Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30
31struct mempolicy;
32struct anon_vma;
33struct anon_vma_chain;
34struct file_ra_state;
35struct user_struct;
36struct writeback_control;
37struct bdi_writeback;
38
39void init_mm_internals(void);
40
41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42extern unsigned long max_mapnr;
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
50#endif
51
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
78extern void * high_memory;
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
101
102#ifndef __pa_symbol
103#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
104#endif
105
106#ifndef page_to_virt
107#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
108#endif
109
110#ifndef lm_alias
111#define lm_alias(x) __va(__pa_symbol(x))
112#endif
113
114/*
115 * To prevent common memory management code establishing
116 * a zero page mapping on a read fault.
117 * This macro should be defined within <asm/pgtable.h>.
118 * s390 does this to prevent multiplexing of hardware bits
119 * related to the physical page in case of virtualization.
120 */
121#ifndef mm_forbids_zeropage
122#define mm_forbids_zeropage(X) (0)
123#endif
124
125/*
126 * On some architectures it is expensive to call memset() for small sizes.
127 * If an architecture decides to implement their own version of
128 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
129 * define their own version of this macro in <asm/pgtable.h>
130 */
131#if BITS_PER_LONG == 64
132/* This function must be updated when the size of struct page grows above 80
133 * or reduces below 56. The idea that compiler optimizes out switch()
134 * statement, and only leaves move/store instructions. Also the compiler can
135 * combine write statments if they are both assignments and can be reordered,
136 * this can result in several of the writes here being dropped.
137 */
138#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
139static inline void __mm_zero_struct_page(struct page *page)
140{
141 unsigned long *_pp = (void *)page;
142
143 /* Check that struct page is either 56, 64, 72, or 80 bytes */
144 BUILD_BUG_ON(sizeof(struct page) & 7);
145 BUILD_BUG_ON(sizeof(struct page) < 56);
146 BUILD_BUG_ON(sizeof(struct page) > 80);
147
148 switch (sizeof(struct page)) {
149 case 80:
150 _pp[9] = 0; /* fallthrough */
151 case 72:
152 _pp[8] = 0; /* fallthrough */
153 case 64:
154 _pp[7] = 0; /* fallthrough */
155 case 56:
156 _pp[6] = 0;
157 _pp[5] = 0;
158 _pp[4] = 0;
159 _pp[3] = 0;
160 _pp[2] = 0;
161 _pp[1] = 0;
162 _pp[0] = 0;
163 }
164}
165#else
166#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
167#endif
168
169/*
170 * Default maximum number of active map areas, this limits the number of vmas
171 * per mm struct. Users can overwrite this number by sysctl but there is a
172 * problem.
173 *
174 * When a program's coredump is generated as ELF format, a section is created
175 * per a vma. In ELF, the number of sections is represented in unsigned short.
176 * This means the number of sections should be smaller than 65535 at coredump.
177 * Because the kernel adds some informative sections to a image of program at
178 * generating coredump, we need some margin. The number of extra sections is
179 * 1-3 now and depends on arch. We use "5" as safe margin, here.
180 *
181 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
182 * not a hard limit any more. Although some userspace tools can be surprised by
183 * that.
184 */
185#define MAPCOUNT_ELF_CORE_MARGIN (5)
186#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
187
188extern int sysctl_max_map_count;
189
190extern unsigned long sysctl_user_reserve_kbytes;
191extern unsigned long sysctl_admin_reserve_kbytes;
192
193extern int sysctl_overcommit_memory;
194extern int sysctl_overcommit_ratio;
195extern unsigned long sysctl_overcommit_kbytes;
196
197extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
198 size_t *, loff_t *);
199extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
200 size_t *, loff_t *);
201
202#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
203
204/* to align the pointer to the (next) page boundary */
205#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
206
207/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
208#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
209
210#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
211
212/*
213 * Linux kernel virtual memory manager primitives.
214 * The idea being to have a "virtual" mm in the same way
215 * we have a virtual fs - giving a cleaner interface to the
216 * mm details, and allowing different kinds of memory mappings
217 * (from shared memory to executable loading to arbitrary
218 * mmap() functions).
219 */
220
221struct vm_area_struct *vm_area_alloc(struct mm_struct *);
222struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
223void vm_area_free(struct vm_area_struct *);
224
225#ifndef CONFIG_MMU
226extern struct rb_root nommu_region_tree;
227extern struct rw_semaphore nommu_region_sem;
228
229extern unsigned int kobjsize(const void *objp);
230#endif
231
232/*
233 * vm_flags in vm_area_struct, see mm_types.h.
234 * When changing, update also include/trace/events/mmflags.h
235 */
236#define VM_NONE 0x00000000
237
238#define VM_READ 0x00000001 /* currently active flags */
239#define VM_WRITE 0x00000002
240#define VM_EXEC 0x00000004
241#define VM_SHARED 0x00000008
242
243/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
244#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
245#define VM_MAYWRITE 0x00000020
246#define VM_MAYEXEC 0x00000040
247#define VM_MAYSHARE 0x00000080
248
249#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
250#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
251#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
252#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
253#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
254
255#define VM_LOCKED 0x00002000
256#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
257
258 /* Used by sys_madvise() */
259#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
260#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
261
262#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
263#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
264#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
265#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
266#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
267#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
268#define VM_SYNC 0x00800000 /* Synchronous page faults */
269#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
270#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
271#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
272
273#ifdef CONFIG_MEM_SOFT_DIRTY
274# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
275#else
276# define VM_SOFTDIRTY 0
277#endif
278
279#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
280#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
281#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
282#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
283
284#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
285#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
286#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
287#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
288#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
289#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
290#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
291#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
292#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
293#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
294#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
295#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
296
297#ifdef CONFIG_ARCH_HAS_PKEYS
298# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
299# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
300# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
301# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
302# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
303#ifdef CONFIG_PPC
304# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
305#else
306# define VM_PKEY_BIT4 0
307#endif
308#endif /* CONFIG_ARCH_HAS_PKEYS */
309
310#if defined(CONFIG_X86)
311# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
312#elif defined(CONFIG_PPC)
313# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
314#elif defined(CONFIG_PARISC)
315# define VM_GROWSUP VM_ARCH_1
316#elif defined(CONFIG_IA64)
317# define VM_GROWSUP VM_ARCH_1
318#elif defined(CONFIG_SPARC64)
319# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
320# define VM_ARCH_CLEAR VM_SPARC_ADI
321#elif !defined(CONFIG_MMU)
322# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
323#endif
324
325#if defined(CONFIG_X86_INTEL_MPX)
326/* MPX specific bounds table or bounds directory */
327# define VM_MPX VM_HIGH_ARCH_4
328#else
329# define VM_MPX VM_NONE
330#endif
331
332#ifndef VM_GROWSUP
333# define VM_GROWSUP VM_NONE
334#endif
335
336/* Bits set in the VMA until the stack is in its final location */
337#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
338
339#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
340#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
341#endif
342
343#ifdef CONFIG_STACK_GROWSUP
344#define VM_STACK VM_GROWSUP
345#else
346#define VM_STACK VM_GROWSDOWN
347#endif
348
349#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
350
351/*
352 * Special vmas that are non-mergable, non-mlock()able.
353 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
354 */
355#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
356
357/* This mask defines which mm->def_flags a process can inherit its parent */
358#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
359
360/* This mask is used to clear all the VMA flags used by mlock */
361#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
362
363/* Arch-specific flags to clear when updating VM flags on protection change */
364#ifndef VM_ARCH_CLEAR
365# define VM_ARCH_CLEAR VM_NONE
366#endif
367#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
368
369/*
370 * mapping from the currently active vm_flags protection bits (the
371 * low four bits) to a page protection mask..
372 */
373extern pgprot_t protection_map[16];
374
375#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
376#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
377#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
378#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
379#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
380#define FAULT_FLAG_TRIED 0x20 /* Second try */
381#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
382#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
383#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
384
385#define FAULT_FLAG_TRACE \
386 { FAULT_FLAG_WRITE, "WRITE" }, \
387 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
388 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
389 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
390 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
391 { FAULT_FLAG_TRIED, "TRIED" }, \
392 { FAULT_FLAG_USER, "USER" }, \
393 { FAULT_FLAG_REMOTE, "REMOTE" }, \
394 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
395
396/*
397 * vm_fault is filled by the the pagefault handler and passed to the vma's
398 * ->fault function. The vma's ->fault is responsible for returning a bitmask
399 * of VM_FAULT_xxx flags that give details about how the fault was handled.
400 *
401 * MM layer fills up gfp_mask for page allocations but fault handler might
402 * alter it if its implementation requires a different allocation context.
403 *
404 * pgoff should be used in favour of virtual_address, if possible.
405 */
406struct vm_fault {
407 struct vm_area_struct *vma; /* Target VMA */
408 unsigned int flags; /* FAULT_FLAG_xxx flags */
409 gfp_t gfp_mask; /* gfp mask to be used for allocations */
410 pgoff_t pgoff; /* Logical page offset based on vma */
411 unsigned long address; /* Faulting virtual address */
412 pmd_t *pmd; /* Pointer to pmd entry matching
413 * the 'address' */
414 pud_t *pud; /* Pointer to pud entry matching
415 * the 'address'
416 */
417 pte_t orig_pte; /* Value of PTE at the time of fault */
418
419 struct page *cow_page; /* Page handler may use for COW fault */
420 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
421 struct page *page; /* ->fault handlers should return a
422 * page here, unless VM_FAULT_NOPAGE
423 * is set (which is also implied by
424 * VM_FAULT_ERROR).
425 */
426 /* These three entries are valid only while holding ptl lock */
427 pte_t *pte; /* Pointer to pte entry matching
428 * the 'address'. NULL if the page
429 * table hasn't been allocated.
430 */
431 spinlock_t *ptl; /* Page table lock.
432 * Protects pte page table if 'pte'
433 * is not NULL, otherwise pmd.
434 */
435 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
436 * vm_ops->map_pages() calls
437 * alloc_set_pte() from atomic context.
438 * do_fault_around() pre-allocates
439 * page table to avoid allocation from
440 * atomic context.
