at v5.2-rc2 153 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/workqueue.h> 39#include <linux/dynamic_queue_limits.h> 40 41#include <linux/ethtool.h> 42#include <net/net_namespace.h> 43#ifdef CONFIG_DCB 44#include <net/dcbnl.h> 45#endif 46#include <net/netprio_cgroup.h> 47#include <net/xdp.h> 48 49#include <linux/netdev_features.h> 50#include <linux/neighbour.h> 51#include <uapi/linux/netdevice.h> 52#include <uapi/linux/if_bonding.h> 53#include <uapi/linux/pkt_cls.h> 54#include <linux/hashtable.h> 55 56struct netpoll_info; 57struct device; 58struct phy_device; 59struct dsa_port; 60 61struct sfp_bus; 62/* 802.11 specific */ 63struct wireless_dev; 64/* 802.15.4 specific */ 65struct wpan_dev; 66struct mpls_dev; 67/* UDP Tunnel offloads */ 68struct udp_tunnel_info; 69struct bpf_prog; 70struct xdp_buff; 71 72void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75/* Backlog congestion levels */ 76#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77#define NET_RX_DROP 1 /* packet dropped */ 78 79/* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96/* qdisc ->enqueue() return codes. */ 97#define NET_XMIT_SUCCESS 0x00 98#define NET_XMIT_DROP 0x01 /* skb dropped */ 99#define NET_XMIT_CN 0x02 /* congestion notification */ 100#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108/* Driver transmit return codes */ 109#define NETDEV_TX_MASK 0xf0 110 111enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115}; 116typedef enum netdev_tx netdev_tx_t; 117 118/* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122static inline bool dev_xmit_complete(int rc) 123{ 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134} 135 136/* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141#if defined(CONFIG_HYPERV_NET) 142# define LL_MAX_HEADER 128 143#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144# if defined(CONFIG_MAC80211_MESH) 145# define LL_MAX_HEADER 128 146# else 147# define LL_MAX_HEADER 96 148# endif 149#else 150# define LL_MAX_HEADER 32 151#endif 152 153#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155#define MAX_HEADER LL_MAX_HEADER 156#else 157#define MAX_HEADER (LL_MAX_HEADER + 48) 158#endif 159 160/* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189}; 190 191 192#include <linux/cache.h> 193#include <linux/skbuff.h> 194 195#ifdef CONFIG_RPS 196#include <linux/static_key.h> 197extern struct static_key_false rps_needed; 198extern struct static_key_false rfs_needed; 199#endif 200 201struct neighbour; 202struct neigh_parms; 203struct sk_buff; 204 205struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209#define NETDEV_HW_ADDR_T_LAN 1 210#define NETDEV_HW_ADDR_T_SAN 2 211#define NETDEV_HW_ADDR_T_SLAVE 3 212#define NETDEV_HW_ADDR_T_UNICAST 4 213#define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219}; 220 221struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224}; 225 226#define netdev_hw_addr_list_count(l) ((l)->count) 227#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228#define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233#define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238#define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246#define HH_DATA_MOD 16 247#define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249#define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252}; 253 254/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262#define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 __be16 (*parse_protocol)(const struct sk_buff *skb); 278}; 279 280/* These flag bits are private to the generic network queueing 281 * layer; they may not be explicitly referenced by any other 282 * code. 283 */ 284 285enum netdev_state_t { 286 __LINK_STATE_START, 287 __LINK_STATE_PRESENT, 288 __LINK_STATE_NOCARRIER, 289 __LINK_STATE_LINKWATCH_PENDING, 290 __LINK_STATE_DORMANT, 291}; 292 293 294/* 295 * This structure holds boot-time configured netdevice settings. They 296 * are then used in the device probing. 297 */ 298struct netdev_boot_setup { 299 char name[IFNAMSIZ]; 300 struct ifmap map; 301}; 302#define NETDEV_BOOT_SETUP_MAX 8 303 304int __init netdev_boot_setup(char *str); 305 306struct gro_list { 307 struct list_head list; 308 int count; 309}; 310 311/* 312 * size of gro hash buckets, must less than bit number of 313 * napi_struct::gro_bitmask 314 */ 315#define GRO_HASH_BUCKETS 8 316 317/* 318 * Structure for NAPI scheduling similar to tasklet but with weighting 319 */ 320struct napi_struct { 321 /* The poll_list must only be managed by the entity which 322 * changes the state of the NAPI_STATE_SCHED bit. This means 323 * whoever atomically sets that bit can add this napi_struct 324 * to the per-CPU poll_list, and whoever clears that bit 325 * can remove from the list right before clearing the bit. 326 */ 327 struct list_head poll_list; 328 329 unsigned long state; 330 int weight; 331 unsigned long gro_bitmask; 332 int (*poll)(struct napi_struct *, int); 333#ifdef CONFIG_NETPOLL 334 int poll_owner; 335#endif 336 struct net_device *dev; 337 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 338 struct sk_buff *skb; 339 struct hrtimer timer; 340 struct list_head dev_list; 341 struct hlist_node napi_hash_node; 342 unsigned int napi_id; 343}; 344 345enum { 346 NAPI_STATE_SCHED, /* Poll is scheduled */ 347 NAPI_STATE_MISSED, /* reschedule a napi */ 348 NAPI_STATE_DISABLE, /* Disable pending */ 349 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 350 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 351 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 352 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 353}; 354 355enum { 356 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 357 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 358 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 359 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 360 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 361 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 362 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 363}; 364 365enum gro_result { 366 GRO_MERGED, 367 GRO_MERGED_FREE, 368 GRO_HELD, 369 GRO_NORMAL, 370 GRO_DROP, 371 GRO_CONSUMED, 372}; 373typedef enum gro_result gro_result_t; 374 375/* 376 * enum rx_handler_result - Possible return values for rx_handlers. 377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 378 * further. 379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 380 * case skb->dev was changed by rx_handler. 381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 383 * 384 * rx_handlers are functions called from inside __netif_receive_skb(), to do 385 * special processing of the skb, prior to delivery to protocol handlers. 386 * 387 * Currently, a net_device can only have a single rx_handler registered. Trying 388 * to register a second rx_handler will return -EBUSY. 389 * 390 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 391 * To unregister a rx_handler on a net_device, use 392 * netdev_rx_handler_unregister(). 393 * 394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 395 * do with the skb. 396 * 397 * If the rx_handler consumed the skb in some way, it should return 398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 399 * the skb to be delivered in some other way. 400 * 401 * If the rx_handler changed skb->dev, to divert the skb to another 402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 403 * new device will be called if it exists. 