Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#define ARCH_HAS_IOREMAP_WC
16
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/irqflags.h>
21
22#include <asm/addrspace.h>
23#include <asm/barrier.h>
24#include <asm/bug.h>
25#include <asm/byteorder.h>
26#include <asm/cpu.h>
27#include <asm/cpu-features.h>
28#include <asm-generic/iomap.h>
29#include <asm/page.h>
30#include <asm/pgtable-bits.h>
31#include <asm/processor.h>
32#include <asm/string.h>
33
34#include <ioremap.h>
35#include <mangle-port.h>
36
37/*
38 * Raw operations are never swapped in software. OTOH values that raw
39 * operations are working on may or may not have been swapped by the bus
40 * hardware. An example use would be for flash memory that's used for
41 * execute in place.
42 */
43# define __raw_ioswabb(a, x) (x)
44# define __raw_ioswabw(a, x) (x)
45# define __raw_ioswabl(a, x) (x)
46# define __raw_ioswabq(a, x) (x)
47# define ____raw_ioswabq(a, x) (x)
48
49# define __relaxed_ioswabb ioswabb
50# define __relaxed_ioswabw ioswabw
51# define __relaxed_ioswabl ioswabl
52# define __relaxed_ioswabq ioswabq
53
54/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
55
56#define IO_SPACE_LIMIT 0xffff
57
58/*
59 * On MIPS I/O ports are memory mapped, so we access them using normal
60 * load/store instructions. mips_io_port_base is the virtual address to
61 * which all ports are being mapped. For sake of efficiency some code
62 * assumes that this is an address that can be loaded with a single lui
63 * instruction, so the lower 16 bits must be zero. Should be true on
64 * on any sane architecture; generic code does not use this assumption.
65 */
66extern const unsigned long mips_io_port_base;
67
68/*
69 * Gcc will generate code to load the value of mips_io_port_base after each
70 * function call which may be fairly wasteful in some cases. So we don't
71 * play quite by the book. We tell gcc mips_io_port_base is a long variable
72 * which solves the code generation issue. Now we need to violate the
73 * aliasing rules a little to make initialization possible and finally we
74 * will need the barrier() to fight side effects of the aliasing chat.
75 * This trickery will eventually collapse under gcc's optimizer. Oh well.
76 */
77static inline void set_io_port_base(unsigned long base)
78{
79 * (unsigned long *) &mips_io_port_base = base;
80 barrier();
81}
82
83/*
84 * Provide the necessary definitions for generic iomap. We make use of
85 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
86 * use with I/O ports.
87 */
88
89#define HAVE_ARCH_PIO_SIZE
90#define PIO_OFFSET mips_io_port_base
91#define PIO_MASK IO_SPACE_LIMIT
92#define PIO_RESERVED 0x0UL
93
94/*
95 * Enforce in-order execution of data I/O. In the MIPS architecture
96 * these are equivalent to corresponding platform-specific memory
97 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
98 * with sync additionally defined.
99 */
100#define iobarrier_rw() mb()
101#define iobarrier_r() rmb()
102#define iobarrier_w() wmb()
103#define iobarrier_sync() iob()
104
105/*
106 * virt_to_phys - map virtual addresses to physical
107 * @address: address to remap
108 *
109 * The returned physical address is the physical (CPU) mapping for
110 * the memory address given. It is only valid to use this function on
111 * addresses directly mapped or allocated via kmalloc.
112 *
113 * This function does not give bus mappings for DMA transfers. In
114 * almost all conceivable cases a device driver should not be using
115 * this function
116 */
117static inline unsigned long virt_to_phys(volatile const void *address)
118{
119 return __pa(address);
120}
121
122/*
123 * phys_to_virt - map physical address to virtual
124 * @address: address to remap
125 *
126 * The returned virtual address is a current CPU mapping for
127 * the memory address given. It is only valid to use this function on
128 * addresses that have a kernel mapping
129 *
130 * This function does not handle bus mappings for DMA transfers. In
131 * almost all conceivable cases a device driver should not be using
132 * this function
133 */
134static inline void * phys_to_virt(unsigned long address)
135{
136 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
137}
138
139/*
140 * ISA I/O bus memory addresses are 1:1 with the physical address.
