Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include "callchain.h"
7#include "debug.h"
8#include "event.h"
9#include "evsel.h"
10#include "hist.h"
11#include "machine.h"
12#include "map.h"
13#include "symbol.h"
14#include "sort.h"
15#include "strlist.h"
16#include "thread.h"
17#include "vdso.h"
18#include <stdbool.h>
19#include <sys/types.h>
20#include <sys/stat.h>
21#include <unistd.h>
22#include "unwind.h"
23#include "linux/hash.h"
24#include "asm/bug.h"
25#include "bpf-event.h"
26
27#include "sane_ctype.h"
28#include <symbol/kallsyms.h>
29#include <linux/mman.h>
30
31static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
32
33static void dsos__init(struct dsos *dsos)
34{
35 INIT_LIST_HEAD(&dsos->head);
36 dsos->root = RB_ROOT;
37 init_rwsem(&dsos->lock);
38}
39
40static void machine__threads_init(struct machine *machine)
41{
42 int i;
43
44 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
45 struct threads *threads = &machine->threads[i];
46 threads->entries = RB_ROOT_CACHED;
47 init_rwsem(&threads->lock);
48 threads->nr = 0;
49 INIT_LIST_HEAD(&threads->dead);
50 threads->last_match = NULL;
51 }
52}
53
54static int machine__set_mmap_name(struct machine *machine)
55{
56 if (machine__is_host(machine))
57 machine->mmap_name = strdup("[kernel.kallsyms]");
58 else if (machine__is_default_guest(machine))
59 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
60 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
61 machine->pid) < 0)
62 machine->mmap_name = NULL;
63
64 return machine->mmap_name ? 0 : -ENOMEM;
65}
66
67int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
68{
69 int err = -ENOMEM;
70
71 memset(machine, 0, sizeof(*machine));
72 map_groups__init(&machine->kmaps, machine);
73 RB_CLEAR_NODE(&machine->rb_node);
74 dsos__init(&machine->dsos);
75
76 machine__threads_init(machine);
77
78 machine->vdso_info = NULL;
79 machine->env = NULL;
80
81 machine->pid = pid;
82
83 machine->id_hdr_size = 0;
84 machine->kptr_restrict_warned = false;
85 machine->comm_exec = false;
86 machine->kernel_start = 0;
87 machine->vmlinux_map = NULL;
88
89 machine->root_dir = strdup(root_dir);
90 if (machine->root_dir == NULL)
91 return -ENOMEM;
92
93 if (machine__set_mmap_name(machine))
94 goto out;
95
96 if (pid != HOST_KERNEL_ID) {
97 struct thread *thread = machine__findnew_thread(machine, -1,
98 pid);
99 char comm[64];
100
101 if (thread == NULL)
102 goto out;
103
104 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
105 thread__set_comm(thread, comm, 0);
106 thread__put(thread);
107 }
108
109 machine->current_tid = NULL;
110 err = 0;
111
112out:
113 if (err) {
114 zfree(&machine->root_dir);
115 zfree(&machine->mmap_name);
116 }
117 return 0;
118}
119
120struct machine *machine__new_host(void)
121{
122 struct machine *machine = malloc(sizeof(*machine));
123
124 if (machine != NULL) {
125 machine__init(machine, "", HOST_KERNEL_ID);
126
127 if (machine__create_kernel_maps(machine) < 0)
128 goto out_delete;
129 }
130
131 return machine;
132out_delete:
133 free(machine);
134 return NULL;
135}
136
137struct machine *machine__new_kallsyms(void)
138{
139 struct machine *machine = machine__new_host();
140 /*
141 * FIXME:
142 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
143 * ask for not using the kcore parsing code, once this one is fixed
144 * to create a map per module.
145 */
146 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
147 machine__delete(machine);
148 machine = NULL;
149 }
150
151 return machine;
152}
153
154static void dsos__purge(struct dsos *dsos)
155{
156 struct dso *pos, *n;
157
158 down_write(&dsos->lock);
159
160 list_for_each_entry_safe(pos, n, &dsos->head, node) {
161 RB_CLEAR_NODE(&pos->rb_node);
162 pos->root = NULL;
163 list_del_init(&pos->node);
164 dso__put(pos);
165 }
166
167 up_write(&dsos->lock);
168}
169
170static void dsos__exit(struct dsos *dsos)
171{
172 dsos__purge(dsos);
173 exit_rwsem(&dsos->lock);
174}
175
176void machine__delete_threads(struct machine *machine)
177{
178 struct rb_node *nd;
179 int i;
180
181 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182 struct threads *threads = &machine->threads[i];
183 down_write(&threads->lock);
184 nd = rb_first_cached(&threads->entries);
185 while (nd) {
186 struct thread *t = rb_entry(nd, struct thread, rb_node);
187
188 nd = rb_next(nd);
189 __machine__remove_thread(machine, t, false);
190 }
191 up_write(&threads->lock);
192 }
193}
194
195void machine__exit(struct machine *machine)
196{
197 int i;
198
199 if (machine == NULL)
200 return;
201
202 machine__destroy_kernel_maps(machine);
203 map_groups__exit(&machine->kmaps);
204 dsos__exit(&machine->dsos);
205 machine__exit_vdso(machine);
206 zfree(&machine->root_dir);
207 zfree(&machine->mmap_name);
208 zfree(&machine->current_tid);
209
210 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211 struct threads *threads = &machine->threads[i];
212 exit_rwsem(&threads->lock);
213 }
214}
215
216void machine__delete(struct machine *machine)
217{
218 if (machine) {
219 machine__exit(machine);
220 free(machine);
221 }
222}
223
224void machines__init(struct machines *machines)
225{
226 machine__init(&machines->host, "", HOST_KERNEL_ID);
227 machines->guests = RB_ROOT_CACHED;
228}
229
230void machines__exit(struct machines *machines)
231{
232 machine__exit(&machines->host);
233 /* XXX exit guest */
234}
235
236struct machine *machines__add(struct machines *machines, pid_t pid,
237 const char *root_dir)
238{
239 struct rb_node **p = &machines->guests.rb_root.rb_node;
240 struct rb_node *parent = NULL;
241 struct machine *pos, *machine = malloc(sizeof(*machine));
242 bool leftmost = true;
243
244 if (machine == NULL)
245 return NULL;
246
247 if (machine__init(machine, root_dir, pid) != 0) {
248 free(machine);
249 return NULL;
250 }
251
252 while (*p != NULL) {
253 parent = *p;
254 pos = rb_entry(parent, struct machine, rb_node);
255 if (pid < pos->pid)
256 p = &(*p)->rb_left;
257 else {
258 p = &(*p)->rb_right;
259 leftmost = false;
260 }
261 }
262
263 rb_link_node(&machine->rb_node, parent, p);
264 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
265
266 return machine;
267}
268
269void machines__set_comm_exec(struct machines *machines, bool comm_exec)
270{
271 struct rb_node *nd;
272
273 machines->host.comm_exec = comm_exec;
274
275 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
276 struct machine *machine = rb_entry(nd, struct machine, rb_node);
277
278 machine->comm_exec = comm_exec;
279 }
280}
281
282struct machine *machines__find(struct machines *machines, pid_t pid)
283{
284 struct rb_node **p = &machines->guests.rb_root.rb_node;
285 struct rb_node *parent = NULL;
286 struct machine *machine;
287 struct machine *default_machine = NULL;
288
289 if (pid == HOST_KERNEL_ID)
290 return &machines->host;
291
292 while (*p != NULL) {
293 parent = *p;
294 machine = rb_entry(parent, struct machine, rb_node);
295 if (pid < machine->pid)
296 p = &(*p)->rb_left;
297 else if (pid > machine->pid)
298 p = &(*p)->rb_right;
299 else
300 return machine;
301 if (!machine->pid)
302 default_machine = machine;
303 }
304
305 return default_machine;
306}
307
308struct machine *machines__findnew(struct machines *machines, pid_t pid)
309{
310 char path[PATH_MAX];
311 const char *root_dir = "";
312 struct machine *machine = machines__find(machines, pid);
313
314 if (machine && (machine->pid == pid))
315 goto out;
316
317 if ((pid != HOST_KERNEL_ID) &&
318 (pid != DEFAULT_GUEST_KERNEL_ID) &&
319 (symbol_conf.guestmount)) {
320 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
321 if (access(path, R_OK)) {
322 static struct strlist *seen;
323
324 if (!seen)
325 seen = strlist__new(NULL, NULL);
326
327 if (!strlist__has_entry(seen, path)) {
328 pr_err("Can't access file %s\n", path);
329 strlist__add(seen, path);
330 }
331 machine = NULL;
332 goto out;
333 }
334 root_dir = path;
335 }
336
337 machine = machines__add(machines, pid, root_dir);
338out:
339 return machine;
340}
341
342void machines__process_guests(struct machines *machines,
343 machine__process_t process, void *data)
344{
345 struct rb_node *nd;
346
347 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
348 struct machine *pos = rb_entry(nd, struct machine, rb_node);
349 process(pos, data);
350 }
351}
352
353void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
354{
355 struct rb_node *node;
356 struct machine *machine;
357
358 machines->host.id_hdr_size = id_hdr_size;
359
360 for (node = rb_first_cached(&machines->guests); node;
361 node = rb_next(node)) {
362 machine = rb_entry(node, struct machine, rb_node);
363 machine->id_hdr_size = id_hdr_size;
364 }
365
366 return;
367}
368
369static void machine__update_thread_pid(struct machine *machine,
370 struct thread *th, pid_t pid)
371{
372 struct thread *leader;
373
374 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
375 return;
376
377 th->pid_ = pid;
378
379 if (th->pid_ == th->tid)
380 return;
381
382 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
383 if (!leader)
384 goto out_err;
385
386 if (!leader->mg)
387 leader->mg = map_groups__new(machine);
388
389 if (!leader->mg)
390 goto out_err;
391
392 if (th->mg == leader->mg)
393 return;
394
395 if (th->mg) {
396 /*
397 * Maps are created from MMAP events which provide the pid and
398 * tid. Consequently there never should be any maps on a thread
399 * with an unknown pid. Just print an error if there are.