404 * 405 * If the rx_handler decides the skb should be ignored, it should return 406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 407 * are registered on exact device (ptype->dev == skb->dev). 408 * 409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 410 * delivered, it should return RX_HANDLER_PASS. 411 * 412 * A device without a registered rx_handler will behave as if rx_handler 413 * returned RX_HANDLER_PASS. 414 */ 415 416enum rx_handler_result { 417 RX_HANDLER_CONSUMED, 418 RX_HANDLER_ANOTHER, 419 RX_HANDLER_EXACT, 420 RX_HANDLER_PASS, 421}; 422typedef enum rx_handler_result rx_handler_result_t; 423typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 424 425void __napi_schedule(struct napi_struct *n); 426void __napi_schedule_irqoff(struct napi_struct *n); 427 428static inline bool napi_disable_pending(struct napi_struct *n) 429{ 430 return test_bit(NAPI_STATE_DISABLE, &n->state); 431} 432 433bool napi_schedule_prep(struct napi_struct *n); 434 435/** 436 * napi_schedule - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Schedule NAPI poll routine to be called if it is not already 440 * running. 441 */ 442static inline void napi_schedule(struct napi_struct *n) 443{ 444 if (napi_schedule_prep(n)) 445 __napi_schedule(n); 446} 447 448/** 449 * napi_schedule_irqoff - schedule NAPI poll 450 * @n: NAPI context 451 * 452 * Variant of napi_schedule(), assuming hard irqs are masked. 453 */ 454static inline void napi_schedule_irqoff(struct napi_struct *n) 455{ 456 if (napi_schedule_prep(n)) 457 __napi_schedule_irqoff(n); 458} 459 460/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 461static inline bool napi_reschedule(struct napi_struct *napi) 462{ 463 if (napi_schedule_prep(napi)) { 464 __napi_schedule(napi); 465 return true; 466 } 467 return false; 468} 469 470bool napi_complete_done(struct napi_struct *n, int work_done); 471/** 472 * napi_complete - NAPI processing complete 473 * @n: NAPI context 474 * 475 * Mark NAPI processing as complete. 476 * Consider using napi_complete_done() instead. 477 * Return false if device should avoid rearming interrupts. 478 */ 479static inline bool napi_complete(struct napi_struct *n) 480{ 481 return napi_complete_done(n, 0); 482} 483 484/** 485 * napi_hash_del - remove a NAPI from global table 486 * @napi: NAPI context 487 * 488 * Warning: caller must observe RCU grace period 489 * before freeing memory containing @napi, if 490 * this function returns true. 491 * Note: core networking stack automatically calls it 492 * from netif_napi_del(). 493 * Drivers might want to call this helper to combine all 494 * the needed RCU grace periods into a single one. 495 */ 496bool napi_hash_del(struct napi_struct *napi); 497 498/** 499 * napi_disable - prevent NAPI from scheduling 500 * @n: NAPI context 501 * 502 * Stop NAPI from being scheduled on this context. 503 * Waits till any outstanding processing completes. 504 */ 505void napi_disable(struct napi_struct *n); 506 507/** 508 * napi_enable - enable NAPI scheduling 509 * @n: NAPI context 510 * 511 * Resume NAPI from being scheduled on this context. 512 * Must be paired with napi_disable. 513 */ 514static inline void napi_enable(struct napi_struct *n) 515{ 516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 517 smp_mb__before_atomic(); 518 clear_bit(NAPI_STATE_SCHED, &n->state); 519 clear_bit(NAPI_STATE_NPSVC, &n->state); 520} 521 522/** 523 * napi_synchronize - wait until NAPI is not running 524 * @n: NAPI context 525 * 526 * Wait until NAPI is done being scheduled on this context. 527 * Waits till any outstanding processing completes but 528 * does not disable future activations. 529 */ 530static inline void napi_synchronize(const struct napi_struct *n) 531{ 532 if (IS_ENABLED(CONFIG_SMP)) 533 while (test_bit(NAPI_STATE_SCHED, &n->state)) 534 msleep(1); 535 else 536 barrier(); 537} 538 539/** 540 * napi_if_scheduled_mark_missed - if napi is running, set the 541 * NAPIF_STATE_MISSED 542 * @n: NAPI context 543 * 544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 545 * NAPI is scheduled. 546 **/ 547static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 548{ 549 unsigned long val, new; 550 551 do { 552 val = READ_ONCE(n->state); 553 if (val & NAPIF_STATE_DISABLE) 554 return true; 555 556 if (!(val & NAPIF_STATE_SCHED)) 557 return false; 558 559 new = val | NAPIF_STATE_MISSED; 560 } while (cmpxchg(&n->state, val, new) != val); 561 562 return true; 563} 564 565enum netdev_queue_state_t { 566 __QUEUE_STATE_DRV_XOFF, 567 __QUEUE_STATE_STACK_XOFF, 568 __QUEUE_STATE_FROZEN, 569}; 570 571#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 572#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 573#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 574 575#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 576#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 577 QUEUE_STATE_FROZEN) 578#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 579 QUEUE_STATE_FROZEN) 580 581/* 582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 583 * netif_tx_* functions below are used to manipulate this flag. The 584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 585 * queue independently. The netif_xmit_*stopped functions below are called 586 * to check if the queue has been stopped by the driver or stack (either 587 * of the XOFF bits are set in the state). Drivers should not need to call 588 * netif_xmit*stopped functions, they should only be using netif_tx_*. 589 */ 590 591struct netdev_queue { 592/* 593 * read-mostly part 594 */ 595 struct net_device *dev; 596 struct Qdisc __rcu *qdisc; 597 struct Qdisc *qdisc_sleeping; 598#ifdef CONFIG_SYSFS 599 struct kobject kobj; 600#endif 601#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 602 int numa_node; 603#endif 604 unsigned long tx_maxrate; 605 /* 606 * Number of TX timeouts for this queue 607 * (/sys/class/net/DEV/Q/trans_timeout) 608 */ 609 unsigned long trans_timeout; 610 611 /* Subordinate device that the queue has been assigned to */ 612 struct net_device *sb_dev; 613#ifdef CONFIG_XDP_SOCKETS 614 struct xdp_umem *umem; 615#endif 616/* 617 * write-mostly part 618 */ 619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 620 int xmit_lock_owner; 621 /* 622 * Time (in jiffies) of last Tx 623 */ 624 unsigned long trans_start; 625 626 unsigned long state; 627 628#ifdef CONFIG_BQL 629 struct dql dql; 630#endif 631} ____cacheline_aligned_in_smp; 632 633extern int sysctl_fb_tunnels_only_for_init_net; 634extern int sysctl_devconf_inherit_init_net; 635 636static inline bool net_has_fallback_tunnels(const struct net *net) 637{ 638 return net == &init_net || 639 !IS_ENABLED(CONFIG_SYSCTL) || 640 !sysctl_fb_tunnels_only_for_init_net; 641} 642 643static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 644{ 645#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 646 return q->numa_node; 647#else 648 return NUMA_NO_NODE; 649#endif 650} 651 652static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 653{ 654#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 q->numa_node = node; 656#endif 657} 658 659#ifdef CONFIG_RPS 660/* 661 * This structure holds an RPS map which can be of variable length. The 662 * map is an array of CPUs. 663 */ 664struct rps_map { 665 unsigned int len; 666 struct rcu_head rcu; 667 u16 cpus[0]; 668}; 669#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 670 671/* 672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 673 * tail pointer for that CPU's input queue at the time of last enqueue, and 674 * a hardware filter index. 