Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct page;
27struct mm_struct;
28struct kmem_cache;
29
30/* Cgroup-specific page state, on top of universal node page state */
31enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40};
41
42enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51};
52
53enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57};
58
59struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int priority;
62 unsigned int generation;
63};
64
65#ifdef CONFIG_MEMCG
66
67#define MEM_CGROUP_ID_SHIFT 16
68#define MEM_CGROUP_ID_MAX USHRT_MAX
69
70struct mem_cgroup_id {
71 int id;
72 refcount_t ref;
73};
74
75/*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86};
87
88struct memcg_vmstats_percpu {
89 long stat[MEMCG_NR_STAT];
90 unsigned long events[NR_VM_EVENT_ITEMS];
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93};
94
95struct mem_cgroup_reclaim_iter {
96 struct mem_cgroup *position;
97 /* scan generation, increased every round-trip */
98 unsigned int generation;
99};
100
101struct lruvec_stat {
102 long count[NR_VM_NODE_STAT_ITEMS];
103};
104
105/*
106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
107 * which have elements charged to this memcg.
108 */
109struct memcg_shrinker_map {
110 struct rcu_head rcu;
111 unsigned long map[0];
112};
113
114/*
115 * per-zone information in memory controller.
116 */
117struct mem_cgroup_per_node {
118 struct lruvec lruvec;
119
120 struct lruvec_stat __percpu *lruvec_stat_cpu;
121 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
122 atomic_long_t lruvec_stat_local[NR_VM_NODE_STAT_ITEMS];
123
124 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
125
126 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
127
128#ifdef CONFIG_MEMCG_KMEM
129 struct memcg_shrinker_map __rcu *shrinker_map;
130#endif
131 struct rb_node tree_node; /* RB tree node */
132 unsigned long usage_in_excess;/* Set to the value by which */
133 /* the soft limit is exceeded*/
134 bool on_tree;
135 bool congested; /* memcg has many dirty pages */
136 /* backed by a congested BDI */
137
138 struct mem_cgroup *memcg; /* Back pointer, we cannot */
139 /* use container_of */
140};
141
142struct mem_cgroup_threshold {
143 struct eventfd_ctx *eventfd;
144 unsigned long threshold;
145};
146
147/* For threshold */
148struct mem_cgroup_threshold_ary {
149 /* An array index points to threshold just below or equal to usage. */
150 int current_threshold;
151 /* Size of entries[] */
152 unsigned int size;
153 /* Array of thresholds */
154 struct mem_cgroup_threshold entries[0];
155};
156
157struct mem_cgroup_thresholds {
158 /* Primary thresholds array */
159 struct mem_cgroup_threshold_ary *primary;
160 /*
161 * Spare threshold array.
162 * This is needed to make mem_cgroup_unregister_event() "never fail".
163 * It must be able to store at least primary->size - 1 entries.
164 */
165 struct mem_cgroup_threshold_ary *spare;
166};
167
168enum memcg_kmem_state {
169 KMEM_NONE,
170 KMEM_ALLOCATED,
171 KMEM_ONLINE,
172};
173
174#if defined(CONFIG_SMP)
175struct memcg_padding {
176 char x[0];
177} ____cacheline_internodealigned_in_smp;
178#define MEMCG_PADDING(name) struct memcg_padding name;
179#else
180#define MEMCG_PADDING(name)
181#endif
182
183/*
184 * The memory controller data structure. The memory controller controls both
185 * page cache and RSS per cgroup. We would eventually like to provide
186 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
187 * to help the administrator determine what knobs to tune.
188 */
189struct mem_cgroup {
190 struct cgroup_subsys_state css;
191
192 /* Private memcg ID. Used to ID objects that outlive the cgroup */
193 struct mem_cgroup_id id;
194
195 /* Accounted resources */
196 struct page_counter memory;
197 struct page_counter swap;
198
199 /* Legacy consumer-oriented counters */
200 struct page_counter memsw;
201 struct page_counter kmem;
202 struct page_counter tcpmem;
203
204 /* Upper bound of normal memory consumption range */
205 unsigned long high;
206
207 /* Range enforcement for interrupt charges */
208 struct work_struct high_work;
209
210 unsigned long soft_limit;
211
212 /* vmpressure notifications */
213 struct vmpressure vmpressure;
214
215 /*
216 * Should the accounting and control be hierarchical, per subtree?