400 */
401 if (!map_groups__empty(th->mg))
402 pr_err("Discarding thread maps for %d:%d\n",
403 th->pid_, th->tid);
404 map_groups__put(th->mg);
405 }
406
407 th->mg = map_groups__get(leader->mg);
408out_put:
409 thread__put(leader);
410 return;
411out_err:
412 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
413 goto out_put;
414}
415
416/*
417 * Front-end cache - TID lookups come in blocks,
418 * so most of the time we dont have to look up
419 * the full rbtree:
420 */
421static struct thread*
422__threads__get_last_match(struct threads *threads, struct machine *machine,
423 int pid, int tid)
424{
425 struct thread *th;
426
427 th = threads->last_match;
428 if (th != NULL) {
429 if (th->tid == tid) {
430 machine__update_thread_pid(machine, th, pid);
431 return thread__get(th);
432 }
433
434 threads->last_match = NULL;
435 }
436
437 return NULL;
438}
439
440static struct thread*
441threads__get_last_match(struct threads *threads, struct machine *machine,
442 int pid, int tid)
443{
444 struct thread *th = NULL;
445
446 if (perf_singlethreaded)
447 th = __threads__get_last_match(threads, machine, pid, tid);
448
449 return th;
450}
451
452static void
453__threads__set_last_match(struct threads *threads, struct thread *th)
454{
455 threads->last_match = th;
456}
457
458static void
459threads__set_last_match(struct threads *threads, struct thread *th)
460{
461 if (perf_singlethreaded)
462 __threads__set_last_match(threads, th);
463}
464
465/*
466 * Caller must eventually drop thread->refcnt returned with a successful
467 * lookup/new thread inserted.
468 */
469static struct thread *____machine__findnew_thread(struct machine *machine,
470 struct threads *threads,
471 pid_t pid, pid_t tid,
472 bool create)
473{
474 struct rb_node **p = &threads->entries.rb_root.rb_node;
475 struct rb_node *parent = NULL;
476 struct thread *th;
477 bool leftmost = true;
478
479 th = threads__get_last_match(threads, machine, pid, tid);
480 if (th)
481 return th;
482
483 while (*p != NULL) {
484 parent = *p;
485 th = rb_entry(parent, struct thread, rb_node);
486
487 if (th->tid == tid) {
488 threads__set_last_match(threads, th);
489 machine__update_thread_pid(machine, th, pid);
490 return thread__get(th);
491 }
492
493 if (tid < th->tid)
494 p = &(*p)->rb_left;
495 else {
496 p = &(*p)->rb_right;
497 leftmost = false;
498 }
499 }
500
501 if (!create)
502 return NULL;
503
504 th = thread__new(pid, tid);
505 if (th != NULL) {
506 rb_link_node(&th->rb_node, parent, p);
507 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
508
509 /*
510 * We have to initialize map_groups separately
511 * after rb tree is updated.
512 *
513 * The reason is that we call machine__findnew_thread
514 * within thread__init_map_groups to find the thread
515 * leader and that would screwed the rb tree.
516 */
517 if (thread__init_map_groups(th, machine)) {
518 rb_erase_cached(&th->rb_node, &threads->entries);
519 RB_CLEAR_NODE(&th->rb_node);
520 thread__put(th);
521 return NULL;
522 }
523 /*
524 * It is now in the rbtree, get a ref
525 */
526 thread__get(th);
527 threads__set_last_match(threads, th);
528 ++threads->nr;
529 }
530
531 return th;
532}
533
534struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
535{
536 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
537}
538
539struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
540 pid_t tid)
541{
542 struct threads *threads = machine__threads(machine, tid);
543 struct thread *th;
544
545 down_write(&threads->lock);
546 th = __machine__findnew_thread(machine, pid, tid);
547 up_write(&threads->lock);
548 return th;
549}
550
551struct thread *machine__find_thread(struct machine *machine, pid_t pid,
552 pid_t tid)
553{
554 struct threads *threads = machine__threads(machine, tid);
555 struct thread *th;
556
557 down_read(&threads->lock);
558 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
559 up_read(&threads->lock);
560 return th;
561}
562
563struct comm *machine__thread_exec_comm(struct machine *machine,
564 struct thread *thread)
565{
566 if (machine->comm_exec)
567 return thread__exec_comm(thread);
568 else
569 return thread__comm(thread);
570}
571
572int machine__process_comm_event(struct machine *machine, union perf_event *event,
573 struct perf_sample *sample)
574{
575 struct thread *thread = machine__findnew_thread(machine,
576 event->comm.pid,
577 event->comm.tid);
578 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
579 int err = 0;
580
581 if (exec)
582 machine->comm_exec = true;
583
584 if (dump_trace)
585 perf_event__fprintf_comm(event, stdout);
586
587 if (thread == NULL ||
588 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
589 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
590 err = -1;
591 }
592
593 thread__put(thread);
594
595 return err;
596}
597
598int machine__process_namespaces_event(struct machine *machine __maybe_unused,
599 union perf_event *event,
600 struct perf_sample *sample __maybe_unused)
601{
602 struct thread *thread = machine__findnew_thread(machine,
603 event->namespaces.pid,
604 event->namespaces.tid);
605 int err = 0;
606
607 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
608 "\nWARNING: kernel seems to support more namespaces than perf"
609 " tool.\nTry updating the perf tool..\n\n");
610
611 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
612 "\nWARNING: perf tool seems to support more namespaces than"
613 " the kernel.\nTry updating the kernel..\n\n");
614
615 if (dump_trace)
616 perf_event__fprintf_namespaces(event, stdout);
617
618 if (thread == NULL ||
619 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
620 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
621 err = -1;
622 }
623
624 thread__put(thread);
625
626 return err;
627}
628
629int machine__process_lost_event(struct machine *machine __maybe_unused,
630 union perf_event *event, struct perf_sample *sample __maybe_unused)
631{
632 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
633 event->lost.id, event->lost.lost);
634 return 0;
635}
636
637int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
638 union perf_event *event, struct perf_sample *sample)
639{
640 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
641 sample->id, event->lost_samples.lost);
642 return 0;
643}
644
645static struct dso *machine__findnew_module_dso(struct machine *machine,
646 struct kmod_path *m,
647 const char *filename)
648{
649 struct dso *dso;
650
651 down_write(&machine->dsos.lock);
652
653 dso = __dsos__find(&machine->dsos, m->name, true);
654 if (!dso) {
655 dso = __dsos__addnew(&machine->dsos, m->name);
656 if (dso == NULL)
657 goto out_unlock;
658
659 dso__set_module_info(dso, m, machine);
660 dso__set_long_name(dso, strdup(filename), true);
661 }
662
663 dso__get(dso);
664out_unlock:
665 up_write(&machine->dsos.lock);
666 return dso;
667}
668
669int machine__process_aux_event(struct machine *machine __maybe_unused,
670 union perf_event *event)
671{
672 if (dump_trace)
673 perf_event__fprintf_aux(event, stdout);
674 return 0;
675}
676
677int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
678 union perf_event *event)
679{
680 if (dump_trace)
681 perf_event__fprintf_itrace_start(event, stdout);
682 return 0;
683}
684
685int machine__process_switch_event(struct machine *machine __maybe_unused,
686 union perf_event *event)
687{
688 if (dump_trace)
689 perf_event__fprintf_switch(event, stdout);
690 return 0;
691}
692
693static int machine__process_ksymbol_register(struct machine *machine,
694 union perf_event *event,
695 struct perf_sample *sample __maybe_unused)
696{
697 struct symbol *sym;
698 struct map *map;
699
700 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
701 if (!map) {
702 map = dso__new_map(event->ksymbol_event.name);
703 if (!map)
704 return -ENOMEM;
705
706 map->start = event->ksymbol_event.addr;
707 map->pgoff = map->start;
708 map->end = map->start + event->ksymbol_event.len;
709 map_groups__insert(&machine->kmaps, map);
710 }
711
712 sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len,
713 0, 0, event->ksymbol_event.name);
714 if (!sym)
715 return -ENOMEM;
716 dso__insert_symbol(map->dso, sym);
717 return 0;
718}
719
720static int machine__process_ksymbol_unregister(struct machine *machine,
721 union perf_event *event,
722 struct perf_sample *sample __maybe_unused)
723{
724 struct map *map;
725
726 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
727 if (map)
728 map_groups__remove(&machine->kmaps, map);
729
730 return 0;
731}
732
733int machine__process_ksymbol(struct machine *machine __maybe_unused,
734 union perf_event *event,
735 struct perf_sample *sample)
736{
737 if (dump_trace)
738 perf_event__fprintf_ksymbol(event, stdout);
739
740 if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
741 return machine__process_ksymbol_unregister(machine, event,
742 sample);
743 return machine__process_ksymbol_register(machine, event, sample);
744}
745
746static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
747{
748 const char *dup_filename;
749
750 if (!filename || !dso || !dso->long_name)
751 return;
752 if (dso->long_name[0] != '[')
753 return;
754 if (!strchr(filename, '/'))
755 return;
756
757 dup_filename = strdup(filename);
758 if (!dup_filename)
759 return;
760
761 dso__set_long_name(dso, dup_filename, true);
762}
763
764struct map *machine__findnew_module_map(struct machine *machine, u64 start,
765 const char *filename)
766{
767 struct map *map = NULL;
768 struct dso *dso = NULL;
769 struct kmod_path m;
770
771 if (kmod_path__parse_name(&m, filename))
772 return NULL;
773
774 map = map_groups__find_by_name(&machine->kmaps, m.name);
775 if (map) {
776 /*
777 * If the map's dso is an offline module, give dso__load()
778 * a chance to find the file path of that module by fixing
779 * long_name.