675 */ 676struct rps_dev_flow { 677 u16 cpu; 678 u16 filter; 679 unsigned int last_qtail; 680}; 681#define RPS_NO_FILTER 0xffff 682 683/* 684 * The rps_dev_flow_table structure contains a table of flow mappings. 685 */ 686struct rps_dev_flow_table { 687 unsigned int mask; 688 struct rcu_head rcu; 689 struct rps_dev_flow flows[0]; 690}; 691#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 692 ((_num) * sizeof(struct rps_dev_flow))) 693 694/* 695 * The rps_sock_flow_table contains mappings of flows to the last CPU 696 * on which they were processed by the application (set in recvmsg). 697 * Each entry is a 32bit value. Upper part is the high-order bits 698 * of flow hash, lower part is CPU number. 699 * rps_cpu_mask is used to partition the space, depending on number of 700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 702 * meaning we use 32-6=26 bits for the hash. 703 */ 704struct rps_sock_flow_table { 705 u32 mask; 706 707 u32 ents[0] ____cacheline_aligned_in_smp; 708}; 709#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 710 711#define RPS_NO_CPU 0xffff 712 713extern u32 rps_cpu_mask; 714extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 715 716static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 717 u32 hash) 718{ 719 if (table && hash) { 720 unsigned int index = hash & table->mask; 721 u32 val = hash & ~rps_cpu_mask; 722 723 /* We only give a hint, preemption can change CPU under us */ 724 val |= raw_smp_processor_id(); 725 726 if (table->ents[index] != val) 727 table->ents[index] = val; 728 } 729} 730 731#ifdef CONFIG_RFS_ACCEL 732bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 733 u16 filter_id); 734#endif 735#endif /* CONFIG_RPS */ 736 737/* This structure contains an instance of an RX queue. */ 738struct netdev_rx_queue { 739#ifdef CONFIG_RPS 740 struct rps_map __rcu *rps_map; 741 struct rps_dev_flow_table __rcu *rps_flow_table; 742#endif 743 struct kobject kobj; 744 struct net_device *dev; 745 struct xdp_rxq_info xdp_rxq; 746#ifdef CONFIG_XDP_SOCKETS 747 struct xdp_umem *umem; 748#endif 749} ____cacheline_aligned_in_smp; 750 751/* 752 * RX queue sysfs structures and functions. 753 */ 754struct rx_queue_attribute { 755 struct attribute attr; 756 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 757 ssize_t (*store)(struct netdev_rx_queue *queue, 758 const char *buf, size_t len); 759}; 760 761#ifdef CONFIG_XPS 762/* 763 * This structure holds an XPS map which can be of variable length. The 764 * map is an array of queues. 765 */ 766struct xps_map { 767 unsigned int len; 768 unsigned int alloc_len; 769 struct rcu_head rcu; 770 u16 queues[0]; 771}; 772#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 773#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 774 - sizeof(struct xps_map)) / sizeof(u16)) 775 776/* 777 * This structure holds all XPS maps for device. Maps are indexed by CPU. 778 */ 779struct xps_dev_maps { 780 struct rcu_head rcu; 781 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 782}; 783 784#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 785 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 786 787#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 788 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 789 790#endif /* CONFIG_XPS */ 791 792#define TC_MAX_QUEUE 16 793#define TC_BITMASK 15 794/* HW offloaded queuing disciplines txq count and offset maps */ 795struct netdev_tc_txq { 796 u16 count; 797 u16 offset; 798}; 799 800#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 801/* 802 * This structure is to hold information about the device 803 * configured to run FCoE protocol stack. 804 */ 805struct netdev_fcoe_hbainfo { 806 char manufacturer[64]; 807 char serial_number[64]; 808 char hardware_version[64]; 809 char driver_version[64]; 810 char optionrom_version[64]; 811 char firmware_version[64]; 812 char model[256]; 813 char model_description[256]; 814}; 815#endif 816 817#define MAX_PHYS_ITEM_ID_LEN 32 818 819/* This structure holds a unique identifier to identify some 820 * physical item (port for example) used by a netdevice. 821 */ 822struct netdev_phys_item_id { 823 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 824 unsigned char id_len; 825}; 826 827static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 828 struct netdev_phys_item_id *b) 829{ 830 return a->id_len == b->id_len && 831 memcmp(a->id, b->id, a->id_len) == 0; 832} 833 834typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 835 struct sk_buff *skb, 836 struct net_device *sb_dev); 837 838enum tc_setup_type { 839 TC_SETUP_QDISC_MQPRIO, 840 TC_SETUP_CLSU32, 841 TC_SETUP_CLSFLOWER, 842 TC_SETUP_CLSMATCHALL, 843 TC_SETUP_CLSBPF, 844 TC_SETUP_BLOCK, 845 TC_SETUP_QDISC_CBS, 846 TC_SETUP_QDISC_RED, 847 TC_SETUP_QDISC_PRIO, 848 TC_SETUP_QDISC_MQ, 849 TC_SETUP_QDISC_ETF, 850 TC_SETUP_ROOT_QDISC, 851 TC_SETUP_QDISC_GRED, 852}; 853 854/* These structures hold the attributes of bpf state that are being passed 855 * to the netdevice through the bpf op. 856 */ 857enum bpf_netdev_command { 858 /* Set or clear a bpf program used in the earliest stages of packet 859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 860 * is responsible for calling bpf_prog_put on any old progs that are 861 * stored. In case of error, the callee need not release the new prog 862 * reference, but on success it takes ownership and must bpf_prog_put 863 * when it is no longer used. 864 */ 865 XDP_SETUP_PROG, 866 XDP_SETUP_PROG_HW, 867 XDP_QUERY_PROG, 868 XDP_QUERY_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_UMEM, 873}; 874 875struct bpf_prog_offload_ops; 876struct netlink_ext_ack; 877struct xdp_umem; 878 879struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 895 struct { 896 struct bpf_offloaded_map *offmap; 897 }; 898 /* XDP_SETUP_XSK_UMEM */ 899 struct { 900 struct xdp_umem *umem; 901 u16 queue_id; 902 } xsk; 903 }; 904}; 905 906#ifdef CONFIG_XFRM_OFFLOAD 907struct xfrmdev_ops { 908 int (*xdo_dev_state_add) (struct xfrm_state *x); 909 void (*xdo_dev_state_delete) (struct xfrm_state *x); 910 void (*xdo_dev_state_free) (struct xfrm_state *x); 911 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 912 struct xfrm_state *x); 913 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 914}; 915#endif 916 917struct dev_ifalias { 918 struct rcu_head rcuhead; 919 char ifalias[]; 920}; 921 922struct devlink; 923struct tlsdev_ops; 924 925/* 926 * This structure defines the management hooks for network devices. 927 * The following hooks can be defined; unless noted otherwise, they are 928 * optional and can be filled with a null pointer. 929 * 930 * int (*ndo_init)(struct net_device *dev); 931 * This function is called once when a network device is registered. 932 * The network device can use this for any late stage initialization 933 * or semantic validation. It can fail with an error code which will 934 * be propagated back to register_netdev. 935 * 936 * void (*ndo_uninit)(struct net_device *dev); 937 * This function is called when device is unregistered or when registration 938 * fails. It is not called if init fails. 939 * 940 * int (*ndo_open)(struct net_device *dev); 941 * This function is called when a network device transitions to the up 942 * state. 943 * 944 * int (*ndo_stop)(struct net_device *dev); 945 * This function is called when a network device transitions to the down 946 * state. 947 * 948 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 949 * struct net_device *dev); 950 * Called when a packet needs to be transmitted. 