size;
2409}
2410
2411static int sd_try_rc16_first(struct scsi_device *sdp)
2412{
2413 if (sdp->host->max_cmd_len < 16)
2414 return 0;
2415 if (sdp->try_rc_10_first)
2416 return 0;
2417 if (sdp->scsi_level > SCSI_SPC_2)
2418 return 1;
2419 if (scsi_device_protection(sdp))
2420 return 1;
2421 return 0;
2422}
2423
2424/*
2425 * read disk capacity
2426 */
2427static void
2428sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2429{
2430 int sector_size;
2431 struct scsi_device *sdp = sdkp->device;
2432
2433 if (sd_try_rc16_first(sdp)) {
2434 sector_size = read_capacity_16(sdkp, sdp, buffer);
2435 if (sector_size == -EOVERFLOW)
2436 goto got_data;
2437 if (sector_size == -ENODEV)
2438 return;
2439 if (sector_size < 0)
2440 sector_size = read_capacity_10(sdkp, sdp, buffer);
2441 if (sector_size < 0)
2442 return;
2443 } else {
2444 sector_size = read_capacity_10(sdkp, sdp, buffer);
2445 if (sector_size == -EOVERFLOW)
2446 goto got_data;
2447 if (sector_size < 0)
2448 return;
2449 if ((sizeof(sdkp->capacity) > 4) &&
2450 (sdkp->capacity > 0xffffffffULL)) {
2451 int old_sector_size = sector_size;
2452 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2453 "Trying to use READ CAPACITY(16).\n");
2454 sector_size = read_capacity_16(sdkp, sdp, buffer);
2455 if (sector_size < 0) {
2456 sd_printk(KERN_NOTICE, sdkp,
2457 "Using 0xffffffff as device size\n");
2458 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2459 sector_size = old_sector_size;
2460 goto got_data;
2461 }
2462 /* Remember that READ CAPACITY(16) succeeded */
2463 sdp->try_rc_10_first = 0;
2464 }
2465 }
2466
2467 /* Some devices are known to return the total number of blocks,
2468 * not the highest block number. Some devices have versions
2469 * which do this and others which do not. Some devices we might
2470 * suspect of doing this but we don't know for certain.
2471 *
2472 * If we know the reported capacity is wrong, decrement it. If
2473 * we can only guess, then assume the number of blocks is even
2474 * (usually true but not always) and err on the side of lowering
2475 * the capacity.
2476 */
2477 if (sdp->fix_capacity ||
2478 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2479 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2480 "from its reported value: %llu\n",
2481 (unsigned long long) sdkp->capacity);
2482 --sdkp->capacity;
2483 }
2484
2485got_data:
2486 if (sector_size == 0) {
2487 sector_size = 512;
2488 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2489 "assuming 512.\n");
2490 }
2491
2492 if (sector_size != 512 &&
2493 sector_size != 1024 &&
2494 sector_size != 2048 &&
2495 sector_size != 4096) {
2496 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2497 sector_size);
2498 /*
2499 * The user might want to re-format the drive with
2500 * a supported sectorsize. Once this happens, it
2501 * would be relatively trivial to set the thing up.
2502 * For this reason, we leave the thing in the table.
2503 */
2504 sdkp->capacity = 0;
2505 /*
2506 * set a bogus sector size so the normal read/write
2507 * logic in the block layer will eventually refuse any
2508 * request on this device without tripping over power
2509 * of two sector size assumptions
2510 */
2511 sector_size = 512;
2512 }
2513 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2514 blk_queue_physical_block_size(sdp->request_queue,
2515 sdkp->physical_block_size);
2516 sdkp->device->sector_size = sector_size;
2517
2518 if (sdkp->capacity > 0xffffffff)
2519 sdp->use_16_for_rw = 1;
2520
2521}
2522
2523/*
2524 * Print disk capacity
2525 */
2526static void
2527sd_print_capacity(struct scsi_disk *sdkp,
2528 sector_t old_capacity)
2529{
2530 int sector_size = sdkp->device->sector_size;
2531 char cap_str_2[10], cap_str_10[10];
2532
2533 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2534 return;
2535
2536 string_get_size(sdkp->capacity, sector_size,
2537 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2538 string_get_size(sdkp->capacity, sector_size,
2539 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2540
2541 sd_printk(KERN_NOTICE, sdkp,
2542 "%llu %d-byte logical blocks: (%s/%s)\n",
2543 (unsigned long long)sdkp->capacity,
2544 sector_size, cap_str_10, cap_str_2);
2545
2546 if (sdkp->physical_block_size != sector_size)
2547 sd_printk(KERN_NOTICE, sdkp,
2548 "%u-byte physical blocks\n",
2549 sdkp->physical_block_size);
2550
2551 sd_zbc_print_zones(sdkp);
2552}
2553
2554/* called with buffer of length 512 */
2555static inline int
2556sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2557 unsigned char *buffer, int len, struct scsi_mode_data *data,
2558 struct scsi_sense_hdr *sshdr)
2559{
2560 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2561 SD_TIMEOUT, SD_MAX_RETRIES, data,
2562 sshdr);
2563}
2564
2565/*
2566 * read write protect setting, if possible - called only in sd_revalidate_disk()
2567 * called with buffer of length SD_BUF_SIZE
2568 */
2569static void
2570sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2571{
2572 int res;
2573 struct scsi_device *sdp = sdkp->device;
2574 struct scsi_mode_data data;
2575 int old_wp = sdkp->write_prot;
2576
2577 set_disk_ro(sdkp->disk, 0);
2578 if (sdp->skip_ms_page_3f) {
2579 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2580 return;
2581 }
2582
2583 if (sdp->use_192_bytes_for_3f) {
2584 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2585 } else {
2586 /*
2587 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2588 * We have to start carefully: some devices hang if we ask
2589 * for more than is available.