441 */
442};
443
444/* page entry size for vm->huge_fault() */
445enum page_entry_size {
446 PE_SIZE_PTE = 0,
447 PE_SIZE_PMD,
448 PE_SIZE_PUD,
449};
450
451/*
452 * These are the virtual MM functions - opening of an area, closing and
453 * unmapping it (needed to keep files on disk up-to-date etc), pointer
454 * to the functions called when a no-page or a wp-page exception occurs.
455 */
456struct vm_operations_struct {
457 void (*open)(struct vm_area_struct * area);
458 void (*close)(struct vm_area_struct * area);
459 int (*split)(struct vm_area_struct * area, unsigned long addr);
460 int (*mremap)(struct vm_area_struct * area);
461 vm_fault_t (*fault)(struct vm_fault *vmf);
462 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
463 enum page_entry_size pe_size);
464 void (*map_pages)(struct vm_fault *vmf,
465 pgoff_t start_pgoff, pgoff_t end_pgoff);
466 unsigned long (*pagesize)(struct vm_area_struct * area);
467
468 /* notification that a previously read-only page is about to become
469 * writable, if an error is returned it will cause a SIGBUS */
470 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
471
472 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
473 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
474
475 /* called by access_process_vm when get_user_pages() fails, typically
476 * for use by special VMAs that can switch between memory and hardware
477 */
478 int (*access)(struct vm_area_struct *vma, unsigned long addr,
479 void *buf, int len, int write);
480
481 /* Called by the /proc/PID/maps code to ask the vma whether it
482 * has a special name. Returning non-NULL will also cause this
483 * vma to be dumped unconditionally. */
484 const char *(*name)(struct vm_area_struct *vma);
485
486#ifdef CONFIG_NUMA
487 /*
488 * set_policy() op must add a reference to any non-NULL @new mempolicy
489 * to hold the policy upon return. Caller should pass NULL @new to
490 * remove a policy and fall back to surrounding context--i.e. do not
491 * install a MPOL_DEFAULT policy, nor the task or system default
492 * mempolicy.
493 */
494 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
495
496 /*
497 * get_policy() op must add reference [mpol_get()] to any policy at
498 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
499 * in mm/mempolicy.c will do this automatically.
500 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
501 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
502 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
503 * must return NULL--i.e., do not "fallback" to task or system default
504 * policy.
505 */
506 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
507 unsigned long addr);
508#endif
509 /*
510 * Called by vm_normal_page() for special PTEs to find the
511 * page for @addr. This is useful if the default behavior
512 * (using pte_page()) would not find the correct page.
513 */
514 struct page *(*find_special_page)(struct vm_area_struct *vma,
515 unsigned long addr);
516};
517
518static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
519{
520 static const struct vm_operations_struct dummy_vm_ops = {};
521
522 memset(vma, 0, sizeof(*vma));
523 vma->vm_mm = mm;
524 vma->vm_ops = &dummy_vm_ops;
525 INIT_LIST_HEAD(&vma->anon_vma_chain);
526}
527
528static inline void vma_set_anonymous(struct vm_area_struct *vma)
529{
530 vma->vm_ops = NULL;
531}
532
533/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
534#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
535
536struct mmu_gather;
537struct inode;
538
539#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
540static inline int pmd_devmap(pmd_t pmd)
541{
542 return 0;
543}
544static inline int pud_devmap(pud_t pud)
545{
546 return 0;
547}
548static inline int pgd_devmap(pgd_t pgd)
549{
550 return 0;
551}
552#endif
553
554/*
555 * FIXME: take this include out, include page-flags.h in
556 * files which need it (119 of them)
557 */
558#include <linux/page-flags.h>
559#include <linux/huge_mm.h>
560
561/*
562 * Methods to modify the page usage count.
563 *
564 * What counts for a page usage:
565 * - cache mapping (page->mapping)
566 * - private data (page->private)
567 * - page mapped in a task's page tables, each mapping
568 * is counted separately
569 *
570 * Also, many kernel routines increase the page count before a critical
571 * routine so they can be sure the page doesn't go away from under them.
572 */
573
574/*
575 * Drop a ref, return true if the refcount fell to zero (the page has no users)
576 */
577static inline int put_page_testzero(struct page *page)
578{
579 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
580 return page_ref_dec_and_test(page);
581}
582
583/*
584 * Try to grab a ref unless the page has a refcount of zero, return false if
585 * that is the case.
586 * This can be called when MMU is off so it must not access
587 * any of the virtual mappings.
588 */
589static inline int get_page_unless_zero(struct page *page)
590{
591 return page_ref_add_unless(page, 1, 0);
592}
593
594extern int page_is_ram(unsigned long pfn);
595
596enum {
597 REGION_INTERSECTS,
598 REGION_DISJOINT,
599 REGION_MIXED,
600};
601
602int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
603 unsigned long desc);
604
605/* Support for virtually mapped pages */
606struct page *vmalloc_to_page(const void *addr);
607unsigned long vmalloc_to_pfn(const void *addr);
608
609/*
610 * Determine if an address is within the vmalloc range
611 *
612 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
613 * is no special casing required.
614 */
615static inline bool is_vmalloc_addr(const void *x)
616{
617#ifdef CONFIG_MMU
618 unsigned long addr = (unsigned long)x;
619
620 return addr >= VMALLOC_START && addr < VMALLOC_END;
621#else
622 return false;
623#endif
624}
625#ifdef CONFIG_MMU
626extern int is_vmalloc_or_module_addr(const void *x);
627#else
628static inline int is_vmalloc_or_module_addr(const void *x)
629{
630 return 0;
631}
632#endif
633
634extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
635static inline void *kvmalloc(size_t size, gfp_t flags)
636{
637 return kvmalloc_node(size, flags, NUMA_NO_NODE);
638}
639static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
640{
641 return kvmalloc_node(size, flags | __GFP_ZERO, node);
642}
643static inline void *kvzalloc(size_t size, gfp_t flags)
644{
645 return kvmalloc(size, flags | __GFP_ZERO);
646}
647
648static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
649{
650 size_t bytes;
651
652 if (unlikely(check_mul_overflow(n, size, &bytes)))
653 return NULL;
654
655 return kvmalloc(bytes, flags);
656}
657
658static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
659{
660 return kvmalloc_array(n, size, flags | __GFP_ZERO);
661}
662
663extern void kvfree(const void *addr);
664
665static inline atomic_t *compound_mapcount_ptr(struct page *page)
666{
667 return &page[1].compound_mapcount;
668}
669
670static inline int compound_mapcount(struct page *page)
671{
672 VM_BUG_ON_PAGE(!PageCompound(page), page);
673 page = compound_head(page);
674 return atomic_read(compound_mapcount_ptr(page)) + 1;
675}
676
677/*
678 * The atomic page->_mapcount, starts from -1: so that transitions
679 * both from it and to it can be tracked, using atomic_inc_and_test
680 * and atomic_add_negative(-1).
681 */
682static inline void page_mapcount_reset(struct page *page)
683{
684 atomic_set(&(page)->_mapcount, -1);
685}
686
687int __page_mapcount(struct page *page);
688
689static inline int page_mapcount(struct page *page)
690{
691 VM_BUG_ON_PAGE(PageSlab(page), page);
692
693 if (unlikely(PageCompound(page)))
694 return __page_mapcount(page);
695 return atomic_read(&page->_mapcount) + 1;
696}
697
698#ifdef CONFIG_TRANSPARENT_HUGEPAGE
699int total_mapcount(struct page *page);
700int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
701#else
702static inline int total_mapcount(struct page *page)
703{
704 return page_mapcount(page);
705}
706static inline int page_trans_huge_mapcount(struct page *page,
707 int *total_mapcount)
708{
709 int mapcount = page_mapcount(page);
710 if (total_mapcount)
711 *total_mapcount = mapcount;
712 return mapcount;
713}
714#endif
715
716static inline struct page *virt_to_head_page(const void *x)
717{
718 struct page *page = virt_to_page(x);
719
720 return compound_head(page);
721}
722
723void __put_page(struct page *page);
724
725void put_pages_list(struct list_head *pages);
726
727void split_page(struct page *page, unsigned int order);
728
729/*
730 * Compound pages have a destructor function. Provide a
731 * prototype for that function and accessor functions.
732 * These are _only_ valid on the head of a compound page.
733 */
734typedef void compound_page_dtor(struct page *);
735
736/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
737enum compound_dtor_id {
738 NULL_COMPOUND_DTOR,
739 COMPOUND_PAGE_DTOR,
740#ifdef CONFIG_HUGETLB_PAGE
741 HUGETLB_PAGE_DTOR,
742#endif
743#ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 TRANSHUGE_PAGE_DTOR,
745#endif
746 NR_COMPOUND_DTORS,
747};
748extern compound_page_dtor * const compound_page_dtors[];
749
750static inline void set_compound_page_dtor(struct page *page,
751 enum compound_dtor_id compound_dtor)
752{
753 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
754 page[1].compound_dtor = compound_dtor;
755}
756
757static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
758{
759 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
760 return compound_page_dtors[page[1].compound_dtor];
761}
762
763static inline unsigned int compound_order(struct page *page)
764{
765 if (!PageHead(page))
766 return 0;
767 return page[1].compound_order;
768}
769
770static inline void set_compound_order(struct page *page, unsigned int order)
771{
772 page[1].compound_order = order;
773}
774
775void free_compound_page(struct page *page);
776
777#ifdef CONFIG_MMU
778/*
779 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
780 * servicing faults for write access. In the normal case, do always want
781 * pte_mkwrite. But get_user_pages can cause write faults for mappings
782 * that do not have writing enabled, when used by access_process_vm.
783 */
784static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
785{
786 if (likely(vma->vm_flags & VM_WRITE))
787 pte = pte_mkwrite(pte);
788 return pte;
789}
790
791vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
792 struct page *page);
793vm_fault_t finish_fault(struct vm_fault *vmf);
794vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
795#endif
796
797/*
798 * Multiple processes may "see" the same page. E.g. for untouched
799 * mappings of /dev/null, all processes see the same page full of
800 * zeroes, and text pages of executables and shared libraries have
801 * only one copy in memory, at most, normally.