951 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 952 * the queue before that can happen; it's for obsolete devices and weird 953 * corner cases, but the stack really does a non-trivial amount 954 * of useless work if you return NETDEV_TX_BUSY. 955 * Required; cannot be NULL. 956 * 957 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 958 * struct net_device *dev 959 * netdev_features_t features); 960 * Called by core transmit path to determine if device is capable of 961 * performing offload operations on a given packet. This is to give 962 * the device an opportunity to implement any restrictions that cannot 963 * be otherwise expressed by feature flags. The check is called with 964 * the set of features that the stack has calculated and it returns 965 * those the driver believes to be appropriate. 966 * 967 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 968 * struct net_device *sb_dev); 969 * Called to decide which queue to use when device supports multiple 970 * transmit queues. 971 * 972 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 973 * This function is called to allow device receiver to make 974 * changes to configuration when multicast or promiscuous is enabled. 975 * 976 * void (*ndo_set_rx_mode)(struct net_device *dev); 977 * This function is called device changes address list filtering. 978 * If driver handles unicast address filtering, it should set 979 * IFF_UNICAST_FLT in its priv_flags. 980 * 981 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 982 * This function is called when the Media Access Control address 983 * needs to be changed. If this interface is not defined, the 984 * MAC address can not be changed. 985 * 986 * int (*ndo_validate_addr)(struct net_device *dev); 987 * Test if Media Access Control address is valid for the device. 988 * 989 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 990 * Called when a user requests an ioctl which can't be handled by 991 * the generic interface code. If not defined ioctls return 992 * not supported error code. 993 * 994 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 995 * Used to set network devices bus interface parameters. This interface 996 * is retained for legacy reasons; new devices should use the bus 997 * interface (PCI) for low level management. 998 * 999 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1000 * Called when a user wants to change the Maximum Transfer Unit 1001 * of a device. 1002 * 1003 * void (*ndo_tx_timeout)(struct net_device *dev); 1004 * Callback used when the transmitter has not made any progress 1005 * for dev->watchdog ticks. 1006 * 1007 * void (*ndo_get_stats64)(struct net_device *dev, 1008 * struct rtnl_link_stats64 *storage); 1009 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1010 * Called when a user wants to get the network device usage 1011 * statistics. Drivers must do one of the following: 1012 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1013 * rtnl_link_stats64 structure passed by the caller. 1014 * 2. Define @ndo_get_stats to update a net_device_stats structure 1015 * (which should normally be dev->stats) and return a pointer to 1016 * it. The structure may be changed asynchronously only if each 1017 * field is written atomically. 1018 * 3. Update dev->stats asynchronously and atomically, and define 1019 * neither operation. 1020 * 1021 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1022 * Return true if this device supports offload stats of this attr_id. 1023 * 1024 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1025 * void *attr_data) 1026 * Get statistics for offload operations by attr_id. Write it into the 1027 * attr_data pointer. 1028 * 1029 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1030 * If device supports VLAN filtering this function is called when a 1031 * VLAN id is registered. 1032 * 1033 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1034 * If device supports VLAN filtering this function is called when a 1035 * VLAN id is unregistered. 1036 * 1037 * void (*ndo_poll_controller)(struct net_device *dev); 1038 * 1039 * SR-IOV management functions. 1040 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1041 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1042 * u8 qos, __be16 proto); 1043 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1044 * int max_tx_rate); 1045 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1046 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1047 * int (*ndo_get_vf_config)(struct net_device *dev, 1048 * int vf, struct ifla_vf_info *ivf); 1049 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1050 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1051 * struct nlattr *port[]); 1052 * 1053 * Enable or disable the VF ability to query its RSS Redirection Table and 1054 * Hash Key. This is needed since on some devices VF share this information 1055 * with PF and querying it may introduce a theoretical security risk. 1056 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1057 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1058 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1059 * void *type_data); 1060 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1061 * This is always called from the stack with the rtnl lock held and netif 1062 * tx queues stopped. This allows the netdevice to perform queue 1063 * management safely. 1064 * 1065 * Fiber Channel over Ethernet (FCoE) offload functions. 1066 * int (*ndo_fcoe_enable)(struct net_device *dev); 1067 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1068 * so the underlying device can perform whatever needed configuration or 1069 * initialization to support acceleration of FCoE traffic. 1070 * 1071 * int (*ndo_fcoe_disable)(struct net_device *dev); 1072 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1073 * so the underlying device can perform whatever needed clean-ups to 1074 * stop supporting acceleration of FCoE traffic. 1075 * 1076 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1077 * struct scatterlist *sgl, unsigned int sgc); 1078 * Called when the FCoE Initiator wants to initialize an I/O that 1079 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1080 * perform necessary setup and returns 1 to indicate the device is set up 1081 * successfully to perform DDP on this I/O, otherwise this returns 0. 1082 * 1083 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1084 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1085 * indicated by the FC exchange id 'xid', so the underlying device can 1086 * clean up and reuse resources for later DDP requests. 1087 * 1088 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1089 * struct scatterlist *sgl, unsigned int sgc); 1090 * Called when the FCoE Target wants to initialize an I/O that 1091 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1092 * perform necessary setup and returns 1 to indicate the device is set up 1093 * successfully to perform DDP on this I/O, otherwise this returns 0. 1094 * 1095 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1096 * struct netdev_fcoe_hbainfo *hbainfo); 1097 * Called when the FCoE Protocol stack wants information on the underlying 1098 * device. This information is utilized by the FCoE protocol stack to 1099 * register attributes with Fiber Channel management service as per the 1100 * FC-GS Fabric Device Management Information(FDMI) specification. 1101 * 1102 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1103 * Called when the underlying device wants to override default World Wide 1104 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1105 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1106 * protocol stack to use. 1107 * 1108 * RFS acceleration. 