Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/ethtool.h>
92#include <linux/skbuff.h>
93#include <linux/bpf.h>
94#include <linux/bpf_trace.h>
95#include <net/net_namespace.h>
96#include <net/sock.h>
97#include <net/busy_poll.h>
98#include <linux/rtnetlink.h>
99#include <linux/stat.h>
100#include <net/dst.h>
101#include <net/dst_metadata.h>
102#include <net/pkt_sched.h>
103#include <net/pkt_cls.h>
104#include <net/checksum.h>
105#include <net/xfrm.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/module.h>
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
112#include <net/iw_handler.h>
113#include <asm/current.h>
114#include <linux/audit.h>
115#include <linux/dmaengine.h>
116#include <linux/err.h>
117#include <linux/ctype.h>
118#include <linux/if_arp.h>
119#include <linux/if_vlan.h>
120#include <linux/ip.h>
121#include <net/ip.h>
122#include <net/mpls.h>
123#include <linux/ipv6.h>
124#include <linux/in.h>
125#include <linux/jhash.h>
126#include <linux/random.h>
127#include <trace/events/napi.h>
128#include <trace/events/net.h>
129#include <trace/events/skb.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138#include <linux/netfilter_ingress.h>
139#include <linux/crash_dump.h>
140#include <linux/sctp.h>
141#include <net/udp_tunnel.h>
142#include <linux/net_namespace.h>
143#include <linux/indirect_call_wrapper.h>
144#include <net/devlink.h>
145
146#include "net-sysfs.h"
147
148#define MAX_GRO_SKBS 8
149
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153static DEFINE_SPINLOCK(ptype_lock);
154static DEFINE_SPINLOCK(offload_lock);
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
157static struct list_head offload_base __read_mostly;
158
159static int netif_rx_internal(struct sk_buff *skb);
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct netdev_notifier_info *info);
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
165static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167/*
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186DEFINE_RWLOCK(dev_base_lock);
187EXPORT_SYMBOL(dev_base_lock);
188
189static DEFINE_MUTEX(ifalias_mutex);
190
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
194static unsigned int napi_gen_id = NR_CPUS;
195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197static seqcount_t devnet_rename_seq;
198
199static inline void dev_base_seq_inc(struct net *net)
200{
201 while (++net->dev_base_seq == 0)
202 ;
203}
204
205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206{
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210}
211
212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213{
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215}
216
217static inline void rps_lock(struct softnet_data *sd)
218{
219#ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221#endif
222}
223
224static inline void rps_unlock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231/* Device list insertion */
232static void list_netdevice(struct net_device *dev)
233{
234 struct net *net = dev_net(dev);
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
244
245 dev_base_seq_inc(net);
246}
247
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
261
262 dev_base_seq_inc(dev_net(dev));
263}
264
265/*
266 * Our notifier list
267 */
268
269static RAW_NOTIFIER_HEAD(netdev_chain);
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
275
276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279#ifdef CONFIG_LOCKDEP
280/*
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
283 */
284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
351#else
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357{
358}
359#endif
360
361/*******************************************************************************
362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
366
367
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 else
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391}
392
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
408 struct list_head *head = ptype_head(pt);
409
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
413}
414EXPORT_SYMBOL(dev_add_pack);
415
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
423 * returns.
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
433
434 spin_lock(&ptype_lock);
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
443 pr_warn("dev_remove_pack: %p not found\n", pt);
444out:
445 spin_unlock(&ptype_lock);
446}
447EXPORT_SYMBOL(__dev_remove_pack);
448
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
464
465 synchronize_net();
466}
467EXPORT_SYMBOL(dev_remove_pack);
468
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
484 struct packet_offload *elem;
485
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
509static void __dev_remove_offload(struct packet_offload *po)
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
514 spin_lock(&offload_lock);
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
525 spin_unlock(&offload_lock);
526}
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
548/******************************************************************************
549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
587 *
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
605 return 1;
606 }
607 }
608 return 0;
609}
610EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613/**
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
635 if (__dev_get_by_name(&init_net, name))
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return dev->ifindex;
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722/**
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
734struct net_device *__dev_get_by_name(struct net *net, const char *name)
735{
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
738
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
742
743 return NULL;
744}
745EXPORT_SYMBOL(__dev_get_by_name);
746
747/**
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772/**
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
784struct net_device *dev_get_by_name(struct net *net, const char *name)
785{
786 struct net_device *dev;
787
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
794}
795EXPORT_SYMBOL(dev_get_by_name);
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810{
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
813
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
816 return dev;
817
818 return NULL;
819}
820EXPORT_SYMBOL(__dev_get_by_index);
821
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847/**
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
858struct net_device *dev_get_by_index(struct net *net, int ifindex)
859{
860 struct net_device *dev;
861
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
864 if (dev)
865 dev_hold(dev);
866 rcu_read_unlock();
867 return dev;
868}
869EXPORT_SYMBOL(dev_get_by_index);
870
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
930/**
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
941 *
942 */
943
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
946{
947 struct net_device *dev;
948
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
952 return dev;
953
954 return NULL;
955}
956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959{
960 struct net_device *dev;
961
962 ASSERT_RTNL();
963 for_each_netdev(net, dev)
964 if (dev->type == type)
965 return dev;
966
967 return NULL;
968}
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972{
973 struct net_device *dev, *ret = NULL;
974
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
984}
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
996 */
997
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1000{
1001 struct net_device *dev, *ret;
1002
1003 ASSERT_RTNL();
1004
1005 ret = NULL;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1008 ret = dev;
1009 break;
1010 }
1011 }
1012 return ret;
1013}
1014EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1023 */
1024bool dev_valid_name(const char *name)
1025{
1026 if (*name == '\0')
1027 return false;
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 return false;
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 return false;
1032
1033 while (*name) {
1034 if (*name == '/' || *name == ':' || isspace(*name))
1035 return false;
1036 name++;
1037 }
1038 return true;
1039}
1040EXPORT_SYMBOL(dev_valid_name);
1041
1042/**
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058{
1059 int i = 0;
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1064
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
1068 p = strchr(name, '%');
1069 if (p) {
1070 /*
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1074 */
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1077
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 if (!inuse)
1081 return -ENOMEM;
1082
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1088
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1093 }
1094
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1097 }
1098
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1101 return i;
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
1107 return -ENFILE;
1108}
1109
1110static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1113{
1114 char buf[IFNAMSIZ];
1115 int ret;
1116
1117 BUG_ON(!net);
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1122}
1123
1124/**
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1128 *
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1141}
1142EXPORT_SYMBOL(dev_alloc_name);
1143
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
1146{
1147 BUG_ON(!net);
1148
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1151
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159 return 0;
1160}
1161EXPORT_SYMBOL(dev_get_valid_name);
1162
1163/**
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1170 */
1171int dev_change_name(struct net_device *dev, const char *newname)
1172{
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1175 int err = 0;
1176 int ret;
1177 struct net *net;
1178
1179 ASSERT_RTNL();
1180 BUG_ON(!dev_net(dev));
1181
1182 net = dev_net(dev);
1183
1184 /* Some auto-enslaved devices e.g. failover slaves are
1185 * special, as userspace might rename the device after
1186 * the interface had been brought up and running since
1187 * the point kernel initiated auto-enslavement. Allow
1188 * live name change even when these slave devices are
1189 * up and running.
1190 *
1191 * Typically, users of these auto-enslaving devices
1192 * don't actually care about slave name change, as
1193 * they are supposed to operate on master interface
1194 * directly.
1195 */
1196 if (dev->flags & IFF_UP &&
1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198 return -EBUSY;
1199
1200 write_seqcount_begin(&devnet_rename_seq);
1201
1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 write_seqcount_end(&devnet_rename_seq);
1204 return 0;
1205 }
1206
1207 memcpy(oldname, dev->name, IFNAMSIZ);
1208
1209 err = dev_get_valid_name(net, dev, newname);
1210 if (err < 0) {
1211 write_seqcount_end(&devnet_rename_seq);
1212 return err;
1213 }
1214
1215 if (oldname[0] && !strchr(oldname, '%'))
1216 netdev_info(dev, "renamed from %s\n", oldname);
1217
1218 old_assign_type = dev->name_assign_type;
1219 dev->name_assign_type = NET_NAME_RENAMED;
1220
1221rollback:
1222 ret = device_rename(&dev->dev, dev->name);
1223 if (ret) {
1224 memcpy(dev->name, oldname, IFNAMSIZ);
1225 dev->name_assign_type = old_assign_type;
1226 write_seqcount_end(&devnet_rename_seq);
1227 return ret;
1228 }
1229
1230 write_seqcount_end(&devnet_rename_seq);
1231
1232 netdev_adjacent_rename_links(dev, oldname);
1233
1234 write_lock_bh(&dev_base_lock);
1235 hlist_del_rcu(&dev->name_hlist);
1236 write_unlock_bh(&dev_base_lock);
1237
1238 synchronize_rcu();
1239
1240 write_lock_bh(&dev_base_lock);
1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 write_unlock_bh(&dev_base_lock);
1243
1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 ret = notifier_to_errno(ret);
1246
1247 if (ret) {
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249 if (err >= 0) {
1250 err = ret;
1251 write_seqcount_begin(&devnet_rename_seq);
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 memcpy(oldname, newname, IFNAMSIZ);
1254 dev->name_assign_type = old_assign_type;
1255 old_assign_type = NET_NAME_RENAMED;
1256 goto rollback;
1257 } else {
1258 pr_err("%s: name change rollback failed: %d\n",
1259 dev->name, ret);
1260 }
1261 }
1262
1263 return err;
1264}
1265
1266/**
1267 * dev_set_alias - change ifalias of a device
1268 * @dev: device
1269 * @alias: name up to IFALIASZ
1270 * @len: limit of bytes to copy from info
1271 *
1272 * Set ifalias for a device,
1273 */
1274int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275{
1276 struct dev_ifalias *new_alias = NULL;
1277
1278 if (len >= IFALIASZ)
1279 return -EINVAL;
1280
1281 if (len) {
1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 if (!new_alias)
1284 return -ENOMEM;
1285
1286 memcpy(new_alias->ifalias, alias, len);
1287 new_alias->ifalias[len] = 0;
1288 }
1289
1290 mutex_lock(&ifalias_mutex);
1291 rcu_swap_protected(dev->ifalias, new_alias,
1292 mutex_is_locked(&ifalias_mutex));
1293 mutex_unlock(&ifalias_mutex);
1294
1295 if (new_alias)
1296 kfree_rcu(new_alias, rcuhead);
1297
1298 return len;
1299}
1300EXPORT_SYMBOL(dev_set_alias);
1301
1302/**
1303 * dev_get_alias - get ifalias of a device
1304 * @dev: device
1305 * @name: buffer to store name of ifalias
1306 * @len: size of buffer
1307 *
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1310 */
1311int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312{
1313 const struct dev_ifalias *alias;
1314 int ret = 0;
1315
1316 rcu_read_lock();
1317 alias = rcu_dereference(dev->ifalias);
1318 if (alias)
1319 ret = snprintf(name, len, "%s", alias->ifalias);
1320 rcu_read_unlock();
1321
1322 return ret;
1323}
1324
1325/**
1326 * netdev_features_change - device changes features
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed features.
1330 */
1331void netdev_features_change(struct net_device *dev)
1332{
1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334}
1335EXPORT_SYMBOL(netdev_features_change);
1336
1337/**
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1340 *
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1344 */
1345void netdev_state_change(struct net_device *dev)
1346{
1347 if (dev->flags & IFF_UP) {
1348 struct netdev_notifier_change_info change_info = {
1349 .info.dev = dev,
1350 };
1351
1352 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 &change_info.info);
1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355 }
1356}
1357EXPORT_SYMBOL(netdev_state_change);
1358
1359/**
1360 * netdev_notify_peers - notify network peers about existence of @dev
1361 * @dev: network device
1362 *
1363 * Generate traffic such that interested network peers are aware of
1364 * @dev, such as by generating a gratuitous ARP. This may be used when
1365 * a device wants to inform the rest of the network about some sort of
1366 * reconfiguration such as a failover event or virtual machine
1367 * migration.
1368 */
1369void netdev_notify_peers(struct net_device *dev)
1370{
1371 rtnl_lock();
1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374 rtnl_unlock();
1375}
1376EXPORT_SYMBOL(netdev_notify_peers);
1377
1378static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379{
1380 const struct net_device_ops *ops = dev->netdev_ops;
1381 int ret;
1382
1383 ASSERT_RTNL();
1384
1385 if (!netif_device_present(dev))
1386 return -ENODEV;
1387
1388 /* Block netpoll from trying to do any rx path servicing.
1389 * If we don't do this there is a chance ndo_poll_controller
1390 * or ndo_poll may be running while we open the device
1391 */
1392 netpoll_poll_disable(dev);
1393
1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 ret = notifier_to_errno(ret);
1396 if (ret)
1397 return ret;
1398
1399 set_bit(__LINK_STATE_START, &dev->state);
1400
1401 if (ops->ndo_validate_addr)
1402 ret = ops->ndo_validate_addr(dev);
1403
1404 if (!ret && ops->ndo_open)
1405 ret = ops->ndo_open(dev);
1406
1407 netpoll_poll_enable(dev);
1408
1409 if (ret)
1410 clear_bit(__LINK_STATE_START, &dev->state);
1411 else {
1412 dev->flags |= IFF_UP;
1413 dev_set_rx_mode(dev);
1414 dev_activate(dev);
1415 add_device_randomness(dev->dev_addr, dev->addr_len);
1416 }
1417
1418 return ret;
1419}
1420
1421/**
1422 * dev_open - prepare an interface for use.
1423 * @dev: device to open
1424 * @extack: netlink extended ack
1425 *
1426 * Takes a device from down to up state. The device's private open
1427 * function is invoked and then the multicast lists are loaded. Finally
1428 * the device is moved into the up state and a %NETDEV_UP message is
1429 * sent to the netdev notifier chain.
1430 *
1431 * Calling this function on an active interface is a nop. On a failure
1432 * a negative errno code is returned.
1433 */
1434int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435{
1436 int ret;
1437
1438 if (dev->flags & IFF_UP)
1439 return 0;
1440
1441 ret = __dev_open(dev, extack);
1442 if (ret < 0)
1443 return ret;
1444
1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448 return ret;
1449}
1450EXPORT_SYMBOL(dev_open);
1451
1452static void __dev_close_many(struct list_head *head)
1453{
1454 struct net_device *dev;
1455
1456 ASSERT_RTNL();
1457 might_sleep();
1458
1459 list_for_each_entry(dev, head, close_list) {
1460 /* Temporarily disable netpoll until the interface is down */
1461 netpoll_poll_disable(dev);
1462
1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464
1465 clear_bit(__LINK_STATE_START, &dev->state);
1466
1467 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468 * can be even on different cpu. So just clear netif_running().
1469 *
1470 * dev->stop() will invoke napi_disable() on all of it's
1471 * napi_struct instances on this device.
1472 */
1473 smp_mb__after_atomic(); /* Commit netif_running(). */
1474 }
1475
1476 dev_deactivate_many(head);
1477
1478 list_for_each_entry(dev, head, close_list) {
1479 const struct net_device_ops *ops = dev->netdev_ops;
1480
1481 /*
1482 * Call the device specific close. This cannot fail.
1483 * Only if device is UP
1484 *
1485 * We allow it to be called even after a DETACH hot-plug
1486 * event.
1487 */
1488 if (ops->ndo_stop)
1489 ops->ndo_stop(dev);
1490
1491 dev->flags &= ~IFF_UP;
1492 netpoll_poll_enable(dev);
1493 }
1494}
1495
1496static void __dev_close(struct net_device *dev)
1497{
1498 LIST_HEAD(single);
1499
1500 list_add(&dev->close_list, &single);
1501 __dev_close_many(&single);
1502 list_del(&single);
1503}
1504
1505void dev_close_many(struct list_head *head, bool unlink)
1506{
1507 struct net_device *dev, *tmp;
1508
1509 /* Remove the devices that don't need to be closed */
1510 list_for_each_entry_safe(dev, tmp, head, close_list)
1511 if (!(dev->flags & IFF_UP))
1512 list_del_init(&dev->close_list);
1513
1514 __dev_close_many(head);
1515
1516 list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 call_netdevice_notifiers(NETDEV_DOWN, dev);
1519 if (unlink)
1520 list_del_init(&dev->close_list);
1521 }
1522}
1523EXPORT_SYMBOL(dev_close_many);
1524
1525/**
1526 * dev_close - shutdown an interface.
1527 * @dev: device to shutdown
1528 *
1529 * This function moves an active device into down state. A
1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532 * chain.
1533 */
1534void dev_close(struct net_device *dev)
1535{
1536 if (dev->flags & IFF_UP) {
1537 LIST_HEAD(single);
1538
1539 list_add(&dev->close_list, &single);
1540 dev_close_many(&single, true);
1541 list_del(&single);
1542 }
1543}
1544EXPORT_SYMBOL(dev_close);
1545
1546
1547/**
1548 * dev_disable_lro - disable Large Receive Offload on a device
1549 * @dev: device
1550 *
1551 * Disable Large Receive Offload (LRO) on a net device. Must be
1552 * called under RTNL. This is needed if received packets may be
1553 * forwarded to another interface.
1554 */
1555void dev_disable_lro(struct net_device *dev)
1556{
1557 struct net_device *lower_dev;
1558 struct list_head *iter;
1559
1560 dev->wanted_features &= ~NETIF_F_LRO;
1561 netdev_update_features(dev);
1562
1563 if (unlikely(dev->features & NETIF_F_LRO))
1564 netdev_WARN(dev, "failed to disable LRO!\n");
1565
1566 netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 dev_disable_lro(lower_dev);
1568}
1569EXPORT_SYMBOL(dev_disable_lro);
1570
1571/**
1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573 * @dev: device
1574 *
1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1576 * called under RTNL. This is needed if Generic XDP is installed on
1577 * the device.
1578 */
1579static void dev_disable_gro_hw(struct net_device *dev)
1580{
1581 dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 netdev_update_features(dev);
1583
1584 if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586}
1587
1588const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589{
1590#define N(val) \
1591 case NETDEV_##val: \
1592 return "NETDEV_" __stringify(val);
1593 switch (cmd) {
1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603 N(PRE_CHANGEADDR)
1604 }
1605#undef N
1606 return "UNKNOWN_NETDEV_EVENT";
1607}
1608EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
1610static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 struct net_device *dev)
1612{
1613 struct netdev_notifier_info info = {
1614 .dev = dev,
1615 };
1616
1617 return nb->notifier_call(nb, val, &info);
1618}
1619
1620static int dev_boot_phase = 1;
1621
1622/**
1623 * register_netdevice_notifier - register a network notifier block
1624 * @nb: notifier
1625 *
1626 * Register a notifier to be called when network device events occur.
1627 * The notifier passed is linked into the kernel structures and must
1628 * not be reused until it has been unregistered. A negative errno code
1629 * is returned on a failure.
1630 *
1631 * When registered all registration and up events are replayed
1632 * to the new notifier to allow device to have a race free
1633 * view of the network device list.
1634 */
1635
1636int register_netdevice_notifier(struct notifier_block *nb)
1637{
1638 struct net_device *dev;
1639 struct net_device *last;
1640 struct net *net;
1641 int err;
1642
1643 /* Close race with setup_net() and cleanup_net() */
1644 down_write(&pernet_ops_rwsem);
1645 rtnl_lock();
1646 err = raw_notifier_chain_register(&netdev_chain, nb);
1647 if (err)
1648 goto unlock;
1649 if (dev_boot_phase)
1650 goto unlock;
1651 for_each_net(net) {
1652 for_each_netdev(net, dev) {
1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 err = notifier_to_errno(err);
1655 if (err)
1656 goto rollback;
1657
1658 if (!(dev->flags & IFF_UP))
1659 continue;
1660
1661 call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 }
1663 }
1664
1665unlock:
1666 rtnl_unlock();
1667 up_write(&pernet_ops_rwsem);
1668 return err;
1669
1670rollback:
1671 last = dev;
1672 for_each_net(net) {
1673 for_each_netdev(net, dev) {
1674 if (dev == last)
1675 goto outroll;
1676
1677 if (dev->flags & IFF_UP) {
1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 dev);
1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681 }
1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683 }
1684 }
1685
1686outroll:
1687 raw_notifier_chain_unregister(&netdev_chain, nb);
1688 goto unlock;
1689}
1690EXPORT_SYMBOL(register_netdevice_notifier);
1691
1692/**
1693 * unregister_netdevice_notifier - unregister a network notifier block
1694 * @nb: notifier
1695 *
1696 * Unregister a notifier previously registered by
1697 * register_netdevice_notifier(). The notifier is unlinked into the
1698 * kernel structures and may then be reused. A negative errno code
1699 * is returned on a failure.
1700 *
1701 * After unregistering unregister and down device events are synthesized
1702 * for all devices on the device list to the removed notifier to remove
1703 * the need for special case cleanup code.
1704 */
1705
1706int unregister_netdevice_notifier(struct notifier_block *nb)
1707{
1708 struct net_device *dev;
1709 struct net *net;
1710 int err;
1711
1712 /* Close race with setup_net() and cleanup_net() */
1713 down_write(&pernet_ops_rwsem);
1714 rtnl_lock();
1715 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716 if (err)
1717 goto unlock;
1718
1719 for_each_net(net) {
1720 for_each_netdev(net, dev) {
1721 if (dev->flags & IFF_UP) {
1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 dev);
1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725 }
1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 }
1728 }
1729unlock:
1730 rtnl_unlock();
1731 up_write(&pernet_ops_rwsem);
1732 return err;
1733}
1734EXPORT_SYMBOL(unregister_netdevice_notifier);
1735
1736/**
1737 * call_netdevice_notifiers_info - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @info: notifier information data
1740 *
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1743 */
1744
1745static int call_netdevice_notifiers_info(unsigned long val,
1746 struct netdev_notifier_info *info)
1747{
1748 ASSERT_RTNL();
1749 return raw_notifier_call_chain(&netdev_chain, val, info);
1750}
1751
1752static int call_netdevice_notifiers_extack(unsigned long val,
1753 struct net_device *dev,
1754 struct netlink_ext_ack *extack)
1755{
1756 struct netdev_notifier_info info = {
1757 .dev = dev,
1758 .extack = extack,
1759 };
1760
1761 return call_netdevice_notifiers_info(val, &info);
1762}
1763
1764/**
1765 * call_netdevice_notifiers - call all network notifier blocks
1766 * @val: value passed unmodified to notifier function
1767 * @dev: net_device pointer passed unmodified to notifier function
1768 *
1769 * Call all network notifier blocks. Parameters and return value
1770 * are as for raw_notifier_call_chain().
1771 */
1772
1773int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774{
1775 return call_netdevice_notifiers_extack(val, dev, NULL);
1776}
1777EXPORT_SYMBOL(call_netdevice_notifiers);
1778
1779/**
1780 * call_netdevice_notifiers_mtu - call all network notifier blocks
1781 * @val: value passed unmodified to notifier function
1782 * @dev: net_device pointer passed unmodified to notifier function
1783 * @arg: additional u32 argument passed to the notifier function
1784 *
1785 * Call all network notifier blocks. Parameters and return value
1786 * are as for raw_notifier_call_chain().
1787 */
1788static int call_netdevice_notifiers_mtu(unsigned long val,
1789 struct net_device *dev, u32 arg)
1790{
1791 struct netdev_notifier_info_ext info = {
1792 .info.dev = dev,
1793 .ext.mtu = arg,
1794 };
1795
1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798 return call_netdevice_notifiers_info(val, &info.info);
1799}
1800
1801#ifdef CONFIG_NET_INGRESS
1802static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803
1804void net_inc_ingress_queue(void)
1805{
1806 static_branch_inc(&ingress_needed_key);
1807}
1808EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810void net_dec_ingress_queue(void)
1811{
1812 static_branch_dec(&ingress_needed_key);
1813}
1814EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815#endif
1816
1817#ifdef CONFIG_NET_EGRESS
1818static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819
1820void net_inc_egress_queue(void)
1821{
1822 static_branch_inc(&egress_needed_key);
1823}
1824EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826void net_dec_egress_queue(void)
1827{
1828 static_branch_dec(&egress_needed_key);
1829}
1830EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831#endif
1832
1833static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834#ifdef CONFIG_JUMP_LABEL
1835static atomic_t netstamp_needed_deferred;
1836static atomic_t netstamp_wanted;
1837static void netstamp_clear(struct work_struct *work)
1838{
1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840 int wanted;
1841
1842 wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 if (wanted > 0)
1844 static_branch_enable(&netstamp_needed_key);
1845 else
1846 static_branch_disable(&netstamp_needed_key);
1847}
1848static DECLARE_WORK(netstamp_work, netstamp_clear);
1849#endif
1850
1851void net_enable_timestamp(void)
1852{
1853#ifdef CONFIG_JUMP_LABEL
1854 int wanted;
1855
1856 while (1) {
1857 wanted = atomic_read(&netstamp_wanted);
1858 if (wanted <= 0)
1859 break;
1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 return;
1862 }
1863 atomic_inc(&netstamp_needed_deferred);
1864 schedule_work(&netstamp_work);
1865#else
1866 static_branch_inc(&netstamp_needed_key);
1867#endif
1868}
1869EXPORT_SYMBOL(net_enable_timestamp);
1870
1871void net_disable_timestamp(void)
1872{
1873#ifdef CONFIG_JUMP_LABEL
1874 int wanted;
1875
1876 while (1) {
1877 wanted = atomic_read(&netstamp_wanted);
1878 if (wanted <= 1)
1879 break;
1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 return;
1882 }
1883 atomic_dec(&netstamp_needed_deferred);
1884 schedule_work(&netstamp_work);
1885#else
1886 static_branch_dec(&netstamp_needed_key);
1887#endif
1888}
1889EXPORT_SYMBOL(net_disable_timestamp);
1890
1891static inline void net_timestamp_set(struct sk_buff *skb)
1892{
1893 skb->tstamp = 0;
1894 if (static_branch_unlikely(&netstamp_needed_key))
1895 __net_timestamp(skb);
1896}
1897
1898#define net_timestamp_check(COND, SKB) \
1899 if (static_branch_unlikely(&netstamp_needed_key)) { \
1900 if ((COND) && !(SKB)->tstamp) \
1901 __net_timestamp(SKB); \
1902 } \
1903
1904bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905{
1906 unsigned int len;
1907
1908 if (!(dev->flags & IFF_UP))
1909 return false;
1910
1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 if (skb->len <= len)
1913 return true;
1914
1915 /* if TSO is enabled, we don't care about the length as the packet
1916 * could be forwarded without being segmented before
1917 */
1918 if (skb_is_gso(skb))
1919 return true;
1920
1921 return false;
1922}
1923EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924
1925int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926{
1927 int ret = ____dev_forward_skb(dev, skb);
1928
1929 if (likely(!ret)) {
1930 skb->protocol = eth_type_trans(skb, dev);
1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 }
1933
1934 return ret;
1935}
1936EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
1938/**
1939 * dev_forward_skb - loopback an skb to another netif
1940 *
1941 * @dev: destination network device
1942 * @skb: buffer to forward
1943 *
1944 * return values:
1945 * NET_RX_SUCCESS (no congestion)
1946 * NET_RX_DROP (packet was dropped, but freed)
1947 *
1948 * dev_forward_skb can be used for injecting an skb from the
1949 * start_xmit function of one device into the receive queue
1950 * of another device.
1951 *
1952 * The receiving device may be in another namespace, so
1953 * we have to clear all information in the skb that could
1954 * impact namespace isolation.
1955 */
1956int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957{
1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959}
1960EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
1962static inline int deliver_skb(struct sk_buff *skb,
1963 struct packet_type *pt_prev,
1964 struct net_device *orig_dev)
1965{
1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967 return -ENOMEM;
1968 refcount_inc(&skb->users);
1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970}
1971
1972static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 struct packet_type **pt,
1974 struct net_device *orig_dev,
1975 __be16 type,
1976 struct list_head *ptype_list)
1977{
1978 struct packet_type *ptype, *pt_prev = *pt;
1979
1980 list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 if (ptype->type != type)
1982 continue;
1983 if (pt_prev)
1984 deliver_skb(skb, pt_prev, orig_dev);
1985 pt_prev = ptype;
1986 }
1987 *pt = pt_prev;
1988}
1989
1990static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991{
1992 if (!ptype->af_packet_priv || !skb->sk)
1993 return false;
1994
1995 if (ptype->id_match)
1996 return ptype->id_match(ptype, skb->sk);
1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 return true;
1999
2000 return false;
2001}
2002
2003/**
2004 * dev_nit_active - return true if any network interface taps are in use
2005 *
2006 * @dev: network device to check for the presence of taps
2007 */
2008bool dev_nit_active(struct net_device *dev)
2009{
2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011}
2012EXPORT_SYMBOL_GPL(dev_nit_active);
2013
2014/*
2015 * Support routine. Sends outgoing frames to any network
2016 * taps currently in use.
2017 */
2018
2019void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020{
2021 struct packet_type *ptype;
2022 struct sk_buff *skb2 = NULL;
2023 struct packet_type *pt_prev = NULL;
2024 struct list_head *ptype_list = &ptype_all;
2025
2026 rcu_read_lock();
2027again:
2028 list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 if (ptype->ignore_outgoing)
2030 continue;
2031
2032 /* Never send packets back to the socket
2033 * they originated from - MvS (miquels@drinkel.ow.org)
2034 */
2035 if (skb_loop_sk(ptype, skb))
2036 continue;
2037
2038 if (pt_prev) {
2039 deliver_skb(skb2, pt_prev, skb->dev);
2040 pt_prev = ptype;
2041 continue;
2042 }
2043
2044 /* need to clone skb, done only once */
2045 skb2 = skb_clone(skb, GFP_ATOMIC);
2046 if (!skb2)
2047 goto out_unlock;
2048
2049 net_timestamp_set(skb2);
2050
2051 /* skb->nh should be correctly
2052 * set by sender, so that the second statement is
2053 * just protection against buggy protocols.
2054 */
2055 skb_reset_mac_header(skb2);
2056
2057 if (skb_network_header(skb2) < skb2->data ||
2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 ntohs(skb2->protocol),
2061 dev->name);
2062 skb_reset_network_header(skb2);
2063 }
2064
2065 skb2->transport_header = skb2->network_header;
2066 skb2->pkt_type = PACKET_OUTGOING;
2067 pt_prev = ptype;
2068 }
2069
2070 if (ptype_list == &ptype_all) {
2071 ptype_list = &dev->ptype_all;
2072 goto again;
2073 }
2074out_unlock:
2075 if (pt_prev) {
2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 else
2079 kfree_skb(skb2);
2080 }
2081 rcu_read_unlock();
2082}
2083EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084
2085/**
2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087 * @dev: Network device
2088 * @txq: number of queues available
2089 *
2090 * If real_num_tx_queues is changed the tc mappings may no longer be
2091 * valid. To resolve this verify the tc mapping remains valid and if
2092 * not NULL the mapping. With no priorities mapping to this
2093 * offset/count pair it will no longer be used. In the worst case TC0
2094 * is invalid nothing can be done so disable priority mappings. If is
2095 * expected that drivers will fix this mapping if they can before
2096 * calling netif_set_real_num_tx_queues.