2590 */
2591 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2592
2593 /*
2594 * Second attempt: ask for page 0 When only page 0 is
2595 * implemented, a request for page 3F may return Sense Key
2596 * 5: Illegal Request, Sense Code 24: Invalid field in
2597 * CDB.
2598 */
2599 if (!scsi_status_is_good(res))
2600 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2601
2602 /*
2603 * Third attempt: ask 255 bytes, as we did earlier.
2604 */
2605 if (!scsi_status_is_good(res))
2606 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2607 &data, NULL);
2608 }
2609
2610 if (!scsi_status_is_good(res)) {
2611 sd_first_printk(KERN_WARNING, sdkp,
2612 "Test WP failed, assume Write Enabled\n");
2613 } else {
2614 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2615 set_disk_ro(sdkp->disk, sdkp->write_prot);
2616 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2617 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2618 sdkp->write_prot ? "on" : "off");
2619 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2620 }
2621 }
2622}
2623
2624/*
2625 * sd_read_cache_type - called only from sd_revalidate_disk()
2626 * called with buffer of length SD_BUF_SIZE
2627 */
2628static void
2629sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2630{
2631 int len = 0, res;
2632 struct scsi_device *sdp = sdkp->device;
2633
2634 int dbd;
2635 int modepage;
2636 int first_len;
2637 struct scsi_mode_data data;
2638 struct scsi_sense_hdr sshdr;
2639 int old_wce = sdkp->WCE;
2640 int old_rcd = sdkp->RCD;
2641 int old_dpofua = sdkp->DPOFUA;
2642
2643
2644 if (sdkp->cache_override)
2645 return;
2646
2647 first_len = 4;
2648 if (sdp->skip_ms_page_8) {
2649 if (sdp->type == TYPE_RBC)
2650 goto defaults;
2651 else {
2652 if (sdp->skip_ms_page_3f)
2653 goto defaults;
2654 modepage = 0x3F;
2655 if (sdp->use_192_bytes_for_3f)
2656 first_len = 192;
2657 dbd = 0;
2658 }
2659 } else if (sdp->type == TYPE_RBC) {
2660 modepage = 6;
2661 dbd = 8;
2662 } else {
2663 modepage = 8;
2664 dbd = 0;
2665 }
2666
2667 /* cautiously ask */
2668 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2669 &data, &sshdr);
2670
2671 if (!scsi_status_is_good(res))
2672 goto bad_sense;
2673
2674 if (!data.header_length) {
2675 modepage = 6;
2676 first_len = 0;
2677 sd_first_printk(KERN_ERR, sdkp,
2678 "Missing header in MODE_SENSE response\n");
2679 }
2680
2681 /* that went OK, now ask for the proper length */
2682 len = data.length;
2683
2684 /*
2685 * We're only interested in the first three bytes, actually.
2686 * But the data cache page is defined for the first 20.
2687 */
2688 if (len < 3)
2689 goto bad_sense;
2690 else if (len > SD_BUF_SIZE) {
2691 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2692 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2693 len = SD_BUF_SIZE;
2694 }
2695 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2696 len = 192;
2697
2698 /* Get the data */
2699 if (len > first_len)
2700 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2701 &data, &sshdr);
2702
2703 if (scsi_status_is_good(res)) {
2704 int offset = data.header_length + data.block_descriptor_length;
2705
2706 while (offset < len) {
2707 u8 page_code = buffer[offset] & 0x3F;
2708 u8 spf = buffer[offset] & 0x40;
2709
2710 if (page_code == 8 || page_code == 6) {
2711 /* We're interested only in the first 3 bytes.
