Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/kernel_stat.h>
13#include <linux/module.h>
14#include <linux/ktime.h>
15#include <linux/hrtimer.h>
16#include <linux/tick.h>
17#include <linux/slab.h>
18#include <linux/sched/cpufreq.h>
19#include <linux/list.h>
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/sysfs.h>
23#include <linux/types.h>
24#include <linux/fs.h>
25#include <linux/acpi.h>
26#include <linux/vmalloc.h>
27#include <trace/events/power.h>
28
29#include <asm/div64.h>
30#include <asm/msr.h>
31#include <asm/cpu_device_id.h>
32#include <asm/cpufeature.h>
33#include <asm/intel-family.h>
34
35#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
36
37#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
38#define INTEL_CPUFREQ_TRANSITION_DELAY 500
39
40#ifdef CONFIG_ACPI
41#include <acpi/processor.h>
42#include <acpi/cppc_acpi.h>
43#endif
44
45#define FRAC_BITS 8
46#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
47#define fp_toint(X) ((X) >> FRAC_BITS)
48
49#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
50
51#define EXT_BITS 6
52#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
61static inline int32_t div_fp(s64 x, s64 y)
62{
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64}
65
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
77static inline int32_t percent_fp(int percent)
78{
79 return div_fp(percent, 100);
80}
81
82static inline u64 mul_ext_fp(u64 x, u64 y)
83{
84 return (x * y) >> EXT_FRAC_BITS;
85}
86
87static inline u64 div_ext_fp(u64 x, u64 y)
88{
89 return div64_u64(x << EXT_FRAC_BITS, y);
90}
91
92static inline int32_t percent_ext_fp(int percent)
93{
94 return div_ext_fp(percent, 100);
95}
96
97/**
98 * struct sample - Store performance sample
99 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
100 * performance during last sample period
101 * @busy_scaled: Scaled busy value which is used to calculate next
102 * P state. This can be different than core_avg_perf
103 * to account for cpu idle period
104 * @aperf: Difference of actual performance frequency clock count
105 * read from APERF MSR between last and current sample
106 * @mperf: Difference of maximum performance frequency clock count
107 * read from MPERF MSR between last and current sample
108 * @tsc: Difference of time stamp counter between last and
109 * current sample
110 * @time: Current time from scheduler
111 *
112 * This structure is used in the cpudata structure to store performance sample
113 * data for choosing next P State.
114 */
115struct sample {
116 int32_t core_avg_perf;
117 int32_t busy_scaled;
118 u64 aperf;
119 u64 mperf;
120 u64 tsc;
121 u64 time;
122};
123
124/**
125 * struct pstate_data - Store P state data
126 * @current_pstate: Current requested P state
127 * @min_pstate: Min P state possible for this platform
128 * @max_pstate: Max P state possible for this platform
129 * @max_pstate_physical:This is physical Max P state for a processor
130 * This can be higher than the max_pstate which can
131 * be limited by platform thermal design power limits
132 * @scaling: Scaling factor to convert frequency to cpufreq
133 * frequency units
134 * @turbo_pstate: Max Turbo P state possible for this platform
135 * @max_freq: @max_pstate frequency in cpufreq units
136 * @turbo_freq: @turbo_pstate frequency in cpufreq units
137 *
138 * Stores the per cpu model P state limits and current P state.
139 */
140struct pstate_data {
141 int current_pstate;
142 int min_pstate;
143 int max_pstate;
144 int max_pstate_physical;
145 int scaling;
146 int turbo_pstate;
147 unsigned int max_freq;
148 unsigned int turbo_freq;
149};
150
151/**
152 * struct vid_data - Stores voltage information data
153 * @min: VID data for this platform corresponding to
154 * the lowest P state
155 * @max: VID data corresponding to the highest P State.
156 * @turbo: VID data for turbo P state
157 * @ratio: Ratio of (vid max - vid min) /
158 * (max P state - Min P State)
159 *
160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161 * This data is used in Atom platforms, where in addition to target P state,
162 * the voltage data needs to be specified to select next P State.
163 */
164struct vid_data {
165 int min;
166 int max;
167 int turbo;
168 int32_t ratio;
169};
170
171/**
172 * struct global_params - Global parameters, mostly tunable via sysfs.
173 * @no_turbo: Whether or not to use turbo P-states.
174 * @turbo_disabled: Whethet or not turbo P-states are available at all,
175 * based on the MSR_IA32_MISC_ENABLE value and whether or
176 * not the maximum reported turbo P-state is different from
177 * the maximum reported non-turbo one.
178 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
179 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
180 * P-state capacity.
181 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
182 * P-state capacity.
183 */
184struct global_params {
185 bool no_turbo;
186 bool turbo_disabled;
187 bool turbo_disabled_mf;
188 int max_perf_pct;
189 int min_perf_pct;
190};
191
192/**
193 * struct cpudata - Per CPU instance data storage
194 * @cpu: CPU number for this instance data
195 * @policy: CPUFreq policy value
196 * @update_util: CPUFreq utility callback information
197 * @update_util_set: CPUFreq utility callback is set
198 * @iowait_boost: iowait-related boost fraction
199 * @last_update: Time of the last update.
200 * @pstate: Stores P state limits for this CPU
201 * @vid: Stores VID limits for this CPU
202 * @last_sample_time: Last Sample time
203 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
204 * This shift is a multiplier to mperf delta to
205 * calculate CPU busy.
206 * @prev_aperf: Last APERF value read from APERF MSR
207 * @prev_mperf: Last MPERF value read from MPERF MSR
208 * @prev_tsc: Last timestamp counter (TSC) value
209 * @prev_cummulative_iowait: IO Wait time difference from last and
210 * current sample
211 * @sample: Storage for storing last Sample data
212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
214 * @acpi_perf_data: Stores ACPI perf information read from _PSS
215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
216 * @epp_powersave: Last saved HWP energy performance preference
217 * (EPP) or energy performance bias (EPB),
218 * when policy switched to performance
219 * @epp_policy: Last saved policy used to set EPP/EPB
220 * @epp_default: Power on default HWP energy performance
221 * preference/bias
222 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
223 * operation
224 * @hwp_req_cached: Cached value of the last HWP Request MSR
225 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
226 * @last_io_update: Last time when IO wake flag was set
227 * @sched_flags: Store scheduler flags for possible cross CPU update
228 * @hwp_boost_min: Last HWP boosted min performance
229 *
230 * This structure stores per CPU instance data for all CPUs.
231 */
232struct cpudata {
233 int cpu;
234
235 unsigned int policy;
236 struct update_util_data update_util;
237 bool update_util_set;
238
239 struct pstate_data pstate;
240 struct vid_data vid;
241
242 u64 last_update;
243 u64 last_sample_time;
244 u64 aperf_mperf_shift;
245 u64 prev_aperf;
246 u64 prev_mperf;
247 u64 prev_tsc;
248 u64 prev_cummulative_iowait;
249 struct sample sample;
250 int32_t min_perf_ratio;
251 int32_t max_perf_ratio;
252#ifdef CONFIG_ACPI
253 struct acpi_processor_performance acpi_perf_data;
254 bool valid_pss_table;
255#endif
256 unsigned int iowait_boost;
257 s16 epp_powersave;
258 s16 epp_policy;
259 s16 epp_default;
260 s16 epp_saved;
261 u64 hwp_req_cached;
262 u64 hwp_cap_cached;
263 u64 last_io_update;
264 unsigned int sched_flags;
265 u32 hwp_boost_min;
266};
267
268static struct cpudata **all_cpu_data;
269
270/**
271 * struct pstate_funcs - Per CPU model specific callbacks
272 * @get_max: Callback to get maximum non turbo effective P state
273 * @get_max_physical: Callback to get maximum non turbo physical P state
274 * @get_min: Callback to get minimum P state
275 * @get_turbo: Callback to get turbo P state
276 * @get_scaling: Callback to get frequency scaling factor
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283struct pstate_funcs {
284 int (*get_max)(void);
285 int (*get_max_physical)(void);
286 int (*get_min)(void);
287 int (*get_turbo)(void);
288 int (*get_scaling)(void);
289 int (*get_aperf_mperf_shift)(void);
290 u64 (*get_val)(struct cpudata*, int pstate);
291 void (*get_vid)(struct cpudata *);
292};
293
294static struct pstate_funcs pstate_funcs __read_mostly;
295
296static int hwp_active __read_mostly;
297static int hwp_mode_bdw __read_mostly;
298static bool per_cpu_limits __read_mostly;
299static bool hwp_boost __read_mostly;
300
301static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303#ifdef CONFIG_ACPI
304static bool acpi_ppc;
305#endif
306
307static struct global_params global;
308
309static DEFINE_MUTEX(intel_pstate_driver_lock);
310static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312#ifdef CONFIG_ACPI
313
314static bool intel_pstate_acpi_pm_profile_server(void)
315{
316 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 return true;
319
320 return false;
321}
322
323static bool intel_pstate_get_ppc_enable_status(void)
324{
325 if (intel_pstate_acpi_pm_profile_server())
326 return true;
327
328 return acpi_ppc;
329}
330
331#ifdef CONFIG_ACPI_CPPC_LIB
332
333/* The work item is needed to avoid CPU hotplug locking issues */
334static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335{
336 sched_set_itmt_support();
337}
338
339static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341static void intel_pstate_set_itmt_prio(int cpu)
342{
343 struct cppc_perf_caps cppc_perf;
344 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 int ret;
346
347 ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 if (ret)
349 return;
350
351 /*
352 * The priorities can be set regardless of whether or not
353 * sched_set_itmt_support(true) has been called and it is valid to
354 * update them at any time after it has been called.
