Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/skbuff.h>
97#include <linux/bpf.h>
98#include <linux/bpf_trace.h>
99#include <net/net_namespace.h>
100#include <net/sock.h>
101#include <net/busy_poll.h>
102#include <linux/rtnetlink.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/dst_metadata.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/inetdevice.h>
135#include <linux/cpu_rmap.h>
136#include <linux/static_key.h>
137#include <linux/hashtable.h>
138#include <linux/vmalloc.h>
139#include <linux/if_macvlan.h>
140#include <linux/errqueue.h>
141#include <linux/hrtimer.h>
142#include <linux/netfilter_ingress.h>
143#include <linux/crash_dump.h>
144#include <linux/sctp.h>
145#include <net/udp_tunnel.h>
146#include <linux/net_namespace.h>
147#include <linux/indirect_call_wrapper.h>
148#include <net/devlink.h>
149
150#include "net-sysfs.h"
151
152#define MAX_GRO_SKBS 8
153
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157static DEFINE_SPINLOCK(ptype_lock);
158static DEFINE_SPINLOCK(offload_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161static struct list_head offload_base __read_mostly;
162
163static int netif_rx_internal(struct sk_buff *skb);
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171/*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190DEFINE_RWLOCK(dev_base_lock);
191EXPORT_SYMBOL(dev_base_lock);
192
193static DEFINE_MUTEX(ifalias_mutex);
194
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
198static unsigned int napi_gen_id = NR_CPUS;
199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201static seqcount_t devnet_rename_seq;
202
203static inline void dev_base_seq_inc(struct net *net)
204{
205 while (++net->dev_base_seq == 0)
206 ;
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214}
215
216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217{
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219}
220
221static inline void rps_lock(struct softnet_data *sd)
222{
223#ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225#endif
226}
227
228static inline void rps_unlock(struct softnet_data *sd)
229{
230#ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232#endif
233}
234
235/* Device list insertion */
236static void list_netdevice(struct net_device *dev)
237{
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250}
251
252/* Device list removal
253 * caller must respect a RCU grace period before freeing/reusing dev
254 */
255static void unlist_netdevice(struct net_device *dev)
256{
257 ASSERT_RTNL();
258
259 /* Unlink dev from the device chain */
260 write_lock_bh(&dev_base_lock);
261 list_del_rcu(&dev->dev_list);
262 hlist_del_rcu(&dev->name_hlist);
263 hlist_del_rcu(&dev->index_hlist);
264 write_unlock_bh(&dev_base_lock);
265
266 dev_base_seq_inc(dev_net(dev));
267}
268
269/*
270 * Our notifier list
271 */
272
273static RAW_NOTIFIER_HEAD(netdev_chain);
274
275/*
276 * Device drivers call our routines to queue packets here. We empty the
277 * queue in the local softnet handler.
278 */
279
280DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283#ifdef CONFIG_LOCKDEP
284/*
285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286 * according to dev->type
287 */
288static const unsigned short netdev_lock_type[] = {
289 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304
305static const char *const netdev_lock_name[] = {
306 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321
322static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324
325static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326{
327 int i;
328
329 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330 if (netdev_lock_type[i] == dev_type)
331 return i;
332 /* the last key is used by default */
333 return ARRAY_SIZE(netdev_lock_type) - 1;
334}
335
336static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337 unsigned short dev_type)
338{
339 int i;
340
341 i = netdev_lock_pos(dev_type);
342 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343 netdev_lock_name[i]);
344}
345
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347{
348 int i;
349
350 i = netdev_lock_pos(dev->type);
351 lockdep_set_class_and_name(&dev->addr_list_lock,
352 &netdev_addr_lock_key[i],
353 netdev_lock_name[i]);
354}
355#else
356static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357 unsigned short dev_type)
358{
359}
360static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361{
362}
363#endif
364
365/*******************************************************************************
366 *
367 * Protocol management and registration routines
368 *
369 *******************************************************************************/
370
371
372/*
373 * Add a protocol ID to the list. Now that the input handler is
374 * smarter we can dispense with all the messy stuff that used to be
375 * here.
376 *
377 * BEWARE!!! Protocol handlers, mangling input packets,
378 * MUST BE last in hash buckets and checking protocol handlers
379 * MUST start from promiscuous ptype_all chain in net_bh.
380 * It is true now, do not change it.
381 * Explanation follows: if protocol handler, mangling packet, will
382 * be the first on list, it is not able to sense, that packet
383 * is cloned and should be copied-on-write, so that it will
384 * change it and subsequent readers will get broken packet.
385 * --ANK (980803)
386 */
387
388static inline struct list_head *ptype_head(const struct packet_type *pt)
389{
390 if (pt->type == htons(ETH_P_ALL))
391 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392 else
393 return pt->dev ? &pt->dev->ptype_specific :
394 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395}
396
397/**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410void dev_add_pack(struct packet_type *pt)
411{
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417}
418EXPORT_SYMBOL(dev_add_pack);
419
420/**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433void __dev_remove_pack(struct packet_type *pt)
434{
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448out:
449 spin_unlock(&ptype_lock);
450}
451EXPORT_SYMBOL(__dev_remove_pack);
452
453/**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465void dev_remove_pack(struct packet_type *pt)
466{
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470}
471EXPORT_SYMBOL(dev_remove_pack);
472
473
474/**
475 * dev_add_offload - register offload handlers
476 * @po: protocol offload declaration
477 *
478 * Add protocol offload handlers to the networking stack. The passed
479 * &proto_offload is linked into kernel lists and may not be freed until
480 * it has been removed from the kernel lists.
481 *
482 * This call does not sleep therefore it can not
483 * guarantee all CPU's that are in middle of receiving packets
484 * will see the new offload handlers (until the next received packet).
485 */
486void dev_add_offload(struct packet_offload *po)
487{
488 struct packet_offload *elem;
489
490 spin_lock(&offload_lock);
491 list_for_each_entry(elem, &offload_base, list) {
492 if (po->priority < elem->priority)
493 break;
494 }
495 list_add_rcu(&po->list, elem->list.prev);
496 spin_unlock(&offload_lock);
497}
498EXPORT_SYMBOL(dev_add_offload);
499
500/**
501 * __dev_remove_offload - remove offload handler
502 * @po: packet offload declaration
503 *
504 * Remove a protocol offload handler that was previously added to the
505 * kernel offload handlers by dev_add_offload(). The passed &offload_type
506 * is removed from the kernel lists and can be freed or reused once this
507 * function returns.
508 *
509 * The packet type might still be in use by receivers
510 * and must not be freed until after all the CPU's have gone
511 * through a quiescent state.
512 */
513static void __dev_remove_offload(struct packet_offload *po)
514{
515 struct list_head *head = &offload_base;
516 struct packet_offload *po1;
517
518 spin_lock(&offload_lock);
519
520 list_for_each_entry(po1, head, list) {
521 if (po == po1) {
522 list_del_rcu(&po->list);
523 goto out;
524 }
525 }
526
527 pr_warn("dev_remove_offload: %p not found\n", po);
528out:
529 spin_unlock(&offload_lock);
530}
531
532/**
533 * dev_remove_offload - remove packet offload handler
534 * @po: packet offload declaration
535 *
536 * Remove a packet offload handler that was previously added to the kernel
537 * offload handlers by dev_add_offload(). The passed &offload_type is
538 * removed from the kernel lists and can be freed or reused once this
539 * function returns.
540 *
541 * This call sleeps to guarantee that no CPU is looking at the packet
542 * type after return.
543 */
544void dev_remove_offload(struct packet_offload *po)
545{
546 __dev_remove_offload(po);
547
548 synchronize_net();
549}
550EXPORT_SYMBOL(dev_remove_offload);
551
552/******************************************************************************
553 *
554 * Device Boot-time Settings Routines
555 *
556 ******************************************************************************/
557
558/* Boot time configuration table */
559static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561/**
562 * netdev_boot_setup_add - add new setup entry
563 * @name: name of the device
564 * @map: configured settings for the device
565 *
566 * Adds new setup entry to the dev_boot_setup list. The function
567 * returns 0 on error and 1 on success. This is a generic routine to
568 * all netdevices.
569 */
570static int netdev_boot_setup_add(char *name, struct ifmap *map)
571{
572 struct netdev_boot_setup *s;
573 int i;
574
575 s = dev_boot_setup;
576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 memset(s[i].name, 0, sizeof(s[i].name));
579 strlcpy(s[i].name, name, IFNAMSIZ);
580 memcpy(&s[i].map, map, sizeof(s[i].map));
581 break;
582 }
583 }
584
585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586}
587
588/**
589 * netdev_boot_setup_check - check boot time settings
590 * @dev: the netdevice
591 *
592 * Check boot time settings for the device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found, 1 if they are.
596 */
597int netdev_boot_setup_check(struct net_device *dev)
598{
599 struct netdev_boot_setup *s = dev_boot_setup;
600 int i;
601
602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 !strcmp(dev->name, s[i].name)) {
605 dev->irq = s[i].map.irq;
606 dev->base_addr = s[i].map.base_addr;
607 dev->mem_start = s[i].map.mem_start;
608 dev->mem_end = s[i].map.mem_end;
609 return 1;
610 }
611 }
612 return 0;
613}
614EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617/**
618 * netdev_boot_base - get address from boot time settings
619 * @prefix: prefix for network device
620 * @unit: id for network device
621 *
622 * Check boot time settings for the base address of device.
623 * The found settings are set for the device to be used
624 * later in the device probing.
625 * Returns 0 if no settings found.
626 */
627unsigned long netdev_boot_base(const char *prefix, int unit)
628{
629 const struct netdev_boot_setup *s = dev_boot_setup;
630 char name[IFNAMSIZ];
631 int i;
632
633 sprintf(name, "%s%d", prefix, unit);
634
635 /*
636 * If device already registered then return base of 1
637 * to indicate not to probe for this interface
638 */
639 if (__dev_get_by_name(&init_net, name))
640 return 1;
641
642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 if (!strcmp(name, s[i].name))
644 return s[i].map.base_addr;
645 return 0;
646}
647
648/*
649 * Saves at boot time configured settings for any netdevice.
650 */
651int __init netdev_boot_setup(char *str)
652{
653 int ints[5];
654 struct ifmap map;
655
656 str = get_options(str, ARRAY_SIZE(ints), ints);
657 if (!str || !*str)
658 return 0;
659
660 /* Save settings */
661 memset(&map, 0, sizeof(map));
662 if (ints[0] > 0)
663 map.irq = ints[1];
664 if (ints[0] > 1)
665 map.base_addr = ints[2];
666 if (ints[0] > 2)
667 map.mem_start = ints[3];
668 if (ints[0] > 3)
669 map.mem_end = ints[4];
670
671 /* Add new entry to the list */
672 return netdev_boot_setup_add(str, &map);
673}
674
675__setup("netdev=", netdev_boot_setup);
676
677/*******************************************************************************
678 *
679 * Device Interface Subroutines
680 *
681 *******************************************************************************/
682
683/**
684 * dev_get_iflink - get 'iflink' value of a interface
685 * @dev: targeted interface
686 *
687 * Indicates the ifindex the interface is linked to.
688 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 */
690
691int dev_get_iflink(const struct net_device *dev)
692{
693 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694 return dev->netdev_ops->ndo_get_iflink(dev);
695
696 return dev->ifindex;
697}
698EXPORT_SYMBOL(dev_get_iflink);
699
700/**
701 * dev_fill_metadata_dst - Retrieve tunnel egress information.
702 * @dev: targeted interface
703 * @skb: The packet.
704 *
705 * For better visibility of tunnel traffic OVS needs to retrieve
706 * egress tunnel information for a packet. Following API allows
707 * user to get this info.
708 */
709int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710{
711 struct ip_tunnel_info *info;
712
713 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
714 return -EINVAL;
715
716 info = skb_tunnel_info_unclone(skb);
717 if (!info)
718 return -ENOMEM;
719 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720 return -EINVAL;
721
722 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723}
724EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
726/**
727 * __dev_get_by_name - find a device by its name
728 * @net: the applicable net namespace
729 * @name: name to find
730 *
731 * Find an interface by name. Must be called under RTNL semaphore
732 * or @dev_base_lock. If the name is found a pointer to the device
733 * is returned. If the name is not found then %NULL is returned. The
734 * reference counters are not incremented so the caller must be
735 * careful with locks.
736 */
737
738struct net_device *__dev_get_by_name(struct net *net, const char *name)
739{
740 struct net_device *dev;
741 struct hlist_head *head = dev_name_hash(net, name);
742
743 hlist_for_each_entry(dev, head, name_hlist)
744 if (!strncmp(dev->name, name, IFNAMSIZ))
745 return dev;
746
747 return NULL;
748}
749EXPORT_SYMBOL(__dev_get_by_name);
750
751/**
752 * dev_get_by_name_rcu - find a device by its name
753 * @net: the applicable net namespace
754 * @name: name to find
755 *
756 * Find an interface by name.
757 * If the name is found a pointer to the device is returned.
758 * If the name is not found then %NULL is returned.
759 * The reference counters are not incremented so the caller must be
760 * careful with locks. The caller must hold RCU lock.
761 */
762
763struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764{
765 struct net_device *dev;
766 struct hlist_head *head = dev_name_hash(net, name);
767
768 hlist_for_each_entry_rcu(dev, head, name_hlist)
769 if (!strncmp(dev->name, name, IFNAMSIZ))
770 return dev;
771
772 return NULL;
773}
774EXPORT_SYMBOL(dev_get_by_name_rcu);
775
776/**
777 * dev_get_by_name - find a device by its name
778 * @net: the applicable net namespace
779 * @name: name to find
780 *
781 * Find an interface by name. This can be called from any
782 * context and does its own locking. The returned handle has
783 * the usage count incremented and the caller must use dev_put() to
784 * release it when it is no longer needed. %NULL is returned if no
785 * matching device is found.
786 */
787
788struct net_device *dev_get_by_name(struct net *net, const char *name)
789{
790 struct net_device *dev;
791
792 rcu_read_lock();
793 dev = dev_get_by_name_rcu(net, name);
794 if (dev)
795 dev_hold(dev);
796 rcu_read_unlock();
797 return dev;
798}
799EXPORT_SYMBOL(dev_get_by_name);
800
801/**
802 * __dev_get_by_index - find a device by its ifindex
803 * @net: the applicable net namespace
804 * @ifindex: index of device
805 *
806 * Search for an interface by index. Returns %NULL if the device
807 * is not found or a pointer to the device. The device has not
808 * had its reference counter increased so the caller must be careful
809 * about locking. The caller must hold either the RTNL semaphore
810 * or @dev_base_lock.
811 */
812
813struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814{
815 struct net_device *dev;
816 struct hlist_head *head = dev_index_hash(net, ifindex);
817
818 hlist_for_each_entry(dev, head, index_hlist)
819 if (dev->ifindex == ifindex)
820 return dev;
821
822 return NULL;
823}
824EXPORT_SYMBOL(__dev_get_by_index);
825
826/**
827 * dev_get_by_index_rcu - find a device by its ifindex
828 * @net: the applicable net namespace
829 * @ifindex: index of device
830 *
831 * Search for an interface by index. Returns %NULL if the device
832 * is not found or a pointer to the device. The device has not
833 * had its reference counter increased so the caller must be careful
834 * about locking. The caller must hold RCU lock.
835 */
836
837struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838{
839 struct net_device *dev;
840 struct hlist_head *head = dev_index_hash(net, ifindex);
841
842 hlist_for_each_entry_rcu(dev, head, index_hlist)
843 if (dev->ifindex == ifindex)
844 return dev;
845
846 return NULL;
847}
848EXPORT_SYMBOL(dev_get_by_index_rcu);
849
850
851/**
852 * dev_get_by_index - find a device by its ifindex
853 * @net: the applicable net namespace
854 * @ifindex: index of device
855 *
856 * Search for an interface by index. Returns NULL if the device
857 * is not found or a pointer to the device. The device returned has
858 * had a reference added and the pointer is safe until the user calls
859 * dev_put to indicate they have finished with it.
860 */
861
862struct net_device *dev_get_by_index(struct net *net, int ifindex)
863{
864 struct net_device *dev;
865
866 rcu_read_lock();
867 dev = dev_get_by_index_rcu(net, ifindex);
868 if (dev)
869 dev_hold(dev);
870 rcu_read_unlock();
871 return dev;
872}
873EXPORT_SYMBOL(dev_get_by_index);
874
875/**
876 * dev_get_by_napi_id - find a device by napi_id
877 * @napi_id: ID of the NAPI struct
878 *
879 * Search for an interface by NAPI ID. Returns %NULL if the device
880 * is not found or a pointer to the device. The device has not had
881 * its reference counter increased so the caller must be careful
882 * about locking. The caller must hold RCU lock.
883 */
884
885struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886{
887 struct napi_struct *napi;
888
889 WARN_ON_ONCE(!rcu_read_lock_held());
890
891 if (napi_id < MIN_NAPI_ID)
892 return NULL;
893
894 napi = napi_by_id(napi_id);
895
896 return napi ? napi->dev : NULL;
897}
898EXPORT_SYMBOL(dev_get_by_napi_id);
899
900/**
901 * netdev_get_name - get a netdevice name, knowing its ifindex.
902 * @net: network namespace
903 * @name: a pointer to the buffer where the name will be stored.
904 * @ifindex: the ifindex of the interface to get the name from.
905 *
906 * The use of raw_seqcount_begin() and cond_resched() before
907 * retrying is required as we want to give the writers a chance
908 * to complete when CONFIG_PREEMPT is not set.
909 */
910int netdev_get_name(struct net *net, char *name, int ifindex)
911{
912 struct net_device *dev;
913 unsigned int seq;
914
915retry:
916 seq = raw_seqcount_begin(&devnet_rename_seq);
917 rcu_read_lock();
918 dev = dev_get_by_index_rcu(net, ifindex);
919 if (!dev) {
920 rcu_read_unlock();
921 return -ENODEV;
922 }
923
924 strcpy(name, dev->name);
925 rcu_read_unlock();
926 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927 cond_resched();
928 goto retry;
929 }
930
931 return 0;
932}
933
934/**
935 * dev_getbyhwaddr_rcu - find a device by its hardware address
936 * @net: the applicable net namespace
937 * @type: media type of device
938 * @ha: hardware address
939 *
940 * Search for an interface by MAC address. Returns NULL if the device
941 * is not found or a pointer to the device.
942 * The caller must hold RCU or RTNL.
943 * The returned device has not had its ref count increased
944 * and the caller must therefore be careful about locking
945 *
946 */
947
948struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949 const char *ha)
950{
951 struct net_device *dev;
952
953 for_each_netdev_rcu(net, dev)
954 if (dev->type == type &&
955 !memcmp(dev->dev_addr, ha, dev->addr_len))
956 return dev;
957
958 return NULL;
959}
960EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961
962struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963{
964 struct net_device *dev;
965
966 ASSERT_RTNL();
967 for_each_netdev(net, dev)
968 if (dev->type == type)
969 return dev;
970
971 return NULL;
972}
973EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
975struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976{
977 struct net_device *dev, *ret = NULL;
978
979 rcu_read_lock();
980 for_each_netdev_rcu(net, dev)
981 if (dev->type == type) {
982 dev_hold(dev);
983 ret = dev;
984 break;
985 }
986 rcu_read_unlock();
987 return ret;
988}
989EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991/**
992 * __dev_get_by_flags - find any device with given flags
993 * @net: the applicable net namespace
994 * @if_flags: IFF_* values
995 * @mask: bitmask of bits in if_flags to check
996 *
997 * Search for any interface with the given flags. Returns NULL if a device
998 * is not found or a pointer to the device. Must be called inside
999 * rtnl_lock(), and result refcount is unchanged.
1000 */
1001
1002struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 unsigned short mask)
1004{
1005 struct net_device *dev, *ret;
1006
1007 ASSERT_RTNL();
1008
1009 ret = NULL;
1010 for_each_netdev(net, dev) {
1011 if (((dev->flags ^ if_flags) & mask) == 0) {
1012 ret = dev;
1013 break;
1014 }
1015 }
1016 return ret;
1017}
1018EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020/**
1021 * dev_valid_name - check if name is okay for network device
1022 * @name: name string
1023 *
1024 * Network device names need to be valid file names to
1025 * to allow sysfs to work. We also disallow any kind of
1026 * whitespace.
1027 */
1028bool dev_valid_name(const char *name)
1029{
1030 if (*name == '\0')
1031 return false;
1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 return false;
1034 if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 return false;
1036
1037 while (*name) {
1038 if (*name == '/' || *name == ':' || isspace(*name))
1039 return false;
1040 name++;
1041 }
1042 return true;
1043}
1044EXPORT_SYMBOL(dev_valid_name);
1045
1046/**
1047 * __dev_alloc_name - allocate a name for a device
1048 * @net: network namespace to allocate the device name in
1049 * @name: name format string
1050 * @buf: scratch buffer and result name string
1051 *
1052 * Passed a format string - eg "lt%d" it will try and find a suitable
1053 * id. It scans list of devices to build up a free map, then chooses
1054 * the first empty slot. The caller must hold the dev_base or rtnl lock
1055 * while allocating the name and adding the device in order to avoid
1056 * duplicates.
1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 * Returns the number of the unit assigned or a negative errno code.
1059 */
1060
1061static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062{
1063 int i = 0;
1064 const char *p;
1065 const int max_netdevices = 8*PAGE_SIZE;
1066 unsigned long *inuse;
1067 struct net_device *d;
1068
1069 if (!dev_valid_name(name))
1070 return -EINVAL;
1071
1072 p = strchr(name, '%');
1073 if (p) {
1074 /*
1075 * Verify the string as this thing may have come from
1076 * the user. There must be either one "%d" and no other "%"
1077 * characters.
1078 */
1079 if (p[1] != 'd' || strchr(p + 2, '%'))
1080 return -EINVAL;
1081
1082 /* Use one page as a bit array of possible slots */
1083 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084 if (!inuse)
1085 return -ENOMEM;
1086
1087 for_each_netdev(net, d) {
1088 if (!sscanf(d->name, name, &i))
1089 continue;
1090 if (i < 0 || i >= max_netdevices)
1091 continue;
1092
1093 /* avoid cases where sscanf is not exact inverse of printf */
1094 snprintf(buf, IFNAMSIZ, name, i);
1095 if (!strncmp(buf, d->name, IFNAMSIZ))
1096 set_bit(i, inuse);
1097 }
1098
1099 i = find_first_zero_bit(inuse, max_netdevices);
1100 free_page((unsigned long) inuse);
1101 }
1102
1103 snprintf(buf, IFNAMSIZ, name, i);
1104 if (!__dev_get_by_name(net, buf))
1105 return i;
1106
1107 /* It is possible to run out of possible slots
1108 * when the name is long and there isn't enough space left
1109 * for the digits, or if all bits are used.
1110 */
1111 return -ENFILE;
1112}
1113
1114static int dev_alloc_name_ns(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117{
1118 char buf[IFNAMSIZ];
1119 int ret;
1120
1121 BUG_ON(!net);
1122 ret = __dev_alloc_name(net, name, buf);
1123 if (ret >= 0)
1124 strlcpy(dev->name, buf, IFNAMSIZ);
1125 return ret;
1126}
1127
1128/**
1129 * dev_alloc_name - allocate a name for a device
1130 * @dev: device
1131 * @name: name format string
1132 *
1133 * Passed a format string - eg "lt%d" it will try and find a suitable
1134 * id. It scans list of devices to build up a free map, then chooses
1135 * the first empty slot. The caller must hold the dev_base or rtnl lock
1136 * while allocating the name and adding the device in order to avoid
1137 * duplicates.
1138 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139 * Returns the number of the unit assigned or a negative errno code.
1140 */
1141
1142int dev_alloc_name(struct net_device *dev, const char *name)
1143{
1144 return dev_alloc_name_ns(dev_net(dev), dev, name);
1145}
1146EXPORT_SYMBOL(dev_alloc_name);
1147
1148int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 const char *name)
1150{
1151 BUG_ON(!net);
1152
1153 if (!dev_valid_name(name))
1154 return -EINVAL;
1155
1156 if (strchr(name, '%'))
1157 return dev_alloc_name_ns(net, dev, name);
1158 else if (__dev_get_by_name(net, name))
1159 return -EEXIST;
1160 else if (dev->name != name)
1161 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163 return 0;
1164}
1165EXPORT_SYMBOL(dev_get_valid_name);
1166
1167/**
1168 * dev_change_name - change name of a device
1169 * @dev: device
1170 * @newname: name (or format string) must be at least IFNAMSIZ
1171 *
1172 * Change name of a device, can pass format strings "eth%d".
1173 * for wildcarding.
1174 */
1175int dev_change_name(struct net_device *dev, const char *newname)
1176{
1177 unsigned char old_assign_type;
1178 char oldname[IFNAMSIZ];
1179 int err = 0;
1180 int ret;
1181 struct net *net;
1182
1183 ASSERT_RTNL();
1184 BUG_ON(!dev_net(dev));
1185
1186 net = dev_net(dev);
1187
1188 /* Some auto-enslaved devices e.g. failover slaves are
1189 * special, as userspace might rename the device after
1190 * the interface had been brought up and running since
1191 * the point kernel initiated auto-enslavement. Allow
1192 * live name change even when these slave devices are
1193 * up and running.
1194 *
1195 * Typically, users of these auto-enslaving devices
1196 * don't actually care about slave name change, as
1197 * they are supposed to operate on master interface
1198 * directly.
1199 */
1200 if (dev->flags & IFF_UP &&
1201 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1202 return -EBUSY;
1203
1204 write_seqcount_begin(&devnet_rename_seq);
1205
1206 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1207 write_seqcount_end(&devnet_rename_seq);
1208 return 0;
1209 }
1210
1211 memcpy(oldname, dev->name, IFNAMSIZ);
1212
1213 err = dev_get_valid_name(net, dev, newname);
1214 if (err < 0) {
1215 write_seqcount_end(&devnet_rename_seq);
1216 return err;
1217 }
1218
1219 if (oldname[0] && !strchr(oldname, '%'))
1220 netdev_info(dev, "renamed from %s\n", oldname);
1221
1222 old_assign_type = dev->name_assign_type;
1223 dev->name_assign_type = NET_NAME_RENAMED;
1224
1225rollback:
1226 ret = device_rename(&dev->dev, dev->name);
1227 if (ret) {
1228 memcpy(dev->name, oldname, IFNAMSIZ);
1229 dev->name_assign_type = old_assign_type;
1230 write_seqcount_end(&devnet_rename_seq);
1231 return ret;
1232 }
1233
1234 write_seqcount_end(&devnet_rename_seq);
1235
1236 netdev_adjacent_rename_links(dev, oldname);
1237
1238 write_lock_bh(&dev_base_lock);
1239 hlist_del_rcu(&dev->name_hlist);
1240 write_unlock_bh(&dev_base_lock);
1241
1242 synchronize_rcu();
1243
1244 write_lock_bh(&dev_base_lock);
1245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1246 write_unlock_bh(&dev_base_lock);
1247
1248 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1249 ret = notifier_to_errno(ret);
1250
1251 if (ret) {
1252 /* err >= 0 after dev_alloc_name() or stores the first errno */
1253 if (err >= 0) {
1254 err = ret;
1255 write_seqcount_begin(&devnet_rename_seq);
1256 memcpy(dev->name, oldname, IFNAMSIZ);
1257 memcpy(oldname, newname, IFNAMSIZ);
1258 dev->name_assign_type = old_assign_type;
1259 old_assign_type = NET_NAME_RENAMED;
1260 goto rollback;
1261 } else {
1262 pr_err("%s: name change rollback failed: %d\n",
1263 dev->name, ret);
1264 }
1265 }
1266
1267 return err;
1268}
1269
1270/**
1271 * dev_set_alias - change ifalias of a device
1272 * @dev: device
1273 * @alias: name up to IFALIASZ
1274 * @len: limit of bytes to copy from info
1275 *
1276 * Set ifalias for a device,
1277 */
1278int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1279{
1280 struct dev_ifalias *new_alias = NULL;
1281
1282 if (len >= IFALIASZ)
1283 return -EINVAL;
1284
1285 if (len) {
1286 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1287 if (!new_alias)
1288 return -ENOMEM;
1289
1290 memcpy(new_alias->ifalias, alias, len);
1291 new_alias->ifalias[len] = 0;
1292 }
1293
1294 mutex_lock(&ifalias_mutex);
1295 rcu_swap_protected(dev->ifalias, new_alias,
1296 mutex_is_locked(&ifalias_mutex));
1297 mutex_unlock(&ifalias_mutex);
1298
1299 if (new_alias)
1300 kfree_rcu(new_alias, rcuhead);
1301
1302 return len;
1303}
1304EXPORT_SYMBOL(dev_set_alias);
1305
1306/**
1307 * dev_get_alias - get ifalias of a device
1308 * @dev: device
1309 * @name: buffer to store name of ifalias
1310 * @len: size of buffer
1311 *
1312 * get ifalias for a device. Caller must make sure dev cannot go
1313 * away, e.g. rcu read lock or own a reference count to device.
1314 */
1315int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1316{
1317 const struct dev_ifalias *alias;
1318 int ret = 0;
1319
1320 rcu_read_lock();
1321 alias = rcu_dereference(dev->ifalias);
1322 if (alias)
1323 ret = snprintf(name, len, "%s", alias->ifalias);
1324 rcu_read_unlock();
1325
1326 return ret;
1327}
1328
1329/**
1330 * netdev_features_change - device changes features
1331 * @dev: device to cause notification
1332 *
1333 * Called to indicate a device has changed features.
1334 */
1335void netdev_features_change(struct net_device *dev)
1336{
1337 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1338}
1339EXPORT_SYMBOL(netdev_features_change);
1340
1341/**
1342 * netdev_state_change - device changes state
1343 * @dev: device to cause notification
1344 *
1345 * Called to indicate a device has changed state. This function calls
1346 * the notifier chains for netdev_chain and sends a NEWLINK message
1347 * to the routing socket.
1348 */
1349void netdev_state_change(struct net_device *dev)
1350{
1351 if (dev->flags & IFF_UP) {
1352 struct netdev_notifier_change_info change_info = {
1353 .info.dev = dev,
1354 };
1355
1356 call_netdevice_notifiers_info(NETDEV_CHANGE,
1357 &change_info.info);
1358 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1359 }
1360}
1361EXPORT_SYMBOL(netdev_state_change);
1362
1363/**
1364 * netdev_notify_peers - notify network peers about existence of @dev
1365 * @dev: network device
1366 *
1367 * Generate traffic such that interested network peers are aware of
1368 * @dev, such as by generating a gratuitous ARP. This may be used when
1369 * a device wants to inform the rest of the network about some sort of
1370 * reconfiguration such as a failover event or virtual machine
1371 * migration.
1372 */
1373void netdev_notify_peers(struct net_device *dev)
1374{
1375 rtnl_lock();
1376 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1377 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1378 rtnl_unlock();
1379}
1380EXPORT_SYMBOL(netdev_notify_peers);
1381
1382static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383{
1384 const struct net_device_ops *ops = dev->netdev_ops;
1385 int ret;
1386
1387 ASSERT_RTNL();
1388
1389 if (!netif_device_present(dev))
1390 return -ENODEV;
1391
1392 /* Block netpoll from trying to do any rx path servicing.
1393 * If we don't do this there is a chance ndo_poll_controller
1394 * or ndo_poll may be running while we open the device
1395 */
1396 netpoll_poll_disable(dev);
1397
1398 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1399 ret = notifier_to_errno(ret);
1400 if (ret)
1401 return ret;
1402
1403 set_bit(__LINK_STATE_START, &dev->state);
1404
1405 if (ops->ndo_validate_addr)
1406 ret = ops->ndo_validate_addr(dev);
1407
1408 if (!ret && ops->ndo_open)
1409 ret = ops->ndo_open(dev);
1410
1411 netpoll_poll_enable(dev);
1412
1413 if (ret)
1414 clear_bit(__LINK_STATE_START, &dev->state);
1415 else {
1416 dev->flags |= IFF_UP;
1417 dev_set_rx_mode(dev);
1418 dev_activate(dev);
1419 add_device_randomness(dev->dev_addr, dev->addr_len);
1420 }
1421
1422 return ret;
1423}
1424
1425/**
1426 * dev_open - prepare an interface for use.
1427 * @dev: device to open
1428 * @extack: netlink extended ack
1429 *
1430 * Takes a device from down to up state. The device's private open
1431 * function is invoked and then the multicast lists are loaded. Finally
1432 * the device is moved into the up state and a %NETDEV_UP message is
1433 * sent to the netdev notifier chain.
1434 *
1435 * Calling this function on an active interface is a nop. On a failure
1436 * a negative errno code is returned.
1437 */
1438int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1439{
1440 int ret;
1441
1442 if (dev->flags & IFF_UP)
1443 return 0;
1444
1445 ret = __dev_open(dev, extack);
1446 if (ret < 0)
1447 return ret;
1448
1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 call_netdevice_notifiers(NETDEV_UP, dev);
1451
1452 return ret;
1453}
1454EXPORT_SYMBOL(dev_open);
1455
1456static void __dev_close_many(struct list_head *head)
1457{
1458 struct net_device *dev;
1459
1460 ASSERT_RTNL();
1461 might_sleep();
1462
1463 list_for_each_entry(dev, head, close_list) {
1464 /* Temporarily disable netpoll until the interface is down */
1465 netpoll_poll_disable(dev);
1466
1467 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1468
1469 clear_bit(__LINK_STATE_START, &dev->state);
1470
1471 /* Synchronize to scheduled poll. We cannot touch poll list, it
1472 * can be even on different cpu. So just clear netif_running().
1473 *
1474 * dev->stop() will invoke napi_disable() on all of it's
1475 * napi_struct instances on this device.
1476 */
1477 smp_mb__after_atomic(); /* Commit netif_running(). */
1478 }
1479
1480 dev_deactivate_many(head);
1481
1482 list_for_each_entry(dev, head, close_list) {
1483 const struct net_device_ops *ops = dev->netdev_ops;
1484
1485 /*
1486 * Call the device specific close. This cannot fail.
1487 * Only if device is UP
1488 *
1489 * We allow it to be called even after a DETACH hot-plug
1490 * event.
1491 */
1492 if (ops->ndo_stop)
1493 ops->ndo_stop(dev);
1494
1495 dev->flags &= ~IFF_UP;
1496 netpoll_poll_enable(dev);
1497 }
1498}
1499
1500static void __dev_close(struct net_device *dev)
1501{
1502 LIST_HEAD(single);
1503
1504 list_add(&dev->close_list, &single);
1505 __dev_close_many(&single);
1506 list_del(&single);
1507}
1508
1509void dev_close_many(struct list_head *head, bool unlink)
1510{
1511 struct net_device *dev, *tmp;
1512
1513 /* Remove the devices that don't need to be closed */
1514 list_for_each_entry_safe(dev, tmp, head, close_list)
1515 if (!(dev->flags & IFF_UP))
1516 list_del_init(&dev->close_list);
1517
1518 __dev_close_many(head);
1519
1520 list_for_each_entry_safe(dev, tmp, head, close_list) {
1521 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1522 call_netdevice_notifiers(NETDEV_DOWN, dev);
1523 if (unlink)
1524 list_del_init(&dev->close_list);
1525 }
1526}
1527EXPORT_SYMBOL(dev_close_many);
1528
1529/**
1530 * dev_close - shutdown an interface.