2712 */
2713 if (len - offset <= 2) {
2714 sd_first_printk(KERN_ERR, sdkp,
2715 "Incomplete mode parameter "
2716 "data\n");
2717 goto defaults;
2718 } else {
2719 modepage = page_code;
2720 goto Page_found;
2721 }
2722 } else {
2723 /* Go to the next page */
2724 if (spf && len - offset > 3)
2725 offset += 4 + (buffer[offset+2] << 8) +
2726 buffer[offset+3];
2727 else if (!spf && len - offset > 1)
2728 offset += 2 + buffer[offset+1];
2729 else {
2730 sd_first_printk(KERN_ERR, sdkp,
2731 "Incomplete mode "
2732 "parameter data\n");
2733 goto defaults;
2734 }
2735 }
2736 }
2737
2738 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2739 goto defaults;
2740
2741 Page_found:
2742 if (modepage == 8) {
2743 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2744 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2745 } else {
2746 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2747 sdkp->RCD = 0;
2748 }
2749
2750 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2751 if (sdp->broken_fua) {
2752 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2753 sdkp->DPOFUA = 0;
2754 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2755 !sdkp->device->use_16_for_rw) {
2756 sd_first_printk(KERN_NOTICE, sdkp,
2757 "Uses READ/WRITE(6), disabling FUA\n");
2758 sdkp->DPOFUA = 0;
2759 }
2760
2761 /* No cache flush allowed for write protected devices */
2762 if (sdkp->WCE && sdkp->write_prot)
2763 sdkp->WCE = 0;
2764
2765 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2766 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2767 sd_printk(KERN_NOTICE, sdkp,
2768 "Write cache: %s, read cache: %s, %s\n",
2769 sdkp->WCE ? "enabled" : "disabled",
2770 sdkp->RCD ? "disabled" : "enabled",
2771 sdkp->DPOFUA ? "supports DPO and FUA"
2772 : "doesn't support DPO or FUA");
2773
2774 return;
2775 }
2776
2777bad_sense:
2778 if (scsi_sense_valid(&sshdr) &&
2779 sshdr.sense_key == ILLEGAL_REQUEST &&
2780 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2781 /* Invalid field in CDB */
2782 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2783 else
2784 sd_first_printk(KERN_ERR, sdkp,
2785 "Asking for cache data failed\n");
2786
2787defaults:
2788 if (sdp->wce_default_on) {
2789 sd_first_printk(KERN_NOTICE, sdkp,
2790 "Assuming drive cache: write back\n");
2791 sdkp->WCE = 1;
2792 } else {
2793 sd_first_printk(KERN_ERR, sdkp,
2794 "Assuming drive cache: write through\n");
2795 sdkp->WCE = 0;
2796 }
2797 sdkp->RCD = 0;
2798 sdkp->DPOFUA = 0;
2799}
2800
2801/*
2802 * The ATO bit indicates whether the DIF application tag is available
2803 * for use by the operating system.
2804 */
2805static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2806{
2807 int res, offset;
2808 struct scsi_device *sdp = sdkp->device;
2809 struct scsi_mode_data data;
2810 struct scsi_sense_hdr sshdr;
2811
2812 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2813 return;
2814
2815 if (sdkp->protection_type == 0)
2816 return;
2817
2818 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2819 SD_MAX_RETRIES, &data, &sshdr);
2820
2821 if (!scsi_status_is_good(res) || !data.header_length ||
2822 data.length < 6) {
2823 sd_first_printk(KERN_WARNING, sdkp,
2824 "getting Control mode page failed, assume no ATO\n");
2825
2826 if (scsi_sense_valid(&sshdr))
2827 sd_print_sense_hdr(sdkp, &sshdr);
2828
2829 return;
2830 }
2831
2832 offset = data.header_length + data.block_descriptor_length;
2833
2834 if ((buffer[offset] & 0x3f) != 0x0a) {
2835 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2836 return;
2837 }
2838
2839 if ((buffer[offset + 5] & 0x80) == 0)
2840 return;
2841
2842 sdkp->ATO = 1;
2843
2844 return;
2845}
2846
2847/**
2848 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2849 * @sdkp: disk to query
2850 */
2851static void sd_read_block_limits(struct scsi_disk *sdkp)
2852{
2853 unsigned int sector_sz = sdkp->device->sector_size;
2854 const int vpd_len = 64;
2855 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2856
2857 if (!buffer ||
2858 /* Block Limits VPD */
2859 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2860 goto out;
2861
2862 blk_queue_io_min(sdkp->disk->queue,
2863 get_unaligned_be16(&buffer[6]) * sector_sz);
2864
2865 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2866 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2867
2868 if (buffer[3] == 0x3c) {
2869 unsigned int lba_count, desc_count;
2870
2871 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2872
2873 if (!sdkp->lbpme)
2874 goto out;
2875
2876 lba_count = get_unaligned_be32(&buffer[20]);
2877 desc_count = get_unaligned_be32(&buffer[24]);
2878
2879 if (lba_count && desc_count)
2880 sdkp->max_unmap_blocks = lba_count;
2881
2882 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2883
2884 if (buffer[32] & 0x80)
2885 sdkp->unmap_alignment =
2886 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2887
2888 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2889
2890 if (sdkp->max_unmap_blocks)
2891 sd_config_discard(sdkp, SD_LBP_UNMAP);
2892 else
2893 sd_config_discard(sdkp, SD_LBP_WS16);
2894
2895 } else { /* LBP VPD page tells us what to use */
2896 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2897 sd_config_discard(sdkp, SD_LBP_UNMAP);
2898 else if (sdkp->lbpws)
2899 sd_config_discard(sdkp, SD_LBP_WS16);
2900 else if (sdkp->lbpws10)
2901 sd_config_discard(sdkp, SD_LBP_WS10);
2902 else
2903 sd_config_discard(sdkp, SD_LBP_DISABLE);
2904 }
2905 }
2906
2907 out:
2908 kfree(buffer);
2909}
2910
2911/**
2912 * sd_read_block_characteristics - Query block dev. characteristics
2913 * @sdkp: disk to query
2914 */
2915static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2916{
2917 struct request_queue *q = sdkp->disk->queue;
2918 unsigned char *buffer;
2919 u16 rot;
2920 const int vpd_len = 64;
2921
2922 buffer = kmalloc(vpd_len, GFP_KERNEL);
2923
2924 if (!buffer ||
2925 /* Block Device Characteristics VPD */
2926 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2927 goto out;
2928
2929 rot = get_unaligned_be16(&buffer[4]);
2930
2931 if (rot == 1) {
2932 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2933 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2934 }
2935
2936 if (sdkp->device->type == TYPE_ZBC) {
2937 /* Host-managed */
2938 q->limits.zoned = BLK_ZONED_HM;
2939 } else {
2940 sdkp->zoned = (buffer[8] >> 4) & 3;
2941 if (sdkp->zoned == 1)
2942 /* Host-aware */
2943 q->limits.zoned = BLK_ZONED_HA;
2944 else
2945 /*
2946 * Treat drive-managed devices as
2947 * regular block devices.