802 *
803 * For the non-reserved pages, page_count(page) denotes a reference count.
804 * page_count() == 0 means the page is free. page->lru is then used for
805 * freelist management in the buddy allocator.
806 * page_count() > 0 means the page has been allocated.
807 *
808 * Pages are allocated by the slab allocator in order to provide memory
809 * to kmalloc and kmem_cache_alloc. In this case, the management of the
810 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
811 * unless a particular usage is carefully commented. (the responsibility of
812 * freeing the kmalloc memory is the caller's, of course).
813 *
814 * A page may be used by anyone else who does a __get_free_page().
815 * In this case, page_count still tracks the references, and should only
816 * be used through the normal accessor functions. The top bits of page->flags
817 * and page->virtual store page management information, but all other fields
818 * are unused and could be used privately, carefully. The management of this
819 * page is the responsibility of the one who allocated it, and those who have
820 * subsequently been given references to it.
821 *
822 * The other pages (we may call them "pagecache pages") are completely
823 * managed by the Linux memory manager: I/O, buffers, swapping etc.
824 * The following discussion applies only to them.
825 *
826 * A pagecache page contains an opaque `private' member, which belongs to the
827 * page's address_space. Usually, this is the address of a circular list of
828 * the page's disk buffers. PG_private must be set to tell the VM to call
829 * into the filesystem to release these pages.
830 *
831 * A page may belong to an inode's memory mapping. In this case, page->mapping
832 * is the pointer to the inode, and page->index is the file offset of the page,
833 * in units of PAGE_SIZE.
834 *
835 * If pagecache pages are not associated with an inode, they are said to be
836 * anonymous pages. These may become associated with the swapcache, and in that
837 * case PG_swapcache is set, and page->private is an offset into the swapcache.
838 *
839 * In either case (swapcache or inode backed), the pagecache itself holds one
840 * reference to the page. Setting PG_private should also increment the
841 * refcount. The each user mapping also has a reference to the page.
842 *
843 * The pagecache pages are stored in a per-mapping radix tree, which is
844 * rooted at mapping->i_pages, and indexed by offset.
845 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
846 * lists, we instead now tag pages as dirty/writeback in the radix tree.
847 *
848 * All pagecache pages may be subject to I/O:
849 * - inode pages may need to be read from disk,
850 * - inode pages which have been modified and are MAP_SHARED may need
851 * to be written back to the inode on disk,
852 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
853 * modified may need to be swapped out to swap space and (later) to be read
854 * back into memory.
855 */
856
857/*
858 * The zone field is never updated after free_area_init_core()
859 * sets it, so none of the operations on it need to be atomic.
860 */
861
862/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
863#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
864#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
865#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
866#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
867#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
868
869/*
870 * Define the bit shifts to access each section. For non-existent
871 * sections we define the shift as 0; that plus a 0 mask ensures
872 * the compiler will optimise away reference to them.
873 */
874#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
875#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
876#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
877#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
878#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
879
880/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
881#ifdef NODE_NOT_IN_PAGE_FLAGS
882#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
883#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
884 SECTIONS_PGOFF : ZONES_PGOFF)
885#else
886#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
887#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
888 NODES_PGOFF : ZONES_PGOFF)
889#endif
890
891#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
892
893#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
894#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
895#endif
896
897#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
898#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
899#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
900#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
901#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
902#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
903
904static inline enum zone_type page_zonenum(const struct page *page)
905{
906 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
907}
908
909#ifdef CONFIG_ZONE_DEVICE
910static inline bool is_zone_device_page(const struct page *page)
911{
912 return page_zonenum(page) == ZONE_DEVICE;
913}
914extern void memmap_init_zone_device(struct zone *, unsigned long,
915 unsigned long, struct dev_pagemap *);
916#else
917static inline bool is_zone_device_page(const struct page *page)
918{
919 return false;
920}
921#endif
922
923#ifdef CONFIG_DEV_PAGEMAP_OPS
924void dev_pagemap_get_ops(void);
925void dev_pagemap_put_ops(void);
926void __put_devmap_managed_page(struct page *page);
927DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
928static inline bool put_devmap_managed_page(struct page *page)
929{
930 if (!static_branch_unlikely(&devmap_managed_key))
931 return false;
932 if (!is_zone_device_page(page))
933 return false;
934 switch (page->pgmap->type) {
935 case MEMORY_DEVICE_PRIVATE:
936 case MEMORY_DEVICE_PUBLIC:
937 case MEMORY_DEVICE_FS_DAX:
938 __put_devmap_managed_page(page);
939 return true;
940 default:
941 break;
942 }
943 return false;
944}
945
946static inline bool is_device_private_page(const struct page *page)
947{
948 return is_zone_device_page(page) &&
949 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
950}
951
952static inline bool is_device_public_page(const struct page *page)
953{
954 return is_zone_device_page(page) &&
955 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
956}
957
958#ifdef CONFIG_PCI_P2PDMA
959static inline bool is_pci_p2pdma_page(const struct page *page)
960{
961 return is_zone_device_page(page) &&
962 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
963}
964#else /* CONFIG_PCI_P2PDMA */
965static inline bool is_pci_p2pdma_page(const struct page *page)
966{
967 return false;
968}
969#endif /* CONFIG_PCI_P2PDMA */
970
971#else /* CONFIG_DEV_PAGEMAP_OPS */
972static inline void dev_pagemap_get_ops(void)
973{
974}
975
976static inline void dev_pagemap_put_ops(void)
977{
978}
979
980static inline bool put_devmap_managed_page(struct page *page)
981{
982 return false;
983}
984
985static inline bool is_device_private_page(const struct page *page)
986{
987 return false;
988}
989
990static inline bool is_device_public_page(const struct page *page)
991{
992 return false;
993}
994
995static inline bool is_pci_p2pdma_page(const struct page *page)
996{
997 return false;
998}
999#endif /* CONFIG_DEV_PAGEMAP_OPS */
1000
1001/* 127: arbitrary random number, small enough to assemble well */
1002#define page_ref_zero_or_close_to_overflow(page) \
1003 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1004
1005static inline void get_page(struct page *page)
1006{
1007 page = compound_head(page);
1008 /*
1009 * Getting a normal page or the head of a compound page
1010 * requires to already have an elevated page->_refcount.
1011 */
1012 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1013 page_ref_inc(page);
1014}
1015
1016static inline __must_check bool try_get_page(struct page *page)
1017{
1018 page = compound_head(page);
1019 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1020 return false;
1021 page_ref_inc(page);
1022 return true;
1023}
1024
1025static inline void put_page(struct page *page)
1026{
1027 page = compound_head(page);
1028
1029 /*
1030 * For devmap managed pages we need to catch refcount transition from
1031 * 2 to 1, when refcount reach one it means the page is free and we
1032 * need to inform the device driver through callback. See
1033 * include/linux/memremap.h and HMM for details.
1034 */
1035 if (put_devmap_managed_page(page))
1036 return;
1037
1038 if (put_page_testzero(page))
1039 __put_page(page);
1040}
1041
1042/**
1043 * put_user_page() - release a gup-pinned page
1044 * @page: pointer to page to be released
1045 *
1046 * Pages that were pinned via get_user_pages*() must be released via
1047 * either put_user_page(), or one of the put_user_pages*() routines
1048 * below. This is so that eventually, pages that are pinned via
1049 * get_user_pages*() can be separately tracked and uniquely handled. In
1050 * particular, interactions with RDMA and filesystems need special
1051 * handling.
1052 *
1053 * put_user_page() and put_page() are not interchangeable, despite this early
1054 * implementation that makes them look the same. put_user_page() calls must
1055 * be perfectly matched up with get_user_page() calls.
1056 */
1057static inline void put_user_page(struct page *page)
1058{
1059 put_page(page);
1060}
1061
1062void put_user_pages_dirty(struct page **pages, unsigned long npages);
1063void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1064void put_user_pages(struct page **pages, unsigned long npages);
1065
1066#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1067#define SECTION_IN_PAGE_FLAGS
1068#endif
1069
1070/*
1071 * The identification function is mainly used by the buddy allocator for
1072 * determining if two pages could be buddies. We are not really identifying
1073 * the zone since we could be using the section number id if we do not have
1074 * node id available in page flags.
1075 * We only guarantee that it will return the same value for two combinable
1076 * pages in a zone.