780 */
781 dso__adjust_kmod_long_name(map->dso, filename);
782 goto out;
783 }
784
785 dso = machine__findnew_module_dso(machine, &m, filename);
786 if (dso == NULL)
787 goto out;
788
789 map = map__new2(start, dso);
790 if (map == NULL)
791 goto out;
792
793 map_groups__insert(&machine->kmaps, map);
794
795 /* Put the map here because map_groups__insert alread got it */
796 map__put(map);
797out:
798 /* put the dso here, corresponding to machine__findnew_module_dso */
799 dso__put(dso);
800 free(m.name);
801 return map;
802}
803
804size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
805{
806 struct rb_node *nd;
807 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
808
809 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
810 struct machine *pos = rb_entry(nd, struct machine, rb_node);
811 ret += __dsos__fprintf(&pos->dsos.head, fp);
812 }
813
814 return ret;
815}
816
817size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
818 bool (skip)(struct dso *dso, int parm), int parm)
819{
820 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
821}
822
823size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
824 bool (skip)(struct dso *dso, int parm), int parm)
825{
826 struct rb_node *nd;
827 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
828
829 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
830 struct machine *pos = rb_entry(nd, struct machine, rb_node);
831 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
832 }
833 return ret;
834}
835
836size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
837{
838 int i;
839 size_t printed = 0;
840 struct dso *kdso = machine__kernel_map(machine)->dso;
841
842 if (kdso->has_build_id) {
843 char filename[PATH_MAX];
844 if (dso__build_id_filename(kdso, filename, sizeof(filename),
845 false))
846 printed += fprintf(fp, "[0] %s\n", filename);
847 }
848
849 for (i = 0; i < vmlinux_path__nr_entries; ++i)
850 printed += fprintf(fp, "[%d] %s\n",
851 i + kdso->has_build_id, vmlinux_path[i]);
852
853 return printed;
854}
855
856size_t machine__fprintf(struct machine *machine, FILE *fp)
857{
858 struct rb_node *nd;
859 size_t ret;
860 int i;
861
862 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
863 struct threads *threads = &machine->threads[i];
864
865 down_read(&threads->lock);
866
867 ret = fprintf(fp, "Threads: %u\n", threads->nr);
868
869 for (nd = rb_first_cached(&threads->entries); nd;
870 nd = rb_next(nd)) {
871 struct thread *pos = rb_entry(nd, struct thread, rb_node);
872
873 ret += thread__fprintf(pos, fp);
874 }
875
876 up_read(&threads->lock);
877 }
878 return ret;
879}
880
881static struct dso *machine__get_kernel(struct machine *machine)
882{
883 const char *vmlinux_name = machine->mmap_name;
884 struct dso *kernel;
885
886 if (machine__is_host(machine)) {
887 if (symbol_conf.vmlinux_name)
888 vmlinux_name = symbol_conf.vmlinux_name;
889
890 kernel = machine__findnew_kernel(machine, vmlinux_name,
891 "[kernel]", DSO_TYPE_KERNEL);
892 } else {
893 if (symbol_conf.default_guest_vmlinux_name)
894 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
895
896 kernel = machine__findnew_kernel(machine, vmlinux_name,
897 "[guest.kernel]",
898 DSO_TYPE_GUEST_KERNEL);
899 }
900
901 if (kernel != NULL && (!kernel->has_build_id))
902 dso__read_running_kernel_build_id(kernel, machine);
903
904 return kernel;
905}
906
907struct process_args {
908 u64 start;
909};
910
911void machine__get_kallsyms_filename(struct machine *machine, char *buf,
912 size_t bufsz)
913{
914 if (machine__is_default_guest(machine))
915 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
916 else
917 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
918}
919
920const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
921
922/* Figure out the start address of kernel map from /proc/kallsyms.
923 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
924 * symbol_name if it's not that important.
925 */
926static int machine__get_running_kernel_start(struct machine *machine,
927 const char **symbol_name, u64 *start)
928{
929 char filename[PATH_MAX];
930 int i, err = -1;
931 const char *name;
932 u64 addr = 0;
933
934 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
935
936 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
937 return 0;
938
939 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
940 err = kallsyms__get_function_start(filename, name, &addr);
941 if (!err)
942 break;
943 }
944
945 if (err)
946 return -1;
947
948 if (symbol_name)
949 *symbol_name = name;
950
951 *start = addr;
952 return 0;
953}
954
955int machine__create_extra_kernel_map(struct machine *machine,
956 struct dso *kernel,
957 struct extra_kernel_map *xm)
958{
959 struct kmap *kmap;
960 struct map *map;
961
962 map = map__new2(xm->start, kernel);
963 if (!map)
964 return -1;
965
966 map->end = xm->end;
967 map->pgoff = xm->pgoff;
968
969 kmap = map__kmap(map);
970
971 kmap->kmaps = &machine->kmaps;
972 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
973
974 map_groups__insert(&machine->kmaps, map);
975
976 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
977 kmap->name, map->start, map->end);
978
979 map__put(map);
980
981 return 0;
982}
983
984static u64 find_entry_trampoline(struct dso *dso)
985{
986 /* Duplicates are removed so lookup all aliases */
987 const char *syms[] = {
988 "_entry_trampoline",
989 "__entry_trampoline_start",
990 "entry_SYSCALL_64_trampoline",
991 };
992 struct symbol *sym = dso__first_symbol(dso);
993 unsigned int i;
994
995 for (; sym; sym = dso__next_symbol(sym)) {
996 if (sym->binding != STB_GLOBAL)
997 continue;
998 for (i = 0; i < ARRAY_SIZE(syms); i++) {
999 if (!strcmp(sym->name, syms[i]))
1000 return sym->start;
1001 }
1002 }
1003
1004 return 0;
1005}
1006
1007/*
1008 * These values can be used for kernels that do not have symbols for the entry
1009 * trampolines in kallsyms.
1010 */
1011#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1012#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1013#define X86_64_ENTRY_TRAMPOLINE 0x6000
1014
1015/* Map x86_64 PTI entry trampolines */
1016int machine__map_x86_64_entry_trampolines(struct machine *machine,
1017 struct dso *kernel)
1018{
1019 struct map_groups *kmaps = &machine->kmaps;
1020 struct maps *maps = &kmaps->maps;
1021 int nr_cpus_avail, cpu;
1022 bool found = false;
1023 struct map *map;
1024 u64 pgoff;
1025
1026 /*
1027 * In the vmlinux case, pgoff is a virtual address which must now be
1028 * mapped to a vmlinux offset.