2948 */
2949 q->limits.zoned = BLK_ZONED_NONE;
2950 }
2951 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2952 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2953 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2954
2955 out:
2956 kfree(buffer);
2957}
2958
2959/**
2960 * sd_read_block_provisioning - Query provisioning VPD page
2961 * @sdkp: disk to query
2962 */
2963static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2964{
2965 unsigned char *buffer;
2966 const int vpd_len = 8;
2967
2968 if (sdkp->lbpme == 0)
2969 return;
2970
2971 buffer = kmalloc(vpd_len, GFP_KERNEL);
2972
2973 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2974 goto out;
2975
2976 sdkp->lbpvpd = 1;
2977 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2978 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2979 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2980
2981 out:
2982 kfree(buffer);
2983}
2984
2985static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2986{
2987 struct scsi_device *sdev = sdkp->device;
2988
2989 if (sdev->host->no_write_same) {
2990 sdev->no_write_same = 1;
2991
2992 return;
2993 }
2994
2995 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2996 /* too large values might cause issues with arcmsr */
2997 int vpd_buf_len = 64;
2998
2999 sdev->no_report_opcodes = 1;
3000
3001 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3002 * CODES is unsupported and the device has an ATA
3003 * Information VPD page (SAT).
3004 */
3005 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3006 sdev->no_write_same = 1;
3007 }
3008
3009 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3010 sdkp->ws16 = 1;
3011
3012 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3013 sdkp->ws10 = 1;
3014}
3015
3016static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3017{
3018 struct scsi_device *sdev = sdkp->device;
3019
3020 if (!sdev->security_supported)
3021 return;
3022
3023 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3024 SECURITY_PROTOCOL_IN) == 1 &&
3025 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3026 SECURITY_PROTOCOL_OUT) == 1)
3027 sdkp->security = 1;
3028}
3029
3030/*
3031 * Determine the device's preferred I/O size for reads and writes
3032 * unless the reported value is unreasonably small, large, not a
3033 * multiple of the physical block size, or simply garbage.
3034 */
3035static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3036 unsigned int dev_max)
3037{
3038 struct scsi_device *sdp = sdkp->device;
3039 unsigned int opt_xfer_bytes =
3040 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3041
3042 if (sdkp->opt_xfer_blocks == 0)
3043 return false;
3044
3045 if (sdkp->opt_xfer_blocks > dev_max) {
3046 sd_first_printk(KERN_WARNING, sdkp,
3047 "Optimal transfer size %u logical blocks " \
3048 "> dev_max (%u logical blocks)\n",
3049 sdkp->opt_xfer_blocks, dev_max);
3050 return false;
3051 }
3052
3053 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3054 sd_first_printk(KERN_WARNING, sdkp,
3055 "Optimal transfer size %u logical blocks " \
3056 "> sd driver limit (%u logical blocks)\n",
3057 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3058 return false;
3059 }
3060
3061 if (opt_xfer_bytes < PAGE_SIZE) {
3062 sd_first_printk(KERN_WARNING, sdkp,
3063 "Optimal transfer size %u bytes < " \
3064 "PAGE_SIZE (%u bytes)\n",
3065 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3066 return false;
3067 }
3068
3069 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3070 sd_first_printk(KERN_WARNING, sdkp,
3071 "Optimal transfer size %u bytes not a " \
3072 "multiple of physical block size (%u bytes)\n",
3073 opt_xfer_bytes, sdkp->physical_block_size);
3074 return false;
3075 }
3076
3077 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3078 opt_xfer_bytes);
3079 return true;
3080}
3081
3082/**
3083 * sd_revalidate_disk - called the first time a new disk is seen,
3084 * performs disk spin up, read_capacity, etc.