1077 */
1078static inline int page_zone_id(struct page *page)
1079{
1080 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1081}
1082
1083#ifdef NODE_NOT_IN_PAGE_FLAGS
1084extern int page_to_nid(const struct page *page);
1085#else
1086static inline int page_to_nid(const struct page *page)
1087{
1088 struct page *p = (struct page *)page;
1089
1090 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1091}
1092#endif
1093
1094#ifdef CONFIG_NUMA_BALANCING
1095static inline int cpu_pid_to_cpupid(int cpu, int pid)
1096{
1097 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1098}
1099
1100static inline int cpupid_to_pid(int cpupid)
1101{
1102 return cpupid & LAST__PID_MASK;
1103}
1104
1105static inline int cpupid_to_cpu(int cpupid)
1106{
1107 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1108}
1109
1110static inline int cpupid_to_nid(int cpupid)
1111{
1112 return cpu_to_node(cpupid_to_cpu(cpupid));
1113}
1114
1115static inline bool cpupid_pid_unset(int cpupid)
1116{
1117 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1118}
1119
1120static inline bool cpupid_cpu_unset(int cpupid)
1121{
1122 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1123}
1124
1125static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1126{
1127 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1128}
1129
1130#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1131#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1132static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1133{
1134 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1135}
1136
1137static inline int page_cpupid_last(struct page *page)
1138{
1139 return page->_last_cpupid;
1140}
1141static inline void page_cpupid_reset_last(struct page *page)
1142{
1143 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1144}
1145#else
1146static inline int page_cpupid_last(struct page *page)
1147{
1148 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1149}
1150
1151extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1152
1153static inline void page_cpupid_reset_last(struct page *page)
1154{
1155 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1156}
1157#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1158#else /* !CONFIG_NUMA_BALANCING */
1159static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1160{
1161 return page_to_nid(page); /* XXX */
1162}
1163
1164static inline int page_cpupid_last(struct page *page)
1165{
1166 return page_to_nid(page); /* XXX */
1167}
1168
1169static inline int cpupid_to_nid(int cpupid)
1170{
1171 return -1;
1172}
1173
1174static inline int cpupid_to_pid(int cpupid)
1175{
1176 return -1;
1177}
1178
1179static inline int cpupid_to_cpu(int cpupid)
1180{
1181 return -1;
1182}
1183
1184static inline int cpu_pid_to_cpupid(int nid, int pid)
1185{
1186 return -1;
1187}
1188
1189static inline bool cpupid_pid_unset(int cpupid)
1190{
1191 return 1;
1192}
1193
1194static inline void page_cpupid_reset_last(struct page *page)
1195{
1196}
1197
1198static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1199{
1200 return false;
1201}
1202#endif /* CONFIG_NUMA_BALANCING */
1203
1204#ifdef CONFIG_KASAN_SW_TAGS
1205static inline u8 page_kasan_tag(const struct page *page)
1206{
1207 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1208}
1209
1210static inline void page_kasan_tag_set(struct page *page, u8 tag)
1211{
1212 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1213 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1214}
1215
1216static inline void page_kasan_tag_reset(struct page *page)
1217{
1218 page_kasan_tag_set(page, 0xff);
1219}
1220#else
1221static inline u8 page_kasan_tag(const struct page *page)
1222{
1223 return 0xff;
1224}
1225
1226static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1227static inline void page_kasan_tag_reset(struct page *page) { }
1228#endif
1229
1230static inline struct zone *page_zone(const struct page *page)
1231{
1232 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1233}
1234
1235static inline pg_data_t *page_pgdat(const struct page *page)
1236{
1237 return NODE_DATA(page_to_nid(page));
1238}
1239
1240#ifdef SECTION_IN_PAGE_FLAGS
1241static inline void set_page_section(struct page *page, unsigned long section)
1242{
1243 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1244 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1245}
1246
1247static inline unsigned long page_to_section(const struct page *page)
1248{
1249 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1250}
1251#endif
1252
1253static inline void set_page_zone(struct page *page, enum zone_type zone)
1254{
1255 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1256 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1257}
1258
1259static inline void set_page_node(struct page *page, unsigned long node)
1260{
1261 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1262 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1263}
1264
1265static inline void set_page_links(struct page *page, enum zone_type zone,
1266 unsigned long node, unsigned long pfn)
1267{
1268 set_page_zone(page, zone);
1269 set_page_node(page, node);
1270#ifdef SECTION_IN_PAGE_FLAGS
1271 set_page_section(page, pfn_to_section_nr(pfn));
1272#endif
1273}
1274
1275#ifdef CONFIG_MEMCG
1276static inline struct mem_cgroup *page_memcg(struct page *page)
1277{
1278 return page->mem_cgroup;
1279}
1280static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1281{
1282 WARN_ON_ONCE(!rcu_read_lock_held());
1283 return READ_ONCE(page->mem_cgroup);
1284}
1285#else
1286static inline struct mem_cgroup *page_memcg(struct page *page)
1287{
1288 return NULL;
1289}
1290static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1291{
1292 WARN_ON_ONCE(!rcu_read_lock_held());
1293 return NULL;
1294}
1295#endif
1296
1297/*
1298 * Some inline functions in vmstat.h depend on page_zone()
1299 */
1300#include <linux/vmstat.h>
1301
1302static __always_inline void *lowmem_page_address(const struct page *page)
1303{
1304 return page_to_virt(page);
1305}
1306
1307#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1308#define HASHED_PAGE_VIRTUAL
1309#endif
1310
1311#if defined(WANT_PAGE_VIRTUAL)
1312static inline void *page_address(const struct page *page)
1313{
1314 return page->virtual;
1315}
1316static inline void set_page_address(struct page *page, void *address)
1317{
1318 page->virtual = address;
1319}
1320#define page_address_init() do { } while(0)
1321#endif
1322
1323#if defined(HASHED_PAGE_VIRTUAL)
1324void *page_address(const struct page *page);
1325void set_page_address(struct page *page, void *virtual);
1326void page_address_init(void);
1327#endif
1328
1329#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1330#define page_address(page) lowmem_page_address(page)
1331#define set_page_address(page, address) do { } while(0)
1332#define page_address_init() do { } while(0)
1333#endif
1334
1335extern void *page_rmapping(struct page *page);
1336extern struct anon_vma *page_anon_vma(struct page *page);
1337extern struct address_space *page_mapping(struct page *page);
1338
1339extern struct address_space *__page_file_mapping(struct page *);
1340
1341static inline
1342struct address_space *page_file_mapping(struct page *page)
1343{
1344 if (unlikely(PageSwapCache(page)))
1345 return __page_file_mapping(page);
1346
1347 return page->mapping;
1348}
1349
1350extern pgoff_t __page_file_index(struct page *page);
1351
1352/*
1353 * Return the pagecache index of the passed page. Regular pagecache pages
1354 * use ->index whereas swapcache pages use swp_offset(->private)
1355 */
1356static inline pgoff_t page_index(struct page *page)
1357{
1358 if (unlikely(PageSwapCache(page)))
1359 return __page_file_index(page);
1360 return page->index;
1361}
1362
1363bool page_mapped(struct page *page);
1364struct address_space *page_mapping(struct page *page);
1365struct address_space *page_mapping_file(struct page *page);
1366
1367/*
1368 * Return true only if the page has been allocated with
1369 * ALLOC_NO_WATERMARKS and the low watermark was not
1370 * met implying that the system is under some pressure.
1371 */
1372static inline bool page_is_pfmemalloc(struct page *page)
1373{
1374 /*
1375 * Page index cannot be this large so this must be
1376 * a pfmemalloc page.
1377 */
1378 return page->index == -1UL;
1379}
1380
1381/*
1382 * Only to be called by the page allocator on a freshly allocated
1383 * page.
1384 */
1385static inline void set_page_pfmemalloc(struct page *page)
1386{
1387 page->index = -1UL;
1388}
1389
1390static inline void clear_page_pfmemalloc(struct page *page)
1391{
1392 page->index = 0;
1393}
1394
1395/*
1396 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1397 */
1398extern void pagefault_out_of_memory(void);
1399
1400#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1401
1402/*
1403 * Flags passed to show_mem() and show_free_areas() to suppress output in
1404 * various contexts.
1405 */
1406#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1407
1408extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1409
1410extern bool can_do_mlock(void);
1411extern int user_shm_lock(size_t, struct user_struct *);
1412extern void user_shm_unlock(size_t, struct user_struct *);
1413
1414/*
1415 * Parameter block passed down to zap_pte_range in exceptional cases.
1416 */
1417struct zap_details {
1418 struct address_space *check_mapping; /* Check page->mapping if set */
1419 pgoff_t first_index; /* Lowest page->index to unmap */
1420 pgoff_t last_index; /* Highest page->index to unmap */
1421};
1422
1423struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1424 pte_t pte, bool with_public_device);
1425#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1426
1427struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1428 pmd_t pmd);
1429
1430void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1431 unsigned long size);
1432void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1433 unsigned long size);
1434void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1435 unsigned long start, unsigned long end);
1436
1437/**
1438 * mm_walk - callbacks for walk_page_range
1439 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1440 * this handler should only handle pud_trans_huge() puds.
1441 * the pmd_entry or pte_entry callbacks will be used for
1442 * regular PUDs.
1443 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1444 * this handler is required to be able to handle
1445 * pmd_trans_huge() pmds. They may simply choose to
1446 * split_huge_page() instead of handling it explicitly.
1447 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1448 * @pte_hole: if set, called for each hole at all levels
1449 * @hugetlb_entry: if set, called for each hugetlb entry
1450 * @test_walk: caller specific callback function to determine whether
1451 * we walk over the current vma or not. Returning 0
1452 * value means "do page table walk over the current vma,"
1453 * and a negative one means "abort current page table walk
1454 * right now." 1 means "skip the current vma."