1029 */
1030 for (map = maps__first(maps); map; map = map__next(map)) {
1031 struct kmap *kmap = __map__kmap(map);
1032 struct map *dest_map;
1033
1034 if (!kmap || !is_entry_trampoline(kmap->name))
1035 continue;
1036
1037 dest_map = map_groups__find(kmaps, map->pgoff);
1038 if (dest_map != map)
1039 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1040 found = true;
1041 }
1042 if (found || machine->trampolines_mapped)
1043 return 0;
1044
1045 pgoff = find_entry_trampoline(kernel);
1046 if (!pgoff)
1047 return 0;
1048
1049 nr_cpus_avail = machine__nr_cpus_avail(machine);
1050
1051 /* Add a 1 page map for each CPU's entry trampoline */
1052 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1053 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1054 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1055 X86_64_ENTRY_TRAMPOLINE;
1056 struct extra_kernel_map xm = {
1057 .start = va,
1058 .end = va + page_size,
1059 .pgoff = pgoff,
1060 };
1061
1062 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1063
1064 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1065 return -1;
1066 }
1067
1068 machine->trampolines_mapped = nr_cpus_avail;
1069
1070 return 0;
1071}
1072
1073int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1074 struct dso *kernel __maybe_unused)
1075{
1076 return 0;
1077}
1078
1079static int
1080__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1081{
1082 struct kmap *kmap;
1083 struct map *map;
1084
1085 /* In case of renewal the kernel map, destroy previous one */
1086 machine__destroy_kernel_maps(machine);
1087
1088 machine->vmlinux_map = map__new2(0, kernel);
1089 if (machine->vmlinux_map == NULL)
1090 return -1;
1091
1092 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1093 map = machine__kernel_map(machine);
1094 kmap = map__kmap(map);
1095 if (!kmap)
1096 return -1;
1097
1098 kmap->kmaps = &machine->kmaps;
1099 map_groups__insert(&machine->kmaps, map);
1100
1101 return 0;
1102}
1103
1104void machine__destroy_kernel_maps(struct machine *machine)
1105{
1106 struct kmap *kmap;
1107 struct map *map = machine__kernel_map(machine);
1108
1109 if (map == NULL)
1110 return;
1111
1112 kmap = map__kmap(map);
1113 map_groups__remove(&machine->kmaps, map);
1114 if (kmap && kmap->ref_reloc_sym) {
1115 zfree((char **)&kmap->ref_reloc_sym->name);
1116 zfree(&kmap->ref_reloc_sym);
1117 }
1118
1119 map__zput(machine->vmlinux_map);
1120}
1121
1122int machines__create_guest_kernel_maps(struct machines *machines)
1123{
1124 int ret = 0;
1125 struct dirent **namelist = NULL;
1126 int i, items = 0;
1127 char path[PATH_MAX];
1128 pid_t pid;
1129 char *endp;
1130
1131 if (symbol_conf.default_guest_vmlinux_name ||
1132 symbol_conf.default_guest_modules ||
1133 symbol_conf.default_guest_kallsyms) {
1134 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1135 }
1136
1137 if (symbol_conf.guestmount) {
1138 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1139 if (items <= 0)
1140 return -ENOENT;
1141 for (i = 0; i < items; i++) {
1142 if (!isdigit(namelist[i]->d_name[0])) {
1143 /* Filter out . and .. */
1144 continue;
1145 }
1146 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1147 if ((*endp != '\0') ||
1148 (endp == namelist[i]->d_name) ||
1149 (errno == ERANGE)) {
1150 pr_debug("invalid directory (%s). Skipping.\n",
1151 namelist[i]->d_name);
1152 continue;
1153 }
1154 sprintf(path, "%s/%s/proc/kallsyms",
1155 symbol_conf.guestmount,
1156 namelist[i]->d_name);
1157 ret = access(path, R_OK);
1158 if (ret) {
1159 pr_debug("Can't access file %s\n", path);
1160 goto failure;
1161 }
1162 machines__create_kernel_maps(machines, pid);
1163 }
1164failure:
1165 free(namelist);
1166 }
1167
1168 return ret;
1169}
1170
1171void machines__destroy_kernel_maps(struct machines *machines)
1172{
1173 struct rb_node *next = rb_first_cached(&machines->guests);
1174
1175 machine__destroy_kernel_maps(&machines->host);
1176
1177 while (next) {
1178 struct machine *pos = rb_entry(next, struct machine, rb_node);
1179
1180 next = rb_next(&pos->rb_node);
1181 rb_erase_cached(&pos->rb_node, &machines->guests);
1182 machine__delete(pos);
1183 }
1184}
1185
1186int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1187{
1188 struct machine *machine = machines__findnew(machines, pid);
1189
1190 if (machine == NULL)
1191 return -1;
1192
1193 return machine__create_kernel_maps(machine);
1194}
1195
1196int machine__load_kallsyms(struct machine *machine, const char *filename)
1197{
1198 struct map *map = machine__kernel_map(machine);
1199 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1200
1201 if (ret > 0) {
1202 dso__set_loaded(map->dso);
1203 /*
1204 * Since /proc/kallsyms will have multiple sessions for the
1205 * kernel, with modules between them, fixup the end of all
1206 * sections.
1207 */
1208 map_groups__fixup_end(&machine->kmaps);
1209 }
1210
1211 return ret;
1212}
1213
1214int machine__load_vmlinux_path(struct machine *machine)
1215{
1216 struct map *map = machine__kernel_map(machine);
1217 int ret = dso__load_vmlinux_path(map->dso, map);
1218
1219 if (ret > 0)
1220 dso__set_loaded(map->dso);
1221
1222 return ret;
1223}
1224
1225static char *get_kernel_version(const char *root_dir)
1226{
1227 char version[PATH_MAX];
1228 FILE *file;
1229 char *name, *tmp;
1230 const char *prefix = "Linux version ";
1231
1232 sprintf(version, "%s/proc/version", root_dir);
1233 file = fopen(version, "r");
1234 if (!file)
1235 return NULL;
1236
1237 tmp = fgets(version, sizeof(version), file);
1238 if (!tmp)
1239 *version = '\0';
1240 fclose(file);
1241
1242 name = strstr(version, prefix);
1243 if (!name)
1244 return NULL;
1245 name += strlen(prefix);
1246 tmp = strchr(name, ' ');
1247 if (tmp)
1248 *tmp = '\0';
1249
1250 return strdup(name);
1251}
1252
1253static bool is_kmod_dso(struct dso *dso)
1254{
1255 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1256 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1257}
1258
1259static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1260 struct kmod_path *m)
1261{
1262 char *long_name;
1263 struct map *map = map_groups__find_by_name(mg, m->name);
1264
1265 if (map == NULL)
1266 return 0;
1267
1268 long_name = strdup(path);
1269 if (long_name == NULL)
1270 return -ENOMEM;
1271
1272 dso__set_long_name(map->dso, long_name, true);
1273 dso__kernel_module_get_build_id(map->dso, "");
1274
1275 /*
1276 * Full name could reveal us kmod compression, so
1277 * we need to update the symtab_type if needed.
1278 */
1279 if (m->comp && is_kmod_dso(map->dso)) {
1280 map->dso->symtab_type++;
1281 map->dso->comp = m->comp;
1282 }
1283
1284 return 0;
1285}
1286
1287static int map_groups__set_modules_path_dir(struct map_groups *mg,
1288 const char *dir_name, int depth)
1289{
1290 struct dirent *dent;
1291 DIR *dir = opendir(dir_name);
1292 int ret = 0;
1293
1294 if (!dir) {
1295 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1296 return -1;
1297 }
1298
1299 while ((dent = readdir(dir)) != NULL) {
1300 char path[PATH_MAX];
1301 struct stat st;
1302
1303 /*sshfs might return bad dent->d_type, so we have to stat*/
1304 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1305 if (stat(path, &st))
1306 continue;
1307
1308 if (S_ISDIR(st.st_mode)) {
1309 if (!strcmp(dent->d_name, ".") ||
1310 !strcmp(dent->d_name, ".."))
1311 continue;
1312
1313 /* Do not follow top-level source and build symlinks */
1314 if (depth == 0) {
1315 if (!strcmp(dent->d_name, "source") ||
1316 !strcmp(dent->d_name, "build"))
1317 continue;
1318 }
1319
1320 ret = map_groups__set_modules_path_dir(mg, path,
1321 depth + 1);
1322 if (ret < 0)
1323 goto out;
1324 } else {
1325 struct kmod_path m;
1326
1327 ret = kmod_path__parse_name(&m, dent->d_name);
1328 if (ret)
1329 goto out;
1330
1331 if (m.kmod)
1332 ret = map_groups__set_module_path(mg, path, &m);
1333
1334 free(m.name);
1335
1336 if (ret)
1337 goto out;
1338 }
1339 }
1340
1341out:
1342 closedir(dir);
1343 return ret;
1344}
1345
1346static int machine__set_modules_path(struct machine *machine)
1347{
1348 char *version;
1349 char modules_path[PATH_MAX];
1350
1351 version = get_kernel_version(machine->root_dir);
1352 if (!version)
1353 return -1;
1354
1355 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1356 machine->root_dir, version);
1357 free(version);
1358
1359 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1360}
1361int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1362 const char *name __maybe_unused)
1363{
1364 return 0;
1365}
1366
1367static int machine__create_module(void *arg, const char *name, u64 start,
1368 u64 size)
1369{
1370 struct machine *machine = arg;
1371 struct map *map;
1372
1373 if (arch__fix_module_text_start(&start, name) < 0)
1374 return -1;
1375
1376 map = machine__findnew_module_map(machine, start, name);
1377 if (map == NULL)
1378 return -1;
1379 map->end = start + size;
1380
1381 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1382
1383 return 0;
1384}
1385
1386static int machine__create_modules(struct machine *machine)
1387{
1388 const char *modules;
1389 char path[PATH_MAX];
1390
1391 if (machine__is_default_guest(machine)) {
1392 modules = symbol_conf.default_guest_modules;
1393 } else {
1394 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1395 modules = path;
1396 }
1397
1398 if (symbol__restricted_filename(modules, "/proc/modules"))
1399 return -1;
1400
1401 if (modules__parse(modules, machine, machine__create_module))
1402 return -1;
1403
1404 if (!machine__set_modules_path(machine))
1405 return 0;
1406
1407 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1408
1409 return 0;
1410}
1411
1412static void machine__set_kernel_mmap(struct machine *machine,
1413 u64 start, u64 end)
1414{
1415 machine->vmlinux_map->start = start;
1416 machine->vmlinux_map->end = end;
1417 /*
1418 * Be a bit paranoid here, some perf.data file came with
1419 * a zero sized synthesized MMAP event for the kernel.