3085 * @disk: struct gendisk we care about
3086 **/
3087static int sd_revalidate_disk(struct gendisk *disk)
3088{
3089 struct scsi_disk *sdkp = scsi_disk(disk);
3090 struct scsi_device *sdp = sdkp->device;
3091 struct request_queue *q = sdkp->disk->queue;
3092 sector_t old_capacity = sdkp->capacity;
3093 unsigned char *buffer;
3094 unsigned int dev_max, rw_max;
3095
3096 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3097 "sd_revalidate_disk\n"));
3098
3099 /*
3100 * If the device is offline, don't try and read capacity or any
3101 * of the other niceties.
3102 */
3103 if (!scsi_device_online(sdp))
3104 goto out;
3105
3106 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3107 if (!buffer) {
3108 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3109 "allocation failure.\n");
3110 goto out;
3111 }
3112
3113 sd_spinup_disk(sdkp);
3114
3115 /*
3116 * Without media there is no reason to ask; moreover, some devices
3117 * react badly if we do.
3118 */
3119 if (sdkp->media_present) {
3120 sd_read_capacity(sdkp, buffer);
3121
3122 /*
3123 * set the default to rotational. All non-rotational devices
3124 * support the block characteristics VPD page, which will
3125 * cause this to be updated correctly and any device which
3126 * doesn't support it should be treated as rotational.
3127 */
3128 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3129 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3130
3131 if (scsi_device_supports_vpd(sdp)) {
3132 sd_read_block_provisioning(sdkp);
3133 sd_read_block_limits(sdkp);
3134 sd_read_block_characteristics(sdkp);
3135 sd_zbc_read_zones(sdkp, buffer);
3136 }
3137
3138 sd_print_capacity(sdkp, old_capacity);
3139
3140 sd_read_write_protect_flag(sdkp, buffer);
3141 sd_read_cache_type(sdkp, buffer);
3142 sd_read_app_tag_own(sdkp, buffer);
3143 sd_read_write_same(sdkp, buffer);
3144 sd_read_security(sdkp, buffer);
3145 }
3146
3147 /*
3148 * We now have all cache related info, determine how we deal
3149 * with flush requests.
3150 */
3151 sd_set_flush_flag(sdkp);
3152
3153 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3154 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3155
3156 /* Some devices report a maximum block count for READ/WRITE requests. */
3157 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3158 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3159
3160 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3161 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3162 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3163 } else
3164 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3165 (sector_t)BLK_DEF_MAX_SECTORS);
3166
3167 /* Do not exceed controller limit */
3168 rw_max = min(rw_max, queue_max_hw_sectors(q));
3169
3170 /*
3171 * Only update max_sectors if previously unset or if the current value
3172 * exceeds the capabilities of the hardware.
3173 */
3174 if (sdkp->first_scan ||
3175 q->limits.max_sectors > q->limits.max_dev_sectors ||
3176 q->limits.max_sectors > q->limits.max_hw_sectors)
3177 q->limits.max_sectors = rw_max;
3178
3179 sdkp->first_scan = 0;
3180
3181 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3182 sd_config_write_same(sdkp);
3183 kfree(buffer);
3184
3185 out:
3186 return 0;
3187}
3188
3189/**
3190 * sd_unlock_native_capacity - unlock native capacity
3191 * @disk: struct gendisk to set capacity for
3192 *
3193 * Block layer calls this function if it detects that partitions
3194 * on @disk reach beyond the end of the device. If the SCSI host
3195 * implements ->unlock_native_capacity() method, it's invoked to
3196 * give it a chance to adjust the device capacity.
3197 *
3198 * CONTEXT:
3199 * Defined by block layer. Might sleep.
3200 */
3201static void sd_unlock_native_capacity(struct gendisk *disk)
3202{
3203 struct scsi_device *sdev = scsi_disk(disk)->device;
3204
3205 if (sdev->host->hostt->unlock_native_capacity)
3206 sdev->host->hostt->unlock_native_capacity(sdev);
3207}
3208
3209/**
3210 * sd_format_disk_name - format disk name
3211 * @prefix: name prefix - ie. "sd" for SCSI disks
3212 * @index: index of the disk to format name for
3213 * @buf: output buffer
3214 * @buflen: length of the output buffer
3215 *
3216 * SCSI disk names starts at sda. The 26th device is sdz and the
3217 * 27th is sdaa. The last one for two lettered suffix is sdzz
3218 * which is followed by sdaaa.
3219 *
3220 * This is basically 26 base counting with one extra 'nil' entry
3221 * at the beginning from the second digit on and can be
3222 * determined using similar method as 26 base conversion with the
3223 * index shifted -1 after each digit is computed.
3224 *
3225 * CONTEXT:
3226 * Don't care.
3227 *
3228 * RETURNS:
3229 * 0 on success, -errno on failure.