1531 * @dev: device to shutdown
1532 *
1533 * This function moves an active device into down state. A
1534 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1535 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1536 * chain.
1537 */
1538void dev_close(struct net_device *dev)
1539{
1540 if (dev->flags & IFF_UP) {
1541 LIST_HEAD(single);
1542
1543 list_add(&dev->close_list, &single);
1544 dev_close_many(&single, true);
1545 list_del(&single);
1546 }
1547}
1548EXPORT_SYMBOL(dev_close);
1549
1550
1551/**
1552 * dev_disable_lro - disable Large Receive Offload on a device
1553 * @dev: device
1554 *
1555 * Disable Large Receive Offload (LRO) on a net device. Must be
1556 * called under RTNL. This is needed if received packets may be
1557 * forwarded to another interface.
1558 */
1559void dev_disable_lro(struct net_device *dev)
1560{
1561 struct net_device *lower_dev;
1562 struct list_head *iter;
1563
1564 dev->wanted_features &= ~NETIF_F_LRO;
1565 netdev_update_features(dev);
1566
1567 if (unlikely(dev->features & NETIF_F_LRO))
1568 netdev_WARN(dev, "failed to disable LRO!\n");
1569
1570 netdev_for_each_lower_dev(dev, lower_dev, iter)
1571 dev_disable_lro(lower_dev);
1572}
1573EXPORT_SYMBOL(dev_disable_lro);
1574
1575/**
1576 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1577 * @dev: device
1578 *
1579 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1580 * called under RTNL. This is needed if Generic XDP is installed on
1581 * the device.
1582 */
1583static void dev_disable_gro_hw(struct net_device *dev)
1584{
1585 dev->wanted_features &= ~NETIF_F_GRO_HW;
1586 netdev_update_features(dev);
1587
1588 if (unlikely(dev->features & NETIF_F_GRO_HW))
1589 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1590}
1591
1592const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1593{
1594#define N(val) \
1595 case NETDEV_##val: \
1596 return "NETDEV_" __stringify(val);
1597 switch (cmd) {
1598 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1599 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1600 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1601 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1602 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1603 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1604 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1605 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1606 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1607 N(PRE_CHANGEADDR)
1608 }
1609#undef N
1610 return "UNKNOWN_NETDEV_EVENT";
1611}
1612EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1613
1614static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1615 struct net_device *dev)
1616{
1617 struct netdev_notifier_info info = {
1618 .dev = dev,
1619 };
1620
1621 return nb->notifier_call(nb, val, &info);
1622}
1623
1624static int dev_boot_phase = 1;
1625
1626/**
1627 * register_netdevice_notifier - register a network notifier block
1628 * @nb: notifier
1629 *
1630 * Register a notifier to be called when network device events occur.
1631 * The notifier passed is linked into the kernel structures and must
1632 * not be reused until it has been unregistered. A negative errno code
1633 * is returned on a failure.
1634 *
1635 * When registered all registration and up events are replayed
1636 * to the new notifier to allow device to have a race free
1637 * view of the network device list.
1638 */
1639
1640int register_netdevice_notifier(struct notifier_block *nb)
1641{
1642 struct net_device *dev;
1643 struct net_device *last;
1644 struct net *net;
1645 int err;
1646
1647 /* Close race with setup_net() and cleanup_net() */
1648 down_write(&pernet_ops_rwsem);
1649 rtnl_lock();
1650 err = raw_notifier_chain_register(&netdev_chain, nb);
1651 if (err)
1652 goto unlock;
1653 if (dev_boot_phase)
1654 goto unlock;
1655 for_each_net(net) {
1656 for_each_netdev(net, dev) {
1657 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1658 err = notifier_to_errno(err);
1659 if (err)
1660 goto rollback;
1661
1662 if (!(dev->flags & IFF_UP))
1663 continue;
1664
1665 call_netdevice_notifier(nb, NETDEV_UP, dev);
1666 }
1667 }
1668
1669unlock:
1670 rtnl_unlock();
1671 up_write(&pernet_ops_rwsem);
1672 return err;
1673
1674rollback:
1675 last = dev;
1676 for_each_net(net) {
1677 for_each_netdev(net, dev) {
1678 if (dev == last)
1679 goto outroll;
1680
1681 if (dev->flags & IFF_UP) {
1682 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1683 dev);
1684 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1685 }
1686 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1687 }
1688 }
1689
1690outroll:
1691 raw_notifier_chain_unregister(&netdev_chain, nb);
1692 goto unlock;
1693}
1694EXPORT_SYMBOL(register_netdevice_notifier);
1695
1696/**
1697 * unregister_netdevice_notifier - unregister a network notifier block
1698 * @nb: notifier
1699 *
1700 * Unregister a notifier previously registered by
1701 * register_netdevice_notifier(). The notifier is unlinked into the
1702 * kernel structures and may then be reused. A negative errno code
1703 * is returned on a failure.
1704 *
1705 * After unregistering unregister and down device events are synthesized
1706 * for all devices on the device list to the removed notifier to remove
1707 * the need for special case cleanup code.
1708 */
1709
1710int unregister_netdevice_notifier(struct notifier_block *nb)
1711{
1712 struct net_device *dev;
1713 struct net *net;
1714 int err;
1715
1716 /* Close race with setup_net() and cleanup_net() */
1717 down_write(&pernet_ops_rwsem);
1718 rtnl_lock();
1719 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1720 if (err)
1721 goto unlock;
1722
1723 for_each_net(net) {
1724 for_each_netdev(net, dev) {
1725 if (dev->flags & IFF_UP) {
1726 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 dev);
1728 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 }
1730 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732 }
1733unlock:
1734 rtnl_unlock();
1735 up_write(&pernet_ops_rwsem);
1736 return err;
1737}
1738EXPORT_SYMBOL(unregister_netdevice_notifier);
1739
1740/**
1741 * call_netdevice_notifiers_info - call all network notifier blocks
1742 * @val: value passed unmodified to notifier function
1743 * @info: notifier information data
1744 *
1745 * Call all network notifier blocks. Parameters and return value
1746 * are as for raw_notifier_call_chain().
1747 */
1748
1749static int call_netdevice_notifiers_info(unsigned long val,
1750 struct netdev_notifier_info *info)
1751{
1752 ASSERT_RTNL();
1753 return raw_notifier_call_chain(&netdev_chain, val, info);
1754}
1755
1756static int call_netdevice_notifiers_extack(unsigned long val,
1757 struct net_device *dev,
1758 struct netlink_ext_ack *extack)
1759{
1760 struct netdev_notifier_info info = {
1761 .dev = dev,
1762 .extack = extack,
1763 };
1764
1765 return call_netdevice_notifiers_info(val, &info);
1766}
1767
1768/**
1769 * call_netdevice_notifiers - call all network notifier blocks
1770 * @val: value passed unmodified to notifier function
1771 * @dev: net_device pointer passed unmodified to notifier function
1772 *
1773 * Call all network notifier blocks. Parameters and return value
1774 * are as for raw_notifier_call_chain().
1775 */
1776
1777int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1778{
1779 return call_netdevice_notifiers_extack(val, dev, NULL);
1780}
1781EXPORT_SYMBOL(call_netdevice_notifiers);
1782
1783/**
1784 * call_netdevice_notifiers_mtu - call all network notifier blocks
1785 * @val: value passed unmodified to notifier function
1786 * @dev: net_device pointer passed unmodified to notifier function
1787 * @arg: additional u32 argument passed to the notifier function
1788 *
1789 * Call all network notifier blocks. Parameters and return value
1790 * are as for raw_notifier_call_chain().
1791 */
1792static int call_netdevice_notifiers_mtu(unsigned long val,
1793 struct net_device *dev, u32 arg)
1794{
1795 struct netdev_notifier_info_ext info = {
1796 .info.dev = dev,
1797 .ext.mtu = arg,
1798 };
1799
1800 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1801
1802 return call_netdevice_notifiers_info(val, &info.info);
1803}
1804
1805#ifdef CONFIG_NET_INGRESS
1806static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1807
1808void net_inc_ingress_queue(void)
1809{
1810 static_branch_inc(&ingress_needed_key);
1811}
1812EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1813
1814void net_dec_ingress_queue(void)
1815{
1816 static_branch_dec(&ingress_needed_key);
1817}
1818EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1819#endif
1820
1821#ifdef CONFIG_NET_EGRESS
1822static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1823
1824void net_inc_egress_queue(void)
1825{
1826 static_branch_inc(&egress_needed_key);
1827}
1828EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1829
1830void net_dec_egress_queue(void)
1831{
1832 static_branch_dec(&egress_needed_key);
1833}
1834EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1835#endif
1836
1837static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1838#ifdef CONFIG_JUMP_LABEL
1839static atomic_t netstamp_needed_deferred;
1840static atomic_t netstamp_wanted;
1841static void netstamp_clear(struct work_struct *work)
1842{
1843 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1844 int wanted;
1845
1846 wanted = atomic_add_return(deferred, &netstamp_wanted);
1847 if (wanted > 0)
1848 static_branch_enable(&netstamp_needed_key);
1849 else
1850 static_branch_disable(&netstamp_needed_key);
1851}
1852static DECLARE_WORK(netstamp_work, netstamp_clear);
1853#endif
1854
1855void net_enable_timestamp(void)
1856{
1857#ifdef CONFIG_JUMP_LABEL
1858 int wanted;
1859
1860 while (1) {
1861 wanted = atomic_read(&netstamp_wanted);
1862 if (wanted <= 0)
1863 break;
1864 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1865 return;
1866 }
1867 atomic_inc(&netstamp_needed_deferred);
1868 schedule_work(&netstamp_work);
1869#else
1870 static_branch_inc(&netstamp_needed_key);
1871#endif
1872}
1873EXPORT_SYMBOL(net_enable_timestamp);
1874
1875void net_disable_timestamp(void)
1876{
1877#ifdef CONFIG_JUMP_LABEL
1878 int wanted;
1879
1880 while (1) {
1881 wanted = atomic_read(&netstamp_wanted);
1882 if (wanted <= 1)
1883 break;
1884 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1885 return;
1886 }
1887 atomic_dec(&netstamp_needed_deferred);
1888 schedule_work(&netstamp_work);
1889#else
1890 static_branch_dec(&netstamp_needed_key);
1891#endif
1892}
1893EXPORT_SYMBOL(net_disable_timestamp);
1894
1895static inline void net_timestamp_set(struct sk_buff *skb)
1896{
1897 skb->tstamp = 0;
1898 if (static_branch_unlikely(&netstamp_needed_key))
1899 __net_timestamp(skb);
1900}
1901
1902#define net_timestamp_check(COND, SKB) \
1903 if (static_branch_unlikely(&netstamp_needed_key)) { \
1904 if ((COND) && !(SKB)->tstamp) \
1905 __net_timestamp(SKB); \
1906 } \
1907
1908bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1909{
1910 unsigned int len;
1911
1912 if (!(dev->flags & IFF_UP))
1913 return false;
1914
1915 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1916 if (skb->len <= len)
1917 return true;
1918
1919 /* if TSO is enabled, we don't care about the length as the packet
1920 * could be forwarded without being segmented before
1921 */
1922 if (skb_is_gso(skb))
1923 return true;
1924
1925 return false;
1926}
1927EXPORT_SYMBOL_GPL(is_skb_forwardable);
1928
1929int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1930{
1931 int ret = ____dev_forward_skb(dev, skb);
1932
1933 if (likely(!ret)) {
1934 skb->protocol = eth_type_trans(skb, dev);
1935 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1936 }
1937
1938 return ret;
1939}
1940EXPORT_SYMBOL_GPL(__dev_forward_skb);
1941
1942/**
1943 * dev_forward_skb - loopback an skb to another netif
1944 *
1945 * @dev: destination network device
1946 * @skb: buffer to forward
1947 *
1948 * return values:
1949 * NET_RX_SUCCESS (no congestion)
1950 * NET_RX_DROP (packet was dropped, but freed)
1951 *
1952 * dev_forward_skb can be used for injecting an skb from the
1953 * start_xmit function of one device into the receive queue
1954 * of another device.
1955 *
1956 * The receiving device may be in another namespace, so
1957 * we have to clear all information in the skb that could
1958 * impact namespace isolation.
1959 */
1960int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1961{
1962 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1963}
1964EXPORT_SYMBOL_GPL(dev_forward_skb);
1965
1966static inline int deliver_skb(struct sk_buff *skb,
1967 struct packet_type *pt_prev,
1968 struct net_device *orig_dev)
1969{
1970 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1971 return -ENOMEM;
1972 refcount_inc(&skb->users);
1973 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1974}
1975
1976static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1977 struct packet_type **pt,
1978 struct net_device *orig_dev,
1979 __be16 type,
1980 struct list_head *ptype_list)
1981{
1982 struct packet_type *ptype, *pt_prev = *pt;
1983
1984 list_for_each_entry_rcu(ptype, ptype_list, list) {
1985 if (ptype->type != type)
1986 continue;
1987 if (pt_prev)
1988 deliver_skb(skb, pt_prev, orig_dev);
1989 pt_prev = ptype;
1990 }
1991 *pt = pt_prev;
1992}
1993
1994static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1995{
1996 if (!ptype->af_packet_priv || !skb->sk)
1997 return false;
1998
1999 if (ptype->id_match)
2000 return ptype->id_match(ptype, skb->sk);
2001 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2002 return true;
2003
2004 return false;
2005}
2006
2007/**
2008 * dev_nit_active - return true if any network interface taps are in use
2009 *
2010 * @dev: network device to check for the presence of taps
2011 */
2012bool dev_nit_active(struct net_device *dev)
2013{
2014 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2015}
2016EXPORT_SYMBOL_GPL(dev_nit_active);
2017
2018/*
2019 * Support routine. Sends outgoing frames to any network
2020 * taps currently in use.
2021 */
2022
2023void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2024{
2025 struct packet_type *ptype;
2026 struct sk_buff *skb2 = NULL;
2027 struct packet_type *pt_prev = NULL;
2028 struct list_head *ptype_list = &ptype_all;
2029
2030 rcu_read_lock();
2031again:
2032 list_for_each_entry_rcu(ptype, ptype_list, list) {
2033 if (ptype->ignore_outgoing)
2034 continue;
2035
2036 /* Never send packets back to the socket
2037 * they originated from - MvS (miquels@drinkel.ow.org)
2038 */
2039 if (skb_loop_sk(ptype, skb))
2040 continue;
2041
2042 if (pt_prev) {
2043 deliver_skb(skb2, pt_prev, skb->dev);
2044 pt_prev = ptype;
2045 continue;
2046 }
2047
2048 /* need to clone skb, done only once */
2049 skb2 = skb_clone(skb, GFP_ATOMIC);
2050 if (!skb2)
2051 goto out_unlock;
2052
2053 net_timestamp_set(skb2);
2054
2055 /* skb->nh should be correctly
2056 * set by sender, so that the second statement is
2057 * just protection against buggy protocols.
2058 */
2059 skb_reset_mac_header(skb2);
2060
2061 if (skb_network_header(skb2) < skb2->data ||
2062 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2063 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2064 ntohs(skb2->protocol),
2065 dev->name);
2066 skb_reset_network_header(skb2);
2067 }
2068
2069 skb2->transport_header = skb2->network_header;
2070 skb2->pkt_type = PACKET_OUTGOING;
2071 pt_prev = ptype;
2072 }
2073
2074 if (ptype_list == &ptype_all) {
2075 ptype_list = &dev->ptype_all;
2076 goto again;
2077 }
2078out_unlock:
2079 if (pt_prev) {
2080 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2081 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2082 else
2083 kfree_skb(skb2);
2084 }
2085 rcu_read_unlock();
2086}
2087EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2088
2089/**
2090 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2091 * @dev: Network device
2092 * @txq: number of queues available
2093 *
2094 * If real_num_tx_queues is changed the tc mappings may no longer be
2095 * valid. To resolve this verify the tc mapping remains valid and if
2096 * not NULL the mapping. With no priorities mapping to this
2097 * offset/count pair it will no longer be used. In the worst case TC0
2098 * is invalid nothing can be done so disable priority mappings. If is
2099 * expected that drivers will fix this mapping if they can before
2100 * calling netif_set_real_num_tx_queues.
2101 */
2102static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2103{
2104 int i;
2105 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2106
2107 /* If TC0 is invalidated disable TC mapping */
2108 if (tc->offset + tc->count > txq) {
2109 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2110 dev->num_tc = 0;
2111 return;
2112 }
2113
2114 /* Invalidated prio to tc mappings set to TC0 */
2115 for (i = 1; i < TC_BITMASK + 1; i++) {
2116 int q = netdev_get_prio_tc_map(dev, i);
2117
2118 tc = &dev->tc_to_txq[q];
2119 if (tc->offset + tc->count > txq) {
2120 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2121 i, q);
2122 netdev_set_prio_tc_map(dev, i, 0);
2123 }
2124 }
2125}
2126
2127int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2128{
2129 if (dev->num_tc) {
2130 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2131 int i;
2132
2133 /* walk through the TCs and see if it falls into any of them */
2134 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2135 if ((txq - tc->offset) < tc->count)
2136 return i;
2137 }
2138
2139 /* didn't find it, just return -1 to indicate no match */
2140 return -1;
2141 }
2142
2143 return 0;
2144}
2145EXPORT_SYMBOL(netdev_txq_to_tc);
2146
2147#ifdef CONFIG_XPS
2148struct static_key xps_needed __read_mostly;
2149EXPORT_SYMBOL(xps_needed);
2150struct static_key xps_rxqs_needed __read_mostly;
2151EXPORT_SYMBOL(xps_rxqs_needed);
2152static DEFINE_MUTEX(xps_map_mutex);
2153#define xmap_dereference(P) \
2154 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2155
2156static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2157 int tci, u16 index)
2158{
2159 struct xps_map *map = NULL;
2160 int pos;
2161
2162 if (dev_maps)
2163 map = xmap_dereference(dev_maps->attr_map[tci]);
2164 if (!map)
2165 return false;
2166
2167 for (pos = map->len; pos--;) {
2168 if (map->queues[pos] != index)
2169 continue;
2170
2171 if (map->len > 1) {
2172 map->queues[pos] = map->queues[--map->len];
2173 break;
2174 }
2175
2176 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2177 kfree_rcu(map, rcu);
2178 return false;
2179 }
2180
2181 return true;
2182}
2183
2184static bool remove_xps_queue_cpu(struct net_device *dev,
2185 struct xps_dev_maps *dev_maps,
2186 int cpu, u16 offset, u16 count)
2187{
2188 int num_tc = dev->num_tc ? : 1;
2189 bool active = false;
2190 int tci;
2191
2192 for (tci = cpu * num_tc; num_tc--; tci++) {
2193 int i, j;
2194
2195 for (i = count, j = offset; i--; j++) {
2196 if (!remove_xps_queue(dev_maps, tci, j))
2197 break;
2198 }
2199
2200 active |= i < 0;
2201 }
2202
2203 return active;
2204}
2205
2206static void reset_xps_maps(struct net_device *dev,
2207 struct xps_dev_maps *dev_maps,
2208 bool is_rxqs_map)
2209{
2210 if (is_rxqs_map) {
2211 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2212 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2213 } else {
2214 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2215 }
2216 static_key_slow_dec_cpuslocked(&xps_needed);
2217 kfree_rcu(dev_maps, rcu);
2218}
2219
2220static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2221 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2222 u16 offset, u16 count, bool is_rxqs_map)
2223{
2224 bool active = false;
2225 int i, j;
2226
2227 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2228 j < nr_ids;)
2229 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2230 count);
2231 if (!active)
2232 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2233
2234 if (!is_rxqs_map) {
2235 for (i = offset + (count - 1); count--; i--) {
2236 netdev_queue_numa_node_write(
2237 netdev_get_tx_queue(dev, i),
2238 NUMA_NO_NODE);
2239 }
2240 }
2241}
2242
2243static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2244 u16 count)
2245{
2246 const unsigned long *possible_mask = NULL;
2247 struct xps_dev_maps *dev_maps;
2248 unsigned int nr_ids;
2249
2250 if (!static_key_false(&xps_needed))
2251 return;
2252
2253 cpus_read_lock();
2254 mutex_lock(&xps_map_mutex);
2255
2256 if (static_key_false(&xps_rxqs_needed)) {
2257 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2258 if (dev_maps) {
2259 nr_ids = dev->num_rx_queues;
2260 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2261 offset, count, true);
2262 }
2263 }
2264
2265 dev_maps = xmap_dereference(dev->xps_cpus_map);
2266 if (!dev_maps)
2267 goto out_no_maps;
2268
2269 if (num_possible_cpus() > 1)
2270 possible_mask = cpumask_bits(cpu_possible_mask);
2271 nr_ids = nr_cpu_ids;
2272 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2273 false);
2274
2275out_no_maps:
2276 mutex_unlock(&xps_map_mutex);
2277 cpus_read_unlock();
2278}
2279
2280static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2281{
2282 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2283}
2284
2285static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2286 u16 index, bool is_rxqs_map)
2287{
2288 struct xps_map *new_map;
2289 int alloc_len = XPS_MIN_MAP_ALLOC;
2290 int i, pos;
2291
2292 for (pos = 0; map && pos < map->len; pos++) {
2293 if (map->queues[pos] != index)
2294 continue;
2295 return map;
2296 }
2297
2298 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2299 if (map) {
2300 if (pos < map->alloc_len)
2301 return map;
2302
2303 alloc_len = map->alloc_len * 2;
2304 }
2305
2306 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2307 * map
2308 */
2309 if (is_rxqs_map)
2310 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2311 else
2312 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2313 cpu_to_node(attr_index));
2314 if (!new_map)
2315 return NULL;
2316
2317 for (i = 0; i < pos; i++)
2318 new_map->queues[i] = map->queues[i];
2319 new_map->alloc_len = alloc_len;
2320 new_map->len = pos;
2321
2322 return new_map;
2323}
2324
2325/* Must be called under cpus_read_lock */
2326int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2327 u16 index, bool is_rxqs_map)
2328{
2329 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2330 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2331 int i, j, tci, numa_node_id = -2;
2332 int maps_sz, num_tc = 1, tc = 0;
2333 struct xps_map *map, *new_map;
2334 bool active = false;
2335 unsigned int nr_ids;
2336
2337 if (dev->num_tc) {
2338 /* Do not allow XPS on subordinate device directly */
2339 num_tc = dev->num_tc;
2340 if (num_tc < 0)
2341 return -EINVAL;
2342
2343 /* If queue belongs to subordinate dev use its map */
2344 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2345
2346 tc = netdev_txq_to_tc(dev, index);
2347 if (tc < 0)
2348 return -EINVAL;
2349 }
2350
2351 mutex_lock(&xps_map_mutex);
2352 if (is_rxqs_map) {
2353 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2354 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2355 nr_ids = dev->num_rx_queues;
2356 } else {
2357 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2358 if (num_possible_cpus() > 1) {
2359 online_mask = cpumask_bits(cpu_online_mask);
2360 possible_mask = cpumask_bits(cpu_possible_mask);
2361 }
2362 dev_maps = xmap_dereference(dev->xps_cpus_map);
2363 nr_ids = nr_cpu_ids;
2364 }
2365
2366 if (maps_sz < L1_CACHE_BYTES)
2367 maps_sz = L1_CACHE_BYTES;
2368
2369 /* allocate memory for queue storage */
2370 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2371 j < nr_ids;) {
2372 if (!new_dev_maps)
2373 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2374 if (!new_dev_maps) {
2375 mutex_unlock(&xps_map_mutex);
2376 return -ENOMEM;
2377 }
2378
2379 tci = j * num_tc + tc;
2380 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2381 NULL;
2382
2383 map = expand_xps_map(map, j, index, is_rxqs_map);
2384 if (!map)
2385 goto error;
2386
2387 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2388 }
2389
2390 if (!new_dev_maps)
2391 goto out_no_new_maps;
2392
2393 if (!dev_maps) {
2394 /* Increment static keys at most once per type */
2395 static_key_slow_inc_cpuslocked(&xps_needed);
2396 if (is_rxqs_map)
2397 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2398 }
2399
2400 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401 j < nr_ids;) {
2402 /* copy maps belonging to foreign traffic classes */
2403 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2404 /* fill in the new device map from the old device map */
2405 map = xmap_dereference(dev_maps->attr_map[tci]);
2406 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2407 }
2408
2409 /* We need to explicitly update tci as prevous loop
2410 * could break out early if dev_maps is NULL.
2411 */
2412 tci = j * num_tc + tc;
2413
2414 if (netif_attr_test_mask(j, mask, nr_ids) &&
2415 netif_attr_test_online(j, online_mask, nr_ids)) {
2416 /* add tx-queue to CPU/rx-queue maps */
2417 int pos = 0;
2418
2419 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2420 while ((pos < map->len) && (map->queues[pos] != index))
2421 pos++;
2422
2423 if (pos == map->len)
2424 map->queues[map->len++] = index;
2425#ifdef CONFIG_NUMA
2426 if (!is_rxqs_map) {
2427 if (numa_node_id == -2)
2428 numa_node_id = cpu_to_node(j);
2429 else if (numa_node_id != cpu_to_node(j))
2430 numa_node_id = -1;
2431 }
2432#endif
2433 } else if (dev_maps) {
2434 /* fill in the new device map from the old device map */
2435 map = xmap_dereference(dev_maps->attr_map[tci]);
2436 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2437 }
2438
2439 /* copy maps belonging to foreign traffic classes */
2440 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2441 /* fill in the new device map from the old device map */
2442 map = xmap_dereference(dev_maps->attr_map[tci]);
2443 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2444 }
2445 }
2446
2447 if (is_rxqs_map)
2448 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2449 else
2450 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2451
2452 /* Cleanup old maps */
2453 if (!dev_maps)
2454 goto out_no_old_maps;
2455
2456 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457 j < nr_ids;) {
2458 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2459 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2460 map = xmap_dereference(dev_maps->attr_map[tci]);
2461 if (map && map != new_map)
2462 kfree_rcu(map, rcu);
2463 }
2464 }
2465
2466 kfree_rcu(dev_maps, rcu);
2467
2468out_no_old_maps:
2469 dev_maps = new_dev_maps;
2470 active = true;
2471
2472out_no_new_maps:
2473 if (!is_rxqs_map) {
2474 /* update Tx queue numa node */
2475 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2476 (numa_node_id >= 0) ?
2477 numa_node_id : NUMA_NO_NODE);
2478 }
2479
2480 if (!dev_maps)
2481 goto out_no_maps;
2482
2483 /* removes tx-queue from unused CPUs/rx-queues */
2484 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2485 j < nr_ids;) {
2486 for (i = tc, tci = j * num_tc; i--; tci++)
2487 active |= remove_xps_queue(dev_maps, tci, index);
2488 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2489 !netif_attr_test_online(j, online_mask, nr_ids))
2490 active |= remove_xps_queue(dev_maps, tci, index);
2491 for (i = num_tc - tc, tci++; --i; tci++)
2492 active |= remove_xps_queue(dev_maps, tci, index);
2493 }
2494
2495 /* free map if not active */
2496 if (!active)
2497 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2498
2499out_no_maps:
2500 mutex_unlock(&xps_map_mutex);
2501
2502 return 0;
2503error:
2504 /* remove any maps that we added */
2505 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2506 j < nr_ids;) {
2507 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2508 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2509 map = dev_maps ?
2510 xmap_dereference(dev_maps->attr_map[tci]) :
2511 NULL;
2512 if (new_map && new_map != map)
2513 kfree(new_map);
2514 }
2515 }
2516
2517 mutex_unlock(&xps_map_mutex);
2518
2519 kfree(new_dev_maps);
2520 return -ENOMEM;
2521}
2522EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2523
2524int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2525 u16 index)
2526{
2527 int ret;
2528
2529 cpus_read_lock();
2530 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2531 cpus_read_unlock();
2532
2533 return ret;
2534}
2535EXPORT_SYMBOL(netif_set_xps_queue);
2536
2537#endif
2538static void netdev_unbind_all_sb_channels(struct net_device *dev)
2539{
2540 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2541
2542 /* Unbind any subordinate channels */
2543 while (txq-- != &dev->_tx[0]) {
2544 if (txq->sb_dev)
2545 netdev_unbind_sb_channel(dev, txq->sb_dev);
2546 }
2547}
2548
2549void netdev_reset_tc(struct net_device *dev)
2550{
2551#ifdef CONFIG_XPS
2552 netif_reset_xps_queues_gt(dev, 0);
2553#endif
2554 netdev_unbind_all_sb_channels(dev);
2555
2556 /* Reset TC configuration of device */
2557 dev->num_tc = 0;
2558 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2559 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2560}
2561EXPORT_SYMBOL(netdev_reset_tc);
2562
2563int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2564{
2565 if (tc >= dev->num_tc)
2566 return -EINVAL;
2567
2568#ifdef CONFIG_XPS
2569 netif_reset_xps_queues(dev, offset, count);
2570#endif
2571 dev->tc_to_txq[tc].count = count;
2572 dev->tc_to_txq[tc].offset = offset;
2573 return 0;
2574}
2575EXPORT_SYMBOL(netdev_set_tc_queue);
2576
2577int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2578{
2579 if (num_tc > TC_MAX_QUEUE)
2580 return -EINVAL;
2581
2582#ifdef CONFIG_XPS
2583 netif_reset_xps_queues_gt(dev, 0);
2584#endif
2585 netdev_unbind_all_sb_channels(dev);
2586
2587 dev->num_tc = num_tc;
2588 return 0;
2589}
2590EXPORT_SYMBOL(netdev_set_num_tc);
2591
2592void netdev_unbind_sb_channel(struct net_device *dev,
2593 struct net_device *sb_dev)
2594{
2595 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2596
2597#ifdef CONFIG_XPS
2598 netif_reset_xps_queues_gt(sb_dev, 0);
2599#endif
2600 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2601 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2602
2603 while (txq-- != &dev->_tx[0]) {
2604 if (txq->sb_dev == sb_dev)
2605 txq->sb_dev = NULL;
2606 }
2607}
2608EXPORT_SYMBOL(netdev_unbind_sb_channel);
2609
2610int netdev_bind_sb_channel_queue(struct net_device *dev,
2611 struct net_device *sb_dev,
2612 u8 tc, u16 count, u16 offset)
2613{
2614 /* Make certain the sb_dev and dev are already configured */
2615 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2616 return -EINVAL;
2617
2618 /* We cannot hand out queues we don't have */
2619 if ((offset + count) > dev->real_num_tx_queues)
2620 return -EINVAL;
2621
2622 /* Record the mapping */
2623 sb_dev->tc_to_txq[tc].count = count;
2624 sb_dev->tc_to_txq[tc].offset = offset;
2625
2626 /* Provide a way for Tx queue to find the tc_to_txq map or
2627 * XPS map for itself.
2628 */
2629 while (count--)
2630 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2631
2632 return 0;
2633}
2634EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2635
2636int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2637{
2638 /* Do not use a multiqueue device to represent a subordinate channel */
2639 if (netif_is_multiqueue(dev))
2640 return -ENODEV;
2641
2642 /* We allow channels 1 - 32767 to be used for subordinate channels.
2643 * Channel 0 is meant to be "native" mode and used only to represent
2644 * the main root device. We allow writing 0 to reset the device back
2645 * to normal mode after being used as a subordinate channel.
2646 */
2647 if (channel > S16_MAX)
2648 return -EINVAL;
2649
2650 dev->num_tc = -channel;
2651
2652 return 0;
2653}
2654EXPORT_SYMBOL(netdev_set_sb_channel);
2655
2656/*
2657 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2658 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2659 */
2660int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2661{
2662 bool disabling;
2663 int rc;
2664
2665 disabling = txq < dev->real_num_tx_queues;
2666
2667 if (txq < 1 || txq > dev->num_tx_queues)
2668 return -EINVAL;
2669
2670 if (dev->reg_state == NETREG_REGISTERED ||
2671 dev->reg_state == NETREG_UNREGISTERING) {
2672 ASSERT_RTNL();
2673
2674 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2675 txq);
2676 if (rc)
2677 return rc;
2678
2679 if (dev->num_tc)
2680 netif_setup_tc(dev, txq);
2681
2682 dev->real_num_tx_queues = txq;
2683
2684 if (disabling) {
2685 synchronize_net();
2686 qdisc_reset_all_tx_gt(dev, txq);
2687#ifdef CONFIG_XPS
2688 netif_reset_xps_queues_gt(dev, txq);
2689#endif
2690 }
2691 } else {
2692 dev->real_num_tx_queues = txq;
2693 }
2694
2695 return 0;
2696}
2697EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2698
2699#ifdef CONFIG_SYSFS
2700/**
2701 * netif_set_real_num_rx_queues - set actual number of RX queues used
2702 * @dev: Network device
2703 * @rxq: Actual number of RX queues
2704 *
2705 * This must be called either with the rtnl_lock held or before
2706 * registration of the net device. Returns 0 on success, or a
2707 * negative error code. If called before registration, it always
2708 * succeeds.
2709 */
2710int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2711{
2712 int rc;
2713
2714 if (rxq < 1 || rxq > dev->num_rx_queues)
2715 return -EINVAL;
2716
2717 if (dev->reg_state == NETREG_REGISTERED) {
2718 ASSERT_RTNL();
2719
2720 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2721 rxq);
2722 if (rc)
2723 return rc;
2724 }
2725
2726 dev->real_num_rx_queues = rxq;
2727 return 0;
2728}
2729EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2730#endif
2731
2732/**
2733 * netif_get_num_default_rss_queues - default number of RSS queues
2734 *
2735 * This routine should set an upper limit on the number of RSS queues
2736 * used by default by multiqueue devices.
2737 */
2738int netif_get_num_default_rss_queues(void)
2739{
2740 return is_kdump_kernel() ?