217 */
218 bool use_hierarchy;
219
220 /*
221 * Should the OOM killer kill all belonging tasks, had it kill one?
222 */
223 bool oom_group;
224
225 /* protected by memcg_oom_lock */
226 bool oom_lock;
227 int under_oom;
228
229 int swappiness;
230 /* OOM-Killer disable */
231 int oom_kill_disable;
232
233 /* memory.events */
234 struct cgroup_file events_file;
235
236 /* handle for "memory.swap.events" */
237 struct cgroup_file swap_events_file;
238
239 /* protect arrays of thresholds */
240 struct mutex thresholds_lock;
241
242 /* thresholds for memory usage. RCU-protected */
243 struct mem_cgroup_thresholds thresholds;
244
245 /* thresholds for mem+swap usage. RCU-protected */
246 struct mem_cgroup_thresholds memsw_thresholds;
247
248 /* For oom notifier event fd */
249 struct list_head oom_notify;
250
251 /*
252 * Should we move charges of a task when a task is moved into this
253 * mem_cgroup ? And what type of charges should we move ?
254 */
255 unsigned long move_charge_at_immigrate;
256 /* taken only while moving_account > 0 */
257 spinlock_t move_lock;
258 unsigned long move_lock_flags;
259
260 MEMCG_PADDING(_pad1_);
261
262 /*
263 * set > 0 if pages under this cgroup are moving to other cgroup.
264 */
265 atomic_t moving_account;
266 struct task_struct *move_lock_task;
267
268 /* memory.stat */
269 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
270
271 MEMCG_PADDING(_pad2_);
272
273 atomic_long_t vmstats[MEMCG_NR_STAT];
274 atomic_long_t vmstats_local[MEMCG_NR_STAT];
275
276 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
277 atomic_long_t vmevents_local[NR_VM_EVENT_ITEMS];
278
279 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
280
281 unsigned long socket_pressure;
282
283 /* Legacy tcp memory accounting */
284 bool tcpmem_active;
285 int tcpmem_pressure;
286
287#ifdef CONFIG_MEMCG_KMEM
288 /* Index in the kmem_cache->memcg_params.memcg_caches array */
289 int kmemcg_id;
290 enum memcg_kmem_state kmem_state;
291 struct list_head kmem_caches;
292#endif
293
294 int last_scanned_node;
295#if MAX_NUMNODES > 1
296 nodemask_t scan_nodes;
297 atomic_t numainfo_events;
298 atomic_t numainfo_updating;
299#endif
300
301#ifdef CONFIG_CGROUP_WRITEBACK
302 struct list_head cgwb_list;
303 struct wb_domain cgwb_domain;
304#endif
305
306 /* List of events which userspace want to receive */
307 struct list_head event_list;
308 spinlock_t event_list_lock;
309
310 struct mem_cgroup_per_node *nodeinfo[0];
311 /* WARNING: nodeinfo must be the last member here */
312};
313
314/*
315 * size of first charge trial. "32" comes from vmscan.c's magic value.
316 * TODO: maybe necessary to use big numbers in big irons.
317 */
318#define MEMCG_CHARGE_BATCH 32U
319
320extern struct mem_cgroup *root_mem_cgroup;
321
322static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
323{
324 return (memcg == root_mem_cgroup);
325}
326
327static inline bool mem_cgroup_disabled(void)
328{
329 return !cgroup_subsys_enabled(memory_cgrp_subsys);
330}
331
332enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
333 struct mem_cgroup *memcg);
334
335int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
336 gfp_t gfp_mask, struct mem_cgroup **memcgp,
337 bool compound);
338int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
339 gfp_t gfp_mask, struct mem_cgroup **memcgp,
340 bool compound);
341void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
342 bool lrucare, bool compound);
343void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
344 bool compound);
345void mem_cgroup_uncharge(struct page *page);
346void mem_cgroup_uncharge_list(struct list_head *page_list);
347
348void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
349
350static struct mem_cgroup_per_node *
351mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
352{
353 return memcg->nodeinfo[nid];
354}
355
356/**
357 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
358 * @node: node of the wanted lruvec
359 * @memcg: memcg of the wanted lruvec
360 *
361 * Returns the lru list vector holding pages for a given @node or a given
362 * @memcg and @zone. This can be the node lruvec, if the memory controller
363 * is disabled.