3230 */
3231static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3232{
3233 const int base = 'z' - 'a' + 1;
3234 char *begin = buf + strlen(prefix);
3235 char *end = buf + buflen;
3236 char *p;
3237 int unit;
3238
3239 p = end - 1;
3240 *p = '\0';
3241 unit = base;
3242 do {
3243 if (p == begin)
3244 return -EINVAL;
3245 *--p = 'a' + (index % unit);
3246 index = (index / unit) - 1;
3247 } while (index >= 0);
3248
3249 memmove(begin, p, end - p);
3250 memcpy(buf, prefix, strlen(prefix));
3251
3252 return 0;
3253}
3254
3255/*
3256 * The asynchronous part of sd_probe
3257 */
3258static void sd_probe_async(void *data, async_cookie_t cookie)
3259{
3260 struct scsi_disk *sdkp = data;
3261 struct scsi_device *sdp;
3262 struct gendisk *gd;
3263 u32 index;
3264 struct device *dev;
3265
3266 sdp = sdkp->device;
3267 gd = sdkp->disk;
3268 index = sdkp->index;
3269 dev = &sdp->sdev_gendev;
3270
3271 gd->major = sd_major((index & 0xf0) >> 4);
3272 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3273
3274 gd->fops = &sd_fops;
3275 gd->private_data = &sdkp->driver;
3276 gd->queue = sdkp->device->request_queue;
3277
3278 /* defaults, until the device tells us otherwise */
3279 sdp->sector_size = 512;
3280 sdkp->capacity = 0;
3281 sdkp->media_present = 1;
3282 sdkp->write_prot = 0;
3283 sdkp->cache_override = 0;
3284 sdkp->WCE = 0;
3285 sdkp->RCD = 0;
3286 sdkp->ATO = 0;
3287 sdkp->first_scan = 1;
3288 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3289
3290 sd_revalidate_disk(gd);
3291
3292 gd->flags = GENHD_FL_EXT_DEVT;
3293 if (sdp->removable) {
3294 gd->flags |= GENHD_FL_REMOVABLE;
3295 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3296 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3297 }
3298
3299 blk_pm_runtime_init(sdp->request_queue, dev);
3300 device_add_disk(dev, gd, NULL);
3301 if (sdkp->capacity)
3302 sd_dif_config_host(sdkp);
3303
3304 sd_revalidate_disk(gd);
3305
3306 if (sdkp->security) {
3307 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3308 if (sdkp->opal_dev)
3309 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3310 }
3311
3312 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3313 sdp->removable ? "removable " : "");
3314 scsi_autopm_put_device(sdp);
3315 put_device(&sdkp->dev);
3316}
3317
3318/**
3319 * sd_probe - called during driver initialization and whenever a
3320 * new scsi device is attached to the system. It is called once
3321 * for each scsi device (not just disks) present.
3322 * @dev: pointer to device object
3323 *
3324 * Returns 0 if successful (or not interested in this scsi device
3325 * (e.g. scanner)); 1 when there is an error.
3326 *
3327 * Note: this function is invoked from the scsi mid-level.
3328 * This function sets up the mapping between a given
3329 * <host,channel,id,lun> (found in sdp) and new device name
3330 * (e.g. /dev/sda). More precisely it is the block device major
3331 * and minor number that is chosen here.
3332 *
3333 * Assume sd_probe is not re-entrant (for time being)
3334 * Also think about sd_probe() and sd_remove() running coincidentally.
3335 **/
3336static int sd_probe(struct device *dev)
3337{
3338 struct scsi_device *sdp = to_scsi_device(dev);
3339 struct scsi_disk *sdkp;
3340 struct gendisk *gd;
3341 int index;
3342 int error;
3343
3344 scsi_autopm_get_device(sdp);
3345 error = -ENODEV;
3346 if (sdp->type != TYPE_DISK &&
3347 sdp->type != TYPE_ZBC &&
3348 sdp->type != TYPE_MOD &&
3349 sdp->type != TYPE_RBC)
3350 goto out;
3351
3352#ifndef CONFIG_BLK_DEV_ZONED
3353 if (sdp->type == TYPE_ZBC)
3354 goto out;
3355#endif
3356 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3357 "sd_probe\n"));
3358
3359 error = -ENOMEM;
3360 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3361 if (!sdkp)
3362 goto out;
3363
3364 gd = alloc_disk(SD_MINORS);
3365 if (!gd)
3366 goto out_free;
3367
3368 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3369 if (index < 0) {
3370 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3371 goto out_put;
3372 }
3373
3374 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3375 if (error) {
3376 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3377 goto out_free_index;
3378 }
3379
3380 sdkp->device = sdp;
3381 sdkp->driver = &sd_template;
3382 sdkp->disk = gd;
3383 sdkp->index = index;
3384 atomic_set(&sdkp->openers, 0);
3385 atomic_set(&sdkp->device->ioerr_cnt, 0);
3386
3387 if (!sdp->request_queue->rq_timeout) {
3388 if (sdp->type != TYPE_MOD)
3389 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3390 else
3391 blk_queue_rq_timeout(sdp->request_queue,
3392 SD_MOD_TIMEOUT);
3393 }
3394
3395 device_initialize(&sdkp->dev);
3396 sdkp->dev.parent = dev;
3397 sdkp->dev.class = &sd_disk_class;
3398 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3399
3400 error = device_add(&sdkp->dev);
3401 if (error)
3402 goto out_free_index;
3403
3404 get_device(dev);
3405 dev_set_drvdata(dev, sdkp);
3406
3407 get_device(&sdkp->dev); /* prevent release before async_schedule */
3408 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3409
3410 return 0;
3411
3412 out_free_index:
3413 ida_free(&sd_index_ida, index);
3414 out_put:
3415 put_disk(gd);
3416 out_free:
3417 kfree(sdkp);
3418 out:
3419 scsi_autopm_put_device(sdp);
3420 return error;
3421}
3422
3423/**
3424 * sd_remove - called whenever a scsi disk (previously recognized by
3425 * sd_probe) is detached from the system. It is called (potentially
3426 * multiple times) during sd module unload.