2741 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2742}
2743EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2744
2745static void __netif_reschedule(struct Qdisc *q)
2746{
2747 struct softnet_data *sd;
2748 unsigned long flags;
2749
2750 local_irq_save(flags);
2751 sd = this_cpu_ptr(&softnet_data);
2752 q->next_sched = NULL;
2753 *sd->output_queue_tailp = q;
2754 sd->output_queue_tailp = &q->next_sched;
2755 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2756 local_irq_restore(flags);
2757}
2758
2759void __netif_schedule(struct Qdisc *q)
2760{
2761 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2762 __netif_reschedule(q);
2763}
2764EXPORT_SYMBOL(__netif_schedule);
2765
2766struct dev_kfree_skb_cb {
2767 enum skb_free_reason reason;
2768};
2769
2770static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2771{
2772 return (struct dev_kfree_skb_cb *)skb->cb;
2773}
2774
2775void netif_schedule_queue(struct netdev_queue *txq)
2776{
2777 rcu_read_lock();
2778 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2779 struct Qdisc *q = rcu_dereference(txq->qdisc);
2780
2781 __netif_schedule(q);
2782 }
2783 rcu_read_unlock();
2784}
2785EXPORT_SYMBOL(netif_schedule_queue);
2786
2787void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2788{
2789 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2790 struct Qdisc *q;
2791
2792 rcu_read_lock();
2793 q = rcu_dereference(dev_queue->qdisc);
2794 __netif_schedule(q);
2795 rcu_read_unlock();
2796 }
2797}
2798EXPORT_SYMBOL(netif_tx_wake_queue);
2799
2800void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2801{
2802 unsigned long flags;
2803
2804 if (unlikely(!skb))
2805 return;
2806
2807 if (likely(refcount_read(&skb->users) == 1)) {
2808 smp_rmb();
2809 refcount_set(&skb->users, 0);
2810 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2811 return;
2812 }
2813 get_kfree_skb_cb(skb)->reason = reason;
2814 local_irq_save(flags);
2815 skb->next = __this_cpu_read(softnet_data.completion_queue);
2816 __this_cpu_write(softnet_data.completion_queue, skb);
2817 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2818 local_irq_restore(flags);
2819}
2820EXPORT_SYMBOL(__dev_kfree_skb_irq);
2821
2822void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2823{
2824 if (in_irq() || irqs_disabled())
2825 __dev_kfree_skb_irq(skb, reason);
2826 else
2827 dev_kfree_skb(skb);
2828}
2829EXPORT_SYMBOL(__dev_kfree_skb_any);
2830
2831
2832/**
2833 * netif_device_detach - mark device as removed
2834 * @dev: network device
2835 *
2836 * Mark device as removed from system and therefore no longer available.
2837 */
2838void netif_device_detach(struct net_device *dev)
2839{
2840 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2841 netif_running(dev)) {
2842 netif_tx_stop_all_queues(dev);
2843 }
2844}
2845EXPORT_SYMBOL(netif_device_detach);
2846
2847/**
2848 * netif_device_attach - mark device as attached
2849 * @dev: network device
2850 *
2851 * Mark device as attached from system and restart if needed.
2852 */
2853void netif_device_attach(struct net_device *dev)
2854{
2855 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2856 netif_running(dev)) {
2857 netif_tx_wake_all_queues(dev);
2858 __netdev_watchdog_up(dev);
2859 }
2860}
2861EXPORT_SYMBOL(netif_device_attach);
2862
2863/*
2864 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2865 * to be used as a distribution range.
2866 */
2867static u16 skb_tx_hash(const struct net_device *dev,
2868 const struct net_device *sb_dev,
2869 struct sk_buff *skb)
2870{
2871 u32 hash;
2872 u16 qoffset = 0;
2873 u16 qcount = dev->real_num_tx_queues;
2874
2875 if (dev->num_tc) {
2876 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2877
2878 qoffset = sb_dev->tc_to_txq[tc].offset;
2879 qcount = sb_dev->tc_to_txq[tc].count;
2880 }
2881
2882 if (skb_rx_queue_recorded(skb)) {
2883 hash = skb_get_rx_queue(skb);
2884 while (unlikely(hash >= qcount))
2885 hash -= qcount;
2886 return hash + qoffset;
2887 }
2888
2889 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2890}
2891
2892static void skb_warn_bad_offload(const struct sk_buff *skb)
2893{
2894 static const netdev_features_t null_features;
2895 struct net_device *dev = skb->dev;
2896 const char *name = "";
2897
2898 if (!net_ratelimit())
2899 return;
2900
2901 if (dev) {
2902 if (dev->dev.parent)
2903 name = dev_driver_string(dev->dev.parent);
2904 else
2905 name = netdev_name(dev);
2906 }
2907 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2908 "gso_type=%d ip_summed=%d\n",
2909 name, dev ? &dev->features : &null_features,
2910 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2911 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2912 skb_shinfo(skb)->gso_type, skb->ip_summed);
2913}
2914
2915/*
2916 * Invalidate hardware checksum when packet is to be mangled, and
2917 * complete checksum manually on outgoing path.
2918 */
2919int skb_checksum_help(struct sk_buff *skb)
2920{
2921 __wsum csum;
2922 int ret = 0, offset;
2923
2924 if (skb->ip_summed == CHECKSUM_COMPLETE)
2925 goto out_set_summed;
2926
2927 if (unlikely(skb_shinfo(skb)->gso_size)) {
2928 skb_warn_bad_offload(skb);
2929 return -EINVAL;
2930 }
2931
2932 /* Before computing a checksum, we should make sure no frag could
2933 * be modified by an external entity : checksum could be wrong.
2934 */
2935 if (skb_has_shared_frag(skb)) {
2936 ret = __skb_linearize(skb);
2937 if (ret)
2938 goto out;
2939 }
2940
2941 offset = skb_checksum_start_offset(skb);
2942 BUG_ON(offset >= skb_headlen(skb));
2943 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2944
2945 offset += skb->csum_offset;
2946 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2947
2948 if (skb_cloned(skb) &&
2949 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2950 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2951 if (ret)
2952 goto out;
2953 }
2954
2955 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2956out_set_summed:
2957 skb->ip_summed = CHECKSUM_NONE;
2958out:
2959 return ret;
2960}
2961EXPORT_SYMBOL(skb_checksum_help);
2962
2963int skb_crc32c_csum_help(struct sk_buff *skb)
2964{
2965 __le32 crc32c_csum;
2966 int ret = 0, offset, start;
2967
2968 if (skb->ip_summed != CHECKSUM_PARTIAL)
2969 goto out;
2970
2971 if (unlikely(skb_is_gso(skb)))
2972 goto out;
2973
2974 /* Before computing a checksum, we should make sure no frag could
2975 * be modified by an external entity : checksum could be wrong.
2976 */
2977 if (unlikely(skb_has_shared_frag(skb))) {
2978 ret = __skb_linearize(skb);
2979 if (ret)
2980 goto out;
2981 }
2982 start = skb_checksum_start_offset(skb);
2983 offset = start + offsetof(struct sctphdr, checksum);
2984 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2985 ret = -EINVAL;
2986 goto out;
2987 }
2988 if (skb_cloned(skb) &&
2989 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2990 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2991 if (ret)
2992 goto out;
2993 }
2994 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2995 skb->len - start, ~(__u32)0,
2996 crc32c_csum_stub));
2997 *(__le32 *)(skb->data + offset) = crc32c_csum;
2998 skb->ip_summed = CHECKSUM_NONE;
2999 skb->csum_not_inet = 0;
3000out:
3001 return ret;
3002}
3003
3004__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3005{
3006 __be16 type = skb->protocol;
3007
3008 /* Tunnel gso handlers can set protocol to ethernet. */
3009 if (type == htons(ETH_P_TEB)) {
3010 struct ethhdr *eth;
3011
3012 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3013 return 0;
3014
3015 eth = (struct ethhdr *)skb->data;
3016 type = eth->h_proto;
3017 }
3018
3019 return __vlan_get_protocol(skb, type, depth);
3020}
3021
3022/**
3023 * skb_mac_gso_segment - mac layer segmentation handler.
3024 * @skb: buffer to segment
3025 * @features: features for the output path (see dev->features)
3026 */
3027struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3028 netdev_features_t features)
3029{
3030 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3031 struct packet_offload *ptype;
3032 int vlan_depth = skb->mac_len;
3033 __be16 type = skb_network_protocol(skb, &vlan_depth);
3034
3035 if (unlikely(!type))
3036 return ERR_PTR(-EINVAL);
3037
3038 __skb_pull(skb, vlan_depth);
3039
3040 rcu_read_lock();
3041 list_for_each_entry_rcu(ptype, &offload_base, list) {
3042 if (ptype->type == type && ptype->callbacks.gso_segment) {
3043 segs = ptype->callbacks.gso_segment(skb, features);
3044 break;
3045 }
3046 }
3047 rcu_read_unlock();
3048
3049 __skb_push(skb, skb->data - skb_mac_header(skb));
3050
3051 return segs;
3052}
3053EXPORT_SYMBOL(skb_mac_gso_segment);
3054
3055
3056/* openvswitch calls this on rx path, so we need a different check.
3057 */
3058static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3059{
3060 if (tx_path)
3061 return skb->ip_summed != CHECKSUM_PARTIAL &&
3062 skb->ip_summed != CHECKSUM_UNNECESSARY;
3063
3064 return skb->ip_summed == CHECKSUM_NONE;
3065}
3066
3067/**
3068 * __skb_gso_segment - Perform segmentation on skb.
3069 * @skb: buffer to segment
3070 * @features: features for the output path (see dev->features)
3071 * @tx_path: whether it is called in TX path
3072 *
3073 * This function segments the given skb and returns a list of segments.
3074 *
3075 * It may return NULL if the skb requires no segmentation. This is
3076 * only possible when GSO is used for verifying header integrity.
3077 *
3078 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3079 */
3080struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3081 netdev_features_t features, bool tx_path)
3082{
3083 struct sk_buff *segs;
3084
3085 if (unlikely(skb_needs_check(skb, tx_path))) {
3086 int err;
3087
3088 /* We're going to init ->check field in TCP or UDP header */
3089 err = skb_cow_head(skb, 0);
3090 if (err < 0)
3091 return ERR_PTR(err);
3092 }
3093
3094 /* Only report GSO partial support if it will enable us to
3095 * support segmentation on this frame without needing additional
3096 * work.
3097 */
3098 if (features & NETIF_F_GSO_PARTIAL) {
3099 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3100 struct net_device *dev = skb->dev;
3101
3102 partial_features |= dev->features & dev->gso_partial_features;
3103 if (!skb_gso_ok(skb, features | partial_features))
3104 features &= ~NETIF_F_GSO_PARTIAL;
3105 }
3106
3107 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3108 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3109
3110 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3111 SKB_GSO_CB(skb)->encap_level = 0;
3112
3113 skb_reset_mac_header(skb);
3114 skb_reset_mac_len(skb);
3115
3116 segs = skb_mac_gso_segment(skb, features);
3117
3118 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3119 skb_warn_bad_offload(skb);
3120
3121 return segs;
3122}
3123EXPORT_SYMBOL(__skb_gso_segment);
3124
3125/* Take action when hardware reception checksum errors are detected. */
3126#ifdef CONFIG_BUG
3127void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3128{
3129 if (net_ratelimit()) {
3130 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3131 if (dev)
3132 pr_err("dev features: %pNF\n", &dev->features);
3133 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3134 skb->len, skb->data_len, skb->pkt_type,
3135 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3136 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3137 skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3138 dump_stack();
3139 }
3140}
3141EXPORT_SYMBOL(netdev_rx_csum_fault);
3142#endif
3143
3144/* XXX: check that highmem exists at all on the given machine. */
3145static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3146{
3147#ifdef CONFIG_HIGHMEM
3148 int i;
3149
3150 if (!(dev->features & NETIF_F_HIGHDMA)) {
3151 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3152 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3153
3154 if (PageHighMem(skb_frag_page(frag)))
3155 return 1;
3156 }
3157 }
3158#endif
3159 return 0;
3160}
3161
3162/* If MPLS offload request, verify we are testing hardware MPLS features
3163 * instead of standard features for the netdev.
3164 */
3165#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3166static netdev_features_t net_mpls_features(struct sk_buff *skb,
3167 netdev_features_t features,
3168 __be16 type)
3169{
3170 if (eth_p_mpls(type))
3171 features &= skb->dev->mpls_features;
3172
3173 return features;
3174}
3175#else
3176static netdev_features_t net_mpls_features(struct sk_buff *skb,
3177 netdev_features_t features,
3178 __be16 type)
3179{
3180 return features;
3181}
3182#endif
3183
3184static netdev_features_t harmonize_features(struct sk_buff *skb,
3185 netdev_features_t features)
3186{
3187 int tmp;
3188 __be16 type;
3189
3190 type = skb_network_protocol(skb, &tmp);
3191 features = net_mpls_features(skb, features, type);
3192
3193 if (skb->ip_summed != CHECKSUM_NONE &&
3194 !can_checksum_protocol(features, type)) {
3195 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3196 }
3197 if (illegal_highdma(skb->dev, skb))
3198 features &= ~NETIF_F_SG;
3199
3200 return features;
3201}
3202
3203netdev_features_t passthru_features_check(struct sk_buff *skb,
3204 struct net_device *dev,
3205 netdev_features_t features)
3206{
3207 return features;
3208}
3209EXPORT_SYMBOL(passthru_features_check);
3210
3211static netdev_features_t dflt_features_check(struct sk_buff *skb,
3212 struct net_device *dev,
3213 netdev_features_t features)
3214{
3215 return vlan_features_check(skb, features);
3216}
3217
3218static netdev_features_t gso_features_check(const struct sk_buff *skb,
3219 struct net_device *dev,
3220 netdev_features_t features)
3221{
3222 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3223
3224 if (gso_segs > dev->gso_max_segs)
3225 return features & ~NETIF_F_GSO_MASK;
3226
3227 /* Support for GSO partial features requires software
3228 * intervention before we can actually process the packets
3229 * so we need to strip support for any partial features now
3230 * and we can pull them back in after we have partially
3231 * segmented the frame.
3232 */
3233 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3234 features &= ~dev->gso_partial_features;
3235
3236 /* Make sure to clear the IPv4 ID mangling feature if the
3237 * IPv4 header has the potential to be fragmented.
3238 */
3239 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3240 struct iphdr *iph = skb->encapsulation ?
3241 inner_ip_hdr(skb) : ip_hdr(skb);
3242
3243 if (!(iph->frag_off & htons(IP_DF)))
3244 features &= ~NETIF_F_TSO_MANGLEID;
3245 }
3246
3247 return features;
3248}
3249
3250netdev_features_t netif_skb_features(struct sk_buff *skb)
3251{
3252 struct net_device *dev = skb->dev;
3253 netdev_features_t features = dev->features;
3254
3255 if (skb_is_gso(skb))
3256 features = gso_features_check(skb, dev, features);
3257
3258 /* If encapsulation offload request, verify we are testing
3259 * hardware encapsulation features instead of standard
3260 * features for the netdev
3261 */
3262 if (skb->encapsulation)
3263 features &= dev->hw_enc_features;
3264
3265 if (skb_vlan_tagged(skb))
3266 features = netdev_intersect_features(features,
3267 dev->vlan_features |
3268 NETIF_F_HW_VLAN_CTAG_TX |
3269 NETIF_F_HW_VLAN_STAG_TX);
3270
3271 if (dev->netdev_ops->ndo_features_check)
3272 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3273 features);
3274 else
3275 features &= dflt_features_check(skb, dev, features);
3276
3277 return harmonize_features(skb, features);
3278}
3279EXPORT_SYMBOL(netif_skb_features);
3280
3281static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3282 struct netdev_queue *txq, bool more)
3283{
3284 unsigned int len;
3285 int rc;
3286
3287 if (dev_nit_active(dev))
3288 dev_queue_xmit_nit(skb, dev);
3289
3290 len = skb->len;
3291 trace_net_dev_start_xmit(skb, dev);
3292 rc = netdev_start_xmit(skb, dev, txq, more);
3293 trace_net_dev_xmit(skb, rc, dev, len);
3294
3295 return rc;
3296}
3297
3298struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3299 struct netdev_queue *txq, int *ret)
3300{
3301 struct sk_buff *skb = first;
3302 int rc = NETDEV_TX_OK;
3303
3304 while (skb) {
3305 struct sk_buff *next = skb->next;
3306
3307 skb_mark_not_on_list(skb);
3308 rc = xmit_one(skb, dev, txq, next != NULL);
3309 if (unlikely(!dev_xmit_complete(rc))) {
3310 skb->next = next;
3311 goto out;
3312 }
3313
3314 skb = next;
3315 if (netif_tx_queue_stopped(txq) && skb) {
3316 rc = NETDEV_TX_BUSY;
3317 break;
3318 }
3319 }
3320
3321out:
3322 *ret = rc;
3323 return skb;
3324}
3325
3326static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3327 netdev_features_t features)
3328{
3329 if (skb_vlan_tag_present(skb) &&
3330 !vlan_hw_offload_capable(features, skb->vlan_proto))
3331 skb = __vlan_hwaccel_push_inside(skb);
3332 return skb;
3333}
3334
3335int skb_csum_hwoffload_help(struct sk_buff *skb,
3336 const netdev_features_t features)
3337{
3338 if (unlikely(skb->csum_not_inet))
3339 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3340 skb_crc32c_csum_help(skb);
3341
3342 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3343}
3344EXPORT_SYMBOL(skb_csum_hwoffload_help);
3345
3346static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3347{
3348 netdev_features_t features;
3349
3350 features = netif_skb_features(skb);
3351 skb = validate_xmit_vlan(skb, features);
3352 if (unlikely(!skb))
3353 goto out_null;
3354
3355 skb = sk_validate_xmit_skb(skb, dev);
3356 if (unlikely(!skb))
3357 goto out_null;
3358
3359 if (netif_needs_gso(skb, features)) {
3360 struct sk_buff *segs;
3361
3362 segs = skb_gso_segment(skb, features);
3363 if (IS_ERR(segs)) {
3364 goto out_kfree_skb;
3365 } else if (segs) {
3366 consume_skb(skb);
3367 skb = segs;
3368 }
3369 } else {
3370 if (skb_needs_linearize(skb, features) &&
3371 __skb_linearize(skb))
3372 goto out_kfree_skb;
3373
3374 /* If packet is not checksummed and device does not
3375 * support checksumming for this protocol, complete
3376 * checksumming here.
3377 */
3378 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3379 if (skb->encapsulation)
3380 skb_set_inner_transport_header(skb,
3381 skb_checksum_start_offset(skb));
3382 else
3383 skb_set_transport_header(skb,
3384 skb_checksum_start_offset(skb));
3385 if (skb_csum_hwoffload_help(skb, features))
3386 goto out_kfree_skb;
3387 }
3388 }
3389
3390 skb = validate_xmit_xfrm(skb, features, again);
3391
3392 return skb;
3393
3394out_kfree_skb:
3395 kfree_skb(skb);
3396out_null:
3397 atomic_long_inc(&dev->tx_dropped);
3398 return NULL;
3399}
3400
3401struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3402{
3403 struct sk_buff *next, *head = NULL, *tail;
3404
3405 for (; skb != NULL; skb = next) {
3406 next = skb->next;
3407 skb_mark_not_on_list(skb);
3408
3409 /* in case skb wont be segmented, point to itself */
3410 skb->prev = skb;
3411
3412 skb = validate_xmit_skb(skb, dev, again);
3413 if (!skb)
3414 continue;
3415
3416 if (!head)
3417 head = skb;
3418 else
3419 tail->next = skb;
3420 /* If skb was segmented, skb->prev points to
3421 * the last segment. If not, it still contains skb.
3422 */
3423 tail = skb->prev;
3424 }
3425 return head;
3426}
3427EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3428
3429static void qdisc_pkt_len_init(struct sk_buff *skb)
3430{
3431 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3432
3433 qdisc_skb_cb(skb)->pkt_len = skb->len;
3434
3435 /* To get more precise estimation of bytes sent on wire,
3436 * we add to pkt_len the headers size of all segments
3437 */
3438 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3439 unsigned int hdr_len;
3440 u16 gso_segs = shinfo->gso_segs;
3441
3442 /* mac layer + network layer */
3443 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3444
3445 /* + transport layer */
3446 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3447 const struct tcphdr *th;
3448 struct tcphdr _tcphdr;
3449
3450 th = skb_header_pointer(skb, skb_transport_offset(skb),
3451 sizeof(_tcphdr), &_tcphdr);
3452 if (likely(th))
3453 hdr_len += __tcp_hdrlen(th);
3454 } else {
3455 struct udphdr _udphdr;
3456
3457 if (skb_header_pointer(skb, skb_transport_offset(skb),
3458 sizeof(_udphdr), &_udphdr))
3459 hdr_len += sizeof(struct udphdr);
3460 }
3461
3462 if (shinfo->gso_type & SKB_GSO_DODGY)
3463 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3464 shinfo->gso_size);
3465
3466 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3467 }
3468}
3469
3470static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3471 struct net_device *dev,
3472 struct netdev_queue *txq)
3473{
3474 spinlock_t *root_lock = qdisc_lock(q);
3475 struct sk_buff *to_free = NULL;
3476 bool contended;
3477 int rc;
3478
3479 qdisc_calculate_pkt_len(skb, q);
3480
3481 if (q->flags & TCQ_F_NOLOCK) {
3482 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3483 __qdisc_drop(skb, &to_free);
3484 rc = NET_XMIT_DROP;
3485 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3486 qdisc_run_begin(q)) {
3487 qdisc_bstats_cpu_update(q, skb);
3488
3489 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3490 __qdisc_run(q);
3491
3492 qdisc_run_end(q);
3493 rc = NET_XMIT_SUCCESS;
3494 } else {
3495 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496 qdisc_run(q);
3497 }
3498
3499 if (unlikely(to_free))
3500 kfree_skb_list(to_free);
3501 return rc;
3502 }
3503
3504 /*
3505 * Heuristic to force contended enqueues to serialize on a
3506 * separate lock before trying to get qdisc main lock.
3507 * This permits qdisc->running owner to get the lock more
3508 * often and dequeue packets faster.
3509 */
3510 contended = qdisc_is_running(q);
3511 if (unlikely(contended))
3512 spin_lock(&q->busylock);
3513
3514 spin_lock(root_lock);
3515 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3516 __qdisc_drop(skb, &to_free);
3517 rc = NET_XMIT_DROP;
3518 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3519 qdisc_run_begin(q)) {
3520 /*
3521 * This is a work-conserving queue; there are no old skbs
3522 * waiting to be sent out; and the qdisc is not running -
3523 * xmit the skb directly.
3524 */
3525
3526 qdisc_bstats_update(q, skb);
3527
3528 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3529 if (unlikely(contended)) {
3530 spin_unlock(&q->busylock);
3531 contended = false;
3532 }
3533 __qdisc_run(q);
3534 }
3535
3536 qdisc_run_end(q);
3537 rc = NET_XMIT_SUCCESS;
3538 } else {
3539 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3540 if (qdisc_run_begin(q)) {
3541 if (unlikely(contended)) {
3542 spin_unlock(&q->busylock);
3543 contended = false;
3544 }
3545 __qdisc_run(q);
3546 qdisc_run_end(q);
3547 }
3548 }
3549 spin_unlock(root_lock);
3550 if (unlikely(to_free))
3551 kfree_skb_list(to_free);
3552 if (unlikely(contended))
3553 spin_unlock(&q->busylock);
3554 return rc;
3555}
3556
3557#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3558static void skb_update_prio(struct sk_buff *skb)
3559{
3560 const struct netprio_map *map;
3561 const struct sock *sk;
3562 unsigned int prioidx;
3563
3564 if (skb->priority)
3565 return;
3566 map = rcu_dereference_bh(skb->dev->priomap);
3567 if (!map)
3568 return;
3569 sk = skb_to_full_sk(skb);
3570 if (!sk)
3571 return;
3572
3573 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3574
3575 if (prioidx < map->priomap_len)
3576 skb->priority = map->priomap[prioidx];
3577}
3578#else
3579#define skb_update_prio(skb)
3580#endif
3581
3582/**
3583 * dev_loopback_xmit - loop back @skb
3584 * @net: network namespace this loopback is happening in
3585 * @sk: sk needed to be a netfilter okfn
3586 * @skb: buffer to transmit
3587 */
3588int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3589{
3590 skb_reset_mac_header(skb);
3591 __skb_pull(skb, skb_network_offset(skb));
3592 skb->pkt_type = PACKET_LOOPBACK;
3593 skb->ip_summed = CHECKSUM_UNNECESSARY;
3594 WARN_ON(!skb_dst(skb));
3595 skb_dst_force(skb);
3596 netif_rx_ni(skb);
3597 return 0;
3598}
3599EXPORT_SYMBOL(dev_loopback_xmit);
3600
3601#ifdef CONFIG_NET_EGRESS
3602static struct sk_buff *
3603sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3604{
3605 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3606 struct tcf_result cl_res;
3607
3608 if (!miniq)
3609 return skb;
3610
3611 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3612 mini_qdisc_bstats_cpu_update(miniq, skb);
3613
3614 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3615 case TC_ACT_OK:
3616 case TC_ACT_RECLASSIFY:
3617 skb->tc_index = TC_H_MIN(cl_res.classid);
3618 break;
3619 case TC_ACT_SHOT:
3620 mini_qdisc_qstats_cpu_drop(miniq);
3621 *ret = NET_XMIT_DROP;
3622 kfree_skb(skb);
3623 return NULL;
3624 case TC_ACT_STOLEN:
3625 case TC_ACT_QUEUED:
3626 case TC_ACT_TRAP:
3627 *ret = NET_XMIT_SUCCESS;
3628 consume_skb(skb);
3629 return NULL;
3630 case TC_ACT_REDIRECT:
3631 /* No need to push/pop skb's mac_header here on egress! */
3632 skb_do_redirect(skb);
3633 *ret = NET_XMIT_SUCCESS;
3634 return NULL;
3635 default:
3636 break;
3637 }
3638
3639 return skb;
3640}
3641#endif /* CONFIG_NET_EGRESS */
3642
3643#ifdef CONFIG_XPS
3644static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3645 struct xps_dev_maps *dev_maps, unsigned int tci)
3646{
3647 struct xps_map *map;
3648 int queue_index = -1;
3649
3650 if (dev->num_tc) {
3651 tci *= dev->num_tc;
3652 tci += netdev_get_prio_tc_map(dev, skb->priority);
3653 }
3654
3655 map = rcu_dereference(dev_maps->attr_map[tci]);
3656 if (map) {
3657 if (map->len == 1)
3658 queue_index = map->queues[0];
3659 else
3660 queue_index = map->queues[reciprocal_scale(
3661 skb_get_hash(skb), map->len)];
3662 if (unlikely(queue_index >= dev->real_num_tx_queues))
3663 queue_index = -1;
3664 }
3665 return queue_index;
3666}
3667#endif
3668
3669static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3670 struct sk_buff *skb)
3671{
3672#ifdef CONFIG_XPS
3673 struct xps_dev_maps *dev_maps;
3674 struct sock *sk = skb->sk;
3675 int queue_index = -1;
3676
3677 if (!static_key_false(&xps_needed))
3678 return -1;
3679
3680 rcu_read_lock();
3681 if (!static_key_false(&xps_rxqs_needed))
3682 goto get_cpus_map;
3683
3684 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3685 if (dev_maps) {
3686 int tci = sk_rx_queue_get(sk);
3687
3688 if (tci >= 0 && tci < dev->num_rx_queues)
3689 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3690 tci);
3691 }
3692
3693get_cpus_map:
3694 if (queue_index < 0) {
3695 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3696 if (dev_maps) {
3697 unsigned int tci = skb->sender_cpu - 1;
3698
3699 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3700 tci);
3701 }
3702 }
3703 rcu_read_unlock();
3704
3705 return queue_index;
3706#else
3707 return -1;
3708#endif
3709}
3710
3711u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3712 struct net_device *sb_dev)
3713{
3714 return 0;
3715}
3716EXPORT_SYMBOL(dev_pick_tx_zero);
3717
3718u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3719 struct net_device *sb_dev)
3720{
3721 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3722}
3723EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3724
3725u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3726 struct net_device *sb_dev)
3727{
3728 struct sock *sk = skb->sk;
3729 int queue_index = sk_tx_queue_get(sk);
3730
3731 sb_dev = sb_dev ? : dev;
3732
3733 if (queue_index < 0 || skb->ooo_okay ||
3734 queue_index >= dev->real_num_tx_queues) {
3735 int new_index = get_xps_queue(dev, sb_dev, skb);
3736
3737 if (new_index < 0)
3738 new_index = skb_tx_hash(dev, sb_dev, skb);
3739
3740 if (queue_index != new_index && sk &&
3741 sk_fullsock(sk) &&
3742 rcu_access_pointer(sk->sk_dst_cache))
3743 sk_tx_queue_set(sk, new_index);
3744
3745 queue_index = new_index;
3746 }
3747
3748 return queue_index;
3749}
3750EXPORT_SYMBOL(netdev_pick_tx);
3751
3752struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3753 struct sk_buff *skb,
3754 struct net_device *sb_dev)
3755{
3756 int queue_index = 0;
3757
3758#ifdef CONFIG_XPS
3759 u32 sender_cpu = skb->sender_cpu - 1;
3760
3761 if (sender_cpu >= (u32)NR_CPUS)
3762 skb->sender_cpu = raw_smp_processor_id() + 1;
3763#endif
3764
3765 if (dev->real_num_tx_queues != 1) {
3766 const struct net_device_ops *ops = dev->netdev_ops;
3767
3768 if (ops->ndo_select_queue)
3769 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3770 else
3771 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3772
3773 queue_index = netdev_cap_txqueue(dev, queue_index);
3774 }
3775
3776 skb_set_queue_mapping(skb, queue_index);
3777 return netdev_get_tx_queue(dev, queue_index);
3778}
3779
3780/**
3781 * __dev_queue_xmit - transmit a buffer
3782 * @skb: buffer to transmit
3783 * @sb_dev: suboordinate device used for L2 forwarding offload
3784 *
3785 * Queue a buffer for transmission to a network device. The caller must
3786 * have set the device and priority and built the buffer before calling
3787 * this function. The function can be called from an interrupt.
3788 *
3789 * A negative errno code is returned on a failure. A success does not
3790 * guarantee the frame will be transmitted as it may be dropped due
3791 * to congestion or traffic shaping.
3792 *
3793 * -----------------------------------------------------------------------------------
3794 * I notice this method can also return errors from the queue disciplines,
3795 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3796 * be positive.
3797 *
3798 * Regardless of the return value, the skb is consumed, so it is currently
3799 * difficult to retry a send to this method. (You can bump the ref count
3800 * before sending to hold a reference for retry if you are careful.)
3801 *
3802 * When calling this method, interrupts MUST be enabled. This is because
3803 * the BH enable code must have IRQs enabled so that it will not deadlock.
3804 * --BLG
3805 */
3806static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3807{
3808 struct net_device *dev = skb->dev;
3809 struct netdev_queue *txq;
3810 struct Qdisc *q;
3811 int rc = -ENOMEM;
3812 bool again = false;
3813
3814 skb_reset_mac_header(skb);
3815
3816 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3817 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3818
3819 /* Disable soft irqs for various locks below. Also
3820 * stops preemption for RCU.
3821 */
3822 rcu_read_lock_bh();
3823
3824 skb_update_prio(skb);
3825
3826 qdisc_pkt_len_init(skb);
3827#ifdef CONFIG_NET_CLS_ACT
3828 skb->tc_at_ingress = 0;
3829# ifdef CONFIG_NET_EGRESS
3830 if (static_branch_unlikely(&egress_needed_key)) {
3831 skb = sch_handle_egress(skb, &rc, dev);
3832 if (!skb)
3833 goto out;
3834 }
3835# endif
3836#endif
3837 /* If device/qdisc don't need skb->dst, release it right now while
3838 * its hot in this cpu cache.
3839 */
3840 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3841 skb_dst_drop(skb);
3842 else
3843 skb_dst_force(skb);
3844
3845 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3846 q = rcu_dereference_bh(txq->qdisc);
3847
3848 trace_net_dev_queue(skb);
3849 if (q->enqueue) {
3850 rc = __dev_xmit_skb(skb, q, dev, txq);
3851 goto out;
3852 }
3853
3854 /* The device has no queue. Common case for software devices:
3855 * loopback, all the sorts of tunnels...
3856
3857 * Really, it is unlikely that netif_tx_lock protection is necessary
3858 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3859 * counters.)
3860 * However, it is possible, that they rely on protection
3861 * made by us here.
3862
3863 * Check this and shot the lock. It is not prone from deadlocks.