1420 */
1421 if (start == 0 && end == 0)
1422 machine->vmlinux_map->end = ~0ULL;
1423}
1424
1425static void machine__update_kernel_mmap(struct machine *machine,
1426 u64 start, u64 end)
1427{
1428 struct map *map = machine__kernel_map(machine);
1429
1430 map__get(map);
1431 map_groups__remove(&machine->kmaps, map);
1432
1433 machine__set_kernel_mmap(machine, start, end);
1434
1435 map_groups__insert(&machine->kmaps, map);
1436 map__put(map);
1437}
1438
1439int machine__create_kernel_maps(struct machine *machine)
1440{
1441 struct dso *kernel = machine__get_kernel(machine);
1442 const char *name = NULL;
1443 struct map *map;
1444 u64 addr = 0;
1445 int ret;
1446
1447 if (kernel == NULL)
1448 return -1;
1449
1450 ret = __machine__create_kernel_maps(machine, kernel);
1451 if (ret < 0)
1452 goto out_put;
1453
1454 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1455 if (machine__is_host(machine))
1456 pr_debug("Problems creating module maps, "
1457 "continuing anyway...\n");
1458 else
1459 pr_debug("Problems creating module maps for guest %d, "
1460 "continuing anyway...\n", machine->pid);
1461 }
1462
1463 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1464 if (name &&
1465 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1466 machine__destroy_kernel_maps(machine);
1467 ret = -1;
1468 goto out_put;
1469 }
1470
1471 /*
1472 * we have a real start address now, so re-order the kmaps
1473 * assume it's the last in the kmaps
1474 */
1475 machine__update_kernel_mmap(machine, addr, ~0ULL);
1476 }
1477
1478 if (machine__create_extra_kernel_maps(machine, kernel))
1479 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1480
1481 /* update end address of the kernel map using adjacent module address */
1482 map = map__next(machine__kernel_map(machine));
1483 if (map)
1484 machine__set_kernel_mmap(machine, addr, map->start);
1485out_put:
1486 dso__put(kernel);
1487 return ret;
1488}
1489
1490static bool machine__uses_kcore(struct machine *machine)
1491{
1492 struct dso *dso;
1493
1494 list_for_each_entry(dso, &machine->dsos.head, node) {
1495 if (dso__is_kcore(dso))
1496 return true;
1497 }
1498
1499 return false;
1500}
1501
1502static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1503 union perf_event *event)
1504{
1505 return machine__is(machine, "x86_64") &&
1506 is_entry_trampoline(event->mmap.filename);
1507}
1508
1509static int machine__process_extra_kernel_map(struct machine *machine,
1510 union perf_event *event)
1511{
1512 struct map *kernel_map = machine__kernel_map(machine);
1513 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1514 struct extra_kernel_map xm = {
1515 .start = event->mmap.start,
1516 .end = event->mmap.start + event->mmap.len,
1517 .pgoff = event->mmap.pgoff,
1518 };
1519
1520 if (kernel == NULL)
1521 return -1;
1522
1523 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1524
1525 return machine__create_extra_kernel_map(machine, kernel, &xm);
1526}
1527
1528static int machine__process_kernel_mmap_event(struct machine *machine,
1529 union perf_event *event)
1530{
1531 struct map *map;
1532 enum dso_kernel_type kernel_type;
1533 bool is_kernel_mmap;
1534
1535 /* If we have maps from kcore then we do not need or want any others */
1536 if (machine__uses_kcore(machine))
1537 return 0;
1538
1539 if (machine__is_host(machine))
1540 kernel_type = DSO_TYPE_KERNEL;
1541 else
1542 kernel_type = DSO_TYPE_GUEST_KERNEL;
1543
1544 is_kernel_mmap = memcmp(event->mmap.filename,
1545 machine->mmap_name,
1546 strlen(machine->mmap_name) - 1) == 0;
1547 if (event->mmap.filename[0] == '/' ||
1548 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1549 map = machine__findnew_module_map(machine, event->mmap.start,
1550 event->mmap.filename);
1551 if (map == NULL)
1552 goto out_problem;
1553
1554 map->end = map->start + event->mmap.len;
1555 } else if (is_kernel_mmap) {
1556 const char *symbol_name = (event->mmap.filename +
1557 strlen(machine->mmap_name));
1558 /*
1559 * Should be there already, from the build-id table in
1560 * the header.
1561 */
1562 struct dso *kernel = NULL;
1563 struct dso *dso;
1564
1565 down_read(&machine->dsos.lock);
1566
1567 list_for_each_entry(dso, &machine->dsos.head, node) {
1568
1569 /*
1570 * The cpumode passed to is_kernel_module is not the
1571 * cpumode of *this* event. If we insist on passing
1572 * correct cpumode to is_kernel_module, we should
1573 * record the cpumode when we adding this dso to the
1574 * linked list.
1575 *
1576 * However we don't really need passing correct
1577 * cpumode. We know the correct cpumode must be kernel
1578 * mode (if not, we should not link it onto kernel_dsos
1579 * list).
1580 *
1581 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1582 * is_kernel_module() treats it as a kernel cpumode.
1583 */
1584
1585 if (!dso->kernel ||
1586 is_kernel_module(dso->long_name,
1587 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1588 continue;
1589
1590
1591 kernel = dso;
1592 break;
1593 }
1594
1595 up_read(&machine->dsos.lock);
1596
1597 if (kernel == NULL)
1598 kernel = machine__findnew_dso(machine, machine->mmap_name);
1599 if (kernel == NULL)
1600 goto out_problem;
1601
1602 kernel->kernel = kernel_type;
1603 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1604 dso__put(kernel);
1605 goto out_problem;
1606 }
1607
1608 if (strstr(kernel->long_name, "vmlinux"))
1609 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1610
1611 machine__update_kernel_mmap(machine, event->mmap.start,
1612 event->mmap.start + event->mmap.len);
1613
1614 /*
1615 * Avoid using a zero address (kptr_restrict) for the ref reloc
1616 * symbol. Effectively having zero here means that at record
1617 * time /proc/sys/kernel/kptr_restrict was non zero.
1618 */
1619 if (event->mmap.pgoff != 0) {
1620 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1621 symbol_name,
1622 event->mmap.pgoff);
1623 }
1624
1625 if (machine__is_default_guest(machine)) {
1626 /*
1627 * preload dso of guest kernel and modules
1628 */
1629 dso__load(kernel, machine__kernel_map(machine));
1630 }
1631 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1632 return machine__process_extra_kernel_map(machine, event);
1633 }
1634 return 0;
1635out_problem:
1636 return -1;
1637}
1638
1639int machine__process_mmap2_event(struct machine *machine,
1640 union perf_event *event,
1641 struct perf_sample *sample)
1642{
1643 struct thread *thread;
1644 struct map *map;
1645 int ret = 0;
1646
1647 if (dump_trace)
1648 perf_event__fprintf_mmap2(event, stdout);
1649
1650 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1651 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1652 ret = machine__process_kernel_mmap_event(machine, event);
1653 if (ret < 0)
1654 goto out_problem;
1655 return 0;
1656 }
1657
1658 thread = machine__findnew_thread(machine, event->mmap2.pid,
1659 event->mmap2.tid);
1660 if (thread == NULL)
1661 goto out_problem;
1662
1663 map = map__new(machine, event->mmap2.start,
1664 event->mmap2.len, event->mmap2.pgoff,
1665 event->mmap2.maj,
1666 event->mmap2.min, event->mmap2.ino,
1667 event->mmap2.ino_generation,
1668 event->mmap2.prot,
1669 event->mmap2.flags,
1670 event->mmap2.filename, thread);
1671
1672 if (map == NULL)
1673 goto out_problem_map;
1674
1675 ret = thread__insert_map(thread, map);
1676 if (ret)
1677 goto out_problem_insert;
1678
1679 thread__put(thread);
1680 map__put(map);
1681 return 0;
1682
1683out_problem_insert:
1684 map__put(map);
1685out_problem_map:
1686 thread__put(thread);
1687out_problem:
1688 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1689 return 0;
1690}
1691
1692int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1693 struct perf_sample *sample)
1694{
1695 struct thread *thread;
1696 struct map *map;
1697 u32 prot = 0;
1698 int ret = 0;
1699
1700 if (dump_trace)
1701 perf_event__fprintf_mmap(event, stdout);
1702
1703 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1704 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1705 ret = machine__process_kernel_mmap_event(machine, event);
1706 if (ret < 0)
1707 goto out_problem;
1708 return 0;
1709 }
1710
1711 thread = machine__findnew_thread(machine, event->mmap.pid,
1712 event->mmap.tid);
1713 if (thread == NULL)
1714 goto out_problem;
1715
1716 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1717 prot = PROT_EXEC;
1718
1719 map = map__new(machine, event->mmap.start,
1720 event->mmap.len, event->mmap.pgoff,
1721 0, 0, 0, 0, prot, 0,
1722 event->mmap.filename,
1723 thread);
1724
1725 if (map == NULL)
1726 goto out_problem_map;
1727
1728 ret = thread__insert_map(thread, map);
1729 if (ret)
1730 goto out_problem_insert;
1731
1732 thread__put(thread);
1733 map__put(map);
1734 return 0;
1735
1736out_problem_insert:
1737 map__put(map);
1738out_problem_map:
1739 thread__put(thread);
1740out_problem:
1741 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1742 return 0;
1743}
1744
1745static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1746{
1747 struct threads *threads = machine__threads(machine, th->tid);
1748
1749 if (threads->last_match == th)
1750 threads__set_last_match(threads, NULL);
1751
1752 BUG_ON(refcount_read(&th->refcnt) == 0);
1753 if (lock)
1754 down_write(&threads->lock);
1755 rb_erase_cached(&th->rb_node, &threads->entries);
1756 RB_CLEAR_NODE(&th->rb_node);
1757 --threads->nr;
1758 /*
1759 * Move it first to the dead_threads list, then drop the reference,
1760 * if this is the last reference, then the thread__delete destructor
1761 * will be called and we will remove it from the dead_threads list.
1762 */
1763 list_add_tail(&th->node, &threads->dead);
1764 if (lock)
1765 up_write(&threads->lock);
1766 thread__put(th);
1767}
1768
1769void machine__remove_thread(struct machine *machine, struct thread *th)
1770{
1771 return __machine__remove_thread(machine, th, true);
1772}
1773
1774int machine__process_fork_event(struct machine *machine, union perf_event *event,
1775 struct perf_sample *sample)
1776{
1777 struct thread *thread = machine__find_thread(machine,
1778 event->fork.pid,
1779 event->fork.tid);
1780 struct thread *parent = machine__findnew_thread(machine,
1781 event->fork.ppid,
1782 event->fork.ptid);
1783 bool do_maps_clone = true;
1784 int err = 0;
1785
1786 if (dump_trace)
1787 perf_event__fprintf_task(event, stdout);
1788
1789 /*
1790 * There may be an existing thread that is not actually the parent,
1791 * either because we are processing events out of order, or because the
1792 * (fork) event that would have removed the thread was lost. Assume the
1793 * latter case and continue on as best we can.