3427 * @dev: pointer to device object
3428 *
3429 * Note: this function is invoked from the scsi mid-level.
3430 * This function potentially frees up a device name (e.g. /dev/sdc)
3431 * that could be re-used by a subsequent sd_probe().
3432 * This function is not called when the built-in sd driver is "exit-ed".
3433 **/
3434static int sd_remove(struct device *dev)
3435{
3436 struct scsi_disk *sdkp;
3437 dev_t devt;
3438
3439 sdkp = dev_get_drvdata(dev);
3440 devt = disk_devt(sdkp->disk);
3441 scsi_autopm_get_device(sdkp->device);
3442
3443 async_synchronize_full_domain(&scsi_sd_pm_domain);
3444 async_synchronize_full_domain(&scsi_sd_probe_domain);
3445 device_del(&sdkp->dev);
3446 del_gendisk(sdkp->disk);
3447 sd_shutdown(dev);
3448
3449 free_opal_dev(sdkp->opal_dev);
3450
3451 blk_register_region(devt, SD_MINORS, NULL,
3452 sd_default_probe, NULL, NULL);
3453
3454 mutex_lock(&sd_ref_mutex);
3455 dev_set_drvdata(dev, NULL);
3456 put_device(&sdkp->dev);
3457 mutex_unlock(&sd_ref_mutex);
3458
3459 return 0;
3460}
3461
3462/**
3463 * scsi_disk_release - Called to free the scsi_disk structure
3464 * @dev: pointer to embedded class device
3465 *
3466 * sd_ref_mutex must be held entering this routine. Because it is
3467 * called on last put, you should always use the scsi_disk_get()
3468 * scsi_disk_put() helpers which manipulate the semaphore directly
3469 * and never do a direct put_device.
3470 **/
3471static void scsi_disk_release(struct device *dev)
3472{
3473 struct scsi_disk *sdkp = to_scsi_disk(dev);
3474 struct gendisk *disk = sdkp->disk;
3475 struct request_queue *q = disk->queue;
3476
3477 ida_free(&sd_index_ida, sdkp->index);
3478
3479 /*
3480 * Wait until all requests that are in progress have completed.
3481 * This is necessary to avoid that e.g. scsi_end_request() crashes
3482 * due to clearing the disk->private_data pointer. Wait from inside
3483 * scsi_disk_release() instead of from sd_release() to avoid that
3484 * freezing and unfreezing the request queue affects user space I/O
3485 * in case multiple processes open a /dev/sd... node concurrently.
3486 */
3487 blk_mq_freeze_queue(q);
3488 blk_mq_unfreeze_queue(q);
3489
3490 disk->private_data = NULL;
3491 put_disk(disk);
3492 put_device(&sdkp->device->sdev_gendev);
3493
3494 kfree(sdkp);
3495}
3496
3497static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3498{
3499 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3500 struct scsi_sense_hdr sshdr;
3501 struct scsi_device *sdp = sdkp->device;
3502 int res;
3503
3504 if (start)
3505 cmd[4] |= 1; /* START */
3506
3507 if (sdp->start_stop_pwr_cond)
3508 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3509
3510 if (!scsi_device_online(sdp))
3511 return -ENODEV;
3512
3513 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3514 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3515 if (res) {
3516 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3517 if (driver_byte(res) == DRIVER_SENSE)
3518 sd_print_sense_hdr(sdkp, &sshdr);
3519 if (scsi_sense_valid(&sshdr) &&
3520 /* 0x3a is medium not present */
3521 sshdr.asc == 0x3a)
3522 res = 0;
3523 }
3524
3525 /* SCSI error codes must not go to the generic layer */
3526 if (res)
3527 return -EIO;
3528
3529 return 0;
3530}
3531
3532/*
3533 * Send a SYNCHRONIZE CACHE instruction down to the device through
3534 * the normal SCSI command structure. Wait for the command to
3535 * complete.
3536 */
3537static void sd_shutdown(struct device *dev)
3538{
3539 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3540
3541 if (!sdkp)
3542 return; /* this can happen */
3543
3544 if (pm_runtime_suspended(dev))
3545 return;
3546
3547 if (sdkp->WCE && sdkp->media_present) {
3548 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3549 sd_sync_cache(sdkp, NULL);
3550 }
3551
3552 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3553 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3554 sd_start_stop_device(sdkp, 0);
3555 }
3556}
3557
3558static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3559{
3560 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3561 struct scsi_sense_hdr sshdr;
3562 int ret = 0;
3563
3564 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3565 return 0;
3566
3567 if (sdkp->WCE && sdkp->media_present) {
3568 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3569 ret = sd_sync_cache(sdkp, &sshdr);
3570
3571 if (ret) {
3572 /* ignore OFFLINE device */
3573 if (ret == -ENODEV)
3574 return 0;
3575
3576 if (!scsi_sense_valid(&sshdr) ||
3577 sshdr.sense_key != ILLEGAL_REQUEST)
3578 return ret;
3579
3580 /*
3581 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3582 * doesn't support sync. There's not much to do and
3583 * suspend shouldn't fail.