3864 *Either shot noqueue qdisc, it is even simpler 8)
3865 */
3866 if (dev->flags & IFF_UP) {
3867 int cpu = smp_processor_id(); /* ok because BHs are off */
3868
3869 if (txq->xmit_lock_owner != cpu) {
3870 if (dev_xmit_recursion())
3871 goto recursion_alert;
3872
3873 skb = validate_xmit_skb(skb, dev, &again);
3874 if (!skb)
3875 goto out;
3876
3877 HARD_TX_LOCK(dev, txq, cpu);
3878
3879 if (!netif_xmit_stopped(txq)) {
3880 dev_xmit_recursion_inc();
3881 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3882 dev_xmit_recursion_dec();
3883 if (dev_xmit_complete(rc)) {
3884 HARD_TX_UNLOCK(dev, txq);
3885 goto out;
3886 }
3887 }
3888 HARD_TX_UNLOCK(dev, txq);
3889 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3890 dev->name);
3891 } else {
3892 /* Recursion is detected! It is possible,
3893 * unfortunately
3894 */
3895recursion_alert:
3896 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3897 dev->name);
3898 }
3899 }
3900
3901 rc = -ENETDOWN;
3902 rcu_read_unlock_bh();
3903
3904 atomic_long_inc(&dev->tx_dropped);
3905 kfree_skb_list(skb);
3906 return rc;
3907out:
3908 rcu_read_unlock_bh();
3909 return rc;
3910}
3911
3912int dev_queue_xmit(struct sk_buff *skb)
3913{
3914 return __dev_queue_xmit(skb, NULL);
3915}
3916EXPORT_SYMBOL(dev_queue_xmit);
3917
3918int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3919{
3920 return __dev_queue_xmit(skb, sb_dev);
3921}
3922EXPORT_SYMBOL(dev_queue_xmit_accel);
3923
3924int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3925{
3926 struct net_device *dev = skb->dev;
3927 struct sk_buff *orig_skb = skb;
3928 struct netdev_queue *txq;
3929 int ret = NETDEV_TX_BUSY;
3930 bool again = false;
3931
3932 if (unlikely(!netif_running(dev) ||
3933 !netif_carrier_ok(dev)))
3934 goto drop;
3935
3936 skb = validate_xmit_skb_list(skb, dev, &again);
3937 if (skb != orig_skb)
3938 goto drop;
3939
3940 skb_set_queue_mapping(skb, queue_id);
3941 txq = skb_get_tx_queue(dev, skb);
3942
3943 local_bh_disable();
3944
3945 HARD_TX_LOCK(dev, txq, smp_processor_id());
3946 if (!netif_xmit_frozen_or_drv_stopped(txq))
3947 ret = netdev_start_xmit(skb, dev, txq, false);
3948 HARD_TX_UNLOCK(dev, txq);
3949
3950 local_bh_enable();
3951
3952 if (!dev_xmit_complete(ret))
3953 kfree_skb(skb);
3954
3955 return ret;
3956drop:
3957 atomic_long_inc(&dev->tx_dropped);
3958 kfree_skb_list(skb);
3959 return NET_XMIT_DROP;
3960}
3961EXPORT_SYMBOL(dev_direct_xmit);
3962
3963/*************************************************************************
3964 * Receiver routines
3965 *************************************************************************/
3966
3967int netdev_max_backlog __read_mostly = 1000;
3968EXPORT_SYMBOL(netdev_max_backlog);
3969
3970int netdev_tstamp_prequeue __read_mostly = 1;
3971int netdev_budget __read_mostly = 300;
3972unsigned int __read_mostly netdev_budget_usecs = 2000;
3973int weight_p __read_mostly = 64; /* old backlog weight */
3974int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3975int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3976int dev_rx_weight __read_mostly = 64;
3977int dev_tx_weight __read_mostly = 64;
3978
3979/* Called with irq disabled */
3980static inline void ____napi_schedule(struct softnet_data *sd,
3981 struct napi_struct *napi)
3982{
3983 list_add_tail(&napi->poll_list, &sd->poll_list);
3984 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3985}
3986
3987#ifdef CONFIG_RPS
3988
3989/* One global table that all flow-based protocols share. */
3990struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3991EXPORT_SYMBOL(rps_sock_flow_table);
3992u32 rps_cpu_mask __read_mostly;
3993EXPORT_SYMBOL(rps_cpu_mask);
3994
3995struct static_key_false rps_needed __read_mostly;
3996EXPORT_SYMBOL(rps_needed);
3997struct static_key_false rfs_needed __read_mostly;
3998EXPORT_SYMBOL(rfs_needed);
3999
4000static struct rps_dev_flow *
4001set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4002 struct rps_dev_flow *rflow, u16 next_cpu)
4003{
4004 if (next_cpu < nr_cpu_ids) {
4005#ifdef CONFIG_RFS_ACCEL
4006 struct netdev_rx_queue *rxqueue;
4007 struct rps_dev_flow_table *flow_table;
4008 struct rps_dev_flow *old_rflow;
4009 u32 flow_id;
4010 u16 rxq_index;
4011 int rc;
4012
4013 /* Should we steer this flow to a different hardware queue? */
4014 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4015 !(dev->features & NETIF_F_NTUPLE))
4016 goto out;
4017 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4018 if (rxq_index == skb_get_rx_queue(skb))
4019 goto out;
4020
4021 rxqueue = dev->_rx + rxq_index;
4022 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4023 if (!flow_table)
4024 goto out;
4025 flow_id = skb_get_hash(skb) & flow_table->mask;
4026 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4027 rxq_index, flow_id);
4028 if (rc < 0)
4029 goto out;
4030 old_rflow = rflow;
4031 rflow = &flow_table->flows[flow_id];
4032 rflow->filter = rc;
4033 if (old_rflow->filter == rflow->filter)
4034 old_rflow->filter = RPS_NO_FILTER;
4035 out:
4036#endif
4037 rflow->last_qtail =
4038 per_cpu(softnet_data, next_cpu).input_queue_head;
4039 }
4040
4041 rflow->cpu = next_cpu;
4042 return rflow;
4043}
4044
4045/*
4046 * get_rps_cpu is called from netif_receive_skb and returns the target
4047 * CPU from the RPS map of the receiving queue for a given skb.
4048 * rcu_read_lock must be held on entry.
4049 */
4050static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4051 struct rps_dev_flow **rflowp)
4052{
4053 const struct rps_sock_flow_table *sock_flow_table;
4054 struct netdev_rx_queue *rxqueue = dev->_rx;
4055 struct rps_dev_flow_table *flow_table;
4056 struct rps_map *map;
4057 int cpu = -1;
4058 u32 tcpu;
4059 u32 hash;
4060
4061 if (skb_rx_queue_recorded(skb)) {
4062 u16 index = skb_get_rx_queue(skb);
4063
4064 if (unlikely(index >= dev->real_num_rx_queues)) {
4065 WARN_ONCE(dev->real_num_rx_queues > 1,
4066 "%s received packet on queue %u, but number "
4067 "of RX queues is %u\n",
4068 dev->name, index, dev->real_num_rx_queues);
4069 goto done;
4070 }
4071 rxqueue += index;
4072 }
4073
4074 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4075
4076 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4077 map = rcu_dereference(rxqueue->rps_map);
4078 if (!flow_table && !map)
4079 goto done;
4080
4081 skb_reset_network_header(skb);
4082 hash = skb_get_hash(skb);
4083 if (!hash)
4084 goto done;
4085
4086 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4087 if (flow_table && sock_flow_table) {
4088 struct rps_dev_flow *rflow;
4089 u32 next_cpu;
4090 u32 ident;
4091
4092 /* First check into global flow table if there is a match */
4093 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4094 if ((ident ^ hash) & ~rps_cpu_mask)
4095 goto try_rps;
4096
4097 next_cpu = ident & rps_cpu_mask;
4098
4099 /* OK, now we know there is a match,
4100 * we can look at the local (per receive queue) flow table
4101 */
4102 rflow = &flow_table->flows[hash & flow_table->mask];
4103 tcpu = rflow->cpu;
4104
4105 /*
4106 * If the desired CPU (where last recvmsg was done) is
4107 * different from current CPU (one in the rx-queue flow
4108 * table entry), switch if one of the following holds:
4109 * - Current CPU is unset (>= nr_cpu_ids).
4110 * - Current CPU is offline.
4111 * - The current CPU's queue tail has advanced beyond the
4112 * last packet that was enqueued using this table entry.
4113 * This guarantees that all previous packets for the flow
4114 * have been dequeued, thus preserving in order delivery.
4115 */
4116 if (unlikely(tcpu != next_cpu) &&
4117 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4118 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4119 rflow->last_qtail)) >= 0)) {
4120 tcpu = next_cpu;
4121 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4122 }
4123
4124 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4125 *rflowp = rflow;
4126 cpu = tcpu;
4127 goto done;
4128 }
4129 }
4130
4131try_rps:
4132
4133 if (map) {
4134 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4135 if (cpu_online(tcpu)) {
4136 cpu = tcpu;
4137 goto done;
4138 }
4139 }
4140
4141done:
4142 return cpu;
4143}
4144
4145#ifdef CONFIG_RFS_ACCEL
4146
4147/**
4148 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4149 * @dev: Device on which the filter was set
4150 * @rxq_index: RX queue index
4151 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4152 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4153 *
4154 * Drivers that implement ndo_rx_flow_steer() should periodically call
4155 * this function for each installed filter and remove the filters for
4156 * which it returns %true.
4157 */
4158bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4159 u32 flow_id, u16 filter_id)
4160{
4161 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4162 struct rps_dev_flow_table *flow_table;
4163 struct rps_dev_flow *rflow;
4164 bool expire = true;
4165 unsigned int cpu;
4166
4167 rcu_read_lock();
4168 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4169 if (flow_table && flow_id <= flow_table->mask) {
4170 rflow = &flow_table->flows[flow_id];
4171 cpu = READ_ONCE(rflow->cpu);
4172 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4173 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4174 rflow->last_qtail) <
4175 (int)(10 * flow_table->mask)))
4176 expire = false;
4177 }
4178 rcu_read_unlock();
4179 return expire;
4180}
4181EXPORT_SYMBOL(rps_may_expire_flow);
4182
4183#endif /* CONFIG_RFS_ACCEL */
4184
4185/* Called from hardirq (IPI) context */
4186static void rps_trigger_softirq(void *data)
4187{
4188 struct softnet_data *sd = data;
4189
4190 ____napi_schedule(sd, &sd->backlog);
4191 sd->received_rps++;
4192}
4193
4194#endif /* CONFIG_RPS */
4195
4196/*
4197 * Check if this softnet_data structure is another cpu one
4198 * If yes, queue it to our IPI list and return 1
4199 * If no, return 0
4200 */
4201static int rps_ipi_queued(struct softnet_data *sd)
4202{
4203#ifdef CONFIG_RPS
4204 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4205
4206 if (sd != mysd) {
4207 sd->rps_ipi_next = mysd->rps_ipi_list;
4208 mysd->rps_ipi_list = sd;
4209
4210 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4211 return 1;
4212 }
4213#endif /* CONFIG_RPS */
4214 return 0;
4215}
4216
4217#ifdef CONFIG_NET_FLOW_LIMIT
4218int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4219#endif
4220
4221static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4222{
4223#ifdef CONFIG_NET_FLOW_LIMIT
4224 struct sd_flow_limit *fl;
4225 struct softnet_data *sd;
4226 unsigned int old_flow, new_flow;
4227
4228 if (qlen < (netdev_max_backlog >> 1))
4229 return false;
4230
4231 sd = this_cpu_ptr(&softnet_data);
4232
4233 rcu_read_lock();
4234 fl = rcu_dereference(sd->flow_limit);
4235 if (fl) {
4236 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4237 old_flow = fl->history[fl->history_head];
4238 fl->history[fl->history_head] = new_flow;
4239
4240 fl->history_head++;
4241 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4242
4243 if (likely(fl->buckets[old_flow]))
4244 fl->buckets[old_flow]--;
4245
4246 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4247 fl->count++;
4248 rcu_read_unlock();
4249 return true;
4250 }
4251 }
4252 rcu_read_unlock();
4253#endif
4254 return false;
4255}
4256
4257/*
4258 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4259 * queue (may be a remote CPU queue).
4260 */
4261static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4262 unsigned int *qtail)
4263{
4264 struct softnet_data *sd;
4265 unsigned long flags;
4266 unsigned int qlen;
4267
4268 sd = &per_cpu(softnet_data, cpu);
4269
4270 local_irq_save(flags);
4271
4272 rps_lock(sd);
4273 if (!netif_running(skb->dev))
4274 goto drop;
4275 qlen = skb_queue_len(&sd->input_pkt_queue);
4276 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4277 if (qlen) {
4278enqueue:
4279 __skb_queue_tail(&sd->input_pkt_queue, skb);
4280 input_queue_tail_incr_save(sd, qtail);
4281 rps_unlock(sd);
4282 local_irq_restore(flags);
4283 return NET_RX_SUCCESS;
4284 }
4285
4286 /* Schedule NAPI for backlog device
4287 * We can use non atomic operation since we own the queue lock
4288 */
4289 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4290 if (!rps_ipi_queued(sd))
4291 ____napi_schedule(sd, &sd->backlog);
4292 }
4293 goto enqueue;
4294 }
4295
4296drop:
4297 sd->dropped++;
4298 rps_unlock(sd);
4299
4300 local_irq_restore(flags);
4301
4302 atomic_long_inc(&skb->dev->rx_dropped);
4303 kfree_skb(skb);
4304 return NET_RX_DROP;
4305}
4306
4307static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4308{
4309 struct net_device *dev = skb->dev;
4310 struct netdev_rx_queue *rxqueue;
4311
4312 rxqueue = dev->_rx;
4313
4314 if (skb_rx_queue_recorded(skb)) {
4315 u16 index = skb_get_rx_queue(skb);
4316
4317 if (unlikely(index >= dev->real_num_rx_queues)) {
4318 WARN_ONCE(dev->real_num_rx_queues > 1,
4319 "%s received packet on queue %u, but number "
4320 "of RX queues is %u\n",
4321 dev->name, index, dev->real_num_rx_queues);
4322
4323 return rxqueue; /* Return first rxqueue */
4324 }
4325 rxqueue += index;
4326 }
4327 return rxqueue;
4328}
4329
4330static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4331 struct xdp_buff *xdp,
4332 struct bpf_prog *xdp_prog)
4333{
4334 struct netdev_rx_queue *rxqueue;
4335 void *orig_data, *orig_data_end;
4336 u32 metalen, act = XDP_DROP;
4337 __be16 orig_eth_type;
4338 struct ethhdr *eth;
4339 bool orig_bcast;
4340 int hlen, off;
4341 u32 mac_len;
4342
4343 /* Reinjected packets coming from act_mirred or similar should
4344 * not get XDP generic processing.
4345 */
4346 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4347 return XDP_PASS;
4348
4349 /* XDP packets must be linear and must have sufficient headroom
4350 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4351 * native XDP provides, thus we need to do it here as well.
4352 */
4353 if (skb_is_nonlinear(skb) ||
4354 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4355 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4356 int troom = skb->tail + skb->data_len - skb->end;
4357
4358 /* In case we have to go down the path and also linearize,
4359 * then lets do the pskb_expand_head() work just once here.
4360 */
4361 if (pskb_expand_head(skb,
4362 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4363 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4364 goto do_drop;
4365 if (skb_linearize(skb))
4366 goto do_drop;
4367 }
4368
4369 /* The XDP program wants to see the packet starting at the MAC
4370 * header.
4371 */
4372 mac_len = skb->data - skb_mac_header(skb);
4373 hlen = skb_headlen(skb) + mac_len;
4374 xdp->data = skb->data - mac_len;
4375 xdp->data_meta = xdp->data;
4376 xdp->data_end = xdp->data + hlen;
4377 xdp->data_hard_start = skb->data - skb_headroom(skb);
4378 orig_data_end = xdp->data_end;
4379 orig_data = xdp->data;
4380 eth = (struct ethhdr *)xdp->data;
4381 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4382 orig_eth_type = eth->h_proto;
4383
4384 rxqueue = netif_get_rxqueue(skb);
4385 xdp->rxq = &rxqueue->xdp_rxq;
4386
4387 act = bpf_prog_run_xdp(xdp_prog, xdp);
4388
4389 off = xdp->data - orig_data;
4390 if (off > 0)
4391 __skb_pull(skb, off);
4392 else if (off < 0)
4393 __skb_push(skb, -off);
4394 skb->mac_header += off;
4395
4396 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4397 * pckt.
4398 */
4399 off = orig_data_end - xdp->data_end;
4400 if (off != 0) {
4401 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4402 skb->len -= off;
4403
4404 }
4405
4406 /* check if XDP changed eth hdr such SKB needs update */
4407 eth = (struct ethhdr *)xdp->data;
4408 if ((orig_eth_type != eth->h_proto) ||
4409 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4410 __skb_push(skb, ETH_HLEN);
4411 skb->protocol = eth_type_trans(skb, skb->dev);
4412 }
4413
4414 switch (act) {
4415 case XDP_REDIRECT:
4416 case XDP_TX:
4417 __skb_push(skb, mac_len);
4418 break;
4419 case XDP_PASS:
4420 metalen = xdp->data - xdp->data_meta;
4421 if (metalen)
4422 skb_metadata_set(skb, metalen);
4423 break;
4424 default:
4425 bpf_warn_invalid_xdp_action(act);
4426 /* fall through */
4427 case XDP_ABORTED:
4428 trace_xdp_exception(skb->dev, xdp_prog, act);
4429 /* fall through */
4430 case XDP_DROP:
4431 do_drop:
4432 kfree_skb(skb);
4433 break;
4434 }
4435
4436 return act;
4437}
4438
4439/* When doing generic XDP we have to bypass the qdisc layer and the
4440 * network taps in order to match in-driver-XDP behavior.
4441 */
4442void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4443{
4444 struct net_device *dev = skb->dev;
4445 struct netdev_queue *txq;
4446 bool free_skb = true;
4447 int cpu, rc;
4448
4449 txq = netdev_core_pick_tx(dev, skb, NULL);
4450 cpu = smp_processor_id();
4451 HARD_TX_LOCK(dev, txq, cpu);
4452 if (!netif_xmit_stopped(txq)) {
4453 rc = netdev_start_xmit(skb, dev, txq, 0);
4454 if (dev_xmit_complete(rc))
4455 free_skb = false;
4456 }
4457 HARD_TX_UNLOCK(dev, txq);
4458 if (free_skb) {
4459 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4460 kfree_skb(skb);
4461 }
4462}
4463EXPORT_SYMBOL_GPL(generic_xdp_tx);
4464
4465static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4466
4467int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4468{
4469 if (xdp_prog) {
4470 struct xdp_buff xdp;
4471 u32 act;
4472 int err;
4473
4474 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4475 if (act != XDP_PASS) {
4476 switch (act) {
4477 case XDP_REDIRECT:
4478 err = xdp_do_generic_redirect(skb->dev, skb,
4479 &xdp, xdp_prog);
4480 if (err)
4481 goto out_redir;
4482 break;
4483 case XDP_TX:
4484 generic_xdp_tx(skb, xdp_prog);
4485 break;
4486 }
4487 return XDP_DROP;
4488 }
4489 }
4490 return XDP_PASS;
4491out_redir:
4492 kfree_skb(skb);
4493 return XDP_DROP;
4494}
4495EXPORT_SYMBOL_GPL(do_xdp_generic);
4496
4497static int netif_rx_internal(struct sk_buff *skb)
4498{
4499 int ret;
4500
4501 net_timestamp_check(netdev_tstamp_prequeue, skb);
4502
4503 trace_netif_rx(skb);
4504
4505 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4506 int ret;
4507
4508 preempt_disable();
4509 rcu_read_lock();
4510 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4511 rcu_read_unlock();
4512 preempt_enable();
4513
4514 /* Consider XDP consuming the packet a success from
4515 * the netdev point of view we do not want to count
4516 * this as an error.
4517 */
4518 if (ret != XDP_PASS)
4519 return NET_RX_SUCCESS;
4520 }
4521
4522#ifdef CONFIG_RPS
4523 if (static_branch_unlikely(&rps_needed)) {
4524 struct rps_dev_flow voidflow, *rflow = &voidflow;
4525 int cpu;
4526
4527 preempt_disable();
4528 rcu_read_lock();
4529
4530 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4531 if (cpu < 0)
4532 cpu = smp_processor_id();
4533
4534 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4535
4536 rcu_read_unlock();
4537 preempt_enable();
4538 } else
4539#endif
4540 {
4541 unsigned int qtail;
4542
4543 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4544 put_cpu();
4545 }
4546 return ret;
4547}
4548
4549/**
4550 * netif_rx - post buffer to the network code
4551 * @skb: buffer to post
4552 *
4553 * This function receives a packet from a device driver and queues it for
4554 * the upper (protocol) levels to process. It always succeeds. The buffer
4555 * may be dropped during processing for congestion control or by the
4556 * protocol layers.
4557 *
4558 * return values:
4559 * NET_RX_SUCCESS (no congestion)
4560 * NET_RX_DROP (packet was dropped)
4561 *
4562 */
4563
4564int netif_rx(struct sk_buff *skb)
4565{
4566 int ret;
4567
4568 trace_netif_rx_entry(skb);
4569
4570 ret = netif_rx_internal(skb);
4571 trace_netif_rx_exit(ret);
4572
4573 return ret;
4574}
4575EXPORT_SYMBOL(netif_rx);
4576
4577int netif_rx_ni(struct sk_buff *skb)
4578{
4579 int err;
4580
4581 trace_netif_rx_ni_entry(skb);
4582
4583 preempt_disable();
4584 err = netif_rx_internal(skb);
4585 if (local_softirq_pending())
4586 do_softirq();
4587 preempt_enable();
4588 trace_netif_rx_ni_exit(err);
4589
4590 return err;
4591}
4592EXPORT_SYMBOL(netif_rx_ni);
4593
4594static __latent_entropy void net_tx_action(struct softirq_action *h)
4595{
4596 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4597
4598 if (sd->completion_queue) {
4599 struct sk_buff *clist;
4600
4601 local_irq_disable();
4602 clist = sd->completion_queue;
4603 sd->completion_queue = NULL;
4604 local_irq_enable();
4605
4606 while (clist) {
4607 struct sk_buff *skb = clist;
4608
4609 clist = clist->next;
4610
4611 WARN_ON(refcount_read(&skb->users));
4612 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4613 trace_consume_skb(skb);
4614 else
4615 trace_kfree_skb(skb, net_tx_action);
4616
4617 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4618 __kfree_skb(skb);
4619 else
4620 __kfree_skb_defer(skb);
4621 }
4622
4623 __kfree_skb_flush();
4624 }
4625
4626 if (sd->output_queue) {
4627 struct Qdisc *head;
4628
4629 local_irq_disable();
4630 head = sd->output_queue;
4631 sd->output_queue = NULL;
4632 sd->output_queue_tailp = &sd->output_queue;
4633 local_irq_enable();
4634
4635 while (head) {
4636 struct Qdisc *q = head;
4637 spinlock_t *root_lock = NULL;
4638
4639 head = head->next_sched;
4640
4641 if (!(q->flags & TCQ_F_NOLOCK)) {
4642 root_lock = qdisc_lock(q);
4643 spin_lock(root_lock);
4644 }
4645 /* We need to make sure head->next_sched is read
4646 * before clearing __QDISC_STATE_SCHED
4647 */
4648 smp_mb__before_atomic();
4649 clear_bit(__QDISC_STATE_SCHED, &q->state);
4650 qdisc_run(q);
4651 if (root_lock)
4652 spin_unlock(root_lock);
4653 }
4654 }
4655
4656 xfrm_dev_backlog(sd);
4657}
4658
4659#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4660/* This hook is defined here for ATM LANE */
4661int (*br_fdb_test_addr_hook)(struct net_device *dev,
4662 unsigned char *addr) __read_mostly;
4663EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4664#endif
4665
4666static inline struct sk_buff *
4667sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4668 struct net_device *orig_dev)
4669{
4670#ifdef CONFIG_NET_CLS_ACT
4671 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4672 struct tcf_result cl_res;
4673
4674 /* If there's at least one ingress present somewhere (so
4675 * we get here via enabled static key), remaining devices
4676 * that are not configured with an ingress qdisc will bail
4677 * out here.
4678 */
4679 if (!miniq)
4680 return skb;
4681
4682 if (*pt_prev) {
4683 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4684 *pt_prev = NULL;
4685 }
4686
4687 qdisc_skb_cb(skb)->pkt_len = skb->len;
4688 skb->tc_at_ingress = 1;
4689 mini_qdisc_bstats_cpu_update(miniq, skb);
4690
4691 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4692 case TC_ACT_OK:
4693 case TC_ACT_RECLASSIFY:
4694 skb->tc_index = TC_H_MIN(cl_res.classid);
4695 break;
4696 case TC_ACT_SHOT:
4697 mini_qdisc_qstats_cpu_drop(miniq);
4698 kfree_skb(skb);
4699 return NULL;
4700 case TC_ACT_STOLEN:
4701 case TC_ACT_QUEUED:
4702 case TC_ACT_TRAP:
4703 consume_skb(skb);
4704 return NULL;
4705 case TC_ACT_REDIRECT:
4706 /* skb_mac_header check was done by cls/act_bpf, so
4707 * we can safely push the L2 header back before
4708 * redirecting to another netdev
4709 */
4710 __skb_push(skb, skb->mac_len);
4711 skb_do_redirect(skb);
4712 return NULL;
4713 case TC_ACT_REINSERT:
4714 /* this does not scrub the packet, and updates stats on error */
4715 skb_tc_reinsert(skb, &cl_res);
4716 return NULL;
4717 default:
4718 break;
4719 }
4720#endif /* CONFIG_NET_CLS_ACT */
4721 return skb;
4722}
4723
4724/**
4725 * netdev_is_rx_handler_busy - check if receive handler is registered
4726 * @dev: device to check
4727 *
4728 * Check if a receive handler is already registered for a given device.
4729 * Return true if there one.
4730 *
4731 * The caller must hold the rtnl_mutex.
4732 */
4733bool netdev_is_rx_handler_busy(struct net_device *dev)
4734{
4735 ASSERT_RTNL();
4736 return dev && rtnl_dereference(dev->rx_handler);
4737}
4738EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4739
4740/**
4741 * netdev_rx_handler_register - register receive handler
4742 * @dev: device to register a handler for
4743 * @rx_handler: receive handler to register
4744 * @rx_handler_data: data pointer that is used by rx handler
4745 *
4746 * Register a receive handler for a device. This handler will then be
4747 * called from __netif_receive_skb. A negative errno code is returned
4748 * on a failure.
4749 *
4750 * The caller must hold the rtnl_mutex.
4751 *
4752 * For a general description of rx_handler, see enum rx_handler_result.
4753 */
4754int netdev_rx_handler_register(struct net_device *dev,
4755 rx_handler_func_t *rx_handler,
4756 void *rx_handler_data)
4757{
4758 if (netdev_is_rx_handler_busy(dev))
4759 return -EBUSY;
4760
4761 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4762 return -EINVAL;
4763
4764 /* Note: rx_handler_data must be set before rx_handler */
4765 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4766 rcu_assign_pointer(dev->rx_handler, rx_handler);
4767
4768 return 0;
4769}
4770EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4771
4772/**
4773 * netdev_rx_handler_unregister - unregister receive handler
4774 * @dev: device to unregister a handler from
4775 *
4776 * Unregister a receive handler from a device.
4777 *
4778 * The caller must hold the rtnl_mutex.
4779 */
4780void netdev_rx_handler_unregister(struct net_device *dev)
4781{
4782
4783 ASSERT_RTNL();
4784 RCU_INIT_POINTER(dev->rx_handler, NULL);
4785 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4786 * section has a guarantee to see a non NULL rx_handler_data
4787 * as well.
4788 */
4789 synchronize_net();
4790 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4791}
4792EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4793
4794/*
4795 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4796 * the special handling of PFMEMALLOC skbs.
4797 */
4798static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4799{
4800 switch (skb->protocol) {
4801 case htons(ETH_P_ARP):
4802 case htons(ETH_P_IP):
4803 case htons(ETH_P_IPV6):
4804 case htons(ETH_P_8021Q):
4805 case htons(ETH_P_8021AD):
4806 return true;
4807 default:
4808 return false;
4809 }
4810}
4811
4812static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4813 int *ret, struct net_device *orig_dev)
4814{
4815#ifdef CONFIG_NETFILTER_INGRESS
4816 if (nf_hook_ingress_active(skb)) {
4817 int ingress_retval;
4818
4819 if (*pt_prev) {
4820 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4821 *pt_prev = NULL;
4822 }
4823
4824 rcu_read_lock();
4825 ingress_retval = nf_hook_ingress(skb);
4826 rcu_read_unlock();
4827 return ingress_retval;
4828 }
4829#endif /* CONFIG_NETFILTER_INGRESS */
4830 return 0;
4831}
4832
4833static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4834 struct packet_type **ppt_prev)
4835{
4836 struct packet_type *ptype, *pt_prev;
4837 rx_handler_func_t *rx_handler;
4838 struct net_device *orig_dev;
4839 bool deliver_exact = false;
4840 int ret = NET_RX_DROP;
4841 __be16 type;
4842
4843 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4844
4845 trace_netif_receive_skb(skb);
4846
4847 orig_dev = skb->dev;
4848
4849 skb_reset_network_header(skb);
4850 if (!skb_transport_header_was_set(skb))
4851 skb_reset_transport_header(skb);
4852 skb_reset_mac_len(skb);
4853
4854 pt_prev = NULL;
4855
4856another_round:
4857 skb->skb_iif = skb->dev->ifindex;
4858
4859 __this_cpu_inc(softnet_data.processed);
4860
4861 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4862 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4863 skb = skb_vlan_untag(skb);
4864 if (unlikely(!skb))
4865 goto out;
4866 }
4867
4868 if (skb_skip_tc_classify(skb))
4869 goto skip_classify;
4870
4871 if (pfmemalloc)
4872 goto skip_taps;
4873
4874 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4875 if (pt_prev)
4876 ret = deliver_skb(skb, pt_prev, orig_dev);
4877 pt_prev = ptype;
4878 }
4879
4880 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4881 if (pt_prev)
4882 ret = deliver_skb(skb, pt_prev, orig_dev);
4883 pt_prev = ptype;
4884 }
4885
4886skip_taps:
4887#ifdef CONFIG_NET_INGRESS
4888 if (static_branch_unlikely(&ingress_needed_key)) {
4889 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4890 if (!skb)
4891 goto out;
4892
4893 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4894 goto out;
4895 }
4896#endif
4897 skb_reset_tc(skb);
4898skip_classify:
4899 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4900 goto drop;
4901
4902 if (skb_vlan_tag_present(skb)) {
4903 if (pt_prev) {
4904 ret = deliver_skb(skb, pt_prev, orig_dev);
4905 pt_prev = NULL;
4906 }
4907 if (vlan_do_receive(&skb))
4908 goto another_round;
4909 else if (unlikely(!skb))
4910 goto out;
4911 }
4912
4913 rx_handler = rcu_dereference(skb->dev->rx_handler);
4914 if (rx_handler) {
4915 if (pt_prev) {
4916 ret = deliver_skb(skb, pt_prev, orig_dev);
4917 pt_prev = NULL;
4918 }
4919 switch (rx_handler(&skb)) {
4920 case RX_HANDLER_CONSUMED:
4921 ret = NET_RX_SUCCESS;
4922 goto out;
4923 case RX_HANDLER_ANOTHER:
4924 goto another_round;
4925 case RX_HANDLER_EXACT:
4926 deliver_exact = true;
4927 case RX_HANDLER_PASS:
4928 break;
4929 default:
4930 BUG();
4931 }
4932 }
4933
4934 if (unlikely(skb_vlan_tag_present(skb))) {
4935 if (skb_vlan_tag_get_id(skb))
4936 skb->pkt_type = PACKET_OTHERHOST;
4937 /* Note: we might in the future use prio bits
4938 * and set skb->priority like in vlan_do_receive()
4939 * For the time being, just ignore Priority Code Point
4940 */
4941 __vlan_hwaccel_clear_tag(skb);
4942 }
4943
4944 type = skb->protocol;
4945
4946 /* deliver only exact match when indicated */
4947 if (likely(!deliver_exact)) {
4948 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949 &ptype_base[ntohs(type) &
4950 PTYPE_HASH_MASK]);
4951 }
4952
4953 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4954 &orig_dev->ptype_specific);
4955
4956 if (unlikely(skb->dev != orig_dev)) {
4957 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4958 &skb->dev->ptype_specific);
4959 }
4960
4961 if (pt_prev) {
4962 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4963 goto drop;
4964 *ppt_prev = pt_prev;
4965 } else {
4966drop:
4967 if (!deliver_exact)
4968 atomic_long_inc(&skb->dev->rx_dropped);
4969 else
4970 atomic_long_inc(&skb->dev->rx_nohandler);
4971 kfree_skb(skb);
4972 /* Jamal, now you will not able to escape explaining
4973 * me how you were going to use this. :-)
4974 */
4975 ret = NET_RX_DROP;
4976 }
4977
4978out:
4979 return ret;
4980}
4981
4982static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4983{
4984 struct net_device *orig_dev = skb->dev;
4985 struct packet_type *pt_prev = NULL;
4986 int ret;
4987
4988 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4989 if (pt_prev)
4990 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4991 skb->dev, pt_prev, orig_dev);
4992 return ret;
4993}
4994
4995/**
4996 * netif_receive_skb_core - special purpose version of netif_receive_skb
4997 * @skb: buffer to process
4998 *
4999 * More direct receive version of netif_receive_skb(). It should
5000 * only be used by callers that have a need to skip RPS and Generic XDP.
5001 * Caller must also take care of handling if (page_is_)pfmemalloc.
5002 *
5003 * This function may only be called from softirq context and interrupts
5004 * should be enabled.
5005 *
5006 * Return values (usually ignored):
5007 * NET_RX_SUCCESS: no congestion
5008 * NET_RX_DROP: packet was dropped
5009 */
5010int netif_receive_skb_core(struct sk_buff *skb)
5011{
5012 int ret;
5013
5014 rcu_read_lock();
5015 ret = __netif_receive_skb_one_core(skb, false);
5016 rcu_read_unlock();
5017
5018 return ret;
5019}
5020EXPORT_SYMBOL(netif_receive_skb_core);
5021
5022static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5023 struct packet_type *pt_prev,
5024 struct net_device *orig_dev)
5025{
5026 struct sk_buff *skb, *next;
5027
5028 if (!pt_prev)
5029 return;
5030 if (list_empty(head))
5031 return;
5032 if (pt_prev->list_func != NULL)
5033 pt_prev->list_func(head, pt_prev, orig_dev);
5034 else
5035 list_for_each_entry_safe(skb, next, head, list) {
5036 skb_list_del_init(skb);
5037 INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5038 skb->dev, pt_prev, orig_dev);
5039 }
5040}
5041
5042static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5043{
5044 /* Fast-path assumptions:
5045 * - There is no RX handler.
5046 * - Only one packet_type matches.
5047 * If either of these fails, we will end up doing some per-packet
5048 * processing in-line, then handling the 'last ptype' for the whole
5049 * sublist. This can't cause out-of-order delivery to any single ptype,
5050 * because the 'last ptype' must be constant across the sublist, and all
5051 * other ptypes are handled per-packet.
5052 */
5053 /* Current (common) ptype of sublist */
5054 struct packet_type *pt_curr = NULL;
5055 /* Current (common) orig_dev of sublist */
5056 struct net_device *od_curr = NULL;
5057 struct list_head sublist;
5058 struct sk_buff *skb, *next;
5059
5060 INIT_LIST_HEAD(&sublist);
5061 list_for_each_entry_safe(skb, next, head, list) {
5062 struct net_device *orig_dev = skb->dev;
5063 struct packet_type *pt_prev = NULL;
5064
5065 skb_list_del_init(skb);
5066 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5067 if (!pt_prev)
5068 continue;
5069 if (pt_curr != pt_prev || od_curr != orig_dev) {
5070 /* dispatch old sublist */
5071 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5072 /* start new sublist */
5073 INIT_LIST_HEAD(&sublist);
5074 pt_curr = pt_prev;
5075 od_curr = orig_dev;
5076 }
5077 list_add_tail(&skb->list, &sublist);
5078 }
5079
5080 /* dispatch final sublist */
5081 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5082}
5083
5084static int __netif_receive_skb(struct sk_buff *skb)
5085{
5086 int ret;
5087
5088 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5089 unsigned int noreclaim_flag;
5090
5091 /*
5092 * PFMEMALLOC skbs are special, they should
5093 * - be delivered to SOCK_MEMALLOC sockets only
5094 * - stay away from userspace
5095 * - have bounded memory usage
5096 *
5097 * Use PF_MEMALLOC as this saves us from propagating the allocation
5098 * context down to all allocation sites.