364 */
365static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
366 struct mem_cgroup *memcg)
367{
368 struct mem_cgroup_per_node *mz;
369 struct lruvec *lruvec;
370
371 if (mem_cgroup_disabled()) {
372 lruvec = node_lruvec(pgdat);
373 goto out;
374 }
375
376 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
377 lruvec = &mz->lruvec;
378out:
379 /*
380 * Since a node can be onlined after the mem_cgroup was created,
381 * we have to be prepared to initialize lruvec->pgdat here;
382 * and if offlined then reonlined, we need to reinitialize it.
383 */
384 if (unlikely(lruvec->pgdat != pgdat))
385 lruvec->pgdat = pgdat;
386 return lruvec;
387}
388
389struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
390
391bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
392struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
393
394struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
395
396struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
397
398static inline
399struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
400 return css ? container_of(css, struct mem_cgroup, css) : NULL;
401}
402
403static inline void mem_cgroup_put(struct mem_cgroup *memcg)
404{
405 if (memcg)
406 css_put(&memcg->css);
407}
408
409#define mem_cgroup_from_counter(counter, member) \
410 container_of(counter, struct mem_cgroup, member)
411
412struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
413 struct mem_cgroup *,
414 struct mem_cgroup_reclaim_cookie *);
415void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
416int mem_cgroup_scan_tasks(struct mem_cgroup *,
417 int (*)(struct task_struct *, void *), void *);
418
419static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
420{
421 if (mem_cgroup_disabled())
422 return 0;
423
424 return memcg->id.id;
425}
426struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
427
428static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
429{
430 return mem_cgroup_from_css(seq_css(m));
431}
432
433static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
434{
435 struct mem_cgroup_per_node *mz;
436
437 if (mem_cgroup_disabled())
438 return NULL;
439
440 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
441 return mz->memcg;
442}
443
444/**
445 * parent_mem_cgroup - find the accounting parent of a memcg
446 * @memcg: memcg whose parent to find
447 *
448 * Returns the parent memcg, or NULL if this is the root or the memory
449 * controller is in legacy no-hierarchy mode.
450 */
451static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
452{
453 if (!memcg->memory.parent)
454 return NULL;
455 return mem_cgroup_from_counter(memcg->memory.parent, memory);
456}
457
458static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
459 struct mem_cgroup *root)
460{
461 if (root == memcg)
462 return true;
463 if (!root->use_hierarchy)
464 return false;
465 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
466}
467
468static inline bool mm_match_cgroup(struct mm_struct *mm,
469 struct mem_cgroup *memcg)
470{
471 struct mem_cgroup *task_memcg;
472 bool match = false;
473
474 rcu_read_lock();
475 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
476 if (task_memcg)
477 match = mem_cgroup_is_descendant(task_memcg, memcg);
478 rcu_read_unlock();
479 return match;
480}
481
482struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
483ino_t page_cgroup_ino(struct page *page);
484
485static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
486{
487 if (mem_cgroup_disabled())
488 return true;
489 return !!(memcg->css.flags & CSS_ONLINE);
490}
491
492/*
493 * For memory reclaim.
494 */
495int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
496
497void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
498 int zid, int nr_pages);
499
500static inline
501unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
502 enum lru_list lru, int zone_idx)
503{
504 struct mem_cgroup_per_node *mz;
505
506 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
507 return mz->lru_zone_size[zone_idx][lru];
508}
509
510void mem_cgroup_handle_over_high(void);
511
512unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
513
514void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
515 struct task_struct *p);
516
517void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
518
519static inline void mem_cgroup_enter_user_fault(void)
520{
521 WARN_ON(current->in_user_fault);
522 current->in_user_fault = 1;
523}
524
525static inline void mem_cgroup_exit_user_fault(void)
526{
527 WARN_ON(!current->in_user_fault);
528 current->in_user_fault = 0;
529}
530
531static inline bool task_in_memcg_oom(struct task_struct *p)
532{
533 return p->memcg_in_oom;
534}
535
536bool mem_cgroup_oom_synchronize(bool wait);
537struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
538 struct mem_cgroup *oom_domain);
539void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
540
541#ifdef CONFIG_MEMCG_SWAP
542extern int do_swap_account;
543#endif
544
545struct mem_cgroup *lock_page_memcg(struct page *page);
546void __unlock_page_memcg(struct mem_cgroup *memcg);
547void unlock_page_memcg(struct page *page);
548
549/*
550 * idx can be of type enum memcg_stat_item or node_stat_item.