1455 * @mm: mm_struct representing the target process of page table walk
1456 * @vma: vma currently walked (NULL if walking outside vmas)
1457 * @private: private data for callbacks' usage
1458 *
1459 * (see the comment on walk_page_range() for more details)
1460 */
1461struct mm_walk {
1462 int (*pud_entry)(pud_t *pud, unsigned long addr,
1463 unsigned long next, struct mm_walk *walk);
1464 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1465 unsigned long next, struct mm_walk *walk);
1466 int (*pte_entry)(pte_t *pte, unsigned long addr,
1467 unsigned long next, struct mm_walk *walk);
1468 int (*pte_hole)(unsigned long addr, unsigned long next,
1469 struct mm_walk *walk);
1470 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1471 unsigned long addr, unsigned long next,
1472 struct mm_walk *walk);
1473 int (*test_walk)(unsigned long addr, unsigned long next,
1474 struct mm_walk *walk);
1475 struct mm_struct *mm;
1476 struct vm_area_struct *vma;
1477 void *private;
1478};
1479
1480struct mmu_notifier_range;
1481
1482int walk_page_range(unsigned long addr, unsigned long end,
1483 struct mm_walk *walk);
1484int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1485void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1486 unsigned long end, unsigned long floor, unsigned long ceiling);
1487int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1488 struct vm_area_struct *vma);
1489int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1490 struct mmu_notifier_range *range,
1491 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1492int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1493 unsigned long *pfn);
1494int follow_phys(struct vm_area_struct *vma, unsigned long address,
1495 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1496int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1497 void *buf, int len, int write);
1498
1499extern void truncate_pagecache(struct inode *inode, loff_t new);
1500extern void truncate_setsize(struct inode *inode, loff_t newsize);
1501void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1502void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1503int truncate_inode_page(struct address_space *mapping, struct page *page);
1504int generic_error_remove_page(struct address_space *mapping, struct page *page);
1505int invalidate_inode_page(struct page *page);
1506
1507#ifdef CONFIG_MMU
1508extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1509 unsigned long address, unsigned int flags);
1510extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1511 unsigned long address, unsigned int fault_flags,
1512 bool *unlocked);
1513void unmap_mapping_pages(struct address_space *mapping,
1514 pgoff_t start, pgoff_t nr, bool even_cows);
1515void unmap_mapping_range(struct address_space *mapping,
1516 loff_t const holebegin, loff_t const holelen, int even_cows);
1517#else
1518static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1519 unsigned long address, unsigned int flags)
1520{
1521 /* should never happen if there's no MMU */
1522 BUG();
1523 return VM_FAULT_SIGBUS;
1524}
1525static inline int fixup_user_fault(struct task_struct *tsk,
1526 struct mm_struct *mm, unsigned long address,
1527 unsigned int fault_flags, bool *unlocked)
1528{
1529 /* should never happen if there's no MMU */
1530 BUG();
1531 return -EFAULT;
1532}
1533static inline void unmap_mapping_pages(struct address_space *mapping,
1534 pgoff_t start, pgoff_t nr, bool even_cows) { }
1535static inline void unmap_mapping_range(struct address_space *mapping,
1536 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1537#endif
1538
1539static inline void unmap_shared_mapping_range(struct address_space *mapping,
1540 loff_t const holebegin, loff_t const holelen)
1541{
1542 unmap_mapping_range(mapping, holebegin, holelen, 0);
1543}
1544
1545extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1546 void *buf, int len, unsigned int gup_flags);
1547extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1548 void *buf, int len, unsigned int gup_flags);
1549extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1550 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1551
1552long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1553 unsigned long start, unsigned long nr_pages,
1554 unsigned int gup_flags, struct page **pages,
1555 struct vm_area_struct **vmas, int *locked);
1556long get_user_pages(unsigned long start, unsigned long nr_pages,
1557 unsigned int gup_flags, struct page **pages,
1558 struct vm_area_struct **vmas);
1559long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1560 unsigned int gup_flags, struct page **pages, int *locked);
1561long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1562 struct page **pages, unsigned int gup_flags);
1563
1564int get_user_pages_fast(unsigned long start, int nr_pages,
1565 unsigned int gup_flags, struct page **pages);
1566
1567/* Container for pinned pfns / pages */
1568struct frame_vector {
1569 unsigned int nr_allocated; /* Number of frames we have space for */
1570 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1571 bool got_ref; /* Did we pin pages by getting page ref? */
1572 bool is_pfns; /* Does array contain pages or pfns? */
1573 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1574 * pfns_vector_pages() or pfns_vector_pfns()
1575 * for access */
1576};
1577
1578struct frame_vector *frame_vector_create(unsigned int nr_frames);
1579void frame_vector_destroy(struct frame_vector *vec);
1580int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1581 unsigned int gup_flags, struct frame_vector *vec);
1582void put_vaddr_frames(struct frame_vector *vec);
1583int frame_vector_to_pages(struct frame_vector *vec);
1584void frame_vector_to_pfns(struct frame_vector *vec);
1585
1586static inline unsigned int frame_vector_count(struct frame_vector *vec)
1587{
1588 return vec->nr_frames;
1589}
1590
1591static inline struct page **frame_vector_pages(struct frame_vector *vec)
1592{
1593 if (vec->is_pfns) {
1594 int err = frame_vector_to_pages(vec);
1595
1596 if (err)
1597 return ERR_PTR(err);
1598 }
1599 return (struct page **)(vec->ptrs);
1600}
1601
1602static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1603{
1604 if (!vec->is_pfns)
1605 frame_vector_to_pfns(vec);
1606 return (unsigned long *)(vec->ptrs);
1607}
1608
1609struct kvec;
1610int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1611 struct page **pages);
1612int get_kernel_page(unsigned long start, int write, struct page **pages);
1613struct page *get_dump_page(unsigned long addr);
1614
1615extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1616extern void do_invalidatepage(struct page *page, unsigned int offset,
1617 unsigned int length);
1618
1619void __set_page_dirty(struct page *, struct address_space *, int warn);
1620int __set_page_dirty_nobuffers(struct page *page);
1621int __set_page_dirty_no_writeback(struct page *page);
1622int redirty_page_for_writepage(struct writeback_control *wbc,
1623 struct page *page);
1624void account_page_dirtied(struct page *page, struct address_space *mapping);
1625void account_page_cleaned(struct page *page, struct address_space *mapping,
1626 struct bdi_writeback *wb);
1627int set_page_dirty(struct page *page);
1628int set_page_dirty_lock(struct page *page);
1629void __cancel_dirty_page(struct page *page);
1630static inline void cancel_dirty_page(struct page *page)
1631{
1632 /* Avoid atomic ops, locking, etc. when not actually needed. */
1633 if (PageDirty(page))
1634 __cancel_dirty_page(page);
1635}
1636int clear_page_dirty_for_io(struct page *page);
1637
1638int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1639
1640static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1641{
1642 return !vma->vm_ops;
1643}
1644
1645#ifdef CONFIG_SHMEM
1646/*
1647 * The vma_is_shmem is not inline because it is used only by slow
1648 * paths in userfault.
1649 */
1650bool vma_is_shmem(struct vm_area_struct *vma);
1651#else
1652static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1653#endif
1654
1655int vma_is_stack_for_current(struct vm_area_struct *vma);
1656
1657extern unsigned long move_page_tables(struct vm_area_struct *vma,
1658 unsigned long old_addr, struct vm_area_struct *new_vma,
1659 unsigned long new_addr, unsigned long len,
1660 bool need_rmap_locks);
1661extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1662 unsigned long end, pgprot_t newprot,
1663 int dirty_accountable, int prot_numa);
1664extern int mprotect_fixup(struct vm_area_struct *vma,
1665 struct vm_area_struct **pprev, unsigned long start,
1666 unsigned long end, unsigned long newflags);
1667
1668/*
1669 * doesn't attempt to fault and will return short.
1670 */
1671int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1672 struct page **pages);
1673/*
1674 * per-process(per-mm_struct) statistics.
1675 */
1676static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1677{
1678 long val = atomic_long_read(&mm->rss_stat.count[member]);
1679
1680#ifdef SPLIT_RSS_COUNTING
1681 /*
1682 * counter is updated in asynchronous manner and may go to minus.
1683 * But it's never be expected number for users.
1684 */
1685 if (val < 0)
1686 val = 0;
1687#endif
1688 return (unsigned long)val;
1689}
1690
1691static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1692{
1693 atomic_long_add(value, &mm->rss_stat.count[member]);
1694}
1695
1696static inline void inc_mm_counter(struct mm_struct *mm, int member)
1697{
1698 atomic_long_inc(&mm->rss_stat.count[member]);
1699}
1700
1701static inline void dec_mm_counter(struct mm_struct *mm, int member)
1702{
1703 atomic_long_dec(&mm->rss_stat.count[member]);
1704}
1705
1706/* Optimized variant when page is already known not to be PageAnon */
1707static inline int mm_counter_file(struct page *page)
1708{
1709 if (PageSwapBacked(page))
1710 return MM_SHMEMPAGES;
1711 return MM_FILEPAGES;
1712}
1713
1714static inline int mm_counter(struct page *page)
1715{
1716 if (PageAnon(page))
1717 return MM_ANONPAGES;
1718 return mm_counter_file(page);
1719}
1720
1721static inline unsigned long get_mm_rss(struct mm_struct *mm)
1722{
1723 return get_mm_counter(mm, MM_FILEPAGES) +
1724 get_mm_counter(mm, MM_ANONPAGES) +
1725 get_mm_counter(mm, MM_SHMEMPAGES);
1726}
1727
1728static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1729{
1730 return max(mm->hiwater_rss, get_mm_rss(mm));
1731}
1732
1733static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1734{
1735 return max(mm->hiwater_vm, mm->total_vm);
1736}
1737
1738static inline void update_hiwater_rss(struct mm_struct *mm)
1739{
1740 unsigned long _rss = get_mm_rss(mm);
1741
1742 if ((mm)->hiwater_rss < _rss)
1743 (mm)->hiwater_rss = _rss;
1744}
1745
1746static inline void update_hiwater_vm(struct mm_struct *mm)
1747{
1748 if (mm->hiwater_vm < mm->total_vm)
1749 mm->hiwater_vm = mm->total_vm;
1750}
1751
1752static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1753{
1754 mm->hiwater_rss = get_mm_rss(mm);
1755}
1756
1757static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1758 struct mm_struct *mm)
1759{
1760 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1761
1762 if (*maxrss < hiwater_rss)
1763 *maxrss = hiwater_rss;
1764}
1765
1766#if defined(SPLIT_RSS_COUNTING)
1767void sync_mm_rss(struct mm_struct *mm);
1768#else
1769static inline void sync_mm_rss(struct mm_struct *mm)
1770{
1771}
1772#endif
1773
1774#ifndef __HAVE_ARCH_PTE_DEVMAP
1775static inline int pte_devmap(pte_t pte)
1776{
1777 return 0;
1778}
1779#endif
1780
1781int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1782
1783extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1784 spinlock_t **ptl);
1785static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1786 spinlock_t **ptl)
1787{
1788 pte_t *ptep;
1789 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1790 return ptep;
1791}
1792
1793#ifdef __PAGETABLE_P4D_FOLDED
1794static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1795 unsigned long address)
1796{
1797 return 0;
1798}
1799#else
1800int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1801#endif
1802
1803#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1804static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1805 unsigned long address)
1806{
1807 return 0;
1808}
1809static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1810static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1811
1812#else
1813int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1814
1815static inline void mm_inc_nr_puds(struct mm_struct *mm)
1816{
1817 if (mm_pud_folded(mm))
1818 return;
1819 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1820}
1821
1822static inline void mm_dec_nr_puds(struct mm_struct *mm)
1823{
1824 if (mm_pud_folded(mm))
1825 return;
1826 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1827}
1828#endif
1829
1830#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1831static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1832 unsigned long address)
1833{
1834 return 0;
1835}
1836
1837static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1838static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1839
1840#else
1841int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1842
1843static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1844{
1845 if (mm_pmd_folded(mm))
1846 return;
1847 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1848}
1849
1850static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1851{
1852 if (mm_pmd_folded(mm))
1853 return;
1854 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1855}
1856#endif
1857
1858#ifdef CONFIG_MMU
1859static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1860{
1861 atomic_long_set(&mm->pgtables_bytes, 0);
1862}
1863
1864static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1865{
1866 return atomic_long_read(&mm->pgtables_bytes);
1867}
1868
1869static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1870{
1871 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1872}
1873
1874static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1875{
1876 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1877}
1878#else
1879
1880static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1881static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1882{
1883 return 0;
1884}
1885
1886static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1887static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1888#endif
1889
1890int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1891int __pte_alloc_kernel(pmd_t *pmd);
1892
1893/*
1894 * The following ifdef needed to get the 4level-fixup.h header to work.