1109 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1110 * u16 rxq_index, u32 flow_id); 1111 * Set hardware filter for RFS. rxq_index is the target queue index; 1112 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1113 * Return the filter ID on success, or a negative error code. 1114 * 1115 * Slave management functions (for bridge, bonding, etc). 1116 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1117 * Called to make another netdev an underling. 1118 * 1119 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1120 * Called to release previously enslaved netdev. 1121 * 1122 * Feature/offload setting functions. 1123 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1124 * netdev_features_t features); 1125 * Adjusts the requested feature flags according to device-specific 1126 * constraints, and returns the resulting flags. Must not modify 1127 * the device state. 1128 * 1129 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1130 * Called to update device configuration to new features. Passed 1131 * feature set might be less than what was returned by ndo_fix_features()). 1132 * Must return >0 or -errno if it changed dev->features itself. 1133 * 1134 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1135 * struct net_device *dev, 1136 * const unsigned char *addr, u16 vid, u16 flags, 1137 * struct netlink_ext_ack *extack); 1138 * Adds an FDB entry to dev for addr. 1139 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1140 * struct net_device *dev, 1141 * const unsigned char *addr, u16 vid) 1142 * Deletes the FDB entry from dev coresponding to addr. 1143 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1144 * struct net_device *dev, struct net_device *filter_dev, 1145 * int *idx) 1146 * Used to add FDB entries to dump requests. Implementers should add 1147 * entries to skb and update idx with the number of entries. 1148 * 1149 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1150 * u16 flags, struct netlink_ext_ack *extack) 1151 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1152 * struct net_device *dev, u32 filter_mask, 1153 * int nlflags) 1154 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1155 * u16 flags); 1156 * 1157 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1158 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1159 * which do not represent real hardware may define this to allow their 1160 * userspace components to manage their virtual carrier state. Devices 1161 * that determine carrier state from physical hardware properties (eg 1162 * network cables) or protocol-dependent mechanisms (eg 1163 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1164 * 1165 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1166 * struct netdev_phys_item_id *ppid); 1167 * Called to get ID of physical port of this device. If driver does 1168 * not implement this, it is assumed that the hw is not able to have 1169 * multiple net devices on single physical port. 1170 * 1171 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1172 * struct netdev_phys_item_id *ppid) 1173 * Called to get the parent ID of the physical port of this device. 1174 * 1175 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1176 * struct udp_tunnel_info *ti); 1177 * Called by UDP tunnel to notify a driver about the UDP port and socket 1178 * address family that a UDP tunnel is listnening to. It is called only 1179 * when a new port starts listening. The operation is protected by the 1180 * RTNL. 1181 * 1182 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1183 * struct udp_tunnel_info *ti); 1184 * Called by UDP tunnel to notify the driver about a UDP port and socket 1185 * address family that the UDP tunnel is not listening to anymore. The 1186 * operation is protected by the RTNL. 1187 * 1188 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1189 * struct net_device *dev) 1190 * Called by upper layer devices to accelerate switching or other 1191 * station functionality into hardware. 'pdev is the lowerdev 1192 * to use for the offload and 'dev' is the net device that will 1193 * back the offload. Returns a pointer to the private structure 1194 * the upper layer will maintain. 1195 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1196 * Called by upper layer device to delete the station created 1197 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1198 * the station and priv is the structure returned by the add 1199 * operation. 1200 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1201 * int queue_index, u32 maxrate); 1202 * Called when a user wants to set a max-rate limitation of specific 1203 * TX queue. 1204 * int (*ndo_get_iflink)(const struct net_device *dev); 1205 * Called to get the iflink value of this device. 1206 * void (*ndo_change_proto_down)(struct net_device *dev, 1207 * bool proto_down); 1208 * This function is used to pass protocol port error state information 1209 * to the switch driver. The switch driver can react to the proto_down 1210 * by doing a phys down on the associated switch port. 1211 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1212 * This function is used to get egress tunnel information for given skb. 1213 * This is useful for retrieving outer tunnel header parameters while 1214 * sampling packet. 1215 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1216 * This function is used to specify the headroom that the skb must 1217 * consider when allocation skb during packet reception. Setting 1218 * appropriate rx headroom value allows avoiding skb head copy on 1219 * forward. Setting a negative value resets the rx headroom to the 1220 * default value. 1221 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1222 * This function is used to set or query state related to XDP on the 1223 * netdevice and manage BPF offload. See definition of 1224 * enum bpf_netdev_command for details. 1225 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1226 * u32 flags); 1227 * This function is used to submit @n XDP packets for transmit on a 1228 * netdevice. Returns number of frames successfully transmitted, frames 1229 * that got dropped are freed/returned via xdp_return_frame(). 1230 * Returns negative number, means general error invoking ndo, meaning 1231 * no frames were xmit'ed and core-caller will free all frames. 1232 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1233 * Get devlink port instance associated with a given netdev. 