141 */
142static inline unsigned long isa_virt_to_bus(volatile void *address)
143{
144 return virt_to_phys(address);
145}
146
147static inline void *isa_bus_to_virt(unsigned long address)
148{
149 return phys_to_virt(address);
150}
151
152#define isa_page_to_bus page_to_phys
153
154/*
155 * However PCI ones are not necessarily 1:1 and therefore these interfaces
156 * are forbidden in portable PCI drivers.
157 *
158 * Allow them for x86 for legacy drivers, though.
159 */
160#define virt_to_bus virt_to_phys
161#define bus_to_virt phys_to_virt
162
163/*
164 * Change "struct page" to physical address.
165 */
166#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
167
168extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
169extern void __iounmap(const volatile void __iomem *addr);
170
171static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
172 unsigned long flags)
173{
174 void __iomem *addr = plat_ioremap(offset, size, flags);
175
176 if (addr)
177 return addr;
178
179#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
180
181 if (cpu_has_64bit_addresses) {
182 u64 base = UNCAC_BASE;
183
184 /*
185 * R10000 supports a 2 bit uncached attribute therefore
186 * UNCAC_BASE may not equal IO_BASE.
187 */
188 if (flags == _CACHE_UNCACHED)
189 base = (u64) IO_BASE;
190 return (void __iomem *) (unsigned long) (base + offset);
191 } else if (__builtin_constant_p(offset) &&
192 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
193 phys_addr_t phys_addr, last_addr;
194
195 phys_addr = fixup_bigphys_addr(offset, size);
196
197 /* Don't allow wraparound or zero size. */
198 last_addr = phys_addr + size - 1;
199 if (!size || last_addr < phys_addr)
200 return NULL;
201
202 /*
203 * Map uncached objects in the low 512MB of address
204 * space using KSEG1.
205 */
206 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
207 flags == _CACHE_UNCACHED)
208 return (void __iomem *)
209 (unsigned long)CKSEG1ADDR(phys_addr);
210 }
211
212 return __ioremap(offset, size, flags);
213
214#undef __IS_LOW512
215}
216
217/*
218 * ioremap_prot - map bus memory into CPU space
219 * @offset: bus address of the memory
220 * @size: size of the resource to map
221
222 * ioremap_prot gives the caller control over cache coherency attributes (CCA)
223 */
224static inline void __iomem *ioremap_prot(phys_addr_t offset,
225 unsigned long size, unsigned long prot_val) {
226 return __ioremap_mode(offset, size, prot_val & _CACHE_MASK);
227}
228
229/*
230 * ioremap - map bus memory into CPU space
231 * @offset: bus address of the memory
232 * @size: size of the resource to map
233 *
234 * ioremap performs a platform specific sequence of operations to
235 * make bus memory CPU accessible via the readb/readw/readl/writeb/
236 * writew/writel functions and the other mmio helpers. The returned
237 * address is not guaranteed to be usable directly as a virtual
238 * address.
239 */
240#define ioremap(offset, size) \
241 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
242
243/*
244 * ioremap_nocache - map bus memory into CPU space
245 * @offset: bus address of the memory
246 * @size: size of the resource to map
247 *
248 * ioremap_nocache performs a platform specific sequence of operations to
249 * make bus memory CPU accessible via the readb/readw/readl/writeb/
250 * writew/writel functions and the other mmio helpers. The returned
251 * address is not guaranteed to be usable directly as a virtual
252 * address.