1895 * Remove it when 4level-fixup.h has been removed.
1896 */
1897#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1898
1899#ifndef __ARCH_HAS_5LEVEL_HACK
1900static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1901 unsigned long address)
1902{
1903 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1904 NULL : p4d_offset(pgd, address);
1905}
1906
1907static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1908 unsigned long address)
1909{
1910 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1911 NULL : pud_offset(p4d, address);
1912}
1913#endif /* !__ARCH_HAS_5LEVEL_HACK */
1914
1915static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1916{
1917 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1918 NULL: pmd_offset(pud, address);
1919}
1920#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1921
1922#if USE_SPLIT_PTE_PTLOCKS
1923#if ALLOC_SPLIT_PTLOCKS
1924void __init ptlock_cache_init(void);
1925extern bool ptlock_alloc(struct page *page);
1926extern void ptlock_free(struct page *page);
1927
1928static inline spinlock_t *ptlock_ptr(struct page *page)
1929{
1930 return page->ptl;
1931}
1932#else /* ALLOC_SPLIT_PTLOCKS */
1933static inline void ptlock_cache_init(void)
1934{
1935}
1936
1937static inline bool ptlock_alloc(struct page *page)
1938{
1939 return true;
1940}
1941
1942static inline void ptlock_free(struct page *page)
1943{
1944}
1945
1946static inline spinlock_t *ptlock_ptr(struct page *page)
1947{
1948 return &page->ptl;
1949}
1950#endif /* ALLOC_SPLIT_PTLOCKS */
1951
1952static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1953{
1954 return ptlock_ptr(pmd_page(*pmd));
1955}
1956
1957static inline bool ptlock_init(struct page *page)
1958{
1959 /*
1960 * prep_new_page() initialize page->private (and therefore page->ptl)
1961 * with 0. Make sure nobody took it in use in between.
1962 *
1963 * It can happen if arch try to use slab for page table allocation:
1964 * slab code uses page->slab_cache, which share storage with page->ptl.
1965 */
1966 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1967 if (!ptlock_alloc(page))
1968 return false;
1969 spin_lock_init(ptlock_ptr(page));
1970 return true;
1971}
1972
1973#else /* !USE_SPLIT_PTE_PTLOCKS */
1974/*
1975 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1976 */
1977static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1978{
1979 return &mm->page_table_lock;
1980}
1981static inline void ptlock_cache_init(void) {}
1982static inline bool ptlock_init(struct page *page) { return true; }
1983static inline void ptlock_free(struct page *page) {}
1984#endif /* USE_SPLIT_PTE_PTLOCKS */
1985
1986static inline void pgtable_init(void)
1987{
1988 ptlock_cache_init();
1989 pgtable_cache_init();
1990}
1991
1992static inline bool pgtable_page_ctor(struct page *page)
1993{
1994 if (!ptlock_init(page))
1995 return false;
1996 __SetPageTable(page);
1997 inc_zone_page_state(page, NR_PAGETABLE);
1998 return true;
1999}
2000
2001static inline void pgtable_page_dtor(struct page *page)
2002{
2003 ptlock_free(page);
2004 __ClearPageTable(page);
2005 dec_zone_page_state(page, NR_PAGETABLE);
2006}
2007
2008#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2009({ \
2010 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2011 pte_t *__pte = pte_offset_map(pmd, address); \
2012 *(ptlp) = __ptl; \
2013 spin_lock(__ptl); \
2014 __pte; \
2015})
2016
2017#define pte_unmap_unlock(pte, ptl) do { \
2018 spin_unlock(ptl); \
2019 pte_unmap(pte); \
2020} while (0)
2021
2022#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2023
2024#define pte_alloc_map(mm, pmd, address) \
2025 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2026
2027#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2028 (pte_alloc(mm, pmd) ? \
2029 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2030
2031#define pte_alloc_kernel(pmd, address) \
2032 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2033 NULL: pte_offset_kernel(pmd, address))
2034
2035#if USE_SPLIT_PMD_PTLOCKS
2036
2037static struct page *pmd_to_page(pmd_t *pmd)
2038{
2039 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2040 return virt_to_page((void *)((unsigned long) pmd & mask));
2041}
2042
2043static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2044{
2045 return ptlock_ptr(pmd_to_page(pmd));
2046}
2047
2048static inline bool pgtable_pmd_page_ctor(struct page *page)
2049{
2050#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2051 page->pmd_huge_pte = NULL;
2052#endif
2053 return ptlock_init(page);
2054}
2055
2056static inline void pgtable_pmd_page_dtor(struct page *page)
2057{
2058#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2059 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2060#endif
2061 ptlock_free(page);
2062}
2063
2064#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2065
2066#else
2067
2068static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2069{
2070 return &mm->page_table_lock;
2071}
2072
2073static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2074static inline void pgtable_pmd_page_dtor(struct page *page) {}
2075
2076#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2077
2078#endif
2079
2080static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2081{
2082 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2083 spin_lock(ptl);
2084 return ptl;
2085}
2086
2087/*
2088 * No scalability reason to split PUD locks yet, but follow the same pattern
2089 * as the PMD locks to make it easier if we decide to. The VM should not be
2090 * considered ready to switch to split PUD locks yet; there may be places
2091 * which need to be converted from page_table_lock.
2092 */
2093static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2094{
2095 return &mm->page_table_lock;
2096}
2097
2098static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2099{
2100 spinlock_t *ptl = pud_lockptr(mm, pud);
2101
2102 spin_lock(ptl);
2103 return ptl;
2104}
2105
2106extern void __init pagecache_init(void);
2107extern void free_area_init(unsigned long * zones_size);
2108extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2109 unsigned long zone_start_pfn, unsigned long *zholes_size);
2110extern void free_initmem(void);
2111
2112/*
2113 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2114 * into the buddy system. The freed pages will be poisoned with pattern
2115 * "poison" if it's within range [0, UCHAR_MAX].
2116 * Return pages freed into the buddy system.
2117 */
2118extern unsigned long free_reserved_area(void *start, void *end,
2119 int poison, const char *s);
2120
2121#ifdef CONFIG_HIGHMEM
2122/*
2123 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2124 * and totalram_pages.
2125 */
2126extern void free_highmem_page(struct page *page);
2127#endif
2128
2129extern void adjust_managed_page_count(struct page *page, long count);
2130extern void mem_init_print_info(const char *str);
2131
2132extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2133
2134/* Free the reserved page into the buddy system, so it gets managed. */
2135static inline void __free_reserved_page(struct page *page)
2136{
2137 ClearPageReserved(page);
2138 init_page_count(page);
2139 __free_page(page);
2140}
2141
2142static inline void free_reserved_page(struct page *page)
2143{
2144 __free_reserved_page(page);
2145 adjust_managed_page_count(page, 1);
2146}
2147
2148static inline void mark_page_reserved(struct page *page)
2149{
2150 SetPageReserved(page);
2151 adjust_managed_page_count(page, -1);
2152}
2153
2154/*
2155 * Default method to free all the __init memory into the buddy system.
2156 * The freed pages will be poisoned with pattern "poison" if it's within
2157 * range [0, UCHAR_MAX].
2158 * Return pages freed into the buddy system.
2159 */
2160static inline unsigned long free_initmem_default(int poison)
2161{
2162 extern char __init_begin[], __init_end[];
2163
2164 return free_reserved_area(&__init_begin, &__init_end,
2165 poison, "unused kernel");
2166}
2167
2168static inline unsigned long get_num_physpages(void)
2169{
2170 int nid;
2171 unsigned long phys_pages = 0;
2172
2173 for_each_online_node(nid)
2174 phys_pages += node_present_pages(nid);
2175
2176 return phys_pages;
2177}
2178
2179#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2180/*
2181 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2182 * zones, allocate the backing mem_map and account for memory holes in a more
2183 * architecture independent manner. This is a substitute for creating the
2184 * zone_sizes[] and zholes_size[] arrays and passing them to
2185 * free_area_init_node()
2186 *
2187 * An architecture is expected to register range of page frames backed by
2188 * physical memory with memblock_add[_node]() before calling
2189 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2190 * usage, an architecture is expected to do something like
2191 *
2192 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2193 * max_highmem_pfn};
2194 * for_each_valid_physical_page_range()
2195 * memblock_add_node(base, size, nid)
2196 * free_area_init_nodes(max_zone_pfns);
2197 *
2198 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2199 * registered physical page range. Similarly
2200 * sparse_memory_present_with_active_regions() calls memory_present() for
2201 * each range when SPARSEMEM is enabled.