1794 */
1795 if (parent->pid_ != (pid_t)event->fork.ppid) {
1796 dump_printf("removing erroneous parent thread %d/%d\n",
1797 parent->pid_, parent->tid);
1798 machine__remove_thread(machine, parent);
1799 thread__put(parent);
1800 parent = machine__findnew_thread(machine, event->fork.ppid,
1801 event->fork.ptid);
1802 }
1803
1804 /* if a thread currently exists for the thread id remove it */
1805 if (thread != NULL) {
1806 machine__remove_thread(machine, thread);
1807 thread__put(thread);
1808 }
1809
1810 thread = machine__findnew_thread(machine, event->fork.pid,
1811 event->fork.tid);
1812 /*
1813 * When synthesizing FORK events, we are trying to create thread
1814 * objects for the already running tasks on the machine.
1815 *
1816 * Normally, for a kernel FORK event, we want to clone the parent's
1817 * maps because that is what the kernel just did.
1818 *
1819 * But when synthesizing, this should not be done. If we do, we end up
1820 * with overlapping maps as we process the sythesized MMAP2 events that
1821 * get delivered shortly thereafter.
1822 *
1823 * Use the FORK event misc flags in an internal way to signal this
1824 * situation, so we can elide the map clone when appropriate.
1825 */
1826 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1827 do_maps_clone = false;
1828
1829 if (thread == NULL || parent == NULL ||
1830 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1831 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1832 err = -1;
1833 }
1834 thread__put(thread);
1835 thread__put(parent);
1836
1837 return err;
1838}
1839
1840int machine__process_exit_event(struct machine *machine, union perf_event *event,
1841 struct perf_sample *sample __maybe_unused)
1842{
1843 struct thread *thread = machine__find_thread(machine,
1844 event->fork.pid,
1845 event->fork.tid);
1846
1847 if (dump_trace)
1848 perf_event__fprintf_task(event, stdout);
1849
1850 if (thread != NULL) {
1851 thread__exited(thread);
1852 thread__put(thread);
1853 }
1854
1855 return 0;
1856}
1857
1858int machine__process_event(struct machine *machine, union perf_event *event,
1859 struct perf_sample *sample)
1860{
1861 int ret;
1862
1863 switch (event->header.type) {
1864 case PERF_RECORD_COMM:
1865 ret = machine__process_comm_event(machine, event, sample); break;
1866 case PERF_RECORD_MMAP:
1867 ret = machine__process_mmap_event(machine, event, sample); break;
1868 case PERF_RECORD_NAMESPACES:
1869 ret = machine__process_namespaces_event(machine, event, sample); break;
1870 case PERF_RECORD_MMAP2:
1871 ret = machine__process_mmap2_event(machine, event, sample); break;
1872 case PERF_RECORD_FORK:
1873 ret = machine__process_fork_event(machine, event, sample); break;
1874 case PERF_RECORD_EXIT:
1875 ret = machine__process_exit_event(machine, event, sample); break;
1876 case PERF_RECORD_LOST:
1877 ret = machine__process_lost_event(machine, event, sample); break;
1878 case PERF_RECORD_AUX:
1879 ret = machine__process_aux_event(machine, event); break;
1880 case PERF_RECORD_ITRACE_START:
1881 ret = machine__process_itrace_start_event(machine, event); break;
1882 case PERF_RECORD_LOST_SAMPLES:
1883 ret = machine__process_lost_samples_event(machine, event, sample); break;
1884 case PERF_RECORD_SWITCH:
1885 case PERF_RECORD_SWITCH_CPU_WIDE:
1886 ret = machine__process_switch_event(machine, event); break;
1887 case PERF_RECORD_KSYMBOL:
1888 ret = machine__process_ksymbol(machine, event, sample); break;
1889 case PERF_RECORD_BPF_EVENT:
1890 ret = machine__process_bpf_event(machine, event, sample); break;
1891 default:
1892 ret = -1;
1893 break;
1894 }
1895
1896 return ret;
1897}
1898
1899static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1900{
1901 if (!regexec(regex, sym->name, 0, NULL, 0))
1902 return 1;
1903 return 0;
1904}
1905
1906static void ip__resolve_ams(struct thread *thread,
1907 struct addr_map_symbol *ams,
1908 u64 ip)
1909{
1910 struct addr_location al;
1911
1912 memset(&al, 0, sizeof(al));
1913 /*
1914 * We cannot use the header.misc hint to determine whether a
1915 * branch stack address is user, kernel, guest, hypervisor.
1916 * Branches may straddle the kernel/user/hypervisor boundaries.
1917 * Thus, we have to try consecutively until we find a match
1918 * or else, the symbol is unknown
1919 */
1920 thread__find_cpumode_addr_location(thread, ip, &al);
1921
1922 ams->addr = ip;
1923 ams->al_addr = al.addr;
1924 ams->sym = al.sym;
1925 ams->map = al.map;
1926 ams->phys_addr = 0;
1927}
1928
1929static void ip__resolve_data(struct thread *thread,
1930 u8 m, struct addr_map_symbol *ams,
1931 u64 addr, u64 phys_addr)
1932{
1933 struct addr_location al;
1934
1935 memset(&al, 0, sizeof(al));
1936
1937 thread__find_symbol(thread, m, addr, &al);
1938
1939 ams->addr = addr;
1940 ams->al_addr = al.addr;
1941 ams->sym = al.sym;
1942 ams->map = al.map;
1943 ams->phys_addr = phys_addr;
1944}
1945
1946struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1947 struct addr_location *al)
1948{
1949 struct mem_info *mi = mem_info__new();
1950
1951 if (!mi)
1952 return NULL;
1953
1954 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1955 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1956 sample->addr, sample->phys_addr);
1957 mi->data_src.val = sample->data_src;
1958
1959 return mi;
1960}
1961
1962static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1963{
1964 char *srcline = NULL;
1965
1966 if (!map || callchain_param.key == CCKEY_FUNCTION)
1967 return srcline;
1968
1969 srcline = srcline__tree_find(&map->dso->srclines, ip);
1970 if (!srcline) {
1971 bool show_sym = false;
1972 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1973
1974 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1975 sym, show_sym, show_addr, ip);
1976 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1977 }
1978
1979 return srcline;
1980}
1981
1982struct iterations {
1983 int nr_loop_iter;
1984 u64 cycles;
1985};
1986
1987static int add_callchain_ip(struct thread *thread,
1988 struct callchain_cursor *cursor,
1989 struct symbol **parent,
1990 struct addr_location *root_al,
1991 u8 *cpumode,
1992 u64 ip,
1993 bool branch,
1994 struct branch_flags *flags,
1995 struct iterations *iter,
1996 u64 branch_from)
1997{
1998 struct addr_location al;
1999 int nr_loop_iter = 0;
2000 u64 iter_cycles = 0;
2001 const char *srcline = NULL;
2002
2003 al.filtered = 0;
2004 al.sym = NULL;
2005 if (!cpumode) {
2006 thread__find_cpumode_addr_location(thread, ip, &al);
2007 } else {
2008 if (ip >= PERF_CONTEXT_MAX) {
2009 switch (ip) {
2010 case PERF_CONTEXT_HV:
2011 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2012 break;
2013 case PERF_CONTEXT_KERNEL:
2014 *cpumode = PERF_RECORD_MISC_KERNEL;
2015 break;
2016 case PERF_CONTEXT_USER:
2017 *cpumode = PERF_RECORD_MISC_USER;
2018 break;
2019 default:
2020 pr_debug("invalid callchain context: "
2021 "%"PRId64"\n", (s64) ip);
2022 /*
2023 * It seems the callchain is corrupted.
2024 * Discard all.