253 *
254 * This version of ioremap ensures that the memory is marked uncachable
255 * on the CPU as well as honouring existing caching rules from things like
256 * the PCI bus. Note that there are other caches and buffers on many
257 * busses. In particular driver authors should read up on PCI writes
258 *
259 * It's useful if some control registers are in such an area and
260 * write combining or read caching is not desirable:
261 */
262#define ioremap_nocache(offset, size) \
263 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
264#define ioremap_uc ioremap_nocache
265
266/*
267 * ioremap_cachable - map bus memory into CPU space
268 * @offset: bus address of the memory
269 * @size: size of the resource to map
270 *
271 * ioremap_nocache performs a platform specific sequence of operations to
272 * make bus memory CPU accessible via the readb/readw/readl/writeb/
273 * writew/writel functions and the other mmio helpers. The returned
274 * address is not guaranteed to be usable directly as a virtual
275 * address.
276 *
277 * This version of ioremap ensures that the memory is marked cachable by
278 * the CPU. Also enables full write-combining. Useful for some
279 * memory-like regions on I/O busses.
280 */
281#define ioremap_cachable(offset, size) \
282 __ioremap_mode((offset), (size), _page_cachable_default)
283#define ioremap_cache ioremap_cachable
284
285/*
286 * ioremap_wc - map bus memory into CPU space
287 * @offset: bus address of the memory
288 * @size: size of the resource to map
289 *
290 * ioremap_wc performs a platform specific sequence of operations to
291 * make bus memory CPU accessible via the readb/readw/readl/writeb/
292 * writew/writel functions and the other mmio helpers. The returned
293 * address is not guaranteed to be usable directly as a virtual
294 * address.
295 *
296 * This version of ioremap ensures that the memory is marked uncachable
297 * but accelerated by means of write-combining feature. It is specifically
298 * useful for PCIe prefetchable windows, which may vastly improve a
299 * communications performance. If it was determined on boot stage, what
300 * CPU CCA doesn't support UCA, the method shall fall-back to the
301 * _CACHE_UNCACHED option (see cpu_probe() method).
302 */
303#define ioremap_wc(offset, size) \
304 __ioremap_mode((offset), (size), boot_cpu_data.writecombine)
305
306static inline void iounmap(const volatile void __iomem *addr)
307{
308 if (plat_iounmap(addr))
309 return;
310
311#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
312
313 if (cpu_has_64bit_addresses ||
314 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
315 return;
316
317 __iounmap(addr);
318
319#undef __IS_KSEG1
320}
321
322#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
323#define war_io_reorder_wmb() wmb()
324#else
325#define war_io_reorder_wmb() barrier()
326#endif
327
328#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
329 \
330static inline void pfx##write##bwlq(type val, \
331 volatile void __iomem *mem) \
332{ \
333 volatile type *__mem; \
334 type __val; \
335 \
336 if (barrier) \
337 iobarrier_rw(); \
338 else \
339 war_io_reorder_wmb(); \
340 \
341 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
342 \
343 __val = pfx##ioswab##bwlq(__mem, val); \
344 \
345 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
346 *__mem = __val; \
347 else if (cpu_has_64bits) { \
348 unsigned long __flags; \
349 type __tmp; \
350 \
351 if (irq) \
352 local_irq_save(__flags); \
353 __asm__ __volatile__( \
354 ".set push" "\t\t# __writeq""\n\t" \
355 ".set arch=r4000" "\n\t" \
356 "dsll32 %L0, %L0, 0" "\n\t" \
357 "dsrl32 %L0, %L0, 0" "\n\t" \
358 "dsll32 %M0, %M0, 0" "\n\t" \
359 "or %L0, %L0, %M0" "\n\t" \
360 "sd %L0, %2" "\n\t" \
361 ".set pop" "\n" \
362 : "=r" (__tmp) \
363 : "0" (__val), "m" (*__mem)); \
364 if (irq) \
365 local_irq_restore(__flags); \
366 } else \
367 BUG(); \
368} \
369 \
370static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
371{ \
372 volatile type *__mem; \
373 type __val; \
374 \
375 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
376 \
377 if (barrier) \
378 iobarrier_rw(); \