2097 */
2098static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099{
2100 int i;
2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103 /* If TC0 is invalidated disable TC mapping */
2104 if (tc->offset + tc->count > txq) {
2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106 dev->num_tc = 0;
2107 return;
2108 }
2109
2110 /* Invalidated prio to tc mappings set to TC0 */
2111 for (i = 1; i < TC_BITMASK + 1; i++) {
2112 int q = netdev_get_prio_tc_map(dev, i);
2113
2114 tc = &dev->tc_to_txq[q];
2115 if (tc->offset + tc->count > txq) {
2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 i, q);
2118 netdev_set_prio_tc_map(dev, i, 0);
2119 }
2120 }
2121}
2122
2123int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124{
2125 if (dev->num_tc) {
2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 int i;
2128
2129 /* walk through the TCs and see if it falls into any of them */
2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 if ((txq - tc->offset) < tc->count)
2132 return i;
2133 }
2134
2135 /* didn't find it, just return -1 to indicate no match */
2136 return -1;
2137 }
2138
2139 return 0;
2140}
2141EXPORT_SYMBOL(netdev_txq_to_tc);
2142
2143#ifdef CONFIG_XPS
2144struct static_key xps_needed __read_mostly;
2145EXPORT_SYMBOL(xps_needed);
2146struct static_key xps_rxqs_needed __read_mostly;
2147EXPORT_SYMBOL(xps_rxqs_needed);
2148static DEFINE_MUTEX(xps_map_mutex);
2149#define xmap_dereference(P) \
2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
2152static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 int tci, u16 index)
2154{
2155 struct xps_map *map = NULL;
2156 int pos;
2157
2158 if (dev_maps)
2159 map = xmap_dereference(dev_maps->attr_map[tci]);
2160 if (!map)
2161 return false;
2162
2163 for (pos = map->len; pos--;) {
2164 if (map->queues[pos] != index)
2165 continue;
2166
2167 if (map->len > 1) {
2168 map->queues[pos] = map->queues[--map->len];
2169 break;
2170 }
2171
2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 kfree_rcu(map, rcu);
2174 return false;
2175 }
2176
2177 return true;
2178}
2179
2180static bool remove_xps_queue_cpu(struct net_device *dev,
2181 struct xps_dev_maps *dev_maps,
2182 int cpu, u16 offset, u16 count)
2183{
2184 int num_tc = dev->num_tc ? : 1;
2185 bool active = false;
2186 int tci;
2187
2188 for (tci = cpu * num_tc; num_tc--; tci++) {
2189 int i, j;
2190
2191 for (i = count, j = offset; i--; j++) {
2192 if (!remove_xps_queue(dev_maps, tci, j))
2193 break;
2194 }
2195
2196 active |= i < 0;
2197 }
2198
2199 return active;
2200}
2201
2202static void reset_xps_maps(struct net_device *dev,
2203 struct xps_dev_maps *dev_maps,
2204 bool is_rxqs_map)
2205{
2206 if (is_rxqs_map) {
2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 } else {
2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 }
2212 static_key_slow_dec_cpuslocked(&xps_needed);
2213 kfree_rcu(dev_maps, rcu);
2214}
2215
2216static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 u16 offset, u16 count, bool is_rxqs_map)
2219{
2220 bool active = false;
2221 int i, j;
2222
2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 j < nr_ids;)
2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 count);
2227 if (!active)
2228 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229
2230 if (!is_rxqs_map) {
2231 for (i = offset + (count - 1); count--; i--) {
2232 netdev_queue_numa_node_write(
2233 netdev_get_tx_queue(dev, i),
2234 NUMA_NO_NODE);
2235 }
2236 }
2237}
2238
2239static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 u16 count)
2241{
2242 const unsigned long *possible_mask = NULL;
2243 struct xps_dev_maps *dev_maps;
2244 unsigned int nr_ids;
2245
2246 if (!static_key_false(&xps_needed))
2247 return;
2248
2249 cpus_read_lock();
2250 mutex_lock(&xps_map_mutex);
2251
2252 if (static_key_false(&xps_rxqs_needed)) {
2253 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 if (dev_maps) {
2255 nr_ids = dev->num_rx_queues;
2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 offset, count, true);
2258 }
2259 }
2260
2261 dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 if (!dev_maps)
2263 goto out_no_maps;
2264
2265 if (num_possible_cpus() > 1)
2266 possible_mask = cpumask_bits(cpu_possible_mask);
2267 nr_ids = nr_cpu_ids;
2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 false);
2270
2271out_no_maps:
2272 mutex_unlock(&xps_map_mutex);
2273 cpus_read_unlock();
2274}
2275
2276static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277{
2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279}
2280
2281static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 u16 index, bool is_rxqs_map)
2283{
2284 struct xps_map *new_map;
2285 int alloc_len = XPS_MIN_MAP_ALLOC;
2286 int i, pos;
2287
2288 for (pos = 0; map && pos < map->len; pos++) {
2289 if (map->queues[pos] != index)
2290 continue;
2291 return map;
2292 }
2293
2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295 if (map) {
2296 if (pos < map->alloc_len)
2297 return map;
2298
2299 alloc_len = map->alloc_len * 2;
2300 }
2301
2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 * map
2304 */
2305 if (is_rxqs_map)
2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 else
2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 cpu_to_node(attr_index));
2310 if (!new_map)
2311 return NULL;
2312
2313 for (i = 0; i < pos; i++)
2314 new_map->queues[i] = map->queues[i];
2315 new_map->alloc_len = alloc_len;
2316 new_map->len = pos;
2317
2318 return new_map;
2319}
2320
2321/* Must be called under cpus_read_lock */
2322int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 u16 index, bool is_rxqs_map)
2324{
2325 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 int i, j, tci, numa_node_id = -2;
2328 int maps_sz, num_tc = 1, tc = 0;
2329 struct xps_map *map, *new_map;
2330 bool active = false;
2331 unsigned int nr_ids;
2332
2333 if (dev->num_tc) {
2334 /* Do not allow XPS on subordinate device directly */
2335 num_tc = dev->num_tc;
2336 if (num_tc < 0)
2337 return -EINVAL;
2338
2339 /* If queue belongs to subordinate dev use its map */
2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
2342 tc = netdev_txq_to_tc(dev, index);
2343 if (tc < 0)
2344 return -EINVAL;
2345 }
2346
2347 mutex_lock(&xps_map_mutex);
2348 if (is_rxqs_map) {
2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 nr_ids = dev->num_rx_queues;
2352 } else {
2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 if (num_possible_cpus() > 1) {
2355 online_mask = cpumask_bits(cpu_online_mask);
2356 possible_mask = cpumask_bits(cpu_possible_mask);
2357 }
2358 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 nr_ids = nr_cpu_ids;
2360 }
2361
2362 if (maps_sz < L1_CACHE_BYTES)
2363 maps_sz = L1_CACHE_BYTES;
2364
2365 /* allocate memory for queue storage */
2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 j < nr_ids;) {
2368 if (!new_dev_maps)
2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 if (!new_dev_maps) {
2371 mutex_unlock(&xps_map_mutex);
2372 return -ENOMEM;
2373 }
2374
2375 tci = j * num_tc + tc;
2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377 NULL;
2378
2379 map = expand_xps_map(map, j, index, is_rxqs_map);
2380 if (!map)
2381 goto error;
2382
2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384 }
2385
2386 if (!new_dev_maps)
2387 goto out_no_new_maps;
2388
2389 if (!dev_maps) {
2390 /* Increment static keys at most once per type */
2391 static_key_slow_inc_cpuslocked(&xps_needed);
2392 if (is_rxqs_map)
2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 }
2395
2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 j < nr_ids;) {
2398 /* copy maps belonging to foreign traffic classes */
2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 /* fill in the new device map from the old device map */
2401 map = xmap_dereference(dev_maps->attr_map[tci]);
2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403 }
2404
2405 /* We need to explicitly update tci as prevous loop
2406 * could break out early if dev_maps is NULL.
2407 */
2408 tci = j * num_tc + tc;
2409
2410 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 netif_attr_test_online(j, online_mask, nr_ids)) {
2412 /* add tx-queue to CPU/rx-queue maps */
2413 int pos = 0;
2414
2415 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 while ((pos < map->len) && (map->queues[pos] != index))
2417 pos++;
2418
2419 if (pos == map->len)
2420 map->queues[map->len++] = index;
2421#ifdef CONFIG_NUMA
2422 if (!is_rxqs_map) {
2423 if (numa_node_id == -2)
2424 numa_node_id = cpu_to_node(j);
2425 else if (numa_node_id != cpu_to_node(j))
2426 numa_node_id = -1;
2427 }
2428#endif
2429 } else if (dev_maps) {
2430 /* fill in the new device map from the old device map */
2431 map = xmap_dereference(dev_maps->attr_map[tci]);
2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433 }
2434
2435 /* copy maps belonging to foreign traffic classes */
2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 /* fill in the new device map from the old device map */
2438 map = xmap_dereference(dev_maps->attr_map[tci]);
2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440 }
2441 }
2442
2443 if (is_rxqs_map)
2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 else
2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447
2448 /* Cleanup old maps */
2449 if (!dev_maps)
2450 goto out_no_old_maps;
2451
2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 j < nr_ids;) {
2454 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 map = xmap_dereference(dev_maps->attr_map[tci]);
2457 if (map && map != new_map)
2458 kfree_rcu(map, rcu);
2459 }
2460 }
2461
2462 kfree_rcu(dev_maps, rcu);
2463
2464out_no_old_maps:
2465 dev_maps = new_dev_maps;
2466 active = true;
2467
2468out_no_new_maps:
2469 if (!is_rxqs_map) {
2470 /* update Tx queue numa node */
2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 (numa_node_id >= 0) ?
2473 numa_node_id : NUMA_NO_NODE);
2474 }
2475
2476 if (!dev_maps)
2477 goto out_no_maps;
2478
2479 /* removes tx-queue from unused CPUs/rx-queues */
2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 j < nr_ids;) {
2482 for (i = tc, tci = j * num_tc; i--; tci++)
2483 active |= remove_xps_queue(dev_maps, tci, index);
2484 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 !netif_attr_test_online(j, online_mask, nr_ids))
2486 active |= remove_xps_queue(dev_maps, tci, index);
2487 for (i = num_tc - tc, tci++; --i; tci++)
2488 active |= remove_xps_queue(dev_maps, tci, index);
2489 }
2490
2491 /* free map if not active */
2492 if (!active)
2493 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494
2495out_no_maps:
2496 mutex_unlock(&xps_map_mutex);
2497
2498 return 0;
2499error:
2500 /* remove any maps that we added */
2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 j < nr_ids;) {
2503 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505 map = dev_maps ?
2506 xmap_dereference(dev_maps->attr_map[tci]) :
2507 NULL;
2508 if (new_map && new_map != map)
2509 kfree(new_map);
2510 }
2511 }
2512
2513 mutex_unlock(&xps_map_mutex);
2514
2515 kfree(new_dev_maps);
2516 return -ENOMEM;
2517}
2518EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519
2520int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 u16 index)
2522{
2523 int ret;
2524
2525 cpus_read_lock();
2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 cpus_read_unlock();
2528
2529 return ret;
2530}
2531EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533#endif
2534static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535{
2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538 /* Unbind any subordinate channels */
2539 while (txq-- != &dev->_tx[0]) {
2540 if (txq->sb_dev)
2541 netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 }
2543}
2544
2545void netdev_reset_tc(struct net_device *dev)
2546{
2547#ifdef CONFIG_XPS
2548 netif_reset_xps_queues_gt(dev, 0);
2549#endif
2550 netdev_unbind_all_sb_channels(dev);
2551
2552 /* Reset TC configuration of device */
2553 dev->num_tc = 0;
2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556}
2557EXPORT_SYMBOL(netdev_reset_tc);
2558
2559int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560{
2561 if (tc >= dev->num_tc)
2562 return -EINVAL;
2563
2564#ifdef CONFIG_XPS
2565 netif_reset_xps_queues(dev, offset, count);
2566#endif
2567 dev->tc_to_txq[tc].count = count;
2568 dev->tc_to_txq[tc].offset = offset;
2569 return 0;
2570}
2571EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574{
2575 if (num_tc > TC_MAX_QUEUE)
2576 return -EINVAL;
2577
2578#ifdef CONFIG_XPS
2579 netif_reset_xps_queues_gt(dev, 0);
2580#endif
2581 netdev_unbind_all_sb_channels(dev);
2582
2583 dev->num_tc = num_tc;
2584 return 0;
2585}
2586EXPORT_SYMBOL(netdev_set_num_tc);
2587
2588void netdev_unbind_sb_channel(struct net_device *dev,
2589 struct net_device *sb_dev)
2590{
2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593#ifdef CONFIG_XPS
2594 netif_reset_xps_queues_gt(sb_dev, 0);
2595#endif
2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599 while (txq-- != &dev->_tx[0]) {
2600 if (txq->sb_dev == sb_dev)
2601 txq->sb_dev = NULL;
2602 }
2603}
2604EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 struct net_device *sb_dev,
2608 u8 tc, u16 count, u16 offset)
2609{
2610 /* Make certain the sb_dev and dev are already configured */
2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 return -EINVAL;
2613
2614 /* We cannot hand out queues we don't have */
2615 if ((offset + count) > dev->real_num_tx_queues)
2616 return -EINVAL;
2617
2618 /* Record the mapping */
2619 sb_dev->tc_to_txq[tc].count = count;
2620 sb_dev->tc_to_txq[tc].offset = offset;
2621
2622 /* Provide a way for Tx queue to find the tc_to_txq map or
2623 * XPS map for itself.
2624 */
2625 while (count--)
2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628 return 0;
2629}
2630EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633{
2634 /* Do not use a multiqueue device to represent a subordinate channel */
2635 if (netif_is_multiqueue(dev))
2636 return -ENODEV;
2637
2638 /* We allow channels 1 - 32767 to be used for subordinate channels.
2639 * Channel 0 is meant to be "native" mode and used only to represent
2640 * the main root device. We allow writing 0 to reset the device back
2641 * to normal mode after being used as a subordinate channel.
2642 */
2643 if (channel > S16_MAX)
2644 return -EINVAL;
2645
2646 dev->num_tc = -channel;
2647
2648 return 0;
2649}
2650EXPORT_SYMBOL(netdev_set_sb_channel);
2651
2652/*
2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655 */
2656int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657{
2658 bool disabling;
2659 int rc;
2660
2661 disabling = txq < dev->real_num_tx_queues;
2662
2663 if (txq < 1 || txq > dev->num_tx_queues)
2664 return -EINVAL;
2665
2666 if (dev->reg_state == NETREG_REGISTERED ||
2667 dev->reg_state == NETREG_UNREGISTERING) {
2668 ASSERT_RTNL();
2669
2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 txq);
2672 if (rc)
2673 return rc;
2674
2675 if (dev->num_tc)
2676 netif_setup_tc(dev, txq);
2677
2678 dev->real_num_tx_queues = txq;
2679
2680 if (disabling) {
2681 synchronize_net();
2682 qdisc_reset_all_tx_gt(dev, txq);
2683#ifdef CONFIG_XPS
2684 netif_reset_xps_queues_gt(dev, txq);
2685#endif
2686 }
2687 } else {
2688 dev->real_num_tx_queues = txq;
2689 }
2690
2691 return 0;
2692}
2693EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694
2695#ifdef CONFIG_SYSFS
2696/**
2697 * netif_set_real_num_rx_queues - set actual number of RX queues used
2698 * @dev: Network device
2699 * @rxq: Actual number of RX queues
2700 *
2701 * This must be called either with the rtnl_lock held or before
2702 * registration of the net device. Returns 0 on success, or a
2703 * negative error code. If called before registration, it always
2704 * succeeds.
2705 */
2706int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707{
2708 int rc;
2709
2710 if (rxq < 1 || rxq > dev->num_rx_queues)
2711 return -EINVAL;
2712
2713 if (dev->reg_state == NETREG_REGISTERED) {
2714 ASSERT_RTNL();
2715
2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 rxq);
2718 if (rc)
2719 return rc;
2720 }
2721
2722 dev->real_num_rx_queues = rxq;
2723 return 0;
2724}
2725EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726#endif
2727
2728/**
2729 * netif_get_num_default_rss_queues - default number of RSS queues
2730 *
2731 * This routine should set an upper limit on the number of RSS queues
2732 * used by default by multiqueue devices.
2733 */
2734int netif_get_num_default_rss_queues(void)
2735{
2736 return is_kdump_kernel() ?
2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738}
2739EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
2741static void __netif_reschedule(struct Qdisc *q)
2742{
2743 struct softnet_data *sd;
2744 unsigned long flags;
2745
2746 local_irq_save(flags);
2747 sd = this_cpu_ptr(&softnet_data);
2748 q->next_sched = NULL;
2749 *sd->output_queue_tailp = q;
2750 sd->output_queue_tailp = &q->next_sched;
2751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 local_irq_restore(flags);
2753}
2754
2755void __netif_schedule(struct Qdisc *q)
2756{
2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 __netif_reschedule(q);
2759}
2760EXPORT_SYMBOL(__netif_schedule);
2761
2762struct dev_kfree_skb_cb {
2763 enum skb_free_reason reason;
2764};
2765
2766static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767{
2768 return (struct dev_kfree_skb_cb *)skb->cb;
2769}
2770
2771void netif_schedule_queue(struct netdev_queue *txq)
2772{
2773 rcu_read_lock();
2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777 __netif_schedule(q);
2778 }
2779 rcu_read_unlock();
2780}
2781EXPORT_SYMBOL(netif_schedule_queue);
2782
2783void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784{
2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 struct Qdisc *q;
2787
2788 rcu_read_lock();
2789 q = rcu_dereference(dev_queue->qdisc);
2790 __netif_schedule(q);
2791 rcu_read_unlock();
2792 }
2793}
2794EXPORT_SYMBOL(netif_tx_wake_queue);
2795
2796void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797{
2798 unsigned long flags;
2799
2800 if (unlikely(!skb))
2801 return;
2802
2803 if (likely(refcount_read(&skb->users) == 1)) {
2804 smp_rmb();
2805 refcount_set(&skb->users, 0);
2806 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2807 return;
2808 }
2809 get_kfree_skb_cb(skb)->reason = reason;
2810 local_irq_save(flags);
2811 skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 __this_cpu_write(softnet_data.completion_queue, skb);
2813 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 local_irq_restore(flags);
2815}
2816EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817
2818void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819{
2820 if (in_irq() || irqs_disabled())
2821 __dev_kfree_skb_irq(skb, reason);
2822 else
2823 dev_kfree_skb(skb);
2824}
2825EXPORT_SYMBOL(__dev_kfree_skb_any);
2826
2827
2828/**
2829 * netif_device_detach - mark device as removed
2830 * @dev: network device
2831 *
2832 * Mark device as removed from system and therefore no longer available.
2833 */
2834void netif_device_detach(struct net_device *dev)
2835{
2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 netif_running(dev)) {
2838 netif_tx_stop_all_queues(dev);
2839 }
2840}
2841EXPORT_SYMBOL(netif_device_detach);
2842
2843/**
2844 * netif_device_attach - mark device as attached
2845 * @dev: network device
2846 *
2847 * Mark device as attached from system and restart if needed.
2848 */
2849void netif_device_attach(struct net_device *dev)
2850{
2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 netif_running(dev)) {
2853 netif_tx_wake_all_queues(dev);
2854 __netdev_watchdog_up(dev);
2855 }
2856}
2857EXPORT_SYMBOL(netif_device_attach);
2858
2859/*
2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861 * to be used as a distribution range.
2862 */
2863static u16 skb_tx_hash(const struct net_device *dev,
2864 const struct net_device *sb_dev,
2865 struct sk_buff *skb)
2866{
2867 u32 hash;
2868 u16 qoffset = 0;
2869 u16 qcount = dev->real_num_tx_queues;
2870
2871 if (dev->num_tc) {
2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874 qoffset = sb_dev->tc_to_txq[tc].offset;
2875 qcount = sb_dev->tc_to_txq[tc].count;
2876 }
2877
2878 if (skb_rx_queue_recorded(skb)) {
2879 hash = skb_get_rx_queue(skb);
2880 while (unlikely(hash >= qcount))
2881 hash -= qcount;
2882 return hash + qoffset;
2883 }
2884
2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886}
2887
2888static void skb_warn_bad_offload(const struct sk_buff *skb)
2889{
2890 static const netdev_features_t null_features;
2891 struct net_device *dev = skb->dev;
2892 const char *name = "";
2893
2894 if (!net_ratelimit())
2895 return;
2896
2897 if (dev) {
2898 if (dev->dev.parent)
2899 name = dev_driver_string(dev->dev.parent);
2900 else
2901 name = netdev_name(dev);
2902 }
2903 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904 "gso_type=%d ip_summed=%d\n",
2905 name, dev ? &dev->features : &null_features,
2906 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2907 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2908 skb_shinfo(skb)->gso_type, skb->ip_summed);
2909}
2910
2911/*
2912 * Invalidate hardware checksum when packet is to be mangled, and
2913 * complete checksum manually on outgoing path.
2914 */
2915int skb_checksum_help(struct sk_buff *skb)
2916{
2917 __wsum csum;
2918 int ret = 0, offset;
2919
2920 if (skb->ip_summed == CHECKSUM_COMPLETE)
2921 goto out_set_summed;
2922
2923 if (unlikely(skb_shinfo(skb)->gso_size)) {
2924 skb_warn_bad_offload(skb);
2925 return -EINVAL;
2926 }
2927
2928 /* Before computing a checksum, we should make sure no frag could
2929 * be modified by an external entity : checksum could be wrong.
2930 */
2931 if (skb_has_shared_frag(skb)) {
2932 ret = __skb_linearize(skb);
2933 if (ret)
2934 goto out;
2935 }
2936
2937 offset = skb_checksum_start_offset(skb);
2938 BUG_ON(offset >= skb_headlen(skb));
2939 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2940
2941 offset += skb->csum_offset;
2942 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2943
2944 if (skb_cloned(skb) &&
2945 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2946 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947 if (ret)
2948 goto out;
2949 }
2950
2951 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2952out_set_summed:
2953 skb->ip_summed = CHECKSUM_NONE;
2954out:
2955 return ret;
2956}
2957EXPORT_SYMBOL(skb_checksum_help);
2958
2959int skb_crc32c_csum_help(struct sk_buff *skb)
2960{
2961 __le32 crc32c_csum;
2962 int ret = 0, offset, start;
2963
2964 if (skb->ip_summed != CHECKSUM_PARTIAL)
2965 goto out;
2966
2967 if (unlikely(skb_is_gso(skb)))
2968 goto out;
2969
2970 /* Before computing a checksum, we should make sure no frag could
2971 * be modified by an external entity : checksum could be wrong.
2972 */
2973 if (unlikely(skb_has_shared_frag(skb))) {
2974 ret = __skb_linearize(skb);
2975 if (ret)
2976 goto out;
2977 }
2978 start = skb_checksum_start_offset(skb);
2979 offset = start + offsetof(struct sctphdr, checksum);
2980 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2981 ret = -EINVAL;
2982 goto out;
2983 }
2984 if (skb_cloned(skb) &&
2985 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2986 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2987 if (ret)
2988 goto out;
2989 }
2990 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2991 skb->len - start, ~(__u32)0,
2992 crc32c_csum_stub));
2993 *(__le32 *)(skb->data + offset) = crc32c_csum;
2994 skb->ip_summed = CHECKSUM_NONE;
2995 skb->csum_not_inet = 0;
2996out:
2997 return ret;
2998}
2999
3000__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3001{
3002 __be16 type = skb->protocol;
3003
3004 /* Tunnel gso handlers can set protocol to ethernet. */
3005 if (type == htons(ETH_P_TEB)) {
3006 struct ethhdr *eth;
3007
3008 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009 return 0;
3010
3011 eth = (struct ethhdr *)skb->data;
3012 type = eth->h_proto;
3013 }
3014
3015 return __vlan_get_protocol(skb, type, depth);
3016}
3017
3018/**
3019 * skb_mac_gso_segment - mac layer segmentation handler.
3020 * @skb: buffer to segment
3021 * @features: features for the output path (see dev->features)
3022 */
3023struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3024 netdev_features_t features)
3025{
3026 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3027 struct packet_offload *ptype;
3028 int vlan_depth = skb->mac_len;
3029 __be16 type = skb_network_protocol(skb, &vlan_depth);
3030
3031 if (unlikely(!type))
3032 return ERR_PTR(-EINVAL);
3033
3034 __skb_pull(skb, vlan_depth);
3035
3036 rcu_read_lock();
3037 list_for_each_entry_rcu(ptype, &offload_base, list) {
3038 if (ptype->type == type && ptype->callbacks.gso_segment) {
3039 segs = ptype->callbacks.gso_segment(skb, features);
3040 break;
3041 }
3042 }
3043 rcu_read_unlock();
3044
3045 __skb_push(skb, skb->data - skb_mac_header(skb));
3046
3047 return segs;
3048}
3049EXPORT_SYMBOL(skb_mac_gso_segment);
3050
3051
3052/* openvswitch calls this on rx path, so we need a different check.
3053 */
3054static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3055{
3056 if (tx_path)
3057 return skb->ip_summed != CHECKSUM_PARTIAL &&
3058 skb->ip_summed != CHECKSUM_UNNECESSARY;
3059
3060 return skb->ip_summed == CHECKSUM_NONE;
3061}
3062
3063/**
3064 * __skb_gso_segment - Perform segmentation on skb.
3065 * @skb: buffer to segment
3066 * @features: features for the output path (see dev->features)
3067 * @tx_path: whether it is called in TX path
3068 *
3069 * This function segments the given skb and returns a list of segments.
3070 *
3071 * It may return NULL if the skb requires no segmentation. This is
3072 * only possible when GSO is used for verifying header integrity.
3073 *
3074 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3075 */
3076struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3077 netdev_features_t features, bool tx_path)
3078{
3079 struct sk_buff *segs;
3080
3081 if (unlikely(skb_needs_check(skb, tx_path))) {
3082 int err;
3083
3084 /* We're going to init ->check field in TCP or UDP header */
3085 err = skb_cow_head(skb, 0);
3086 if (err < 0)
3087 return ERR_PTR(err);
3088 }
3089
3090 /* Only report GSO partial support if it will enable us to
3091 * support segmentation on this frame without needing additional
3092 * work.
3093 */
3094 if (features & NETIF_F_GSO_PARTIAL) {
3095 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3096 struct net_device *dev = skb->dev;
3097
3098 partial_features |= dev->features & dev->gso_partial_features;
3099 if (!skb_gso_ok(skb, features | partial_features))
3100 features &= ~NETIF_F_GSO_PARTIAL;
3101 }
3102
3103 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3104 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3105
3106 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3107 SKB_GSO_CB(skb)->encap_level = 0;
3108
3109 skb_reset_mac_header(skb);
3110 skb_reset_mac_len(skb);
3111
3112 segs = skb_mac_gso_segment(skb, features);
3113
3114 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3115 skb_warn_bad_offload(skb);
3116
3117 return segs;
3118}
3119EXPORT_SYMBOL(__skb_gso_segment);
3120
3121/* Take action when hardware reception checksum errors are detected. */
3122#ifdef CONFIG_BUG
3123void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3124{
3125 if (net_ratelimit()) {
3126 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3127 if (dev)
3128 pr_err("dev features: %pNF\n", &dev->features);
3129 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130 skb->len, skb->data_len, skb->pkt_type,
3131 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3132 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3133 skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3134 dump_stack();
3135 }
3136}
3137EXPORT_SYMBOL(netdev_rx_csum_fault);
3138#endif
3139
3140/* XXX: check that highmem exists at all on the given machine. */
3141static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3142{
3143#ifdef CONFIG_HIGHMEM
3144 int i;
3145
3146 if (!(dev->features & NETIF_F_HIGHDMA)) {
3147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3148 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3149
3150 if (PageHighMem(skb_frag_page(frag)))
3151 return 1;
3152 }
3153 }
3154#endif
3155 return 0;
3156}
3157
3158/* If MPLS offload request, verify we are testing hardware MPLS features
3159 * instead of standard features for the netdev.
3160 */
3161#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3162static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 netdev_features_t features,
3164 __be16 type)
3165{
3166 if (eth_p_mpls(type))
3167 features &= skb->dev->mpls_features;
3168
3169 return features;
3170}
3171#else
3172static netdev_features_t net_mpls_features(struct sk_buff *skb,
3173 netdev_features_t features,
3174 __be16 type)
3175{
3176 return features;
3177}
3178#endif
3179
3180static netdev_features_t harmonize_features(struct sk_buff *skb,
3181 netdev_features_t features)
3182{
3183 int tmp;
3184 __be16 type;
3185
3186 type = skb_network_protocol(skb, &tmp);
3187 features = net_mpls_features(skb, features, type);
3188
3189 if (skb->ip_summed != CHECKSUM_NONE &&
3190 !can_checksum_protocol(features, type)) {
3191 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3192 }
3193 if (illegal_highdma(skb->dev, skb))
3194 features &= ~NETIF_F_SG;
3195
3196 return features;
3197}
3198
3199netdev_features_t passthru_features_check(struct sk_buff *skb,
3200 struct net_device *dev,
3201 netdev_features_t features)
3202{
3203 return features;
3204}
3205EXPORT_SYMBOL(passthru_features_check);
3206
3207static netdev_features_t dflt_features_check(struct sk_buff *skb,
3208 struct net_device *dev,
3209 netdev_features_t features)
3210{
3211 return vlan_features_check(skb, features);
3212}
3213
3214static netdev_features_t gso_features_check(const struct sk_buff *skb,
3215 struct net_device *dev,
3216 netdev_features_t features)
3217{
3218 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3219
3220 if (gso_segs > dev->gso_max_segs)
3221 return features & ~NETIF_F_GSO_MASK;
3222
3223 /* Support for GSO partial features requires software
3224 * intervention before we can actually process the packets
3225 * so we need to strip support for any partial features now
3226 * and we can pull them back in after we have partially
3227 * segmented the frame.
3228 */
3229 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3230 features &= ~dev->gso_partial_features;
3231
3232 /* Make sure to clear the IPv4 ID mangling feature if the
3233 * IPv4 header has the potential to be fragmented.
3234 */
3235 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3236 struct iphdr *iph = skb->encapsulation ?
3237 inner_ip_hdr(skb) : ip_hdr(skb);
3238
3239 if (!(iph->frag_off & htons(IP_DF)))
3240 features &= ~NETIF_F_TSO_MANGLEID;
3241 }
3242
3243 return features;
3244}
3245
3246netdev_features_t netif_skb_features(struct sk_buff *skb)
3247{
3248 struct net_device *dev = skb->dev;
3249 netdev_features_t features = dev->features;
3250
3251 if (skb_is_gso(skb))
3252 features = gso_features_check(skb, dev, features);
3253
3254 /* If encapsulation offload request, verify we are testing
3255 * hardware encapsulation features instead of standard
3256 * features for the netdev
3257 */
3258 if (skb->encapsulation)
3259 features &= dev->hw_enc_features;
3260
3261 if (skb_vlan_tagged(skb))
3262 features = netdev_intersect_features(features,
3263 dev->vlan_features |
3264 NETIF_F_HW_VLAN_CTAG_TX |
3265 NETIF_F_HW_VLAN_STAG_TX);
3266
3267 if (dev->netdev_ops->ndo_features_check)
3268 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3269 features);
3270 else
3271 features &= dflt_features_check(skb, dev, features);
3272
3273 return harmonize_features(skb, features);
3274}
3275EXPORT_SYMBOL(netif_skb_features);
3276
3277static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3278 struct netdev_queue *txq, bool more)
3279{
3280 unsigned int len;
3281 int rc;
3282
3283 if (dev_nit_active(dev))
3284 dev_queue_xmit_nit(skb, dev);
3285
3286 len = skb->len;
3287 trace_net_dev_start_xmit(skb, dev);
3288 rc = netdev_start_xmit(skb, dev, txq, more);
3289 trace_net_dev_xmit(skb, rc, dev, len);
3290
3291 return rc;
3292}
3293
3294struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3295 struct netdev_queue *txq, int *ret)
3296{
3297 struct sk_buff *skb = first;
3298 int rc = NETDEV_TX_OK;
3299
3300 while (skb) {
3301 struct sk_buff *next = skb->next;
3302
3303 skb_mark_not_on_list(skb);
3304 rc = xmit_one(skb, dev, txq, next != NULL);
3305 if (unlikely(!dev_xmit_complete(rc))) {
3306 skb->next = next;
3307 goto out;
3308 }
3309
3310 skb = next;
3311 if (netif_tx_queue_stopped(txq) && skb) {
3312 rc = NETDEV_TX_BUSY;
3313 break;
3314 }
3315 }
3316
3317out:
3318 *ret = rc;
3319 return skb;
3320}
3321
3322static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3323 netdev_features_t features)
3324{
3325 if (skb_vlan_tag_present(skb) &&
3326 !vlan_hw_offload_capable(features, skb->vlan_proto))
3327 skb = __vlan_hwaccel_push_inside(skb);
3328 return skb;
3329}
3330
3331int skb_csum_hwoffload_help(struct sk_buff *skb,
3332 const netdev_features_t features)
3333{
3334 if (unlikely(skb->csum_not_inet))
3335 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3336 skb_crc32c_csum_help(skb);
3337
3338 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3339}
3340EXPORT_SYMBOL(skb_csum_hwoffload_help);
3341
3342static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3343{
3344 netdev_features_t features;
3345
3346 features = netif_skb_features(skb);
3347 skb = validate_xmit_vlan(skb, features);
3348 if (unlikely(!skb))
3349 goto out_null;
3350
3351 skb = sk_validate_xmit_skb(skb, dev);
3352 if (unlikely(!skb))
3353 goto out_null;
3354
3355 if (netif_needs_gso(skb, features)) {
3356 struct sk_buff *segs;
3357
3358 segs = skb_gso_segment(skb, features);
3359 if (IS_ERR(segs)) {
3360 goto out_kfree_skb;
3361 } else if (segs) {
3362 consume_skb(skb);
3363 skb = segs;
3364 }
3365 } else {
3366 if (skb_needs_linearize(skb, features) &&
3367 __skb_linearize(skb))
3368 goto out_kfree_skb;
3369
3370 /* If packet is not checksummed and device does not
3371 * support checksumming for this protocol, complete
3372 * checksumming here.