551 * Keep in sync with memcg_exact_page_state().
552 */
553static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
554{
555 long x = atomic_long_read(&memcg->vmstats[idx]);
556#ifdef CONFIG_SMP
557 if (x < 0)
558 x = 0;
559#endif
560 return x;
561}
562
563/*
564 * idx can be of type enum memcg_stat_item or node_stat_item.
565 * Keep in sync with memcg_exact_page_state().
566 */
567static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
568 int idx)
569{
570 long x = atomic_long_read(&memcg->vmstats_local[idx]);
571#ifdef CONFIG_SMP
572 if (x < 0)
573 x = 0;
574#endif
575 return x;
576}
577
578void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
579
580/* idx can be of type enum memcg_stat_item or node_stat_item */
581static inline void mod_memcg_state(struct mem_cgroup *memcg,
582 int idx, int val)
583{
584 unsigned long flags;
585
586 local_irq_save(flags);
587 __mod_memcg_state(memcg, idx, val);
588 local_irq_restore(flags);
589}
590
591/**
592 * mod_memcg_page_state - update page state statistics
593 * @page: the page
594 * @idx: page state item to account
595 * @val: number of pages (positive or negative)
596 *
597 * The @page must be locked or the caller must use lock_page_memcg()
598 * to prevent double accounting when the page is concurrently being
599 * moved to another memcg:
600 *
601 * lock_page(page) or lock_page_memcg(page)
602 * if (TestClearPageState(page))
603 * mod_memcg_page_state(page, state, -1);
604 * unlock_page(page) or unlock_page_memcg(page)
605 *
606 * Kernel pages are an exception to this, since they'll never move.
607 */
608static inline void __mod_memcg_page_state(struct page *page,
609 int idx, int val)
610{
611 if (page->mem_cgroup)
612 __mod_memcg_state(page->mem_cgroup, idx, val);
613}
614
615static inline void mod_memcg_page_state(struct page *page,
616 int idx, int val)
617{
618 if (page->mem_cgroup)
619 mod_memcg_state(page->mem_cgroup, idx, val);
620}
621
622static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
623 enum node_stat_item idx)
624{
625 struct mem_cgroup_per_node *pn;
626 long x;
627
628 if (mem_cgroup_disabled())
629 return node_page_state(lruvec_pgdat(lruvec), idx);
630
631 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
632 x = atomic_long_read(&pn->lruvec_stat[idx]);
633#ifdef CONFIG_SMP
634 if (x < 0)
635 x = 0;
636#endif
637 return x;
638}
639
640static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
641 enum node_stat_item idx)
642{
643 struct mem_cgroup_per_node *pn;
644 long x;
645
646 if (mem_cgroup_disabled())
647 return node_page_state(lruvec_pgdat(lruvec), idx);
648
649 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
650 x = atomic_long_read(&pn->lruvec_stat_local[idx]);
651#ifdef CONFIG_SMP
652 if (x < 0)
653 x = 0;
654#endif
655 return x;
656}
657
658void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
659 int val);
660
661static inline void mod_lruvec_state(struct lruvec *lruvec,
662 enum node_stat_item idx, int val)
663{
664 unsigned long flags;
665
666 local_irq_save(flags);
667 __mod_lruvec_state(lruvec, idx, val);
668 local_irq_restore(flags);
669}
670
671static inline void __mod_lruvec_page_state(struct page *page,
672 enum node_stat_item idx, int val)
673{
674 pg_data_t *pgdat = page_pgdat(page);
675 struct lruvec *lruvec;
676
677 /* Untracked pages have no memcg, no lruvec. Update only the node */
678 if (!page->mem_cgroup) {
679 __mod_node_page_state(pgdat, idx, val);
680 return;
681 }
682
683 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
684 __mod_lruvec_state(lruvec, idx, val);
685}
686
687static inline void mod_lruvec_page_state(struct page *page,
688 enum node_stat_item idx, int val)
689{
690 unsigned long flags;
691
692 local_irq_save(flags);
693 __mod_lruvec_page_state(page, idx, val);
694 local_irq_restore(flags);
695}
696
697unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
698 gfp_t gfp_mask,
699 unsigned long *total_scanned);
700
701void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
702 unsigned long count);
703
704static inline void count_memcg_events(struct mem_cgroup *memcg,