5099 */
5100 noreclaim_flag = memalloc_noreclaim_save();
5101 ret = __netif_receive_skb_one_core(skb, true);
5102 memalloc_noreclaim_restore(noreclaim_flag);
5103 } else
5104 ret = __netif_receive_skb_one_core(skb, false);
5105
5106 return ret;
5107}
5108
5109static void __netif_receive_skb_list(struct list_head *head)
5110{
5111 unsigned long noreclaim_flag = 0;
5112 struct sk_buff *skb, *next;
5113 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5114
5115 list_for_each_entry_safe(skb, next, head, list) {
5116 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5117 struct list_head sublist;
5118
5119 /* Handle the previous sublist */
5120 list_cut_before(&sublist, head, &skb->list);
5121 if (!list_empty(&sublist))
5122 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5123 pfmemalloc = !pfmemalloc;
5124 /* See comments in __netif_receive_skb */
5125 if (pfmemalloc)
5126 noreclaim_flag = memalloc_noreclaim_save();
5127 else
5128 memalloc_noreclaim_restore(noreclaim_flag);
5129 }
5130 }
5131 /* Handle the remaining sublist */
5132 if (!list_empty(head))
5133 __netif_receive_skb_list_core(head, pfmemalloc);
5134 /* Restore pflags */
5135 if (pfmemalloc)
5136 memalloc_noreclaim_restore(noreclaim_flag);
5137}
5138
5139static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5140{
5141 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5142 struct bpf_prog *new = xdp->prog;
5143 int ret = 0;
5144
5145 switch (xdp->command) {
5146 case XDP_SETUP_PROG:
5147 rcu_assign_pointer(dev->xdp_prog, new);
5148 if (old)
5149 bpf_prog_put(old);
5150
5151 if (old && !new) {
5152 static_branch_dec(&generic_xdp_needed_key);
5153 } else if (new && !old) {
5154 static_branch_inc(&generic_xdp_needed_key);
5155 dev_disable_lro(dev);
5156 dev_disable_gro_hw(dev);
5157 }
5158 break;
5159
5160 case XDP_QUERY_PROG:
5161 xdp->prog_id = old ? old->aux->id : 0;
5162 break;
5163
5164 default:
5165 ret = -EINVAL;
5166 break;
5167 }
5168
5169 return ret;
5170}
5171
5172static int netif_receive_skb_internal(struct sk_buff *skb)
5173{
5174 int ret;
5175
5176 net_timestamp_check(netdev_tstamp_prequeue, skb);
5177
5178 if (skb_defer_rx_timestamp(skb))
5179 return NET_RX_SUCCESS;
5180
5181 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5182 int ret;
5183
5184 preempt_disable();
5185 rcu_read_lock();
5186 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5187 rcu_read_unlock();
5188 preempt_enable();
5189
5190 if (ret != XDP_PASS)
5191 return NET_RX_DROP;
5192 }
5193
5194 rcu_read_lock();
5195#ifdef CONFIG_RPS
5196 if (static_branch_unlikely(&rps_needed)) {
5197 struct rps_dev_flow voidflow, *rflow = &voidflow;
5198 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5199
5200 if (cpu >= 0) {
5201 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5202 rcu_read_unlock();
5203 return ret;
5204 }
5205 }
5206#endif
5207 ret = __netif_receive_skb(skb);
5208 rcu_read_unlock();
5209 return ret;
5210}
5211
5212static void netif_receive_skb_list_internal(struct list_head *head)
5213{
5214 struct bpf_prog *xdp_prog = NULL;
5215 struct sk_buff *skb, *next;
5216 struct list_head sublist;
5217
5218 INIT_LIST_HEAD(&sublist);
5219 list_for_each_entry_safe(skb, next, head, list) {
5220 net_timestamp_check(netdev_tstamp_prequeue, skb);
5221 skb_list_del_init(skb);
5222 if (!skb_defer_rx_timestamp(skb))
5223 list_add_tail(&skb->list, &sublist);
5224 }
5225 list_splice_init(&sublist, head);
5226
5227 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5228 preempt_disable();
5229 rcu_read_lock();
5230 list_for_each_entry_safe(skb, next, head, list) {
5231 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5232 skb_list_del_init(skb);
5233 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5234 list_add_tail(&skb->list, &sublist);
5235 }
5236 rcu_read_unlock();
5237 preempt_enable();
5238 /* Put passed packets back on main list */
5239 list_splice_init(&sublist, head);
5240 }
5241
5242 rcu_read_lock();
5243#ifdef CONFIG_RPS
5244 if (static_branch_unlikely(&rps_needed)) {
5245 list_for_each_entry_safe(skb, next, head, list) {
5246 struct rps_dev_flow voidflow, *rflow = &voidflow;
5247 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5248
5249 if (cpu >= 0) {
5250 /* Will be handled, remove from list */
5251 skb_list_del_init(skb);
5252 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5253 }
5254 }
5255 }
5256#endif
5257 __netif_receive_skb_list(head);
5258 rcu_read_unlock();
5259}
5260
5261/**
5262 * netif_receive_skb - process receive buffer from network
5263 * @skb: buffer to process
5264 *
5265 * netif_receive_skb() is the main receive data processing function.
5266 * It always succeeds. The buffer may be dropped during processing
5267 * for congestion control or by the protocol layers.
5268 *
5269 * This function may only be called from softirq context and interrupts
5270 * should be enabled.
5271 *
5272 * Return values (usually ignored):
5273 * NET_RX_SUCCESS: no congestion
5274 * NET_RX_DROP: packet was dropped
5275 */
5276int netif_receive_skb(struct sk_buff *skb)
5277{
5278 int ret;
5279
5280 trace_netif_receive_skb_entry(skb);
5281
5282 ret = netif_receive_skb_internal(skb);
5283 trace_netif_receive_skb_exit(ret);
5284
5285 return ret;
5286}
5287EXPORT_SYMBOL(netif_receive_skb);
5288
5289/**
5290 * netif_receive_skb_list - process many receive buffers from network
5291 * @head: list of skbs to process.
5292 *
5293 * Since return value of netif_receive_skb() is normally ignored, and
5294 * wouldn't be meaningful for a list, this function returns void.
5295 *
5296 * This function may only be called from softirq context and interrupts
5297 * should be enabled.
5298 */
5299void netif_receive_skb_list(struct list_head *head)
5300{
5301 struct sk_buff *skb;
5302
5303 if (list_empty(head))
5304 return;
5305 if (trace_netif_receive_skb_list_entry_enabled()) {
5306 list_for_each_entry(skb, head, list)
5307 trace_netif_receive_skb_list_entry(skb);
5308 }
5309 netif_receive_skb_list_internal(head);
5310 trace_netif_receive_skb_list_exit(0);
5311}
5312EXPORT_SYMBOL(netif_receive_skb_list);
5313
5314DEFINE_PER_CPU(struct work_struct, flush_works);
5315
5316/* Network device is going away, flush any packets still pending */
5317static void flush_backlog(struct work_struct *work)
5318{
5319 struct sk_buff *skb, *tmp;
5320 struct softnet_data *sd;
5321
5322 local_bh_disable();
5323 sd = this_cpu_ptr(&softnet_data);
5324
5325 local_irq_disable();
5326 rps_lock(sd);
5327 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5328 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5329 __skb_unlink(skb, &sd->input_pkt_queue);
5330 kfree_skb(skb);
5331 input_queue_head_incr(sd);
5332 }
5333 }
5334 rps_unlock(sd);
5335 local_irq_enable();
5336
5337 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5338 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5339 __skb_unlink(skb, &sd->process_queue);
5340 kfree_skb(skb);
5341 input_queue_head_incr(sd);
5342 }
5343 }
5344 local_bh_enable();
5345}
5346
5347static void flush_all_backlogs(void)
5348{
5349 unsigned int cpu;
5350
5351 get_online_cpus();
5352
5353 for_each_online_cpu(cpu)
5354 queue_work_on(cpu, system_highpri_wq,
5355 per_cpu_ptr(&flush_works, cpu));
5356
5357 for_each_online_cpu(cpu)
5358 flush_work(per_cpu_ptr(&flush_works, cpu));
5359
5360 put_online_cpus();
5361}
5362
5363INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5364INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5365static int napi_gro_complete(struct sk_buff *skb)
5366{
5367 struct packet_offload *ptype;
5368 __be16 type = skb->protocol;
5369 struct list_head *head = &offload_base;
5370 int err = -ENOENT;
5371
5372 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5373
5374 if (NAPI_GRO_CB(skb)->count == 1) {
5375 skb_shinfo(skb)->gso_size = 0;
5376 goto out;
5377 }
5378
5379 rcu_read_lock();
5380 list_for_each_entry_rcu(ptype, head, list) {
5381 if (ptype->type != type || !ptype->callbacks.gro_complete)
5382 continue;
5383
5384 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5385 ipv6_gro_complete, inet_gro_complete,
5386 skb, 0);
5387 break;
5388 }
5389 rcu_read_unlock();
5390
5391 if (err) {
5392 WARN_ON(&ptype->list == head);
5393 kfree_skb(skb);
5394 return NET_RX_SUCCESS;
5395 }
5396
5397out:
5398 return netif_receive_skb_internal(skb);
5399}
5400
5401static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5402 bool flush_old)
5403{
5404 struct list_head *head = &napi->gro_hash[index].list;
5405 struct sk_buff *skb, *p;
5406
5407 list_for_each_entry_safe_reverse(skb, p, head, list) {
5408 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5409 return;
5410 skb_list_del_init(skb);
5411 napi_gro_complete(skb);
5412 napi->gro_hash[index].count--;
5413 }
5414
5415 if (!napi->gro_hash[index].count)
5416 __clear_bit(index, &napi->gro_bitmask);
5417}
5418
5419/* napi->gro_hash[].list contains packets ordered by age.
5420 * youngest packets at the head of it.
5421 * Complete skbs in reverse order to reduce latencies.
5422 */
5423void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5424{
5425 unsigned long bitmask = napi->gro_bitmask;
5426 unsigned int i, base = ~0U;
5427
5428 while ((i = ffs(bitmask)) != 0) {
5429 bitmask >>= i;
5430 base += i;
5431 __napi_gro_flush_chain(napi, base, flush_old);
5432 }
5433}
5434EXPORT_SYMBOL(napi_gro_flush);
5435
5436static struct list_head *gro_list_prepare(struct napi_struct *napi,
5437 struct sk_buff *skb)
5438{
5439 unsigned int maclen = skb->dev->hard_header_len;
5440 u32 hash = skb_get_hash_raw(skb);
5441 struct list_head *head;
5442 struct sk_buff *p;
5443
5444 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5445 list_for_each_entry(p, head, list) {
5446 unsigned long diffs;
5447
5448 NAPI_GRO_CB(p)->flush = 0;
5449
5450 if (hash != skb_get_hash_raw(p)) {
5451 NAPI_GRO_CB(p)->same_flow = 0;
5452 continue;
5453 }
5454
5455 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5456 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5457 if (skb_vlan_tag_present(p))
5458 diffs |= p->vlan_tci ^ skb->vlan_tci;
5459 diffs |= skb_metadata_dst_cmp(p, skb);
5460 diffs |= skb_metadata_differs(p, skb);
5461 if (maclen == ETH_HLEN)
5462 diffs |= compare_ether_header(skb_mac_header(p),
5463 skb_mac_header(skb));
5464 else if (!diffs)
5465 diffs = memcmp(skb_mac_header(p),
5466 skb_mac_header(skb),
5467 maclen);
5468 NAPI_GRO_CB(p)->same_flow = !diffs;
5469 }
5470
5471 return head;
5472}
5473
5474static void skb_gro_reset_offset(struct sk_buff *skb)
5475{
5476 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5477 const skb_frag_t *frag0 = &pinfo->frags[0];
5478
5479 NAPI_GRO_CB(skb)->data_offset = 0;
5480 NAPI_GRO_CB(skb)->frag0 = NULL;
5481 NAPI_GRO_CB(skb)->frag0_len = 0;
5482
5483 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5484 pinfo->nr_frags &&
5485 !PageHighMem(skb_frag_page(frag0))) {
5486 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5487 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5488 skb_frag_size(frag0),
5489 skb->end - skb->tail);
5490 }
5491}
5492
5493static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5494{
5495 struct skb_shared_info *pinfo = skb_shinfo(skb);
5496
5497 BUG_ON(skb->end - skb->tail < grow);
5498
5499 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5500
5501 skb->data_len -= grow;
5502 skb->tail += grow;
5503
5504 pinfo->frags[0].page_offset += grow;
5505 skb_frag_size_sub(&pinfo->frags[0], grow);
5506
5507 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5508 skb_frag_unref(skb, 0);
5509 memmove(pinfo->frags, pinfo->frags + 1,
5510 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5511 }
5512}
5513
5514static void gro_flush_oldest(struct list_head *head)
5515{
5516 struct sk_buff *oldest;
5517
5518 oldest = list_last_entry(head, struct sk_buff, list);
5519
5520 /* We are called with head length >= MAX_GRO_SKBS, so this is
5521 * impossible.
5522 */
5523 if (WARN_ON_ONCE(!oldest))
5524 return;
5525
5526 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5527 * SKB to the chain.
5528 */
5529 skb_list_del_init(oldest);
5530 napi_gro_complete(oldest);
5531}
5532
5533INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5534 struct sk_buff *));
5535INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5536 struct sk_buff *));
5537static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5538{
5539 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5540 struct list_head *head = &offload_base;
5541 struct packet_offload *ptype;
5542 __be16 type = skb->protocol;
5543 struct list_head *gro_head;
5544 struct sk_buff *pp = NULL;
5545 enum gro_result ret;
5546 int same_flow;
5547 int grow;
5548
5549 if (netif_elide_gro(skb->dev))
5550 goto normal;
5551
5552 gro_head = gro_list_prepare(napi, skb);
5553
5554 rcu_read_lock();
5555 list_for_each_entry_rcu(ptype, head, list) {
5556 if (ptype->type != type || !ptype->callbacks.gro_receive)
5557 continue;
5558
5559 skb_set_network_header(skb, skb_gro_offset(skb));
5560 skb_reset_mac_len(skb);
5561 NAPI_GRO_CB(skb)->same_flow = 0;
5562 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5563 NAPI_GRO_CB(skb)->free = 0;
5564 NAPI_GRO_CB(skb)->encap_mark = 0;
5565 NAPI_GRO_CB(skb)->recursion_counter = 0;
5566 NAPI_GRO_CB(skb)->is_fou = 0;
5567 NAPI_GRO_CB(skb)->is_atomic = 1;
5568 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5569
5570 /* Setup for GRO checksum validation */
5571 switch (skb->ip_summed) {
5572 case CHECKSUM_COMPLETE:
5573 NAPI_GRO_CB(skb)->csum = skb->csum;
5574 NAPI_GRO_CB(skb)->csum_valid = 1;
5575 NAPI_GRO_CB(skb)->csum_cnt = 0;
5576 break;
5577 case CHECKSUM_UNNECESSARY:
5578 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5579 NAPI_GRO_CB(skb)->csum_valid = 0;
5580 break;
5581 default:
5582 NAPI_GRO_CB(skb)->csum_cnt = 0;
5583 NAPI_GRO_CB(skb)->csum_valid = 0;
5584 }
5585
5586 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5587 ipv6_gro_receive, inet_gro_receive,
5588 gro_head, skb);
5589 break;
5590 }
5591 rcu_read_unlock();
5592
5593 if (&ptype->list == head)
5594 goto normal;
5595
5596 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5597 ret = GRO_CONSUMED;
5598 goto ok;
5599 }
5600
5601 same_flow = NAPI_GRO_CB(skb)->same_flow;
5602 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5603
5604 if (pp) {
5605 skb_list_del_init(pp);
5606 napi_gro_complete(pp);
5607 napi->gro_hash[hash].count--;
5608 }
5609
5610 if (same_flow)
5611 goto ok;
5612
5613 if (NAPI_GRO_CB(skb)->flush)
5614 goto normal;
5615
5616 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5617 gro_flush_oldest(gro_head);
5618 } else {
5619 napi->gro_hash[hash].count++;
5620 }
5621 NAPI_GRO_CB(skb)->count = 1;
5622 NAPI_GRO_CB(skb)->age = jiffies;
5623 NAPI_GRO_CB(skb)->last = skb;
5624 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5625 list_add(&skb->list, gro_head);
5626 ret = GRO_HELD;
5627
5628pull:
5629 grow = skb_gro_offset(skb) - skb_headlen(skb);
5630 if (grow > 0)
5631 gro_pull_from_frag0(skb, grow);
5632ok:
5633 if (napi->gro_hash[hash].count) {
5634 if (!test_bit(hash, &napi->gro_bitmask))
5635 __set_bit(hash, &napi->gro_bitmask);
5636 } else if (test_bit(hash, &napi->gro_bitmask)) {
5637 __clear_bit(hash, &napi->gro_bitmask);
5638 }
5639
5640 return ret;
5641
5642normal:
5643 ret = GRO_NORMAL;
5644 goto pull;
5645}
5646
5647struct packet_offload *gro_find_receive_by_type(__be16 type)
5648{
5649 struct list_head *offload_head = &offload_base;
5650 struct packet_offload *ptype;
5651
5652 list_for_each_entry_rcu(ptype, offload_head, list) {
5653 if (ptype->type != type || !ptype->callbacks.gro_receive)
5654 continue;
5655 return ptype;
5656 }
5657 return NULL;
5658}
5659EXPORT_SYMBOL(gro_find_receive_by_type);
5660
5661struct packet_offload *gro_find_complete_by_type(__be16 type)
5662{
5663 struct list_head *offload_head = &offload_base;
5664 struct packet_offload *ptype;
5665
5666 list_for_each_entry_rcu(ptype, offload_head, list) {
5667 if (ptype->type != type || !ptype->callbacks.gro_complete)
5668 continue;
5669 return ptype;
5670 }
5671 return NULL;
5672}
5673EXPORT_SYMBOL(gro_find_complete_by_type);
5674
5675static void napi_skb_free_stolen_head(struct sk_buff *skb)
5676{
5677 skb_dst_drop(skb);
5678 secpath_reset(skb);
5679 kmem_cache_free(skbuff_head_cache, skb);
5680}
5681
5682static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5683{
5684 switch (ret) {
5685 case GRO_NORMAL:
5686 if (netif_receive_skb_internal(skb))
5687 ret = GRO_DROP;
5688 break;
5689
5690 case GRO_DROP:
5691 kfree_skb(skb);
5692 break;
5693
5694 case GRO_MERGED_FREE:
5695 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5696 napi_skb_free_stolen_head(skb);
5697 else
5698 __kfree_skb(skb);
5699 break;
5700
5701 case GRO_HELD:
5702 case GRO_MERGED:
5703 case GRO_CONSUMED:
5704 break;
5705 }
5706
5707 return ret;
5708}
5709
5710gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5711{
5712 gro_result_t ret;
5713
5714 skb_mark_napi_id(skb, napi);
5715 trace_napi_gro_receive_entry(skb);
5716
5717 skb_gro_reset_offset(skb);
5718
5719 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5720 trace_napi_gro_receive_exit(ret);
5721
5722 return ret;
5723}
5724EXPORT_SYMBOL(napi_gro_receive);
5725
5726static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5727{
5728 if (unlikely(skb->pfmemalloc)) {
5729 consume_skb(skb);
5730 return;
5731 }
5732 __skb_pull(skb, skb_headlen(skb));
5733 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5734 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5735 __vlan_hwaccel_clear_tag(skb);
5736 skb->dev = napi->dev;
5737 skb->skb_iif = 0;
5738
5739 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5740 skb->pkt_type = PACKET_HOST;
5741
5742 skb->encapsulation = 0;
5743 skb_shinfo(skb)->gso_type = 0;
5744 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5745 secpath_reset(skb);
5746
5747 napi->skb = skb;
5748}
5749
5750struct sk_buff *napi_get_frags(struct napi_struct *napi)
5751{
5752 struct sk_buff *skb = napi->skb;
5753
5754 if (!skb) {
5755 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5756 if (skb) {
5757 napi->skb = skb;
5758 skb_mark_napi_id(skb, napi);
5759 }
5760 }
5761 return skb;
5762}
5763EXPORT_SYMBOL(napi_get_frags);
5764
5765static gro_result_t napi_frags_finish(struct napi_struct *napi,
5766 struct sk_buff *skb,
5767 gro_result_t ret)
5768{
5769 switch (ret) {
5770 case GRO_NORMAL:
5771 case GRO_HELD:
5772 __skb_push(skb, ETH_HLEN);
5773 skb->protocol = eth_type_trans(skb, skb->dev);
5774 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5775 ret = GRO_DROP;
5776 break;
5777
5778 case GRO_DROP:
5779 napi_reuse_skb(napi, skb);
5780 break;
5781
5782 case GRO_MERGED_FREE:
5783 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5784 napi_skb_free_stolen_head(skb);
5785 else
5786 napi_reuse_skb(napi, skb);
5787 break;
5788
5789 case GRO_MERGED:
5790 case GRO_CONSUMED:
5791 break;
5792 }
5793
5794 return ret;
5795}
5796
5797/* Upper GRO stack assumes network header starts at gro_offset=0
5798 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5799 * We copy ethernet header into skb->data to have a common layout.
5800 */
5801static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5802{
5803 struct sk_buff *skb = napi->skb;
5804 const struct ethhdr *eth;
5805 unsigned int hlen = sizeof(*eth);
5806
5807 napi->skb = NULL;
5808
5809 skb_reset_mac_header(skb);
5810 skb_gro_reset_offset(skb);
5811
5812 eth = skb_gro_header_fast(skb, 0);
5813 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5814 eth = skb_gro_header_slow(skb, hlen, 0);
5815 if (unlikely(!eth)) {
5816 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5817 __func__, napi->dev->name);
5818 napi_reuse_skb(napi, skb);
5819 return NULL;
5820 }
5821 } else {
5822 gro_pull_from_frag0(skb, hlen);
5823 NAPI_GRO_CB(skb)->frag0 += hlen;
5824 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5825 }
5826 __skb_pull(skb, hlen);
5827
5828 /*
5829 * This works because the only protocols we care about don't require
5830 * special handling.
5831 * We'll fix it up properly in napi_frags_finish()
5832 */
5833 skb->protocol = eth->h_proto;
5834
5835 return skb;
5836}
5837
5838gro_result_t napi_gro_frags(struct napi_struct *napi)
5839{
5840 gro_result_t ret;
5841 struct sk_buff *skb = napi_frags_skb(napi);
5842
5843 if (!skb)
5844 return GRO_DROP;
5845
5846 trace_napi_gro_frags_entry(skb);
5847
5848 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5849 trace_napi_gro_frags_exit(ret);
5850
5851 return ret;
5852}
5853EXPORT_SYMBOL(napi_gro_frags);
5854
5855/* Compute the checksum from gro_offset and return the folded value
5856 * after adding in any pseudo checksum.
5857 */
5858__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5859{
5860 __wsum wsum;
5861 __sum16 sum;
5862
5863 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5864
5865 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5866 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5867 /* See comments in __skb_checksum_complete(). */
5868 if (likely(!sum)) {
5869 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5870 !skb->csum_complete_sw)
5871 netdev_rx_csum_fault(skb->dev, skb);
5872 }
5873
5874 NAPI_GRO_CB(skb)->csum = wsum;
5875 NAPI_GRO_CB(skb)->csum_valid = 1;
5876
5877 return sum;
5878}
5879EXPORT_SYMBOL(__skb_gro_checksum_complete);
5880
5881static void net_rps_send_ipi(struct softnet_data *remsd)
5882{
5883#ifdef CONFIG_RPS
5884 while (remsd) {
5885 struct softnet_data *next = remsd->rps_ipi_next;
5886
5887 if (cpu_online(remsd->cpu))
5888 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5889 remsd = next;
5890 }
5891#endif
5892}
5893
5894/*
5895 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5896 * Note: called with local irq disabled, but exits with local irq enabled.
5897 */
5898static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5899{
5900#ifdef CONFIG_RPS
5901 struct softnet_data *remsd = sd->rps_ipi_list;
5902
5903 if (remsd) {
5904 sd->rps_ipi_list = NULL;
5905
5906 local_irq_enable();
5907
5908 /* Send pending IPI's to kick RPS processing on remote cpus. */
5909 net_rps_send_ipi(remsd);
5910 } else
5911#endif
5912 local_irq_enable();
5913}
5914
5915static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5916{
5917#ifdef CONFIG_RPS
5918 return sd->rps_ipi_list != NULL;
5919#else
5920 return false;
5921#endif
5922}
5923
5924static int process_backlog(struct napi_struct *napi, int quota)
5925{
5926 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5927 bool again = true;
5928 int work = 0;
5929
5930 /* Check if we have pending ipi, its better to send them now,
5931 * not waiting net_rx_action() end.
5932 */
5933 if (sd_has_rps_ipi_waiting(sd)) {
5934 local_irq_disable();
5935 net_rps_action_and_irq_enable(sd);
5936 }
5937
5938 napi->weight = dev_rx_weight;
5939 while (again) {
5940 struct sk_buff *skb;
5941
5942 while ((skb = __skb_dequeue(&sd->process_queue))) {
5943 rcu_read_lock();
5944 __netif_receive_skb(skb);
5945 rcu_read_unlock();
5946 input_queue_head_incr(sd);
5947 if (++work >= quota)
5948 return work;
5949
5950 }
5951
5952 local_irq_disable();
5953 rps_lock(sd);
5954 if (skb_queue_empty(&sd->input_pkt_queue)) {
5955 /*
5956 * Inline a custom version of __napi_complete().
5957 * only current cpu owns and manipulates this napi,
5958 * and NAPI_STATE_SCHED is the only possible flag set
5959 * on backlog.
5960 * We can use a plain write instead of clear_bit(),
5961 * and we dont need an smp_mb() memory barrier.
5962 */
5963 napi->state = 0;
5964 again = false;
5965 } else {
5966 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5967 &sd->process_queue);
5968 }
5969 rps_unlock(sd);
5970 local_irq_enable();
5971 }
5972
5973 return work;
5974}
5975
5976/**
5977 * __napi_schedule - schedule for receive
5978 * @n: entry to schedule
5979 *
5980 * The entry's receive function will be scheduled to run.
5981 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5982 */
5983void __napi_schedule(struct napi_struct *n)
5984{
5985 unsigned long flags;
5986
5987 local_irq_save(flags);
5988 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5989 local_irq_restore(flags);
5990}
5991EXPORT_SYMBOL(__napi_schedule);
5992
5993/**
5994 * napi_schedule_prep - check if napi can be scheduled
5995 * @n: napi context
5996 *
5997 * Test if NAPI routine is already running, and if not mark
5998 * it as running. This is used as a condition variable
5999 * insure only one NAPI poll instance runs. We also make
6000 * sure there is no pending NAPI disable.
6001 */
6002bool napi_schedule_prep(struct napi_struct *n)
6003{
6004 unsigned long val, new;
6005
6006 do {
6007 val = READ_ONCE(n->state);
6008 if (unlikely(val & NAPIF_STATE_DISABLE))
6009 return false;
6010 new = val | NAPIF_STATE_SCHED;
6011
6012 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6013 * This was suggested by Alexander Duyck, as compiler
6014 * emits better code than :
6015 * if (val & NAPIF_STATE_SCHED)
6016 * new |= NAPIF_STATE_MISSED;
6017 */
6018 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6019 NAPIF_STATE_MISSED;
6020 } while (cmpxchg(&n->state, val, new) != val);
6021
6022 return !(val & NAPIF_STATE_SCHED);
6023}
6024EXPORT_SYMBOL(napi_schedule_prep);
6025
6026/**
6027 * __napi_schedule_irqoff - schedule for receive
6028 * @n: entry to schedule
6029 *
6030 * Variant of __napi_schedule() assuming hard irqs are masked
6031 */
6032void __napi_schedule_irqoff(struct napi_struct *n)
6033{
6034 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6035}
6036EXPORT_SYMBOL(__napi_schedule_irqoff);
6037
6038bool napi_complete_done(struct napi_struct *n, int work_done)
6039{
6040 unsigned long flags, val, new;
6041
6042 /*
6043 * 1) Don't let napi dequeue from the cpu poll list
6044 * just in case its running on a different cpu.
6045 * 2) If we are busy polling, do nothing here, we have
6046 * the guarantee we will be called later.
6047 */
6048 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6049 NAPIF_STATE_IN_BUSY_POLL)))
6050 return false;
6051
6052 if (n->gro_bitmask) {
6053 unsigned long timeout = 0;
6054
6055 if (work_done)
6056 timeout = n->dev->gro_flush_timeout;
6057
6058 /* When the NAPI instance uses a timeout and keeps postponing
6059 * it, we need to bound somehow the time packets are kept in
6060 * the GRO layer
6061 */
6062 napi_gro_flush(n, !!timeout);
6063 if (timeout)
6064 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6065 HRTIMER_MODE_REL_PINNED);
6066 }
6067 if (unlikely(!list_empty(&n->poll_list))) {
6068 /* If n->poll_list is not empty, we need to mask irqs */
6069 local_irq_save(flags);
6070 list_del_init(&n->poll_list);
6071 local_irq_restore(flags);
6072 }
6073
6074 do {
6075 val = READ_ONCE(n->state);
6076
6077 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6078
6079 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6080
6081 /* If STATE_MISSED was set, leave STATE_SCHED set,
6082 * because we will call napi->poll() one more time.
6083 * This C code was suggested by Alexander Duyck to help gcc.
6084 */
6085 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6086 NAPIF_STATE_SCHED;
6087 } while (cmpxchg(&n->state, val, new) != val);
6088
6089 if (unlikely(val & NAPIF_STATE_MISSED)) {
6090 __napi_schedule(n);
6091 return false;
6092 }
6093
6094 return true;
6095}
6096EXPORT_SYMBOL(napi_complete_done);
6097
6098/* must be called under rcu_read_lock(), as we dont take a reference */
6099static struct napi_struct *napi_by_id(unsigned int napi_id)
6100{
6101 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6102 struct napi_struct *napi;
6103
6104 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6105 if (napi->napi_id == napi_id)
6106 return napi;
6107
6108 return NULL;
6109}
6110
6111#if defined(CONFIG_NET_RX_BUSY_POLL)
6112
6113#define BUSY_POLL_BUDGET 8
6114
6115static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6116{
6117 int rc;
6118
6119 /* Busy polling means there is a high chance device driver hard irq
6120 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6121 * set in napi_schedule_prep().
6122 * Since we are about to call napi->poll() once more, we can safely
6123 * clear NAPI_STATE_MISSED.
6124 *
6125 * Note: x86 could use a single "lock and ..." instruction
6126 * to perform these two clear_bit()
6127 */
6128 clear_bit(NAPI_STATE_MISSED, &napi->state);
6129 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6130
6131 local_bh_disable();
6132
6133 /* All we really want here is to re-enable device interrupts.
6134 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6135 */
6136 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6137 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6138 netpoll_poll_unlock(have_poll_lock);
6139 if (rc == BUSY_POLL_BUDGET)
6140 __napi_schedule(napi);
6141 local_bh_enable();
6142}
6143
6144void napi_busy_loop(unsigned int napi_id,
6145 bool (*loop_end)(void *, unsigned long),
6146 void *loop_end_arg)
6147{
6148 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6149 int (*napi_poll)(struct napi_struct *napi, int budget);
6150 void *have_poll_lock = NULL;
6151 struct napi_struct *napi;
6152
6153restart:
6154 napi_poll = NULL;
6155
6156 rcu_read_lock();
6157
6158 napi = napi_by_id(napi_id);
6159 if (!napi)
6160 goto out;
6161
6162 preempt_disable();
6163 for (;;) {
6164 int work = 0;
6165
6166 local_bh_disable();
6167 if (!napi_poll) {
6168 unsigned long val = READ_ONCE(napi->state);
6169
6170 /* If multiple threads are competing for this napi,
6171 * we avoid dirtying napi->state as much as we can.
6172 */
6173 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6174 NAPIF_STATE_IN_BUSY_POLL))
6175 goto count;
6176 if (cmpxchg(&napi->state, val,
6177 val | NAPIF_STATE_IN_BUSY_POLL |
6178 NAPIF_STATE_SCHED) != val)
6179 goto count;
6180 have_poll_lock = netpoll_poll_lock(napi);
6181 napi_poll = napi->poll;
6182 }
6183 work = napi_poll(napi, BUSY_POLL_BUDGET);
6184 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6185count:
6186 if (work > 0)
6187 __NET_ADD_STATS(dev_net(napi->dev),
6188 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6189 local_bh_enable();
6190
6191 if (!loop_end || loop_end(loop_end_arg, start_time))
6192 break;
6193
6194 if (unlikely(need_resched())) {
6195 if (napi_poll)
6196 busy_poll_stop(napi, have_poll_lock);
6197 preempt_enable();
6198 rcu_read_unlock();
6199 cond_resched();
6200 if (loop_end(loop_end_arg, start_time))
6201 return;
6202 goto restart;
6203 }
6204 cpu_relax();
6205 }
6206 if (napi_poll)
6207 busy_poll_stop(napi, have_poll_lock);
6208 preempt_enable();
6209out:
6210 rcu_read_unlock();
6211}
6212EXPORT_SYMBOL(napi_busy_loop);
6213
6214#endif /* CONFIG_NET_RX_BUSY_POLL */
6215
6216static void napi_hash_add(struct napi_struct *napi)
6217{
6218 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6219 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6220 return;
6221
6222 spin_lock(&napi_hash_lock);
6223
6224 /* 0..NR_CPUS range is reserved for sender_cpu use */
6225 do {
6226 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6227 napi_gen_id = MIN_NAPI_ID;
6228 } while (napi_by_id(napi_gen_id));
6229 napi->napi_id = napi_gen_id;
6230
6231 hlist_add_head_rcu(&napi->napi_hash_node,
6232 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6233
6234 spin_unlock(&napi_hash_lock);
6235}
6236
6237/* Warning : caller is responsible to make sure rcu grace period
6238 * is respected before freeing memory containing @napi
6239 */
6240bool napi_hash_del(struct napi_struct *napi)
6241{
6242 bool rcu_sync_needed = false;
6243
6244 spin_lock(&napi_hash_lock);
6245
6246 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6247 rcu_sync_needed = true;
6248 hlist_del_rcu(&napi->napi_hash_node);
6249 }
6250 spin_unlock(&napi_hash_lock);
6251 return rcu_sync_needed;
6252}
6253EXPORT_SYMBOL_GPL(napi_hash_del);
6254
6255static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6256{
6257 struct napi_struct *napi;
6258
6259 napi = container_of(timer, struct napi_struct, timer);
6260
6261 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6262 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6263 */
6264 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6265 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6266 __napi_schedule_irqoff(napi);
6267
6268 return HRTIMER_NORESTART;
6269}
6270
6271static void init_gro_hash(struct napi_struct *napi)
6272{
6273 int i;
6274
6275 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6276 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6277 napi->gro_hash[i].count = 0;
6278 }
6279 napi->gro_bitmask = 0;
6280}
6281
6282void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6283 int (*poll)(struct napi_struct *, int), int weight)
6284{
6285 INIT_LIST_HEAD(&napi->poll_list);
6286 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6287 napi->timer.function = napi_watchdog;
6288 init_gro_hash(napi);
6289 napi->skb = NULL;
6290 napi->poll = poll;
6291 if (weight > NAPI_POLL_WEIGHT)
6292 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6293 weight);
6294 napi->weight = weight;
6295 list_add(&napi->dev_list, &dev->napi_list);
6296 napi->dev = dev;
6297#ifdef CONFIG_NETPOLL
6298 napi->poll_owner = -1;
6299#endif
6300 set_bit(NAPI_STATE_SCHED, &napi->state);
6301 napi_hash_add(napi);
6302}
6303EXPORT_SYMBOL(netif_napi_add);
6304
6305void napi_disable(struct napi_struct *n)
6306{
6307 might_sleep();
6308 set_bit(NAPI_STATE_DISABLE, &n->state);
6309
6310 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6311 msleep(1);
6312 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6313 msleep(1);
6314
6315 hrtimer_cancel(&n->timer);
6316
6317 clear_bit(NAPI_STATE_DISABLE, &n->state);
6318}
6319EXPORT_SYMBOL(napi_disable);
6320
6321static void flush_gro_hash(struct napi_struct *napi)
6322{
6323 int i;
6324
6325 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6326 struct sk_buff *skb, *n;
6327
6328 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6329 kfree_skb(skb);
6330 napi->gro_hash[i].count = 0;
6331 }
6332}
6333
6334/* Must be called in process context */
6335void netif_napi_del(struct napi_struct *napi)
6336{
6337 might_sleep();
6338 if (napi_hash_del(napi))
6339 synchronize_net();
6340 list_del_init(&napi->dev_list);
6341 napi_free_frags(napi);
6342
6343 flush_gro_hash(napi);
6344 napi->gro_bitmask = 0;
6345}
6346EXPORT_SYMBOL(netif_napi_del);
6347
6348static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6349{
6350 void *have;
6351 int work, weight;
6352
6353 list_del_init(&n->poll_list);
6354
6355 have = netpoll_poll_lock(n);
6356
6357 weight = n->weight;
6358
6359 /* This NAPI_STATE_SCHED test is for avoiding a race
6360 * with netpoll's poll_napi(). Only the entity which
6361 * obtains the lock and sees NAPI_STATE_SCHED set will
6362 * actually make the ->poll() call. Therefore we avoid
6363 * accidentally calling ->poll() when NAPI is not scheduled.