1234 * Called with a reference on the netdevice and devlink locks only, 1235 * rtnl_lock is not held. 1236 */ 1237struct net_device_ops { 1238 int (*ndo_init)(struct net_device *dev); 1239 void (*ndo_uninit)(struct net_device *dev); 1240 int (*ndo_open)(struct net_device *dev); 1241 int (*ndo_stop)(struct net_device *dev); 1242 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1243 struct net_device *dev); 1244 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1245 struct net_device *dev, 1246 netdev_features_t features); 1247 u16 (*ndo_select_queue)(struct net_device *dev, 1248 struct sk_buff *skb, 1249 struct net_device *sb_dev); 1250 void (*ndo_change_rx_flags)(struct net_device *dev, 1251 int flags); 1252 void (*ndo_set_rx_mode)(struct net_device *dev); 1253 int (*ndo_set_mac_address)(struct net_device *dev, 1254 void *addr); 1255 int (*ndo_validate_addr)(struct net_device *dev); 1256 int (*ndo_do_ioctl)(struct net_device *dev, 1257 struct ifreq *ifr, int cmd); 1258 int (*ndo_set_config)(struct net_device *dev, 1259 struct ifmap *map); 1260 int (*ndo_change_mtu)(struct net_device *dev, 1261 int new_mtu); 1262 int (*ndo_neigh_setup)(struct net_device *dev, 1263 struct neigh_parms *); 1264 void (*ndo_tx_timeout) (struct net_device *dev); 1265 1266 void (*ndo_get_stats64)(struct net_device *dev, 1267 struct rtnl_link_stats64 *storage); 1268 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1269 int (*ndo_get_offload_stats)(int attr_id, 1270 const struct net_device *dev, 1271 void *attr_data); 1272 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1273 1274 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1275 __be16 proto, u16 vid); 1276 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1277 __be16 proto, u16 vid); 1278#ifdef CONFIG_NET_POLL_CONTROLLER 1279 void (*ndo_poll_controller)(struct net_device *dev); 1280 int (*ndo_netpoll_setup)(struct net_device *dev, 1281 struct netpoll_info *info); 1282 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1283#endif 1284 int (*ndo_set_vf_mac)(struct net_device *dev, 1285 int queue, u8 *mac); 1286 int (*ndo_set_vf_vlan)(struct net_device *dev, 1287 int queue, u16 vlan, 1288 u8 qos, __be16 proto); 1289 int (*ndo_set_vf_rate)(struct net_device *dev, 1290 int vf, int min_tx_rate, 1291 int max_tx_rate); 1292 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1293 int vf, bool setting); 1294 int (*ndo_set_vf_trust)(struct net_device *dev, 1295 int vf, bool setting); 1296 int (*ndo_get_vf_config)(struct net_device *dev, 1297 int vf, 1298 struct ifla_vf_info *ivf); 1299 int (*ndo_set_vf_link_state)(struct net_device *dev, 1300 int vf, int link_state); 1301 int (*ndo_get_vf_stats)(struct net_device *dev, 1302 int vf, 1303 struct ifla_vf_stats 1304 *vf_stats); 1305 int (*ndo_set_vf_port)(struct net_device *dev, 1306 int vf, 1307 struct nlattr *port[]); 1308 int (*ndo_get_vf_port)(struct net_device *dev, 1309 int vf, struct sk_buff *skb); 1310 int (*ndo_set_vf_guid)(struct net_device *dev, 1311 int vf, u64 guid, 1312 int guid_type); 1313 int (*ndo_set_vf_rss_query_en)( 1314 struct net_device *dev, 1315 int vf, bool setting); 1316 int (*ndo_setup_tc)(struct net_device *dev, 1317 enum tc_setup_type type, 1318 void *type_data); 1319#if IS_ENABLED(CONFIG_FCOE) 1320 int (*ndo_fcoe_enable)(struct net_device *dev); 1321 int (*ndo_fcoe_disable)(struct net_device *dev); 1322 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1323 u16 xid, 1324 struct scatterlist *sgl, 1325 unsigned int sgc); 1326 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1327 u16 xid); 1328 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1329 u16 xid, 1330 struct scatterlist *sgl, 1331 unsigned int sgc); 1332 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1333 struct netdev_fcoe_hbainfo *hbainfo); 1334#endif 1335 1336#if IS_ENABLED(CONFIG_LIBFCOE) 1337#define NETDEV_FCOE_WWNN 0 1338#define NETDEV_FCOE_WWPN 1 1339 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1340 u64 *wwn, int type); 1341#endif 1342 1343#ifdef CONFIG_RFS_ACCEL 1344 int (*ndo_rx_flow_steer)(struct net_device *dev, 1345 const struct sk_buff *skb, 1346 u16 rxq_index, 1347 u32 flow_id); 1348#endif 1349 int (*ndo_add_slave)(struct net_device *dev, 1350 struct net_device *slave_dev, 1351 struct netlink_ext_ack *extack); 1352 int (*ndo_del_slave)(struct net_device *dev, 1353 struct net_device *slave_dev); 1354 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1355 netdev_features_t features); 1356 int (*ndo_set_features)(struct net_device *dev, 1357 netdev_features_t features); 1358 int (*ndo_neigh_construct)(struct net_device *dev, 1359 struct neighbour *n); 1360 void (*ndo_neigh_destroy)(struct net_device *dev, 1361 struct neighbour *n); 1362 1363 int (*ndo_fdb_add)(struct ndmsg *ndm, 1364 struct nlattr *tb[], 1365 struct net_device *dev, 1366 const unsigned char *addr, 1367 u16 vid, 1368 u16 flags, 1369 struct netlink_ext_ack *extack); 1370 int (*ndo_fdb_del)(struct ndmsg *ndm, 1371 struct nlattr *tb[], 1372 struct net_device *dev, 1373 const unsigned char *addr, 1374 u16 vid); 1375 int (*ndo_fdb_dump)(struct sk_buff *skb, 1376 struct netlink_callback *cb, 1377 struct net_device *dev, 1378 struct net_device *filter_dev, 1379 int *idx); 1380 int (*ndo_fdb_get)(struct sk_buff *skb, 1381 struct nlattr *tb[], 1382 struct net_device *dev, 1383 const unsigned char *addr, 1384 u16 vid, u32 portid, u32 seq, 1385 struct netlink_ext_ack *extack); 1386 int (*ndo_bridge_setlink)(struct net_device *dev, 1387 struct nlmsghdr *nlh, 1388 u16 flags, 1389 struct netlink_ext_ack *extack); 1390 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1391 u32 pid, u32 seq, 1392 struct net_device *dev, 1393 u32 filter_mask, 1394 int nlflags); 1395 int (*ndo_bridge_dellink)(struct net_device *dev, 1396 struct nlmsghdr *nlh, 1397 u16 flags); 1398 int (*ndo_change_carrier)(struct net_device *dev, 1399 bool new_carrier); 1400 int (*ndo_get_phys_port_id)(struct net_device *dev, 1401 struct netdev_phys_item_id *ppid); 1402 int (*ndo_get_port_parent_id)(struct net_device *dev, 1403 struct netdev_phys_item_id *ppid); 1404 int (*ndo_get_phys_port_name)(struct net_device *dev, 1405 char *name, size_t len); 1406 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1407 struct udp_tunnel_info *ti); 1408 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1409 struct udp_tunnel_info *ti); 1410 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1411 struct net_device *dev); 1412 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1413 void *priv); 1414 1415 int (*ndo_get_lock_subclass)(struct net_device *dev); 1416 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1417 int queue_index, 1418 u32 maxrate); 1419 int (*ndo_get_iflink)(const struct net_device *dev); 1420 int (*ndo_change_proto_down)(struct net_device *dev, 1421 bool proto_down); 1422 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1423 struct sk_buff *skb); 1424 void (*ndo_set_rx_headroom)(struct net_device *dev, 1425 int needed_headroom); 1426 int (*ndo_bpf)(struct net_device *dev, 1427 struct netdev_bpf *bpf); 1428 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1429 struct xdp_frame **xdp, 1430 u32 flags); 1431 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1432 u32 queue_id); 1433 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1434}; 1435 1436/** 1437 * enum net_device_priv_flags - &struct net_device priv_flags 1438 * 1439 * These are the &struct net_device, they are only set internally 1440 * by drivers and used in the kernel. These flags are invisible to 1441 * userspace; this means that the order of these flags can change 1442 * during any kernel release. 1443 * 1444 * You should have a pretty good reason to be extending these flags. 