2202 *
2203 * See mm/page_alloc.c for more information on each function exposed by
2204 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2205 */
2206extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2207unsigned long node_map_pfn_alignment(void);
2208unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2209 unsigned long end_pfn);
2210extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2211 unsigned long end_pfn);
2212extern void get_pfn_range_for_nid(unsigned int nid,
2213 unsigned long *start_pfn, unsigned long *end_pfn);
2214extern unsigned long find_min_pfn_with_active_regions(void);
2215extern void free_bootmem_with_active_regions(int nid,
2216 unsigned long max_low_pfn);
2217extern void sparse_memory_present_with_active_regions(int nid);
2218
2219#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2220
2221#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2222 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2223static inline int __early_pfn_to_nid(unsigned long pfn,
2224 struct mminit_pfnnid_cache *state)
2225{
2226 return 0;
2227}
2228#else
2229/* please see mm/page_alloc.c */
2230extern int __meminit early_pfn_to_nid(unsigned long pfn);
2231/* there is a per-arch backend function. */
2232extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2233 struct mminit_pfnnid_cache *state);
2234#endif
2235
2236#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2237void zero_resv_unavail(void);
2238#else
2239static inline void zero_resv_unavail(void) {}
2240#endif
2241
2242extern void set_dma_reserve(unsigned long new_dma_reserve);
2243extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2244 enum memmap_context, struct vmem_altmap *);
2245extern void setup_per_zone_wmarks(void);
2246extern int __meminit init_per_zone_wmark_min(void);
2247extern void mem_init(void);
2248extern void __init mmap_init(void);
2249extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2250extern long si_mem_available(void);
2251extern void si_meminfo(struct sysinfo * val);
2252extern void si_meminfo_node(struct sysinfo *val, int nid);
2253#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2254extern unsigned long arch_reserved_kernel_pages(void);
2255#endif
2256
2257extern __printf(3, 4)
2258void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2259
2260extern void setup_per_cpu_pageset(void);
2261
2262extern void zone_pcp_update(struct zone *zone);
2263extern void zone_pcp_reset(struct zone *zone);
2264
2265/* page_alloc.c */
2266extern int min_free_kbytes;
2267extern int watermark_boost_factor;
2268extern int watermark_scale_factor;
2269
2270/* nommu.c */
2271extern atomic_long_t mmap_pages_allocated;
2272extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2273
2274/* interval_tree.c */
2275void vma_interval_tree_insert(struct vm_area_struct *node,
2276 struct rb_root_cached *root);
2277void vma_interval_tree_insert_after(struct vm_area_struct *node,
2278 struct vm_area_struct *prev,
2279 struct rb_root_cached *root);
2280void vma_interval_tree_remove(struct vm_area_struct *node,
2281 struct rb_root_cached *root);
2282struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2283 unsigned long start, unsigned long last);
2284struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2285 unsigned long start, unsigned long last);
2286
2287#define vma_interval_tree_foreach(vma, root, start, last) \
2288 for (vma = vma_interval_tree_iter_first(root, start, last); \
2289 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2290
2291void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2292 struct rb_root_cached *root);
2293void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2294 struct rb_root_cached *root);
2295struct anon_vma_chain *
2296anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2297 unsigned long start, unsigned long last);
2298struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2299 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2300#ifdef CONFIG_DEBUG_VM_RB
2301void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2302#endif
2303
2304#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2305 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2306 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2307
2308/* mmap.c */
2309extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2310extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2311 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2312 struct vm_area_struct *expand);
2313static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2314 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2315{
2316 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2317}
2318extern struct vm_area_struct *vma_merge(struct mm_struct *,
2319 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2320 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2321 struct mempolicy *, struct vm_userfaultfd_ctx);
2322extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2323extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2324 unsigned long addr, int new_below);
2325extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2326 unsigned long addr, int new_below);
2327extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2328extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2329 struct rb_node **, struct rb_node *);
2330extern void unlink_file_vma(struct vm_area_struct *);
2331extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2332 unsigned long addr, unsigned long len, pgoff_t pgoff,
2333 bool *need_rmap_locks);
2334extern void exit_mmap(struct mm_struct *);
2335
2336static inline int check_data_rlimit(unsigned long rlim,
2337 unsigned long new,
2338 unsigned long start,
2339 unsigned long end_data,
2340 unsigned long start_data)
2341{
2342 if (rlim < RLIM_INFINITY) {
2343 if (((new - start) + (end_data - start_data)) > rlim)
2344 return -ENOSPC;
2345 }
2346
2347 return 0;
2348}
2349
2350extern int mm_take_all_locks(struct mm_struct *mm);
2351extern void mm_drop_all_locks(struct mm_struct *mm);
2352
2353extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2354extern struct file *get_mm_exe_file(struct mm_struct *mm);
2355extern struct file *get_task_exe_file(struct task_struct *task);
2356
2357extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2358extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2359
2360extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2361 const struct vm_special_mapping *sm);
2362extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2363 unsigned long addr, unsigned long len,
2364 unsigned long flags,
2365 const struct vm_special_mapping *spec);
2366/* This is an obsolete alternative to _install_special_mapping. */
2367extern int install_special_mapping(struct mm_struct *mm,
2368 unsigned long addr, unsigned long len,
2369 unsigned long flags, struct page **pages);
2370
2371extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2372
2373extern unsigned long mmap_region(struct file *file, unsigned long addr,
2374 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2375 struct list_head *uf);
2376extern unsigned long do_mmap(struct file *file, unsigned long addr,
2377 unsigned long len, unsigned long prot, unsigned long flags,
2378 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2379 struct list_head *uf);
2380extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2381 struct list_head *uf, bool downgrade);
2382extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2383 struct list_head *uf);
2384
2385static inline unsigned long
2386do_mmap_pgoff(struct file *file, unsigned long addr,
2387 unsigned long len, unsigned long prot, unsigned long flags,
2388 unsigned long pgoff, unsigned long *populate,
2389 struct list_head *uf)
2390{
2391 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2392}
2393
2394#ifdef CONFIG_MMU
2395extern int __mm_populate(unsigned long addr, unsigned long len,
2396 int ignore_errors);
2397static inline void mm_populate(unsigned long addr, unsigned long len)
2398{
2399 /* Ignore errors */
2400 (void) __mm_populate(addr, len, 1);
2401}
2402#else
2403static inline void mm_populate(unsigned long addr, unsigned long len) {}
2404#endif
2405
2406/* These take the mm semaphore themselves */
2407extern int __must_check vm_brk(unsigned long, unsigned long);
2408extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2409extern int vm_munmap(unsigned long, size_t);
2410extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2411 unsigned long, unsigned long,
2412 unsigned long, unsigned long);
2413
2414struct vm_unmapped_area_info {
2415#define VM_UNMAPPED_AREA_TOPDOWN 1
2416 unsigned long flags;
2417 unsigned long length;
2418 unsigned long low_limit;
2419 unsigned long high_limit;
2420 unsigned long align_mask;
2421 unsigned long align_offset;
2422};
2423
2424extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2425extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2426
2427/*
2428 * Search for an unmapped address range.
2429 *
2430 * We are looking for a range that:
2431 * - does not intersect with any VMA;
2432 * - is contained within the [low_limit, high_limit) interval;
2433 * - is at least the desired size.
2434 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2435 */
2436static inline unsigned long
2437vm_unmapped_area(struct vm_unmapped_area_info *info)
2438{
2439 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2440 return unmapped_area_topdown(info);
2441 else
2442 return unmapped_area(info);
2443}
2444
2445/* truncate.c */
2446extern void truncate_inode_pages(struct address_space *, loff_t);
2447extern void truncate_inode_pages_range(struct address_space *,
2448 loff_t lstart, loff_t lend);
2449extern void truncate_inode_pages_final(struct address_space *);
2450
2451/* generic vm_area_ops exported for stackable file systems */
2452extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2453extern void filemap_map_pages(struct vm_fault *vmf,
2454 pgoff_t start_pgoff, pgoff_t end_pgoff);
2455extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2456
2457/* mm/page-writeback.c */
2458int __must_check write_one_page(struct page *page);
2459void task_dirty_inc(struct task_struct *tsk);
2460
2461/* readahead.c */
2462#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2463
2464int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2465 pgoff_t offset, unsigned long nr_to_read);
2466
2467void page_cache_sync_readahead(struct address_space *mapping,
2468 struct file_ra_state *ra,
2469 struct file *filp,
2470 pgoff_t offset,
2471 unsigned long size);
2472
2473void page_cache_async_readahead(struct address_space *mapping,
2474 struct file_ra_state *ra,
2475 struct file *filp,
2476 struct page *pg,
2477 pgoff_t offset,
2478 unsigned long size);
2479
2480extern unsigned long stack_guard_gap;
2481/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2482extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2483
2484/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2485extern int expand_downwards(struct vm_area_struct *vma,
2486 unsigned long address);
2487#if VM_GROWSUP
2488extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2489#else
2490 #define expand_upwards(vma, address) (0)
2491#endif
2492
2493/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2494extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2495extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2496 struct vm_area_struct **pprev);
2497
2498/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2499 NULL if none. Assume start_addr < end_addr. */
2500static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2501{
2502 struct vm_area_struct * vma = find_vma(mm,start_addr);
2503
2504 if (vma && end_addr <= vma->vm_start)
2505 vma = NULL;
2506 return vma;
2507}
2508
2509static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2510{
2511 unsigned long vm_start = vma->vm_start;
2512
2513 if (vma->vm_flags & VM_GROWSDOWN) {
2514 vm_start -= stack_guard_gap;
2515 if (vm_start > vma->vm_start)
2516 vm_start = 0;
2517 }
2518 return vm_start;
2519}
2520
2521static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2522{
2523 unsigned long vm_end = vma->vm_end;
2524
2525 if (vma->vm_flags & VM_GROWSUP) {
2526 vm_end += stack_guard_gap;
2527 if (vm_end < vma->vm_end)
2528 vm_end = -PAGE_SIZE;
2529 }
2530 return vm_end;
2531}
2532
2533static inline unsigned long vma_pages(struct vm_area_struct *vma)
2534{
2535 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2536}
2537
2538/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2539static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2540 unsigned long vm_start, unsigned long vm_end)
2541{
2542 struct vm_area_struct *vma = find_vma(mm, vm_start);
2543
2544 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2545 vma = NULL;
2546
2547 return vma;
2548}
2549
2550static inline bool range_in_vma(struct vm_area_struct *vma,
2551 unsigned long start, unsigned long end)
2552{
2553 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2554}
2555
2556#ifdef CONFIG_MMU
2557pgprot_t vm_get_page_prot(unsigned long vm_flags);
2558void vma_set_page_prot(struct vm_area_struct *vma);
2559#else
2560static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2561{
2562 return __pgprot(0);
2563}
2564static inline void vma_set_page_prot(struct vm_area_struct *vma)
2565{
2566 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2567}
2568#endif
2569
2570#ifdef CONFIG_NUMA_BALANCING
2571unsigned long change_prot_numa(struct vm_area_struct *vma,
2572 unsigned long start, unsigned long end);
2573#endif
2574
2575struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2576int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2577 unsigned long pfn, unsigned long size, pgprot_t);
2578int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2579int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2580 unsigned long num);
2581int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2582 unsigned long num);
2583vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2584 unsigned long pfn);
2585vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2586 unsigned long pfn, pgprot_t pgprot);
2587vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2588 pfn_t pfn);
2589vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2590 unsigned long addr, pfn_t pfn);
2591int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2592
2593static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2594 unsigned long addr, struct page *page)
2595{
2596 int err = vm_insert_page(vma, addr, page);
2597
2598 if (err == -ENOMEM)
2599 return VM_FAULT_OOM;
2600 if (err < 0 && err != -EBUSY)
2601 return VM_FAULT_SIGBUS;
2602
2603 return VM_FAULT_NOPAGE;
2604}
2605
2606static inline vm_fault_t vmf_error(int err)
2607{
2608 if (err == -ENOMEM)
2609 return VM_FAULT_OOM;
2610 return VM_FAULT_SIGBUS;
2611}
2612
2613struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2614 unsigned int foll_flags);
2615
2616#define FOLL_WRITE 0x01 /* check pte is writable */
2617#define FOLL_TOUCH 0x02 /* mark page accessed */
2618#define FOLL_GET 0x04 /* do get_page on page */
2619#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2620#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2621#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2622 * and return without waiting upon it */
2623#define FOLL_POPULATE 0x40 /* fault in page */
2624#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2625#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2626#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2627#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2628#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2629#define FOLL_MLOCK 0x1000 /* lock present pages */
2630#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2631#define FOLL_COW 0x4000 /* internal GUP flag */
2632#define FOLL_ANON 0x8000 /* don't do file mappings */
2633#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2634
2635/*
2636 * NOTE on FOLL_LONGTERM:
2637 *
2638 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2639 * period _often_ under userspace control. This is contrasted with
2640 * iov_iter_get_pages() where usages which are transient.