6364 */
6365 work = 0;
6366 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6367 work = n->poll(n, weight);
6368 trace_napi_poll(n, work, weight);
6369 }
6370
6371 WARN_ON_ONCE(work > weight);
6372
6373 if (likely(work < weight))
6374 goto out_unlock;
6375
6376 /* Drivers must not modify the NAPI state if they
6377 * consume the entire weight. In such cases this code
6378 * still "owns" the NAPI instance and therefore can
6379 * move the instance around on the list at-will.
6380 */
6381 if (unlikely(napi_disable_pending(n))) {
6382 napi_complete(n);
6383 goto out_unlock;
6384 }
6385
6386 if (n->gro_bitmask) {
6387 /* flush too old packets
6388 * If HZ < 1000, flush all packets.
6389 */
6390 napi_gro_flush(n, HZ >= 1000);
6391 }
6392
6393 /* Some drivers may have called napi_schedule
6394 * prior to exhausting their budget.
6395 */
6396 if (unlikely(!list_empty(&n->poll_list))) {
6397 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6398 n->dev ? n->dev->name : "backlog");
6399 goto out_unlock;
6400 }
6401
6402 list_add_tail(&n->poll_list, repoll);
6403
6404out_unlock:
6405 netpoll_poll_unlock(have);
6406
6407 return work;
6408}
6409
6410static __latent_entropy void net_rx_action(struct softirq_action *h)
6411{
6412 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6413 unsigned long time_limit = jiffies +
6414 usecs_to_jiffies(netdev_budget_usecs);
6415 int budget = netdev_budget;
6416 LIST_HEAD(list);
6417 LIST_HEAD(repoll);
6418
6419 local_irq_disable();
6420 list_splice_init(&sd->poll_list, &list);
6421 local_irq_enable();
6422
6423 for (;;) {
6424 struct napi_struct *n;
6425
6426 if (list_empty(&list)) {
6427 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6428 goto out;
6429 break;
6430 }
6431
6432 n = list_first_entry(&list, struct napi_struct, poll_list);
6433 budget -= napi_poll(n, &repoll);
6434
6435 /* If softirq window is exhausted then punt.
6436 * Allow this to run for 2 jiffies since which will allow
6437 * an average latency of 1.5/HZ.
6438 */
6439 if (unlikely(budget <= 0 ||
6440 time_after_eq(jiffies, time_limit))) {
6441 sd->time_squeeze++;
6442 break;
6443 }
6444 }
6445
6446 local_irq_disable();
6447
6448 list_splice_tail_init(&sd->poll_list, &list);
6449 list_splice_tail(&repoll, &list);
6450 list_splice(&list, &sd->poll_list);
6451 if (!list_empty(&sd->poll_list))
6452 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6453
6454 net_rps_action_and_irq_enable(sd);
6455out:
6456 __kfree_skb_flush();
6457}
6458
6459struct netdev_adjacent {
6460 struct net_device *dev;
6461
6462 /* upper master flag, there can only be one master device per list */
6463 bool master;
6464
6465 /* counter for the number of times this device was added to us */
6466 u16 ref_nr;
6467
6468 /* private field for the users */
6469 void *private;
6470
6471 struct list_head list;
6472 struct rcu_head rcu;
6473};
6474
6475static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6476 struct list_head *adj_list)
6477{
6478 struct netdev_adjacent *adj;
6479
6480 list_for_each_entry(adj, adj_list, list) {
6481 if (adj->dev == adj_dev)
6482 return adj;
6483 }
6484 return NULL;
6485}
6486
6487static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6488{
6489 struct net_device *dev = data;
6490
6491 return upper_dev == dev;
6492}
6493
6494/**
6495 * netdev_has_upper_dev - Check if device is linked to an upper device
6496 * @dev: device
6497 * @upper_dev: upper device to check
6498 *
6499 * Find out if a device is linked to specified upper device and return true
6500 * in case it is. Note that this checks only immediate upper device,
6501 * not through a complete stack of devices. The caller must hold the RTNL lock.
6502 */
6503bool netdev_has_upper_dev(struct net_device *dev,
6504 struct net_device *upper_dev)
6505{
6506 ASSERT_RTNL();
6507
6508 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6509 upper_dev);
6510}
6511EXPORT_SYMBOL(netdev_has_upper_dev);
6512
6513/**
6514 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6515 * @dev: device
6516 * @upper_dev: upper device to check
6517 *
6518 * Find out if a device is linked to specified upper device and return true
6519 * in case it is. Note that this checks the entire upper device chain.
6520 * The caller must hold rcu lock.
6521 */
6522
6523bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6524 struct net_device *upper_dev)
6525{
6526 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6527 upper_dev);
6528}
6529EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6530
6531/**
6532 * netdev_has_any_upper_dev - Check if device is linked to some device
6533 * @dev: device
6534 *
6535 * Find out if a device is linked to an upper device and return true in case
6536 * it is. The caller must hold the RTNL lock.
6537 */
6538bool netdev_has_any_upper_dev(struct net_device *dev)
6539{
6540 ASSERT_RTNL();
6541
6542 return !list_empty(&dev->adj_list.upper);
6543}
6544EXPORT_SYMBOL(netdev_has_any_upper_dev);
6545
6546/**
6547 * netdev_master_upper_dev_get - Get master upper device
6548 * @dev: device
6549 *
6550 * Find a master upper device and return pointer to it or NULL in case
6551 * it's not there. The caller must hold the RTNL lock.
6552 */
6553struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6554{
6555 struct netdev_adjacent *upper;
6556
6557 ASSERT_RTNL();
6558
6559 if (list_empty(&dev->adj_list.upper))
6560 return NULL;
6561
6562 upper = list_first_entry(&dev->adj_list.upper,
6563 struct netdev_adjacent, list);
6564 if (likely(upper->master))
6565 return upper->dev;
6566 return NULL;
6567}
6568EXPORT_SYMBOL(netdev_master_upper_dev_get);
6569
6570/**
6571 * netdev_has_any_lower_dev - Check if device is linked to some device
6572 * @dev: device
6573 *
6574 * Find out if a device is linked to a lower device and return true in case
6575 * it is. The caller must hold the RTNL lock.
6576 */
6577static bool netdev_has_any_lower_dev(struct net_device *dev)
6578{
6579 ASSERT_RTNL();
6580
6581 return !list_empty(&dev->adj_list.lower);
6582}
6583
6584void *netdev_adjacent_get_private(struct list_head *adj_list)
6585{
6586 struct netdev_adjacent *adj;
6587
6588 adj = list_entry(adj_list, struct netdev_adjacent, list);
6589
6590 return adj->private;
6591}
6592EXPORT_SYMBOL(netdev_adjacent_get_private);
6593
6594/**
6595 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6596 * @dev: device
6597 * @iter: list_head ** of the current position
6598 *
6599 * Gets the next device from the dev's upper list, starting from iter
6600 * position. The caller must hold RCU read lock.
6601 */
6602struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6603 struct list_head **iter)
6604{
6605 struct netdev_adjacent *upper;
6606
6607 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6608
6609 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6610
6611 if (&upper->list == &dev->adj_list.upper)
6612 return NULL;
6613
6614 *iter = &upper->list;
6615
6616 return upper->dev;
6617}
6618EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6619
6620static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6621 struct list_head **iter)
6622{
6623 struct netdev_adjacent *upper;
6624
6625 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6626
6627 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6628
6629 if (&upper->list == &dev->adj_list.upper)
6630 return NULL;
6631
6632 *iter = &upper->list;
6633
6634 return upper->dev;
6635}
6636
6637int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6638 int (*fn)(struct net_device *dev,
6639 void *data),
6640 void *data)
6641{
6642 struct net_device *udev;
6643 struct list_head *iter;
6644 int ret;
6645
6646 for (iter = &dev->adj_list.upper,
6647 udev = netdev_next_upper_dev_rcu(dev, &iter);
6648 udev;
6649 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6650 /* first is the upper device itself */
6651 ret = fn(udev, data);
6652 if (ret)
6653 return ret;
6654
6655 /* then look at all of its upper devices */
6656 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6657 if (ret)
6658 return ret;
6659 }
6660
6661 return 0;
6662}
6663EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6664
6665/**
6666 * netdev_lower_get_next_private - Get the next ->private from the
6667 * lower neighbour list
6668 * @dev: device
6669 * @iter: list_head ** of the current position
6670 *
6671 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6672 * list, starting from iter position. The caller must hold either hold the
6673 * RTNL lock or its own locking that guarantees that the neighbour lower
6674 * list will remain unchanged.
6675 */
6676void *netdev_lower_get_next_private(struct net_device *dev,
6677 struct list_head **iter)
6678{
6679 struct netdev_adjacent *lower;
6680
6681 lower = list_entry(*iter, struct netdev_adjacent, list);
6682
6683 if (&lower->list == &dev->adj_list.lower)
6684 return NULL;
6685
6686 *iter = lower->list.next;
6687
6688 return lower->private;
6689}
6690EXPORT_SYMBOL(netdev_lower_get_next_private);
6691
6692/**
6693 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6694 * lower neighbour list, RCU
6695 * variant
6696 * @dev: device
6697 * @iter: list_head ** of the current position
6698 *
6699 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6700 * list, starting from iter position. The caller must hold RCU read lock.
6701 */
6702void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6703 struct list_head **iter)
6704{
6705 struct netdev_adjacent *lower;
6706
6707 WARN_ON_ONCE(!rcu_read_lock_held());
6708
6709 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6710
6711 if (&lower->list == &dev->adj_list.lower)
6712 return NULL;
6713
6714 *iter = &lower->list;
6715
6716 return lower->private;
6717}
6718EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6719
6720/**
6721 * netdev_lower_get_next - Get the next device from the lower neighbour
6722 * list
6723 * @dev: device
6724 * @iter: list_head ** of the current position
6725 *
6726 * Gets the next netdev_adjacent from the dev's lower neighbour
6727 * list, starting from iter position. The caller must hold RTNL lock or
6728 * its own locking that guarantees that the neighbour lower
6729 * list will remain unchanged.
6730 */
6731void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6732{
6733 struct netdev_adjacent *lower;
6734
6735 lower = list_entry(*iter, struct netdev_adjacent, list);
6736
6737 if (&lower->list == &dev->adj_list.lower)
6738 return NULL;
6739
6740 *iter = lower->list.next;
6741
6742 return lower->dev;
6743}
6744EXPORT_SYMBOL(netdev_lower_get_next);
6745
6746static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6747 struct list_head **iter)
6748{
6749 struct netdev_adjacent *lower;
6750
6751 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6752
6753 if (&lower->list == &dev->adj_list.lower)
6754 return NULL;
6755
6756 *iter = &lower->list;
6757
6758 return lower->dev;
6759}
6760
6761int netdev_walk_all_lower_dev(struct net_device *dev,
6762 int (*fn)(struct net_device *dev,
6763 void *data),
6764 void *data)
6765{
6766 struct net_device *ldev;
6767 struct list_head *iter;
6768 int ret;
6769
6770 for (iter = &dev->adj_list.lower,
6771 ldev = netdev_next_lower_dev(dev, &iter);
6772 ldev;
6773 ldev = netdev_next_lower_dev(dev, &iter)) {
6774 /* first is the lower device itself */
6775 ret = fn(ldev, data);
6776 if (ret)
6777 return ret;
6778
6779 /* then look at all of its lower devices */
6780 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6781 if (ret)
6782 return ret;
6783 }
6784
6785 return 0;
6786}
6787EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6788
6789static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6790 struct list_head **iter)
6791{
6792 struct netdev_adjacent *lower;
6793
6794 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6795 if (&lower->list == &dev->adj_list.lower)
6796 return NULL;
6797
6798 *iter = &lower->list;
6799
6800 return lower->dev;
6801}
6802
6803int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6804 int (*fn)(struct net_device *dev,
6805 void *data),
6806 void *data)
6807{
6808 struct net_device *ldev;
6809 struct list_head *iter;
6810 int ret;
6811
6812 for (iter = &dev->adj_list.lower,
6813 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6814 ldev;
6815 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6816 /* first is the lower device itself */
6817 ret = fn(ldev, data);
6818 if (ret)
6819 return ret;
6820
6821 /* then look at all of its lower devices */
6822 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6823 if (ret)
6824 return ret;
6825 }
6826
6827 return 0;
6828}
6829EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6830
6831/**
6832 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6833 * lower neighbour list, RCU
6834 * variant
6835 * @dev: device
6836 *
6837 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6838 * list. The caller must hold RCU read lock.
6839 */
6840void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6841{
6842 struct netdev_adjacent *lower;
6843
6844 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6845 struct netdev_adjacent, list);
6846 if (lower)
6847 return lower->private;
6848 return NULL;
6849}
6850EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6851
6852/**
6853 * netdev_master_upper_dev_get_rcu - Get master upper device
6854 * @dev: device
6855 *
6856 * Find a master upper device and return pointer to it or NULL in case
6857 * it's not there. The caller must hold the RCU read lock.
6858 */
6859struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6860{
6861 struct netdev_adjacent *upper;
6862
6863 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6864 struct netdev_adjacent, list);
6865 if (upper && likely(upper->master))
6866 return upper->dev;
6867 return NULL;
6868}
6869EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6870
6871static int netdev_adjacent_sysfs_add(struct net_device *dev,
6872 struct net_device *adj_dev,
6873 struct list_head *dev_list)
6874{
6875 char linkname[IFNAMSIZ+7];
6876
6877 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6878 "upper_%s" : "lower_%s", adj_dev->name);
6879 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6880 linkname);
6881}
6882static void netdev_adjacent_sysfs_del(struct net_device *dev,
6883 char *name,
6884 struct list_head *dev_list)
6885{
6886 char linkname[IFNAMSIZ+7];
6887
6888 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6889 "upper_%s" : "lower_%s", name);
6890 sysfs_remove_link(&(dev->dev.kobj), linkname);
6891}
6892
6893static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6894 struct net_device *adj_dev,
6895 struct list_head *dev_list)
6896{
6897 return (dev_list == &dev->adj_list.upper ||
6898 dev_list == &dev->adj_list.lower) &&
6899 net_eq(dev_net(dev), dev_net(adj_dev));
6900}
6901
6902static int __netdev_adjacent_dev_insert(struct net_device *dev,
6903 struct net_device *adj_dev,
6904 struct list_head *dev_list,
6905 void *private, bool master)
6906{
6907 struct netdev_adjacent *adj;
6908 int ret;
6909
6910 adj = __netdev_find_adj(adj_dev, dev_list);
6911
6912 if (adj) {
6913 adj->ref_nr += 1;
6914 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6915 dev->name, adj_dev->name, adj->ref_nr);
6916
6917 return 0;
6918 }
6919
6920 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6921 if (!adj)
6922 return -ENOMEM;
6923
6924 adj->dev = adj_dev;
6925 adj->master = master;
6926 adj->ref_nr = 1;
6927 adj->private = private;
6928 dev_hold(adj_dev);
6929
6930 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6931 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6932
6933 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6934 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6935 if (ret)
6936 goto free_adj;
6937 }
6938
6939 /* Ensure that master link is always the first item in list. */
6940 if (master) {
6941 ret = sysfs_create_link(&(dev->dev.kobj),
6942 &(adj_dev->dev.kobj), "master");
6943 if (ret)
6944 goto remove_symlinks;
6945
6946 list_add_rcu(&adj->list, dev_list);
6947 } else {
6948 list_add_tail_rcu(&adj->list, dev_list);
6949 }
6950
6951 return 0;
6952
6953remove_symlinks:
6954 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6955 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6956free_adj:
6957 kfree(adj);
6958 dev_put(adj_dev);
6959
6960 return ret;
6961}
6962
6963static void __netdev_adjacent_dev_remove(struct net_device *dev,
6964 struct net_device *adj_dev,
6965 u16 ref_nr,
6966 struct list_head *dev_list)
6967{
6968 struct netdev_adjacent *adj;
6969
6970 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6971 dev->name, adj_dev->name, ref_nr);
6972
6973 adj = __netdev_find_adj(adj_dev, dev_list);
6974
6975 if (!adj) {
6976 pr_err("Adjacency does not exist for device %s from %s\n",
6977 dev->name, adj_dev->name);
6978 WARN_ON(1);
6979 return;
6980 }
6981
6982 if (adj->ref_nr > ref_nr) {
6983 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6984 dev->name, adj_dev->name, ref_nr,
6985 adj->ref_nr - ref_nr);
6986 adj->ref_nr -= ref_nr;
6987 return;
6988 }
6989
6990 if (adj->master)
6991 sysfs_remove_link(&(dev->dev.kobj), "master");
6992
6993 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6994 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6995
6996 list_del_rcu(&adj->list);
6997 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6998 adj_dev->name, dev->name, adj_dev->name);
6999 dev_put(adj_dev);
7000 kfree_rcu(adj, rcu);
7001}
7002
7003static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7004 struct net_device *upper_dev,
7005 struct list_head *up_list,
7006 struct list_head *down_list,
7007 void *private, bool master)
7008{
7009 int ret;
7010
7011 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7012 private, master);
7013 if (ret)
7014 return ret;
7015
7016 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7017 private, false);
7018 if (ret) {
7019 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7020 return ret;
7021 }
7022
7023 return 0;
7024}
7025
7026static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7027 struct net_device *upper_dev,
7028 u16 ref_nr,
7029 struct list_head *up_list,
7030 struct list_head *down_list)
7031{
7032 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7033 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7034}
7035
7036static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7037 struct net_device *upper_dev,
7038 void *private, bool master)
7039{
7040 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7041 &dev->adj_list.upper,
7042 &upper_dev->adj_list.lower,
7043 private, master);
7044}
7045
7046static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7047 struct net_device *upper_dev)
7048{
7049 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7050 &dev->adj_list.upper,
7051 &upper_dev->adj_list.lower);
7052}
7053
7054static int __netdev_upper_dev_link(struct net_device *dev,
7055 struct net_device *upper_dev, bool master,
7056 void *upper_priv, void *upper_info,
7057 struct netlink_ext_ack *extack)
7058{
7059 struct netdev_notifier_changeupper_info changeupper_info = {
7060 .info = {
7061 .dev = dev,
7062 .extack = extack,
7063 },
7064 .upper_dev = upper_dev,
7065 .master = master,
7066 .linking = true,
7067 .upper_info = upper_info,
7068 };
7069 struct net_device *master_dev;
7070 int ret = 0;
7071
7072 ASSERT_RTNL();
7073
7074 if (dev == upper_dev)
7075 return -EBUSY;
7076
7077 /* To prevent loops, check if dev is not upper device to upper_dev. */
7078 if (netdev_has_upper_dev(upper_dev, dev))
7079 return -EBUSY;
7080
7081 if (!master) {
7082 if (netdev_has_upper_dev(dev, upper_dev))
7083 return -EEXIST;
7084 } else {
7085 master_dev = netdev_master_upper_dev_get(dev);
7086 if (master_dev)
7087 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7088 }
7089
7090 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7091 &changeupper_info.info);
7092 ret = notifier_to_errno(ret);
7093 if (ret)
7094 return ret;
7095
7096 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7097 master);
7098 if (ret)
7099 return ret;
7100
7101 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7102 &changeupper_info.info);
7103 ret = notifier_to_errno(ret);
7104 if (ret)
7105 goto rollback;
7106
7107 return 0;
7108
7109rollback:
7110 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7111
7112 return ret;
7113}
7114
7115/**
7116 * netdev_upper_dev_link - Add a link to the upper device
7117 * @dev: device
7118 * @upper_dev: new upper device
7119 * @extack: netlink extended ack
7120 *
7121 * Adds a link to device which is upper to this one. The caller must hold
7122 * the RTNL lock. On a failure a negative errno code is returned.
7123 * On success the reference counts are adjusted and the function
7124 * returns zero.
7125 */
7126int netdev_upper_dev_link(struct net_device *dev,
7127 struct net_device *upper_dev,
7128 struct netlink_ext_ack *extack)
7129{
7130 return __netdev_upper_dev_link(dev, upper_dev, false,
7131 NULL, NULL, extack);
7132}
7133EXPORT_SYMBOL(netdev_upper_dev_link);
7134
7135/**
7136 * netdev_master_upper_dev_link - Add a master link to the upper device
7137 * @dev: device
7138 * @upper_dev: new upper device
7139 * @upper_priv: upper device private
7140 * @upper_info: upper info to be passed down via notifier
7141 * @extack: netlink extended ack
7142 *
7143 * Adds a link to device which is upper to this one. In this case, only
7144 * one master upper device can be linked, although other non-master devices
7145 * might be linked as well. The caller must hold the RTNL lock.
7146 * On a failure a negative errno code is returned. On success the reference
7147 * counts are adjusted and the function returns zero.
7148 */
7149int netdev_master_upper_dev_link(struct net_device *dev,
7150 struct net_device *upper_dev,
7151 void *upper_priv, void *upper_info,
7152 struct netlink_ext_ack *extack)
7153{
7154 return __netdev_upper_dev_link(dev, upper_dev, true,
7155 upper_priv, upper_info, extack);
7156}
7157EXPORT_SYMBOL(netdev_master_upper_dev_link);
7158
7159/**
7160 * netdev_upper_dev_unlink - Removes a link to upper device
7161 * @dev: device
7162 * @upper_dev: new upper device
7163 *
7164 * Removes a link to device which is upper to this one. The caller must hold
7165 * the RTNL lock.
7166 */
7167void netdev_upper_dev_unlink(struct net_device *dev,
7168 struct net_device *upper_dev)
7169{
7170 struct netdev_notifier_changeupper_info changeupper_info = {
7171 .info = {
7172 .dev = dev,
7173 },
7174 .upper_dev = upper_dev,
7175 .linking = false,
7176 };
7177
7178 ASSERT_RTNL();
7179
7180 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7181
7182 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7183 &changeupper_info.info);
7184
7185 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7186
7187 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7188 &changeupper_info.info);
7189}
7190EXPORT_SYMBOL(netdev_upper_dev_unlink);
7191
7192/**
7193 * netdev_bonding_info_change - Dispatch event about slave change
7194 * @dev: device
7195 * @bonding_info: info to dispatch
7196 *
7197 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7198 * The caller must hold the RTNL lock.
7199 */
7200void netdev_bonding_info_change(struct net_device *dev,
7201 struct netdev_bonding_info *bonding_info)
7202{
7203 struct netdev_notifier_bonding_info info = {
7204 .info.dev = dev,
7205 };
7206
7207 memcpy(&info.bonding_info, bonding_info,
7208 sizeof(struct netdev_bonding_info));
7209 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7210 &info.info);
7211}
7212EXPORT_SYMBOL(netdev_bonding_info_change);
7213
7214static void netdev_adjacent_add_links(struct net_device *dev)
7215{
7216 struct netdev_adjacent *iter;
7217
7218 struct net *net = dev_net(dev);
7219
7220 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7221 if (!net_eq(net, dev_net(iter->dev)))
7222 continue;
7223 netdev_adjacent_sysfs_add(iter->dev, dev,
7224 &iter->dev->adj_list.lower);
7225 netdev_adjacent_sysfs_add(dev, iter->dev,
7226 &dev->adj_list.upper);
7227 }
7228
7229 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7230 if (!net_eq(net, dev_net(iter->dev)))
7231 continue;
7232 netdev_adjacent_sysfs_add(iter->dev, dev,
7233 &iter->dev->adj_list.upper);
7234 netdev_adjacent_sysfs_add(dev, iter->dev,
7235 &dev->adj_list.lower);
7236 }
7237}
7238
7239static void netdev_adjacent_del_links(struct net_device *dev)
7240{
7241 struct netdev_adjacent *iter;
7242
7243 struct net *net = dev_net(dev);
7244
7245 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7246 if (!net_eq(net, dev_net(iter->dev)))
7247 continue;
7248 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7249 &iter->dev->adj_list.lower);
7250 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7251 &dev->adj_list.upper);
7252 }
7253
7254 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7255 if (!net_eq(net, dev_net(iter->dev)))
7256 continue;
7257 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7258 &iter->dev->adj_list.upper);
7259 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7260 &dev->adj_list.lower);
7261 }
7262}
7263
7264void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7265{
7266 struct netdev_adjacent *iter;
7267
7268 struct net *net = dev_net(dev);
7269
7270 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7271 if (!net_eq(net, dev_net(iter->dev)))
7272 continue;
7273 netdev_adjacent_sysfs_del(iter->dev, oldname,
7274 &iter->dev->adj_list.lower);
7275 netdev_adjacent_sysfs_add(iter->dev, dev,
7276 &iter->dev->adj_list.lower);
7277 }
7278
7279 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7280 if (!net_eq(net, dev_net(iter->dev)))
7281 continue;
7282 netdev_adjacent_sysfs_del(iter->dev, oldname,
7283 &iter->dev->adj_list.upper);
7284 netdev_adjacent_sysfs_add(iter->dev, dev,
7285 &iter->dev->adj_list.upper);
7286 }
7287}
7288
7289void *netdev_lower_dev_get_private(struct net_device *dev,
7290 struct net_device *lower_dev)
7291{
7292 struct netdev_adjacent *lower;
7293
7294 if (!lower_dev)
7295 return NULL;
7296 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7297 if (!lower)
7298 return NULL;
7299
7300 return lower->private;
7301}
7302EXPORT_SYMBOL(netdev_lower_dev_get_private);
7303
7304
7305int dev_get_nest_level(struct net_device *dev)
7306{
7307 struct net_device *lower = NULL;
7308 struct list_head *iter;
7309 int max_nest = -1;
7310 int nest;
7311
7312 ASSERT_RTNL();
7313
7314 netdev_for_each_lower_dev(dev, lower, iter) {
7315 nest = dev_get_nest_level(lower);
7316 if (max_nest < nest)
7317 max_nest = nest;
7318 }
7319
7320 return max_nest + 1;
7321}
7322EXPORT_SYMBOL(dev_get_nest_level);
7323
7324/**
7325 * netdev_lower_change - Dispatch event about lower device state change
7326 * @lower_dev: device
7327 * @lower_state_info: state to dispatch
7328 *
7329 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7330 * The caller must hold the RTNL lock.
7331 */
7332void netdev_lower_state_changed(struct net_device *lower_dev,
7333 void *lower_state_info)
7334{
7335 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7336 .info.dev = lower_dev,
7337 };
7338
7339 ASSERT_RTNL();
7340 changelowerstate_info.lower_state_info = lower_state_info;
7341 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7342 &changelowerstate_info.info);
7343}
7344EXPORT_SYMBOL(netdev_lower_state_changed);
7345
7346static void dev_change_rx_flags(struct net_device *dev, int flags)
7347{
7348 const struct net_device_ops *ops = dev->netdev_ops;
7349
7350 if (ops->ndo_change_rx_flags)
7351 ops->ndo_change_rx_flags(dev, flags);
7352}
7353
7354static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7355{
7356 unsigned int old_flags = dev->flags;
7357 kuid_t uid;
7358 kgid_t gid;
7359
7360 ASSERT_RTNL();
7361
7362 dev->flags |= IFF_PROMISC;
7363 dev->promiscuity += inc;
7364 if (dev->promiscuity == 0) {
7365 /*
7366 * Avoid overflow.
7367 * If inc causes overflow, untouch promisc and return error.
7368 */
7369 if (inc < 0)
7370 dev->flags &= ~IFF_PROMISC;
7371 else {
7372 dev->promiscuity -= inc;
7373 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7374 dev->name);
7375 return -EOVERFLOW;
7376 }
7377 }
7378 if (dev->flags != old_flags) {
7379 pr_info("device %s %s promiscuous mode\n",
7380 dev->name,
7381 dev->flags & IFF_PROMISC ? "entered" : "left");
7382 if (audit_enabled) {
7383 current_uid_gid(&uid, &gid);
7384 audit_log(audit_context(), GFP_ATOMIC,
7385 AUDIT_ANOM_PROMISCUOUS,
7386 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7387 dev->name, (dev->flags & IFF_PROMISC),
7388 (old_flags & IFF_PROMISC),
7389 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7390 from_kuid(&init_user_ns, uid),
7391 from_kgid(&init_user_ns, gid),
7392 audit_get_sessionid(current));
7393 }
7394
7395 dev_change_rx_flags(dev, IFF_PROMISC);
7396 }
7397 if (notify)
7398 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7399 return 0;
7400}
7401
7402/**
7403 * dev_set_promiscuity - update promiscuity count on a device
7404 * @dev: device
7405 * @inc: modifier
7406 *
7407 * Add or remove promiscuity from a device. While the count in the device
7408 * remains above zero the interface remains promiscuous. Once it hits zero
7409 * the device reverts back to normal filtering operation. A negative inc
7410 * value is used to drop promiscuity on the device.
7411 * Return 0 if successful or a negative errno code on error.
7412 */
7413int dev_set_promiscuity(struct net_device *dev, int inc)
7414{
7415 unsigned int old_flags = dev->flags;
7416 int err;
7417
7418 err = __dev_set_promiscuity(dev, inc, true);
7419 if (err < 0)
7420 return err;
7421 if (dev->flags != old_flags)
7422 dev_set_rx_mode(dev);
7423 return err;
7424}
7425EXPORT_SYMBOL(dev_set_promiscuity);
7426
7427static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7428{
7429 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7430
7431 ASSERT_RTNL();
7432
7433 dev->flags |= IFF_ALLMULTI;
7434 dev->allmulti += inc;
7435 if (dev->allmulti == 0) {
7436 /*
7437 * Avoid overflow.
7438 * If inc causes overflow, untouch allmulti and return error.
7439 */
7440 if (inc < 0)
7441 dev->flags &= ~IFF_ALLMULTI;
7442 else {
7443 dev->allmulti -= inc;
7444 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7445 dev->name);
7446 return -EOVERFLOW;
7447 }
7448 }
7449 if (dev->flags ^ old_flags) {
7450 dev_change_rx_flags(dev, IFF_ALLMULTI);
7451 dev_set_rx_mode(dev);
7452 if (notify)
7453 __dev_notify_flags(dev, old_flags,
7454 dev->gflags ^ old_gflags);
7455 }
7456 return 0;
7457}
7458
7459/**
7460 * dev_set_allmulti - update allmulti count on a device
7461 * @dev: device
7462 * @inc: modifier
7463 *
7464 * Add or remove reception of all multicast frames to a device. While the
7465 * count in the device remains above zero the interface remains listening
7466 * to all interfaces. Once it hits zero the device reverts back to normal
7467 * filtering operation. A negative @inc value is used to drop the counter
7468 * when releasing a resource needing all multicasts.
7469 * Return 0 if successful or a negative errno code on error.
7470 */
7471
7472int dev_set_allmulti(struct net_device *dev, int inc)
7473{
7474 return __dev_set_allmulti(dev, inc, true);
7475}
7476EXPORT_SYMBOL(dev_set_allmulti);
7477
7478/*
7479 * Upload unicast and multicast address lists to device and
7480 * configure RX filtering. When the device doesn't support unicast
7481 * filtering it is put in promiscuous mode while unicast addresses
7482 * are present.
7483 */
7484void __dev_set_rx_mode(struct net_device *dev)
7485{
7486 const struct net_device_ops *ops = dev->netdev_ops;
7487
7488 /* dev_open will call this function so the list will stay sane. */
7489 if (!(dev->flags&IFF_UP))
7490 return;
7491
7492 if (!netif_device_present(dev))
7493 return;
7494
7495 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7496 /* Unicast addresses changes may only happen under the rtnl,
7497 * therefore calling __dev_set_promiscuity here is safe.
7498 */
7499 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7500 __dev_set_promiscuity(dev, 1, false);
7501 dev->uc_promisc = true;
7502 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7503 __dev_set_promiscuity(dev, -1, false);
7504 dev->uc_promisc = false;
7505 }
7506 }
7507
7508 if (ops->ndo_set_rx_mode)
7509 ops->ndo_set_rx_mode(dev);
7510}
7511
7512void dev_set_rx_mode(struct net_device *dev)
7513{
7514 netif_addr_lock_bh(dev);
7515 __dev_set_rx_mode(dev);
7516 netif_addr_unlock_bh(dev);
7517}
7518
7519/**
7520 * dev_get_flags - get flags reported to userspace
7521 * @dev: device
7522 *
7523 * Get the combination of flag bits exported through APIs to userspace.