1445 * 1446 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1447 * @IFF_EBRIDGE: Ethernet bridging device 1448 * @IFF_BONDING: bonding master or slave 1449 * @IFF_ISATAP: ISATAP interface (RFC4214) 1450 * @IFF_WAN_HDLC: WAN HDLC device 1451 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1452 * release skb->dst 1453 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1454 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1455 * @IFF_MACVLAN_PORT: device used as macvlan port 1456 * @IFF_BRIDGE_PORT: device used as bridge port 1457 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1458 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1459 * @IFF_UNICAST_FLT: Supports unicast filtering 1460 * @IFF_TEAM_PORT: device used as team port 1461 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1462 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1463 * change when it's running 1464 * @IFF_MACVLAN: Macvlan device 1465 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1466 * underlying stacked devices 1467 * @IFF_L3MDEV_MASTER: device is an L3 master device 1468 * @IFF_NO_QUEUE: device can run without qdisc attached 1469 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1470 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1471 * @IFF_TEAM: device is a team device 1472 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1473 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1474 * entity (i.e. the master device for bridged veth) 1475 * @IFF_MACSEC: device is a MACsec device 1476 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1477 * @IFF_FAILOVER: device is a failover master device 1478 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1479 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1480 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1481 */ 1482enum netdev_priv_flags { 1483 IFF_802_1Q_VLAN = 1<<0, 1484 IFF_EBRIDGE = 1<<1, 1485 IFF_BONDING = 1<<2, 1486 IFF_ISATAP = 1<<3, 1487 IFF_WAN_HDLC = 1<<4, 1488 IFF_XMIT_DST_RELEASE = 1<<5, 1489 IFF_DONT_BRIDGE = 1<<6, 1490 IFF_DISABLE_NETPOLL = 1<<7, 1491 IFF_MACVLAN_PORT = 1<<8, 1492 IFF_BRIDGE_PORT = 1<<9, 1493 IFF_OVS_DATAPATH = 1<<10, 1494 IFF_TX_SKB_SHARING = 1<<11, 1495 IFF_UNICAST_FLT = 1<<12, 1496 IFF_TEAM_PORT = 1<<13, 1497 IFF_SUPP_NOFCS = 1<<14, 1498 IFF_LIVE_ADDR_CHANGE = 1<<15, 1499 IFF_MACVLAN = 1<<16, 1500 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1501 IFF_L3MDEV_MASTER = 1<<18, 1502 IFF_NO_QUEUE = 1<<19, 1503 IFF_OPENVSWITCH = 1<<20, 1504 IFF_L3MDEV_SLAVE = 1<<21, 1505 IFF_TEAM = 1<<22, 1506 IFF_RXFH_CONFIGURED = 1<<23, 1507 IFF_PHONY_HEADROOM = 1<<24, 1508 IFF_MACSEC = 1<<25, 1509 IFF_NO_RX_HANDLER = 1<<26, 1510 IFF_FAILOVER = 1<<27, 1511 IFF_FAILOVER_SLAVE = 1<<28, 1512 IFF_L3MDEV_RX_HANDLER = 1<<29, 1513 IFF_LIVE_RENAME_OK = 1<<30, 1514}; 1515 1516#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1517#define IFF_EBRIDGE IFF_EBRIDGE 1518#define IFF_BONDING IFF_BONDING 1519#define IFF_ISATAP IFF_ISATAP 1520#define IFF_WAN_HDLC IFF_WAN_HDLC 1521#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1522#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1523#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1524#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1525#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1526#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1527#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1528#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1529#define IFF_TEAM_PORT IFF_TEAM_PORT 1530#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1531#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1532#define IFF_MACVLAN IFF_MACVLAN 1533#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1534#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1535#define IFF_NO_QUEUE IFF_NO_QUEUE 1536#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1537#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1538#define IFF_TEAM IFF_TEAM 1539#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1540#define IFF_MACSEC IFF_MACSEC 1541#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1542#define IFF_FAILOVER IFF_FAILOVER 1543#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1544#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1545#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1546 1547/** 1548 * struct net_device - The DEVICE structure. 1549 * 1550 * Actually, this whole structure is a big mistake. It mixes I/O 1551 * data with strictly "high-level" data, and it has to know about 1552 * almost every data structure used in the INET module. 1553 * 1554 * @name: This is the first field of the "visible" part of this structure 1555 * (i.e. as seen by users in the "Space.c" file). It is the name 1556 * of the interface. 1557 * 1558 * @name_hlist: Device name hash chain, please keep it close to name[] 1559 * @ifalias: SNMP alias 1560 * @mem_end: Shared memory end 1561 * @mem_start: Shared memory start 1562 * @base_addr: Device I/O address 1563 * @irq: Device IRQ number 1564 * 1565 * @state: Generic network queuing layer state, see netdev_state_t 1566 * @dev_list: The global list of network devices 1567 * @napi_list: List entry used for polling NAPI devices 1568 * @unreg_list: List entry when we are unregistering the 1569 * device; see the function unregister_netdev 1570 * @close_list: List entry used when we are closing the device 1571 * @ptype_all: Device-specific packet handlers for all protocols 1572 * @ptype_specific: Device-specific, protocol-specific packet handlers 1573 * 1574 * @adj_list: Directly linked devices, like slaves for bonding 1575 * @features: Currently active device features 1576 * @hw_features: User-changeable features 1577 * 1578 * @wanted_features: User-requested features 1579 * @vlan_features: Mask of features inheritable by VLAN devices 1580 * 1581 * @hw_enc_features: Mask of features inherited by encapsulating devices 1582 * This field indicates what encapsulation 1583 * offloads the hardware is capable of doing, 1584 * and drivers will need to set them appropriately. 1585 * 1586 * @mpls_features: Mask of features inheritable by MPLS 1587 * 1588 * @ifindex: interface index 1589 * @group: The group the device belongs to 1590 * 1591 * @stats: Statistics struct, which was left as a legacy, use 1592 * rtnl_link_stats64 instead 1593 * 1594 * @rx_dropped: Dropped packets by core network, 1595 * do not use this in drivers 1596 * @tx_dropped: Dropped packets by core network, 1597 * do not use this in drivers 1598 * @rx_nohandler: nohandler dropped packets by core network on 1599 * inactive devices, do not use this in drivers 1600 * @carrier_up_count: Number of times the carrier has been up 1601 * @carrier_down_count: Number of times the carrier has been down 1602 * 1603 * @wireless_handlers: List of functions to handle Wireless Extensions, 1604 * instead of ioctl, 1605 * see <net/iw_handler.h> for details. 1606 * @wireless_data: Instance data managed by the core of wireless extensions 1607 * 1608 * @netdev_ops: Includes several pointers to callbacks, 1609 * if one wants to override the ndo_*() functions 1610 * @ethtool_ops: Management operations 1611 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1612 * discovery handling. Necessary for e.g. 6LoWPAN. 1613 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1614 * of Layer 2 headers. 1615 * 1616 * @flags: Interface flags (a la BSD) 1617 * @priv_flags: Like 'flags' but invisible to userspace, 1618 * see if.h for the definitions 1619 * @gflags: Global flags ( kept as legacy ) 1620 * @padded: How much padding added by alloc_netdev() 1621 * @operstate: RFC2863 operstate 1622 * @link_mode: Mapping policy to operstate 1623 * @if_port: Selectable AUI, TP, ... 1624 * @dma: DMA channel 1625 * @mtu: Interface MTU value 1626 * @min_mtu: Interface Minimum MTU value 1627 * @max_mtu: Interface Maximum MTU value 1628 * @type: Interface hardware type 1629 * @hard_header_len: Maximum hardware header length. 