355 */
356 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358 if (max_highest_perf <= min_highest_perf) {
359 if (cppc_perf.highest_perf > max_highest_perf)
360 max_highest_perf = cppc_perf.highest_perf;
361
362 if (cppc_perf.highest_perf < min_highest_perf)
363 min_highest_perf = cppc_perf.highest_perf;
364
365 if (max_highest_perf > min_highest_perf) {
366 /*
367 * This code can be run during CPU online under the
368 * CPU hotplug locks, so sched_set_itmt_support()
369 * cannot be called from here. Queue up a work item
370 * to invoke it.
371 */
372 schedule_work(&sched_itmt_work);
373 }
374 }
375}
376
377static int intel_pstate_get_cppc_guranteed(int cpu)
378{
379 struct cppc_perf_caps cppc_perf;
380 int ret;
381
382 ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 if (ret)
384 return ret;
385
386 if (cppc_perf.guaranteed_perf)
387 return cppc_perf.guaranteed_perf;
388
389 return cppc_perf.nominal_perf;
390}
391
392#else /* CONFIG_ACPI_CPPC_LIB */
393static void intel_pstate_set_itmt_prio(int cpu)
394{
395}
396#endif /* CONFIG_ACPI_CPPC_LIB */
397
398static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
399{
400 struct cpudata *cpu;
401 int ret;
402 int i;
403
404 if (hwp_active) {
405 intel_pstate_set_itmt_prio(policy->cpu);
406 return;
407 }
408
409 if (!intel_pstate_get_ppc_enable_status())
410 return;
411
412 cpu = all_cpu_data[policy->cpu];
413
414 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
415 policy->cpu);
416 if (ret)
417 return;
418
419 /*
420 * Check if the control value in _PSS is for PERF_CTL MSR, which should
421 * guarantee that the states returned by it map to the states in our
422 * list directly.
423 */
424 if (cpu->acpi_perf_data.control_register.space_id !=
425 ACPI_ADR_SPACE_FIXED_HARDWARE)
426 goto err;
427
428 /*
429 * If there is only one entry _PSS, simply ignore _PSS and continue as
430 * usual without taking _PSS into account
431 */
432 if (cpu->acpi_perf_data.state_count < 2)
433 goto err;
434
435 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
436 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
437 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
438 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
439 (u32) cpu->acpi_perf_data.states[i].core_frequency,
440 (u32) cpu->acpi_perf_data.states[i].power,
441 (u32) cpu->acpi_perf_data.states[i].control);
442 }
443
444 /*
445 * The _PSS table doesn't contain whole turbo frequency range.
446 * This just contains +1 MHZ above the max non turbo frequency,
447 * with control value corresponding to max turbo ratio. But
448 * when cpufreq set policy is called, it will call with this
449 * max frequency, which will cause a reduced performance as
450 * this driver uses real max turbo frequency as the max
451 * frequency. So correct this frequency in _PSS table to
452 * correct max turbo frequency based on the turbo state.
453 * Also need to convert to MHz as _PSS freq is in MHz.
454 */
455 if (!global.turbo_disabled)
456 cpu->acpi_perf_data.states[0].core_frequency =
457 policy->cpuinfo.max_freq / 1000;
458 cpu->valid_pss_table = true;
459 pr_debug("_PPC limits will be enforced\n");
460
461 return;
462
463 err:
464 cpu->valid_pss_table = false;
465 acpi_processor_unregister_performance(policy->cpu);
466}
467
468static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
469{
470 struct cpudata *cpu;
471
472 cpu = all_cpu_data[policy->cpu];
473 if (!cpu->valid_pss_table)
474 return;
475
476 acpi_processor_unregister_performance(policy->cpu);
477}
478#else /* CONFIG_ACPI */
479static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480{
481}
482
483static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484{
485}
486
487static inline bool intel_pstate_acpi_pm_profile_server(void)
488{
489 return false;
490}
491#endif /* CONFIG_ACPI */
492
493#ifndef CONFIG_ACPI_CPPC_LIB
494static int intel_pstate_get_cppc_guranteed(int cpu)
495{
496 return -ENOTSUPP;
497}
498#endif /* CONFIG_ACPI_CPPC_LIB */
499
500static inline void update_turbo_state(void)
501{
502 u64 misc_en;
503 struct cpudata *cpu;
504
505 cpu = all_cpu_data[0];
506 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507 global.turbo_disabled =
508 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
509 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
510}
511
512static int min_perf_pct_min(void)
513{
514 struct cpudata *cpu = all_cpu_data[0];
515 int turbo_pstate = cpu->pstate.turbo_pstate;
516
517 return turbo_pstate ?
518 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519}
520
521static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
522{
523 u64 epb;
524 int ret;
525
526 if (!boot_cpu_has(X86_FEATURE_EPB))
527 return -ENXIO;
528
529 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
530 if (ret)
531 return (s16)ret;
532
533 return (s16)(epb & 0x0f);
534}
535
536static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
537{
538 s16 epp;
539
540 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541 /*
542 * When hwp_req_data is 0, means that caller didn't read
543 * MSR_HWP_REQUEST, so need to read and get EPP.
544 */
545 if (!hwp_req_data) {
546 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
547 &hwp_req_data);
548 if (epp)
549 return epp;
550 }
551 epp = (hwp_req_data >> 24) & 0xff;
552 } else {
553 /* When there is no EPP present, HWP uses EPB settings */
554 epp = intel_pstate_get_epb(cpu_data);
555 }
556
557 return epp;
558}
559
560static int intel_pstate_set_epb(int cpu, s16 pref)
561{
562 u64 epb;
563 int ret;
564
565 if (!boot_cpu_has(X86_FEATURE_EPB))
566 return -ENXIO;
567
568 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569 if (ret)
570 return ret;
571
572 epb = (epb & ~0x0f) | pref;
573 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574
575 return 0;
576}
577
578/*
579 * EPP/EPB display strings corresponding to EPP index in the
580 * energy_perf_strings[]
581 * index String
582 *-------------------------------------
583 * 0 default
584 * 1 performance
585 * 2 balance_performance
586 * 3 balance_power
587 * 4 power
588 */
589static const char * const energy_perf_strings[] = {
590 "default",
591 "performance",
592 "balance_performance",
593 "balance_power",
594 "power",
595 NULL
596};
597static const unsigned int epp_values[] = {
598 HWP_EPP_PERFORMANCE,
599 HWP_EPP_BALANCE_PERFORMANCE,
600 HWP_EPP_BALANCE_POWERSAVE,
601 HWP_EPP_POWERSAVE
602};
603
604static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
605{
606 s16 epp;
607 int index = -EINVAL;
608
609 epp = intel_pstate_get_epp(cpu_data, 0);
610 if (epp < 0)
611 return epp;
612
613 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
614 if (epp == HWP_EPP_PERFORMANCE)
615 return 1;
616 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
617 return 2;
618 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
619 return 3;
620 else
621 return 4;
622 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
623 /*
624 * Range:
625 * 0x00-0x03 : Performance
626 * 0x04-0x07 : Balance performance
627 * 0x08-0x0B : Balance power
628 * 0x0C-0x0F : Power
629 * The EPB is a 4 bit value, but our ranges restrict the
630 * value which can be set. Here only using top two bits
631 * effectively.