7524 */
7525unsigned int dev_get_flags(const struct net_device *dev)
7526{
7527 unsigned int flags;
7528
7529 flags = (dev->flags & ~(IFF_PROMISC |
7530 IFF_ALLMULTI |
7531 IFF_RUNNING |
7532 IFF_LOWER_UP |
7533 IFF_DORMANT)) |
7534 (dev->gflags & (IFF_PROMISC |
7535 IFF_ALLMULTI));
7536
7537 if (netif_running(dev)) {
7538 if (netif_oper_up(dev))
7539 flags |= IFF_RUNNING;
7540 if (netif_carrier_ok(dev))
7541 flags |= IFF_LOWER_UP;
7542 if (netif_dormant(dev))
7543 flags |= IFF_DORMANT;
7544 }
7545
7546 return flags;
7547}
7548EXPORT_SYMBOL(dev_get_flags);
7549
7550int __dev_change_flags(struct net_device *dev, unsigned int flags,
7551 struct netlink_ext_ack *extack)
7552{
7553 unsigned int old_flags = dev->flags;
7554 int ret;
7555
7556 ASSERT_RTNL();
7557
7558 /*
7559 * Set the flags on our device.
7560 */
7561
7562 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7563 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7564 IFF_AUTOMEDIA)) |
7565 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7566 IFF_ALLMULTI));
7567
7568 /*
7569 * Load in the correct multicast list now the flags have changed.
7570 */
7571
7572 if ((old_flags ^ flags) & IFF_MULTICAST)
7573 dev_change_rx_flags(dev, IFF_MULTICAST);
7574
7575 dev_set_rx_mode(dev);
7576
7577 /*
7578 * Have we downed the interface. We handle IFF_UP ourselves
7579 * according to user attempts to set it, rather than blindly
7580 * setting it.
7581 */
7582
7583 ret = 0;
7584 if ((old_flags ^ flags) & IFF_UP) {
7585 if (old_flags & IFF_UP)
7586 __dev_close(dev);
7587 else
7588 ret = __dev_open(dev, extack);
7589 }
7590
7591 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7592 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7593 unsigned int old_flags = dev->flags;
7594
7595 dev->gflags ^= IFF_PROMISC;
7596
7597 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7598 if (dev->flags != old_flags)
7599 dev_set_rx_mode(dev);
7600 }
7601
7602 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7603 * is important. Some (broken) drivers set IFF_PROMISC, when
7604 * IFF_ALLMULTI is requested not asking us and not reporting.
7605 */
7606 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7607 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7608
7609 dev->gflags ^= IFF_ALLMULTI;
7610 __dev_set_allmulti(dev, inc, false);
7611 }
7612
7613 return ret;
7614}
7615
7616void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7617 unsigned int gchanges)
7618{
7619 unsigned int changes = dev->flags ^ old_flags;
7620
7621 if (gchanges)
7622 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7623
7624 if (changes & IFF_UP) {
7625 if (dev->flags & IFF_UP)
7626 call_netdevice_notifiers(NETDEV_UP, dev);
7627 else
7628 call_netdevice_notifiers(NETDEV_DOWN, dev);
7629 }
7630
7631 if (dev->flags & IFF_UP &&
7632 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7633 struct netdev_notifier_change_info change_info = {
7634 .info = {
7635 .dev = dev,
7636 },
7637 .flags_changed = changes,
7638 };
7639
7640 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7641 }
7642}
7643
7644/**
7645 * dev_change_flags - change device settings
7646 * @dev: device
7647 * @flags: device state flags
7648 * @extack: netlink extended ack
7649 *
7650 * Change settings on device based state flags. The flags are
7651 * in the userspace exported format.
7652 */
7653int dev_change_flags(struct net_device *dev, unsigned int flags,
7654 struct netlink_ext_ack *extack)
7655{
7656 int ret;
7657 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7658
7659 ret = __dev_change_flags(dev, flags, extack);
7660 if (ret < 0)
7661 return ret;
7662
7663 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7664 __dev_notify_flags(dev, old_flags, changes);
7665 return ret;
7666}
7667EXPORT_SYMBOL(dev_change_flags);
7668
7669int __dev_set_mtu(struct net_device *dev, int new_mtu)
7670{
7671 const struct net_device_ops *ops = dev->netdev_ops;
7672
7673 if (ops->ndo_change_mtu)
7674 return ops->ndo_change_mtu(dev, new_mtu);
7675
7676 dev->mtu = new_mtu;
7677 return 0;
7678}
7679EXPORT_SYMBOL(__dev_set_mtu);
7680
7681/**
7682 * dev_set_mtu_ext - Change maximum transfer unit
7683 * @dev: device
7684 * @new_mtu: new transfer unit
7685 * @extack: netlink extended ack
7686 *
7687 * Change the maximum transfer size of the network device.
7688 */
7689int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7690 struct netlink_ext_ack *extack)
7691{
7692 int err, orig_mtu;
7693
7694 if (new_mtu == dev->mtu)
7695 return 0;
7696
7697 /* MTU must be positive, and in range */
7698 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7699 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7700 return -EINVAL;
7701 }
7702
7703 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7704 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7705 return -EINVAL;
7706 }
7707
7708 if (!netif_device_present(dev))
7709 return -ENODEV;
7710
7711 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7712 err = notifier_to_errno(err);
7713 if (err)
7714 return err;
7715
7716 orig_mtu = dev->mtu;
7717 err = __dev_set_mtu(dev, new_mtu);
7718
7719 if (!err) {
7720 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7721 orig_mtu);
7722 err = notifier_to_errno(err);
7723 if (err) {
7724 /* setting mtu back and notifying everyone again,
7725 * so that they have a chance to revert changes.
7726 */
7727 __dev_set_mtu(dev, orig_mtu);
7728 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7729 new_mtu);
7730 }
7731 }
7732 return err;
7733}
7734
7735int dev_set_mtu(struct net_device *dev, int new_mtu)
7736{
7737 struct netlink_ext_ack extack;
7738 int err;
7739
7740 memset(&extack, 0, sizeof(extack));
7741 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7742 if (err && extack._msg)
7743 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7744 return err;
7745}
7746EXPORT_SYMBOL(dev_set_mtu);
7747
7748/**
7749 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7750 * @dev: device
7751 * @new_len: new tx queue length
7752 */
7753int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7754{
7755 unsigned int orig_len = dev->tx_queue_len;
7756 int res;
7757
7758 if (new_len != (unsigned int)new_len)
7759 return -ERANGE;
7760
7761 if (new_len != orig_len) {
7762 dev->tx_queue_len = new_len;
7763 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7764 res = notifier_to_errno(res);
7765 if (res)
7766 goto err_rollback;
7767 res = dev_qdisc_change_tx_queue_len(dev);
7768 if (res)
7769 goto err_rollback;
7770 }
7771
7772 return 0;
7773
7774err_rollback:
7775 netdev_err(dev, "refused to change device tx_queue_len\n");
7776 dev->tx_queue_len = orig_len;
7777 return res;
7778}
7779
7780/**
7781 * dev_set_group - Change group this device belongs to
7782 * @dev: device
7783 * @new_group: group this device should belong to
7784 */
7785void dev_set_group(struct net_device *dev, int new_group)
7786{
7787 dev->group = new_group;
7788}
7789EXPORT_SYMBOL(dev_set_group);
7790
7791/**
7792 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7793 * @dev: device
7794 * @addr: new address
7795 * @extack: netlink extended ack
7796 */
7797int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7798 struct netlink_ext_ack *extack)
7799{
7800 struct netdev_notifier_pre_changeaddr_info info = {
7801 .info.dev = dev,
7802 .info.extack = extack,
7803 .dev_addr = addr,
7804 };
7805 int rc;
7806
7807 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7808 return notifier_to_errno(rc);
7809}
7810EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7811
7812/**
7813 * dev_set_mac_address - Change Media Access Control Address
7814 * @dev: device
7815 * @sa: new address
7816 * @extack: netlink extended ack
7817 *
7818 * Change the hardware (MAC) address of the device
7819 */
7820int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7821 struct netlink_ext_ack *extack)
7822{
7823 const struct net_device_ops *ops = dev->netdev_ops;
7824 int err;
7825
7826 if (!ops->ndo_set_mac_address)
7827 return -EOPNOTSUPP;
7828 if (sa->sa_family != dev->type)
7829 return -EINVAL;
7830 if (!netif_device_present(dev))
7831 return -ENODEV;
7832 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7833 if (err)
7834 return err;
7835 err = ops->ndo_set_mac_address(dev, sa);
7836 if (err)
7837 return err;
7838 dev->addr_assign_type = NET_ADDR_SET;
7839 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7840 add_device_randomness(dev->dev_addr, dev->addr_len);
7841 return 0;
7842}
7843EXPORT_SYMBOL(dev_set_mac_address);
7844
7845/**
7846 * dev_change_carrier - Change device carrier
7847 * @dev: device
7848 * @new_carrier: new value
7849 *
7850 * Change device carrier
7851 */
7852int dev_change_carrier(struct net_device *dev, bool new_carrier)
7853{
7854 const struct net_device_ops *ops = dev->netdev_ops;
7855
7856 if (!ops->ndo_change_carrier)
7857 return -EOPNOTSUPP;
7858 if (!netif_device_present(dev))
7859 return -ENODEV;
7860 return ops->ndo_change_carrier(dev, new_carrier);
7861}
7862EXPORT_SYMBOL(dev_change_carrier);
7863
7864/**
7865 * dev_get_phys_port_id - Get device physical port ID
7866 * @dev: device
7867 * @ppid: port ID
7868 *
7869 * Get device physical port ID
7870 */
7871int dev_get_phys_port_id(struct net_device *dev,
7872 struct netdev_phys_item_id *ppid)
7873{
7874 const struct net_device_ops *ops = dev->netdev_ops;
7875
7876 if (!ops->ndo_get_phys_port_id)
7877 return -EOPNOTSUPP;
7878 return ops->ndo_get_phys_port_id(dev, ppid);
7879}
7880EXPORT_SYMBOL(dev_get_phys_port_id);
7881
7882/**
7883 * dev_get_phys_port_name - Get device physical port name
7884 * @dev: device
7885 * @name: port name
7886 * @len: limit of bytes to copy to name
7887 *
7888 * Get device physical port name
7889 */
7890int dev_get_phys_port_name(struct net_device *dev,
7891 char *name, size_t len)
7892{
7893 const struct net_device_ops *ops = dev->netdev_ops;
7894 int err;
7895
7896 if (ops->ndo_get_phys_port_name) {
7897 err = ops->ndo_get_phys_port_name(dev, name, len);
7898 if (err != -EOPNOTSUPP)
7899 return err;
7900 }
7901 return devlink_compat_phys_port_name_get(dev, name, len);
7902}
7903EXPORT_SYMBOL(dev_get_phys_port_name);
7904
7905/**
7906 * dev_get_port_parent_id - Get the device's port parent identifier
7907 * @dev: network device
7908 * @ppid: pointer to a storage for the port's parent identifier
7909 * @recurse: allow/disallow recursion to lower devices
7910 *
7911 * Get the devices's port parent identifier
7912 */
7913int dev_get_port_parent_id(struct net_device *dev,
7914 struct netdev_phys_item_id *ppid,
7915 bool recurse)
7916{
7917 const struct net_device_ops *ops = dev->netdev_ops;
7918 struct netdev_phys_item_id first = { };
7919 struct net_device *lower_dev;
7920 struct list_head *iter;
7921 int err;
7922
7923 if (ops->ndo_get_port_parent_id) {
7924 err = ops->ndo_get_port_parent_id(dev, ppid);
7925 if (err != -EOPNOTSUPP)
7926 return err;
7927 }
7928
7929 err = devlink_compat_switch_id_get(dev, ppid);
7930 if (!err || err != -EOPNOTSUPP)
7931 return err;
7932
7933 if (!recurse)
7934 return -EOPNOTSUPP;
7935
7936 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7937 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7938 if (err)
7939 break;
7940 if (!first.id_len)
7941 first = *ppid;
7942 else if (memcmp(&first, ppid, sizeof(*ppid)))
7943 return -ENODATA;
7944 }
7945
7946 return err;
7947}
7948EXPORT_SYMBOL(dev_get_port_parent_id);
7949
7950/**
7951 * netdev_port_same_parent_id - Indicate if two network devices have
7952 * the same port parent identifier
7953 * @a: first network device
7954 * @b: second network device
7955 */
7956bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7957{
7958 struct netdev_phys_item_id a_id = { };
7959 struct netdev_phys_item_id b_id = { };
7960
7961 if (dev_get_port_parent_id(a, &a_id, true) ||
7962 dev_get_port_parent_id(b, &b_id, true))
7963 return false;
7964
7965 return netdev_phys_item_id_same(&a_id, &b_id);
7966}
7967EXPORT_SYMBOL(netdev_port_same_parent_id);
7968
7969/**
7970 * dev_change_proto_down - update protocol port state information
7971 * @dev: device
7972 * @proto_down: new value
7973 *
7974 * This info can be used by switch drivers to set the phys state of the
7975 * port.
7976 */
7977int dev_change_proto_down(struct net_device *dev, bool proto_down)
7978{
7979 const struct net_device_ops *ops = dev->netdev_ops;
7980
7981 if (!ops->ndo_change_proto_down)
7982 return -EOPNOTSUPP;
7983 if (!netif_device_present(dev))
7984 return -ENODEV;
7985 return ops->ndo_change_proto_down(dev, proto_down);
7986}
7987EXPORT_SYMBOL(dev_change_proto_down);
7988
7989/**
7990 * dev_change_proto_down_generic - generic implementation for
7991 * ndo_change_proto_down that sets carrier according to
7992 * proto_down.
7993 *
7994 * @dev: device
7995 * @proto_down: new value
7996 */
7997int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7998{
7999 if (proto_down)
8000 netif_carrier_off(dev);
8001 else
8002 netif_carrier_on(dev);
8003 dev->proto_down = proto_down;
8004 return 0;
8005}
8006EXPORT_SYMBOL(dev_change_proto_down_generic);
8007
8008u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8009 enum bpf_netdev_command cmd)
8010{
8011 struct netdev_bpf xdp;
8012
8013 if (!bpf_op)
8014 return 0;
8015
8016 memset(&xdp, 0, sizeof(xdp));
8017 xdp.command = cmd;
8018
8019 /* Query must always succeed. */
8020 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8021
8022 return xdp.prog_id;
8023}
8024
8025static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8026 struct netlink_ext_ack *extack, u32 flags,
8027 struct bpf_prog *prog)
8028{
8029 struct netdev_bpf xdp;
8030
8031 memset(&xdp, 0, sizeof(xdp));
8032 if (flags & XDP_FLAGS_HW_MODE)
8033 xdp.command = XDP_SETUP_PROG_HW;
8034 else
8035 xdp.command = XDP_SETUP_PROG;
8036 xdp.extack = extack;
8037 xdp.flags = flags;
8038 xdp.prog = prog;
8039
8040 return bpf_op(dev, &xdp);
8041}
8042
8043static void dev_xdp_uninstall(struct net_device *dev)
8044{
8045 struct netdev_bpf xdp;
8046 bpf_op_t ndo_bpf;
8047
8048 /* Remove generic XDP */
8049 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8050
8051 /* Remove from the driver */
8052 ndo_bpf = dev->netdev_ops->ndo_bpf;
8053 if (!ndo_bpf)
8054 return;
8055
8056 memset(&xdp, 0, sizeof(xdp));
8057 xdp.command = XDP_QUERY_PROG;
8058 WARN_ON(ndo_bpf(dev, &xdp));
8059 if (xdp.prog_id)
8060 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8061 NULL));
8062
8063 /* Remove HW offload */
8064 memset(&xdp, 0, sizeof(xdp));
8065 xdp.command = XDP_QUERY_PROG_HW;
8066 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8067 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8068 NULL));
8069}
8070
8071/**
8072 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8073 * @dev: device
8074 * @extack: netlink extended ack
8075 * @fd: new program fd or negative value to clear
8076 * @flags: xdp-related flags
8077 *
8078 * Set or clear a bpf program for a device
8079 */
8080int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8081 int fd, u32 flags)
8082{
8083 const struct net_device_ops *ops = dev->netdev_ops;
8084 enum bpf_netdev_command query;
8085 struct bpf_prog *prog = NULL;
8086 bpf_op_t bpf_op, bpf_chk;
8087 bool offload;
8088 int err;
8089
8090 ASSERT_RTNL();
8091
8092 offload = flags & XDP_FLAGS_HW_MODE;
8093 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8094
8095 bpf_op = bpf_chk = ops->ndo_bpf;
8096 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8097 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8098 return -EOPNOTSUPP;
8099 }
8100 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8101 bpf_op = generic_xdp_install;
8102 if (bpf_op == bpf_chk)
8103 bpf_chk = generic_xdp_install;
8104
8105 if (fd >= 0) {
8106 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8107 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8108 return -EEXIST;
8109 }
8110 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8111 __dev_xdp_query(dev, bpf_op, query)) {
8112 NL_SET_ERR_MSG(extack, "XDP program already attached");
8113 return -EBUSY;
8114 }
8115
8116 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8117 bpf_op == ops->ndo_bpf);
8118 if (IS_ERR(prog))
8119 return PTR_ERR(prog);
8120
8121 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8122 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8123 bpf_prog_put(prog);
8124 return -EINVAL;
8125 }
8126 }
8127
8128 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8129 if (err < 0 && prog)
8130 bpf_prog_put(prog);
8131
8132 return err;
8133}
8134
8135/**
8136 * dev_new_index - allocate an ifindex
8137 * @net: the applicable net namespace
8138 *
8139 * Returns a suitable unique value for a new device interface
8140 * number. The caller must hold the rtnl semaphore or the
8141 * dev_base_lock to be sure it remains unique.
8142 */
8143static int dev_new_index(struct net *net)
8144{
8145 int ifindex = net->ifindex;
8146
8147 for (;;) {
8148 if (++ifindex <= 0)
8149 ifindex = 1;
8150 if (!__dev_get_by_index(net, ifindex))
8151 return net->ifindex = ifindex;
8152 }
8153}
8154
8155/* Delayed registration/unregisteration */
8156static LIST_HEAD(net_todo_list);
8157DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8158
8159static void net_set_todo(struct net_device *dev)
8160{
8161 list_add_tail(&dev->todo_list, &net_todo_list);
8162 dev_net(dev)->dev_unreg_count++;
8163}
8164
8165static void rollback_registered_many(struct list_head *head)
8166{
8167 struct net_device *dev, *tmp;
8168 LIST_HEAD(close_head);
8169
8170 BUG_ON(dev_boot_phase);
8171 ASSERT_RTNL();
8172
8173 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8174 /* Some devices call without registering
8175 * for initialization unwind. Remove those
8176 * devices and proceed with the remaining.
8177 */
8178 if (dev->reg_state == NETREG_UNINITIALIZED) {
8179 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8180 dev->name, dev);
8181
8182 WARN_ON(1);
8183 list_del(&dev->unreg_list);
8184 continue;
8185 }
8186 dev->dismantle = true;
8187 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8188 }
8189
8190 /* If device is running, close it first. */
8191 list_for_each_entry(dev, head, unreg_list)
8192 list_add_tail(&dev->close_list, &close_head);
8193 dev_close_many(&close_head, true);
8194
8195 list_for_each_entry(dev, head, unreg_list) {
8196 /* And unlink it from device chain. */
8197 unlist_netdevice(dev);
8198
8199 dev->reg_state = NETREG_UNREGISTERING;
8200 }
8201 flush_all_backlogs();
8202
8203 synchronize_net();
8204
8205 list_for_each_entry(dev, head, unreg_list) {
8206 struct sk_buff *skb = NULL;
8207
8208 /* Shutdown queueing discipline. */
8209 dev_shutdown(dev);
8210
8211 dev_xdp_uninstall(dev);
8212
8213 /* Notify protocols, that we are about to destroy
8214 * this device. They should clean all the things.
8215 */
8216 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8217
8218 if (!dev->rtnl_link_ops ||
8219 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8220 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8221 GFP_KERNEL, NULL, 0);
8222
8223 /*
8224 * Flush the unicast and multicast chains
8225 */
8226 dev_uc_flush(dev);
8227 dev_mc_flush(dev);
8228
8229 if (dev->netdev_ops->ndo_uninit)
8230 dev->netdev_ops->ndo_uninit(dev);
8231
8232 if (skb)
8233 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8234
8235 /* Notifier chain MUST detach us all upper devices. */
8236 WARN_ON(netdev_has_any_upper_dev(dev));
8237 WARN_ON(netdev_has_any_lower_dev(dev));
8238
8239 /* Remove entries from kobject tree */
8240 netdev_unregister_kobject(dev);
8241#ifdef CONFIG_XPS
8242 /* Remove XPS queueing entries */
8243 netif_reset_xps_queues_gt(dev, 0);
8244#endif
8245 }
8246
8247 synchronize_net();
8248
8249 list_for_each_entry(dev, head, unreg_list)
8250 dev_put(dev);
8251}
8252
8253static void rollback_registered(struct net_device *dev)
8254{
8255 LIST_HEAD(single);
8256
8257 list_add(&dev->unreg_list, &single);
8258 rollback_registered_many(&single);
8259 list_del(&single);
8260}
8261
8262static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8263 struct net_device *upper, netdev_features_t features)
8264{
8265 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8266 netdev_features_t feature;
8267 int feature_bit;
8268
8269 for_each_netdev_feature(upper_disables, feature_bit) {
8270 feature = __NETIF_F_BIT(feature_bit);
8271 if (!(upper->wanted_features & feature)
8272 && (features & feature)) {
8273 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8274 &feature, upper->name);
8275 features &= ~feature;
8276 }
8277 }
8278
8279 return features;
8280}
8281
8282static void netdev_sync_lower_features(struct net_device *upper,
8283 struct net_device *lower, netdev_features_t features)
8284{
8285 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8286 netdev_features_t feature;
8287 int feature_bit;
8288
8289 for_each_netdev_feature(upper_disables, feature_bit) {
8290 feature = __NETIF_F_BIT(feature_bit);
8291 if (!(features & feature) && (lower->features & feature)) {
8292 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8293 &feature, lower->name);
8294 lower->wanted_features &= ~feature;
8295 netdev_update_features(lower);
8296
8297 if (unlikely(lower->features & feature))
8298 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8299 &feature, lower->name);
8300 }
8301 }
8302}
8303
8304static netdev_features_t netdev_fix_features(struct net_device *dev,
8305 netdev_features_t features)
8306{
8307 /* Fix illegal checksum combinations */
8308 if ((features & NETIF_F_HW_CSUM) &&
8309 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8310 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8311 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8312 }
8313
8314 /* TSO requires that SG is present as well. */
8315 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8316 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8317 features &= ~NETIF_F_ALL_TSO;
8318 }
8319
8320 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8321 !(features & NETIF_F_IP_CSUM)) {
8322 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8323 features &= ~NETIF_F_TSO;
8324 features &= ~NETIF_F_TSO_ECN;
8325 }
8326
8327 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8328 !(features & NETIF_F_IPV6_CSUM)) {
8329 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8330 features &= ~NETIF_F_TSO6;
8331 }
8332
8333 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8334 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8335 features &= ~NETIF_F_TSO_MANGLEID;
8336
8337 /* TSO ECN requires that TSO is present as well. */
8338 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8339 features &= ~NETIF_F_TSO_ECN;
8340
8341 /* Software GSO depends on SG. */
8342 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8343 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8344 features &= ~NETIF_F_GSO;
8345 }
8346
8347 /* GSO partial features require GSO partial be set */
8348 if ((features & dev->gso_partial_features) &&
8349 !(features & NETIF_F_GSO_PARTIAL)) {
8350 netdev_dbg(dev,
8351 "Dropping partially supported GSO features since no GSO partial.\n");
8352 features &= ~dev->gso_partial_features;
8353 }
8354
8355 if (!(features & NETIF_F_RXCSUM)) {
8356 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8357 * successfully merged by hardware must also have the
8358 * checksum verified by hardware. If the user does not
8359 * want to enable RXCSUM, logically, we should disable GRO_HW.
8360 */
8361 if (features & NETIF_F_GRO_HW) {
8362 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8363 features &= ~NETIF_F_GRO_HW;
8364 }
8365 }
8366
8367 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8368 if (features & NETIF_F_RXFCS) {
8369 if (features & NETIF_F_LRO) {
8370 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8371 features &= ~NETIF_F_LRO;
8372 }
8373
8374 if (features & NETIF_F_GRO_HW) {
8375 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8376 features &= ~NETIF_F_GRO_HW;
8377 }
8378 }
8379
8380 return features;
8381}
8382
8383int __netdev_update_features(struct net_device *dev)
8384{
8385 struct net_device *upper, *lower;
8386 netdev_features_t features;
8387 struct list_head *iter;
8388 int err = -1;
8389
8390 ASSERT_RTNL();
8391
8392 features = netdev_get_wanted_features(dev);
8393
8394 if (dev->netdev_ops->ndo_fix_features)
8395 features = dev->netdev_ops->ndo_fix_features(dev, features);
8396
8397 /* driver might be less strict about feature dependencies */
8398 features = netdev_fix_features(dev, features);
8399
8400 /* some features can't be enabled if they're off an an upper device */
8401 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8402 features = netdev_sync_upper_features(dev, upper, features);
8403
8404 if (dev->features == features)
8405 goto sync_lower;
8406
8407 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8408 &dev->features, &features);
8409
8410 if (dev->netdev_ops->ndo_set_features)
8411 err = dev->netdev_ops->ndo_set_features(dev, features);
8412 else
8413 err = 0;
8414
8415 if (unlikely(err < 0)) {
8416 netdev_err(dev,
8417 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8418 err, &features, &dev->features);
8419 /* return non-0 since some features might have changed and
8420 * it's better to fire a spurious notification than miss it
8421 */
8422 return -1;
8423 }
8424
8425sync_lower:
8426 /* some features must be disabled on lower devices when disabled
8427 * on an upper device (think: bonding master or bridge)
8428 */
8429 netdev_for_each_lower_dev(dev, lower, iter)
8430 netdev_sync_lower_features(dev, lower, features);
8431
8432 if (!err) {
8433 netdev_features_t diff = features ^ dev->features;
8434
8435 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8436 /* udp_tunnel_{get,drop}_rx_info both need
8437 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8438 * device, or they won't do anything.
8439 * Thus we need to update dev->features
8440 * *before* calling udp_tunnel_get_rx_info,
8441 * but *after* calling udp_tunnel_drop_rx_info.
8442 */
8443 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8444 dev->features = features;
8445 udp_tunnel_get_rx_info(dev);
8446 } else {
8447 udp_tunnel_drop_rx_info(dev);
8448 }
8449 }
8450
8451 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8452 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8453 dev->features = features;
8454 err |= vlan_get_rx_ctag_filter_info(dev);
8455 } else {
8456 vlan_drop_rx_ctag_filter_info(dev);
8457 }
8458 }
8459
8460 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8461 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8462 dev->features = features;
8463 err |= vlan_get_rx_stag_filter_info(dev);
8464 } else {
8465 vlan_drop_rx_stag_filter_info(dev);
8466 }
8467 }
8468
8469 dev->features = features;
8470 }
8471
8472 return err < 0 ? 0 : 1;
8473}
8474
8475/**
8476 * netdev_update_features - recalculate device features
8477 * @dev: the device to check
8478 *
8479 * Recalculate dev->features set and send notifications if it
8480 * has changed. Should be called after driver or hardware dependent
8481 * conditions might have changed that influence the features.
8482 */
8483void netdev_update_features(struct net_device *dev)
8484{
8485 if (__netdev_update_features(dev))
8486 netdev_features_change(dev);
8487}
8488EXPORT_SYMBOL(netdev_update_features);
8489
8490/**
8491 * netdev_change_features - recalculate device features
8492 * @dev: the device to check
8493 *
8494 * Recalculate dev->features set and send notifications even
8495 * if they have not changed. Should be called instead of
8496 * netdev_update_features() if also dev->vlan_features might
8497 * have changed to allow the changes to be propagated to stacked
8498 * VLAN devices.
8499 */
8500void netdev_change_features(struct net_device *dev)
8501{
8502 __netdev_update_features(dev);
8503 netdev_features_change(dev);
8504}
8505EXPORT_SYMBOL(netdev_change_features);
8506
8507/**
8508 * netif_stacked_transfer_operstate - transfer operstate
8509 * @rootdev: the root or lower level device to transfer state from
8510 * @dev: the device to transfer operstate to
8511 *
8512 * Transfer operational state from root to device. This is normally
8513 * called when a stacking relationship exists between the root
8514 * device and the device(a leaf device).
8515 */
8516void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8517 struct net_device *dev)
8518{
8519 if (rootdev->operstate == IF_OPER_DORMANT)
8520 netif_dormant_on(dev);
8521 else
8522 netif_dormant_off(dev);
8523
8524 if (netif_carrier_ok(rootdev))
8525 netif_carrier_on(dev);
8526 else
8527 netif_carrier_off(dev);
8528}
8529EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8530
8531static int netif_alloc_rx_queues(struct net_device *dev)
8532{
8533 unsigned int i, count = dev->num_rx_queues;
8534 struct netdev_rx_queue *rx;
8535 size_t sz = count * sizeof(*rx);
8536 int err = 0;
8537
8538 BUG_ON(count < 1);
8539
8540 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8541 if (!rx)
8542 return -ENOMEM;
8543
8544 dev->_rx = rx;
8545
8546 for (i = 0; i < count; i++) {
8547 rx[i].dev = dev;
8548
8549 /* XDP RX-queue setup */
8550 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8551 if (err < 0)
8552 goto err_rxq_info;
8553 }
8554 return 0;
8555
8556err_rxq_info:
8557 /* Rollback successful reg's and free other resources */
8558 while (i--)
8559 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8560 kvfree(dev->_rx);
8561 dev->_rx = NULL;
8562 return err;
8563}
8564
8565static void netif_free_rx_queues(struct net_device *dev)
8566{
8567 unsigned int i, count = dev->num_rx_queues;
8568
8569 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8570 if (!dev->_rx)
8571 return;
8572
8573 for (i = 0; i < count; i++)
8574 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8575
8576 kvfree(dev->_rx);
8577}
8578
8579static void netdev_init_one_queue(struct net_device *dev,
8580 struct netdev_queue *queue, void *_unused)
8581{
8582 /* Initialize queue lock */
8583 spin_lock_init(&queue->_xmit_lock);
8584 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8585 queue->xmit_lock_owner = -1;
8586 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8587 queue->dev = dev;
8588#ifdef CONFIG_BQL
8589 dql_init(&queue->dql, HZ);
8590#endif
8591}
8592
8593static void netif_free_tx_queues(struct net_device *dev)
8594{
8595 kvfree(dev->_tx);
8596}
8597
8598static int netif_alloc_netdev_queues(struct net_device *dev)
8599{
8600 unsigned int count = dev->num_tx_queues;
8601 struct netdev_queue *tx;
8602 size_t sz = count * sizeof(*tx);
8603
8604 if (count < 1 || count > 0xffff)
8605 return -EINVAL;
8606
8607 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8608 if (!tx)
8609 return -ENOMEM;
8610
8611 dev->_tx = tx;
8612
8613 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8614 spin_lock_init(&dev->tx_global_lock);
8615
8616 return 0;
8617}
8618
8619void netif_tx_stop_all_queues(struct net_device *dev)
8620{
8621 unsigned int i;
8622
8623 for (i = 0; i < dev->num_tx_queues; i++) {
8624 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8625
8626 netif_tx_stop_queue(txq);
8627 }
8628}
8629EXPORT_SYMBOL(netif_tx_stop_all_queues);
8630
8631/**
8632 * register_netdevice - register a network device
8633 * @dev: device to register
8634 *
8635 * Take a completed network device structure and add it to the kernel
8636 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8637 * chain. 0 is returned on success. A negative errno code is returned
8638 * on a failure to set up the device, or if the name is a duplicate.
8639 *
8640 * Callers must hold the rtnl semaphore. You may want
8641 * register_netdev() instead of this.
8642 *
8643 * BUGS:
8644 * The locking appears insufficient to guarantee two parallel registers
8645 * will not get the same name.
8646 */
8647
8648int register_netdevice(struct net_device *dev)
8649{
8650 int ret;
8651 struct net *net = dev_net(dev);
8652
8653 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8654 NETDEV_FEATURE_COUNT);
8655 BUG_ON(dev_boot_phase);
8656 ASSERT_RTNL();
8657
8658 might_sleep();
8659
8660 /* When net_device's are persistent, this will be fatal. */
8661 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8662 BUG_ON(!net);
8663
8664 spin_lock_init(&dev->addr_list_lock);
8665 netdev_set_addr_lockdep_class(dev);
8666
8667 ret = dev_get_valid_name(net, dev, dev->name);
8668 if (ret < 0)
8669 goto out;
8670
8671 /* Init, if this function is available */
8672 if (dev->netdev_ops->ndo_init) {
8673 ret = dev->netdev_ops->ndo_init(dev);
8674 if (ret) {
8675 if (ret > 0)
8676 ret = -EIO;
8677 goto out;
8678 }
8679 }
8680
8681 if (((dev->hw_features | dev->features) &
8682 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8683 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8684 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8685 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8686 ret = -EINVAL;
8687 goto err_uninit;
8688 }
8689
8690 ret = -EBUSY;
8691 if (!dev->ifindex)
8692 dev->ifindex = dev_new_index(net);
8693 else if (__dev_get_by_index(net, dev->ifindex))
8694 goto err_uninit;
8695
8696 /* Transfer changeable features to wanted_features and enable
8697 * software offloads (GSO and GRO).
8698 */
8699 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8700 dev->features |= NETIF_F_SOFT_FEATURES;
8701
8702 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8703 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8704 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8705 }
8706
8707 dev->wanted_features = dev->features & dev->hw_features;
8708
8709 if (!(dev->flags & IFF_LOOPBACK))
8710 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8711
8712 /* If IPv4 TCP segmentation offload is supported we should also
8713 * allow the device to enable segmenting the frame with the option
8714 * of ignoring a static IP ID value. This doesn't enable the
8715 * feature itself but allows the user to enable it later.
8716 */
8717 if (dev->hw_features & NETIF_F_TSO)
8718 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8719 if (dev->vlan_features & NETIF_F_TSO)
8720 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8721 if (dev->mpls_features & NETIF_F_TSO)
8722 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8723 if (dev->hw_enc_features & NETIF_F_TSO)
8724 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8725
8726 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8727 */
8728 dev->vlan_features |= NETIF_F_HIGHDMA;
8729
8730 /* Make NETIF_F_SG inheritable to tunnel devices.
8731 */
8732 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8733
8734 /* Make NETIF_F_SG inheritable to MPLS.
8735 */
8736 dev->mpls_features |= NETIF_F_SG;
8737
8738 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8739 ret = notifier_to_errno(ret);
8740 if (ret)
8741 goto err_uninit;
8742
8743 ret = netdev_register_kobject(dev);
8744 if (ret)
8745 goto err_uninit;
8746 dev->reg_state = NETREG_REGISTERED;
8747
8748 __netdev_update_features(dev);
8749
8750 /*
8751 * Default initial state at registry is that the
8752 * device is present.