379 \
380 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
381 __val = *__mem; \
382 else if (cpu_has_64bits) { \
383 unsigned long __flags; \
384 \
385 if (irq) \
386 local_irq_save(__flags); \
387 __asm__ __volatile__( \
388 ".set push" "\t\t# __readq" "\n\t" \
389 ".set arch=r4000" "\n\t" \
390 "ld %L0, %1" "\n\t" \
391 "dsra32 %M0, %L0, 0" "\n\t" \
392 "sll %L0, %L0, 0" "\n\t" \
393 ".set pop" "\n" \
394 : "=r" (__val) \
395 : "m" (*__mem)); \
396 if (irq) \
397 local_irq_restore(__flags); \
398 } else { \
399 __val = 0; \
400 BUG(); \
401 } \
402 \
403 /* prevent prefetching of coherent DMA data prematurely */ \
404 if (!relax) \
405 rmb(); \
406 return pfx##ioswab##bwlq(__mem, __val); \
407}
408
409#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
410 \
411static inline void pfx##out##bwlq##p(type val, unsigned long port) \
412{ \
413 volatile type *__addr; \
414 type __val; \
415 \
416 if (barrier) \
417 iobarrier_rw(); \
418 else \
419 war_io_reorder_wmb(); \
420 \
421 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
422 \
423 __val = pfx##ioswab##bwlq(__addr, val); \
424 \
425 /* Really, we want this to be atomic */ \
426 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
427 \
428 *__addr = __val; \
429} \
430 \
431static inline type pfx##in##bwlq##p(unsigned long port) \
432{ \
433 volatile type *__addr; \
434 type __val; \
435 \
436 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
437 \
438 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
439 \
440 if (barrier) \
441 iobarrier_rw(); \
442 \
443 __val = *__addr; \
444 \
445 /* prevent prefetching of coherent DMA data prematurely */ \
446 if (!relax) \
447 rmb(); \
448 return pfx##ioswab##bwlq(__addr, __val); \
449}
450
451#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
452 \
453__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
454
455#define BUILDIO_MEM(bwlq, type) \
456 \
457__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
458__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
459__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
460__BUILD_MEMORY_PFX(, bwlq, type, 0)
461
462BUILDIO_MEM(b, u8)
463BUILDIO_MEM(w, u16)
464BUILDIO_MEM(l, u32)
465BUILDIO_MEM(q, u64)
466
467#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
468 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
469 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
470
471#define BUILDIO_IOPORT(bwlq, type) \
472 __BUILD_IOPORT_PFX(, bwlq, type) \
473 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
474
475BUILDIO_IOPORT(b, u8)
476BUILDIO_IOPORT(w, u16)
477BUILDIO_IOPORT(l, u32)
478#ifdef CONFIG_64BIT
479BUILDIO_IOPORT(q, u64)
480#endif
481
482#define __BUILDIO(bwlq, type) \
483 \
484__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
485
486__BUILDIO(q, u64)
487
488#define readb_relaxed __relaxed_readb
489#define readw_relaxed __relaxed_readw
490#define readl_relaxed __relaxed_readl
491#define readq_relaxed __relaxed_readq
492
493#define writeb_relaxed __relaxed_writeb
494#define writew_relaxed __relaxed_writew
495#define writel_relaxed __relaxed_writel
496#define writeq_relaxed __relaxed_writeq
497
498#define readb_be(addr) \
499 __raw_readb((__force unsigned *)(addr))
500#define readw_be(addr) \
501 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
502#define readl_be(addr) \
503 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
504#define readq_be(addr) \
505 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
506
507#define writeb_be(val, addr) \
508 __raw_writeb((val), (__force unsigned *)(addr))
509#define writew_be(val, addr) \
510 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
511#define writel_be(val, addr) \
512 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
513#define writeq_be(val, addr) \
514 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
515
516/*
517 * Some code tests for these symbols
518 */
519#define readq readq
520#define writeq writeq
521
522#define __BUILD_MEMORY_STRING(bwlq, type) \
523 \
524static inline void writes##bwlq(volatile void __iomem *mem, \
525 const void *addr, unsigned int count) \