3373 */
3374 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3375 if (skb->encapsulation)
3376 skb_set_inner_transport_header(skb,
3377 skb_checksum_start_offset(skb));
3378 else
3379 skb_set_transport_header(skb,
3380 skb_checksum_start_offset(skb));
3381 if (skb_csum_hwoffload_help(skb, features))
3382 goto out_kfree_skb;
3383 }
3384 }
3385
3386 skb = validate_xmit_xfrm(skb, features, again);
3387
3388 return skb;
3389
3390out_kfree_skb:
3391 kfree_skb(skb);
3392out_null:
3393 atomic_long_inc(&dev->tx_dropped);
3394 return NULL;
3395}
3396
3397struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3398{
3399 struct sk_buff *next, *head = NULL, *tail;
3400
3401 for (; skb != NULL; skb = next) {
3402 next = skb->next;
3403 skb_mark_not_on_list(skb);
3404
3405 /* in case skb wont be segmented, point to itself */
3406 skb->prev = skb;
3407
3408 skb = validate_xmit_skb(skb, dev, again);
3409 if (!skb)
3410 continue;
3411
3412 if (!head)
3413 head = skb;
3414 else
3415 tail->next = skb;
3416 /* If skb was segmented, skb->prev points to
3417 * the last segment. If not, it still contains skb.
3418 */
3419 tail = skb->prev;
3420 }
3421 return head;
3422}
3423EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3424
3425static void qdisc_pkt_len_init(struct sk_buff *skb)
3426{
3427 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3428
3429 qdisc_skb_cb(skb)->pkt_len = skb->len;
3430
3431 /* To get more precise estimation of bytes sent on wire,
3432 * we add to pkt_len the headers size of all segments
3433 */
3434 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3435 unsigned int hdr_len;
3436 u16 gso_segs = shinfo->gso_segs;
3437
3438 /* mac layer + network layer */
3439 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3440
3441 /* + transport layer */
3442 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3443 const struct tcphdr *th;
3444 struct tcphdr _tcphdr;
3445
3446 th = skb_header_pointer(skb, skb_transport_offset(skb),
3447 sizeof(_tcphdr), &_tcphdr);
3448 if (likely(th))
3449 hdr_len += __tcp_hdrlen(th);
3450 } else {
3451 struct udphdr _udphdr;
3452
3453 if (skb_header_pointer(skb, skb_transport_offset(skb),
3454 sizeof(_udphdr), &_udphdr))
3455 hdr_len += sizeof(struct udphdr);
3456 }
3457
3458 if (shinfo->gso_type & SKB_GSO_DODGY)
3459 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3460 shinfo->gso_size);
3461
3462 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3463 }
3464}
3465
3466static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3467 struct net_device *dev,
3468 struct netdev_queue *txq)
3469{
3470 spinlock_t *root_lock = qdisc_lock(q);
3471 struct sk_buff *to_free = NULL;
3472 bool contended;
3473 int rc;
3474
3475 qdisc_calculate_pkt_len(skb, q);
3476
3477 if (q->flags & TCQ_F_NOLOCK) {
3478 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479 __qdisc_drop(skb, &to_free);
3480 rc = NET_XMIT_DROP;
3481 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3482 qdisc_run_begin(q)) {
3483 qdisc_bstats_cpu_update(q, skb);
3484
3485 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3486 __qdisc_run(q);
3487
3488 qdisc_run_end(q);
3489 rc = NET_XMIT_SUCCESS;
3490 } else {
3491 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3492 qdisc_run(q);
3493 }
3494
3495 if (unlikely(to_free))
3496 kfree_skb_list(to_free);
3497 return rc;
3498 }
3499
3500 /*
3501 * Heuristic to force contended enqueues to serialize on a
3502 * separate lock before trying to get qdisc main lock.
3503 * This permits qdisc->running owner to get the lock more
3504 * often and dequeue packets faster.
3505 */
3506 contended = qdisc_is_running(q);
3507 if (unlikely(contended))
3508 spin_lock(&q->busylock);
3509
3510 spin_lock(root_lock);
3511 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3512 __qdisc_drop(skb, &to_free);
3513 rc = NET_XMIT_DROP;
3514 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3515 qdisc_run_begin(q)) {
3516 /*
3517 * This is a work-conserving queue; there are no old skbs
3518 * waiting to be sent out; and the qdisc is not running -
3519 * xmit the skb directly.
3520 */
3521
3522 qdisc_bstats_update(q, skb);
3523
3524 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3525 if (unlikely(contended)) {
3526 spin_unlock(&q->busylock);
3527 contended = false;
3528 }
3529 __qdisc_run(q);
3530 }
3531
3532 qdisc_run_end(q);
3533 rc = NET_XMIT_SUCCESS;
3534 } else {
3535 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3536 if (qdisc_run_begin(q)) {
3537 if (unlikely(contended)) {
3538 spin_unlock(&q->busylock);
3539 contended = false;
3540 }
3541 __qdisc_run(q);
3542 qdisc_run_end(q);
3543 }
3544 }
3545 spin_unlock(root_lock);
3546 if (unlikely(to_free))
3547 kfree_skb_list(to_free);
3548 if (unlikely(contended))
3549 spin_unlock(&q->busylock);
3550 return rc;
3551}
3552
3553#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3554static void skb_update_prio(struct sk_buff *skb)
3555{
3556 const struct netprio_map *map;
3557 const struct sock *sk;
3558 unsigned int prioidx;
3559
3560 if (skb->priority)
3561 return;
3562 map = rcu_dereference_bh(skb->dev->priomap);
3563 if (!map)
3564 return;
3565 sk = skb_to_full_sk(skb);
3566 if (!sk)
3567 return;
3568
3569 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3570
3571 if (prioidx < map->priomap_len)
3572 skb->priority = map->priomap[prioidx];
3573}
3574#else
3575#define skb_update_prio(skb)
3576#endif
3577
3578/**
3579 * dev_loopback_xmit - loop back @skb
3580 * @net: network namespace this loopback is happening in
3581 * @sk: sk needed to be a netfilter okfn
3582 * @skb: buffer to transmit
3583 */
3584int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3585{
3586 skb_reset_mac_header(skb);
3587 __skb_pull(skb, skb_network_offset(skb));
3588 skb->pkt_type = PACKET_LOOPBACK;
3589 skb->ip_summed = CHECKSUM_UNNECESSARY;
3590 WARN_ON(!skb_dst(skb));
3591 skb_dst_force(skb);
3592 netif_rx_ni(skb);
3593 return 0;
3594}
3595EXPORT_SYMBOL(dev_loopback_xmit);
3596
3597#ifdef CONFIG_NET_EGRESS
3598static struct sk_buff *
3599sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3600{
3601 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3602 struct tcf_result cl_res;
3603
3604 if (!miniq)
3605 return skb;
3606
3607 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3608 mini_qdisc_bstats_cpu_update(miniq, skb);
3609
3610 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3611 case TC_ACT_OK:
3612 case TC_ACT_RECLASSIFY:
3613 skb->tc_index = TC_H_MIN(cl_res.classid);
3614 break;
3615 case TC_ACT_SHOT:
3616 mini_qdisc_qstats_cpu_drop(miniq);
3617 *ret = NET_XMIT_DROP;
3618 kfree_skb(skb);
3619 return NULL;
3620 case TC_ACT_STOLEN:
3621 case TC_ACT_QUEUED:
3622 case TC_ACT_TRAP:
3623 *ret = NET_XMIT_SUCCESS;
3624 consume_skb(skb);
3625 return NULL;
3626 case TC_ACT_REDIRECT:
3627 /* No need to push/pop skb's mac_header here on egress! */
3628 skb_do_redirect(skb);
3629 *ret = NET_XMIT_SUCCESS;
3630 return NULL;
3631 default:
3632 break;
3633 }
3634
3635 return skb;
3636}
3637#endif /* CONFIG_NET_EGRESS */
3638
3639#ifdef CONFIG_XPS
3640static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3641 struct xps_dev_maps *dev_maps, unsigned int tci)
3642{
3643 struct xps_map *map;
3644 int queue_index = -1;
3645
3646 if (dev->num_tc) {
3647 tci *= dev->num_tc;
3648 tci += netdev_get_prio_tc_map(dev, skb->priority);
3649 }
3650
3651 map = rcu_dereference(dev_maps->attr_map[tci]);
3652 if (map) {
3653 if (map->len == 1)
3654 queue_index = map->queues[0];
3655 else
3656 queue_index = map->queues[reciprocal_scale(
3657 skb_get_hash(skb), map->len)];
3658 if (unlikely(queue_index >= dev->real_num_tx_queues))
3659 queue_index = -1;
3660 }
3661 return queue_index;
3662}
3663#endif
3664
3665static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3666 struct sk_buff *skb)
3667{
3668#ifdef CONFIG_XPS
3669 struct xps_dev_maps *dev_maps;
3670 struct sock *sk = skb->sk;
3671 int queue_index = -1;
3672
3673 if (!static_key_false(&xps_needed))
3674 return -1;
3675
3676 rcu_read_lock();
3677 if (!static_key_false(&xps_rxqs_needed))
3678 goto get_cpus_map;
3679
3680 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3681 if (dev_maps) {
3682 int tci = sk_rx_queue_get(sk);
3683
3684 if (tci >= 0 && tci < dev->num_rx_queues)
3685 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 tci);
3687 }
3688
3689get_cpus_map:
3690 if (queue_index < 0) {
3691 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3692 if (dev_maps) {
3693 unsigned int tci = skb->sender_cpu - 1;
3694
3695 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3696 tci);
3697 }
3698 }
3699 rcu_read_unlock();
3700
3701 return queue_index;
3702#else
3703 return -1;
3704#endif
3705}
3706
3707u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3708 struct net_device *sb_dev)
3709{
3710 return 0;
3711}
3712EXPORT_SYMBOL(dev_pick_tx_zero);
3713
3714u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3715 struct net_device *sb_dev)
3716{
3717 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3718}
3719EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3720
3721u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722 struct net_device *sb_dev)
3723{
3724 struct sock *sk = skb->sk;
3725 int queue_index = sk_tx_queue_get(sk);
3726
3727 sb_dev = sb_dev ? : dev;
3728
3729 if (queue_index < 0 || skb->ooo_okay ||
3730 queue_index >= dev->real_num_tx_queues) {
3731 int new_index = get_xps_queue(dev, sb_dev, skb);
3732
3733 if (new_index < 0)
3734 new_index = skb_tx_hash(dev, sb_dev, skb);
3735
3736 if (queue_index != new_index && sk &&
3737 sk_fullsock(sk) &&
3738 rcu_access_pointer(sk->sk_dst_cache))
3739 sk_tx_queue_set(sk, new_index);
3740
3741 queue_index = new_index;
3742 }
3743
3744 return queue_index;
3745}
3746EXPORT_SYMBOL(netdev_pick_tx);
3747
3748struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3749 struct sk_buff *skb,
3750 struct net_device *sb_dev)
3751{
3752 int queue_index = 0;
3753
3754#ifdef CONFIG_XPS
3755 u32 sender_cpu = skb->sender_cpu - 1;
3756
3757 if (sender_cpu >= (u32)NR_CPUS)
3758 skb->sender_cpu = raw_smp_processor_id() + 1;
3759#endif
3760
3761 if (dev->real_num_tx_queues != 1) {
3762 const struct net_device_ops *ops = dev->netdev_ops;
3763
3764 if (ops->ndo_select_queue)
3765 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3766 else
3767 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3768
3769 queue_index = netdev_cap_txqueue(dev, queue_index);
3770 }
3771
3772 skb_set_queue_mapping(skb, queue_index);
3773 return netdev_get_tx_queue(dev, queue_index);
3774}
3775
3776/**
3777 * __dev_queue_xmit - transmit a buffer
3778 * @skb: buffer to transmit
3779 * @sb_dev: suboordinate device used for L2 forwarding offload
3780 *
3781 * Queue a buffer for transmission to a network device. The caller must
3782 * have set the device and priority and built the buffer before calling
3783 * this function. The function can be called from an interrupt.
3784 *
3785 * A negative errno code is returned on a failure. A success does not
3786 * guarantee the frame will be transmitted as it may be dropped due
3787 * to congestion or traffic shaping.
3788 *
3789 * -----------------------------------------------------------------------------------
3790 * I notice this method can also return errors from the queue disciplines,
3791 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3792 * be positive.
3793 *
3794 * Regardless of the return value, the skb is consumed, so it is currently
3795 * difficult to retry a send to this method. (You can bump the ref count
3796 * before sending to hold a reference for retry if you are careful.)
3797 *
3798 * When calling this method, interrupts MUST be enabled. This is because
3799 * the BH enable code must have IRQs enabled so that it will not deadlock.
3800 * --BLG
3801 */
3802static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3803{
3804 struct net_device *dev = skb->dev;
3805 struct netdev_queue *txq;
3806 struct Qdisc *q;
3807 int rc = -ENOMEM;
3808 bool again = false;
3809
3810 skb_reset_mac_header(skb);
3811
3812 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3814
3815 /* Disable soft irqs for various locks below. Also
3816 * stops preemption for RCU.
3817 */
3818 rcu_read_lock_bh();
3819
3820 skb_update_prio(skb);
3821
3822 qdisc_pkt_len_init(skb);
3823#ifdef CONFIG_NET_CLS_ACT
3824 skb->tc_at_ingress = 0;
3825# ifdef CONFIG_NET_EGRESS
3826 if (static_branch_unlikely(&egress_needed_key)) {
3827 skb = sch_handle_egress(skb, &rc, dev);
3828 if (!skb)
3829 goto out;
3830 }
3831# endif
3832#endif
3833 /* If device/qdisc don't need skb->dst, release it right now while
3834 * its hot in this cpu cache.
3835 */
3836 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 skb_dst_drop(skb);
3838 else
3839 skb_dst_force(skb);
3840
3841 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3842 q = rcu_dereference_bh(txq->qdisc);
3843
3844 trace_net_dev_queue(skb);
3845 if (q->enqueue) {
3846 rc = __dev_xmit_skb(skb, q, dev, txq);
3847 goto out;
3848 }
3849
3850 /* The device has no queue. Common case for software devices:
3851 * loopback, all the sorts of tunnels...
3852
3853 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3855 * counters.)
3856 * However, it is possible, that they rely on protection
3857 * made by us here.
3858
3859 * Check this and shot the lock. It is not prone from deadlocks.
3860 *Either shot noqueue qdisc, it is even simpler 8)
3861 */
3862 if (dev->flags & IFF_UP) {
3863 int cpu = smp_processor_id(); /* ok because BHs are off */
3864
3865 if (txq->xmit_lock_owner != cpu) {
3866 if (dev_xmit_recursion())
3867 goto recursion_alert;
3868
3869 skb = validate_xmit_skb(skb, dev, &again);
3870 if (!skb)
3871 goto out;
3872
3873 HARD_TX_LOCK(dev, txq, cpu);
3874
3875 if (!netif_xmit_stopped(txq)) {
3876 dev_xmit_recursion_inc();
3877 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3878 dev_xmit_recursion_dec();
3879 if (dev_xmit_complete(rc)) {
3880 HARD_TX_UNLOCK(dev, txq);
3881 goto out;
3882 }
3883 }
3884 HARD_TX_UNLOCK(dev, txq);
3885 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3886 dev->name);
3887 } else {
3888 /* Recursion is detected! It is possible,
3889 * unfortunately
3890 */
3891recursion_alert:
3892 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3893 dev->name);
3894 }
3895 }
3896
3897 rc = -ENETDOWN;
3898 rcu_read_unlock_bh();
3899
3900 atomic_long_inc(&dev->tx_dropped);
3901 kfree_skb_list(skb);
3902 return rc;
3903out:
3904 rcu_read_unlock_bh();
3905 return rc;
3906}
3907
3908int dev_queue_xmit(struct sk_buff *skb)
3909{
3910 return __dev_queue_xmit(skb, NULL);
3911}
3912EXPORT_SYMBOL(dev_queue_xmit);
3913
3914int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3915{
3916 return __dev_queue_xmit(skb, sb_dev);
3917}
3918EXPORT_SYMBOL(dev_queue_xmit_accel);
3919
3920int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3921{
3922 struct net_device *dev = skb->dev;
3923 struct sk_buff *orig_skb = skb;
3924 struct netdev_queue *txq;
3925 int ret = NETDEV_TX_BUSY;
3926 bool again = false;
3927
3928 if (unlikely(!netif_running(dev) ||
3929 !netif_carrier_ok(dev)))
3930 goto drop;
3931
3932 skb = validate_xmit_skb_list(skb, dev, &again);
3933 if (skb != orig_skb)
3934 goto drop;
3935
3936 skb_set_queue_mapping(skb, queue_id);
3937 txq = skb_get_tx_queue(dev, skb);
3938
3939 local_bh_disable();
3940
3941 HARD_TX_LOCK(dev, txq, smp_processor_id());
3942 if (!netif_xmit_frozen_or_drv_stopped(txq))
3943 ret = netdev_start_xmit(skb, dev, txq, false);
3944 HARD_TX_UNLOCK(dev, txq);
3945
3946 local_bh_enable();
3947
3948 if (!dev_xmit_complete(ret))
3949 kfree_skb(skb);
3950
3951 return ret;
3952drop:
3953 atomic_long_inc(&dev->tx_dropped);
3954 kfree_skb_list(skb);
3955 return NET_XMIT_DROP;
3956}
3957EXPORT_SYMBOL(dev_direct_xmit);
3958
3959/*************************************************************************
3960 * Receiver routines
3961 *************************************************************************/
3962
3963int netdev_max_backlog __read_mostly = 1000;
3964EXPORT_SYMBOL(netdev_max_backlog);
3965
3966int netdev_tstamp_prequeue __read_mostly = 1;
3967int netdev_budget __read_mostly = 300;
3968unsigned int __read_mostly netdev_budget_usecs = 2000;
3969int weight_p __read_mostly = 64; /* old backlog weight */
3970int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3971int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3972int dev_rx_weight __read_mostly = 64;
3973int dev_tx_weight __read_mostly = 64;
3974
3975/* Called with irq disabled */
3976static inline void ____napi_schedule(struct softnet_data *sd,
3977 struct napi_struct *napi)
3978{
3979 list_add_tail(&napi->poll_list, &sd->poll_list);
3980 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3981}
3982
3983#ifdef CONFIG_RPS
3984
3985/* One global table that all flow-based protocols share. */
3986struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3987EXPORT_SYMBOL(rps_sock_flow_table);
3988u32 rps_cpu_mask __read_mostly;
3989EXPORT_SYMBOL(rps_cpu_mask);
3990
3991struct static_key_false rps_needed __read_mostly;
3992EXPORT_SYMBOL(rps_needed);
3993struct static_key_false rfs_needed __read_mostly;
3994EXPORT_SYMBOL(rfs_needed);
3995
3996static struct rps_dev_flow *
3997set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3998 struct rps_dev_flow *rflow, u16 next_cpu)
3999{
4000 if (next_cpu < nr_cpu_ids) {
4001#ifdef CONFIG_RFS_ACCEL
4002 struct netdev_rx_queue *rxqueue;
4003 struct rps_dev_flow_table *flow_table;
4004 struct rps_dev_flow *old_rflow;
4005 u32 flow_id;
4006 u16 rxq_index;
4007 int rc;
4008
4009 /* Should we steer this flow to a different hardware queue? */
4010 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4011 !(dev->features & NETIF_F_NTUPLE))
4012 goto out;
4013 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4014 if (rxq_index == skb_get_rx_queue(skb))
4015 goto out;
4016
4017 rxqueue = dev->_rx + rxq_index;
4018 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019 if (!flow_table)
4020 goto out;
4021 flow_id = skb_get_hash(skb) & flow_table->mask;
4022 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4023 rxq_index, flow_id);
4024 if (rc < 0)
4025 goto out;
4026 old_rflow = rflow;
4027 rflow = &flow_table->flows[flow_id];
4028 rflow->filter = rc;
4029 if (old_rflow->filter == rflow->filter)
4030 old_rflow->filter = RPS_NO_FILTER;
4031 out:
4032#endif
4033 rflow->last_qtail =
4034 per_cpu(softnet_data, next_cpu).input_queue_head;
4035 }
4036
4037 rflow->cpu = next_cpu;
4038 return rflow;
4039}
4040
4041/*
4042 * get_rps_cpu is called from netif_receive_skb and returns the target
4043 * CPU from the RPS map of the receiving queue for a given skb.
4044 * rcu_read_lock must be held on entry.
4045 */
4046static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4047 struct rps_dev_flow **rflowp)
4048{
4049 const struct rps_sock_flow_table *sock_flow_table;
4050 struct netdev_rx_queue *rxqueue = dev->_rx;
4051 struct rps_dev_flow_table *flow_table;
4052 struct rps_map *map;
4053 int cpu = -1;
4054 u32 tcpu;
4055 u32 hash;
4056
4057 if (skb_rx_queue_recorded(skb)) {
4058 u16 index = skb_get_rx_queue(skb);
4059
4060 if (unlikely(index >= dev->real_num_rx_queues)) {
4061 WARN_ONCE(dev->real_num_rx_queues > 1,
4062 "%s received packet on queue %u, but number "
4063 "of RX queues is %u\n",
4064 dev->name, index, dev->real_num_rx_queues);
4065 goto done;
4066 }
4067 rxqueue += index;
4068 }
4069
4070 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4071
4072 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4073 map = rcu_dereference(rxqueue->rps_map);
4074 if (!flow_table && !map)
4075 goto done;
4076
4077 skb_reset_network_header(skb);
4078 hash = skb_get_hash(skb);
4079 if (!hash)
4080 goto done;
4081
4082 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4083 if (flow_table && sock_flow_table) {
4084 struct rps_dev_flow *rflow;
4085 u32 next_cpu;
4086 u32 ident;
4087
4088 /* First check into global flow table if there is a match */
4089 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4090 if ((ident ^ hash) & ~rps_cpu_mask)
4091 goto try_rps;
4092
4093 next_cpu = ident & rps_cpu_mask;
4094
4095 /* OK, now we know there is a match,
4096 * we can look at the local (per receive queue) flow table
4097 */
4098 rflow = &flow_table->flows[hash & flow_table->mask];
4099 tcpu = rflow->cpu;
4100
4101 /*
4102 * If the desired CPU (where last recvmsg was done) is
4103 * different from current CPU (one in the rx-queue flow
4104 * table entry), switch if one of the following holds:
4105 * - Current CPU is unset (>= nr_cpu_ids).
4106 * - Current CPU is offline.
4107 * - The current CPU's queue tail has advanced beyond the
4108 * last packet that was enqueued using this table entry.
4109 * This guarantees that all previous packets for the flow
4110 * have been dequeued, thus preserving in order delivery.
4111 */
4112 if (unlikely(tcpu != next_cpu) &&
4113 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4114 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4115 rflow->last_qtail)) >= 0)) {
4116 tcpu = next_cpu;
4117 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4118 }
4119
4120 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4121 *rflowp = rflow;
4122 cpu = tcpu;
4123 goto done;
4124 }
4125 }
4126
4127try_rps:
4128
4129 if (map) {
4130 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4131 if (cpu_online(tcpu)) {
4132 cpu = tcpu;
4133 goto done;
4134 }
4135 }
4136
4137done:
4138 return cpu;
4139}
4140
4141#ifdef CONFIG_RFS_ACCEL
4142
4143/**
4144 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145 * @dev: Device on which the filter was set
4146 * @rxq_index: RX queue index
4147 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4149 *
4150 * Drivers that implement ndo_rx_flow_steer() should periodically call
4151 * this function for each installed filter and remove the filters for
4152 * which it returns %true.
4153 */
4154bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4155 u32 flow_id, u16 filter_id)
4156{
4157 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4158 struct rps_dev_flow_table *flow_table;
4159 struct rps_dev_flow *rflow;
4160 bool expire = true;
4161 unsigned int cpu;
4162
4163 rcu_read_lock();
4164 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4165 if (flow_table && flow_id <= flow_table->mask) {
4166 rflow = &flow_table->flows[flow_id];
4167 cpu = READ_ONCE(rflow->cpu);
4168 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4169 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4170 rflow->last_qtail) <
4171 (int)(10 * flow_table->mask)))
4172 expire = false;
4173 }
4174 rcu_read_unlock();
4175 return expire;
4176}
4177EXPORT_SYMBOL(rps_may_expire_flow);
4178
4179#endif /* CONFIG_RFS_ACCEL */
4180
4181/* Called from hardirq (IPI) context */
4182static void rps_trigger_softirq(void *data)
4183{
4184 struct softnet_data *sd = data;
4185
4186 ____napi_schedule(sd, &sd->backlog);
4187 sd->received_rps++;
4188}
4189
4190#endif /* CONFIG_RPS */
4191
4192/*
4193 * Check if this softnet_data structure is another cpu one
4194 * If yes, queue it to our IPI list and return 1
4195 * If no, return 0
4196 */
4197static int rps_ipi_queued(struct softnet_data *sd)
4198{
4199#ifdef CONFIG_RPS
4200 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4201
4202 if (sd != mysd) {
4203 sd->rps_ipi_next = mysd->rps_ipi_list;
4204 mysd->rps_ipi_list = sd;
4205
4206 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 return 1;
4208 }
4209#endif /* CONFIG_RPS */
4210 return 0;
4211}
4212
4213#ifdef CONFIG_NET_FLOW_LIMIT
4214int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215#endif
4216
4217static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4218{
4219#ifdef CONFIG_NET_FLOW_LIMIT
4220 struct sd_flow_limit *fl;
4221 struct softnet_data *sd;
4222 unsigned int old_flow, new_flow;
4223
4224 if (qlen < (netdev_max_backlog >> 1))
4225 return false;
4226
4227 sd = this_cpu_ptr(&softnet_data);
4228
4229 rcu_read_lock();
4230 fl = rcu_dereference(sd->flow_limit);
4231 if (fl) {
4232 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4233 old_flow = fl->history[fl->history_head];
4234 fl->history[fl->history_head] = new_flow;
4235
4236 fl->history_head++;
4237 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4238
4239 if (likely(fl->buckets[old_flow]))
4240 fl->buckets[old_flow]--;
4241
4242 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4243 fl->count++;
4244 rcu_read_unlock();
4245 return true;
4246 }
4247 }
4248 rcu_read_unlock();
4249#endif
4250 return false;
4251}
4252
4253/*
4254 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255 * queue (may be a remote CPU queue).
4256 */
4257static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4258 unsigned int *qtail)
4259{
4260 struct softnet_data *sd;
4261 unsigned long flags;
4262 unsigned int qlen;
4263
4264 sd = &per_cpu(softnet_data, cpu);
4265
4266 local_irq_save(flags);
4267
4268 rps_lock(sd);
4269 if (!netif_running(skb->dev))
4270 goto drop;
4271 qlen = skb_queue_len(&sd->input_pkt_queue);
4272 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4273 if (qlen) {
4274enqueue:
4275 __skb_queue_tail(&sd->input_pkt_queue, skb);
4276 input_queue_tail_incr_save(sd, qtail);
4277 rps_unlock(sd);
4278 local_irq_restore(flags);
4279 return NET_RX_SUCCESS;
4280 }
4281
4282 /* Schedule NAPI for backlog device
4283 * We can use non atomic operation since we own the queue lock
4284 */
4285 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4286 if (!rps_ipi_queued(sd))
4287 ____napi_schedule(sd, &sd->backlog);
4288 }
4289 goto enqueue;
4290 }
4291
4292drop:
4293 sd->dropped++;
4294 rps_unlock(sd);
4295
4296 local_irq_restore(flags);
4297
4298 atomic_long_inc(&skb->dev->rx_dropped);
4299 kfree_skb(skb);
4300 return NET_RX_DROP;
4301}
4302
4303static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4304{
4305 struct net_device *dev = skb->dev;
4306 struct netdev_rx_queue *rxqueue;
4307
4308 rxqueue = dev->_rx;
4309
4310 if (skb_rx_queue_recorded(skb)) {
4311 u16 index = skb_get_rx_queue(skb);
4312
4313 if (unlikely(index >= dev->real_num_rx_queues)) {
4314 WARN_ONCE(dev->real_num_rx_queues > 1,
4315 "%s received packet on queue %u, but number "
4316 "of RX queues is %u\n",
4317 dev->name, index, dev->real_num_rx_queues);
4318
4319 return rxqueue; /* Return first rxqueue */
4320 }
4321 rxqueue += index;
4322 }
4323 return rxqueue;
4324}
4325
4326static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4327 struct xdp_buff *xdp,
4328 struct bpf_prog *xdp_prog)
4329{
4330 struct netdev_rx_queue *rxqueue;
4331 void *orig_data, *orig_data_end;
4332 u32 metalen, act = XDP_DROP;
4333 __be16 orig_eth_type;
4334 struct ethhdr *eth;
4335 bool orig_bcast;
4336 int hlen, off;
4337 u32 mac_len;
4338
4339 /* Reinjected packets coming from act_mirred or similar should
4340 * not get XDP generic processing.
4341 */
4342 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4343 return XDP_PASS;
4344
4345 /* XDP packets must be linear and must have sufficient headroom
4346 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347 * native XDP provides, thus we need to do it here as well.
4348 */
4349 if (skb_is_nonlinear(skb) ||
4350 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4351 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4352 int troom = skb->tail + skb->data_len - skb->end;
4353
4354 /* In case we have to go down the path and also linearize,
4355 * then lets do the pskb_expand_head() work just once here.
4356 */
4357 if (pskb_expand_head(skb,
4358 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4359 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4360 goto do_drop;
4361 if (skb_linearize(skb))
4362 goto do_drop;
4363 }
4364
4365 /* The XDP program wants to see the packet starting at the MAC
4366 * header.
4367 */
4368 mac_len = skb->data - skb_mac_header(skb);
4369 hlen = skb_headlen(skb) + mac_len;
4370 xdp->data = skb->data - mac_len;
4371 xdp->data_meta = xdp->data;
4372 xdp->data_end = xdp->data + hlen;
4373 xdp->data_hard_start = skb->data - skb_headroom(skb);
4374 orig_data_end = xdp->data_end;
4375 orig_data = xdp->data;
4376 eth = (struct ethhdr *)xdp->data;
4377 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4378 orig_eth_type = eth->h_proto;
4379
4380 rxqueue = netif_get_rxqueue(skb);
4381 xdp->rxq = &rxqueue->xdp_rxq;
4382
4383 act = bpf_prog_run_xdp(xdp_prog, xdp);
4384
4385 off = xdp->data - orig_data;
4386 if (off > 0)
4387 __skb_pull(skb, off);
4388 else if (off < 0)
4389 __skb_push(skb, -off);
4390 skb->mac_header += off;
4391
4392 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4393 * pckt.