632 */
633 index = (epp >> 2) + 1;
634 }
635
636 return index;
637}
638
639static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
640 int pref_index)
641{
642 int epp = -EINVAL;
643 int ret;
644
645 if (!pref_index)
646 epp = cpu_data->epp_default;
647
648 mutex_lock(&intel_pstate_limits_lock);
649
650 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
651 u64 value;
652
653 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
654 if (ret)
655 goto return_pref;
656
657 value &= ~GENMASK_ULL(31, 24);
658
659 if (epp == -EINVAL)
660 epp = epp_values[pref_index - 1];
661
662 value |= (u64)epp << 24;
663 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
664 } else {
665 if (epp == -EINVAL)
666 epp = (pref_index - 1) << 2;
667 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
668 }
669return_pref:
670 mutex_unlock(&intel_pstate_limits_lock);
671
672 return ret;
673}
674
675static ssize_t show_energy_performance_available_preferences(
676 struct cpufreq_policy *policy, char *buf)
677{
678 int i = 0;
679 int ret = 0;
680
681 while (energy_perf_strings[i] != NULL)
682 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
683
684 ret += sprintf(&buf[ret], "\n");
685
686 return ret;
687}
688
689cpufreq_freq_attr_ro(energy_performance_available_preferences);
690
691static ssize_t store_energy_performance_preference(
692 struct cpufreq_policy *policy, const char *buf, size_t count)
693{
694 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
695 char str_preference[21];
696 int ret;
697
698 ret = sscanf(buf, "%20s", str_preference);
699 if (ret != 1)
700 return -EINVAL;
701
702 ret = match_string(energy_perf_strings, -1, str_preference);
703 if (ret < 0)
704 return ret;
705
706 intel_pstate_set_energy_pref_index(cpu_data, ret);
707 return count;
708}
709
710static ssize_t show_energy_performance_preference(
711 struct cpufreq_policy *policy, char *buf)
712{
713 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
714 int preference;
715
716 preference = intel_pstate_get_energy_pref_index(cpu_data);
717 if (preference < 0)
718 return preference;
719
720 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
721}
722
723cpufreq_freq_attr_rw(energy_performance_preference);
724
725static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
726{
727 struct cpudata *cpu;
728 u64 cap;
729 int ratio;
730
731 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
732 if (ratio <= 0) {
733 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
734 ratio = HWP_GUARANTEED_PERF(cap);
735 }
736
737 cpu = all_cpu_data[policy->cpu];
738
739 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
740}
741
742cpufreq_freq_attr_ro(base_frequency);
743
744static struct freq_attr *hwp_cpufreq_attrs[] = {
745 &energy_performance_preference,
746 &energy_performance_available_preferences,
747 &base_frequency,
748 NULL,
749};
750
751static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
752 int *current_max)
753{
754 u64 cap;
755
756 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
757 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
758 if (global.no_turbo)
759 *current_max = HWP_GUARANTEED_PERF(cap);
760 else
761 *current_max = HWP_HIGHEST_PERF(cap);
762
763 *phy_max = HWP_HIGHEST_PERF(cap);
764}
765
766static void intel_pstate_hwp_set(unsigned int cpu)
767{
768 struct cpudata *cpu_data = all_cpu_data[cpu];
769 int max, min;
770 u64 value;
771 s16 epp;
772
773 max = cpu_data->max_perf_ratio;
774 min = cpu_data->min_perf_ratio;
775
776 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
777 min = max;
778
779 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
780
781 value &= ~HWP_MIN_PERF(~0L);
782 value |= HWP_MIN_PERF(min);
783
784 value &= ~HWP_MAX_PERF(~0L);
785 value |= HWP_MAX_PERF(max);
786
787 if (cpu_data->epp_policy == cpu_data->policy)
788 goto skip_epp;
789
790 cpu_data->epp_policy = cpu_data->policy;
791
792 if (cpu_data->epp_saved >= 0) {
793 epp = cpu_data->epp_saved;
794 cpu_data->epp_saved = -EINVAL;
795 goto update_epp;
796 }
797
798 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
799 epp = intel_pstate_get_epp(cpu_data, value);
800 cpu_data->epp_powersave = epp;
801 /* If EPP read was failed, then don't try to write */
802 if (epp < 0)
803 goto skip_epp;
804
805 epp = 0;
806 } else {
807 /* skip setting EPP, when saved value is invalid */
808 if (cpu_data->epp_powersave < 0)
809 goto skip_epp;
810
811 /*
812 * No need to restore EPP when it is not zero. This
813 * means:
814 * - Policy is not changed
815 * - user has manually changed
816 * - Error reading EPB
817 */
818 epp = intel_pstate_get_epp(cpu_data, value);
819 if (epp)
820 goto skip_epp;
821
822 epp = cpu_data->epp_powersave;
823 }
824update_epp:
825 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
826 value &= ~GENMASK_ULL(31, 24);
827 value |= (u64)epp << 24;
828 } else {
829 intel_pstate_set_epb(cpu, epp);
830 }
831skip_epp:
832 WRITE_ONCE(cpu_data->hwp_req_cached, value);
833 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
834}
835
836static void intel_pstate_hwp_force_min_perf(int cpu)
837{
838 u64 value;
839 int min_perf;
840
841 value = all_cpu_data[cpu]->hwp_req_cached;
842 value &= ~GENMASK_ULL(31, 0);
843 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
844
845 /* Set hwp_max = hwp_min */
846 value |= HWP_MAX_PERF(min_perf);
847 value |= HWP_MIN_PERF(min_perf);
848
849 /* Set EPP/EPB to min */
850 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
851 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
852 else
853 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
854
855 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
856}
857
858static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
859{
860 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
861
862 if (!hwp_active)
863 return 0;
864
865 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
866
867 return 0;
868}
869
870static void intel_pstate_hwp_enable(struct cpudata *cpudata);
871
872static int intel_pstate_resume(struct cpufreq_policy *policy)
873{
874 if (!hwp_active)
875 return 0;
876
877 mutex_lock(&intel_pstate_limits_lock);
878
879 if (policy->cpu == 0)
880 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
881
882 all_cpu_data[policy->cpu]->epp_policy = 0;
883 intel_pstate_hwp_set(policy->cpu);
884
885 mutex_unlock(&intel_pstate_limits_lock);
886
887 return 0;
888}
889
890static void intel_pstate_update_policies(void)
891{
892 int cpu;
893
894 for_each_possible_cpu(cpu)
895 cpufreq_update_policy(cpu);
896}
897
898static void intel_pstate_update_max_freq(unsigned int cpu)
899{
900 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
901 struct cpufreq_policy new_policy;
902 struct cpudata *cpudata;
903
904 if (!policy)
905 return;
906
907 cpudata = all_cpu_data[cpu];
908 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
909 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
910
911 memcpy(&new_policy, policy, sizeof(*policy));
912 new_policy.max = min(policy->user_policy.max, policy->cpuinfo.max_freq);
913 new_policy.min = min(policy->user_policy.min, new_policy.max);
914
915 cpufreq_set_policy(policy, &new_policy);
916
917 cpufreq_cpu_release(policy);
918}
919
920static void intel_pstate_update_limits(unsigned int cpu)
921{
922 mutex_lock(&intel_pstate_driver_lock);
923
924 update_turbo_state();
925 /*
926 * If turbo has been turned on or off globally, policy limits for
927 * all CPUs need to be updated to reflect that.
928 */
929 if (global.turbo_disabled_mf != global.turbo_disabled) {
930 global.turbo_disabled_mf = global.turbo_disabled;
931 for_each_possible_cpu(cpu)
932 intel_pstate_update_max_freq(cpu);
933 } else {
934 cpufreq_update_policy(cpu);
935 }
936
937 mutex_unlock(&intel_pstate_driver_lock);
938}
939
940/************************** sysfs begin ************************/
941#define show_one(file_name, object) \
942 static ssize_t show_##file_name \
943 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
944 { \
945 return sprintf(buf, "%u\n", global.object); \
946 }
947
948static ssize_t intel_pstate_show_status(char *buf);
949static int intel_pstate_update_status(const char *buf, size_t size);
950
951static ssize_t show_status(struct kobject *kobj,
952 struct kobj_attribute *attr, char *buf)
953{
954 ssize_t ret;
955
956 mutex_lock(&intel_pstate_driver_lock);
957 ret = intel_pstate_show_status(buf);
958 mutex_unlock(&intel_pstate_driver_lock);
959
960 return ret;
961}
962
963static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
964 const char *buf, size_t count)
965{
966 char *p = memchr(buf, '\n', count);
967 int ret;
968
969 mutex_lock(&intel_pstate_driver_lock);
970 ret = intel_pstate_update_status(buf, p ? p - buf : count);
971 mutex_unlock(&intel_pstate_driver_lock);
972
973 return ret < 0 ? ret : count;
974}
975
976static ssize_t show_turbo_pct(struct kobject *kobj,
977 struct kobj_attribute *attr, char *buf)
978{
979 struct cpudata *cpu;
980 int total, no_turbo, turbo_pct;
981 uint32_t turbo_fp;
982
983 mutex_lock(&intel_pstate_driver_lock);
984
985 if (!intel_pstate_driver) {
986 mutex_unlock(&intel_pstate_driver_lock);
987 return -EAGAIN;
988 }
989
990 cpu = all_cpu_data[0];
991
992 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
993 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
994 turbo_fp = div_fp(no_turbo, total);
995 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
996
997 mutex_unlock(&intel_pstate_driver_lock);
998
999 return sprintf(buf, "%u\n", turbo_pct);
1000}
1001
1002static ssize_t show_num_pstates(struct kobject *kobj,
1003 struct kobj_attribute *attr, char *buf)
1004{
1005 struct cpudata *cpu;
1006 int total;
1007
1008 mutex_lock(&intel_pstate_driver_lock);
1009
1010 if (!intel_pstate_driver) {
1011 mutex_unlock(&intel_pstate_driver_lock);
1012 return -EAGAIN;
1013 }
1014
1015 cpu = all_cpu_data[0];
1016 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1017
1018 mutex_unlock(&intel_pstate_driver_lock);
1019
1020 return sprintf(buf, "%u\n", total);
1021}
1022
1023static ssize_t show_no_turbo(struct kobject *kobj,
1024 struct kobj_attribute *attr, char *buf)
1025{
1026 ssize_t ret;
1027
1028 mutex_lock(&intel_pstate_driver_lock);
1029
1030 if (!intel_pstate_driver) {
1031 mutex_unlock(&intel_pstate_driver_lock);
1032 return -EAGAIN;
1033 }
1034
1035 update_turbo_state();
1036 if (global.turbo_disabled)
1037 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1038 else
1039 ret = sprintf(buf, "%u\n", global.no_turbo);
1040
1041 mutex_unlock(&intel_pstate_driver_lock);
1042
1043 return ret;
1044}
1045
1046static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1047 const char *buf, size_t count)
1048{
1049 unsigned int input;
1050 int ret;
1051
1052 ret = sscanf(buf, "%u", &input);
1053 if (ret != 1)
1054 return -EINVAL;
1055
1056 mutex_lock(&intel_pstate_driver_lock);
1057
1058 if (!intel_pstate_driver) {
1059 mutex_unlock(&intel_pstate_driver_lock);
1060 return -EAGAIN;
1061 }
1062
1063 mutex_lock(&intel_pstate_limits_lock);