705 enum vm_event_item idx,
706 unsigned long count)
707{
708 unsigned long flags;
709
710 local_irq_save(flags);
711 __count_memcg_events(memcg, idx, count);
712 local_irq_restore(flags);
713}
714
715static inline void count_memcg_page_event(struct page *page,
716 enum vm_event_item idx)
717{
718 if (page->mem_cgroup)
719 count_memcg_events(page->mem_cgroup, idx, 1);
720}
721
722static inline void count_memcg_event_mm(struct mm_struct *mm,
723 enum vm_event_item idx)
724{
725 struct mem_cgroup *memcg;
726
727 if (mem_cgroup_disabled())
728 return;
729
730 rcu_read_lock();
731 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
732 if (likely(memcg))
733 count_memcg_events(memcg, idx, 1);
734 rcu_read_unlock();
735}
736
737static inline void memcg_memory_event(struct mem_cgroup *memcg,
738 enum memcg_memory_event event)
739{
740 do {
741 atomic_long_inc(&memcg->memory_events[event]);
742 cgroup_file_notify(&memcg->events_file);
743
744 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
745 break;
746 } while ((memcg = parent_mem_cgroup(memcg)) &&
747 !mem_cgroup_is_root(memcg));
748}
749
750static inline void memcg_memory_event_mm(struct mm_struct *mm,
751 enum memcg_memory_event event)
752{
753 struct mem_cgroup *memcg;
754
755 if (mem_cgroup_disabled())
756 return;
757
758 rcu_read_lock();
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (likely(memcg))
761 memcg_memory_event(memcg, event);
762 rcu_read_unlock();
763}
764
765#ifdef CONFIG_TRANSPARENT_HUGEPAGE
766void mem_cgroup_split_huge_fixup(struct page *head);
767#endif
768
769#else /* CONFIG_MEMCG */
770
771#define MEM_CGROUP_ID_SHIFT 0
772#define MEM_CGROUP_ID_MAX 0
773
774struct mem_cgroup;
775
776static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
777{
778 return true;
779}
780
781static inline bool mem_cgroup_disabled(void)
782{
783 return true;
784}
785
786static inline void memcg_memory_event(struct mem_cgroup *memcg,
787 enum memcg_memory_event event)
788{
789}
790
791static inline void memcg_memory_event_mm(struct mm_struct *mm,
792 enum memcg_memory_event event)
793{
794}
795
796static inline enum mem_cgroup_protection mem_cgroup_protected(
797 struct mem_cgroup *root, struct mem_cgroup *memcg)
798{
799 return MEMCG_PROT_NONE;
800}
801
802static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
803 gfp_t gfp_mask,
804 struct mem_cgroup **memcgp,
805 bool compound)
806{
807 *memcgp = NULL;
808 return 0;
809}
810
811static inline int mem_cgroup_try_charge_delay(struct page *page,
812 struct mm_struct *mm,
813 gfp_t gfp_mask,
814 struct mem_cgroup **memcgp,
815 bool compound)
816{
817 *memcgp = NULL;
818 return 0;
819}
820
821static inline void mem_cgroup_commit_charge(struct page *page,
822 struct mem_cgroup *memcg,
823 bool lrucare, bool compound)
824{
825}
826
827static inline void mem_cgroup_cancel_charge(struct page *page,
828 struct mem_cgroup *memcg,
829 bool compound)
830{
831}
832
833static inline void mem_cgroup_uncharge(struct page *page)
834{
835}
836
837static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
838{
839}
840
841static inline void mem_cgroup_migrate(struct page *old, struct page *new)
842{
843}
844
845static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
846 struct mem_cgroup *memcg)
847{
848 return node_lruvec(pgdat);
849}
850
851static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
852 struct pglist_data *pgdat)
853{
854 return &pgdat->lruvec;
855}
856
857static inline bool mm_match_cgroup(struct mm_struct *mm,
858 struct mem_cgroup *memcg)
859{
860 return true;
861}
862
863static inline bool task_in_mem_cgroup(struct task_struct *task,
864 const struct mem_cgroup *memcg)
865{
866 return true;
867}
868
869static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
870{
871 return NULL;
872}
873
874static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
875{
876 return NULL;
877}
878
879static inline void mem_cgroup_put(struct mem_cgroup *memcg)
880{
881}
882
883static inline struct mem_cgroup *
884mem_cgroup_iter(struct mem_cgroup *root,