4394 */
4395 off = orig_data_end - xdp->data_end;
4396 if (off != 0) {
4397 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4398 skb->len -= off;
4399
4400 }
4401
4402 /* check if XDP changed eth hdr such SKB needs update */
4403 eth = (struct ethhdr *)xdp->data;
4404 if ((orig_eth_type != eth->h_proto) ||
4405 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4406 __skb_push(skb, ETH_HLEN);
4407 skb->protocol = eth_type_trans(skb, skb->dev);
4408 }
4409
4410 switch (act) {
4411 case XDP_REDIRECT:
4412 case XDP_TX:
4413 __skb_push(skb, mac_len);
4414 break;
4415 case XDP_PASS:
4416 metalen = xdp->data - xdp->data_meta;
4417 if (metalen)
4418 skb_metadata_set(skb, metalen);
4419 break;
4420 default:
4421 bpf_warn_invalid_xdp_action(act);
4422 /* fall through */
4423 case XDP_ABORTED:
4424 trace_xdp_exception(skb->dev, xdp_prog, act);
4425 /* fall through */
4426 case XDP_DROP:
4427 do_drop:
4428 kfree_skb(skb);
4429 break;
4430 }
4431
4432 return act;
4433}
4434
4435/* When doing generic XDP we have to bypass the qdisc layer and the
4436 * network taps in order to match in-driver-XDP behavior.
4437 */
4438void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4439{
4440 struct net_device *dev = skb->dev;
4441 struct netdev_queue *txq;
4442 bool free_skb = true;
4443 int cpu, rc;
4444
4445 txq = netdev_core_pick_tx(dev, skb, NULL);
4446 cpu = smp_processor_id();
4447 HARD_TX_LOCK(dev, txq, cpu);
4448 if (!netif_xmit_stopped(txq)) {
4449 rc = netdev_start_xmit(skb, dev, txq, 0);
4450 if (dev_xmit_complete(rc))
4451 free_skb = false;
4452 }
4453 HARD_TX_UNLOCK(dev, txq);
4454 if (free_skb) {
4455 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4456 kfree_skb(skb);
4457 }
4458}
4459EXPORT_SYMBOL_GPL(generic_xdp_tx);
4460
4461static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4462
4463int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4464{
4465 if (xdp_prog) {
4466 struct xdp_buff xdp;
4467 u32 act;
4468 int err;
4469
4470 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4471 if (act != XDP_PASS) {
4472 switch (act) {
4473 case XDP_REDIRECT:
4474 err = xdp_do_generic_redirect(skb->dev, skb,
4475 &xdp, xdp_prog);
4476 if (err)
4477 goto out_redir;
4478 break;
4479 case XDP_TX:
4480 generic_xdp_tx(skb, xdp_prog);
4481 break;
4482 }
4483 return XDP_DROP;
4484 }
4485 }
4486 return XDP_PASS;
4487out_redir:
4488 kfree_skb(skb);
4489 return XDP_DROP;
4490}
4491EXPORT_SYMBOL_GPL(do_xdp_generic);
4492
4493static int netif_rx_internal(struct sk_buff *skb)
4494{
4495 int ret;
4496
4497 net_timestamp_check(netdev_tstamp_prequeue, skb);
4498
4499 trace_netif_rx(skb);
4500
4501#ifdef CONFIG_RPS
4502 if (static_branch_unlikely(&rps_needed)) {
4503 struct rps_dev_flow voidflow, *rflow = &voidflow;
4504 int cpu;
4505
4506 preempt_disable();
4507 rcu_read_lock();
4508
4509 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4510 if (cpu < 0)
4511 cpu = smp_processor_id();
4512
4513 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4514
4515 rcu_read_unlock();
4516 preempt_enable();
4517 } else
4518#endif
4519 {
4520 unsigned int qtail;
4521
4522 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4523 put_cpu();
4524 }
4525 return ret;
4526}
4527
4528/**
4529 * netif_rx - post buffer to the network code
4530 * @skb: buffer to post
4531 *
4532 * This function receives a packet from a device driver and queues it for
4533 * the upper (protocol) levels to process. It always succeeds. The buffer
4534 * may be dropped during processing for congestion control or by the
4535 * protocol layers.
4536 *
4537 * return values:
4538 * NET_RX_SUCCESS (no congestion)
4539 * NET_RX_DROP (packet was dropped)
4540 *
4541 */
4542
4543int netif_rx(struct sk_buff *skb)
4544{
4545 int ret;
4546
4547 trace_netif_rx_entry(skb);
4548
4549 ret = netif_rx_internal(skb);
4550 trace_netif_rx_exit(ret);
4551
4552 return ret;
4553}
4554EXPORT_SYMBOL(netif_rx);
4555
4556int netif_rx_ni(struct sk_buff *skb)
4557{
4558 int err;
4559
4560 trace_netif_rx_ni_entry(skb);
4561
4562 preempt_disable();
4563 err = netif_rx_internal(skb);
4564 if (local_softirq_pending())
4565 do_softirq();
4566 preempt_enable();
4567 trace_netif_rx_ni_exit(err);
4568
4569 return err;
4570}
4571EXPORT_SYMBOL(netif_rx_ni);
4572
4573static __latent_entropy void net_tx_action(struct softirq_action *h)
4574{
4575 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4576
4577 if (sd->completion_queue) {
4578 struct sk_buff *clist;
4579
4580 local_irq_disable();
4581 clist = sd->completion_queue;
4582 sd->completion_queue = NULL;
4583 local_irq_enable();
4584
4585 while (clist) {
4586 struct sk_buff *skb = clist;
4587
4588 clist = clist->next;
4589
4590 WARN_ON(refcount_read(&skb->users));
4591 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4592 trace_consume_skb(skb);
4593 else
4594 trace_kfree_skb(skb, net_tx_action);
4595
4596 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4597 __kfree_skb(skb);
4598 else
4599 __kfree_skb_defer(skb);
4600 }
4601
4602 __kfree_skb_flush();
4603 }
4604
4605 if (sd->output_queue) {
4606 struct Qdisc *head;
4607
4608 local_irq_disable();
4609 head = sd->output_queue;
4610 sd->output_queue = NULL;
4611 sd->output_queue_tailp = &sd->output_queue;
4612 local_irq_enable();
4613
4614 while (head) {
4615 struct Qdisc *q = head;
4616 spinlock_t *root_lock = NULL;
4617
4618 head = head->next_sched;
4619
4620 if (!(q->flags & TCQ_F_NOLOCK)) {
4621 root_lock = qdisc_lock(q);
4622 spin_lock(root_lock);
4623 }
4624 /* We need to make sure head->next_sched is read
4625 * before clearing __QDISC_STATE_SCHED
4626 */
4627 smp_mb__before_atomic();
4628 clear_bit(__QDISC_STATE_SCHED, &q->state);
4629 qdisc_run(q);
4630 if (root_lock)
4631 spin_unlock(root_lock);
4632 }
4633 }
4634
4635 xfrm_dev_backlog(sd);
4636}
4637
4638#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4639/* This hook is defined here for ATM LANE */
4640int (*br_fdb_test_addr_hook)(struct net_device *dev,
4641 unsigned char *addr) __read_mostly;
4642EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4643#endif
4644
4645static inline struct sk_buff *
4646sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4647 struct net_device *orig_dev)
4648{
4649#ifdef CONFIG_NET_CLS_ACT
4650 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4651 struct tcf_result cl_res;
4652
4653 /* If there's at least one ingress present somewhere (so
4654 * we get here via enabled static key), remaining devices
4655 * that are not configured with an ingress qdisc will bail
4656 * out here.
4657 */
4658 if (!miniq)
4659 return skb;
4660
4661 if (*pt_prev) {
4662 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4663 *pt_prev = NULL;
4664 }
4665
4666 qdisc_skb_cb(skb)->pkt_len = skb->len;
4667 skb->tc_at_ingress = 1;
4668 mini_qdisc_bstats_cpu_update(miniq, skb);
4669
4670 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4671 case TC_ACT_OK:
4672 case TC_ACT_RECLASSIFY:
4673 skb->tc_index = TC_H_MIN(cl_res.classid);
4674 break;
4675 case TC_ACT_SHOT:
4676 mini_qdisc_qstats_cpu_drop(miniq);
4677 kfree_skb(skb);
4678 return NULL;
4679 case TC_ACT_STOLEN:
4680 case TC_ACT_QUEUED:
4681 case TC_ACT_TRAP:
4682 consume_skb(skb);
4683 return NULL;
4684 case TC_ACT_REDIRECT:
4685 /* skb_mac_header check was done by cls/act_bpf, so
4686 * we can safely push the L2 header back before
4687 * redirecting to another netdev
4688 */
4689 __skb_push(skb, skb->mac_len);
4690 skb_do_redirect(skb);
4691 return NULL;
4692 case TC_ACT_REINSERT:
4693 /* this does not scrub the packet, and updates stats on error */
4694 skb_tc_reinsert(skb, &cl_res);
4695 return NULL;
4696 default:
4697 break;
4698 }
4699#endif /* CONFIG_NET_CLS_ACT */
4700 return skb;
4701}
4702
4703/**
4704 * netdev_is_rx_handler_busy - check if receive handler is registered
4705 * @dev: device to check
4706 *
4707 * Check if a receive handler is already registered for a given device.
4708 * Return true if there one.
4709 *
4710 * The caller must hold the rtnl_mutex.
4711 */
4712bool netdev_is_rx_handler_busy(struct net_device *dev)
4713{
4714 ASSERT_RTNL();
4715 return dev && rtnl_dereference(dev->rx_handler);
4716}
4717EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4718
4719/**
4720 * netdev_rx_handler_register - register receive handler
4721 * @dev: device to register a handler for
4722 * @rx_handler: receive handler to register
4723 * @rx_handler_data: data pointer that is used by rx handler
4724 *
4725 * Register a receive handler for a device. This handler will then be
4726 * called from __netif_receive_skb. A negative errno code is returned
4727 * on a failure.
4728 *
4729 * The caller must hold the rtnl_mutex.
4730 *
4731 * For a general description of rx_handler, see enum rx_handler_result.
4732 */
4733int netdev_rx_handler_register(struct net_device *dev,
4734 rx_handler_func_t *rx_handler,
4735 void *rx_handler_data)
4736{
4737 if (netdev_is_rx_handler_busy(dev))
4738 return -EBUSY;
4739
4740 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4741 return -EINVAL;
4742
4743 /* Note: rx_handler_data must be set before rx_handler */
4744 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4745 rcu_assign_pointer(dev->rx_handler, rx_handler);
4746
4747 return 0;
4748}
4749EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4750
4751/**
4752 * netdev_rx_handler_unregister - unregister receive handler
4753 * @dev: device to unregister a handler from
4754 *
4755 * Unregister a receive handler from a device.
4756 *
4757 * The caller must hold the rtnl_mutex.
4758 */
4759void netdev_rx_handler_unregister(struct net_device *dev)
4760{
4761
4762 ASSERT_RTNL();
4763 RCU_INIT_POINTER(dev->rx_handler, NULL);
4764 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4765 * section has a guarantee to see a non NULL rx_handler_data
4766 * as well.
4767 */
4768 synchronize_net();
4769 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4770}
4771EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4772
4773/*
4774 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4775 * the special handling of PFMEMALLOC skbs.
4776 */
4777static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4778{
4779 switch (skb->protocol) {
4780 case htons(ETH_P_ARP):
4781 case htons(ETH_P_IP):
4782 case htons(ETH_P_IPV6):
4783 case htons(ETH_P_8021Q):
4784 case htons(ETH_P_8021AD):
4785 return true;
4786 default:
4787 return false;
4788 }
4789}
4790
4791static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4792 int *ret, struct net_device *orig_dev)
4793{
4794#ifdef CONFIG_NETFILTER_INGRESS
4795 if (nf_hook_ingress_active(skb)) {
4796 int ingress_retval;
4797
4798 if (*pt_prev) {
4799 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4800 *pt_prev = NULL;
4801 }
4802
4803 rcu_read_lock();
4804 ingress_retval = nf_hook_ingress(skb);
4805 rcu_read_unlock();
4806 return ingress_retval;
4807 }
4808#endif /* CONFIG_NETFILTER_INGRESS */
4809 return 0;
4810}
4811
4812static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4813 struct packet_type **ppt_prev)
4814{
4815 struct packet_type *ptype, *pt_prev;
4816 rx_handler_func_t *rx_handler;
4817 struct net_device *orig_dev;
4818 bool deliver_exact = false;
4819 int ret = NET_RX_DROP;
4820 __be16 type;
4821
4822 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4823
4824 trace_netif_receive_skb(skb);
4825
4826 orig_dev = skb->dev;
4827
4828 skb_reset_network_header(skb);
4829 if (!skb_transport_header_was_set(skb))
4830 skb_reset_transport_header(skb);
4831 skb_reset_mac_len(skb);
4832
4833 pt_prev = NULL;
4834
4835another_round:
4836 skb->skb_iif = skb->dev->ifindex;
4837
4838 __this_cpu_inc(softnet_data.processed);
4839
4840 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4841 int ret2;
4842
4843 preempt_disable();
4844 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4845 preempt_enable();
4846
4847 if (ret2 != XDP_PASS)
4848 return NET_RX_DROP;
4849 skb_reset_mac_len(skb);
4850 }
4851
4852 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854 skb = skb_vlan_untag(skb);
4855 if (unlikely(!skb))
4856 goto out;
4857 }
4858
4859 if (skb_skip_tc_classify(skb))
4860 goto skip_classify;
4861
4862 if (pfmemalloc)
4863 goto skip_taps;
4864
4865 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4866 if (pt_prev)
4867 ret = deliver_skb(skb, pt_prev, orig_dev);
4868 pt_prev = ptype;
4869 }
4870
4871 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4872 if (pt_prev)
4873 ret = deliver_skb(skb, pt_prev, orig_dev);
4874 pt_prev = ptype;
4875 }
4876
4877skip_taps:
4878#ifdef CONFIG_NET_INGRESS
4879 if (static_branch_unlikely(&ingress_needed_key)) {
4880 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4881 if (!skb)
4882 goto out;
4883
4884 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4885 goto out;
4886 }
4887#endif
4888 skb_reset_tc(skb);
4889skip_classify:
4890 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4891 goto drop;
4892
4893 if (skb_vlan_tag_present(skb)) {
4894 if (pt_prev) {
4895 ret = deliver_skb(skb, pt_prev, orig_dev);
4896 pt_prev = NULL;
4897 }
4898 if (vlan_do_receive(&skb))
4899 goto another_round;
4900 else if (unlikely(!skb))
4901 goto out;
4902 }
4903
4904 rx_handler = rcu_dereference(skb->dev->rx_handler);
4905 if (rx_handler) {
4906 if (pt_prev) {
4907 ret = deliver_skb(skb, pt_prev, orig_dev);
4908 pt_prev = NULL;
4909 }
4910 switch (rx_handler(&skb)) {
4911 case RX_HANDLER_CONSUMED:
4912 ret = NET_RX_SUCCESS;
4913 goto out;
4914 case RX_HANDLER_ANOTHER:
4915 goto another_round;
4916 case RX_HANDLER_EXACT:
4917 deliver_exact = true;
4918 case RX_HANDLER_PASS:
4919 break;
4920 default:
4921 BUG();
4922 }
4923 }
4924
4925 if (unlikely(skb_vlan_tag_present(skb))) {
4926 if (skb_vlan_tag_get_id(skb))
4927 skb->pkt_type = PACKET_OTHERHOST;
4928 /* Note: we might in the future use prio bits
4929 * and set skb->priority like in vlan_do_receive()
4930 * For the time being, just ignore Priority Code Point
4931 */
4932 __vlan_hwaccel_clear_tag(skb);
4933 }
4934
4935 type = skb->protocol;
4936
4937 /* deliver only exact match when indicated */
4938 if (likely(!deliver_exact)) {
4939 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4940 &ptype_base[ntohs(type) &
4941 PTYPE_HASH_MASK]);
4942 }
4943
4944 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4945 &orig_dev->ptype_specific);
4946
4947 if (unlikely(skb->dev != orig_dev)) {
4948 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949 &skb->dev->ptype_specific);
4950 }
4951
4952 if (pt_prev) {
4953 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4954 goto drop;
4955 *ppt_prev = pt_prev;
4956 } else {
4957drop:
4958 if (!deliver_exact)
4959 atomic_long_inc(&skb->dev->rx_dropped);
4960 else
4961 atomic_long_inc(&skb->dev->rx_nohandler);
4962 kfree_skb(skb);
4963 /* Jamal, now you will not able to escape explaining
4964 * me how you were going to use this. :-)
4965 */
4966 ret = NET_RX_DROP;
4967 }
4968
4969out:
4970 return ret;
4971}
4972
4973static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4974{
4975 struct net_device *orig_dev = skb->dev;
4976 struct packet_type *pt_prev = NULL;
4977 int ret;
4978
4979 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4980 if (pt_prev)
4981 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4982 skb->dev, pt_prev, orig_dev);
4983 return ret;
4984}
4985
4986/**
4987 * netif_receive_skb_core - special purpose version of netif_receive_skb
4988 * @skb: buffer to process
4989 *
4990 * More direct receive version of netif_receive_skb(). It should
4991 * only be used by callers that have a need to skip RPS and Generic XDP.
4992 * Caller must also take care of handling if (page_is_)pfmemalloc.
4993 *
4994 * This function may only be called from softirq context and interrupts
4995 * should be enabled.
4996 *
4997 * Return values (usually ignored):
4998 * NET_RX_SUCCESS: no congestion
4999 * NET_RX_DROP: packet was dropped
5000 */
5001int netif_receive_skb_core(struct sk_buff *skb)
5002{
5003 int ret;
5004
5005 rcu_read_lock();
5006 ret = __netif_receive_skb_one_core(skb, false);
5007 rcu_read_unlock();
5008
5009 return ret;
5010}
5011EXPORT_SYMBOL(netif_receive_skb_core);
5012
5013static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5014 struct packet_type *pt_prev,
5015 struct net_device *orig_dev)
5016{
5017 struct sk_buff *skb, *next;
5018
5019 if (!pt_prev)
5020 return;
5021 if (list_empty(head))
5022 return;
5023 if (pt_prev->list_func != NULL)
5024 pt_prev->list_func(head, pt_prev, orig_dev);
5025 else
5026 list_for_each_entry_safe(skb, next, head, list) {
5027 skb_list_del_init(skb);
5028 INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5029 skb->dev, pt_prev, orig_dev);
5030 }
5031}
5032
5033static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5034{
5035 /* Fast-path assumptions:
5036 * - There is no RX handler.
5037 * - Only one packet_type matches.
5038 * If either of these fails, we will end up doing some per-packet
5039 * processing in-line, then handling the 'last ptype' for the whole
5040 * sublist. This can't cause out-of-order delivery to any single ptype,
5041 * because the 'last ptype' must be constant across the sublist, and all
5042 * other ptypes are handled per-packet.
5043 */
5044 /* Current (common) ptype of sublist */
5045 struct packet_type *pt_curr = NULL;
5046 /* Current (common) orig_dev of sublist */
5047 struct net_device *od_curr = NULL;
5048 struct list_head sublist;
5049 struct sk_buff *skb, *next;
5050
5051 INIT_LIST_HEAD(&sublist);
5052 list_for_each_entry_safe(skb, next, head, list) {
5053 struct net_device *orig_dev = skb->dev;
5054 struct packet_type *pt_prev = NULL;
5055
5056 skb_list_del_init(skb);
5057 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5058 if (!pt_prev)
5059 continue;
5060 if (pt_curr != pt_prev || od_curr != orig_dev) {
5061 /* dispatch old sublist */
5062 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5063 /* start new sublist */
5064 INIT_LIST_HEAD(&sublist);
5065 pt_curr = pt_prev;
5066 od_curr = orig_dev;
5067 }
5068 list_add_tail(&skb->list, &sublist);
5069 }
5070
5071 /* dispatch final sublist */
5072 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5073}
5074
5075static int __netif_receive_skb(struct sk_buff *skb)
5076{
5077 int ret;
5078
5079 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5080 unsigned int noreclaim_flag;
5081
5082 /*
5083 * PFMEMALLOC skbs are special, they should
5084 * - be delivered to SOCK_MEMALLOC sockets only
5085 * - stay away from userspace
5086 * - have bounded memory usage
5087 *
5088 * Use PF_MEMALLOC as this saves us from propagating the allocation
5089 * context down to all allocation sites.
5090 */
5091 noreclaim_flag = memalloc_noreclaim_save();
5092 ret = __netif_receive_skb_one_core(skb, true);
5093 memalloc_noreclaim_restore(noreclaim_flag);
5094 } else
5095 ret = __netif_receive_skb_one_core(skb, false);
5096
5097 return ret;
5098}
5099
5100static void __netif_receive_skb_list(struct list_head *head)
5101{
5102 unsigned long noreclaim_flag = 0;
5103 struct sk_buff *skb, *next;
5104 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5105
5106 list_for_each_entry_safe(skb, next, head, list) {
5107 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5108 struct list_head sublist;
5109
5110 /* Handle the previous sublist */
5111 list_cut_before(&sublist, head, &skb->list);
5112 if (!list_empty(&sublist))
5113 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5114 pfmemalloc = !pfmemalloc;
5115 /* See comments in __netif_receive_skb */
5116 if (pfmemalloc)
5117 noreclaim_flag = memalloc_noreclaim_save();
5118 else
5119 memalloc_noreclaim_restore(noreclaim_flag);
5120 }
5121 }
5122 /* Handle the remaining sublist */
5123 if (!list_empty(head))
5124 __netif_receive_skb_list_core(head, pfmemalloc);
5125 /* Restore pflags */
5126 if (pfmemalloc)
5127 memalloc_noreclaim_restore(noreclaim_flag);
5128}
5129
5130static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5131{
5132 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5133 struct bpf_prog *new = xdp->prog;
5134 int ret = 0;
5135
5136 switch (xdp->command) {
5137 case XDP_SETUP_PROG:
5138 rcu_assign_pointer(dev->xdp_prog, new);
5139 if (old)
5140 bpf_prog_put(old);
5141
5142 if (old && !new) {
5143 static_branch_dec(&generic_xdp_needed_key);
5144 } else if (new && !old) {
5145 static_branch_inc(&generic_xdp_needed_key);
5146 dev_disable_lro(dev);
5147 dev_disable_gro_hw(dev);
5148 }
5149 break;
5150
5151 case XDP_QUERY_PROG:
5152 xdp->prog_id = old ? old->aux->id : 0;
5153 break;
5154
5155 default:
5156 ret = -EINVAL;
5157 break;
5158 }
5159
5160 return ret;
5161}
5162
5163static int netif_receive_skb_internal(struct sk_buff *skb)
5164{
5165 int ret;
5166
5167 net_timestamp_check(netdev_tstamp_prequeue, skb);
5168
5169 if (skb_defer_rx_timestamp(skb))
5170 return NET_RX_SUCCESS;
5171
5172 rcu_read_lock();
5173#ifdef CONFIG_RPS
5174 if (static_branch_unlikely(&rps_needed)) {
5175 struct rps_dev_flow voidflow, *rflow = &voidflow;
5176 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5177
5178 if (cpu >= 0) {
5179 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5180 rcu_read_unlock();
5181 return ret;
5182 }
5183 }
5184#endif
5185 ret = __netif_receive_skb(skb);
5186 rcu_read_unlock();
5187 return ret;
5188}
5189
5190static void netif_receive_skb_list_internal(struct list_head *head)
5191{
5192 struct sk_buff *skb, *next;
5193 struct list_head sublist;
5194
5195 INIT_LIST_HEAD(&sublist);
5196 list_for_each_entry_safe(skb, next, head, list) {
5197 net_timestamp_check(netdev_tstamp_prequeue, skb);
5198 skb_list_del_init(skb);
5199 if (!skb_defer_rx_timestamp(skb))
5200 list_add_tail(&skb->list, &sublist);
5201 }
5202 list_splice_init(&sublist, head);
5203
5204 rcu_read_lock();
5205#ifdef CONFIG_RPS
5206 if (static_branch_unlikely(&rps_needed)) {
5207 list_for_each_entry_safe(skb, next, head, list) {
5208 struct rps_dev_flow voidflow, *rflow = &voidflow;
5209 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5210
5211 if (cpu >= 0) {
5212 /* Will be handled, remove from list */
5213 skb_list_del_init(skb);
5214 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5215 }
5216 }
5217 }
5218#endif
5219 __netif_receive_skb_list(head);
5220 rcu_read_unlock();
5221}
5222
5223/**
5224 * netif_receive_skb - process receive buffer from network
5225 * @skb: buffer to process
5226 *
5227 * netif_receive_skb() is the main receive data processing function.
5228 * It always succeeds. The buffer may be dropped during processing
5229 * for congestion control or by the protocol layers.
5230 *
5231 * This function may only be called from softirq context and interrupts
5232 * should be enabled.
5233 *
5234 * Return values (usually ignored):
5235 * NET_RX_SUCCESS: no congestion
5236 * NET_RX_DROP: packet was dropped
5237 */
5238int netif_receive_skb(struct sk_buff *skb)
5239{
5240 int ret;
5241
5242 trace_netif_receive_skb_entry(skb);
5243
5244 ret = netif_receive_skb_internal(skb);
5245 trace_netif_receive_skb_exit(ret);
5246
5247 return ret;
5248}
5249EXPORT_SYMBOL(netif_receive_skb);
5250
5251/**
5252 * netif_receive_skb_list - process many receive buffers from network
5253 * @head: list of skbs to process.
5254 *
5255 * Since return value of netif_receive_skb() is normally ignored, and
5256 * wouldn't be meaningful for a list, this function returns void.
5257 *
5258 * This function may only be called from softirq context and interrupts
5259 * should be enabled.
5260 */
5261void netif_receive_skb_list(struct list_head *head)
5262{
5263 struct sk_buff *skb;
5264
5265 if (list_empty(head))
5266 return;
5267 if (trace_netif_receive_skb_list_entry_enabled()) {
5268 list_for_each_entry(skb, head, list)
5269 trace_netif_receive_skb_list_entry(skb);
5270 }
5271 netif_receive_skb_list_internal(head);
5272 trace_netif_receive_skb_list_exit(0);
5273}
5274EXPORT_SYMBOL(netif_receive_skb_list);
5275
5276DEFINE_PER_CPU(struct work_struct, flush_works);
5277
5278/* Network device is going away, flush any packets still pending */
5279static void flush_backlog(struct work_struct *work)
5280{
5281 struct sk_buff *skb, *tmp;
5282 struct softnet_data *sd;
5283
5284 local_bh_disable();
5285 sd = this_cpu_ptr(&softnet_data);
5286
5287 local_irq_disable();
5288 rps_lock(sd);
5289 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5290 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5291 __skb_unlink(skb, &sd->input_pkt_queue);
5292 kfree_skb(skb);
5293 input_queue_head_incr(sd);
5294 }
5295 }
5296 rps_unlock(sd);
5297 local_irq_enable();
5298
5299 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5300 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5301 __skb_unlink(skb, &sd->process_queue);
5302 kfree_skb(skb);
5303 input_queue_head_incr(sd);
5304 }
5305 }
5306 local_bh_enable();
5307}
5308
5309static void flush_all_backlogs(void)
5310{
5311 unsigned int cpu;
5312
5313 get_online_cpus();
5314
5315 for_each_online_cpu(cpu)
5316 queue_work_on(cpu, system_highpri_wq,
5317 per_cpu_ptr(&flush_works, cpu));
5318
5319 for_each_online_cpu(cpu)
5320 flush_work(per_cpu_ptr(&flush_works, cpu));
5321
5322 put_online_cpus();
5323}
5324
5325INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5326INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5327static int napi_gro_complete(struct sk_buff *skb)
5328{
5329 struct packet_offload *ptype;
5330 __be16 type = skb->protocol;
5331 struct list_head *head = &offload_base;
5332 int err = -ENOENT;
5333
5334 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5335
5336 if (NAPI_GRO_CB(skb)->count == 1) {
5337 skb_shinfo(skb)->gso_size = 0;
5338 goto out;
5339 }
5340
5341 rcu_read_lock();
5342 list_for_each_entry_rcu(ptype, head, list) {
5343 if (ptype->type != type || !ptype->callbacks.gro_complete)
5344 continue;
5345
5346 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5347 ipv6_gro_complete, inet_gro_complete,
5348 skb, 0);
5349 break;
5350 }
5351 rcu_read_unlock();
5352
5353 if (err) {
5354 WARN_ON(&ptype->list == head);
5355 kfree_skb(skb);
5356 return NET_RX_SUCCESS;
5357 }
5358
5359out:
5360 return netif_receive_skb_internal(skb);
5361}
5362
5363static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5364 bool flush_old)
5365{
5366 struct list_head *head = &napi->gro_hash[index].list;
5367 struct sk_buff *skb, *p;
5368
5369 list_for_each_entry_safe_reverse(skb, p, head, list) {
5370 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5371 return;
5372 skb_list_del_init(skb);
5373 napi_gro_complete(skb);
5374 napi->gro_hash[index].count--;
5375 }
5376
5377 if (!napi->gro_hash[index].count)
5378 __clear_bit(index, &napi->gro_bitmask);
5379}
5380
5381/* napi->gro_hash[].list contains packets ordered by age.
5382 * youngest packets at the head of it.
5383 * Complete skbs in reverse order to reduce latencies.
5384 */
5385void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5386{
5387 unsigned long bitmask = napi->gro_bitmask;
5388 unsigned int i, base = ~0U;
5389
5390 while ((i = ffs(bitmask)) != 0) {
5391 bitmask >>= i;
5392 base += i;
5393 __napi_gro_flush_chain(napi, base, flush_old);
5394 }
5395}
5396EXPORT_SYMBOL(napi_gro_flush);
5397
5398static struct list_head *gro_list_prepare(struct napi_struct *napi,
5399 struct sk_buff *skb)
5400{
5401 unsigned int maclen = skb->dev->hard_header_len;
5402 u32 hash = skb_get_hash_raw(skb);
5403 struct list_head *head;
5404 struct sk_buff *p;
5405
5406 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5407 list_for_each_entry(p, head, list) {
5408 unsigned long diffs;
5409
5410 NAPI_GRO_CB(p)->flush = 0;
5411
5412 if (hash != skb_get_hash_raw(p)) {
5413 NAPI_GRO_CB(p)->same_flow = 0;
5414 continue;
5415 }
5416
5417 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5418 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5419 if (skb_vlan_tag_present(p))
5420 diffs |= p->vlan_tci ^ skb->vlan_tci;
5421 diffs |= skb_metadata_dst_cmp(p, skb);
5422 diffs |= skb_metadata_differs(p, skb);
5423 if (maclen == ETH_HLEN)
5424 diffs |= compare_ether_header(skb_mac_header(p),
5425 skb_mac_header(skb));
5426 else if (!diffs)
5427 diffs = memcmp(skb_mac_header(p),
5428 skb_mac_header(skb),
5429 maclen);
5430 NAPI_GRO_CB(p)->same_flow = !diffs;
5431 }
5432
5433 return head;
5434}
5435
5436static void skb_gro_reset_offset(struct sk_buff *skb)
5437{
5438 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5439 const skb_frag_t *frag0 = &pinfo->frags[0];
5440
5441 NAPI_GRO_CB(skb)->data_offset = 0;
5442 NAPI_GRO_CB(skb)->frag0 = NULL;
5443 NAPI_GRO_CB(skb)->frag0_len = 0;
5444
5445 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5446 pinfo->nr_frags &&
5447 !PageHighMem(skb_frag_page(frag0))) {
5448 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5449 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5450 skb_frag_size(frag0),
5451 skb->end - skb->tail);
5452 }
5453}
5454
5455static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5456{
5457 struct skb_shared_info *pinfo = skb_shinfo(skb);
5458
5459 BUG_ON(skb->end - skb->tail < grow);
5460
5461 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5462
5463 skb->data_len -= grow;
5464 skb->tail += grow;
5465
5466 pinfo->frags[0].page_offset += grow;
5467 skb_frag_size_sub(&pinfo->frags[0], grow);
5468
5469 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5470 skb_frag_unref(skb, 0);
5471 memmove(pinfo->frags, pinfo->frags + 1,
5472 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5473 }
5474}
5475
5476static void gro_flush_oldest(struct list_head *head)
5477{
5478 struct sk_buff *oldest;
5479
5480 oldest = list_last_entry(head, struct sk_buff, list);
5481
5482 /* We are called with head length >= MAX_GRO_SKBS, so this is
5483 * impossible.