1064
1065 update_turbo_state();
1066 if (global.turbo_disabled) {
1067 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1068 mutex_unlock(&intel_pstate_limits_lock);
1069 mutex_unlock(&intel_pstate_driver_lock);
1070 return -EPERM;
1071 }
1072
1073 global.no_turbo = clamp_t(int, input, 0, 1);
1074
1075 if (global.no_turbo) {
1076 struct cpudata *cpu = all_cpu_data[0];
1077 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1078
1079 /* Squash the global minimum into the permitted range. */
1080 if (global.min_perf_pct > pct)
1081 global.min_perf_pct = pct;
1082 }
1083
1084 mutex_unlock(&intel_pstate_limits_lock);
1085
1086 intel_pstate_update_policies();
1087
1088 mutex_unlock(&intel_pstate_driver_lock);
1089
1090 return count;
1091}
1092
1093static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1094 const char *buf, size_t count)
1095{
1096 unsigned int input;
1097 int ret;
1098
1099 ret = sscanf(buf, "%u", &input);
1100 if (ret != 1)
1101 return -EINVAL;
1102
1103 mutex_lock(&intel_pstate_driver_lock);
1104
1105 if (!intel_pstate_driver) {
1106 mutex_unlock(&intel_pstate_driver_lock);
1107 return -EAGAIN;
1108 }
1109
1110 mutex_lock(&intel_pstate_limits_lock);
1111
1112 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1113
1114 mutex_unlock(&intel_pstate_limits_lock);
1115
1116 intel_pstate_update_policies();
1117
1118 mutex_unlock(&intel_pstate_driver_lock);
1119
1120 return count;
1121}
1122
1123static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1124 const char *buf, size_t count)
1125{
1126 unsigned int input;
1127 int ret;
1128
1129 ret = sscanf(buf, "%u", &input);
1130 if (ret != 1)
1131 return -EINVAL;
1132
1133 mutex_lock(&intel_pstate_driver_lock);
1134
1135 if (!intel_pstate_driver) {
1136 mutex_unlock(&intel_pstate_driver_lock);
1137 return -EAGAIN;
1138 }
1139
1140 mutex_lock(&intel_pstate_limits_lock);
1141
1142 global.min_perf_pct = clamp_t(int, input,
1143 min_perf_pct_min(), global.max_perf_pct);
1144
1145 mutex_unlock(&intel_pstate_limits_lock);
1146
1147 intel_pstate_update_policies();
1148
1149 mutex_unlock(&intel_pstate_driver_lock);
1150
1151 return count;
1152}
1153
1154static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1155 struct kobj_attribute *attr, char *buf)
1156{
1157 return sprintf(buf, "%u\n", hwp_boost);
1158}
1159
1160static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1161 struct kobj_attribute *b,
1162 const char *buf, size_t count)
1163{
1164 unsigned int input;
1165 int ret;
1166
1167 ret = kstrtouint(buf, 10, &input);
1168 if (ret)
1169 return ret;
1170
1171 mutex_lock(&intel_pstate_driver_lock);
1172 hwp_boost = !!input;
1173 intel_pstate_update_policies();
1174 mutex_unlock(&intel_pstate_driver_lock);
1175
1176 return count;
1177}
1178
1179show_one(max_perf_pct, max_perf_pct);
1180show_one(min_perf_pct, min_perf_pct);
1181
1182define_one_global_rw(status);
1183define_one_global_rw(no_turbo);
1184define_one_global_rw(max_perf_pct);
1185define_one_global_rw(min_perf_pct);
1186define_one_global_ro(turbo_pct);
1187define_one_global_ro(num_pstates);
1188define_one_global_rw(hwp_dynamic_boost);
1189
1190static struct attribute *intel_pstate_attributes[] = {
1191 &status.attr,
1192 &no_turbo.attr,
1193 &turbo_pct.attr,
1194 &num_pstates.attr,
1195 NULL
1196};
1197
1198static const struct attribute_group intel_pstate_attr_group = {
1199 .attrs = intel_pstate_attributes,
1200};
1201
1202static void __init intel_pstate_sysfs_expose_params(void)
1203{
1204 struct kobject *intel_pstate_kobject;
1205 int rc;
1206
1207 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1208 &cpu_subsys.dev_root->kobj);
1209 if (WARN_ON(!intel_pstate_kobject))
1210 return;
1211
1212 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1213 if (WARN_ON(rc))
1214 return;
1215
1216 /*
1217 * If per cpu limits are enforced there are no global limits, so
1218 * return without creating max/min_perf_pct attributes
1219 */
1220 if (per_cpu_limits)
1221 return;
1222
1223 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1224 WARN_ON(rc);
1225
1226 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1227 WARN_ON(rc);
1228
1229 if (hwp_active) {
1230 rc = sysfs_create_file(intel_pstate_kobject,
1231 &hwp_dynamic_boost.attr);
1232 WARN_ON(rc);
1233 }
1234}
1235/************************** sysfs end ************************/
1236
1237static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1238{
1239 /* First disable HWP notification interrupt as we don't process them */
1240 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1241 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1242
1243 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1244 cpudata->epp_policy = 0;
1245 if (cpudata->epp_default == -EINVAL)
1246 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1247}
1248
1249#define MSR_IA32_POWER_CTL_BIT_EE 19
1250
1251/* Disable energy efficiency optimization */
1252static void intel_pstate_disable_ee(int cpu)
1253{
1254 u64 power_ctl;
1255 int ret;
1256
1257 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1258 if (ret)
1259 return;
1260
1261 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1262 pr_info("Disabling energy efficiency optimization\n");
1263 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1264 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1265 }
1266}
1267
1268static int atom_get_min_pstate(void)
1269{
1270 u64 value;
1271
1272 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1273 return (value >> 8) & 0x7F;
1274}
1275
1276static int atom_get_max_pstate(void)
1277{
1278 u64 value;
1279
1280 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1281 return (value >> 16) & 0x7F;
1282}
1283
1284static int atom_get_turbo_pstate(void)
1285{
1286 u64 value;
1287
1288 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1289 return value & 0x7F;
1290}
1291
1292static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1293{
1294 u64 val;
1295 int32_t vid_fp;
1296 u32 vid;
1297
1298 val = (u64)pstate << 8;
1299 if (global.no_turbo && !global.turbo_disabled)
1300 val |= (u64)1 << 32;
1301
1302 vid_fp = cpudata->vid.min + mul_fp(
1303 int_tofp(pstate - cpudata->pstate.min_pstate),
1304 cpudata->vid.ratio);
1305
1306 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1307 vid = ceiling_fp(vid_fp);
1308
1309 if (pstate > cpudata->pstate.max_pstate)
1310 vid = cpudata->vid.turbo;
1311
1312 return val | vid;
1313}
1314
1315static int silvermont_get_scaling(void)
1316{
1317 u64 value;
1318 int i;
1319 /* Defined in Table 35-6 from SDM (Sept 2015) */
1320 static int silvermont_freq_table[] = {
1321 83300, 100000, 133300, 116700, 80000};
1322
1323 rdmsrl(MSR_FSB_FREQ, value);
1324 i = value & 0x7;
1325 WARN_ON(i > 4);
1326
1327 return silvermont_freq_table[i];
1328}
1329
1330static int airmont_get_scaling(void)
1331{
1332 u64 value;
1333 int i;
1334 /* Defined in Table 35-10 from SDM (Sept 2015) */
1335 static int airmont_freq_table[] = {
1336 83300, 100000, 133300, 116700, 80000,
1337 93300, 90000, 88900, 87500};
1338
1339 rdmsrl(MSR_FSB_FREQ, value);
1340 i = value & 0xF;
1341 WARN_ON(i > 8);
1342
1343 return airmont_freq_table[i];
1344}
1345
1346static void atom_get_vid(struct cpudata *cpudata)
1347{
1348 u64 value;
1349
1350 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1351 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1352 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1353 cpudata->vid.ratio = div_fp(
1354 cpudata->vid.max - cpudata->vid.min,
1355 int_tofp(cpudata->pstate.max_pstate -
1356 cpudata->pstate.min_pstate));
1357
1358 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1359 cpudata->vid.turbo = value & 0x7f;
1360}
1361
1362static int core_get_min_pstate(void)
1363{
1364 u64 value;
1365
1366 rdmsrl(MSR_PLATFORM_INFO, value);
1367 return (value >> 40) & 0xFF;
1368}
1369
1370static int core_get_max_pstate_physical(void)
1371{
1372 u64 value;
1373
1374 rdmsrl(MSR_PLATFORM_INFO, value);
1375 return (value >> 8) & 0xFF;
1376}
1377
1378static int core_get_tdp_ratio(u64 plat_info)
1379{
1380 /* Check how many TDP levels present */
1381 if (plat_info & 0x600000000) {
1382 u64 tdp_ctrl;
1383 u64 tdp_ratio;
1384 int tdp_msr;
1385 int err;
1386
1387 /* Get the TDP level (0, 1, 2) to get ratios */
1388 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1389 if (err)
1390 return err;
1391
1392 /* TDP MSR are continuous starting at 0x648 */
1393 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1394 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1395 if (err)
1396 return err;
1397
1398 /* For level 1 and 2, bits[23:16] contain the ratio */
1399 if (tdp_ctrl & 0x03)
1400 tdp_ratio >>= 16;
1401
1402 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1403 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1404
1405 return (int)tdp_ratio;
1406 }
1407
1408 return -ENXIO;
1409}
1410
1411static int core_get_max_pstate(void)
1412{
1413 u64 tar;
1414 u64 plat_info;
1415 int max_pstate;
1416 int tdp_ratio;
1417 int err;
1418
1419 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1420 max_pstate = (plat_info >> 8) & 0xFF;
1421
1422 tdp_ratio = core_get_tdp_ratio(plat_info);
1423 if (tdp_ratio <= 0)
1424 return max_pstate;
1425
1426 if (hwp_active) {
1427 /* Turbo activation ratio is not used on HWP platforms */
1428 return tdp_ratio;
1429 }
1430
1431 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1432 if (!err) {
1433 int tar_levels;
1434
1435 /* Do some sanity checking for safety */
1436 tar_levels = tar & 0xff;
1437 if (tdp_ratio - 1 == tar_levels) {
1438 max_pstate = tar_levels;
1439 pr_debug("max_pstate=TAC %x\n", max_pstate);
1440 }
1441 }
1442
1443 return max_pstate;
1444}
1445
1446static int core_get_turbo_pstate(void)
1447{
1448 u64 value;
1449 int nont, ret;
1450
1451 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1452 nont = core_get_max_pstate();
1453 ret = (value) & 255;
1454 if (ret <= nont)
1455 ret = nont;
1456 return ret;
1457}
1458
1459static inline int core_get_scaling(void)
1460{
1461 return 100000;
1462}
1463
1464static u64 core_get_val(struct cpudata *cpudata, int pstate)
1465{
1466 u64 val;
1467
1468 val = (u64)pstate << 8;
1469 if (global.no_turbo && !global.turbo_disabled)
1470 val |= (u64)1 << 32;
1471
1472 return val;
1473}
1474
1475static int knl_get_aperf_mperf_shift(void)
1476{
1477 return 10;
1478}
1479
1480static int knl_get_turbo_pstate(void)
1481{
1482 u64 value;
1483 int nont, ret;
1484
1485 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1486 nont = core_get_max_pstate();
1487 ret = (((value) >> 8) & 0xFF);
1488 if (ret <= nont)
1489 ret = nont;
1490 return ret;
1491}
1492
1493static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1494{
1495 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1496 cpu->pstate.current_pstate = pstate;
1497 /*
1498 * Generally, there is no guarantee that this code will always run on
1499 * the CPU being updated, so force the register update to run on the
1500 * right CPU.