885 struct mem_cgroup *prev,
886 struct mem_cgroup_reclaim_cookie *reclaim)
887{
888 return NULL;
889}
890
891static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
892 struct mem_cgroup *prev)
893{
894}
895
896static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
897 int (*fn)(struct task_struct *, void *), void *arg)
898{
899 return 0;
900}
901
902static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
903{
904 return 0;
905}
906
907static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
908{
909 WARN_ON_ONCE(id);
910 /* XXX: This should always return root_mem_cgroup */
911 return NULL;
912}
913
914static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
915{
916 return NULL;
917}
918
919static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
920{
921 return NULL;
922}
923
924static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
925{
926 return true;
927}
928
929static inline
930unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
931 enum lru_list lru, int zone_idx)
932{
933 return 0;
934}
935
936static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
937{
938 return 0;
939}
940
941static inline void
942mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
943{
944}
945
946static inline void
947mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
948{
949}
950
951static inline struct mem_cgroup *lock_page_memcg(struct page *page)
952{
953 return NULL;
954}
955
956static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
957{
958}
959
960static inline void unlock_page_memcg(struct page *page)
961{
962}
963
964static inline void mem_cgroup_handle_over_high(void)
965{
966}
967
968static inline void mem_cgroup_enter_user_fault(void)
969{
970}
971
972static inline void mem_cgroup_exit_user_fault(void)
973{
974}
975
976static inline bool task_in_memcg_oom(struct task_struct *p)
977{
978 return false;
979}
980
981static inline bool mem_cgroup_oom_synchronize(bool wait)
982{
983 return false;
984}
985
986static inline struct mem_cgroup *mem_cgroup_get_oom_group(
987 struct task_struct *victim, struct mem_cgroup *oom_domain)
988{
989 return NULL;
990}
991
992static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
993{
994}
995
996static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
997{
998 return 0;
999}
1000
1001static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1002 int idx)
1003{
1004 return 0;
1005}
1006
1007static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1008 int idx,
1009 int nr)
1010{
1011}
1012
1013static inline void mod_memcg_state(struct mem_cgroup *memcg,
1014 int idx,
1015 int nr)
1016{
1017}
1018
1019static inline void __mod_memcg_page_state(struct page *page,
1020 int idx,
1021 int nr)
1022{
1023}
1024
1025static inline void mod_memcg_page_state(struct page *page,
1026 int idx,
1027 int nr)
1028{
1029}
1030
1031static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1032 enum node_stat_item idx)
1033{
1034 return node_page_state(lruvec_pgdat(lruvec), idx);
1035}
1036
1037static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1038 enum node_stat_item idx)
1039{
1040 return node_page_state(lruvec_pgdat(lruvec), idx);
1041}
1042
1043static inline void __mod_lruvec_state(struct lruvec *lruvec,
1044 enum node_stat_item idx, int val)
1045{
1046 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1047}
1048
1049static inline void mod_lruvec_state(struct lruvec *lruvec,
1050 enum node_stat_item idx, int val)
1051{
1052 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1053}
1054
1055static inline void __mod_lruvec_page_state(struct page *page,
1056 enum node_stat_item idx, int val)
1057{
1058 __mod_node_page_state(page_pgdat(page), idx, val);
1059}
1060
1061static inline void mod_lruvec_page_state(struct page *page,
1062 enum node_stat_item idx, int val)
1063{
1064 mod_node_page_state(page_pgdat(page), idx, val);
1065}
1066
1067static inline
1068unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1069 gfp_t gfp_mask,
1070 unsigned long *total_scanned)
1071{
1072 return 0;
1073}
1074