5484 */
5485 if (WARN_ON_ONCE(!oldest))
5486 return;
5487
5488 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5489 * SKB to the chain.
5490 */
5491 skb_list_del_init(oldest);
5492 napi_gro_complete(oldest);
5493}
5494
5495INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5496 struct sk_buff *));
5497INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5498 struct sk_buff *));
5499static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5500{
5501 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5502 struct list_head *head = &offload_base;
5503 struct packet_offload *ptype;
5504 __be16 type = skb->protocol;
5505 struct list_head *gro_head;
5506 struct sk_buff *pp = NULL;
5507 enum gro_result ret;
5508 int same_flow;
5509 int grow;
5510
5511 if (netif_elide_gro(skb->dev))
5512 goto normal;
5513
5514 gro_head = gro_list_prepare(napi, skb);
5515
5516 rcu_read_lock();
5517 list_for_each_entry_rcu(ptype, head, list) {
5518 if (ptype->type != type || !ptype->callbacks.gro_receive)
5519 continue;
5520
5521 skb_set_network_header(skb, skb_gro_offset(skb));
5522 skb_reset_mac_len(skb);
5523 NAPI_GRO_CB(skb)->same_flow = 0;
5524 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5525 NAPI_GRO_CB(skb)->free = 0;
5526 NAPI_GRO_CB(skb)->encap_mark = 0;
5527 NAPI_GRO_CB(skb)->recursion_counter = 0;
5528 NAPI_GRO_CB(skb)->is_fou = 0;
5529 NAPI_GRO_CB(skb)->is_atomic = 1;
5530 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5531
5532 /* Setup for GRO checksum validation */
5533 switch (skb->ip_summed) {
5534 case CHECKSUM_COMPLETE:
5535 NAPI_GRO_CB(skb)->csum = skb->csum;
5536 NAPI_GRO_CB(skb)->csum_valid = 1;
5537 NAPI_GRO_CB(skb)->csum_cnt = 0;
5538 break;
5539 case CHECKSUM_UNNECESSARY:
5540 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5541 NAPI_GRO_CB(skb)->csum_valid = 0;
5542 break;
5543 default:
5544 NAPI_GRO_CB(skb)->csum_cnt = 0;
5545 NAPI_GRO_CB(skb)->csum_valid = 0;
5546 }
5547
5548 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5549 ipv6_gro_receive, inet_gro_receive,
5550 gro_head, skb);
5551 break;
5552 }
5553 rcu_read_unlock();
5554
5555 if (&ptype->list == head)
5556 goto normal;
5557
5558 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5559 ret = GRO_CONSUMED;
5560 goto ok;
5561 }
5562
5563 same_flow = NAPI_GRO_CB(skb)->same_flow;
5564 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5565
5566 if (pp) {
5567 skb_list_del_init(pp);
5568 napi_gro_complete(pp);
5569 napi->gro_hash[hash].count--;
5570 }
5571
5572 if (same_flow)
5573 goto ok;
5574
5575 if (NAPI_GRO_CB(skb)->flush)
5576 goto normal;
5577
5578 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5579 gro_flush_oldest(gro_head);
5580 } else {
5581 napi->gro_hash[hash].count++;
5582 }
5583 NAPI_GRO_CB(skb)->count = 1;
5584 NAPI_GRO_CB(skb)->age = jiffies;
5585 NAPI_GRO_CB(skb)->last = skb;
5586 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5587 list_add(&skb->list, gro_head);
5588 ret = GRO_HELD;
5589
5590pull:
5591 grow = skb_gro_offset(skb) - skb_headlen(skb);
5592 if (grow > 0)
5593 gro_pull_from_frag0(skb, grow);
5594ok:
5595 if (napi->gro_hash[hash].count) {
5596 if (!test_bit(hash, &napi->gro_bitmask))
5597 __set_bit(hash, &napi->gro_bitmask);
5598 } else if (test_bit(hash, &napi->gro_bitmask)) {
5599 __clear_bit(hash, &napi->gro_bitmask);
5600 }
5601
5602 return ret;
5603
5604normal:
5605 ret = GRO_NORMAL;
5606 goto pull;
5607}
5608
5609struct packet_offload *gro_find_receive_by_type(__be16 type)
5610{
5611 struct list_head *offload_head = &offload_base;
5612 struct packet_offload *ptype;
5613
5614 list_for_each_entry_rcu(ptype, offload_head, list) {
5615 if (ptype->type != type || !ptype->callbacks.gro_receive)
5616 continue;
5617 return ptype;
5618 }
5619 return NULL;
5620}
5621EXPORT_SYMBOL(gro_find_receive_by_type);
5622
5623struct packet_offload *gro_find_complete_by_type(__be16 type)
5624{
5625 struct list_head *offload_head = &offload_base;
5626 struct packet_offload *ptype;
5627
5628 list_for_each_entry_rcu(ptype, offload_head, list) {
5629 if (ptype->type != type || !ptype->callbacks.gro_complete)
5630 continue;
5631 return ptype;
5632 }
5633 return NULL;
5634}
5635EXPORT_SYMBOL(gro_find_complete_by_type);
5636
5637static void napi_skb_free_stolen_head(struct sk_buff *skb)
5638{
5639 skb_dst_drop(skb);
5640 secpath_reset(skb);
5641 kmem_cache_free(skbuff_head_cache, skb);
5642}
5643
5644static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5645{
5646 switch (ret) {
5647 case GRO_NORMAL:
5648 if (netif_receive_skb_internal(skb))
5649 ret = GRO_DROP;
5650 break;
5651
5652 case GRO_DROP:
5653 kfree_skb(skb);
5654 break;
5655
5656 case GRO_MERGED_FREE:
5657 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5658 napi_skb_free_stolen_head(skb);
5659 else
5660 __kfree_skb(skb);
5661 break;
5662
5663 case GRO_HELD:
5664 case GRO_MERGED:
5665 case GRO_CONSUMED:
5666 break;
5667 }
5668
5669 return ret;
5670}
5671
5672gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5673{
5674 gro_result_t ret;
5675
5676 skb_mark_napi_id(skb, napi);
5677 trace_napi_gro_receive_entry(skb);
5678
5679 skb_gro_reset_offset(skb);
5680
5681 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5682 trace_napi_gro_receive_exit(ret);
5683
5684 return ret;
5685}
5686EXPORT_SYMBOL(napi_gro_receive);
5687
5688static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5689{
5690 if (unlikely(skb->pfmemalloc)) {
5691 consume_skb(skb);
5692 return;
5693 }
5694 __skb_pull(skb, skb_headlen(skb));
5695 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5696 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5697 __vlan_hwaccel_clear_tag(skb);
5698 skb->dev = napi->dev;
5699 skb->skb_iif = 0;
5700
5701 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5702 skb->pkt_type = PACKET_HOST;
5703
5704 skb->encapsulation = 0;
5705 skb_shinfo(skb)->gso_type = 0;
5706 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5707 secpath_reset(skb);
5708
5709 napi->skb = skb;
5710}
5711
5712struct sk_buff *napi_get_frags(struct napi_struct *napi)
5713{
5714 struct sk_buff *skb = napi->skb;
5715
5716 if (!skb) {
5717 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5718 if (skb) {
5719 napi->skb = skb;
5720 skb_mark_napi_id(skb, napi);
5721 }
5722 }
5723 return skb;
5724}
5725EXPORT_SYMBOL(napi_get_frags);
5726
5727static gro_result_t napi_frags_finish(struct napi_struct *napi,
5728 struct sk_buff *skb,
5729 gro_result_t ret)
5730{
5731 switch (ret) {
5732 case GRO_NORMAL:
5733 case GRO_HELD:
5734 __skb_push(skb, ETH_HLEN);
5735 skb->protocol = eth_type_trans(skb, skb->dev);
5736 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5737 ret = GRO_DROP;
5738 break;
5739
5740 case GRO_DROP:
5741 napi_reuse_skb(napi, skb);
5742 break;
5743
5744 case GRO_MERGED_FREE:
5745 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5746 napi_skb_free_stolen_head(skb);
5747 else
5748 napi_reuse_skb(napi, skb);
5749 break;
5750
5751 case GRO_MERGED:
5752 case GRO_CONSUMED:
5753 break;
5754 }
5755
5756 return ret;
5757}
5758
5759/* Upper GRO stack assumes network header starts at gro_offset=0
5760 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5761 * We copy ethernet header into skb->data to have a common layout.
5762 */
5763static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5764{
5765 struct sk_buff *skb = napi->skb;
5766 const struct ethhdr *eth;
5767 unsigned int hlen = sizeof(*eth);
5768
5769 napi->skb = NULL;
5770
5771 skb_reset_mac_header(skb);
5772 skb_gro_reset_offset(skb);
5773
5774 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5775 eth = skb_gro_header_slow(skb, hlen, 0);
5776 if (unlikely(!eth)) {
5777 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5778 __func__, napi->dev->name);
5779 napi_reuse_skb(napi, skb);
5780 return NULL;
5781 }
5782 } else {
5783 eth = (const struct ethhdr *)skb->data;
5784 gro_pull_from_frag0(skb, hlen);
5785 NAPI_GRO_CB(skb)->frag0 += hlen;
5786 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5787 }
5788 __skb_pull(skb, hlen);
5789
5790 /*
5791 * This works because the only protocols we care about don't require
5792 * special handling.
5793 * We'll fix it up properly in napi_frags_finish()
5794 */
5795 skb->protocol = eth->h_proto;
5796
5797 return skb;
5798}
5799
5800gro_result_t napi_gro_frags(struct napi_struct *napi)
5801{
5802 gro_result_t ret;
5803 struct sk_buff *skb = napi_frags_skb(napi);
5804
5805 if (!skb)
5806 return GRO_DROP;
5807
5808 trace_napi_gro_frags_entry(skb);
5809
5810 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5811 trace_napi_gro_frags_exit(ret);
5812
5813 return ret;
5814}
5815EXPORT_SYMBOL(napi_gro_frags);
5816
5817/* Compute the checksum from gro_offset and return the folded value
5818 * after adding in any pseudo checksum.
5819 */
5820__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5821{
5822 __wsum wsum;
5823 __sum16 sum;
5824
5825 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5826
5827 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5828 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5829 /* See comments in __skb_checksum_complete(). */
5830 if (likely(!sum)) {
5831 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5832 !skb->csum_complete_sw)
5833 netdev_rx_csum_fault(skb->dev, skb);
5834 }
5835
5836 NAPI_GRO_CB(skb)->csum = wsum;
5837 NAPI_GRO_CB(skb)->csum_valid = 1;
5838
5839 return sum;
5840}
5841EXPORT_SYMBOL(__skb_gro_checksum_complete);
5842
5843static void net_rps_send_ipi(struct softnet_data *remsd)
5844{
5845#ifdef CONFIG_RPS
5846 while (remsd) {
5847 struct softnet_data *next = remsd->rps_ipi_next;
5848
5849 if (cpu_online(remsd->cpu))
5850 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5851 remsd = next;
5852 }
5853#endif
5854}
5855
5856/*
5857 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5858 * Note: called with local irq disabled, but exits with local irq enabled.
5859 */
5860static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5861{
5862#ifdef CONFIG_RPS
5863 struct softnet_data *remsd = sd->rps_ipi_list;
5864
5865 if (remsd) {
5866 sd->rps_ipi_list = NULL;
5867
5868 local_irq_enable();
5869
5870 /* Send pending IPI's to kick RPS processing on remote cpus. */
5871 net_rps_send_ipi(remsd);
5872 } else
5873#endif
5874 local_irq_enable();
5875}
5876
5877static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5878{
5879#ifdef CONFIG_RPS
5880 return sd->rps_ipi_list != NULL;
5881#else
5882 return false;
5883#endif
5884}
5885
5886static int process_backlog(struct napi_struct *napi, int quota)
5887{
5888 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5889 bool again = true;
5890 int work = 0;
5891
5892 /* Check if we have pending ipi, its better to send them now,
5893 * not waiting net_rx_action() end.
5894 */
5895 if (sd_has_rps_ipi_waiting(sd)) {
5896 local_irq_disable();
5897 net_rps_action_and_irq_enable(sd);
5898 }
5899
5900 napi->weight = dev_rx_weight;
5901 while (again) {
5902 struct sk_buff *skb;
5903
5904 while ((skb = __skb_dequeue(&sd->process_queue))) {
5905 rcu_read_lock();
5906 __netif_receive_skb(skb);
5907 rcu_read_unlock();
5908 input_queue_head_incr(sd);
5909 if (++work >= quota)
5910 return work;
5911
5912 }
5913
5914 local_irq_disable();
5915 rps_lock(sd);
5916 if (skb_queue_empty(&sd->input_pkt_queue)) {
5917 /*
5918 * Inline a custom version of __napi_complete().
5919 * only current cpu owns and manipulates this napi,
5920 * and NAPI_STATE_SCHED is the only possible flag set
5921 * on backlog.
5922 * We can use a plain write instead of clear_bit(),
5923 * and we dont need an smp_mb() memory barrier.
5924 */
5925 napi->state = 0;
5926 again = false;
5927 } else {
5928 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5929 &sd->process_queue);
5930 }
5931 rps_unlock(sd);
5932 local_irq_enable();
5933 }
5934
5935 return work;
5936}
5937
5938/**
5939 * __napi_schedule - schedule for receive
5940 * @n: entry to schedule
5941 *
5942 * The entry's receive function will be scheduled to run.
5943 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5944 */
5945void __napi_schedule(struct napi_struct *n)
5946{
5947 unsigned long flags;
5948
5949 local_irq_save(flags);
5950 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5951 local_irq_restore(flags);
5952}
5953EXPORT_SYMBOL(__napi_schedule);
5954
5955/**
5956 * napi_schedule_prep - check if napi can be scheduled
5957 * @n: napi context
5958 *
5959 * Test if NAPI routine is already running, and if not mark
5960 * it as running. This is used as a condition variable
5961 * insure only one NAPI poll instance runs. We also make
5962 * sure there is no pending NAPI disable.
5963 */
5964bool napi_schedule_prep(struct napi_struct *n)
5965{
5966 unsigned long val, new;
5967
5968 do {
5969 val = READ_ONCE(n->state);
5970 if (unlikely(val & NAPIF_STATE_DISABLE))
5971 return false;
5972 new = val | NAPIF_STATE_SCHED;
5973
5974 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5975 * This was suggested by Alexander Duyck, as compiler
5976 * emits better code than :
5977 * if (val & NAPIF_STATE_SCHED)
5978 * new |= NAPIF_STATE_MISSED;
5979 */
5980 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5981 NAPIF_STATE_MISSED;
5982 } while (cmpxchg(&n->state, val, new) != val);
5983
5984 return !(val & NAPIF_STATE_SCHED);
5985}
5986EXPORT_SYMBOL(napi_schedule_prep);
5987
5988/**
5989 * __napi_schedule_irqoff - schedule for receive
5990 * @n: entry to schedule
5991 *
5992 * Variant of __napi_schedule() assuming hard irqs are masked
5993 */
5994void __napi_schedule_irqoff(struct napi_struct *n)
5995{
5996 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5997}
5998EXPORT_SYMBOL(__napi_schedule_irqoff);
5999
6000bool napi_complete_done(struct napi_struct *n, int work_done)
6001{
6002 unsigned long flags, val, new;
6003
6004 /*
6005 * 1) Don't let napi dequeue from the cpu poll list
6006 * just in case its running on a different cpu.
6007 * 2) If we are busy polling, do nothing here, we have
6008 * the guarantee we will be called later.
6009 */
6010 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6011 NAPIF_STATE_IN_BUSY_POLL)))
6012 return false;
6013
6014 if (n->gro_bitmask) {
6015 unsigned long timeout = 0;
6016
6017 if (work_done)
6018 timeout = n->dev->gro_flush_timeout;
6019
6020 /* When the NAPI instance uses a timeout and keeps postponing
6021 * it, we need to bound somehow the time packets are kept in
6022 * the GRO layer
6023 */
6024 napi_gro_flush(n, !!timeout);
6025 if (timeout)
6026 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6027 HRTIMER_MODE_REL_PINNED);
6028 }
6029 if (unlikely(!list_empty(&n->poll_list))) {
6030 /* If n->poll_list is not empty, we need to mask irqs */
6031 local_irq_save(flags);
6032 list_del_init(&n->poll_list);
6033 local_irq_restore(flags);
6034 }
6035
6036 do {
6037 val = READ_ONCE(n->state);
6038
6039 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6040
6041 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6042
6043 /* If STATE_MISSED was set, leave STATE_SCHED set,
6044 * because we will call napi->poll() one more time.
6045 * This C code was suggested by Alexander Duyck to help gcc.
6046 */
6047 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6048 NAPIF_STATE_SCHED;
6049 } while (cmpxchg(&n->state, val, new) != val);
6050
6051 if (unlikely(val & NAPIF_STATE_MISSED)) {
6052 __napi_schedule(n);
6053 return false;
6054 }
6055
6056 return true;
6057}
6058EXPORT_SYMBOL(napi_complete_done);
6059
6060/* must be called under rcu_read_lock(), as we dont take a reference */
6061static struct napi_struct *napi_by_id(unsigned int napi_id)
6062{
6063 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6064 struct napi_struct *napi;
6065
6066 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6067 if (napi->napi_id == napi_id)
6068 return napi;
6069
6070 return NULL;
6071}
6072
6073#if defined(CONFIG_NET_RX_BUSY_POLL)
6074
6075#define BUSY_POLL_BUDGET 8
6076
6077static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6078{
6079 int rc;
6080
6081 /* Busy polling means there is a high chance device driver hard irq
6082 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6083 * set in napi_schedule_prep().
6084 * Since we are about to call napi->poll() once more, we can safely
6085 * clear NAPI_STATE_MISSED.
6086 *
6087 * Note: x86 could use a single "lock and ..." instruction
6088 * to perform these two clear_bit()
6089 */
6090 clear_bit(NAPI_STATE_MISSED, &napi->state);
6091 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6092
6093 local_bh_disable();
6094
6095 /* All we really want here is to re-enable device interrupts.
6096 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6097 */
6098 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6099 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6100 netpoll_poll_unlock(have_poll_lock);
6101 if (rc == BUSY_POLL_BUDGET)
6102 __napi_schedule(napi);
6103 local_bh_enable();
6104}
6105
6106void napi_busy_loop(unsigned int napi_id,
6107 bool (*loop_end)(void *, unsigned long),
6108 void *loop_end_arg)
6109{
6110 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6111 int (*napi_poll)(struct napi_struct *napi, int budget);
6112 void *have_poll_lock = NULL;
6113 struct napi_struct *napi;
6114
6115restart:
6116 napi_poll = NULL;
6117
6118 rcu_read_lock();
6119
6120 napi = napi_by_id(napi_id);
6121 if (!napi)
6122 goto out;
6123
6124 preempt_disable();
6125 for (;;) {
6126 int work = 0;
6127
6128 local_bh_disable();
6129 if (!napi_poll) {
6130 unsigned long val = READ_ONCE(napi->state);
6131
6132 /* If multiple threads are competing for this napi,
6133 * we avoid dirtying napi->state as much as we can.
6134 */
6135 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6136 NAPIF_STATE_IN_BUSY_POLL))
6137 goto count;
6138 if (cmpxchg(&napi->state, val,
6139 val | NAPIF_STATE_IN_BUSY_POLL |
6140 NAPIF_STATE_SCHED) != val)
6141 goto count;
6142 have_poll_lock = netpoll_poll_lock(napi);
6143 napi_poll = napi->poll;
6144 }
6145 work = napi_poll(napi, BUSY_POLL_BUDGET);
6146 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6147count:
6148 if (work > 0)
6149 __NET_ADD_STATS(dev_net(napi->dev),
6150 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6151 local_bh_enable();
6152
6153 if (!loop_end || loop_end(loop_end_arg, start_time))
6154 break;
6155
6156 if (unlikely(need_resched())) {
6157 if (napi_poll)
6158 busy_poll_stop(napi, have_poll_lock);
6159 preempt_enable();
6160 rcu_read_unlock();
6161 cond_resched();
6162 if (loop_end(loop_end_arg, start_time))
6163 return;
6164 goto restart;
6165 }
6166 cpu_relax();
6167 }
6168 if (napi_poll)
6169 busy_poll_stop(napi, have_poll_lock);
6170 preempt_enable();
6171out:
6172 rcu_read_unlock();
6173}
6174EXPORT_SYMBOL(napi_busy_loop);
6175
6176#endif /* CONFIG_NET_RX_BUSY_POLL */
6177
6178static void napi_hash_add(struct napi_struct *napi)
6179{
6180 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6181 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6182 return;
6183
6184 spin_lock(&napi_hash_lock);
6185
6186 /* 0..NR_CPUS range is reserved for sender_cpu use */
6187 do {
6188 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6189 napi_gen_id = MIN_NAPI_ID;
6190 } while (napi_by_id(napi_gen_id));
6191 napi->napi_id = napi_gen_id;
6192
6193 hlist_add_head_rcu(&napi->napi_hash_node,
6194 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6195
6196 spin_unlock(&napi_hash_lock);
6197}
6198
6199/* Warning : caller is responsible to make sure rcu grace period
6200 * is respected before freeing memory containing @napi
6201 */
6202bool napi_hash_del(struct napi_struct *napi)
6203{
6204 bool rcu_sync_needed = false;
6205
6206 spin_lock(&napi_hash_lock);
6207
6208 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6209 rcu_sync_needed = true;
6210 hlist_del_rcu(&napi->napi_hash_node);
6211 }
6212 spin_unlock(&napi_hash_lock);
6213 return rcu_sync_needed;
6214}
6215EXPORT_SYMBOL_GPL(napi_hash_del);
6216
6217static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6218{
6219 struct napi_struct *napi;
6220
6221 napi = container_of(timer, struct napi_struct, timer);
6222
6223 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6224 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6225 */
6226 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6227 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6228 __napi_schedule_irqoff(napi);
6229
6230 return HRTIMER_NORESTART;
6231}
6232
6233static void init_gro_hash(struct napi_struct *napi)
6234{
6235 int i;
6236
6237 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6238 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6239 napi->gro_hash[i].count = 0;
6240 }
6241 napi->gro_bitmask = 0;
6242}
6243
6244void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6245 int (*poll)(struct napi_struct *, int), int weight)
6246{
6247 INIT_LIST_HEAD(&napi->poll_list);
6248 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6249 napi->timer.function = napi_watchdog;
6250 init_gro_hash(napi);
6251 napi->skb = NULL;
6252 napi->poll = poll;
6253 if (weight > NAPI_POLL_WEIGHT)
6254 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6255 weight);
6256 napi->weight = weight;
6257 list_add(&napi->dev_list, &dev->napi_list);
6258 napi->dev = dev;
6259#ifdef CONFIG_NETPOLL
6260 napi->poll_owner = -1;
6261#endif
6262 set_bit(NAPI_STATE_SCHED, &napi->state);
6263 napi_hash_add(napi);
6264}
6265EXPORT_SYMBOL(netif_napi_add);
6266
6267void napi_disable(struct napi_struct *n)
6268{
6269 might_sleep();
6270 set_bit(NAPI_STATE_DISABLE, &n->state);
6271
6272 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6273 msleep(1);
6274 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6275 msleep(1);
6276
6277 hrtimer_cancel(&n->timer);
6278
6279 clear_bit(NAPI_STATE_DISABLE, &n->state);
6280}
6281EXPORT_SYMBOL(napi_disable);
6282
6283static void flush_gro_hash(struct napi_struct *napi)
6284{
6285 int i;
6286
6287 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6288 struct sk_buff *skb, *n;
6289
6290 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6291 kfree_skb(skb);
6292 napi->gro_hash[i].count = 0;
6293 }
6294}
6295
6296/* Must be called in process context */
6297void netif_napi_del(struct napi_struct *napi)
6298{
6299 might_sleep();
6300 if (napi_hash_del(napi))
6301 synchronize_net();
6302 list_del_init(&napi->dev_list);
6303 napi_free_frags(napi);
6304
6305 flush_gro_hash(napi);
6306 napi->gro_bitmask = 0;
6307}
6308EXPORT_SYMBOL(netif_napi_del);
6309
6310static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6311{
6312 void *have;
6313 int work, weight;
6314
6315 list_del_init(&n->poll_list);
6316
6317 have = netpoll_poll_lock(n);
6318
6319 weight = n->weight;
6320
6321 /* This NAPI_STATE_SCHED test is for avoiding a race
6322 * with netpoll's poll_napi(). Only the entity which
6323 * obtains the lock and sees NAPI_STATE_SCHED set will
6324 * actually make the ->poll() call. Therefore we avoid
6325 * accidentally calling ->poll() when NAPI is not scheduled.
6326 */
6327 work = 0;
6328 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6329 work = n->poll(n, weight);
6330 trace_napi_poll(n, work, weight);
6331 }
6332
6333 WARN_ON_ONCE(work > weight);
6334
6335 if (likely(work < weight))
6336 goto out_unlock;
6337
6338 /* Drivers must not modify the NAPI state if they
6339 * consume the entire weight. In such cases this code
6340 * still "owns" the NAPI instance and therefore can
6341 * move the instance around on the list at-will.
6342 */
6343 if (unlikely(napi_disable_pending(n))) {
6344 napi_complete(n);
6345 goto out_unlock;
6346 }
6347
6348 if (n->gro_bitmask) {
6349 /* flush too old packets
6350 * If HZ < 1000, flush all packets.
6351 */
6352 napi_gro_flush(n, HZ >= 1000);
6353 }
6354
6355 /* Some drivers may have called napi_schedule
6356 * prior to exhausting their budget.
6357 */
6358 if (unlikely(!list_empty(&n->poll_list))) {
6359 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6360 n->dev ? n->dev->name : "backlog");
6361 goto out_unlock;
6362 }
6363
6364 list_add_tail(&n->poll_list, repoll);
6365
6366out_unlock:
6367 netpoll_poll_unlock(have);
6368
6369 return work;
6370}
6371
6372static __latent_entropy void net_rx_action(struct softirq_action *h)
6373{
6374 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6375 unsigned long time_limit = jiffies +
6376 usecs_to_jiffies(netdev_budget_usecs);
6377 int budget = netdev_budget;
6378 LIST_HEAD(list);
6379 LIST_HEAD(repoll);
6380
6381 local_irq_disable();
6382 list_splice_init(&sd->poll_list, &list);
6383 local_irq_enable();
6384
6385 for (;;) {
6386 struct napi_struct *n;
6387
6388 if (list_empty(&list)) {
6389 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6390 goto out;
6391 break;
6392 }
6393
6394 n = list_first_entry(&list, struct napi_struct, poll_list);
6395 budget -= napi_poll(n, &repoll);
6396
6397 /* If softirq window is exhausted then punt.
6398 * Allow this to run for 2 jiffies since which will allow
6399 * an average latency of 1.5/HZ.
6400 */
6401 if (unlikely(budget <= 0 ||
6402 time_after_eq(jiffies, time_limit))) {
6403 sd->time_squeeze++;
6404 break;
6405 }
6406 }
6407
6408 local_irq_disable();
6409
6410 list_splice_tail_init(&sd->poll_list, &list);
6411 list_splice_tail(&repoll, &list);
6412 list_splice(&list, &sd->poll_list);
6413 if (!list_empty(&sd->poll_list))
6414 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6415
6416 net_rps_action_and_irq_enable(sd);
6417out:
6418 __kfree_skb_flush();
6419}
6420
6421struct netdev_adjacent {
6422 struct net_device *dev;
6423
6424 /* upper master flag, there can only be one master device per list */
6425 bool master;
6426
6427 /* counter for the number of times this device was added to us */
6428 u16 ref_nr;
6429
6430 /* private field for the users */
6431 void *private;
6432
6433 struct list_head list;
6434 struct rcu_head rcu;
6435};
6436
6437static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6438 struct list_head *adj_list)
6439{
6440 struct netdev_adjacent *adj;
6441
6442 list_for_each_entry(adj, adj_list, list) {
6443 if (adj->dev == adj_dev)
6444 return adj;
6445 }
6446 return NULL;
6447}
6448
6449static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6450{
6451 struct net_device *dev = data;
6452
6453 return upper_dev == dev;
6454}
6455
6456/**
6457 * netdev_has_upper_dev - Check if device is linked to an upper device
6458 * @dev: device
6459 * @upper_dev: upper device to check
6460 *
6461 * Find out if a device is linked to specified upper device and return true
6462 * in case it is. Note that this checks only immediate upper device,
6463 * not through a complete stack of devices. The caller must hold the RTNL lock.
6464 */
6465bool netdev_has_upper_dev(struct net_device *dev,
6466 struct net_device *upper_dev)
6467{
6468 ASSERT_RTNL();
6469
6470 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6471 upper_dev);
6472}
6473EXPORT_SYMBOL(netdev_has_upper_dev);
6474
6475/**
6476 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6477 * @dev: device
6478 * @upper_dev: upper device to check
6479 *
6480 * Find out if a device is linked to specified upper device and return true
6481 * in case it is. Note that this checks the entire upper device chain.
6482 * The caller must hold rcu lock.
6483 */
6484
6485bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6486 struct net_device *upper_dev)
6487{
6488 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6489 upper_dev);
6490}
6491EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6492
6493/**
6494 * netdev_has_any_upper_dev - Check if device is linked to some device
6495 * @dev: device
6496 *
6497 * Find out if a device is linked to an upper device and return true in case
6498 * it is. The caller must hold the RTNL lock.
6499 */
6500bool netdev_has_any_upper_dev(struct net_device *dev)
6501{
6502 ASSERT_RTNL();
6503
6504 return !list_empty(&dev->adj_list.upper);
6505}
6506EXPORT_SYMBOL(netdev_has_any_upper_dev);
6507
6508/**
6509 * netdev_master_upper_dev_get - Get master upper device
6510 * @dev: device
6511 *
6512 * Find a master upper device and return pointer to it or NULL in case
6513 * it's not there. The caller must hold the RTNL lock.
6514 */
6515struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6516{
6517 struct netdev_adjacent *upper;
6518
6519 ASSERT_RTNL();
6520
6521 if (list_empty(&dev->adj_list.upper))
6522 return NULL;
6523
6524 upper = list_first_entry(&dev->adj_list.upper,
6525 struct netdev_adjacent, list);
6526 if (likely(upper->master))
6527 return upper->dev;
6528 return NULL;
6529}
6530EXPORT_SYMBOL(netdev_master_upper_dev_get);
6531
6532/**
6533 * netdev_has_any_lower_dev - Check if device is linked to some device
6534 * @dev: device
6535 *
6536 * Find out if a device is linked to a lower device and return true in case
6537 * it is. The caller must hold the RTNL lock.
6538 */
6539static bool netdev_has_any_lower_dev(struct net_device *dev)
6540{
6541 ASSERT_RTNL();
6542
6543 return !list_empty(&dev->adj_list.lower);
6544}
6545
6546void *netdev_adjacent_get_private(struct list_head *adj_list)
6547{
6548 struct netdev_adjacent *adj;
6549
6550 adj = list_entry(adj_list, struct netdev_adjacent, list);
6551
6552 return adj->private;
6553}
6554EXPORT_SYMBOL(netdev_adjacent_get_private);
6555
6556/**
6557 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6558 * @dev: device
6559 * @iter: list_head ** of the current position
6560 *
6561 * Gets the next device from the dev's upper list, starting from iter
6562 * position. The caller must hold RCU read lock.