1501 */
1502 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1503 pstate_funcs.get_val(cpu, pstate));
1504}
1505
1506static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1507{
1508 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1509}
1510
1511static void intel_pstate_max_within_limits(struct cpudata *cpu)
1512{
1513 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1514
1515 update_turbo_state();
1516 intel_pstate_set_pstate(cpu, pstate);
1517}
1518
1519static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1520{
1521 cpu->pstate.min_pstate = pstate_funcs.get_min();
1522 cpu->pstate.max_pstate = pstate_funcs.get_max();
1523 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1524 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1525 cpu->pstate.scaling = pstate_funcs.get_scaling();
1526 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1527
1528 if (hwp_active && !hwp_mode_bdw) {
1529 unsigned int phy_max, current_max;
1530
1531 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max);
1532 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1533 } else {
1534 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1535 }
1536
1537 if (pstate_funcs.get_aperf_mperf_shift)
1538 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1539
1540 if (pstate_funcs.get_vid)
1541 pstate_funcs.get_vid(cpu);
1542
1543 intel_pstate_set_min_pstate(cpu);
1544}
1545
1546/*
1547 * Long hold time will keep high perf limits for long time,
1548 * which negatively impacts perf/watt for some workloads,
1549 * like specpower. 3ms is based on experiements on some
1550 * workoads.
1551 */
1552static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1553
1554static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1555{
1556 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1557 u32 max_limit = (hwp_req & 0xff00) >> 8;
1558 u32 min_limit = (hwp_req & 0xff);
1559 u32 boost_level1;
1560
1561 /*
1562 * Cases to consider (User changes via sysfs or boot time):
1563 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1564 * No boost, return.
1565 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1566 * Should result in one level boost only for P0.
1567 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1568 * Should result in two level boost:
1569 * (min + p1)/2 and P1.
1570 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1571 * Should result in three level boost:
1572 * (min + p1)/2, P1 and P0.
1573 */
1574
1575 /* If max and min are equal or already at max, nothing to boost */
1576 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1577 return;
1578
1579 if (!cpu->hwp_boost_min)
1580 cpu->hwp_boost_min = min_limit;
1581
1582 /* level at half way mark between min and guranteed */
1583 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1584
1585 if (cpu->hwp_boost_min < boost_level1)
1586 cpu->hwp_boost_min = boost_level1;
1587 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1588 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1589 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1590 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1591 cpu->hwp_boost_min = max_limit;
1592 else
1593 return;
1594
1595 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1596 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1597 cpu->last_update = cpu->sample.time;
1598}
1599
1600static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1601{
1602 if (cpu->hwp_boost_min) {
1603 bool expired;
1604
1605 /* Check if we are idle for hold time to boost down */
1606 expired = time_after64(cpu->sample.time, cpu->last_update +
1607 hwp_boost_hold_time_ns);
1608 if (expired) {
1609 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1610 cpu->hwp_boost_min = 0;
1611 }
1612 }
1613 cpu->last_update = cpu->sample.time;
1614}
1615
1616static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1617 u64 time)
1618{
1619 cpu->sample.time = time;
1620
1621 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1622 bool do_io = false;
1623
1624 cpu->sched_flags = 0;
1625 /*
1626 * Set iowait_boost flag and update time. Since IO WAIT flag
1627 * is set all the time, we can't just conclude that there is
1628 * some IO bound activity is scheduled on this CPU with just
1629 * one occurrence. If we receive at least two in two
1630 * consecutive ticks, then we treat as boost candidate.
1631 */
1632 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1633 do_io = true;
1634
1635 cpu->last_io_update = time;
1636
1637 if (do_io)
1638 intel_pstate_hwp_boost_up(cpu);
1639
1640 } else {
1641 intel_pstate_hwp_boost_down(cpu);
1642 }
1643}
1644
1645static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1646 u64 time, unsigned int flags)
1647{
1648 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1649
1650 cpu->sched_flags |= flags;
1651
1652 if (smp_processor_id() == cpu->cpu)
1653 intel_pstate_update_util_hwp_local(cpu, time);
1654}
1655
1656static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1657{
1658 struct sample *sample = &cpu->sample;
1659
1660 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1661}
1662
1663static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1664{
1665 u64 aperf, mperf;
1666 unsigned long flags;
1667 u64 tsc;
1668
1669 local_irq_save(flags);
1670 rdmsrl(MSR_IA32_APERF, aperf);
1671 rdmsrl(MSR_IA32_MPERF, mperf);
1672 tsc = rdtsc();
1673 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1674 local_irq_restore(flags);
1675 return false;
1676 }
1677 local_irq_restore(flags);
1678
1679 cpu->last_sample_time = cpu->sample.time;
1680 cpu->sample.time = time;
1681 cpu->sample.aperf = aperf;
1682 cpu->sample.mperf = mperf;
1683 cpu->sample.tsc = tsc;
1684 cpu->sample.aperf -= cpu->prev_aperf;
1685 cpu->sample.mperf -= cpu->prev_mperf;
1686 cpu->sample.tsc -= cpu->prev_tsc;
1687
1688 cpu->prev_aperf = aperf;
1689 cpu->prev_mperf = mperf;
1690 cpu->prev_tsc = tsc;
1691 /*
1692 * First time this function is invoked in a given cycle, all of the
1693 * previous sample data fields are equal to zero or stale and they must
1694 * be populated with meaningful numbers for things to work, so assume
1695 * that sample.time will always be reset before setting the utilization
1696 * update hook and make the caller skip the sample then.
1697 */
1698 if (cpu->last_sample_time) {
1699 intel_pstate_calc_avg_perf(cpu);
1700 return true;
1701 }
1702 return false;
1703}
1704
1705static inline int32_t get_avg_frequency(struct cpudata *cpu)
1706{
1707 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1708}
1709
1710static inline int32_t get_avg_pstate(struct cpudata *cpu)
1711{
1712 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1713 cpu->sample.core_avg_perf);
1714}
1715
1716static inline int32_t get_target_pstate(struct cpudata *cpu)
1717{
1718 struct sample *sample = &cpu->sample;
1719 int32_t busy_frac;
1720 int target, avg_pstate;
1721
1722 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1723 sample->tsc);
1724
1725 if (busy_frac < cpu->iowait_boost)
1726 busy_frac = cpu->iowait_boost;
1727
1728 sample->busy_scaled = busy_frac * 100;
1729
1730 target = global.no_turbo || global.turbo_disabled ?
1731 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1732 target += target >> 2;
1733 target = mul_fp(target, busy_frac);
1734 if (target < cpu->pstate.min_pstate)
1735 target = cpu->pstate.min_pstate;
1736
1737 /*
1738 * If the average P-state during the previous cycle was higher than the
1739 * current target, add 50% of the difference to the target to reduce
1740 * possible performance oscillations and offset possible performance
1741 * loss related to moving the workload from one CPU to another within
1742 * a package/module.