3584 */
3585 ret = 0;
3586 }
3587 }
3588
3589 if (sdkp->device->manage_start_stop) {
3590 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3591 /* an error is not worth aborting a system sleep */
3592 ret = sd_start_stop_device(sdkp, 0);
3593 if (ignore_stop_errors)
3594 ret = 0;
3595 }
3596
3597 return ret;
3598}
3599
3600static int sd_suspend_system(struct device *dev)
3601{
3602 return sd_suspend_common(dev, true);
3603}
3604
3605static int sd_suspend_runtime(struct device *dev)
3606{
3607 return sd_suspend_common(dev, false);
3608}
3609
3610static int sd_resume(struct device *dev)
3611{
3612 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3613 int ret;
3614
3615 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3616 return 0;
3617
3618 if (!sdkp->device->manage_start_stop)
3619 return 0;
3620
3621 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3622 ret = sd_start_stop_device(sdkp, 1);
3623 if (!ret)
3624 opal_unlock_from_suspend(sdkp->opal_dev);
3625 return ret;
3626}
3627
3628/**
3629 * init_sd - entry point for this driver (both when built in or when
3630 * a module).
3631 *
3632 * Note: this function registers this driver with the scsi mid-level.
3633 **/
3634static int __init init_sd(void)
3635{
3636 int majors = 0, i, err;
3637
3638 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3639
3640 for (i = 0; i < SD_MAJORS; i++) {
3641 if (register_blkdev(sd_major(i), "sd") != 0)
3642 continue;
3643 majors++;
3644 blk_register_region(sd_major(i), SD_MINORS, NULL,
3645 sd_default_probe, NULL, NULL);
3646 }
3647
3648 if (!majors)
3649 return -ENODEV;
3650
3651 err = class_register(&sd_disk_class);
3652 if (err)
3653 goto err_out;
3654
3655 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3656 0, 0, NULL);
3657 if (!sd_cdb_cache) {
3658 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3659 err = -ENOMEM;
3660 goto err_out_class;
3661 }
3662
3663 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3664 if (!sd_cdb_pool) {
3665 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3666 err = -ENOMEM;
3667 goto err_out_cache;
3668 }
3669
3670 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3671 if (!sd_page_pool) {
3672 printk(KERN_ERR "sd: can't init discard page pool\n");
3673 err = -ENOMEM;
3674 goto err_out_ppool;
3675 }
3676
3677 err = scsi_register_driver(&sd_template.gendrv);
3678 if (err)
3679 goto err_out_driver;
3680
3681 return 0;
3682
3683err_out_driver:
3684 mempool_destroy(sd_page_pool);
3685
3686err_out_ppool:
3687 mempool_destroy(sd_cdb_pool);
3688
3689err_out_cache:
3690 kmem_cache_destroy(sd_cdb_cache);
3691
3692err_out_class:
3693 class_unregister(&sd_disk_class);
3694err_out:
3695 for (i = 0; i < SD_MAJORS; i++)
3696 unregister_blkdev(sd_major(i), "sd");
3697 return err;
3698}
3699
3700/**
3701 * exit_sd - exit point for this driver (when it is a module).
3702 *
3703 * Note: this function unregisters this driver from the scsi mid-level.
3704 **/
3705static void __exit exit_sd(void)
3706{
3707 int i;
3708
3709 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3710
3711 scsi_unregister_driver(&sd_template.gendrv);
3712 mempool_destroy(sd_cdb_pool);
3713 mempool_destroy(sd_page_pool);
3714 kmem_cache_destroy(sd_cdb_cache);
3715
3716 class_unregister(&sd_disk_class);
3717
3718 for (i = 0; i < SD_MAJORS; i++) {
3719 blk_unregister_region(sd_major(i), SD_MINORS);
3720 unregister_blkdev(sd_major(i), "sd");
3721 }
3722}
3723
3724module_init(init_sd);
3725module_exit(exit_sd);
3726
3727static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3728 struct scsi_sense_hdr *sshdr)
3729{
3730 scsi_print_sense_hdr(sdkp->device,
3731 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3732}
3733
3734static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3735 int result)
3736{
3737 const char *hb_string = scsi_hostbyte_string(result);
3738 const char *db_string = scsi_driverbyte_string(result);
3739
3740 if (hb_string || db_string)
3741 sd_printk(KERN_INFO, sdkp,
3742 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3743 hb_string ? hb_string : "invalid",
3744 db_string ? db_string : "invalid");
3745 else
3746 sd_printk(KERN_INFO, sdkp,
3747 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3748 msg, host_byte(result), driver_byte(result));
3749}
3750