1075static inline void mem_cgroup_split_huge_fixup(struct page *head)
1076{
1077}
1078
1079static inline void count_memcg_events(struct mem_cgroup *memcg,
1080 enum vm_event_item idx,
1081 unsigned long count)
1082{
1083}
1084
1085static inline void __count_memcg_events(struct mem_cgroup *memcg,
1086 enum vm_event_item idx,
1087 unsigned long count)
1088{
1089}
1090
1091static inline void count_memcg_page_event(struct page *page,
1092 int idx)
1093{
1094}
1095
1096static inline
1097void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1098{
1099}
1100#endif /* CONFIG_MEMCG */
1101
1102/* idx can be of type enum memcg_stat_item or node_stat_item */
1103static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1104 int idx)
1105{
1106 __mod_memcg_state(memcg, idx, 1);
1107}
1108
1109/* idx can be of type enum memcg_stat_item or node_stat_item */
1110static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1111 int idx)
1112{
1113 __mod_memcg_state(memcg, idx, -1);
1114}
1115
1116/* idx can be of type enum memcg_stat_item or node_stat_item */
1117static inline void __inc_memcg_page_state(struct page *page,
1118 int idx)
1119{
1120 __mod_memcg_page_state(page, idx, 1);
1121}
1122
1123/* idx can be of type enum memcg_stat_item or node_stat_item */
1124static inline void __dec_memcg_page_state(struct page *page,
1125 int idx)
1126{
1127 __mod_memcg_page_state(page, idx, -1);
1128}
1129
1130static inline void __inc_lruvec_state(struct lruvec *lruvec,
1131 enum node_stat_item idx)
1132{
1133 __mod_lruvec_state(lruvec, idx, 1);
1134}
1135
1136static inline void __dec_lruvec_state(struct lruvec *lruvec,
1137 enum node_stat_item idx)
1138{
1139 __mod_lruvec_state(lruvec, idx, -1);
1140}
1141
1142static inline void __inc_lruvec_page_state(struct page *page,
1143 enum node_stat_item idx)
1144{
1145 __mod_lruvec_page_state(page, idx, 1);
1146}
1147
1148static inline void __dec_lruvec_page_state(struct page *page,
1149 enum node_stat_item idx)
1150{
1151 __mod_lruvec_page_state(page, idx, -1);
1152}
1153
1154/* idx can be of type enum memcg_stat_item or node_stat_item */
1155static inline void inc_memcg_state(struct mem_cgroup *memcg,
1156 int idx)
1157{
1158 mod_memcg_state(memcg, idx, 1);
1159}
1160
1161/* idx can be of type enum memcg_stat_item or node_stat_item */
1162static inline void dec_memcg_state(struct mem_cgroup *memcg,
1163 int idx)
1164{
1165 mod_memcg_state(memcg, idx, -1);
1166}
1167
1168/* idx can be of type enum memcg_stat_item or node_stat_item */
1169static inline void inc_memcg_page_state(struct page *page,
1170 int idx)
1171{
1172 mod_memcg_page_state(page, idx, 1);
1173}
1174
1175/* idx can be of type enum memcg_stat_item or node_stat_item */
1176static inline void dec_memcg_page_state(struct page *page,
1177 int idx)
1178{
1179 mod_memcg_page_state(page, idx, -1);
1180}
1181
1182static inline void inc_lruvec_state(struct lruvec *lruvec,
1183 enum node_stat_item idx)
1184{
1185 mod_lruvec_state(lruvec, idx, 1);
1186}
1187
1188static inline void dec_lruvec_state(struct lruvec *lruvec,
1189 enum node_stat_item idx)
1190{
1191 mod_lruvec_state(lruvec, idx, -1);
1192}
1193
1194static inline void inc_lruvec_page_state(struct page *page,
1195 enum node_stat_item idx)
1196{
1197 mod_lruvec_page_state(page, idx, 1);
1198}
1199
1200static inline void dec_lruvec_page_state(struct page *page,
1201 enum node_stat_item idx)
1202{
1203 mod_lruvec_page_state(page, idx, -1);
1204}
1205
1206#ifdef CONFIG_CGROUP_WRITEBACK
1207
1208struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1209void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1210 unsigned long *pheadroom, unsigned long *pdirty,
1211 unsigned long *pwriteback);
1212
1213#else /* CONFIG_CGROUP_WRITEBACK */
1214
1215static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1216{
1217 return NULL;
1218}
1219
1220static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1221 unsigned long *pfilepages,
1222 unsigned long *pheadroom,
1223 unsigned long *pdirty,
1224 unsigned long *pwriteback)
1225{
1226}
1227
1228#endif /* CONFIG_CGROUP_WRITEBACK */