6563 */
6564struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6565 struct list_head **iter)
6566{
6567 struct netdev_adjacent *upper;
6568
6569 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6570
6571 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6572
6573 if (&upper->list == &dev->adj_list.upper)
6574 return NULL;
6575
6576 *iter = &upper->list;
6577
6578 return upper->dev;
6579}
6580EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6581
6582static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6583 struct list_head **iter)
6584{
6585 struct netdev_adjacent *upper;
6586
6587 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6588
6589 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6590
6591 if (&upper->list == &dev->adj_list.upper)
6592 return NULL;
6593
6594 *iter = &upper->list;
6595
6596 return upper->dev;
6597}
6598
6599int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6600 int (*fn)(struct net_device *dev,
6601 void *data),
6602 void *data)
6603{
6604 struct net_device *udev;
6605 struct list_head *iter;
6606 int ret;
6607
6608 for (iter = &dev->adj_list.upper,
6609 udev = netdev_next_upper_dev_rcu(dev, &iter);
6610 udev;
6611 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6612 /* first is the upper device itself */
6613 ret = fn(udev, data);
6614 if (ret)
6615 return ret;
6616
6617 /* then look at all of its upper devices */
6618 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6619 if (ret)
6620 return ret;
6621 }
6622
6623 return 0;
6624}
6625EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6626
6627/**
6628 * netdev_lower_get_next_private - Get the next ->private from the
6629 * lower neighbour list
6630 * @dev: device
6631 * @iter: list_head ** of the current position
6632 *
6633 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6634 * list, starting from iter position. The caller must hold either hold the
6635 * RTNL lock or its own locking that guarantees that the neighbour lower
6636 * list will remain unchanged.
6637 */
6638void *netdev_lower_get_next_private(struct net_device *dev,
6639 struct list_head **iter)
6640{
6641 struct netdev_adjacent *lower;
6642
6643 lower = list_entry(*iter, struct netdev_adjacent, list);
6644
6645 if (&lower->list == &dev->adj_list.lower)
6646 return NULL;
6647
6648 *iter = lower->list.next;
6649
6650 return lower->private;
6651}
6652EXPORT_SYMBOL(netdev_lower_get_next_private);
6653
6654/**
6655 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6656 * lower neighbour list, RCU
6657 * variant
6658 * @dev: device
6659 * @iter: list_head ** of the current position
6660 *
6661 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6662 * list, starting from iter position. The caller must hold RCU read lock.
6663 */
6664void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6665 struct list_head **iter)
6666{
6667 struct netdev_adjacent *lower;
6668
6669 WARN_ON_ONCE(!rcu_read_lock_held());
6670
6671 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6672
6673 if (&lower->list == &dev->adj_list.lower)
6674 return NULL;
6675
6676 *iter = &lower->list;
6677
6678 return lower->private;
6679}
6680EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6681
6682/**
6683 * netdev_lower_get_next - Get the next device from the lower neighbour
6684 * list
6685 * @dev: device
6686 * @iter: list_head ** of the current position
6687 *
6688 * Gets the next netdev_adjacent from the dev's lower neighbour
6689 * list, starting from iter position. The caller must hold RTNL lock or
6690 * its own locking that guarantees that the neighbour lower
6691 * list will remain unchanged.
6692 */
6693void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6694{
6695 struct netdev_adjacent *lower;
6696
6697 lower = list_entry(*iter, struct netdev_adjacent, list);
6698
6699 if (&lower->list == &dev->adj_list.lower)
6700 return NULL;
6701
6702 *iter = lower->list.next;
6703
6704 return lower->dev;
6705}
6706EXPORT_SYMBOL(netdev_lower_get_next);
6707
6708static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6709 struct list_head **iter)
6710{
6711 struct netdev_adjacent *lower;
6712
6713 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6714
6715 if (&lower->list == &dev->adj_list.lower)
6716 return NULL;
6717
6718 *iter = &lower->list;
6719
6720 return lower->dev;
6721}
6722
6723int netdev_walk_all_lower_dev(struct net_device *dev,
6724 int (*fn)(struct net_device *dev,
6725 void *data),
6726 void *data)
6727{
6728 struct net_device *ldev;
6729 struct list_head *iter;
6730 int ret;
6731
6732 for (iter = &dev->adj_list.lower,
6733 ldev = netdev_next_lower_dev(dev, &iter);
6734 ldev;
6735 ldev = netdev_next_lower_dev(dev, &iter)) {
6736 /* first is the lower device itself */
6737 ret = fn(ldev, data);
6738 if (ret)
6739 return ret;
6740
6741 /* then look at all of its lower devices */
6742 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6743 if (ret)
6744 return ret;
6745 }
6746
6747 return 0;
6748}
6749EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6750
6751static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6752 struct list_head **iter)
6753{
6754 struct netdev_adjacent *lower;
6755
6756 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6757 if (&lower->list == &dev->adj_list.lower)
6758 return NULL;
6759
6760 *iter = &lower->list;
6761
6762 return lower->dev;
6763}
6764
6765int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6766 int (*fn)(struct net_device *dev,
6767 void *data),
6768 void *data)
6769{
6770 struct net_device *ldev;
6771 struct list_head *iter;
6772 int ret;
6773
6774 for (iter = &dev->adj_list.lower,
6775 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6776 ldev;
6777 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6778 /* first is the lower device itself */
6779 ret = fn(ldev, data);
6780 if (ret)
6781 return ret;
6782
6783 /* then look at all of its lower devices */
6784 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6785 if (ret)
6786 return ret;
6787 }
6788
6789 return 0;
6790}
6791EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6792
6793/**
6794 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6795 * lower neighbour list, RCU
6796 * variant
6797 * @dev: device
6798 *
6799 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6800 * list. The caller must hold RCU read lock.
6801 */
6802void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6803{
6804 struct netdev_adjacent *lower;
6805
6806 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6807 struct netdev_adjacent, list);
6808 if (lower)
6809 return lower->private;
6810 return NULL;
6811}
6812EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6813
6814/**
6815 * netdev_master_upper_dev_get_rcu - Get master upper device
6816 * @dev: device
6817 *
6818 * Find a master upper device and return pointer to it or NULL in case
6819 * it's not there. The caller must hold the RCU read lock.
6820 */
6821struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6822{
6823 struct netdev_adjacent *upper;
6824
6825 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6826 struct netdev_adjacent, list);
6827 if (upper && likely(upper->master))
6828 return upper->dev;
6829 return NULL;
6830}
6831EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6832
6833static int netdev_adjacent_sysfs_add(struct net_device *dev,
6834 struct net_device *adj_dev,
6835 struct list_head *dev_list)
6836{
6837 char linkname[IFNAMSIZ+7];
6838
6839 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6840 "upper_%s" : "lower_%s", adj_dev->name);
6841 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6842 linkname);
6843}
6844static void netdev_adjacent_sysfs_del(struct net_device *dev,
6845 char *name,
6846 struct list_head *dev_list)
6847{
6848 char linkname[IFNAMSIZ+7];
6849
6850 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6851 "upper_%s" : "lower_%s", name);
6852 sysfs_remove_link(&(dev->dev.kobj), linkname);
6853}
6854
6855static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6856 struct net_device *adj_dev,
6857 struct list_head *dev_list)
6858{
6859 return (dev_list == &dev->adj_list.upper ||
6860 dev_list == &dev->adj_list.lower) &&
6861 net_eq(dev_net(dev), dev_net(adj_dev));
6862}
6863
6864static int __netdev_adjacent_dev_insert(struct net_device *dev,
6865 struct net_device *adj_dev,
6866 struct list_head *dev_list,
6867 void *private, bool master)
6868{
6869 struct netdev_adjacent *adj;
6870 int ret;
6871
6872 adj = __netdev_find_adj(adj_dev, dev_list);
6873
6874 if (adj) {
6875 adj->ref_nr += 1;
6876 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6877 dev->name, adj_dev->name, adj->ref_nr);
6878
6879 return 0;
6880 }
6881
6882 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6883 if (!adj)
6884 return -ENOMEM;
6885
6886 adj->dev = adj_dev;
6887 adj->master = master;
6888 adj->ref_nr = 1;
6889 adj->private = private;
6890 dev_hold(adj_dev);
6891
6892 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6893 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6894
6895 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6896 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6897 if (ret)
6898 goto free_adj;
6899 }
6900
6901 /* Ensure that master link is always the first item in list. */
6902 if (master) {
6903 ret = sysfs_create_link(&(dev->dev.kobj),
6904 &(adj_dev->dev.kobj), "master");
6905 if (ret)
6906 goto remove_symlinks;
6907
6908 list_add_rcu(&adj->list, dev_list);
6909 } else {
6910 list_add_tail_rcu(&adj->list, dev_list);
6911 }
6912
6913 return 0;
6914
6915remove_symlinks:
6916 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6917 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6918free_adj:
6919 kfree(adj);
6920 dev_put(adj_dev);
6921
6922 return ret;
6923}
6924
6925static void __netdev_adjacent_dev_remove(struct net_device *dev,
6926 struct net_device *adj_dev,
6927 u16 ref_nr,
6928 struct list_head *dev_list)
6929{
6930 struct netdev_adjacent *adj;
6931
6932 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6933 dev->name, adj_dev->name, ref_nr);
6934
6935 adj = __netdev_find_adj(adj_dev, dev_list);
6936
6937 if (!adj) {
6938 pr_err("Adjacency does not exist for device %s from %s\n",
6939 dev->name, adj_dev->name);
6940 WARN_ON(1);
6941 return;
6942 }
6943
6944 if (adj->ref_nr > ref_nr) {
6945 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6946 dev->name, adj_dev->name, ref_nr,
6947 adj->ref_nr - ref_nr);
6948 adj->ref_nr -= ref_nr;
6949 return;
6950 }
6951
6952 if (adj->master)
6953 sysfs_remove_link(&(dev->dev.kobj), "master");
6954
6955 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6956 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6957
6958 list_del_rcu(&adj->list);
6959 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6960 adj_dev->name, dev->name, adj_dev->name);
6961 dev_put(adj_dev);
6962 kfree_rcu(adj, rcu);
6963}
6964
6965static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6966 struct net_device *upper_dev,
6967 struct list_head *up_list,
6968 struct list_head *down_list,
6969 void *private, bool master)
6970{
6971 int ret;
6972
6973 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6974 private, master);
6975 if (ret)
6976 return ret;
6977
6978 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6979 private, false);
6980 if (ret) {
6981 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6982 return ret;
6983 }
6984
6985 return 0;
6986}
6987
6988static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6989 struct net_device *upper_dev,
6990 u16 ref_nr,
6991 struct list_head *up_list,
6992 struct list_head *down_list)
6993{
6994 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6995 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6996}
6997
6998static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6999 struct net_device *upper_dev,
7000 void *private, bool master)
7001{
7002 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7003 &dev->adj_list.upper,
7004 &upper_dev->adj_list.lower,
7005 private, master);
7006}
7007
7008static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7009 struct net_device *upper_dev)
7010{
7011 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7012 &dev->adj_list.upper,
7013 &upper_dev->adj_list.lower);
7014}
7015
7016static int __netdev_upper_dev_link(struct net_device *dev,
7017 struct net_device *upper_dev, bool master,
7018 void *upper_priv, void *upper_info,
7019 struct netlink_ext_ack *extack)
7020{
7021 struct netdev_notifier_changeupper_info changeupper_info = {
7022 .info = {
7023 .dev = dev,
7024 .extack = extack,
7025 },
7026 .upper_dev = upper_dev,
7027 .master = master,
7028 .linking = true,
7029 .upper_info = upper_info,
7030 };
7031 struct net_device *master_dev;
7032 int ret = 0;
7033
7034 ASSERT_RTNL();
7035
7036 if (dev == upper_dev)
7037 return -EBUSY;
7038
7039 /* To prevent loops, check if dev is not upper device to upper_dev. */
7040 if (netdev_has_upper_dev(upper_dev, dev))
7041 return -EBUSY;
7042
7043 if (!master) {
7044 if (netdev_has_upper_dev(dev, upper_dev))
7045 return -EEXIST;
7046 } else {
7047 master_dev = netdev_master_upper_dev_get(dev);
7048 if (master_dev)
7049 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7050 }
7051
7052 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7053 &changeupper_info.info);
7054 ret = notifier_to_errno(ret);
7055 if (ret)
7056 return ret;
7057
7058 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7059 master);
7060 if (ret)
7061 return ret;
7062
7063 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7064 &changeupper_info.info);
7065 ret = notifier_to_errno(ret);
7066 if (ret)
7067 goto rollback;
7068
7069 return 0;
7070
7071rollback:
7072 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7073
7074 return ret;
7075}
7076
7077/**
7078 * netdev_upper_dev_link - Add a link to the upper device
7079 * @dev: device
7080 * @upper_dev: new upper device
7081 * @extack: netlink extended ack
7082 *
7083 * Adds a link to device which is upper to this one. The caller must hold
7084 * the RTNL lock. On a failure a negative errno code is returned.
7085 * On success the reference counts are adjusted and the function
7086 * returns zero.
7087 */
7088int netdev_upper_dev_link(struct net_device *dev,
7089 struct net_device *upper_dev,
7090 struct netlink_ext_ack *extack)
7091{
7092 return __netdev_upper_dev_link(dev, upper_dev, false,
7093 NULL, NULL, extack);
7094}
7095EXPORT_SYMBOL(netdev_upper_dev_link);
7096
7097/**
7098 * netdev_master_upper_dev_link - Add a master link to the upper device
7099 * @dev: device
7100 * @upper_dev: new upper device
7101 * @upper_priv: upper device private
7102 * @upper_info: upper info to be passed down via notifier
7103 * @extack: netlink extended ack
7104 *
7105 * Adds a link to device which is upper to this one. In this case, only
7106 * one master upper device can be linked, although other non-master devices
7107 * might be linked as well. The caller must hold the RTNL lock.
7108 * On a failure a negative errno code is returned. On success the reference
7109 * counts are adjusted and the function returns zero.
7110 */
7111int netdev_master_upper_dev_link(struct net_device *dev,
7112 struct net_device *upper_dev,
7113 void *upper_priv, void *upper_info,
7114 struct netlink_ext_ack *extack)
7115{
7116 return __netdev_upper_dev_link(dev, upper_dev, true,
7117 upper_priv, upper_info, extack);
7118}
7119EXPORT_SYMBOL(netdev_master_upper_dev_link);
7120
7121/**
7122 * netdev_upper_dev_unlink - Removes a link to upper device
7123 * @dev: device
7124 * @upper_dev: new upper device
7125 *
7126 * Removes a link to device which is upper to this one. The caller must hold
7127 * the RTNL lock.
7128 */
7129void netdev_upper_dev_unlink(struct net_device *dev,
7130 struct net_device *upper_dev)
7131{
7132 struct netdev_notifier_changeupper_info changeupper_info = {
7133 .info = {
7134 .dev = dev,
7135 },
7136 .upper_dev = upper_dev,
7137 .linking = false,
7138 };
7139
7140 ASSERT_RTNL();
7141
7142 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7143
7144 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7145 &changeupper_info.info);
7146
7147 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7148
7149 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7150 &changeupper_info.info);
7151}
7152EXPORT_SYMBOL(netdev_upper_dev_unlink);
7153
7154/**
7155 * netdev_bonding_info_change - Dispatch event about slave change
7156 * @dev: device
7157 * @bonding_info: info to dispatch
7158 *
7159 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7160 * The caller must hold the RTNL lock.
7161 */
7162void netdev_bonding_info_change(struct net_device *dev,
7163 struct netdev_bonding_info *bonding_info)
7164{
7165 struct netdev_notifier_bonding_info info = {
7166 .info.dev = dev,
7167 };
7168
7169 memcpy(&info.bonding_info, bonding_info,
7170 sizeof(struct netdev_bonding_info));
7171 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7172 &info.info);
7173}
7174EXPORT_SYMBOL(netdev_bonding_info_change);
7175
7176static void netdev_adjacent_add_links(struct net_device *dev)
7177{
7178 struct netdev_adjacent *iter;
7179
7180 struct net *net = dev_net(dev);
7181
7182 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7183 if (!net_eq(net, dev_net(iter->dev)))
7184 continue;
7185 netdev_adjacent_sysfs_add(iter->dev, dev,
7186 &iter->dev->adj_list.lower);
7187 netdev_adjacent_sysfs_add(dev, iter->dev,
7188 &dev->adj_list.upper);
7189 }
7190
7191 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7192 if (!net_eq(net, dev_net(iter->dev)))
7193 continue;
7194 netdev_adjacent_sysfs_add(iter->dev, dev,
7195 &iter->dev->adj_list.upper);
7196 netdev_adjacent_sysfs_add(dev, iter->dev,
7197 &dev->adj_list.lower);
7198 }
7199}
7200
7201static void netdev_adjacent_del_links(struct net_device *dev)
7202{
7203 struct netdev_adjacent *iter;
7204
7205 struct net *net = dev_net(dev);
7206
7207 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7208 if (!net_eq(net, dev_net(iter->dev)))
7209 continue;
7210 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7211 &iter->dev->adj_list.lower);
7212 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7213 &dev->adj_list.upper);
7214 }
7215
7216 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7217 if (!net_eq(net, dev_net(iter->dev)))
7218 continue;
7219 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7220 &iter->dev->adj_list.upper);
7221 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7222 &dev->adj_list.lower);
7223 }
7224}
7225
7226void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7227{
7228 struct netdev_adjacent *iter;
7229
7230 struct net *net = dev_net(dev);
7231
7232 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7233 if (!net_eq(net, dev_net(iter->dev)))
7234 continue;
7235 netdev_adjacent_sysfs_del(iter->dev, oldname,
7236 &iter->dev->adj_list.lower);
7237 netdev_adjacent_sysfs_add(iter->dev, dev,
7238 &iter->dev->adj_list.lower);
7239 }
7240
7241 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7242 if (!net_eq(net, dev_net(iter->dev)))
7243 continue;
7244 netdev_adjacent_sysfs_del(iter->dev, oldname,
7245 &iter->dev->adj_list.upper);
7246 netdev_adjacent_sysfs_add(iter->dev, dev,
7247 &iter->dev->adj_list.upper);
7248 }
7249}
7250
7251void *netdev_lower_dev_get_private(struct net_device *dev,
7252 struct net_device *lower_dev)
7253{
7254 struct netdev_adjacent *lower;
7255
7256 if (!lower_dev)
7257 return NULL;
7258 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7259 if (!lower)
7260 return NULL;
7261
7262 return lower->private;
7263}
7264EXPORT_SYMBOL(netdev_lower_dev_get_private);
7265
7266
7267int dev_get_nest_level(struct net_device *dev)
7268{
7269 struct net_device *lower = NULL;
7270 struct list_head *iter;
7271 int max_nest = -1;
7272 int nest;
7273
7274 ASSERT_RTNL();
7275
7276 netdev_for_each_lower_dev(dev, lower, iter) {
7277 nest = dev_get_nest_level(lower);
7278 if (max_nest < nest)
7279 max_nest = nest;
7280 }
7281
7282 return max_nest + 1;
7283}
7284EXPORT_SYMBOL(dev_get_nest_level);
7285
7286/**
7287 * netdev_lower_change - Dispatch event about lower device state change
7288 * @lower_dev: device
7289 * @lower_state_info: state to dispatch
7290 *
7291 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7292 * The caller must hold the RTNL lock.
7293 */
7294void netdev_lower_state_changed(struct net_device *lower_dev,
7295 void *lower_state_info)
7296{
7297 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7298 .info.dev = lower_dev,
7299 };
7300
7301 ASSERT_RTNL();
7302 changelowerstate_info.lower_state_info = lower_state_info;
7303 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7304 &changelowerstate_info.info);
7305}
7306EXPORT_SYMBOL(netdev_lower_state_changed);
7307
7308static void dev_change_rx_flags(struct net_device *dev, int flags)
7309{
7310 const struct net_device_ops *ops = dev->netdev_ops;
7311
7312 if (ops->ndo_change_rx_flags)
7313 ops->ndo_change_rx_flags(dev, flags);
7314}
7315
7316static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7317{
7318 unsigned int old_flags = dev->flags;
7319 kuid_t uid;
7320 kgid_t gid;
7321
7322 ASSERT_RTNL();
7323
7324 dev->flags |= IFF_PROMISC;
7325 dev->promiscuity += inc;
7326 if (dev->promiscuity == 0) {
7327 /*
7328 * Avoid overflow.
7329 * If inc causes overflow, untouch promisc and return error.
7330 */
7331 if (inc < 0)
7332 dev->flags &= ~IFF_PROMISC;
7333 else {
7334 dev->promiscuity -= inc;
7335 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7336 dev->name);
7337 return -EOVERFLOW;
7338 }
7339 }
7340 if (dev->flags != old_flags) {
7341 pr_info("device %s %s promiscuous mode\n",
7342 dev->name,
7343 dev->flags & IFF_PROMISC ? "entered" : "left");
7344 if (audit_enabled) {
7345 current_uid_gid(&uid, &gid);
7346 audit_log(audit_context(), GFP_ATOMIC,
7347 AUDIT_ANOM_PROMISCUOUS,
7348 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7349 dev->name, (dev->flags & IFF_PROMISC),
7350 (old_flags & IFF_PROMISC),
7351 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7352 from_kuid(&init_user_ns, uid),
7353 from_kgid(&init_user_ns, gid),
7354 audit_get_sessionid(current));
7355 }
7356
7357 dev_change_rx_flags(dev, IFF_PROMISC);
7358 }
7359 if (notify)
7360 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7361 return 0;
7362}
7363
7364/**
7365 * dev_set_promiscuity - update promiscuity count on a device
7366 * @dev: device
7367 * @inc: modifier
7368 *
7369 * Add or remove promiscuity from a device. While the count in the device
7370 * remains above zero the interface remains promiscuous. Once it hits zero
7371 * the device reverts back to normal filtering operation. A negative inc
7372 * value is used to drop promiscuity on the device.
7373 * Return 0 if successful or a negative errno code on error.
7374 */
7375int dev_set_promiscuity(struct net_device *dev, int inc)
7376{
7377 unsigned int old_flags = dev->flags;
7378 int err;
7379
7380 err = __dev_set_promiscuity(dev, inc, true);
7381 if (err < 0)
7382 return err;
7383 if (dev->flags != old_flags)
7384 dev_set_rx_mode(dev);
7385 return err;
7386}
7387EXPORT_SYMBOL(dev_set_promiscuity);
7388
7389static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7390{
7391 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7392
7393 ASSERT_RTNL();
7394
7395 dev->flags |= IFF_ALLMULTI;
7396 dev->allmulti += inc;
7397 if (dev->allmulti == 0) {
7398 /*
7399 * Avoid overflow.
7400 * If inc causes overflow, untouch allmulti and return error.
7401 */
7402 if (inc < 0)
7403 dev->flags &= ~IFF_ALLMULTI;
7404 else {
7405 dev->allmulti -= inc;
7406 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7407 dev->name);
7408 return -EOVERFLOW;
7409 }
7410 }
7411 if (dev->flags ^ old_flags) {
7412 dev_change_rx_flags(dev, IFF_ALLMULTI);
7413 dev_set_rx_mode(dev);
7414 if (notify)
7415 __dev_notify_flags(dev, old_flags,
7416 dev->gflags ^ old_gflags);
7417 }
7418 return 0;
7419}
7420
7421/**
7422 * dev_set_allmulti - update allmulti count on a device
7423 * @dev: device
7424 * @inc: modifier
7425 *
7426 * Add or remove reception of all multicast frames to a device. While the
7427 * count in the device remains above zero the interface remains listening
7428 * to all interfaces. Once it hits zero the device reverts back to normal
7429 * filtering operation. A negative @inc value is used to drop the counter
7430 * when releasing a resource needing all multicasts.
7431 * Return 0 if successful or a negative errno code on error.
7432 */
7433
7434int dev_set_allmulti(struct net_device *dev, int inc)
7435{
7436 return __dev_set_allmulti(dev, inc, true);
7437}
7438EXPORT_SYMBOL(dev_set_allmulti);
7439
7440/*
7441 * Upload unicast and multicast address lists to device and
7442 * configure RX filtering. When the device doesn't support unicast
7443 * filtering it is put in promiscuous mode while unicast addresses
7444 * are present.
7445 */
7446void __dev_set_rx_mode(struct net_device *dev)
7447{
7448 const struct net_device_ops *ops = dev->netdev_ops;
7449
7450 /* dev_open will call this function so the list will stay sane. */
7451 if (!(dev->flags&IFF_UP))
7452 return;
7453
7454 if (!netif_device_present(dev))
7455 return;
7456
7457 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7458 /* Unicast addresses changes may only happen under the rtnl,
7459 * therefore calling __dev_set_promiscuity here is safe.
7460 */
7461 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7462 __dev_set_promiscuity(dev, 1, false);
7463 dev->uc_promisc = true;
7464 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7465 __dev_set_promiscuity(dev, -1, false);
7466 dev->uc_promisc = false;
7467 }
7468 }
7469
7470 if (ops->ndo_set_rx_mode)
7471 ops->ndo_set_rx_mode(dev);
7472}
7473
7474void dev_set_rx_mode(struct net_device *dev)
7475{
7476 netif_addr_lock_bh(dev);
7477 __dev_set_rx_mode(dev);
7478 netif_addr_unlock_bh(dev);
7479}
7480
7481/**
7482 * dev_get_flags - get flags reported to userspace
7483 * @dev: device
7484 *
7485 * Get the combination of flag bits exported through APIs to userspace.
7486 */
7487unsigned int dev_get_flags(const struct net_device *dev)
7488{
7489 unsigned int flags;
7490
7491 flags = (dev->flags & ~(IFF_PROMISC |
7492 IFF_ALLMULTI |
7493 IFF_RUNNING |
7494 IFF_LOWER_UP |
7495 IFF_DORMANT)) |
7496 (dev->gflags & (IFF_PROMISC |
7497 IFF_ALLMULTI));
7498
7499 if (netif_running(dev)) {
7500 if (netif_oper_up(dev))
7501 flags |= IFF_RUNNING;
7502 if (netif_carrier_ok(dev))
7503 flags |= IFF_LOWER_UP;
7504 if (netif_dormant(dev))
7505 flags |= IFF_DORMANT;
7506 }
7507
7508 return flags;
7509}
7510EXPORT_SYMBOL(dev_get_flags);
7511
7512int __dev_change_flags(struct net_device *dev, unsigned int flags,
7513 struct netlink_ext_ack *extack)
7514{
7515 unsigned int old_flags = dev->flags;
7516 int ret;
7517
7518 ASSERT_RTNL();
7519
7520 /*
7521 * Set the flags on our device.
7522 */
7523
7524 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7525 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7526 IFF_AUTOMEDIA)) |
7527 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7528 IFF_ALLMULTI));
7529
7530 /*
7531 * Load in the correct multicast list now the flags have changed.
7532 */
7533
7534 if ((old_flags ^ flags) & IFF_MULTICAST)
7535 dev_change_rx_flags(dev, IFF_MULTICAST);
7536
7537 dev_set_rx_mode(dev);
7538
7539 /*
7540 * Have we downed the interface. We handle IFF_UP ourselves
7541 * according to user attempts to set it, rather than blindly
7542 * setting it.
7543 */
7544
7545 ret = 0;
7546 if ((old_flags ^ flags) & IFF_UP) {
7547 if (old_flags & IFF_UP)
7548 __dev_close(dev);
7549 else
7550 ret = __dev_open(dev, extack);
7551 }
7552
7553 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7554 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7555 unsigned int old_flags = dev->flags;
7556
7557 dev->gflags ^= IFF_PROMISC;
7558
7559 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7560 if (dev->flags != old_flags)
7561 dev_set_rx_mode(dev);
7562 }
7563
7564 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7565 * is important. Some (broken) drivers set IFF_PROMISC, when
7566 * IFF_ALLMULTI is requested not asking us and not reporting.
7567 */
7568 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7569 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7570
7571 dev->gflags ^= IFF_ALLMULTI;
7572 __dev_set_allmulti(dev, inc, false);
7573 }
7574
7575 return ret;
7576}
7577
7578void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7579 unsigned int gchanges)
7580{
7581 unsigned int changes = dev->flags ^ old_flags;
7582
7583 if (gchanges)
7584 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7585
7586 if (changes & IFF_UP) {
7587 if (dev->flags & IFF_UP)
7588 call_netdevice_notifiers(NETDEV_UP, dev);
7589 else
7590 call_netdevice_notifiers(NETDEV_DOWN, dev);
7591 }
7592
7593 if (dev->flags & IFF_UP &&
7594 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7595 struct netdev_notifier_change_info change_info = {
7596 .info = {
7597 .dev = dev,
7598 },
7599 .flags_changed = changes,
7600 };
7601
7602 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7603 }
7604}
7605
7606/**
7607 * dev_change_flags - change device settings
7608 * @dev: device
7609 * @flags: device state flags
7610 * @extack: netlink extended ack
7611 *
7612 * Change settings on device based state flags. The flags are
7613 * in the userspace exported format.
7614 */
7615int dev_change_flags(struct net_device *dev, unsigned int flags,
7616 struct netlink_ext_ack *extack)
7617{
7618 int ret;
7619 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7620
7621 ret = __dev_change_flags(dev, flags, extack);
7622 if (ret < 0)
7623 return ret;
7624
7625 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7626 __dev_notify_flags(dev, old_flags, changes);
7627 return ret;
7628}
7629EXPORT_SYMBOL(dev_change_flags);
7630
7631int __dev_set_mtu(struct net_device *dev, int new_mtu)
7632{
7633 const struct net_device_ops *ops = dev->netdev_ops;
7634
7635 if (ops->ndo_change_mtu)
7636 return ops->ndo_change_mtu(dev, new_mtu);
7637
7638 dev->mtu = new_mtu;
7639 return 0;
7640}
7641EXPORT_SYMBOL(__dev_set_mtu);
7642
7643/**
7644 * dev_set_mtu_ext - Change maximum transfer unit
7645 * @dev: device
7646 * @new_mtu: new transfer unit
7647 * @extack: netlink extended ack
7648 *
7649 * Change the maximum transfer size of the network device.
7650 */
7651int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7652 struct netlink_ext_ack *extack)
7653{
7654 int err, orig_mtu;
7655
7656 if (new_mtu == dev->mtu)
7657 return 0;
7658
7659 /* MTU must be positive, and in range */
7660 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7661 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7662 return -EINVAL;
7663 }
7664
7665 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7666 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7667 return -EINVAL;
7668 }
7669
7670 if (!netif_device_present(dev))
7671 return -ENODEV;
7672
7673 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7674 err = notifier_to_errno(err);
7675 if (err)
7676 return err;
7677
7678 orig_mtu = dev->mtu;
7679 err = __dev_set_mtu(dev, new_mtu);
7680
7681 if (!err) {
7682 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7683 orig_mtu);
7684 err = notifier_to_errno(err);
7685 if (err) {
7686 /* setting mtu back and notifying everyone again,
7687 * so that they have a chance to revert changes.