2025 */
2026 callchain_cursor_reset(cursor);
2027 return 1;
2028 }
2029 return 0;
2030 }
2031 thread__find_symbol(thread, *cpumode, ip, &al);
2032 }
2033
2034 if (al.sym != NULL) {
2035 if (perf_hpp_list.parent && !*parent &&
2036 symbol__match_regex(al.sym, &parent_regex))
2037 *parent = al.sym;
2038 else if (have_ignore_callees && root_al &&
2039 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2040 /* Treat this symbol as the root,
2041 forgetting its callees. */
2042 *root_al = al;
2043 callchain_cursor_reset(cursor);
2044 }
2045 }
2046
2047 if (symbol_conf.hide_unresolved && al.sym == NULL)
2048 return 0;
2049
2050 if (iter) {
2051 nr_loop_iter = iter->nr_loop_iter;
2052 iter_cycles = iter->cycles;
2053 }
2054
2055 srcline = callchain_srcline(al.map, al.sym, al.addr);
2056 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2057 branch, flags, nr_loop_iter,
2058 iter_cycles, branch_from, srcline);
2059}
2060
2061struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2062 struct addr_location *al)
2063{
2064 unsigned int i;
2065 const struct branch_stack *bs = sample->branch_stack;
2066 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2067
2068 if (!bi)
2069 return NULL;
2070
2071 for (i = 0; i < bs->nr; i++) {
2072 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2073 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2074 bi[i].flags = bs->entries[i].flags;
2075 }
2076 return bi;
2077}
2078
2079static void save_iterations(struct iterations *iter,
2080 struct branch_entry *be, int nr)
2081{
2082 int i;
2083
2084 iter->nr_loop_iter++;
2085 iter->cycles = 0;
2086
2087 for (i = 0; i < nr; i++)
2088 iter->cycles += be[i].flags.cycles;
2089}
2090
2091#define CHASHSZ 127
2092#define CHASHBITS 7
2093#define NO_ENTRY 0xff
2094
2095#define PERF_MAX_BRANCH_DEPTH 127
2096
2097/* Remove loops. */
2098static int remove_loops(struct branch_entry *l, int nr,
2099 struct iterations *iter)
2100{
2101 int i, j, off;
2102 unsigned char chash[CHASHSZ];
2103
2104 memset(chash, NO_ENTRY, sizeof(chash));
2105
2106 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2107
2108 for (i = 0; i < nr; i++) {
2109 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2110
2111 /* no collision handling for now */
2112 if (chash[h] == NO_ENTRY) {
2113 chash[h] = i;
2114 } else if (l[chash[h]].from == l[i].from) {
2115 bool is_loop = true;
2116 /* check if it is a real loop */
2117 off = 0;
2118 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2119 if (l[j].from != l[i + off].from) {
2120 is_loop = false;
2121 break;
2122 }
2123 if (is_loop) {
2124 j = nr - (i + off);
2125 if (j > 0) {
2126 save_iterations(iter + i + off,
2127 l + i, off);
2128
2129 memmove(iter + i, iter + i + off,
2130 j * sizeof(*iter));
2131
2132 memmove(l + i, l + i + off,
2133 j * sizeof(*l));
2134 }
2135
2136 nr -= off;
2137 }
2138 }
2139 }
2140 return nr;
2141}
2142
2143/*
2144 * Recolve LBR callstack chain sample
2145 * Return:
2146 * 1 on success get LBR callchain information
2147 * 0 no available LBR callchain information, should try fp
2148 * negative error code on other errors.
2149 */
2150static int resolve_lbr_callchain_sample(struct thread *thread,
2151 struct callchain_cursor *cursor,
2152 struct perf_sample *sample,
2153 struct symbol **parent,
2154 struct addr_location *root_al,
2155 int max_stack)
2156{
2157 struct ip_callchain *chain = sample->callchain;
2158 int chain_nr = min(max_stack, (int)chain->nr), i;
2159 u8 cpumode = PERF_RECORD_MISC_USER;
2160 u64 ip, branch_from = 0;
2161
2162 for (i = 0; i < chain_nr; i++) {
2163 if (chain->ips[i] == PERF_CONTEXT_USER)
2164 break;
2165 }
2166
2167 /* LBR only affects the user callchain */
2168 if (i != chain_nr) {
2169 struct branch_stack *lbr_stack = sample->branch_stack;
2170 int lbr_nr = lbr_stack->nr, j, k;
2171 bool branch;
2172 struct branch_flags *flags;
2173 /*
2174 * LBR callstack can only get user call chain.
2175 * The mix_chain_nr is kernel call chain
2176 * number plus LBR user call chain number.
2177 * i is kernel call chain number,
2178 * 1 is PERF_CONTEXT_USER,
2179 * lbr_nr + 1 is the user call chain number.
2180 * For details, please refer to the comments
2181 * in callchain__printf
2182 */
2183 int mix_chain_nr = i + 1 + lbr_nr + 1;
2184
2185 for (j = 0; j < mix_chain_nr; j++) {
2186 int err;
2187 branch = false;
2188 flags = NULL;
2189
2190 if (callchain_param.order == ORDER_CALLEE) {
2191 if (j < i + 1)
2192 ip = chain->ips[j];
2193 else if (j > i + 1) {
2194 k = j - i - 2;
2195 ip = lbr_stack->entries[k].from;
2196 branch = true;
2197 flags = &lbr_stack->entries[k].flags;
2198 } else {
2199 ip = lbr_stack->entries[0].to;
2200 branch = true;
2201 flags = &lbr_stack->entries[0].flags;
2202 branch_from =
2203 lbr_stack->entries[0].from;
2204 }
2205 } else {
2206 if (j < lbr_nr) {
2207 k = lbr_nr - j - 1;
2208 ip = lbr_stack->entries[k].from;
2209 branch = true;
2210 flags = &lbr_stack->entries[k].flags;
2211 }
2212 else if (j > lbr_nr)
2213 ip = chain->ips[i + 1 - (j - lbr_nr)];
2214 else {
2215 ip = lbr_stack->entries[0].to;
2216 branch = true;
2217 flags = &lbr_stack->entries[0].flags;
2218 branch_from =
2219 lbr_stack->entries[0].from;
2220 }
2221 }
2222
2223 err = add_callchain_ip(thread, cursor, parent,
2224 root_al, &cpumode, ip,
2225 branch, flags, NULL,
2226 branch_from);
2227 if (err)
2228 return (err < 0) ? err : 0;
2229 }
2230 return 1;
2231 }
2232
2233 return 0;
2234}
2235
2236static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2237 struct callchain_cursor *cursor,
2238 struct symbol **parent,
2239 struct addr_location *root_al,
2240 u8 *cpumode, int ent)
2241{
2242 int err = 0;
2243
2244 while (--ent >= 0) {
2245 u64 ip = chain->ips[ent];
2246
2247 if (ip >= PERF_CONTEXT_MAX) {
2248 err = add_callchain_ip(thread, cursor, parent,
2249 root_al, cpumode, ip,
2250 false, NULL, NULL, 0);
2251 break;
2252 }
2253 }
2254 return err;
2255}
2256
2257static int thread__resolve_callchain_sample(struct thread *thread,
2258 struct callchain_cursor *cursor,
2259 struct perf_evsel *evsel,
2260 struct perf_sample *sample,
2261 struct symbol **parent,
2262 struct addr_location *root_al,
2263 int max_stack)
2264{
2265 struct branch_stack *branch = sample->branch_stack;
2266 struct ip_callchain *chain = sample->callchain;
2267 int chain_nr = 0;
2268 u8 cpumode = PERF_RECORD_MISC_USER;
2269 int i, j, err, nr_entries;
2270 int skip_idx = -1;
2271 int first_call = 0;
2272
2273 if (chain)
2274 chain_nr = chain->nr;
2275
2276 if (perf_evsel__has_branch_callstack(evsel)) {
2277 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2278 root_al, max_stack);
2279 if (err)
2280 return (err < 0) ? err : 0;
2281 }
2282
2283 /*
2284 * Based on DWARF debug information, some architectures skip
2285 * a callchain entry saved by the kernel.
2286 */
2287 skip_idx = arch_skip_callchain_idx(thread, chain);
2288
2289 /*
2290 * Add branches to call stack for easier browsing. This gives
2291 * more context for a sample than just the callers.
2292 *
2293 * This uses individual histograms of paths compared to the
2294 * aggregated histograms the normal LBR mode uses.
2295 *
2296 * Limitations for now:
2297 * - No extra filters
2298 * - No annotations (should annotate somehow)
2299 */
2300
2301 if (branch && callchain_param.branch_callstack) {
2302 int nr = min(max_stack, (int)branch->nr);
2303 struct branch_entry be[nr];
2304 struct iterations iter[nr];
2305
2306 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2307 pr_warning("corrupted branch chain. skipping...\n");
2308 goto check_calls;
2309 }
2310
2311 for (i = 0; i < nr; i++) {
2312 if (callchain_param.order == ORDER_CALLEE) {
2313 be[i] = branch->entries[i];
2314
2315 if (chain == NULL)
2316 continue;
2317
2318 /*
2319 * Check for overlap into the callchain.
2320 * The return address is one off compared to
2321 * the branch entry. To adjust for this
2322 * assume the calling instruction is not longer
2323 * than 8 bytes.