2641 *
2642 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2643 * lifetime enforced by the filesystem and we need guarantees that longterm
2644 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2645 * the filesystem. Ideas for this coordination include revoking the longterm
2646 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2647 * added after the problem with filesystems was found FS DAX VMAs are
2648 * specifically failed. Filesystem pages are still subject to bugs and use of
2649 * FOLL_LONGTERM should be avoided on those pages.
2650 *
2651 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2652 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2653 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2654 * is due to an incompatibility with the FS DAX check and
2655 * FAULT_FLAG_ALLOW_RETRY
2656 *
2657 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2658 * that region. And so CMA attempts to migrate the page before pinning when
2659 * FOLL_LONGTERM is specified.
2660 */
2661
2662static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2663{
2664 if (vm_fault & VM_FAULT_OOM)
2665 return -ENOMEM;
2666 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2667 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2668 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2669 return -EFAULT;
2670 return 0;
2671}
2672
2673typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2674 void *data);
2675extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2676 unsigned long size, pte_fn_t fn, void *data);
2677
2678
2679#ifdef CONFIG_PAGE_POISONING
2680extern bool page_poisoning_enabled(void);
2681extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2682#else
2683static inline bool page_poisoning_enabled(void) { return false; }
2684static inline void kernel_poison_pages(struct page *page, int numpages,
2685 int enable) { }
2686#endif
2687
2688extern bool _debug_pagealloc_enabled;
2689
2690static inline bool debug_pagealloc_enabled(void)
2691{
2692 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled;
2693}
2694
2695#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2696extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2697
2698static inline void
2699kernel_map_pages(struct page *page, int numpages, int enable)
2700{
2701 __kernel_map_pages(page, numpages, enable);
2702}
2703#ifdef CONFIG_HIBERNATION
2704extern bool kernel_page_present(struct page *page);
2705#endif /* CONFIG_HIBERNATION */
2706#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2707static inline void
2708kernel_map_pages(struct page *page, int numpages, int enable) {}
2709#ifdef CONFIG_HIBERNATION
2710static inline bool kernel_page_present(struct page *page) { return true; }
2711#endif /* CONFIG_HIBERNATION */
2712#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2713
2714#ifdef __HAVE_ARCH_GATE_AREA
2715extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2716extern int in_gate_area_no_mm(unsigned long addr);
2717extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2718#else
2719static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2720{
2721 return NULL;
2722}
2723static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2724static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2725{
2726 return 0;
2727}
2728#endif /* __HAVE_ARCH_GATE_AREA */
2729
2730extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2731
2732#ifdef CONFIG_SYSCTL
2733extern int sysctl_drop_caches;
2734int drop_caches_sysctl_handler(struct ctl_table *, int,
2735 void __user *, size_t *, loff_t *);
2736#endif
2737
2738void drop_slab(void);
2739void drop_slab_node(int nid);
2740
2741#ifndef CONFIG_MMU
2742#define randomize_va_space 0
2743#else
2744extern int randomize_va_space;
2745#endif
2746
2747const char * arch_vma_name(struct vm_area_struct *vma);
2748void print_vma_addr(char *prefix, unsigned long rip);
2749
2750void *sparse_buffer_alloc(unsigned long size);
2751struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2752 struct vmem_altmap *altmap);
2753pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2754p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2755pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2756pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2757pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2758void *vmemmap_alloc_block(unsigned long size, int node);
2759struct vmem_altmap;
2760void *vmemmap_alloc_block_buf(unsigned long size, int node);
2761void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2762void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2763int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2764 int node);
2765int vmemmap_populate(unsigned long start, unsigned long end, int node,
2766 struct vmem_altmap *altmap);
2767void vmemmap_populate_print_last(void);
2768#ifdef CONFIG_MEMORY_HOTPLUG
2769void vmemmap_free(unsigned long start, unsigned long end,
2770 struct vmem_altmap *altmap);
2771#endif
2772void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2773 unsigned long nr_pages);
2774
2775enum mf_flags {
2776 MF_COUNT_INCREASED = 1 << 0,
2777 MF_ACTION_REQUIRED = 1 << 1,
2778 MF_MUST_KILL = 1 << 2,
2779 MF_SOFT_OFFLINE = 1 << 3,
2780};
2781extern int memory_failure(unsigned long pfn, int flags);
2782extern void memory_failure_queue(unsigned long pfn, int flags);
2783extern int unpoison_memory(unsigned long pfn);
2784extern int get_hwpoison_page(struct page *page);
2785#define put_hwpoison_page(page) put_page(page)
2786extern int sysctl_memory_failure_early_kill;
2787extern int sysctl_memory_failure_recovery;
2788extern void shake_page(struct page *p, int access);
2789extern atomic_long_t num_poisoned_pages __read_mostly;
2790extern int soft_offline_page(struct page *page, int flags);
2791
2792
2793/*
2794 * Error handlers for various types of pages.
2795 */
2796enum mf_result {
2797 MF_IGNORED, /* Error: cannot be handled */
2798 MF_FAILED, /* Error: handling failed */
2799 MF_DELAYED, /* Will be handled later */
2800 MF_RECOVERED, /* Successfully recovered */
2801};
2802
2803enum mf_action_page_type {
2804 MF_MSG_KERNEL,
2805 MF_MSG_KERNEL_HIGH_ORDER,
2806 MF_MSG_SLAB,
2807 MF_MSG_DIFFERENT_COMPOUND,
2808 MF_MSG_POISONED_HUGE,
2809 MF_MSG_HUGE,
2810 MF_MSG_FREE_HUGE,
2811 MF_MSG_NON_PMD_HUGE,
2812 MF_MSG_UNMAP_FAILED,
2813 MF_MSG_DIRTY_SWAPCACHE,
2814 MF_MSG_CLEAN_SWAPCACHE,
2815 MF_MSG_DIRTY_MLOCKED_LRU,
2816 MF_MSG_CLEAN_MLOCKED_LRU,
2817 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2818 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2819 MF_MSG_DIRTY_LRU,
2820 MF_MSG_CLEAN_LRU,
2821 MF_MSG_TRUNCATED_LRU,
2822 MF_MSG_BUDDY,
2823 MF_MSG_BUDDY_2ND,
2824 MF_MSG_DAX,
2825 MF_MSG_UNKNOWN,
2826};
2827
2828#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2829extern void clear_huge_page(struct page *page,
2830 unsigned long addr_hint,
2831 unsigned int pages_per_huge_page);
2832extern void copy_user_huge_page(struct page *dst, struct page *src,
2833 unsigned long addr_hint,
2834 struct vm_area_struct *vma,
2835 unsigned int pages_per_huge_page);
2836extern long copy_huge_page_from_user(struct page *dst_page,
2837 const void __user *usr_src,
2838 unsigned int pages_per_huge_page,
2839 bool allow_pagefault);
2840#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2841
2842extern struct page_ext_operations debug_guardpage_ops;
2843
2844#ifdef CONFIG_DEBUG_PAGEALLOC
2845extern unsigned int _debug_guardpage_minorder;
2846extern bool _debug_guardpage_enabled;
2847
2848static inline unsigned int debug_guardpage_minorder(void)
2849{
2850 return _debug_guardpage_minorder;
2851}
2852
2853static inline bool debug_guardpage_enabled(void)
2854{
2855 return _debug_guardpage_enabled;
2856}
2857
2858static inline bool page_is_guard(struct page *page)
2859{
2860 struct page_ext *page_ext;
2861
2862 if (!debug_guardpage_enabled())
2863 return false;
2864
2865 page_ext = lookup_page_ext(page);
2866 if (unlikely(!page_ext))
2867 return false;
2868
2869 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2870}
2871#else
2872static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2873static inline bool debug_guardpage_enabled(void) { return false; }
2874static inline bool page_is_guard(struct page *page) { return false; }
2875#endif /* CONFIG_DEBUG_PAGEALLOC */
2876
2877#if MAX_NUMNODES > 1
2878void __init setup_nr_node_ids(void);
2879#else
2880static inline void setup_nr_node_ids(void) {}
2881#endif
2882
2883#endif /* __KERNEL__ */
2884#endif /* _LINUX_MM_H */