7688 */
7689 __dev_set_mtu(dev, orig_mtu);
7690 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7691 new_mtu);
7692 }
7693 }
7694 return err;
7695}
7696
7697int dev_set_mtu(struct net_device *dev, int new_mtu)
7698{
7699 struct netlink_ext_ack extack;
7700 int err;
7701
7702 memset(&extack, 0, sizeof(extack));
7703 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7704 if (err && extack._msg)
7705 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7706 return err;
7707}
7708EXPORT_SYMBOL(dev_set_mtu);
7709
7710/**
7711 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7712 * @dev: device
7713 * @new_len: new tx queue length
7714 */
7715int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7716{
7717 unsigned int orig_len = dev->tx_queue_len;
7718 int res;
7719
7720 if (new_len != (unsigned int)new_len)
7721 return -ERANGE;
7722
7723 if (new_len != orig_len) {
7724 dev->tx_queue_len = new_len;
7725 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7726 res = notifier_to_errno(res);
7727 if (res)
7728 goto err_rollback;
7729 res = dev_qdisc_change_tx_queue_len(dev);
7730 if (res)
7731 goto err_rollback;
7732 }
7733
7734 return 0;
7735
7736err_rollback:
7737 netdev_err(dev, "refused to change device tx_queue_len\n");
7738 dev->tx_queue_len = orig_len;
7739 return res;
7740}
7741
7742/**
7743 * dev_set_group - Change group this device belongs to
7744 * @dev: device
7745 * @new_group: group this device should belong to
7746 */
7747void dev_set_group(struct net_device *dev, int new_group)
7748{
7749 dev->group = new_group;
7750}
7751EXPORT_SYMBOL(dev_set_group);
7752
7753/**
7754 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7755 * @dev: device
7756 * @addr: new address
7757 * @extack: netlink extended ack
7758 */
7759int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7760 struct netlink_ext_ack *extack)
7761{
7762 struct netdev_notifier_pre_changeaddr_info info = {
7763 .info.dev = dev,
7764 .info.extack = extack,
7765 .dev_addr = addr,
7766 };
7767 int rc;
7768
7769 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7770 return notifier_to_errno(rc);
7771}
7772EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7773
7774/**
7775 * dev_set_mac_address - Change Media Access Control Address
7776 * @dev: device
7777 * @sa: new address
7778 * @extack: netlink extended ack
7779 *
7780 * Change the hardware (MAC) address of the device
7781 */
7782int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7783 struct netlink_ext_ack *extack)
7784{
7785 const struct net_device_ops *ops = dev->netdev_ops;
7786 int err;
7787
7788 if (!ops->ndo_set_mac_address)
7789 return -EOPNOTSUPP;
7790 if (sa->sa_family != dev->type)
7791 return -EINVAL;
7792 if (!netif_device_present(dev))
7793 return -ENODEV;
7794 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7795 if (err)
7796 return err;
7797 err = ops->ndo_set_mac_address(dev, sa);
7798 if (err)
7799 return err;
7800 dev->addr_assign_type = NET_ADDR_SET;
7801 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7802 add_device_randomness(dev->dev_addr, dev->addr_len);
7803 return 0;
7804}
7805EXPORT_SYMBOL(dev_set_mac_address);
7806
7807/**
7808 * dev_change_carrier - Change device carrier
7809 * @dev: device
7810 * @new_carrier: new value
7811 *
7812 * Change device carrier
7813 */
7814int dev_change_carrier(struct net_device *dev, bool new_carrier)
7815{
7816 const struct net_device_ops *ops = dev->netdev_ops;
7817
7818 if (!ops->ndo_change_carrier)
7819 return -EOPNOTSUPP;
7820 if (!netif_device_present(dev))
7821 return -ENODEV;
7822 return ops->ndo_change_carrier(dev, new_carrier);
7823}
7824EXPORT_SYMBOL(dev_change_carrier);
7825
7826/**
7827 * dev_get_phys_port_id - Get device physical port ID
7828 * @dev: device
7829 * @ppid: port ID
7830 *
7831 * Get device physical port ID
7832 */
7833int dev_get_phys_port_id(struct net_device *dev,
7834 struct netdev_phys_item_id *ppid)
7835{
7836 const struct net_device_ops *ops = dev->netdev_ops;
7837
7838 if (!ops->ndo_get_phys_port_id)
7839 return -EOPNOTSUPP;
7840 return ops->ndo_get_phys_port_id(dev, ppid);
7841}
7842EXPORT_SYMBOL(dev_get_phys_port_id);
7843
7844/**
7845 * dev_get_phys_port_name - Get device physical port name
7846 * @dev: device
7847 * @name: port name
7848 * @len: limit of bytes to copy to name
7849 *
7850 * Get device physical port name
7851 */
7852int dev_get_phys_port_name(struct net_device *dev,
7853 char *name, size_t len)
7854{
7855 const struct net_device_ops *ops = dev->netdev_ops;
7856 int err;
7857
7858 if (ops->ndo_get_phys_port_name) {
7859 err = ops->ndo_get_phys_port_name(dev, name, len);
7860 if (err != -EOPNOTSUPP)
7861 return err;
7862 }
7863 return devlink_compat_phys_port_name_get(dev, name, len);
7864}
7865EXPORT_SYMBOL(dev_get_phys_port_name);
7866
7867/**
7868 * dev_get_port_parent_id - Get the device's port parent identifier
7869 * @dev: network device
7870 * @ppid: pointer to a storage for the port's parent identifier
7871 * @recurse: allow/disallow recursion to lower devices
7872 *
7873 * Get the devices's port parent identifier
7874 */
7875int dev_get_port_parent_id(struct net_device *dev,
7876 struct netdev_phys_item_id *ppid,
7877 bool recurse)
7878{
7879 const struct net_device_ops *ops = dev->netdev_ops;
7880 struct netdev_phys_item_id first = { };
7881 struct net_device *lower_dev;
7882 struct list_head *iter;
7883 int err;
7884
7885 if (ops->ndo_get_port_parent_id) {
7886 err = ops->ndo_get_port_parent_id(dev, ppid);
7887 if (err != -EOPNOTSUPP)
7888 return err;
7889 }
7890
7891 err = devlink_compat_switch_id_get(dev, ppid);
7892 if (!err || err != -EOPNOTSUPP)
7893 return err;
7894
7895 if (!recurse)
7896 return -EOPNOTSUPP;
7897
7898 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7899 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7900 if (err)
7901 break;
7902 if (!first.id_len)
7903 first = *ppid;
7904 else if (memcmp(&first, ppid, sizeof(*ppid)))
7905 return -ENODATA;
7906 }
7907
7908 return err;
7909}
7910EXPORT_SYMBOL(dev_get_port_parent_id);
7911
7912/**
7913 * netdev_port_same_parent_id - Indicate if two network devices have
7914 * the same port parent identifier
7915 * @a: first network device
7916 * @b: second network device
7917 */
7918bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7919{
7920 struct netdev_phys_item_id a_id = { };
7921 struct netdev_phys_item_id b_id = { };
7922
7923 if (dev_get_port_parent_id(a, &a_id, true) ||
7924 dev_get_port_parent_id(b, &b_id, true))
7925 return false;
7926
7927 return netdev_phys_item_id_same(&a_id, &b_id);
7928}
7929EXPORT_SYMBOL(netdev_port_same_parent_id);
7930
7931/**
7932 * dev_change_proto_down - update protocol port state information
7933 * @dev: device
7934 * @proto_down: new value
7935 *
7936 * This info can be used by switch drivers to set the phys state of the
7937 * port.
7938 */
7939int dev_change_proto_down(struct net_device *dev, bool proto_down)
7940{
7941 const struct net_device_ops *ops = dev->netdev_ops;
7942
7943 if (!ops->ndo_change_proto_down)
7944 return -EOPNOTSUPP;
7945 if (!netif_device_present(dev))
7946 return -ENODEV;
7947 return ops->ndo_change_proto_down(dev, proto_down);
7948}
7949EXPORT_SYMBOL(dev_change_proto_down);
7950
7951/**
7952 * dev_change_proto_down_generic - generic implementation for
7953 * ndo_change_proto_down that sets carrier according to
7954 * proto_down.
7955 *
7956 * @dev: device
7957 * @proto_down: new value
7958 */
7959int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7960{
7961 if (proto_down)
7962 netif_carrier_off(dev);
7963 else
7964 netif_carrier_on(dev);
7965 dev->proto_down = proto_down;
7966 return 0;
7967}
7968EXPORT_SYMBOL(dev_change_proto_down_generic);
7969
7970u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7971 enum bpf_netdev_command cmd)
7972{
7973 struct netdev_bpf xdp;
7974
7975 if (!bpf_op)
7976 return 0;
7977
7978 memset(&xdp, 0, sizeof(xdp));
7979 xdp.command = cmd;
7980
7981 /* Query must always succeed. */
7982 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7983
7984 return xdp.prog_id;
7985}
7986
7987static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7988 struct netlink_ext_ack *extack, u32 flags,
7989 struct bpf_prog *prog)
7990{
7991 struct netdev_bpf xdp;
7992
7993 memset(&xdp, 0, sizeof(xdp));
7994 if (flags & XDP_FLAGS_HW_MODE)
7995 xdp.command = XDP_SETUP_PROG_HW;
7996 else
7997 xdp.command = XDP_SETUP_PROG;
7998 xdp.extack = extack;
7999 xdp.flags = flags;
8000 xdp.prog = prog;
8001
8002 return bpf_op(dev, &xdp);
8003}
8004
8005static void dev_xdp_uninstall(struct net_device *dev)
8006{
8007 struct netdev_bpf xdp;
8008 bpf_op_t ndo_bpf;
8009
8010 /* Remove generic XDP */
8011 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8012
8013 /* Remove from the driver */
8014 ndo_bpf = dev->netdev_ops->ndo_bpf;
8015 if (!ndo_bpf)
8016 return;
8017
8018 memset(&xdp, 0, sizeof(xdp));
8019 xdp.command = XDP_QUERY_PROG;
8020 WARN_ON(ndo_bpf(dev, &xdp));
8021 if (xdp.prog_id)
8022 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8023 NULL));
8024
8025 /* Remove HW offload */
8026 memset(&xdp, 0, sizeof(xdp));
8027 xdp.command = XDP_QUERY_PROG_HW;
8028 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8029 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8030 NULL));
8031}
8032
8033/**
8034 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8035 * @dev: device
8036 * @extack: netlink extended ack
8037 * @fd: new program fd or negative value to clear
8038 * @flags: xdp-related flags
8039 *
8040 * Set or clear a bpf program for a device
8041 */
8042int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8043 int fd, u32 flags)
8044{
8045 const struct net_device_ops *ops = dev->netdev_ops;
8046 enum bpf_netdev_command query;
8047 struct bpf_prog *prog = NULL;
8048 bpf_op_t bpf_op, bpf_chk;
8049 bool offload;
8050 int err;
8051
8052 ASSERT_RTNL();
8053
8054 offload = flags & XDP_FLAGS_HW_MODE;
8055 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8056
8057 bpf_op = bpf_chk = ops->ndo_bpf;
8058 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8059 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8060 return -EOPNOTSUPP;
8061 }
8062 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8063 bpf_op = generic_xdp_install;
8064 if (bpf_op == bpf_chk)
8065 bpf_chk = generic_xdp_install;
8066
8067 if (fd >= 0) {
8068 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8069 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8070 return -EEXIST;
8071 }
8072 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8073 __dev_xdp_query(dev, bpf_op, query)) {
8074 NL_SET_ERR_MSG(extack, "XDP program already attached");
8075 return -EBUSY;
8076 }
8077
8078 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8079 bpf_op == ops->ndo_bpf);
8080 if (IS_ERR(prog))
8081 return PTR_ERR(prog);
8082
8083 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8084 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8085 bpf_prog_put(prog);
8086 return -EINVAL;
8087 }
8088 }
8089
8090 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8091 if (err < 0 && prog)
8092 bpf_prog_put(prog);
8093
8094 return err;
8095}
8096
8097/**
8098 * dev_new_index - allocate an ifindex
8099 * @net: the applicable net namespace
8100 *
8101 * Returns a suitable unique value for a new device interface
8102 * number. The caller must hold the rtnl semaphore or the
8103 * dev_base_lock to be sure it remains unique.
8104 */
8105static int dev_new_index(struct net *net)
8106{
8107 int ifindex = net->ifindex;
8108
8109 for (;;) {
8110 if (++ifindex <= 0)
8111 ifindex = 1;
8112 if (!__dev_get_by_index(net, ifindex))
8113 return net->ifindex = ifindex;
8114 }
8115}
8116
8117/* Delayed registration/unregisteration */
8118static LIST_HEAD(net_todo_list);
8119DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8120
8121static void net_set_todo(struct net_device *dev)
8122{
8123 list_add_tail(&dev->todo_list, &net_todo_list);
8124 dev_net(dev)->dev_unreg_count++;
8125}
8126
8127static void rollback_registered_many(struct list_head *head)
8128{
8129 struct net_device *dev, *tmp;
8130 LIST_HEAD(close_head);
8131
8132 BUG_ON(dev_boot_phase);
8133 ASSERT_RTNL();
8134
8135 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8136 /* Some devices call without registering
8137 * for initialization unwind. Remove those
8138 * devices and proceed with the remaining.
8139 */
8140 if (dev->reg_state == NETREG_UNINITIALIZED) {
8141 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8142 dev->name, dev);
8143
8144 WARN_ON(1);
8145 list_del(&dev->unreg_list);
8146 continue;
8147 }
8148 dev->dismantle = true;
8149 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8150 }
8151
8152 /* If device is running, close it first. */
8153 list_for_each_entry(dev, head, unreg_list)
8154 list_add_tail(&dev->close_list, &close_head);
8155 dev_close_many(&close_head, true);
8156
8157 list_for_each_entry(dev, head, unreg_list) {
8158 /* And unlink it from device chain. */
8159 unlist_netdevice(dev);
8160
8161 dev->reg_state = NETREG_UNREGISTERING;
8162 }
8163 flush_all_backlogs();
8164
8165 synchronize_net();
8166
8167 list_for_each_entry(dev, head, unreg_list) {
8168 struct sk_buff *skb = NULL;
8169
8170 /* Shutdown queueing discipline. */
8171 dev_shutdown(dev);
8172
8173 dev_xdp_uninstall(dev);
8174
8175 /* Notify protocols, that we are about to destroy
8176 * this device. They should clean all the things.
8177 */
8178 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8179
8180 if (!dev->rtnl_link_ops ||
8181 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8182 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8183 GFP_KERNEL, NULL, 0);
8184
8185 /*
8186 * Flush the unicast and multicast chains
8187 */
8188 dev_uc_flush(dev);
8189 dev_mc_flush(dev);
8190
8191 if (dev->netdev_ops->ndo_uninit)
8192 dev->netdev_ops->ndo_uninit(dev);
8193
8194 if (skb)
8195 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8196
8197 /* Notifier chain MUST detach us all upper devices. */
8198 WARN_ON(netdev_has_any_upper_dev(dev));
8199 WARN_ON(netdev_has_any_lower_dev(dev));
8200
8201 /* Remove entries from kobject tree */
8202 netdev_unregister_kobject(dev);
8203#ifdef CONFIG_XPS
8204 /* Remove XPS queueing entries */
8205 netif_reset_xps_queues_gt(dev, 0);
8206#endif
8207 }
8208
8209 synchronize_net();
8210
8211 list_for_each_entry(dev, head, unreg_list)
8212 dev_put(dev);
8213}
8214
8215static void rollback_registered(struct net_device *dev)
8216{
8217 LIST_HEAD(single);
8218
8219 list_add(&dev->unreg_list, &single);
8220 rollback_registered_many(&single);
8221 list_del(&single);
8222}
8223
8224static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8225 struct net_device *upper, netdev_features_t features)
8226{
8227 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8228 netdev_features_t feature;
8229 int feature_bit;
8230
8231 for_each_netdev_feature(upper_disables, feature_bit) {
8232 feature = __NETIF_F_BIT(feature_bit);
8233 if (!(upper->wanted_features & feature)
8234 && (features & feature)) {
8235 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8236 &feature, upper->name);
8237 features &= ~feature;
8238 }
8239 }
8240
8241 return features;
8242}
8243
8244static void netdev_sync_lower_features(struct net_device *upper,
8245 struct net_device *lower, netdev_features_t features)
8246{
8247 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8248 netdev_features_t feature;
8249 int feature_bit;
8250
8251 for_each_netdev_feature(upper_disables, feature_bit) {
8252 feature = __NETIF_F_BIT(feature_bit);
8253 if (!(features & feature) && (lower->features & feature)) {
8254 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8255 &feature, lower->name);
8256 lower->wanted_features &= ~feature;
8257 netdev_update_features(lower);
8258
8259 if (unlikely(lower->features & feature))
8260 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8261 &feature, lower->name);
8262 }
8263 }
8264}
8265
8266static netdev_features_t netdev_fix_features(struct net_device *dev,
8267 netdev_features_t features)
8268{
8269 /* Fix illegal checksum combinations */
8270 if ((features & NETIF_F_HW_CSUM) &&
8271 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8272 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8273 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8274 }
8275
8276 /* TSO requires that SG is present as well. */
8277 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8278 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8279 features &= ~NETIF_F_ALL_TSO;
8280 }
8281
8282 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8283 !(features & NETIF_F_IP_CSUM)) {
8284 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8285 features &= ~NETIF_F_TSO;
8286 features &= ~NETIF_F_TSO_ECN;
8287 }
8288
8289 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8290 !(features & NETIF_F_IPV6_CSUM)) {
8291 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8292 features &= ~NETIF_F_TSO6;
8293 }
8294
8295 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8296 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8297 features &= ~NETIF_F_TSO_MANGLEID;
8298
8299 /* TSO ECN requires that TSO is present as well. */
8300 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8301 features &= ~NETIF_F_TSO_ECN;
8302
8303 /* Software GSO depends on SG. */
8304 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8305 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8306 features &= ~NETIF_F_GSO;
8307 }
8308
8309 /* GSO partial features require GSO partial be set */
8310 if ((features & dev->gso_partial_features) &&
8311 !(features & NETIF_F_GSO_PARTIAL)) {
8312 netdev_dbg(dev,
8313 "Dropping partially supported GSO features since no GSO partial.\n");
8314 features &= ~dev->gso_partial_features;
8315 }
8316
8317 if (!(features & NETIF_F_RXCSUM)) {
8318 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8319 * successfully merged by hardware must also have the
8320 * checksum verified by hardware. If the user does not
8321 * want to enable RXCSUM, logically, we should disable GRO_HW.
8322 */
8323 if (features & NETIF_F_GRO_HW) {
8324 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8325 features &= ~NETIF_F_GRO_HW;
8326 }
8327 }
8328
8329 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8330 if (features & NETIF_F_RXFCS) {
8331 if (features & NETIF_F_LRO) {
8332 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8333 features &= ~NETIF_F_LRO;
8334 }
8335
8336 if (features & NETIF_F_GRO_HW) {
8337 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8338 features &= ~NETIF_F_GRO_HW;
8339 }
8340 }
8341
8342 return features;
8343}
8344
8345int __netdev_update_features(struct net_device *dev)
8346{
8347 struct net_device *upper, *lower;
8348 netdev_features_t features;
8349 struct list_head *iter;
8350 int err = -1;
8351
8352 ASSERT_RTNL();
8353
8354 features = netdev_get_wanted_features(dev);
8355
8356 if (dev->netdev_ops->ndo_fix_features)
8357 features = dev->netdev_ops->ndo_fix_features(dev, features);
8358
8359 /* driver might be less strict about feature dependencies */
8360 features = netdev_fix_features(dev, features);
8361
8362 /* some features can't be enabled if they're off an an upper device */
8363 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8364 features = netdev_sync_upper_features(dev, upper, features);
8365
8366 if (dev->features == features)
8367 goto sync_lower;
8368
8369 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8370 &dev->features, &features);
8371
8372 if (dev->netdev_ops->ndo_set_features)
8373 err = dev->netdev_ops->ndo_set_features(dev, features);
8374 else
8375 err = 0;
8376
8377 if (unlikely(err < 0)) {
8378 netdev_err(dev,
8379 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8380 err, &features, &dev->features);
8381 /* return non-0 since some features might have changed and
8382 * it's better to fire a spurious notification than miss it
8383 */
8384 return -1;
8385 }
8386
8387sync_lower:
8388 /* some features must be disabled on lower devices when disabled
8389 * on an upper device (think: bonding master or bridge)
8390 */
8391 netdev_for_each_lower_dev(dev, lower, iter)
8392 netdev_sync_lower_features(dev, lower, features);
8393
8394 if (!err) {
8395 netdev_features_t diff = features ^ dev->features;
8396
8397 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8398 /* udp_tunnel_{get,drop}_rx_info both need
8399 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8400 * device, or they won't do anything.
8401 * Thus we need to update dev->features
8402 * *before* calling udp_tunnel_get_rx_info,
8403 * but *after* calling udp_tunnel_drop_rx_info.
8404 */
8405 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8406 dev->features = features;
8407 udp_tunnel_get_rx_info(dev);
8408 } else {
8409 udp_tunnel_drop_rx_info(dev);
8410 }
8411 }
8412
8413 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8414 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8415 dev->features = features;
8416 err |= vlan_get_rx_ctag_filter_info(dev);
8417 } else {
8418 vlan_drop_rx_ctag_filter_info(dev);
8419 }
8420 }
8421
8422 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8423 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8424 dev->features = features;
8425 err |= vlan_get_rx_stag_filter_info(dev);
8426 } else {
8427 vlan_drop_rx_stag_filter_info(dev);
8428 }
8429 }
8430
8431 dev->features = features;
8432 }
8433
8434 return err < 0 ? 0 : 1;
8435}
8436
8437/**
8438 * netdev_update_features - recalculate device features
8439 * @dev: the device to check
8440 *
8441 * Recalculate dev->features set and send notifications if it
8442 * has changed. Should be called after driver or hardware dependent
8443 * conditions might have changed that influence the features.
8444 */
8445void netdev_update_features(struct net_device *dev)
8446{
8447 if (__netdev_update_features(dev))
8448 netdev_features_change(dev);
8449}
8450EXPORT_SYMBOL(netdev_update_features);
8451
8452/**
8453 * netdev_change_features - recalculate device features
8454 * @dev: the device to check
8455 *
8456 * Recalculate dev->features set and send notifications even
8457 * if they have not changed. Should be called instead of
8458 * netdev_update_features() if also dev->vlan_features might
8459 * have changed to allow the changes to be propagated to stacked
8460 * VLAN devices.
8461 */
8462void netdev_change_features(struct net_device *dev)
8463{
8464 __netdev_update_features(dev);
8465 netdev_features_change(dev);
8466}
8467EXPORT_SYMBOL(netdev_change_features);
8468
8469/**
8470 * netif_stacked_transfer_operstate - transfer operstate
8471 * @rootdev: the root or lower level device to transfer state from
8472 * @dev: the device to transfer operstate to
8473 *
8474 * Transfer operational state from root to device. This is normally
8475 * called when a stacking relationship exists between the root
8476 * device and the device(a leaf device).
8477 */
8478void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8479 struct net_device *dev)
8480{
8481 if (rootdev->operstate == IF_OPER_DORMANT)
8482 netif_dormant_on(dev);
8483 else
8484 netif_dormant_off(dev);
8485
8486 if (netif_carrier_ok(rootdev))
8487 netif_carrier_on(dev);
8488 else
8489 netif_carrier_off(dev);
8490}
8491EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8492
8493static int netif_alloc_rx_queues(struct net_device *dev)
8494{
8495 unsigned int i, count = dev->num_rx_queues;
8496 struct netdev_rx_queue *rx;
8497 size_t sz = count * sizeof(*rx);
8498 int err = 0;
8499
8500 BUG_ON(count < 1);
8501
8502 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8503 if (!rx)
8504 return -ENOMEM;
8505
8506 dev->_rx = rx;
8507
8508 for (i = 0; i < count; i++) {
8509 rx[i].dev = dev;
8510
8511 /* XDP RX-queue setup */
8512 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8513 if (err < 0)
8514 goto err_rxq_info;
8515 }
8516 return 0;
8517
8518err_rxq_info:
8519 /* Rollback successful reg's and free other resources */
8520 while (i--)
8521 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8522 kvfree(dev->_rx);
8523 dev->_rx = NULL;
8524 return err;
8525}
8526
8527static void netif_free_rx_queues(struct net_device *dev)
8528{
8529 unsigned int i, count = dev->num_rx_queues;
8530
8531 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8532 if (!dev->_rx)
8533 return;
8534
8535 for (i = 0; i < count; i++)
8536 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8537
8538 kvfree(dev->_rx);
8539}
8540
8541static void netdev_init_one_queue(struct net_device *dev,
8542 struct netdev_queue *queue, void *_unused)
8543{
8544 /* Initialize queue lock */
8545 spin_lock_init(&queue->_xmit_lock);
8546 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8547 queue->xmit_lock_owner = -1;
8548 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8549 queue->dev = dev;
8550#ifdef CONFIG_BQL
8551 dql_init(&queue->dql, HZ);
8552#endif
8553}
8554
8555static void netif_free_tx_queues(struct net_device *dev)
8556{
8557 kvfree(dev->_tx);
8558}
8559
8560static int netif_alloc_netdev_queues(struct net_device *dev)
8561{
8562 unsigned int count = dev->num_tx_queues;
8563 struct netdev_queue *tx;
8564 size_t sz = count * sizeof(*tx);
8565
8566 if (count < 1 || count > 0xffff)
8567 return -EINVAL;
8568
8569 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8570 if (!tx)
8571 return -ENOMEM;
8572
8573 dev->_tx = tx;
8574
8575 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8576 spin_lock_init(&dev->tx_global_lock);
8577
8578 return 0;
8579}
8580
8581void netif_tx_stop_all_queues(struct net_device *dev)
8582{
8583 unsigned int i;
8584
8585 for (i = 0; i < dev->num_tx_queues; i++) {
8586 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8587
8588 netif_tx_stop_queue(txq);
8589 }
8590}
8591EXPORT_SYMBOL(netif_tx_stop_all_queues);
8592
8593/**
8594 * register_netdevice - register a network device
8595 * @dev: device to register
8596 *
8597 * Take a completed network device structure and add it to the kernel
8598 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8599 * chain. 0 is returned on success. A negative errno code is returned
8600 * on a failure to set up the device, or if the name is a duplicate.
8601 *
8602 * Callers must hold the rtnl semaphore. You may want
8603 * register_netdev() instead of this.
8604 *
8605 * BUGS:
8606 * The locking appears insufficient to guarantee two parallel registers
8607 * will not get the same name.
8608 */
8609
8610int register_netdevice(struct net_device *dev)
8611{
8612 int ret;
8613 struct net *net = dev_net(dev);
8614
8615 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8616 NETDEV_FEATURE_COUNT);
8617 BUG_ON(dev_boot_phase);
8618 ASSERT_RTNL();
8619
8620 might_sleep();
8621
8622 /* When net_device's are persistent, this will be fatal. */
8623 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8624 BUG_ON(!net);
8625
8626 spin_lock_init(&dev->addr_list_lock);
8627 netdev_set_addr_lockdep_class(dev);
8628
8629 ret = dev_get_valid_name(net, dev, dev->name);
8630 if (ret < 0)
8631 goto out;
8632
8633 /* Init, if this function is available */
8634 if (dev->netdev_ops->ndo_init) {
8635 ret = dev->netdev_ops->ndo_init(dev);
8636 if (ret) {
8637 if (ret > 0)
8638 ret = -EIO;
8639 goto out;
8640 }
8641 }
8642
8643 if (((dev->hw_features | dev->features) &
8644 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8645 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8646 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8647 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8648 ret = -EINVAL;
8649 goto err_uninit;
8650 }
8651
8652 ret = -EBUSY;
8653 if (!dev->ifindex)
8654 dev->ifindex = dev_new_index(net);
8655 else if (__dev_get_by_index(net, dev->ifindex))
8656 goto err_uninit;
8657
8658 /* Transfer changeable features to wanted_features and enable
8659 * software offloads (GSO and GRO).
8660 */
8661 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8662 dev->features |= NETIF_F_SOFT_FEATURES;
8663
8664 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8665 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8666 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8667 }
8668
8669 dev->wanted_features = dev->features & dev->hw_features;
8670
8671 if (!(dev->flags & IFF_LOOPBACK))
8672 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8673
8674 /* If IPv4 TCP segmentation offload is supported we should also
8675 * allow the device to enable segmenting the frame with the option
8676 * of ignoring a static IP ID value. This doesn't enable the
8677 * feature itself but allows the user to enable it later.
8678 */
8679 if (dev->hw_features & NETIF_F_TSO)
8680 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8681 if (dev->vlan_features & NETIF_F_TSO)
8682 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8683 if (dev->mpls_features & NETIF_F_TSO)
8684 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8685 if (dev->hw_enc_features & NETIF_F_TSO)
8686 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8687
8688 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8689 */
8690 dev->vlan_features |= NETIF_F_HIGHDMA;
8691
8692 /* Make NETIF_F_SG inheritable to tunnel devices.
8693 */
8694 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8695
8696 /* Make NETIF_F_SG inheritable to MPLS.
8697 */
8698 dev->mpls_features |= NETIF_F_SG;
8699
8700 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8701 ret = notifier_to_errno(ret);
8702 if (ret)
8703 goto err_uninit;
8704
8705 ret = netdev_register_kobject(dev);
8706 if (ret)
8707 goto err_uninit;
8708 dev->reg_state = NETREG_REGISTERED;
8709
8710 __netdev_update_features(dev);
8711
8712 /*
8713 * Default initial state at registry is that the
8714 * device is present.
8715 */
8716
8717 set_bit(__LINK_STATE_PRESENT, &dev->state);
8718
8719 linkwatch_init_dev(dev);
8720
8721 dev_init_scheduler(dev);
8722 dev_hold(dev);
8723 list_netdevice(dev);
8724 add_device_randomness(dev->dev_addr, dev->addr_len);
8725
8726 /* If the device has permanent device address, driver should
8727 * set dev_addr and also addr_assign_type should be set to
8728 * NET_ADDR_PERM (default value).
8729 */
8730 if (dev->addr_assign_type == NET_ADDR_PERM)
8731 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8732
8733 /* Notify protocols, that a new device appeared. */
8734 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8735 ret = notifier_to_errno(ret);
8736 if (ret) {
8737 rollback_registered(dev);
8738 dev->reg_state = NETREG_UNREGISTERED;
8739 }
8740 /*
8741 * Prevent userspace races by waiting until the network
8742 * device is fully setup before sending notifications.
8743 */
8744 if (!dev->rtnl_link_ops ||
8745 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8746 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8747
8748out:
8749 return ret;
8750
8751err_uninit:
8752 if (dev->netdev_ops->ndo_uninit)
8753 dev->netdev_ops->ndo_uninit(dev);
8754 if (dev->priv_destructor)
8755 dev->priv_destructor(dev);
8756 goto out;
8757}
8758EXPORT_SYMBOL(register_netdevice);
8759
8760/**
8761 * init_dummy_netdev - init a dummy network device for NAPI
8762 * @dev: device to init
8763 *
8764 * This takes a network device structure and initialize the minimum
8765 * amount of fields so it can be used to schedule NAPI polls without
8766 * registering a full blown interface. This is to be used by drivers
8767 * that need to tie several hardware interfaces to a single NAPI
8768 * poll scheduler due to HW limitations.
8769 */
8770int init_dummy_netdev(struct net_device *dev)
8771{
8772 /* Clear everything. Note we don't initialize spinlocks
8773 * are they aren't supposed to be taken by any of the
8774 * NAPI code and this dummy netdev is supposed to be
8775 * only ever used for NAPI polls
8776 */
8777 memset(dev, 0, sizeof(struct net_device));
8778
8779 /* make sure we BUG if trying to hit standard
8780 * register/unregister code path
8781 */
8782 dev->reg_state = NETREG_DUMMY;
8783
8784 /* NAPI wants this */
8785 INIT_LIST_HEAD(&dev->napi_list);
8786
8787 /* a dummy interface is started by default */
8788 set_bit(__LINK_STATE_PRESENT, &dev->state);
8789 set_bit(__LINK_STATE_START, &dev->state);
8790
8791 /* napi_busy_loop stats accounting wants this */
8792 dev_net_set(dev, &init_net);
8793
8794 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8795 * because users of this 'device' dont need to change
8796 * its refcount.