1743 */
1744 avg_pstate = get_avg_pstate(cpu);
1745 if (avg_pstate > target)
1746 target += (avg_pstate - target) >> 1;
1747
1748 return target;
1749}
1750
1751static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1752{
1753 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1754 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1755
1756 return clamp_t(int, pstate, min_pstate, max_pstate);
1757}
1758
1759static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1760{
1761 if (pstate == cpu->pstate.current_pstate)
1762 return;
1763
1764 cpu->pstate.current_pstate = pstate;
1765 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1766}
1767
1768static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1769{
1770 int from = cpu->pstate.current_pstate;
1771 struct sample *sample;
1772 int target_pstate;
1773
1774 update_turbo_state();
1775
1776 target_pstate = get_target_pstate(cpu);
1777 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1778 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1779 intel_pstate_update_pstate(cpu, target_pstate);
1780
1781 sample = &cpu->sample;
1782 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1783 fp_toint(sample->busy_scaled),
1784 from,
1785 cpu->pstate.current_pstate,
1786 sample->mperf,
1787 sample->aperf,
1788 sample->tsc,
1789 get_avg_frequency(cpu),
1790 fp_toint(cpu->iowait_boost * 100));
1791}
1792
1793static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1794 unsigned int flags)
1795{
1796 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1797 u64 delta_ns;
1798
1799 /* Don't allow remote callbacks */
1800 if (smp_processor_id() != cpu->cpu)
1801 return;
1802
1803 delta_ns = time - cpu->last_update;
1804 if (flags & SCHED_CPUFREQ_IOWAIT) {
1805 /* Start over if the CPU may have been idle. */
1806 if (delta_ns > TICK_NSEC) {
1807 cpu->iowait_boost = ONE_EIGHTH_FP;
1808 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1809 cpu->iowait_boost <<= 1;
1810 if (cpu->iowait_boost > int_tofp(1))
1811 cpu->iowait_boost = int_tofp(1);
1812 } else {
1813 cpu->iowait_boost = ONE_EIGHTH_FP;
1814 }
1815 } else if (cpu->iowait_boost) {
1816 /* Clear iowait_boost if the CPU may have been idle. */
1817 if (delta_ns > TICK_NSEC)
1818 cpu->iowait_boost = 0;
1819 else
1820 cpu->iowait_boost >>= 1;
1821 }
1822 cpu->last_update = time;
1823 delta_ns = time - cpu->sample.time;
1824 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1825 return;
1826
1827 if (intel_pstate_sample(cpu, time))
1828 intel_pstate_adjust_pstate(cpu);
1829}
1830
1831static struct pstate_funcs core_funcs = {
1832 .get_max = core_get_max_pstate,
1833 .get_max_physical = core_get_max_pstate_physical,
1834 .get_min = core_get_min_pstate,
1835 .get_turbo = core_get_turbo_pstate,
1836 .get_scaling = core_get_scaling,
1837 .get_val = core_get_val,
1838};
1839
1840static const struct pstate_funcs silvermont_funcs = {
1841 .get_max = atom_get_max_pstate,
1842 .get_max_physical = atom_get_max_pstate,
1843 .get_min = atom_get_min_pstate,
1844 .get_turbo = atom_get_turbo_pstate,
1845 .get_val = atom_get_val,
1846 .get_scaling = silvermont_get_scaling,
1847 .get_vid = atom_get_vid,
1848};
1849
1850static const struct pstate_funcs airmont_funcs = {
1851 .get_max = atom_get_max_pstate,
1852 .get_max_physical = atom_get_max_pstate,
1853 .get_min = atom_get_min_pstate,
1854 .get_turbo = atom_get_turbo_pstate,
1855 .get_val = atom_get_val,
1856 .get_scaling = airmont_get_scaling,
1857 .get_vid = atom_get_vid,
1858};
1859
1860static const struct pstate_funcs knl_funcs = {
1861 .get_max = core_get_max_pstate,
1862 .get_max_physical = core_get_max_pstate_physical,
1863 .get_min = core_get_min_pstate,
1864 .get_turbo = knl_get_turbo_pstate,
1865 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1866 .get_scaling = core_get_scaling,
1867 .get_val = core_get_val,
1868};
1869
1870#define ICPU(model, policy) \
1871 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1872 (unsigned long)&policy }
1873
1874static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1875 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1876 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1877 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1878 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1879 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1880 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1881 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1882 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1883 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1884 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1885 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1886 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1887 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1888 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1889 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1890 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1891 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1892 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1893 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1894 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1895 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1896 {}
1897};
1898MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1899
1900static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1901 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1902 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1903 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1904 {}
1905};
1906
1907static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1908 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1909 {}
1910};
1911
1912static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1913 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1914 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1915 {}
1916};
1917
1918static int intel_pstate_init_cpu(unsigned int cpunum)
1919{
1920 struct cpudata *cpu;
1921
1922 cpu = all_cpu_data[cpunum];
1923
1924 if (!cpu) {
1925 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1926 if (!cpu)
1927 return -ENOMEM;
1928
1929 all_cpu_data[cpunum] = cpu;
1930
1931 cpu->epp_default = -EINVAL;
1932 cpu->epp_powersave = -EINVAL;
1933 cpu->epp_saved = -EINVAL;
1934 }
1935
1936 cpu = all_cpu_data[cpunum];
1937
1938 cpu->cpu = cpunum;
1939
1940 if (hwp_active) {
1941 const struct x86_cpu_id *id;
1942
1943 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1944 if (id)
1945 intel_pstate_disable_ee(cpunum);
1946
1947 intel_pstate_hwp_enable(cpu);
1948
1949 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1950 if (id && intel_pstate_acpi_pm_profile_server())
1951 hwp_boost = true;
1952 }
1953
1954 intel_pstate_get_cpu_pstates(cpu);
1955
1956 pr_debug("controlling: cpu %d\n", cpunum);
1957
1958 return 0;
1959}
1960
1961static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1962{
1963 struct cpudata *cpu = all_cpu_data[cpu_num];
1964
1965 if (hwp_active && !hwp_boost)
1966 return;
1967
1968 if (cpu->update_util_set)
1969 return;
1970
1971 /* Prevent intel_pstate_update_util() from using stale data. */
1972 cpu->sample.time = 0;
1973 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1974 (hwp_active ?
1975 intel_pstate_update_util_hwp :
1976 intel_pstate_update_util));
1977 cpu->update_util_set = true;
1978}
1979
1980static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1981{
1982 struct cpudata *cpu_data = all_cpu_data[cpu];
1983
1984 if (!cpu_data->update_util_set)
1985 return;
1986
1987 cpufreq_remove_update_util_hook(cpu);
1988 cpu_data->update_util_set = false;
1989 synchronize_rcu();
1990}
1991
1992static int intel_pstate_get_max_freq(struct cpudata *cpu)
1993{
1994 return global.turbo_disabled || global.no_turbo ?
1995 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1996}
1997
1998static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1999 struct cpudata *cpu)
2000{
2001 int max_freq = intel_pstate_get_max_freq(cpu);
2002 int32_t max_policy_perf, min_policy_perf;
2003 int max_state, turbo_max;
2004
2005 /*
2006 * HWP needs some special consideration, because on BDX the
2007 * HWP_REQUEST uses abstract value to represent performance
2008 * rather than pure ratios.
2009 */
2010 if (hwp_active) {
2011 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2012 } else {
2013 max_state = global.no_turbo || global.turbo_disabled ?
2014 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2015 turbo_max = cpu->pstate.turbo_pstate;
2016 }
2017
2018 max_policy_perf = max_state * policy->max / max_freq;
2019 if (policy->max == policy->min) {
2020 min_policy_perf = max_policy_perf;
2021 } else {
2022 min_policy_perf = max_state * policy->min / max_freq;
2023 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2024 0, max_policy_perf);
2025 }
2026
2027 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2028 policy->cpu, max_state,
2029 min_policy_perf, max_policy_perf);
2030
2031 /* Normalize user input to [min_perf, max_perf] */
2032 if (per_cpu_limits) {
2033 cpu->min_perf_ratio = min_policy_perf;
2034 cpu->max_perf_ratio = max_policy_perf;
2035 } else {
2036 int32_t global_min, global_max;
2037
2038 /* Global limits are in percent of the maximum turbo P-state. */
2039 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2040 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2041 global_min = clamp_t(int32_t, global_min, 0, global_max);
2042
2043 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2044 global_min, global_max);
2045
2046 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2047 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2048 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2049 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2050
2051 /* Make sure min_perf <= max_perf */
2052 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2053 cpu->max_perf_ratio);
2054
2055 }
2056 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2057 cpu->max_perf_ratio,
2058 cpu->min_perf_ratio);
2059}
2060
2061static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2062{
2063 struct cpudata *cpu;
2064
2065 if (!policy->cpuinfo.max_freq)
2066 return -ENODEV;
2067
2068 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2069 policy->cpuinfo.max_freq, policy->max);
2070
2071 cpu = all_cpu_data[policy->cpu];
2072 cpu->policy = policy->policy;
2073
2074 mutex_lock(&intel_pstate_limits_lock);
2075
2076 intel_pstate_update_perf_limits(policy, cpu);
2077
2078 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2079 /*
2080 * NOHZ_FULL CPUs need this as the governor callback may not
2081 * be invoked on them.