2324 */
2325 if (i == skip_idx ||
2326 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2327 first_call++;
2328 else if (be[i].from < chain->ips[first_call] &&
2329 be[i].from >= chain->ips[first_call] - 8)
2330 first_call++;
2331 } else
2332 be[i] = branch->entries[branch->nr - i - 1];
2333 }
2334
2335 memset(iter, 0, sizeof(struct iterations) * nr);
2336 nr = remove_loops(be, nr, iter);
2337
2338 for (i = 0; i < nr; i++) {
2339 err = add_callchain_ip(thread, cursor, parent,
2340 root_al,
2341 NULL, be[i].to,
2342 true, &be[i].flags,
2343 NULL, be[i].from);
2344
2345 if (!err)
2346 err = add_callchain_ip(thread, cursor, parent, root_al,
2347 NULL, be[i].from,
2348 true, &be[i].flags,
2349 &iter[i], 0);
2350 if (err == -EINVAL)
2351 break;
2352 if (err)
2353 return err;
2354 }
2355
2356 if (chain_nr == 0)
2357 return 0;
2358
2359 chain_nr -= nr;
2360 }
2361
2362check_calls:
2363 if (callchain_param.order != ORDER_CALLEE) {
2364 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2365 &cpumode, chain->nr - first_call);
2366 if (err)
2367 return (err < 0) ? err : 0;
2368 }
2369 for (i = first_call, nr_entries = 0;
2370 i < chain_nr && nr_entries < max_stack; i++) {
2371 u64 ip;
2372
2373 if (callchain_param.order == ORDER_CALLEE)
2374 j = i;
2375 else
2376 j = chain->nr - i - 1;
2377
2378#ifdef HAVE_SKIP_CALLCHAIN_IDX
2379 if (j == skip_idx)
2380 continue;
2381#endif
2382 ip = chain->ips[j];
2383 if (ip < PERF_CONTEXT_MAX)
2384 ++nr_entries;
2385 else if (callchain_param.order != ORDER_CALLEE) {
2386 err = find_prev_cpumode(chain, thread, cursor, parent,
2387 root_al, &cpumode, j);
2388 if (err)
2389 return (err < 0) ? err : 0;
2390 continue;
2391 }
2392
2393 err = add_callchain_ip(thread, cursor, parent,
2394 root_al, &cpumode, ip,
2395 false, NULL, NULL, 0);
2396
2397 if (err)
2398 return (err < 0) ? err : 0;
2399 }
2400
2401 return 0;
2402}
2403
2404static int append_inlines(struct callchain_cursor *cursor,
2405 struct map *map, struct symbol *sym, u64 ip)
2406{
2407 struct inline_node *inline_node;
2408 struct inline_list *ilist;
2409 u64 addr;
2410 int ret = 1;
2411
2412 if (!symbol_conf.inline_name || !map || !sym)
2413 return ret;
2414
2415 addr = map__map_ip(map, ip);
2416 addr = map__rip_2objdump(map, addr);
2417
2418 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2419 if (!inline_node) {
2420 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2421 if (!inline_node)
2422 return ret;
2423 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2424 }
2425
2426 list_for_each_entry(ilist, &inline_node->val, list) {
2427 ret = callchain_cursor_append(cursor, ip, map,
2428 ilist->symbol, false,
2429 NULL, 0, 0, 0, ilist->srcline);
2430
2431 if (ret != 0)
2432 return ret;
2433 }
2434
2435 return ret;
2436}
2437
2438static int unwind_entry(struct unwind_entry *entry, void *arg)
2439{
2440 struct callchain_cursor *cursor = arg;
2441 const char *srcline = NULL;
2442 u64 addr = entry->ip;
2443
2444 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2445 return 0;
2446
2447 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2448 return 0;
2449
2450 /*
2451 * Convert entry->ip from a virtual address to an offset in
2452 * its corresponding binary.
2453 */
2454 if (entry->map)
2455 addr = map__map_ip(entry->map, entry->ip);
2456
2457 srcline = callchain_srcline(entry->map, entry->sym, addr);
2458 return callchain_cursor_append(cursor, entry->ip,
2459 entry->map, entry->sym,
2460 false, NULL, 0, 0, 0, srcline);
2461}
2462
2463static int thread__resolve_callchain_unwind(struct thread *thread,
2464 struct callchain_cursor *cursor,
2465 struct perf_evsel *evsel,
2466 struct perf_sample *sample,
2467 int max_stack)
2468{
2469 /* Can we do dwarf post unwind? */
2470 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2471 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2472 return 0;
2473
2474 /* Bail out if nothing was captured. */
2475 if ((!sample->user_regs.regs) ||
2476 (!sample->user_stack.size))
2477 return 0;
2478
2479 return unwind__get_entries(unwind_entry, cursor,
2480 thread, sample, max_stack);
2481}
2482
2483int thread__resolve_callchain(struct thread *thread,
2484 struct callchain_cursor *cursor,
2485 struct perf_evsel *evsel,
2486 struct perf_sample *sample,
2487 struct symbol **parent,
2488 struct addr_location *root_al,
2489 int max_stack)
2490{
2491 int ret = 0;
2492
2493 callchain_cursor_reset(cursor);
2494
2495 if (callchain_param.order == ORDER_CALLEE) {
2496 ret = thread__resolve_callchain_sample(thread, cursor,
2497 evsel, sample,
2498 parent, root_al,
2499 max_stack);
2500 if (ret)
2501 return ret;
2502 ret = thread__resolve_callchain_unwind(thread, cursor,
2503 evsel, sample,
2504 max_stack);
2505 } else {
2506 ret = thread__resolve_callchain_unwind(thread, cursor,
2507 evsel, sample,
2508 max_stack);
2509 if (ret)
2510 return ret;
2511 ret = thread__resolve_callchain_sample(thread, cursor,
2512 evsel, sample,
2513 parent, root_al,
2514 max_stack);
2515 }
2516
2517 return ret;
2518}
2519
2520int machine__for_each_thread(struct machine *machine,
2521 int (*fn)(struct thread *thread, void *p),
2522 void *priv)
2523{
2524 struct threads *threads;
2525 struct rb_node *nd;
2526 struct thread *thread;
2527 int rc = 0;
2528 int i;
2529
2530 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2531 threads = &machine->threads[i];
2532 for (nd = rb_first_cached(&threads->entries); nd;
2533 nd = rb_next(nd)) {
2534 thread = rb_entry(nd, struct thread, rb_node);
2535 rc = fn(thread, priv);
2536 if (rc != 0)
2537 return rc;
2538 }
2539
2540 list_for_each_entry(thread, &threads->dead, node) {
2541 rc = fn(thread, priv);
2542 if (rc != 0)
2543 return rc;
2544 }
2545 }
2546 return rc;
2547}
2548
2549int machines__for_each_thread(struct machines *machines,
2550 int (*fn)(struct thread *thread, void *p),
2551 void *priv)
2552{
2553 struct rb_node *nd;
2554 int rc = 0;
2555
2556 rc = machine__for_each_thread(&machines->host, fn, priv);
2557 if (rc != 0)
2558 return rc;
2559
2560 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2561 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2562
2563 rc = machine__for_each_thread(machine, fn, priv);
2564 if (rc != 0)
2565 return rc;
2566 }
2567 return rc;
2568}
2569
2570int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2571 struct target *target, struct thread_map *threads,
2572 perf_event__handler_t process, bool data_mmap,
2573 unsigned int nr_threads_synthesize)
2574{
2575 if (target__has_task(target))
2576 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2577 else if (target__has_cpu(target))
2578 return perf_event__synthesize_threads(tool, process,
2579 machine, data_mmap,
2580 nr_threads_synthesize);
2581 /* command specified */
2582 return 0;
2583}
2584
2585pid_t machine__get_current_tid(struct machine *machine, int cpu)
2586{
2587 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2588 return -1;
2589
2590 return machine->current_tid[cpu];
2591}
2592
2593int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2594 pid_t tid)
2595{
2596 struct thread *thread;
2597
2598 if (cpu < 0)
2599 return -EINVAL;
2600
2601 if (!machine->current_tid) {
2602 int i;
2603
2604 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2605 if (!machine->current_tid)
2606 return -ENOMEM;
2607 for (i = 0; i < MAX_NR_CPUS; i++)
2608 machine->current_tid[i] = -1;
2609 }
2610
2611 if (cpu >= MAX_NR_CPUS) {
2612 pr_err("Requested CPU %d too large. ", cpu);
2613 pr_err("Consider raising MAX_NR_CPUS\n");
2614 return -EINVAL;
2615 }
2616
2617 machine->current_tid[cpu] = tid;
2618
2619 thread = machine__findnew_thread(machine, pid, tid);
2620 if (!thread)
2621 return -ENOMEM;
2622
2623 thread->cpu = cpu;
2624 thread__put(thread);
2625
2626 return 0;
2627}
2628
2629/*
2630 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2631 * normalized arch is needed.
2632 */
2633bool machine__is(struct machine *machine, const char *arch)
2634{
2635 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2636}
2637
2638int machine__nr_cpus_avail(struct machine *machine)
2639{
2640 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2641}
2642
2643int machine__get_kernel_start(struct machine *machine)
2644{
2645 struct map *map = machine__kernel_map(machine);
2646 int err = 0;
2647
2648 /*
2649 * The only addresses above 2^63 are kernel addresses of a 64-bit
2650 * kernel. Note that addresses are unsigned so that on a 32-bit system
2651 * all addresses including kernel addresses are less than 2^32. In
2652 * that case (32-bit system), if the kernel mapping is unknown, all
2653 * addresses will be assumed to be in user space - see
2654 * machine__kernel_ip().
2655 */
2656 machine->kernel_start = 1ULL << 63;
2657 if (map) {
2658 err = map__load(map);
2659 /*
2660 * On x86_64, PTI entry trampolines are less than the
2661 * start of kernel text, but still above 2^63. So leave
2662 * kernel_start = 1ULL << 63 for x86_64.
2663 */
2664 if (!err && !machine__is(machine, "x86_64"))
2665 machine->kernel_start = map->start;
2666 }
2667 return err;
2668}
2669
2670u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2671{
2672 u8 addr_cpumode = cpumode;
2673 bool kernel_ip;
2674
2675 if (!machine->single_address_space)
2676 goto out;
2677
2678 kernel_ip = machine__kernel_ip(machine, addr);
2679 switch (cpumode) {
2680 case PERF_RECORD_MISC_KERNEL:
2681 case PERF_RECORD_MISC_USER:
2682 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2683 PERF_RECORD_MISC_USER;
2684 break;
2685 case PERF_RECORD_MISC_GUEST_KERNEL:
2686 case PERF_RECORD_MISC_GUEST_USER:
2687 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2688 PERF_RECORD_MISC_GUEST_USER;
2689 break;
2690 default:
2691 break;
2692 }
2693out:
2694 return addr_cpumode;
2695}
2696
2697struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2698{
2699 return dsos__findnew(&machine->dsos, filename);
2700}
2701
2702char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2703{
2704 struct machine *machine = vmachine;
2705 struct map *map;
2706 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2707
2708 if (sym == NULL)
2709 return NULL;
2710
2711 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2712 *addrp = map->unmap_ip(map, sym->start);
2713 return sym->name;
2714}