526{ \
527 const volatile type *__addr = addr; \
528 \
529 while (count--) { \
530 __mem_write##bwlq(*__addr, mem); \
531 __addr++; \
532 } \
533} \
534 \
535static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
536 unsigned int count) \
537{ \
538 volatile type *__addr = addr; \
539 \
540 while (count--) { \
541 *__addr = __mem_read##bwlq(mem); \
542 __addr++; \
543 } \
544}
545
546#define __BUILD_IOPORT_STRING(bwlq, type) \
547 \
548static inline void outs##bwlq(unsigned long port, const void *addr, \
549 unsigned int count) \
550{ \
551 const volatile type *__addr = addr; \
552 \
553 while (count--) { \
554 __mem_out##bwlq(*__addr, port); \
555 __addr++; \
556 } \
557} \
558 \
559static inline void ins##bwlq(unsigned long port, void *addr, \
560 unsigned int count) \
561{ \
562 volatile type *__addr = addr; \
563 \
564 while (count--) { \
565 *__addr = __mem_in##bwlq(port); \
566 __addr++; \
567 } \
568}
569
570#define BUILDSTRING(bwlq, type) \
571 \
572__BUILD_MEMORY_STRING(bwlq, type) \
573__BUILD_IOPORT_STRING(bwlq, type)
574
575BUILDSTRING(b, u8)
576BUILDSTRING(w, u16)
577BUILDSTRING(l, u32)
578#ifdef CONFIG_64BIT
579BUILDSTRING(q, u64)
580#endif
581
582static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
583{
584 memset((void __force *) addr, val, count);
585}
586static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
587{
588 memcpy(dst, (void __force *) src, count);
589}
590static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
591{
592 memcpy((void __force *) dst, src, count);
593}
594
595/*
596 * The caches on some architectures aren't dma-coherent and have need to
597 * handle this in software. There are three types of operations that
598 * can be applied to dma buffers.
599 *
600 * - dma_cache_wback_inv(start, size) makes caches and coherent by
601 * writing the content of the caches back to memory, if necessary.
602 * The function also invalidates the affected part of the caches as
603 * necessary before DMA transfers from outside to memory.
604 * - dma_cache_wback(start, size) makes caches and coherent by
605 * writing the content of the caches back to memory, if necessary.
606 * The function also invalidates the affected part of the caches as
607 * necessary before DMA transfers from outside to memory.
608 * - dma_cache_inv(start, size) invalidates the affected parts of the
609 * caches. Dirty lines of the caches may be written back or simply
610 * be discarded. This operation is necessary before dma operations
611 * to the memory.
612 *
613 * This API used to be exported; it now is for arch code internal use only.
614 */
615#ifdef CONFIG_DMA_NONCOHERENT
616
617extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
618extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
619extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
620
621#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
622#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
623#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
624
625#else /* Sane hardware */
626
627#define dma_cache_wback_inv(start,size) \
628 do { (void) (start); (void) (size); } while (0)
629#define dma_cache_wback(start,size) \
630 do { (void) (start); (void) (size); } while (0)
631#define dma_cache_inv(start,size) \
632 do { (void) (start); (void) (size); } while (0)
633
634#endif /* CONFIG_DMA_NONCOHERENT */
635
636/*
637 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
638 * Avoid interrupt mucking, just adjust the address for 4-byte access.
639 * Assume the addresses are 8-byte aligned.
640 */
641#ifdef __MIPSEB__
642#define __CSR_32_ADJUST 4
643#else
644#define __CSR_32_ADJUST 0
645#endif
646
647#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
648#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
649
650/*
651 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
652 * access
653 */
654#define xlate_dev_mem_ptr(p) __va(p)
655
656/*
657 * Convert a virtual cached pointer to an uncached pointer
658 */
659#define xlate_dev_kmem_ptr(p) p
660
661void __ioread64_copy(void *to, const void __iomem *from, size_t count);
662
663#endif /* _ASM_IO_H */