8753 */
8754
8755 set_bit(__LINK_STATE_PRESENT, &dev->state);
8756
8757 linkwatch_init_dev(dev);
8758
8759 dev_init_scheduler(dev);
8760 dev_hold(dev);
8761 list_netdevice(dev);
8762 add_device_randomness(dev->dev_addr, dev->addr_len);
8763
8764 /* If the device has permanent device address, driver should
8765 * set dev_addr and also addr_assign_type should be set to
8766 * NET_ADDR_PERM (default value).
8767 */
8768 if (dev->addr_assign_type == NET_ADDR_PERM)
8769 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8770
8771 /* Notify protocols, that a new device appeared. */
8772 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8773 ret = notifier_to_errno(ret);
8774 if (ret) {
8775 rollback_registered(dev);
8776 dev->reg_state = NETREG_UNREGISTERED;
8777 }
8778 /*
8779 * Prevent userspace races by waiting until the network
8780 * device is fully setup before sending notifications.
8781 */
8782 if (!dev->rtnl_link_ops ||
8783 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8784 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8785
8786out:
8787 return ret;
8788
8789err_uninit:
8790 if (dev->netdev_ops->ndo_uninit)
8791 dev->netdev_ops->ndo_uninit(dev);
8792 if (dev->priv_destructor)
8793 dev->priv_destructor(dev);
8794 goto out;
8795}
8796EXPORT_SYMBOL(register_netdevice);
8797
8798/**
8799 * init_dummy_netdev - init a dummy network device for NAPI
8800 * @dev: device to init
8801 *
8802 * This takes a network device structure and initialize the minimum
8803 * amount of fields so it can be used to schedule NAPI polls without
8804 * registering a full blown interface. This is to be used by drivers
8805 * that need to tie several hardware interfaces to a single NAPI
8806 * poll scheduler due to HW limitations.
8807 */
8808int init_dummy_netdev(struct net_device *dev)
8809{
8810 /* Clear everything. Note we don't initialize spinlocks
8811 * are they aren't supposed to be taken by any of the
8812 * NAPI code and this dummy netdev is supposed to be
8813 * only ever used for NAPI polls
8814 */
8815 memset(dev, 0, sizeof(struct net_device));
8816
8817 /* make sure we BUG if trying to hit standard
8818 * register/unregister code path
8819 */
8820 dev->reg_state = NETREG_DUMMY;
8821
8822 /* NAPI wants this */
8823 INIT_LIST_HEAD(&dev->napi_list);
8824
8825 /* a dummy interface is started by default */
8826 set_bit(__LINK_STATE_PRESENT, &dev->state);
8827 set_bit(__LINK_STATE_START, &dev->state);
8828
8829 /* napi_busy_loop stats accounting wants this */
8830 dev_net_set(dev, &init_net);
8831
8832 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8833 * because users of this 'device' dont need to change
8834 * its refcount.
8835 */
8836
8837 return 0;
8838}
8839EXPORT_SYMBOL_GPL(init_dummy_netdev);
8840
8841
8842/**
8843 * register_netdev - register a network device
8844 * @dev: device to register
8845 *
8846 * Take a completed network device structure and add it to the kernel
8847 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8848 * chain. 0 is returned on success. A negative errno code is returned
8849 * on a failure to set up the device, or if the name is a duplicate.
8850 *
8851 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8852 * and expands the device name if you passed a format string to
8853 * alloc_netdev.
8854 */
8855int register_netdev(struct net_device *dev)
8856{
8857 int err;
8858
8859 if (rtnl_lock_killable())
8860 return -EINTR;
8861 err = register_netdevice(dev);
8862 rtnl_unlock();
8863 return err;
8864}
8865EXPORT_SYMBOL(register_netdev);
8866
8867int netdev_refcnt_read(const struct net_device *dev)
8868{
8869 int i, refcnt = 0;
8870
8871 for_each_possible_cpu(i)
8872 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8873 return refcnt;
8874}
8875EXPORT_SYMBOL(netdev_refcnt_read);
8876
8877/**
8878 * netdev_wait_allrefs - wait until all references are gone.
8879 * @dev: target net_device
8880 *
8881 * This is called when unregistering network devices.
8882 *
8883 * Any protocol or device that holds a reference should register
8884 * for netdevice notification, and cleanup and put back the
8885 * reference if they receive an UNREGISTER event.
8886 * We can get stuck here if buggy protocols don't correctly
8887 * call dev_put.
8888 */
8889static void netdev_wait_allrefs(struct net_device *dev)
8890{
8891 unsigned long rebroadcast_time, warning_time;
8892 int refcnt;
8893
8894 linkwatch_forget_dev(dev);
8895
8896 rebroadcast_time = warning_time = jiffies;
8897 refcnt = netdev_refcnt_read(dev);
8898
8899 while (refcnt != 0) {
8900 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8901 rtnl_lock();
8902
8903 /* Rebroadcast unregister notification */
8904 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8905
8906 __rtnl_unlock();
8907 rcu_barrier();
8908 rtnl_lock();
8909
8910 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8911 &dev->state)) {
8912 /* We must not have linkwatch events
8913 * pending on unregister. If this
8914 * happens, we simply run the queue
8915 * unscheduled, resulting in a noop
8916 * for this device.
8917 */
8918 linkwatch_run_queue();
8919 }
8920
8921 __rtnl_unlock();
8922
8923 rebroadcast_time = jiffies;
8924 }
8925
8926 msleep(250);
8927
8928 refcnt = netdev_refcnt_read(dev);
8929
8930 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8931 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8932 dev->name, refcnt);
8933 warning_time = jiffies;
8934 }
8935 }
8936}
8937
8938/* The sequence is:
8939 *
8940 * rtnl_lock();
8941 * ...
8942 * register_netdevice(x1);
8943 * register_netdevice(x2);
8944 * ...
8945 * unregister_netdevice(y1);
8946 * unregister_netdevice(y2);
8947 * ...
8948 * rtnl_unlock();
8949 * free_netdev(y1);
8950 * free_netdev(y2);
8951 *
8952 * We are invoked by rtnl_unlock().
8953 * This allows us to deal with problems:
8954 * 1) We can delete sysfs objects which invoke hotplug
8955 * without deadlocking with linkwatch via keventd.
8956 * 2) Since we run with the RTNL semaphore not held, we can sleep
8957 * safely in order to wait for the netdev refcnt to drop to zero.
8958 *
8959 * We must not return until all unregister events added during
8960 * the interval the lock was held have been completed.
8961 */
8962void netdev_run_todo(void)
8963{
8964 struct list_head list;
8965
8966 /* Snapshot list, allow later requests */
8967 list_replace_init(&net_todo_list, &list);
8968
8969 __rtnl_unlock();
8970
8971
8972 /* Wait for rcu callbacks to finish before next phase */
8973 if (!list_empty(&list))
8974 rcu_barrier();
8975
8976 while (!list_empty(&list)) {
8977 struct net_device *dev
8978 = list_first_entry(&list, struct net_device, todo_list);
8979 list_del(&dev->todo_list);
8980
8981 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8982 pr_err("network todo '%s' but state %d\n",
8983 dev->name, dev->reg_state);
8984 dump_stack();
8985 continue;
8986 }
8987
8988 dev->reg_state = NETREG_UNREGISTERED;
8989
8990 netdev_wait_allrefs(dev);
8991
8992 /* paranoia */
8993 BUG_ON(netdev_refcnt_read(dev));
8994 BUG_ON(!list_empty(&dev->ptype_all));
8995 BUG_ON(!list_empty(&dev->ptype_specific));
8996 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8997 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8998#if IS_ENABLED(CONFIG_DECNET)
8999 WARN_ON(dev->dn_ptr);
9000#endif
9001 if (dev->priv_destructor)
9002 dev->priv_destructor(dev);
9003 if (dev->needs_free_netdev)
9004 free_netdev(dev);
9005
9006 /* Report a network device has been unregistered */
9007 rtnl_lock();
9008 dev_net(dev)->dev_unreg_count--;
9009 __rtnl_unlock();
9010 wake_up(&netdev_unregistering_wq);
9011
9012 /* Free network device */
9013 kobject_put(&dev->dev.kobj);
9014 }
9015}
9016
9017/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9018 * all the same fields in the same order as net_device_stats, with only
9019 * the type differing, but rtnl_link_stats64 may have additional fields
9020 * at the end for newer counters.
9021 */
9022void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9023 const struct net_device_stats *netdev_stats)
9024{
9025#if BITS_PER_LONG == 64
9026 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9027 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9028 /* zero out counters that only exist in rtnl_link_stats64 */
9029 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9030 sizeof(*stats64) - sizeof(*netdev_stats));
9031#else
9032 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9033 const unsigned long *src = (const unsigned long *)netdev_stats;
9034 u64 *dst = (u64 *)stats64;
9035
9036 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9037 for (i = 0; i < n; i++)
9038 dst[i] = src[i];
9039 /* zero out counters that only exist in rtnl_link_stats64 */
9040 memset((char *)stats64 + n * sizeof(u64), 0,
9041 sizeof(*stats64) - n * sizeof(u64));
9042#endif
9043}
9044EXPORT_SYMBOL(netdev_stats_to_stats64);
9045
9046/**
9047 * dev_get_stats - get network device statistics
9048 * @dev: device to get statistics from
9049 * @storage: place to store stats
9050 *
9051 * Get network statistics from device. Return @storage.
9052 * The device driver may provide its own method by setting
9053 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9054 * otherwise the internal statistics structure is used.
9055 */
9056struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9057 struct rtnl_link_stats64 *storage)
9058{
9059 const struct net_device_ops *ops = dev->netdev_ops;
9060
9061 if (ops->ndo_get_stats64) {
9062 memset(storage, 0, sizeof(*storage));
9063 ops->ndo_get_stats64(dev, storage);
9064 } else if (ops->ndo_get_stats) {
9065 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9066 } else {
9067 netdev_stats_to_stats64(storage, &dev->stats);
9068 }
9069 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9070 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9071 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9072 return storage;
9073}
9074EXPORT_SYMBOL(dev_get_stats);
9075
9076struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9077{
9078 struct netdev_queue *queue = dev_ingress_queue(dev);
9079
9080#ifdef CONFIG_NET_CLS_ACT
9081 if (queue)
9082 return queue;
9083 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9084 if (!queue)
9085 return NULL;
9086 netdev_init_one_queue(dev, queue, NULL);
9087 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9088 queue->qdisc_sleeping = &noop_qdisc;
9089 rcu_assign_pointer(dev->ingress_queue, queue);
9090#endif
9091 return queue;
9092}
9093
9094static const struct ethtool_ops default_ethtool_ops;
9095
9096void netdev_set_default_ethtool_ops(struct net_device *dev,
9097 const struct ethtool_ops *ops)
9098{
9099 if (dev->ethtool_ops == &default_ethtool_ops)
9100 dev->ethtool_ops = ops;
9101}
9102EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9103
9104void netdev_freemem(struct net_device *dev)
9105{
9106 char *addr = (char *)dev - dev->padded;
9107
9108 kvfree(addr);
9109}
9110
9111/**
9112 * alloc_netdev_mqs - allocate network device
9113 * @sizeof_priv: size of private data to allocate space for
9114 * @name: device name format string
9115 * @name_assign_type: origin of device name
9116 * @setup: callback to initialize device
9117 * @txqs: the number of TX subqueues to allocate
9118 * @rxqs: the number of RX subqueues to allocate
9119 *
9120 * Allocates a struct net_device with private data area for driver use
9121 * and performs basic initialization. Also allocates subqueue structs
9122 * for each queue on the device.
9123 */
9124struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9125 unsigned char name_assign_type,
9126 void (*setup)(struct net_device *),
9127 unsigned int txqs, unsigned int rxqs)
9128{
9129 struct net_device *dev;
9130 unsigned int alloc_size;
9131 struct net_device *p;
9132
9133 BUG_ON(strlen(name) >= sizeof(dev->name));
9134
9135 if (txqs < 1) {
9136 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9137 return NULL;
9138 }
9139
9140 if (rxqs < 1) {
9141 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9142 return NULL;
9143 }
9144
9145 alloc_size = sizeof(struct net_device);
9146 if (sizeof_priv) {
9147 /* ensure 32-byte alignment of private area */
9148 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9149 alloc_size += sizeof_priv;
9150 }
9151 /* ensure 32-byte alignment of whole construct */
9152 alloc_size += NETDEV_ALIGN - 1;
9153
9154 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9155 if (!p)
9156 return NULL;
9157
9158 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9159 dev->padded = (char *)dev - (char *)p;
9160
9161 dev->pcpu_refcnt = alloc_percpu(int);
9162 if (!dev->pcpu_refcnt)
9163 goto free_dev;
9164
9165 if (dev_addr_init(dev))
9166 goto free_pcpu;
9167
9168 dev_mc_init(dev);
9169 dev_uc_init(dev);
9170
9171 dev_net_set(dev, &init_net);
9172
9173 dev->gso_max_size = GSO_MAX_SIZE;
9174 dev->gso_max_segs = GSO_MAX_SEGS;
9175
9176 INIT_LIST_HEAD(&dev->napi_list);
9177 INIT_LIST_HEAD(&dev->unreg_list);
9178 INIT_LIST_HEAD(&dev->close_list);
9179 INIT_LIST_HEAD(&dev->link_watch_list);
9180 INIT_LIST_HEAD(&dev->adj_list.upper);
9181 INIT_LIST_HEAD(&dev->adj_list.lower);
9182 INIT_LIST_HEAD(&dev->ptype_all);
9183 INIT_LIST_HEAD(&dev->ptype_specific);
9184#ifdef CONFIG_NET_SCHED
9185 hash_init(dev->qdisc_hash);
9186#endif
9187 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9188 setup(dev);
9189
9190 if (!dev->tx_queue_len) {
9191 dev->priv_flags |= IFF_NO_QUEUE;
9192 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9193 }
9194
9195 dev->num_tx_queues = txqs;
9196 dev->real_num_tx_queues = txqs;
9197 if (netif_alloc_netdev_queues(dev))
9198 goto free_all;
9199
9200 dev->num_rx_queues = rxqs;
9201 dev->real_num_rx_queues = rxqs;
9202 if (netif_alloc_rx_queues(dev))
9203 goto free_all;
9204
9205 strcpy(dev->name, name);
9206 dev->name_assign_type = name_assign_type;
9207 dev->group = INIT_NETDEV_GROUP;
9208 if (!dev->ethtool_ops)
9209 dev->ethtool_ops = &default_ethtool_ops;
9210
9211 nf_hook_ingress_init(dev);
9212
9213 return dev;
9214
9215free_all:
9216 free_netdev(dev);
9217 return NULL;
9218
9219free_pcpu:
9220 free_percpu(dev->pcpu_refcnt);
9221free_dev:
9222 netdev_freemem(dev);
9223 return NULL;
9224}
9225EXPORT_SYMBOL(alloc_netdev_mqs);
9226
9227/**
9228 * free_netdev - free network device
9229 * @dev: device
9230 *
9231 * This function does the last stage of destroying an allocated device
9232 * interface. The reference to the device object is released. If this
9233 * is the last reference then it will be freed.Must be called in process
9234 * context.
9235 */
9236void free_netdev(struct net_device *dev)
9237{
9238 struct napi_struct *p, *n;
9239
9240 might_sleep();
9241 netif_free_tx_queues(dev);
9242 netif_free_rx_queues(dev);
9243
9244 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9245
9246 /* Flush device addresses */
9247 dev_addr_flush(dev);
9248
9249 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9250 netif_napi_del(p);
9251
9252 free_percpu(dev->pcpu_refcnt);
9253 dev->pcpu_refcnt = NULL;
9254
9255 /* Compatibility with error handling in drivers */
9256 if (dev->reg_state == NETREG_UNINITIALIZED) {
9257 netdev_freemem(dev);
9258 return;
9259 }
9260
9261 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9262 dev->reg_state = NETREG_RELEASED;
9263
9264 /* will free via device release */
9265 put_device(&dev->dev);
9266}
9267EXPORT_SYMBOL(free_netdev);
9268
9269/**
9270 * synchronize_net - Synchronize with packet receive processing
9271 *
9272 * Wait for packets currently being received to be done.
9273 * Does not block later packets from starting.
9274 */
9275void synchronize_net(void)
9276{
9277 might_sleep();
9278 if (rtnl_is_locked())
9279 synchronize_rcu_expedited();
9280 else
9281 synchronize_rcu();
9282}
9283EXPORT_SYMBOL(synchronize_net);
9284
9285/**
9286 * unregister_netdevice_queue - remove device from the kernel
9287 * @dev: device
9288 * @head: list
9289 *
9290 * This function shuts down a device interface and removes it
9291 * from the kernel tables.
9292 * If head not NULL, device is queued to be unregistered later.
9293 *
9294 * Callers must hold the rtnl semaphore. You may want
9295 * unregister_netdev() instead of this.
9296 */
9297
9298void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9299{
9300 ASSERT_RTNL();
9301
9302 if (head) {
9303 list_move_tail(&dev->unreg_list, head);
9304 } else {
9305 rollback_registered(dev);
9306 /* Finish processing unregister after unlock */
9307 net_set_todo(dev);
9308 }
9309}
9310EXPORT_SYMBOL(unregister_netdevice_queue);
9311
9312/**
9313 * unregister_netdevice_many - unregister many devices
9314 * @head: list of devices
9315 *
9316 * Note: As most callers use a stack allocated list_head,
9317 * we force a list_del() to make sure stack wont be corrupted later.
9318 */
9319void unregister_netdevice_many(struct list_head *head)
9320{
9321 struct net_device *dev;
9322
9323 if (!list_empty(head)) {
9324 rollback_registered_many(head);
9325 list_for_each_entry(dev, head, unreg_list)
9326 net_set_todo(dev);
9327 list_del(head);
9328 }
9329}
9330EXPORT_SYMBOL(unregister_netdevice_many);
9331
9332/**
9333 * unregister_netdev - remove device from the kernel
9334 * @dev: device
9335 *
9336 * This function shuts down a device interface and removes it
9337 * from the kernel tables.
9338 *
9339 * This is just a wrapper for unregister_netdevice that takes
9340 * the rtnl semaphore. In general you want to use this and not
9341 * unregister_netdevice.
9342 */
9343void unregister_netdev(struct net_device *dev)
9344{
9345 rtnl_lock();
9346 unregister_netdevice(dev);
9347 rtnl_unlock();
9348}
9349EXPORT_SYMBOL(unregister_netdev);
9350
9351/**
9352 * dev_change_net_namespace - move device to different nethost namespace
9353 * @dev: device
9354 * @net: network namespace
9355 * @pat: If not NULL name pattern to try if the current device name
9356 * is already taken in the destination network namespace.
9357 *
9358 * This function shuts down a device interface and moves it
9359 * to a new network namespace. On success 0 is returned, on
9360 * a failure a netagive errno code is returned.
9361 *
9362 * Callers must hold the rtnl semaphore.
9363 */
9364
9365int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9366{
9367 int err, new_nsid, new_ifindex;
9368
9369 ASSERT_RTNL();
9370
9371 /* Don't allow namespace local devices to be moved. */
9372 err = -EINVAL;
9373 if (dev->features & NETIF_F_NETNS_LOCAL)
9374 goto out;
9375
9376 /* Ensure the device has been registrered */
9377 if (dev->reg_state != NETREG_REGISTERED)
9378 goto out;
9379
9380 /* Get out if there is nothing todo */
9381 err = 0;
9382 if (net_eq(dev_net(dev), net))
9383 goto out;
9384
9385 /* Pick the destination device name, and ensure
9386 * we can use it in the destination network namespace.
9387 */
9388 err = -EEXIST;
9389 if (__dev_get_by_name(net, dev->name)) {
9390 /* We get here if we can't use the current device name */
9391 if (!pat)
9392 goto out;
9393 err = dev_get_valid_name(net, dev, pat);
9394 if (err < 0)
9395 goto out;
9396 }
9397
9398 /*
9399 * And now a mini version of register_netdevice unregister_netdevice.
9400 */
9401
9402 /* If device is running close it first. */
9403 dev_close(dev);
9404
9405 /* And unlink it from device chain */
9406 unlist_netdevice(dev);
9407
9408 synchronize_net();
9409
9410 /* Shutdown queueing discipline. */
9411 dev_shutdown(dev);
9412
9413 /* Notify protocols, that we are about to destroy
9414 * this device. They should clean all the things.
9415 *
9416 * Note that dev->reg_state stays at NETREG_REGISTERED.
9417 * This is wanted because this way 8021q and macvlan know
9418 * the device is just moving and can keep their slaves up.
9419 */
9420 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9421 rcu_barrier();
9422
9423 new_nsid = peernet2id_alloc(dev_net(dev), net);
9424 /* If there is an ifindex conflict assign a new one */
9425 if (__dev_get_by_index(net, dev->ifindex))
9426 new_ifindex = dev_new_index(net);
9427 else
9428 new_ifindex = dev->ifindex;
9429
9430 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9431 new_ifindex);
9432
9433 /*
9434 * Flush the unicast and multicast chains
9435 */
9436 dev_uc_flush(dev);
9437 dev_mc_flush(dev);
9438
9439 /* Send a netdev-removed uevent to the old namespace */
9440 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9441 netdev_adjacent_del_links(dev);
9442
9443 /* Actually switch the network namespace */
9444 dev_net_set(dev, net);
9445 dev->ifindex = new_ifindex;
9446
9447 /* Send a netdev-add uevent to the new namespace */
9448 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9449 netdev_adjacent_add_links(dev);
9450
9451 /* Fixup kobjects */
9452 err = device_rename(&dev->dev, dev->name);
9453 WARN_ON(err);
9454
9455 /* Add the device back in the hashes */
9456 list_netdevice(dev);
9457
9458 /* Notify protocols, that a new device appeared. */
9459 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9460
9461 /*
9462 * Prevent userspace races by waiting until the network
9463 * device is fully setup before sending notifications.
9464 */
9465 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9466
9467 synchronize_net();
9468 err = 0;
9469out:
9470 return err;
9471}
9472EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9473
9474static int dev_cpu_dead(unsigned int oldcpu)
9475{
9476 struct sk_buff **list_skb;
9477 struct sk_buff *skb;
9478 unsigned int cpu;
9479 struct softnet_data *sd, *oldsd, *remsd = NULL;
9480
9481 local_irq_disable();
9482 cpu = smp_processor_id();
9483 sd = &per_cpu(softnet_data, cpu);
9484 oldsd = &per_cpu(softnet_data, oldcpu);
9485
9486 /* Find end of our completion_queue. */
9487 list_skb = &sd->completion_queue;
9488 while (*list_skb)
9489 list_skb = &(*list_skb)->next;
9490 /* Append completion queue from offline CPU. */
9491 *list_skb = oldsd->completion_queue;
9492 oldsd->completion_queue = NULL;
9493
9494 /* Append output queue from offline CPU. */
9495 if (oldsd->output_queue) {
9496 *sd->output_queue_tailp = oldsd->output_queue;
9497 sd->output_queue_tailp = oldsd->output_queue_tailp;
9498 oldsd->output_queue = NULL;
9499 oldsd->output_queue_tailp = &oldsd->output_queue;
9500 }
9501 /* Append NAPI poll list from offline CPU, with one exception :
9502 * process_backlog() must be called by cpu owning percpu backlog.
9503 * We properly handle process_queue & input_pkt_queue later.
9504 */
9505 while (!list_empty(&oldsd->poll_list)) {
9506 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9507 struct napi_struct,
9508 poll_list);
9509
9510 list_del_init(&napi->poll_list);
9511 if (napi->poll == process_backlog)
9512 napi->state = 0;
9513 else
9514 ____napi_schedule(sd, napi);
9515 }
9516
9517 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9518 local_irq_enable();
9519
9520#ifdef CONFIG_RPS
9521 remsd = oldsd->rps_ipi_list;
9522 oldsd->rps_ipi_list = NULL;
9523#endif
9524 /* send out pending IPI's on offline CPU */
9525 net_rps_send_ipi(remsd);
9526
9527 /* Process offline CPU's input_pkt_queue */
9528 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9529 netif_rx_ni(skb);
9530 input_queue_head_incr(oldsd);
9531 }
9532 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9533 netif_rx_ni(skb);
9534 input_queue_head_incr(oldsd);
9535 }
9536
9537 return 0;
9538}
9539
9540/**
9541 * netdev_increment_features - increment feature set by one
9542 * @all: current feature set
9543 * @one: new feature set
9544 * @mask: mask feature set
9545 *
9546 * Computes a new feature set after adding a device with feature set
9547 * @one to the master device with current feature set @all. Will not
9548 * enable anything that is off in @mask. Returns the new feature set.
9549 */
9550netdev_features_t netdev_increment_features(netdev_features_t all,
9551 netdev_features_t one, netdev_features_t mask)
9552{
9553 if (mask & NETIF_F_HW_CSUM)
9554 mask |= NETIF_F_CSUM_MASK;
9555 mask |= NETIF_F_VLAN_CHALLENGED;
9556
9557 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9558 all &= one | ~NETIF_F_ALL_FOR_ALL;
9559
9560 /* If one device supports hw checksumming, set for all. */
9561 if (all & NETIF_F_HW_CSUM)
9562 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9563
9564 return all;
9565}
9566EXPORT_SYMBOL(netdev_increment_features);
9567
9568static struct hlist_head * __net_init netdev_create_hash(void)
9569{
9570 int i;
9571 struct hlist_head *hash;
9572
9573 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9574 if (hash != NULL)
9575 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9576 INIT_HLIST_HEAD(&hash[i]);
9577
9578 return hash;
9579}
9580
9581/* Initialize per network namespace state */
9582static int __net_init netdev_init(struct net *net)
9583{
9584 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9585 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9586
9587 if (net != &init_net)
9588 INIT_LIST_HEAD(&net->dev_base_head);
9589
9590 net->dev_name_head = netdev_create_hash();
9591 if (net->dev_name_head == NULL)
9592 goto err_name;
9593
9594 net->dev_index_head = netdev_create_hash();
9595 if (net->dev_index_head == NULL)
9596 goto err_idx;
9597
9598 return 0;
9599
9600err_idx:
9601 kfree(net->dev_name_head);
9602err_name:
9603 return -ENOMEM;
9604}
9605
9606/**
9607 * netdev_drivername - network driver for the device
9608 * @dev: network device
9609 *
9610 * Determine network driver for device.
9611 */
9612const char *netdev_drivername(const struct net_device *dev)
9613{
9614 const struct device_driver *driver;
9615 const struct device *parent;
9616 const char *empty = "";
9617
9618 parent = dev->dev.parent;
9619 if (!parent)
9620 return empty;
9621
9622 driver = parent->driver;
9623 if (driver && driver->name)
9624 return driver->name;
9625 return empty;
9626}
9627
9628static void __netdev_printk(const char *level, const struct net_device *dev,
9629 struct va_format *vaf)
9630{
9631 if (dev && dev->dev.parent) {
9632 dev_printk_emit(level[1] - '0',
9633 dev->dev.parent,
9634 "%s %s %s%s: %pV",
9635 dev_driver_string(dev->dev.parent),
9636 dev_name(dev->dev.parent),
9637 netdev_name(dev), netdev_reg_state(dev),
9638 vaf);
9639 } else if (dev) {
9640 printk("%s%s%s: %pV",
9641 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9642 } else {
9643 printk("%s(NULL net_device): %pV", level, vaf);
9644 }
9645}
9646
9647void netdev_printk(const char *level, const struct net_device *dev,
9648 const char *format, ...)
9649{
9650 struct va_format vaf;
9651 va_list args;
9652
9653 va_start(args, format);
9654
9655 vaf.fmt = format;
9656 vaf.va = &args;
9657
9658 __netdev_printk(level, dev, &vaf);
9659
9660 va_end(args);
9661}
9662EXPORT_SYMBOL(netdev_printk);
9663
9664#define define_netdev_printk_level(func, level) \
9665void func(const struct net_device *dev, const char *fmt, ...) \
9666{ \
9667 struct va_format vaf; \
9668 va_list args; \
9669 \
9670 va_start(args, fmt); \
9671 \
9672 vaf.fmt = fmt; \
9673 vaf.va = &args; \
9674 \
9675 __netdev_printk(level, dev, &vaf); \
9676 \
9677 va_end(args); \
9678} \
9679EXPORT_SYMBOL(func);
9680
9681define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9682define_netdev_printk_level(netdev_alert, KERN_ALERT);
9683define_netdev_printk_level(netdev_crit, KERN_CRIT);
9684define_netdev_printk_level(netdev_err, KERN_ERR);
9685define_netdev_printk_level(netdev_warn, KERN_WARNING);
9686define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9687define_netdev_printk_level(netdev_info, KERN_INFO);
9688
9689static void __net_exit netdev_exit(struct net *net)
9690{
9691 kfree(net->dev_name_head);
9692 kfree(net->dev_index_head);
9693 if (net != &init_net)
9694 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9695}
9696
9697static struct pernet_operations __net_initdata netdev_net_ops = {
9698 .init = netdev_init,
9699 .exit = netdev_exit,
9700};
9701
9702static void __net_exit default_device_exit(struct net *net)
9703{
9704 struct net_device *dev, *aux;
9705 /*
9706 * Push all migratable network devices back to the
9707 * initial network namespace
9708 */
9709 rtnl_lock();
9710 for_each_netdev_safe(net, dev, aux) {
9711 int err;
9712 char fb_name[IFNAMSIZ];
9713
9714 /* Ignore unmoveable devices (i.e. loopback) */
9715 if (dev->features & NETIF_F_NETNS_LOCAL)
9716 continue;
9717
9718 /* Leave virtual devices for the generic cleanup */
9719 if (dev->rtnl_link_ops)
9720 continue;
9721
9722 /* Push remaining network devices to init_net */
9723 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9724 err = dev_change_net_namespace(dev, &init_net, fb_name);
9725 if (err) {
9726 pr_emerg("%s: failed to move %s to init_net: %d\n",
9727 __func__, dev->name, err);
9728 BUG();
9729 }
9730 }
9731 rtnl_unlock();
9732}
9733
9734static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9735{
9736 /* Return with the rtnl_lock held when there are no network
9737 * devices unregistering in any network namespace in net_list.
9738 */
9739 struct net *net;
9740 bool unregistering;
9741 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9742
9743 add_wait_queue(&netdev_unregistering_wq, &wait);
9744 for (;;) {
9745 unregistering = false;
9746 rtnl_lock();
9747 list_for_each_entry(net, net_list, exit_list) {
9748 if (net->dev_unreg_count > 0) {
9749 unregistering = true;
9750 break;
9751 }
9752 }
9753 if (!unregistering)
9754 break;
9755 __rtnl_unlock();
9756
9757 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9758 }
9759 remove_wait_queue(&netdev_unregistering_wq, &wait);
9760}
9761
9762static void __net_exit default_device_exit_batch(struct list_head *net_list)
9763{
9764 /* At exit all network devices most be removed from a network
9765 * namespace. Do this in the reverse order of registration.
9766 * Do this across as many network namespaces as possible to
9767 * improve batching efficiency.
9768 */
9769 struct net_device *dev;
9770 struct net *net;
9771 LIST_HEAD(dev_kill_list);
9772
9773 /* To prevent network device cleanup code from dereferencing
9774 * loopback devices or network devices that have been freed
9775 * wait here for all pending unregistrations to complete,
9776 * before unregistring the loopback device and allowing the
9777 * network namespace be freed.
9778 *
9779 * The netdev todo list containing all network devices
9780 * unregistrations that happen in default_device_exit_batch
9781 * will run in the rtnl_unlock() at the end of
9782 * default_device_exit_batch.
9783 */
9784 rtnl_lock_unregistering(net_list);
9785 list_for_each_entry(net, net_list, exit_list) {
9786 for_each_netdev_reverse(net, dev) {
9787 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9788 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9789 else
9790 unregister_netdevice_queue(dev, &dev_kill_list);
9791 }
9792 }
9793 unregister_netdevice_many(&dev_kill_list);
9794 rtnl_unlock();
9795}
9796
9797static struct pernet_operations __net_initdata default_device_ops = {
9798 .exit = default_device_exit,
9799 .exit_batch = default_device_exit_batch,
9800};
9801
9802/*
9803 * Initialize the DEV module. At boot time this walks the device list and
9804 * unhooks any devices that fail to initialise (normally hardware not
9805 * present) and leaves us with a valid list of present and active devices.
9806 *
9807 */
9808
9809/*
9810 * This is called single threaded during boot, so no need
9811 * to take the rtnl semaphore.
9812 */
9813static int __init net_dev_init(void)
9814{
9815 int i, rc = -ENOMEM;
9816
9817 BUG_ON(!dev_boot_phase);
9818
9819 if (dev_proc_init())
9820 goto out;
9821
9822 if (netdev_kobject_init())
9823 goto out;
9824
9825 INIT_LIST_HEAD(&ptype_all);
9826 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9827 INIT_LIST_HEAD(&ptype_base[i]);
9828
9829 INIT_LIST_HEAD(&offload_base);
9830
9831 if (register_pernet_subsys(&netdev_net_ops))
9832 goto out;
9833
9834 /*
9835 * Initialise the packet receive queues.
9836 */
9837
9838 for_each_possible_cpu(i) {
9839 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9840 struct softnet_data *sd = &per_cpu(softnet_data, i);
9841
9842 INIT_WORK(flush, flush_backlog);
9843
9844 skb_queue_head_init(&sd->input_pkt_queue);
9845 skb_queue_head_init(&sd->process_queue);
9846#ifdef CONFIG_XFRM_OFFLOAD
9847 skb_queue_head_init(&sd->xfrm_backlog);
9848#endif
9849 INIT_LIST_HEAD(&sd->poll_list);
9850 sd->output_queue_tailp = &sd->output_queue;
9851#ifdef CONFIG_RPS
9852 sd->csd.func = rps_trigger_softirq;
9853 sd->csd.info = sd;
9854 sd->cpu = i;
9855#endif
9856
9857 init_gro_hash(&sd->backlog);
9858 sd->backlog.poll = process_backlog;
9859 sd->backlog.weight = weight_p;
9860 }
9861
9862 dev_boot_phase = 0;
9863
9864 /* The loopback device is special if any other network devices
9865 * is present in a network namespace the loopback device must
9866 * be present. Since we now dynamically allocate and free the
9867 * loopback device ensure this invariant is maintained by
9868 * keeping the loopback device as the first device on the
9869 * list of network devices. Ensuring the loopback devices
9870 * is the first device that appears and the last network device
9871 * that disappears.
9872 */
9873 if (register_pernet_device(&loopback_net_ops))
9874 goto out;
9875
9876 if (register_pernet_device(&default_device_ops))
9877 goto out;
9878
9879 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9880 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9881
9882 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9883 NULL, dev_cpu_dead);
9884 WARN_ON(rc < 0);
9885 rc = 0;
9886out:
9887 return rc;
9888}
9889
9890subsys_initcall(net_dev_init);