2082 */
2083 intel_pstate_clear_update_util_hook(policy->cpu);
2084 intel_pstate_max_within_limits(cpu);
2085 } else {
2086 intel_pstate_set_update_util_hook(policy->cpu);
2087 }
2088
2089 if (hwp_active) {
2090 /*
2091 * When hwp_boost was active before and dynamically it
2092 * was turned off, in that case we need to clear the
2093 * update util hook.
2094 */
2095 if (!hwp_boost)
2096 intel_pstate_clear_update_util_hook(policy->cpu);
2097 intel_pstate_hwp_set(policy->cpu);
2098 }
2099
2100 mutex_unlock(&intel_pstate_limits_lock);
2101
2102 return 0;
2103}
2104
2105static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2106 struct cpudata *cpu)
2107{
2108 if (!hwp_active &&
2109 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2110 policy->max < policy->cpuinfo.max_freq &&
2111 policy->max > cpu->pstate.max_freq) {
2112 pr_debug("policy->max > max non turbo frequency\n");
2113 policy->max = policy->cpuinfo.max_freq;
2114 }
2115}
2116
2117static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2118{
2119 struct cpudata *cpu = all_cpu_data[policy->cpu];
2120
2121 update_turbo_state();
2122 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2123 intel_pstate_get_max_freq(cpu));
2124
2125 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2126 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2127 return -EINVAL;
2128
2129 intel_pstate_adjust_policy_max(policy, cpu);
2130
2131 return 0;
2132}
2133
2134static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2135{
2136 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2137}
2138
2139static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2140{
2141 pr_debug("CPU %d exiting\n", policy->cpu);
2142
2143 intel_pstate_clear_update_util_hook(policy->cpu);
2144 if (hwp_active) {
2145 intel_pstate_hwp_save_state(policy);
2146 intel_pstate_hwp_force_min_perf(policy->cpu);
2147 } else {
2148 intel_cpufreq_stop_cpu(policy);
2149 }
2150}
2151
2152static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2153{
2154 intel_pstate_exit_perf_limits(policy);
2155
2156 policy->fast_switch_possible = false;
2157
2158 return 0;
2159}
2160
2161static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2162{
2163 struct cpudata *cpu;
2164 int rc;
2165
2166 rc = intel_pstate_init_cpu(policy->cpu);
2167 if (rc)
2168 return rc;
2169
2170 cpu = all_cpu_data[policy->cpu];
2171
2172 cpu->max_perf_ratio = 0xFF;
2173 cpu->min_perf_ratio = 0;
2174
2175 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2176 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2177
2178 /* cpuinfo and default policy values */
2179 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2180 update_turbo_state();
2181 global.turbo_disabled_mf = global.turbo_disabled;
2182 policy->cpuinfo.max_freq = global.turbo_disabled ?
2183 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2184 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2185
2186 if (hwp_active) {
2187 unsigned int max_freq;
2188
2189 max_freq = global.turbo_disabled ?
2190 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2191 if (max_freq < policy->cpuinfo.max_freq)
2192 policy->cpuinfo.max_freq = max_freq;
2193 }
2194
2195 intel_pstate_init_acpi_perf_limits(policy);
2196
2197 policy->fast_switch_possible = true;
2198
2199 return 0;
2200}
2201
2202static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2203{
2204 int ret = __intel_pstate_cpu_init(policy);
2205
2206 if (ret)
2207 return ret;
2208
2209 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2210 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2211 else
2212 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2213
2214 return 0;
2215}
2216
2217static struct cpufreq_driver intel_pstate = {
2218 .flags = CPUFREQ_CONST_LOOPS,
2219 .verify = intel_pstate_verify_policy,
2220 .setpolicy = intel_pstate_set_policy,
2221 .suspend = intel_pstate_hwp_save_state,
2222 .resume = intel_pstate_resume,
2223 .init = intel_pstate_cpu_init,
2224 .exit = intel_pstate_cpu_exit,
2225 .stop_cpu = intel_pstate_stop_cpu,
2226 .update_limits = intel_pstate_update_limits,
2227 .name = "intel_pstate",
2228};
2229
2230static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2231{
2232 struct cpudata *cpu = all_cpu_data[policy->cpu];
2233
2234 update_turbo_state();
2235 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2236 intel_pstate_get_max_freq(cpu));
2237
2238 intel_pstate_adjust_policy_max(policy, cpu);
2239
2240 intel_pstate_update_perf_limits(policy, cpu);
2241
2242 return 0;
2243}
2244
2245/* Use of trace in passive mode:
2246 *
2247 * In passive mode the trace core_busy field (also known as the
2248 * performance field, and lablelled as such on the graphs; also known as
2249 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2250 * driver call was via the normal or fast switch path. Various graphs
2251 * output from the intel_pstate_tracer.py utility that include core_busy
2252 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2253 * so we use 10 to indicate the the normal path through the driver, and
2254 * 90 to indicate the fast switch path through the driver.
2255 * The scaled_busy field is not used, and is set to 0.
2256 */
2257
2258#define INTEL_PSTATE_TRACE_TARGET 10
2259#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2260
2261static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2262{
2263 struct sample *sample;
2264
2265 if (!trace_pstate_sample_enabled())
2266 return;
2267
2268 if (!intel_pstate_sample(cpu, ktime_get()))
2269 return;
2270
2271 sample = &cpu->sample;
2272 trace_pstate_sample(trace_type,
2273 0,
2274 old_pstate,
2275 cpu->pstate.current_pstate,
2276 sample->mperf,
2277 sample->aperf,
2278 sample->tsc,
2279 get_avg_frequency(cpu),
2280 fp_toint(cpu->iowait_boost * 100));
2281}
2282
2283static int intel_cpufreq_target(struct cpufreq_policy *policy,
2284 unsigned int target_freq,
2285 unsigned int relation)
2286{
2287 struct cpudata *cpu = all_cpu_data[policy->cpu];
2288 struct cpufreq_freqs freqs;
2289 int target_pstate, old_pstate;
2290
2291 update_turbo_state();
2292
2293 freqs.old = policy->cur;
2294 freqs.new = target_freq;
2295
2296 cpufreq_freq_transition_begin(policy, &freqs);
2297 switch (relation) {
2298 case CPUFREQ_RELATION_L:
2299 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2300 break;
2301 case CPUFREQ_RELATION_H:
2302 target_pstate = freqs.new / cpu->pstate.scaling;
2303 break;
2304 default:
2305 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2306 break;
2307 }
2308 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2309 old_pstate = cpu->pstate.current_pstate;
2310 if (target_pstate != cpu->pstate.current_pstate) {
2311 cpu->pstate.current_pstate = target_pstate;
2312 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2313 pstate_funcs.get_val(cpu, target_pstate));
2314 }
2315 freqs.new = target_pstate * cpu->pstate.scaling;
2316 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2317 cpufreq_freq_transition_end(policy, &freqs, false);
2318
2319 return 0;
2320}
2321
2322static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2323 unsigned int target_freq)
2324{
2325 struct cpudata *cpu = all_cpu_data[policy->cpu];
2326 int target_pstate, old_pstate;
2327
2328 update_turbo_state();
2329
2330 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2331 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2332 old_pstate = cpu->pstate.current_pstate;
2333 intel_pstate_update_pstate(cpu, target_pstate);
2334 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2335 return target_pstate * cpu->pstate.scaling;
2336}
2337
2338static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2339{
2340 int ret = __intel_pstate_cpu_init(policy);
2341
2342 if (ret)
2343 return ret;
2344
2345 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2346 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2347 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2348 policy->cur = policy->cpuinfo.min_freq;
2349
2350 return 0;
2351}
2352
2353static struct cpufreq_driver intel_cpufreq = {
2354 .flags = CPUFREQ_CONST_LOOPS,
2355 .verify = intel_cpufreq_verify_policy,
2356 .target = intel_cpufreq_target,
2357 .fast_switch = intel_cpufreq_fast_switch,
2358 .init = intel_cpufreq_cpu_init,
2359 .exit = intel_pstate_cpu_exit,
2360 .stop_cpu = intel_cpufreq_stop_cpu,
2361 .update_limits = intel_pstate_update_limits,
2362 .name = "intel_cpufreq",
2363};
2364
2365static struct cpufreq_driver *default_driver = &intel_pstate;
2366
2367static void intel_pstate_driver_cleanup(void)
2368{
2369 unsigned int cpu;
2370
2371 get_online_cpus();
2372 for_each_online_cpu(cpu) {
2373 if (all_cpu_data[cpu]) {
2374 if (intel_pstate_driver == &intel_pstate)
2375 intel_pstate_clear_update_util_hook(cpu);
2376
2377 kfree(all_cpu_data[cpu]);
2378 all_cpu_data[cpu] = NULL;
2379 }
2380 }
2381 put_online_cpus();
2382 intel_pstate_driver = NULL;
2383}
2384
2385static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2386{
2387 int ret;
2388
2389 memset(&global, 0, sizeof(global));
2390 global.max_perf_pct = 100;
2391
2392 intel_pstate_driver = driver;
2393 ret = cpufreq_register_driver(intel_pstate_driver);
2394 if (ret) {
2395 intel_pstate_driver_cleanup();
2396 return ret;
2397 }
2398
2399 global.min_perf_pct = min_perf_pct_min();
2400
2401 return 0;
2402}
2403
2404static int intel_pstate_unregister_driver(void)
2405{
2406 if (hwp_active)
2407 return -EBUSY;
2408
2409 cpufreq_unregister_driver(intel_pstate_driver);
2410 intel_pstate_driver_cleanup();
2411
2412 return 0;
2413}
2414
2415static ssize_t intel_pstate_show_status(char *buf)
2416{
2417 if (!intel_pstate_driver)
2418 return sprintf(buf, "off\n");
2419
2420 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2421 "active" : "passive");
2422}
2423
2424static int intel_pstate_update_status(const char *buf, size_t size)
2425{
2426 int ret;
2427
2428 if (size == 3 && !strncmp(buf, "off", size))
2429 return intel_pstate_driver ?