1229
1230struct sock;
1231bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1232void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1233#ifdef CONFIG_MEMCG
1234extern struct static_key_false memcg_sockets_enabled_key;
1235#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1236void mem_cgroup_sk_alloc(struct sock *sk);
1237void mem_cgroup_sk_free(struct sock *sk);
1238static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1239{
1240 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1241 return true;
1242 do {
1243 if (time_before(jiffies, memcg->socket_pressure))
1244 return true;
1245 } while ((memcg = parent_mem_cgroup(memcg)));
1246 return false;
1247}
1248#else
1249#define mem_cgroup_sockets_enabled 0
1250static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1251static inline void mem_cgroup_sk_free(struct sock *sk) { };
1252static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1253{
1254 return false;
1255}
1256#endif
1257
1258struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1259void memcg_kmem_put_cache(struct kmem_cache *cachep);
1260
1261#ifdef CONFIG_MEMCG_KMEM
1262int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1263void __memcg_kmem_uncharge(struct page *page, int order);
1264int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1265 struct mem_cgroup *memcg);
1266
1267extern struct static_key_false memcg_kmem_enabled_key;
1268extern struct workqueue_struct *memcg_kmem_cache_wq;
1269
1270extern int memcg_nr_cache_ids;
1271void memcg_get_cache_ids(void);
1272void memcg_put_cache_ids(void);
1273
1274/*
1275 * Helper macro to loop through all memcg-specific caches. Callers must still
1276 * check if the cache is valid (it is either valid or NULL).
1277 * the slab_mutex must be held when looping through those caches
1278 */
1279#define for_each_memcg_cache_index(_idx) \
1280 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1281
1282static inline bool memcg_kmem_enabled(void)
1283{
1284 return static_branch_unlikely(&memcg_kmem_enabled_key);
1285}
1286
1287static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1288{
1289 if (memcg_kmem_enabled())
1290 return __memcg_kmem_charge(page, gfp, order);
1291 return 0;
1292}
1293
1294static inline void memcg_kmem_uncharge(struct page *page, int order)
1295{
1296 if (memcg_kmem_enabled())
1297 __memcg_kmem_uncharge(page, order);
1298}
1299
1300static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1301 int order, struct mem_cgroup *memcg)
1302{
1303 if (memcg_kmem_enabled())
1304 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1305 return 0;
1306}
1307/*
1308 * helper for accessing a memcg's index. It will be used as an index in the
1309 * child cache array in kmem_cache, and also to derive its name. This function
1310 * will return -1 when this is not a kmem-limited memcg.
1311 */
1312static inline int memcg_cache_id(struct mem_cgroup *memcg)
1313{
1314 return memcg ? memcg->kmemcg_id : -1;
1315}
1316
1317extern int memcg_expand_shrinker_maps(int new_id);
1318
1319extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1320 int nid, int shrinker_id);
1321#else
1322
1323static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1324{
1325 return 0;
1326}
1327
1328static inline void memcg_kmem_uncharge(struct page *page, int order)
1329{
1330}
1331
1332static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1333{
1334 return 0;
1335}
1336
1337static inline void __memcg_kmem_uncharge(struct page *page, int order)
1338{
1339}
1340
1341#define for_each_memcg_cache_index(_idx) \
1342 for (; NULL; )
1343
1344static inline bool memcg_kmem_enabled(void)
1345{
1346 return false;
1347}
1348
1349static inline int memcg_cache_id(struct mem_cgroup *memcg)
1350{
1351 return -1;
1352}
1353
1354static inline void memcg_get_cache_ids(void)
1355{
1356}
1357
1358static inline void memcg_put_cache_ids(void)
1359{
1360}
1361
1362static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1363 int nid, int shrinker_id) { }
1364#endif /* CONFIG_MEMCG_KMEM */
1365
1366#endif /* _LINUX_MEMCONTROL_H */