8797 */
8798
8799 return 0;
8800}
8801EXPORT_SYMBOL_GPL(init_dummy_netdev);
8802
8803
8804/**
8805 * register_netdev - register a network device
8806 * @dev: device to register
8807 *
8808 * Take a completed network device structure and add it to the kernel
8809 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8810 * chain. 0 is returned on success. A negative errno code is returned
8811 * on a failure to set up the device, or if the name is a duplicate.
8812 *
8813 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8814 * and expands the device name if you passed a format string to
8815 * alloc_netdev.
8816 */
8817int register_netdev(struct net_device *dev)
8818{
8819 int err;
8820
8821 if (rtnl_lock_killable())
8822 return -EINTR;
8823 err = register_netdevice(dev);
8824 rtnl_unlock();
8825 return err;
8826}
8827EXPORT_SYMBOL(register_netdev);
8828
8829int netdev_refcnt_read(const struct net_device *dev)
8830{
8831 int i, refcnt = 0;
8832
8833 for_each_possible_cpu(i)
8834 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8835 return refcnt;
8836}
8837EXPORT_SYMBOL(netdev_refcnt_read);
8838
8839/**
8840 * netdev_wait_allrefs - wait until all references are gone.
8841 * @dev: target net_device
8842 *
8843 * This is called when unregistering network devices.
8844 *
8845 * Any protocol or device that holds a reference should register
8846 * for netdevice notification, and cleanup and put back the
8847 * reference if they receive an UNREGISTER event.
8848 * We can get stuck here if buggy protocols don't correctly
8849 * call dev_put.
8850 */
8851static void netdev_wait_allrefs(struct net_device *dev)
8852{
8853 unsigned long rebroadcast_time, warning_time;
8854 int refcnt;
8855
8856 linkwatch_forget_dev(dev);
8857
8858 rebroadcast_time = warning_time = jiffies;
8859 refcnt = netdev_refcnt_read(dev);
8860
8861 while (refcnt != 0) {
8862 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8863 rtnl_lock();
8864
8865 /* Rebroadcast unregister notification */
8866 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8867
8868 __rtnl_unlock();
8869 rcu_barrier();
8870 rtnl_lock();
8871
8872 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8873 &dev->state)) {
8874 /* We must not have linkwatch events
8875 * pending on unregister. If this
8876 * happens, we simply run the queue
8877 * unscheduled, resulting in a noop
8878 * for this device.
8879 */
8880 linkwatch_run_queue();
8881 }
8882
8883 __rtnl_unlock();
8884
8885 rebroadcast_time = jiffies;
8886 }
8887
8888 msleep(250);
8889
8890 refcnt = netdev_refcnt_read(dev);
8891
8892 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8893 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8894 dev->name, refcnt);
8895 warning_time = jiffies;
8896 }
8897 }
8898}
8899
8900/* The sequence is:
8901 *
8902 * rtnl_lock();
8903 * ...
8904 * register_netdevice(x1);
8905 * register_netdevice(x2);
8906 * ...
8907 * unregister_netdevice(y1);
8908 * unregister_netdevice(y2);
8909 * ...
8910 * rtnl_unlock();
8911 * free_netdev(y1);
8912 * free_netdev(y2);
8913 *
8914 * We are invoked by rtnl_unlock().
8915 * This allows us to deal with problems:
8916 * 1) We can delete sysfs objects which invoke hotplug
8917 * without deadlocking with linkwatch via keventd.
8918 * 2) Since we run with the RTNL semaphore not held, we can sleep
8919 * safely in order to wait for the netdev refcnt to drop to zero.
8920 *
8921 * We must not return until all unregister events added during
8922 * the interval the lock was held have been completed.
8923 */
8924void netdev_run_todo(void)
8925{
8926 struct list_head list;
8927
8928 /* Snapshot list, allow later requests */
8929 list_replace_init(&net_todo_list, &list);
8930
8931 __rtnl_unlock();
8932
8933
8934 /* Wait for rcu callbacks to finish before next phase */
8935 if (!list_empty(&list))
8936 rcu_barrier();
8937
8938 while (!list_empty(&list)) {
8939 struct net_device *dev
8940 = list_first_entry(&list, struct net_device, todo_list);
8941 list_del(&dev->todo_list);
8942
8943 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8944 pr_err("network todo '%s' but state %d\n",
8945 dev->name, dev->reg_state);
8946 dump_stack();
8947 continue;
8948 }
8949
8950 dev->reg_state = NETREG_UNREGISTERED;
8951
8952 netdev_wait_allrefs(dev);
8953
8954 /* paranoia */
8955 BUG_ON(netdev_refcnt_read(dev));
8956 BUG_ON(!list_empty(&dev->ptype_all));
8957 BUG_ON(!list_empty(&dev->ptype_specific));
8958 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8959 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8960#if IS_ENABLED(CONFIG_DECNET)
8961 WARN_ON(dev->dn_ptr);
8962#endif
8963 if (dev->priv_destructor)
8964 dev->priv_destructor(dev);
8965 if (dev->needs_free_netdev)
8966 free_netdev(dev);
8967
8968 /* Report a network device has been unregistered */
8969 rtnl_lock();
8970 dev_net(dev)->dev_unreg_count--;
8971 __rtnl_unlock();
8972 wake_up(&netdev_unregistering_wq);
8973
8974 /* Free network device */
8975 kobject_put(&dev->dev.kobj);
8976 }
8977}
8978
8979/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8980 * all the same fields in the same order as net_device_stats, with only
8981 * the type differing, but rtnl_link_stats64 may have additional fields
8982 * at the end for newer counters.
8983 */
8984void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8985 const struct net_device_stats *netdev_stats)
8986{
8987#if BITS_PER_LONG == 64
8988 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8989 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8990 /* zero out counters that only exist in rtnl_link_stats64 */
8991 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8992 sizeof(*stats64) - sizeof(*netdev_stats));
8993#else
8994 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8995 const unsigned long *src = (const unsigned long *)netdev_stats;
8996 u64 *dst = (u64 *)stats64;
8997
8998 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8999 for (i = 0; i < n; i++)
9000 dst[i] = src[i];
9001 /* zero out counters that only exist in rtnl_link_stats64 */
9002 memset((char *)stats64 + n * sizeof(u64), 0,
9003 sizeof(*stats64) - n * sizeof(u64));
9004#endif
9005}
9006EXPORT_SYMBOL(netdev_stats_to_stats64);
9007
9008/**
9009 * dev_get_stats - get network device statistics
9010 * @dev: device to get statistics from
9011 * @storage: place to store stats
9012 *
9013 * Get network statistics from device. Return @storage.
9014 * The device driver may provide its own method by setting
9015 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9016 * otherwise the internal statistics structure is used.
9017 */
9018struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9019 struct rtnl_link_stats64 *storage)
9020{
9021 const struct net_device_ops *ops = dev->netdev_ops;
9022
9023 if (ops->ndo_get_stats64) {
9024 memset(storage, 0, sizeof(*storage));
9025 ops->ndo_get_stats64(dev, storage);
9026 } else if (ops->ndo_get_stats) {
9027 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9028 } else {
9029 netdev_stats_to_stats64(storage, &dev->stats);
9030 }
9031 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9032 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9033 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9034 return storage;
9035}
9036EXPORT_SYMBOL(dev_get_stats);
9037
9038struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9039{
9040 struct netdev_queue *queue = dev_ingress_queue(dev);
9041
9042#ifdef CONFIG_NET_CLS_ACT
9043 if (queue)
9044 return queue;
9045 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9046 if (!queue)
9047 return NULL;
9048 netdev_init_one_queue(dev, queue, NULL);
9049 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9050 queue->qdisc_sleeping = &noop_qdisc;
9051 rcu_assign_pointer(dev->ingress_queue, queue);
9052#endif
9053 return queue;
9054}
9055
9056static const struct ethtool_ops default_ethtool_ops;
9057
9058void netdev_set_default_ethtool_ops(struct net_device *dev,
9059 const struct ethtool_ops *ops)
9060{
9061 if (dev->ethtool_ops == &default_ethtool_ops)
9062 dev->ethtool_ops = ops;
9063}
9064EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9065
9066void netdev_freemem(struct net_device *dev)
9067{
9068 char *addr = (char *)dev - dev->padded;
9069
9070 kvfree(addr);
9071}
9072
9073/**
9074 * alloc_netdev_mqs - allocate network device
9075 * @sizeof_priv: size of private data to allocate space for
9076 * @name: device name format string
9077 * @name_assign_type: origin of device name
9078 * @setup: callback to initialize device
9079 * @txqs: the number of TX subqueues to allocate
9080 * @rxqs: the number of RX subqueues to allocate
9081 *
9082 * Allocates a struct net_device with private data area for driver use
9083 * and performs basic initialization. Also allocates subqueue structs
9084 * for each queue on the device.
9085 */
9086struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9087 unsigned char name_assign_type,
9088 void (*setup)(struct net_device *),
9089 unsigned int txqs, unsigned int rxqs)
9090{
9091 struct net_device *dev;
9092 unsigned int alloc_size;
9093 struct net_device *p;
9094
9095 BUG_ON(strlen(name) >= sizeof(dev->name));
9096
9097 if (txqs < 1) {
9098 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9099 return NULL;
9100 }
9101
9102 if (rxqs < 1) {
9103 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9104 return NULL;
9105 }
9106
9107 alloc_size = sizeof(struct net_device);
9108 if (sizeof_priv) {
9109 /* ensure 32-byte alignment of private area */
9110 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9111 alloc_size += sizeof_priv;
9112 }
9113 /* ensure 32-byte alignment of whole construct */
9114 alloc_size += NETDEV_ALIGN - 1;
9115
9116 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9117 if (!p)
9118 return NULL;
9119
9120 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9121 dev->padded = (char *)dev - (char *)p;
9122
9123 dev->pcpu_refcnt = alloc_percpu(int);
9124 if (!dev->pcpu_refcnt)
9125 goto free_dev;
9126
9127 if (dev_addr_init(dev))
9128 goto free_pcpu;
9129
9130 dev_mc_init(dev);
9131 dev_uc_init(dev);
9132
9133 dev_net_set(dev, &init_net);
9134
9135 dev->gso_max_size = GSO_MAX_SIZE;
9136 dev->gso_max_segs = GSO_MAX_SEGS;
9137
9138 INIT_LIST_HEAD(&dev->napi_list);
9139 INIT_LIST_HEAD(&dev->unreg_list);
9140 INIT_LIST_HEAD(&dev->close_list);
9141 INIT_LIST_HEAD(&dev->link_watch_list);
9142 INIT_LIST_HEAD(&dev->adj_list.upper);
9143 INIT_LIST_HEAD(&dev->adj_list.lower);
9144 INIT_LIST_HEAD(&dev->ptype_all);
9145 INIT_LIST_HEAD(&dev->ptype_specific);
9146#ifdef CONFIG_NET_SCHED
9147 hash_init(dev->qdisc_hash);
9148#endif
9149 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9150 setup(dev);
9151
9152 if (!dev->tx_queue_len) {
9153 dev->priv_flags |= IFF_NO_QUEUE;
9154 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9155 }
9156
9157 dev->num_tx_queues = txqs;
9158 dev->real_num_tx_queues = txqs;
9159 if (netif_alloc_netdev_queues(dev))
9160 goto free_all;
9161
9162 dev->num_rx_queues = rxqs;
9163 dev->real_num_rx_queues = rxqs;
9164 if (netif_alloc_rx_queues(dev))
9165 goto free_all;
9166
9167 strcpy(dev->name, name);
9168 dev->name_assign_type = name_assign_type;
9169 dev->group = INIT_NETDEV_GROUP;
9170 if (!dev->ethtool_ops)
9171 dev->ethtool_ops = &default_ethtool_ops;
9172
9173 nf_hook_ingress_init(dev);
9174
9175 return dev;
9176
9177free_all:
9178 free_netdev(dev);
9179 return NULL;
9180
9181free_pcpu:
9182 free_percpu(dev->pcpu_refcnt);
9183free_dev:
9184 netdev_freemem(dev);
9185 return NULL;
9186}
9187EXPORT_SYMBOL(alloc_netdev_mqs);
9188
9189/**
9190 * free_netdev - free network device
9191 * @dev: device
9192 *
9193 * This function does the last stage of destroying an allocated device
9194 * interface. The reference to the device object is released. If this
9195 * is the last reference then it will be freed.Must be called in process
9196 * context.
9197 */
9198void free_netdev(struct net_device *dev)
9199{
9200 struct napi_struct *p, *n;
9201
9202 might_sleep();
9203 netif_free_tx_queues(dev);
9204 netif_free_rx_queues(dev);
9205
9206 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9207
9208 /* Flush device addresses */
9209 dev_addr_flush(dev);
9210
9211 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9212 netif_napi_del(p);
9213
9214 free_percpu(dev->pcpu_refcnt);
9215 dev->pcpu_refcnt = NULL;
9216
9217 /* Compatibility with error handling in drivers */
9218 if (dev->reg_state == NETREG_UNINITIALIZED) {
9219 netdev_freemem(dev);
9220 return;
9221 }
9222
9223 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9224 dev->reg_state = NETREG_RELEASED;
9225
9226 /* will free via device release */
9227 put_device(&dev->dev);
9228}
9229EXPORT_SYMBOL(free_netdev);
9230
9231/**
9232 * synchronize_net - Synchronize with packet receive processing
9233 *
9234 * Wait for packets currently being received to be done.
9235 * Does not block later packets from starting.
9236 */
9237void synchronize_net(void)
9238{
9239 might_sleep();
9240 if (rtnl_is_locked())
9241 synchronize_rcu_expedited();
9242 else
9243 synchronize_rcu();
9244}
9245EXPORT_SYMBOL(synchronize_net);
9246
9247/**
9248 * unregister_netdevice_queue - remove device from the kernel
9249 * @dev: device
9250 * @head: list
9251 *
9252 * This function shuts down a device interface and removes it
9253 * from the kernel tables.
9254 * If head not NULL, device is queued to be unregistered later.
9255 *
9256 * Callers must hold the rtnl semaphore. You may want
9257 * unregister_netdev() instead of this.
9258 */
9259
9260void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9261{
9262 ASSERT_RTNL();
9263
9264 if (head) {
9265 list_move_tail(&dev->unreg_list, head);
9266 } else {
9267 rollback_registered(dev);
9268 /* Finish processing unregister after unlock */
9269 net_set_todo(dev);
9270 }
9271}
9272EXPORT_SYMBOL(unregister_netdevice_queue);
9273
9274/**
9275 * unregister_netdevice_many - unregister many devices
9276 * @head: list of devices
9277 *
9278 * Note: As most callers use a stack allocated list_head,
9279 * we force a list_del() to make sure stack wont be corrupted later.
9280 */
9281void unregister_netdevice_many(struct list_head *head)
9282{
9283 struct net_device *dev;
9284
9285 if (!list_empty(head)) {
9286 rollback_registered_many(head);
9287 list_for_each_entry(dev, head, unreg_list)
9288 net_set_todo(dev);
9289 list_del(head);
9290 }
9291}
9292EXPORT_SYMBOL(unregister_netdevice_many);
9293
9294/**
9295 * unregister_netdev - remove device from the kernel
9296 * @dev: device
9297 *
9298 * This function shuts down a device interface and removes it
9299 * from the kernel tables.
9300 *
9301 * This is just a wrapper for unregister_netdevice that takes
9302 * the rtnl semaphore. In general you want to use this and not
9303 * unregister_netdevice.
9304 */
9305void unregister_netdev(struct net_device *dev)
9306{
9307 rtnl_lock();
9308 unregister_netdevice(dev);
9309 rtnl_unlock();
9310}
9311EXPORT_SYMBOL(unregister_netdev);
9312
9313/**
9314 * dev_change_net_namespace - move device to different nethost namespace
9315 * @dev: device
9316 * @net: network namespace
9317 * @pat: If not NULL name pattern to try if the current device name
9318 * is already taken in the destination network namespace.
9319 *
9320 * This function shuts down a device interface and moves it
9321 * to a new network namespace. On success 0 is returned, on
9322 * a failure a netagive errno code is returned.
9323 *
9324 * Callers must hold the rtnl semaphore.
9325 */
9326
9327int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9328{
9329 int err, new_nsid, new_ifindex;
9330
9331 ASSERT_RTNL();
9332
9333 /* Don't allow namespace local devices to be moved. */
9334 err = -EINVAL;
9335 if (dev->features & NETIF_F_NETNS_LOCAL)
9336 goto out;
9337
9338 /* Ensure the device has been registrered */
9339 if (dev->reg_state != NETREG_REGISTERED)
9340 goto out;
9341
9342 /* Get out if there is nothing todo */
9343 err = 0;
9344 if (net_eq(dev_net(dev), net))
9345 goto out;
9346
9347 /* Pick the destination device name, and ensure
9348 * we can use it in the destination network namespace.
9349 */
9350 err = -EEXIST;
9351 if (__dev_get_by_name(net, dev->name)) {
9352 /* We get here if we can't use the current device name */
9353 if (!pat)
9354 goto out;
9355 err = dev_get_valid_name(net, dev, pat);
9356 if (err < 0)
9357 goto out;
9358 }
9359
9360 /*
9361 * And now a mini version of register_netdevice unregister_netdevice.
9362 */
9363
9364 /* If device is running close it first. */
9365 dev_close(dev);
9366
9367 /* And unlink it from device chain */
9368 unlist_netdevice(dev);
9369
9370 synchronize_net();
9371
9372 /* Shutdown queueing discipline. */
9373 dev_shutdown(dev);
9374
9375 /* Notify protocols, that we are about to destroy
9376 * this device. They should clean all the things.
9377 *
9378 * Note that dev->reg_state stays at NETREG_REGISTERED.
9379 * This is wanted because this way 8021q and macvlan know
9380 * the device is just moving and can keep their slaves up.
9381 */
9382 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9383 rcu_barrier();
9384
9385 new_nsid = peernet2id_alloc(dev_net(dev), net);
9386 /* If there is an ifindex conflict assign a new one */
9387 if (__dev_get_by_index(net, dev->ifindex))
9388 new_ifindex = dev_new_index(net);
9389 else
9390 new_ifindex = dev->ifindex;
9391
9392 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9393 new_ifindex);
9394
9395 /*
9396 * Flush the unicast and multicast chains
9397 */
9398 dev_uc_flush(dev);
9399 dev_mc_flush(dev);
9400
9401 /* Send a netdev-removed uevent to the old namespace */
9402 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9403 netdev_adjacent_del_links(dev);
9404
9405 /* Actually switch the network namespace */
9406 dev_net_set(dev, net);
9407 dev->ifindex = new_ifindex;
9408
9409 /* Send a netdev-add uevent to the new namespace */
9410 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9411 netdev_adjacent_add_links(dev);
9412
9413 /* Fixup kobjects */
9414 err = device_rename(&dev->dev, dev->name);
9415 WARN_ON(err);
9416
9417 /* Add the device back in the hashes */
9418 list_netdevice(dev);
9419
9420 /* Notify protocols, that a new device appeared. */
9421 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9422
9423 /*
9424 * Prevent userspace races by waiting until the network
9425 * device is fully setup before sending notifications.
9426 */
9427 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9428
9429 synchronize_net();
9430 err = 0;
9431out:
9432 return err;
9433}
9434EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9435
9436static int dev_cpu_dead(unsigned int oldcpu)
9437{
9438 struct sk_buff **list_skb;
9439 struct sk_buff *skb;
9440 unsigned int cpu;
9441 struct softnet_data *sd, *oldsd, *remsd = NULL;
9442
9443 local_irq_disable();
9444 cpu = smp_processor_id();
9445 sd = &per_cpu(softnet_data, cpu);
9446 oldsd = &per_cpu(softnet_data, oldcpu);
9447
9448 /* Find end of our completion_queue. */
9449 list_skb = &sd->completion_queue;
9450 while (*list_skb)
9451 list_skb = &(*list_skb)->next;
9452 /* Append completion queue from offline CPU. */
9453 *list_skb = oldsd->completion_queue;
9454 oldsd->completion_queue = NULL;
9455
9456 /* Append output queue from offline CPU. */
9457 if (oldsd->output_queue) {
9458 *sd->output_queue_tailp = oldsd->output_queue;
9459 sd->output_queue_tailp = oldsd->output_queue_tailp;
9460 oldsd->output_queue = NULL;
9461 oldsd->output_queue_tailp = &oldsd->output_queue;
9462 }
9463 /* Append NAPI poll list from offline CPU, with one exception :
9464 * process_backlog() must be called by cpu owning percpu backlog.
9465 * We properly handle process_queue & input_pkt_queue later.
9466 */
9467 while (!list_empty(&oldsd->poll_list)) {
9468 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9469 struct napi_struct,
9470 poll_list);
9471
9472 list_del_init(&napi->poll_list);
9473 if (napi->poll == process_backlog)
9474 napi->state = 0;
9475 else
9476 ____napi_schedule(sd, napi);
9477 }
9478
9479 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9480 local_irq_enable();
9481
9482#ifdef CONFIG_RPS
9483 remsd = oldsd->rps_ipi_list;
9484 oldsd->rps_ipi_list = NULL;
9485#endif
9486 /* send out pending IPI's on offline CPU */
9487 net_rps_send_ipi(remsd);
9488
9489 /* Process offline CPU's input_pkt_queue */
9490 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9491 netif_rx_ni(skb);
9492 input_queue_head_incr(oldsd);
9493 }
9494 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9495 netif_rx_ni(skb);
9496 input_queue_head_incr(oldsd);
9497 }
9498
9499 return 0;
9500}
9501
9502/**
9503 * netdev_increment_features - increment feature set by one
9504 * @all: current feature set
9505 * @one: new feature set
9506 * @mask: mask feature set
9507 *
9508 * Computes a new feature set after adding a device with feature set
9509 * @one to the master device with current feature set @all. Will not
9510 * enable anything that is off in @mask. Returns the new feature set.
9511 */
9512netdev_features_t netdev_increment_features(netdev_features_t all,
9513 netdev_features_t one, netdev_features_t mask)
9514{
9515 if (mask & NETIF_F_HW_CSUM)
9516 mask |= NETIF_F_CSUM_MASK;
9517 mask |= NETIF_F_VLAN_CHALLENGED;
9518
9519 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9520 all &= one | ~NETIF_F_ALL_FOR_ALL;
9521
9522 /* If one device supports hw checksumming, set for all. */
9523 if (all & NETIF_F_HW_CSUM)
9524 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9525
9526 return all;
9527}
9528EXPORT_SYMBOL(netdev_increment_features);
9529
9530static struct hlist_head * __net_init netdev_create_hash(void)
9531{
9532 int i;
9533 struct hlist_head *hash;
9534
9535 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9536 if (hash != NULL)
9537 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9538 INIT_HLIST_HEAD(&hash[i]);
9539
9540 return hash;
9541}
9542
9543/* Initialize per network namespace state */
9544static int __net_init netdev_init(struct net *net)
9545{
9546 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9547 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9548
9549 if (net != &init_net)
9550 INIT_LIST_HEAD(&net->dev_base_head);
9551
9552 net->dev_name_head = netdev_create_hash();
9553 if (net->dev_name_head == NULL)
9554 goto err_name;
9555
9556 net->dev_index_head = netdev_create_hash();
9557 if (net->dev_index_head == NULL)
9558 goto err_idx;
9559
9560 return 0;
9561
9562err_idx:
9563 kfree(net->dev_name_head);
9564err_name:
9565 return -ENOMEM;
9566}
9567
9568/**
9569 * netdev_drivername - network driver for the device
9570 * @dev: network device
9571 *
9572 * Determine network driver for device.
9573 */
9574const char *netdev_drivername(const struct net_device *dev)
9575{
9576 const struct device_driver *driver;
9577 const struct device *parent;
9578 const char *empty = "";
9579
9580 parent = dev->dev.parent;
9581 if (!parent)
9582 return empty;
9583
9584 driver = parent->driver;
9585 if (driver && driver->name)
9586 return driver->name;
9587 return empty;
9588}
9589
9590static void __netdev_printk(const char *level, const struct net_device *dev,
9591 struct va_format *vaf)
9592{
9593 if (dev && dev->dev.parent) {
9594 dev_printk_emit(level[1] - '0',
9595 dev->dev.parent,
9596 "%s %s %s%s: %pV",
9597 dev_driver_string(dev->dev.parent),
9598 dev_name(dev->dev.parent),
9599 netdev_name(dev), netdev_reg_state(dev),
9600 vaf);
9601 } else if (dev) {
9602 printk("%s%s%s: %pV",
9603 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9604 } else {
9605 printk("%s(NULL net_device): %pV", level, vaf);
9606 }
9607}
9608
9609void netdev_printk(const char *level, const struct net_device *dev,
9610 const char *format, ...)
9611{
9612 struct va_format vaf;
9613 va_list args;
9614
9615 va_start(args, format);
9616
9617 vaf.fmt = format;
9618 vaf.va = &args;
9619
9620 __netdev_printk(level, dev, &vaf);
9621
9622 va_end(args);
9623}
9624EXPORT_SYMBOL(netdev_printk);
9625
9626#define define_netdev_printk_level(func, level) \
9627void func(const struct net_device *dev, const char *fmt, ...) \
9628{ \
9629 struct va_format vaf; \
9630 va_list args; \
9631 \
9632 va_start(args, fmt); \
9633 \
9634 vaf.fmt = fmt; \
9635 vaf.va = &args; \
9636 \
9637 __netdev_printk(level, dev, &vaf); \
9638 \
9639 va_end(args); \
9640} \
9641EXPORT_SYMBOL(func);
9642
9643define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9644define_netdev_printk_level(netdev_alert, KERN_ALERT);
9645define_netdev_printk_level(netdev_crit, KERN_CRIT);
9646define_netdev_printk_level(netdev_err, KERN_ERR);
9647define_netdev_printk_level(netdev_warn, KERN_WARNING);
9648define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9649define_netdev_printk_level(netdev_info, KERN_INFO);
9650
9651static void __net_exit netdev_exit(struct net *net)
9652{
9653 kfree(net->dev_name_head);
9654 kfree(net->dev_index_head);
9655 if (net != &init_net)
9656 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9657}
9658
9659static struct pernet_operations __net_initdata netdev_net_ops = {
9660 .init = netdev_init,
9661 .exit = netdev_exit,
9662};
9663
9664static void __net_exit default_device_exit(struct net *net)
9665{
9666 struct net_device *dev, *aux;
9667 /*
9668 * Push all migratable network devices back to the
9669 * initial network namespace
9670 */
9671 rtnl_lock();
9672 for_each_netdev_safe(net, dev, aux) {
9673 int err;
9674 char fb_name[IFNAMSIZ];
9675
9676 /* Ignore unmoveable devices (i.e. loopback) */
9677 if (dev->features & NETIF_F_NETNS_LOCAL)
9678 continue;
9679
9680 /* Leave virtual devices for the generic cleanup */
9681 if (dev->rtnl_link_ops)
9682 continue;
9683
9684 /* Push remaining network devices to init_net */
9685 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9686 err = dev_change_net_namespace(dev, &init_net, fb_name);
9687 if (err) {
9688 pr_emerg("%s: failed to move %s to init_net: %d\n",
9689 __func__, dev->name, err);
9690 BUG();
9691 }
9692 }
9693 rtnl_unlock();
9694}
9695
9696static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9697{
9698 /* Return with the rtnl_lock held when there are no network
9699 * devices unregistering in any network namespace in net_list.
9700 */
9701 struct net *net;
9702 bool unregistering;
9703 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9704
9705 add_wait_queue(&netdev_unregistering_wq, &wait);
9706 for (;;) {
9707 unregistering = false;
9708 rtnl_lock();
9709 list_for_each_entry(net, net_list, exit_list) {
9710 if (net->dev_unreg_count > 0) {
9711 unregistering = true;
9712 break;
9713 }
9714 }
9715 if (!unregistering)
9716 break;
9717 __rtnl_unlock();
9718
9719 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9720 }
9721 remove_wait_queue(&netdev_unregistering_wq, &wait);
9722}
9723
9724static void __net_exit default_device_exit_batch(struct list_head *net_list)
9725{
9726 /* At exit all network devices most be removed from a network
9727 * namespace. Do this in the reverse order of registration.
9728 * Do this across as many network namespaces as possible to
9729 * improve batching efficiency.
9730 */
9731 struct net_device *dev;
9732 struct net *net;
9733 LIST_HEAD(dev_kill_list);
9734
9735 /* To prevent network device cleanup code from dereferencing
9736 * loopback devices or network devices that have been freed
9737 * wait here for all pending unregistrations to complete,
9738 * before unregistring the loopback device and allowing the
9739 * network namespace be freed.
9740 *
9741 * The netdev todo list containing all network devices
9742 * unregistrations that happen in default_device_exit_batch
9743 * will run in the rtnl_unlock() at the end of
9744 * default_device_exit_batch.
9745 */
9746 rtnl_lock_unregistering(net_list);
9747 list_for_each_entry(net, net_list, exit_list) {
9748 for_each_netdev_reverse(net, dev) {
9749 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9750 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9751 else
9752 unregister_netdevice_queue(dev, &dev_kill_list);
9753 }
9754 }
9755 unregister_netdevice_many(&dev_kill_list);
9756 rtnl_unlock();
9757}
9758
9759static struct pernet_operations __net_initdata default_device_ops = {
9760 .exit = default_device_exit,
9761 .exit_batch = default_device_exit_batch,
9762};
9763
9764/*
9765 * Initialize the DEV module. At boot time this walks the device list and
9766 * unhooks any devices that fail to initialise (normally hardware not
9767 * present) and leaves us with a valid list of present and active devices.
9768 *
9769 */
9770
9771/*
9772 * This is called single threaded during boot, so no need
9773 * to take the rtnl semaphore.
9774 */
9775static int __init net_dev_init(void)
9776{
9777 int i, rc = -ENOMEM;
9778
9779 BUG_ON(!dev_boot_phase);
9780
9781 if (dev_proc_init())
9782 goto out;
9783
9784 if (netdev_kobject_init())
9785 goto out;
9786
9787 INIT_LIST_HEAD(&ptype_all);
9788 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9789 INIT_LIST_HEAD(&ptype_base[i]);
9790
9791 INIT_LIST_HEAD(&offload_base);
9792
9793 if (register_pernet_subsys(&netdev_net_ops))
9794 goto out;
9795
9796 /*
9797 * Initialise the packet receive queues.
9798 */
9799
9800 for_each_possible_cpu(i) {
9801 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9802 struct softnet_data *sd = &per_cpu(softnet_data, i);
9803
9804 INIT_WORK(flush, flush_backlog);
9805
9806 skb_queue_head_init(&sd->input_pkt_queue);
9807 skb_queue_head_init(&sd->process_queue);
9808#ifdef CONFIG_XFRM_OFFLOAD
9809 skb_queue_head_init(&sd->xfrm_backlog);
9810#endif
9811 INIT_LIST_HEAD(&sd->poll_list);
9812 sd->output_queue_tailp = &sd->output_queue;
9813#ifdef CONFIG_RPS
9814 sd->csd.func = rps_trigger_softirq;
9815 sd->csd.info = sd;
9816 sd->cpu = i;
9817#endif
9818
9819 init_gro_hash(&sd->backlog);
9820 sd->backlog.poll = process_backlog;
9821 sd->backlog.weight = weight_p;
9822 }
9823
9824 dev_boot_phase = 0;
9825
9826 /* The loopback device is special if any other network devices
9827 * is present in a network namespace the loopback device must
9828 * be present. Since we now dynamically allocate and free the
9829 * loopback device ensure this invariant is maintained by
9830 * keeping the loopback device as the first device on the
9831 * list of network devices. Ensuring the loopback devices
9832 * is the first device that appears and the last network device
9833 * that disappears.
9834 */
9835 if (register_pernet_device(&loopback_net_ops))
9836 goto out;
9837
9838 if (register_pernet_device(&default_device_ops))
9839 goto out;
9840
9841 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9842 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9843
9844 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9845 NULL, dev_cpu_dead);
9846 WARN_ON(rc < 0);
9847 rc = 0;
9848out:
9849 return rc;
9850}
9851
9852subsys_initcall(net_dev_init);