2430 intel_pstate_unregister_driver() : -EINVAL;
2431
2432 if (size == 6 && !strncmp(buf, "active", size)) {
2433 if (intel_pstate_driver) {
2434 if (intel_pstate_driver == &intel_pstate)
2435 return 0;
2436
2437 ret = intel_pstate_unregister_driver();
2438 if (ret)
2439 return ret;
2440 }
2441
2442 return intel_pstate_register_driver(&intel_pstate);
2443 }
2444
2445 if (size == 7 && !strncmp(buf, "passive", size)) {
2446 if (intel_pstate_driver) {
2447 if (intel_pstate_driver == &intel_cpufreq)
2448 return 0;
2449
2450 ret = intel_pstate_unregister_driver();
2451 if (ret)
2452 return ret;
2453 }
2454
2455 return intel_pstate_register_driver(&intel_cpufreq);
2456 }
2457
2458 return -EINVAL;
2459}
2460
2461static int no_load __initdata;
2462static int no_hwp __initdata;
2463static int hwp_only __initdata;
2464static unsigned int force_load __initdata;
2465
2466static int __init intel_pstate_msrs_not_valid(void)
2467{
2468 if (!pstate_funcs.get_max() ||
2469 !pstate_funcs.get_min() ||
2470 !pstate_funcs.get_turbo())
2471 return -ENODEV;
2472
2473 return 0;
2474}
2475
2476static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2477{
2478 pstate_funcs.get_max = funcs->get_max;
2479 pstate_funcs.get_max_physical = funcs->get_max_physical;
2480 pstate_funcs.get_min = funcs->get_min;
2481 pstate_funcs.get_turbo = funcs->get_turbo;
2482 pstate_funcs.get_scaling = funcs->get_scaling;
2483 pstate_funcs.get_val = funcs->get_val;
2484 pstate_funcs.get_vid = funcs->get_vid;
2485 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2486}
2487
2488#ifdef CONFIG_ACPI
2489
2490static bool __init intel_pstate_no_acpi_pss(void)
2491{
2492 int i;
2493
2494 for_each_possible_cpu(i) {
2495 acpi_status status;
2496 union acpi_object *pss;
2497 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2498 struct acpi_processor *pr = per_cpu(processors, i);
2499
2500 if (!pr)
2501 continue;
2502
2503 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2504 if (ACPI_FAILURE(status))
2505 continue;
2506
2507 pss = buffer.pointer;
2508 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2509 kfree(pss);
2510 return false;
2511 }
2512
2513 kfree(pss);
2514 }
2515
2516 pr_debug("ACPI _PSS not found\n");
2517 return true;
2518}
2519
2520static bool __init intel_pstate_no_acpi_pcch(void)
2521{
2522 acpi_status status;
2523 acpi_handle handle;
2524
2525 status = acpi_get_handle(NULL, "\\_SB", &handle);
2526 if (ACPI_FAILURE(status))
2527 goto not_found;
2528
2529 if (acpi_has_method(handle, "PCCH"))
2530 return false;
2531
2532not_found:
2533 pr_debug("ACPI PCCH not found\n");
2534 return true;
2535}
2536
2537static bool __init intel_pstate_has_acpi_ppc(void)
2538{
2539 int i;
2540
2541 for_each_possible_cpu(i) {
2542 struct acpi_processor *pr = per_cpu(processors, i);
2543
2544 if (!pr)
2545 continue;
2546 if (acpi_has_method(pr->handle, "_PPC"))
2547 return true;
2548 }
2549 pr_debug("ACPI _PPC not found\n");
2550 return false;
2551}
2552
2553enum {
2554 PSS,
2555 PPC,
2556};
2557
2558/* Hardware vendor-specific info that has its own power management modes */
2559static struct acpi_platform_list plat_info[] __initdata = {
2560 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2561 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2562 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2563 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2564 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2565 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2569 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2570 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2571 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2572 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2573 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2574 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2575 { } /* End */
2576};
2577
2578static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2579{
2580 const struct x86_cpu_id *id;
2581 u64 misc_pwr;
2582 int idx;
2583
2584 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2585 if (id) {
2586 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2587 if (misc_pwr & (1 << 8)) {
2588 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2589 return true;
2590 }
2591 }
2592
2593 idx = acpi_match_platform_list(plat_info);
2594 if (idx < 0)
2595 return false;
2596
2597 switch (plat_info[idx].data) {
2598 case PSS:
2599 if (!intel_pstate_no_acpi_pss())
2600 return false;
2601
2602 return intel_pstate_no_acpi_pcch();
2603 case PPC:
2604 return intel_pstate_has_acpi_ppc() && !force_load;
2605 }
2606
2607 return false;
2608}
2609
2610static void intel_pstate_request_control_from_smm(void)
2611{
2612 /*
2613 * It may be unsafe to request P-states control from SMM if _PPC support
2614 * has not been enabled.
2615 */
2616 if (acpi_ppc)
2617 acpi_processor_pstate_control();
2618}
2619#else /* CONFIG_ACPI not enabled */
2620static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2621static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2622static inline void intel_pstate_request_control_from_smm(void) {}
2623#endif /* CONFIG_ACPI */
2624
2625#define INTEL_PSTATE_HWP_BROADWELL 0x01
2626
2627#define ICPU_HWP(model, hwp_mode) \
2628 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2629
2630static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2631 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2632 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2633 ICPU_HWP(X86_MODEL_ANY, 0),
2634 {}
2635};
2636
2637static int __init intel_pstate_init(void)
2638{
2639 const struct x86_cpu_id *id;
2640 int rc;
2641
2642 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2643 return -ENODEV;
2644
2645 if (no_load)
2646 return -ENODEV;
2647
2648 id = x86_match_cpu(hwp_support_ids);
2649 if (id) {
2650 copy_cpu_funcs(&core_funcs);
2651 if (!no_hwp) {
2652 hwp_active++;
2653 hwp_mode_bdw = id->driver_data;
2654 intel_pstate.attr = hwp_cpufreq_attrs;
2655 goto hwp_cpu_matched;
2656 }
2657 } else {
2658 id = x86_match_cpu(intel_pstate_cpu_ids);
2659 if (!id) {
2660 pr_info("CPU model not supported\n");
2661 return -ENODEV;
2662 }
2663
2664 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2665 }
2666
2667 if (intel_pstate_msrs_not_valid()) {
2668 pr_info("Invalid MSRs\n");
2669 return -ENODEV;
2670 }
2671
2672hwp_cpu_matched:
2673 /*
2674 * The Intel pstate driver will be ignored if the platform
2675 * firmware has its own power management modes.
2676 */
2677 if (intel_pstate_platform_pwr_mgmt_exists()) {
2678 pr_info("P-states controlled by the platform\n");
2679 return -ENODEV;
2680 }
2681
2682 if (!hwp_active && hwp_only)
2683 return -ENOTSUPP;
2684
2685 pr_info("Intel P-state driver initializing\n");
2686
2687 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2688 if (!all_cpu_data)
2689 return -ENOMEM;
2690
2691 intel_pstate_request_control_from_smm();
2692
2693 intel_pstate_sysfs_expose_params();
2694
2695 mutex_lock(&intel_pstate_driver_lock);
2696 rc = intel_pstate_register_driver(default_driver);
2697 mutex_unlock(&intel_pstate_driver_lock);
2698 if (rc)
2699 return rc;
2700
2701 if (hwp_active)
2702 pr_info("HWP enabled\n");
2703
2704 return 0;
2705}
2706device_initcall(intel_pstate_init);
2707
2708static int __init intel_pstate_setup(char *str)
2709{
2710 if (!str)
2711 return -EINVAL;
2712
2713 if (!strcmp(str, "disable")) {
2714 no_load = 1;
2715 } else if (!strcmp(str, "passive")) {
2716 pr_info("Passive mode enabled\n");
2717 default_driver = &intel_cpufreq;
2718 no_hwp = 1;
2719 }
2720 if (!strcmp(str, "no_hwp")) {
2721 pr_info("HWP disabled\n");
2722 no_hwp = 1;
2723 }
2724 if (!strcmp(str, "force"))
2725 force_load = 1;
2726 if (!strcmp(str, "hwp_only"))
2727 hwp_only = 1;
2728 if (!strcmp(str, "per_cpu_perf_limits"))
2729 per_cpu_limits = true;
2730
2731#ifdef CONFIG_ACPI
2732 if (!strcmp(str, "support_acpi_ppc"))
2733 acpi_ppc = true;
2734#endif
2735
2736 return 0;
2737}
2738early_param("intel_pstate", intel_pstate_setup);
2739
2740MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2741MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2742MODULE_LICENSE("GPL");