1630 * @min_header_len: Minimum hardware header length 1631 * 1632 * @needed_headroom: Extra headroom the hardware may need, but not in all 1633 * cases can this be guaranteed 1634 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1635 * cases can this be guaranteed. Some cases also use 1636 * LL_MAX_HEADER instead to allocate the skb 1637 * 1638 * interface address info: 1639 * 1640 * @perm_addr: Permanent hw address 1641 * @addr_assign_type: Hw address assignment type 1642 * @addr_len: Hardware address length 1643 * @neigh_priv_len: Used in neigh_alloc() 1644 * @dev_id: Used to differentiate devices that share 1645 * the same link layer address 1646 * @dev_port: Used to differentiate devices that share 1647 * the same function 1648 * @addr_list_lock: XXX: need comments on this one 1649 * @uc_promisc: Counter that indicates promiscuous mode 1650 * has been enabled due to the need to listen to 1651 * additional unicast addresses in a device that 1652 * does not implement ndo_set_rx_mode() 1653 * @uc: unicast mac addresses 1654 * @mc: multicast mac addresses 1655 * @dev_addrs: list of device hw addresses 1656 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1657 * @promiscuity: Number of times the NIC is told to work in 1658 * promiscuous mode; if it becomes 0 the NIC will 1659 * exit promiscuous mode 1660 * @allmulti: Counter, enables or disables allmulticast mode 1661 * 1662 * @vlan_info: VLAN info 1663 * @dsa_ptr: dsa specific data 1664 * @tipc_ptr: TIPC specific data 1665 * @atalk_ptr: AppleTalk link 1666 * @ip_ptr: IPv4 specific data 1667 * @dn_ptr: DECnet specific data 1668 * @ip6_ptr: IPv6 specific data 1669 * @ax25_ptr: AX.25 specific data 1670 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1671 * 1672 * @dev_addr: Hw address (before bcast, 1673 * because most packets are unicast) 1674 * 1675 * @_rx: Array of RX queues 1676 * @num_rx_queues: Number of RX queues 1677 * allocated at register_netdev() time 1678 * @real_num_rx_queues: Number of RX queues currently active in device 1679 * 1680 * @rx_handler: handler for received packets 1681 * @rx_handler_data: XXX: need comments on this one 1682 * @miniq_ingress: ingress/clsact qdisc specific data for 1683 * ingress processing 1684 * @ingress_queue: XXX: need comments on this one 1685 * @broadcast: hw bcast address 1686 * 1687 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1688 * indexed by RX queue number. Assigned by driver. 1689 * This must only be set if the ndo_rx_flow_steer 1690 * operation is defined 1691 * @index_hlist: Device index hash chain 1692 * 1693 * @_tx: Array of TX queues 1694 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1695 * @real_num_tx_queues: Number of TX queues currently active in device 1696 * @qdisc: Root qdisc from userspace point of view 1697 * @tx_queue_len: Max frames per queue allowed 1698 * @tx_global_lock: XXX: need comments on this one 1699 * 1700 * @xps_maps: XXX: need comments on this one 1701 * @miniq_egress: clsact qdisc specific data for 1702 * egress processing 1703 * @watchdog_timeo: Represents the timeout that is used by 1704 * the watchdog (see dev_watchdog()) 1705 * @watchdog_timer: List of timers 1706 * 1707 * @pcpu_refcnt: Number of references to this device 1708 * @todo_list: Delayed register/unregister 1709 * @link_watch_list: XXX: need comments on this one 1710 * 1711 * @reg_state: Register/unregister state machine 1712 * @dismantle: Device is going to be freed 1713 * @rtnl_link_state: This enum represents the phases of creating 1714 * a new link 1715 * 1716 * @needs_free_netdev: Should unregister perform free_netdev? 1717 * @priv_destructor: Called from unregister 1718 * @npinfo: XXX: need comments on this one 1719 * @nd_net: Network namespace this network device is inside 1720 * 1721 * @ml_priv: Mid-layer private 1722 * @lstats: Loopback statistics 1723 * @tstats: Tunnel statistics 1724 * @dstats: Dummy statistics 1725 * @vstats: Virtual ethernet statistics 1726 * 1727 * @garp_port: GARP 1728 * @mrp_port: MRP 1729 * 1730 * @dev: Class/net/name entry 1731 * @sysfs_groups: Space for optional device, statistics and wireless 1732 * sysfs groups 1733 * 1734 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1735 * @rtnl_link_ops: Rtnl_link_ops 1736 * 1737 * @gso_max_size: Maximum size of generic segmentation offload 1738 * @gso_max_segs: Maximum number of segments that can be passed to the 1739 * NIC for GSO 1740 * 1741 * @dcbnl_ops: Data Center Bridging netlink ops 1742 * @num_tc: Number of traffic classes in the net device 1743 * @tc_to_txq: XXX: need comments on this one 1744 * @prio_tc_map: XXX: need comments on this one 1745 * 1746 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1747 * 1748 * @priomap: XXX: need comments on this one 1749 * @phydev: Physical device may attach itself 1750 * for hardware timestamping 1751 * @sfp_bus: attached &struct sfp_bus structure. 1752 * 1753 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1754 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1755 * 1756 * @proto_down: protocol port state information can be sent to the 1757 * switch driver and used to set the phys state of the 1758 * switch port. 1759 * 1760 * @wol_enabled: Wake-on-LAN is enabled 1761 * 1762 * FIXME: cleanup struct net_device such that network protocol info 1763 * moves out. 1764 */ 1765 1766struct net_device { 1767 char name[IFNAMSIZ]; 1768 struct hlist_node name_hlist; 1769 struct dev_ifalias __rcu *ifalias; 1770 /* 1771 * I/O specific fields 1772 * FIXME: Merge these and struct ifmap into one 1773 */ 1774 unsigned long mem_end; 1775 unsigned long mem_start; 1776 unsigned long base_addr; 1777 int irq; 1778 1779 /* 1780 * Some hardware also needs these fields (state,dev_list, 1781 * napi_list,unreg_list,close_list) but they are not 1782 * part of the usual set specified in Space.c. 1783 */ 1784 1785 unsigned long state; 1786 1787 struct list_head dev_list; 1788 struct list_head napi_list; 1789 struct list_head unreg_list; 1790 struct list_head close_list; 1791 struct list_head ptype_all; 1792 struct list_head ptype_specific; 1793 1794 struct { 1795 struct list_head upper; 1796 struct list_head lower; 1797 } adj_list; 1798 1799 netdev_features_t features; 1800 netdev_features_t hw_features; 1801 netdev_features_t wanted_features; 1802 netdev_features_t vlan_features; 1803 netdev_features_t hw_enc_features; 1804 netdev_features_t mpls_features; 1805 netdev_features_t gso_partial_features; 1806 1807 int ifindex; 1808 int group; 1809 1810 struct net_device_stats stats; 1811 1812 atomic_long_t rx_dropped; 1813 atomic_long_t tx_dropped; 1814 atomic_long_t rx_nohandler; 1815 1816 /* Stats to monitor link on/off, flapping */ 1817 atomic_t carrier_up_count; 1818 atomic_t carrier_down_count; 1819 1820#ifdef CONFIG_WIRELESS_EXT 1821 const struct iw_handler_def *wireless_handlers; 1822 struct iw_public_data *wireless_data; 1823#endif 1824 const struct net_device_ops *netdev_ops; 1825 const struct ethtool_ops *ethtool_ops; 1826#ifdef CONFIG_NET_L3_MASTER_DEV 1827 const struct l3mdev_ops *l3mdev_ops; 1828#endif 1829#if IS_ENABLED(CONFIG_IPV6) 1830 const struct ndisc_ops *ndisc_ops; 1831#endif 1832 1833#ifdef CONFIG_XFRM_OFFLOAD 1834 const struct xfrmdev_ops *xfrmdev_ops; 1835#endif 1836 1837#if IS_ENABLED(CONFIG_TLS_DEVICE) 1838 const struct tlsdev_ops *tlsdev_ops; 1839#endif 1840 1841 const struct header_ops *header_ops; 1842 1843 unsigned int flags; 1844 unsigned int priv_flags; 1845 1846 unsigned short gflags; 1847 unsigned short padded; 1848 1849 unsigned char operstate; 1850 unsigned char link_mode; 1851 1852 unsigned char if_port; 1853 unsigned char dma; 1854 1855 unsigned int mtu; 1856 unsigned int min_mtu; 1857 unsigned int max_mtu; 1858 unsigned short type; 1859 unsigned short hard_header_len; 1860 unsigned char min_header_len; 1861 1862 unsigned short needed_headroom; 1863 unsigned short needed_tailroom; 1864 1865 /* Interface address info. */ 1866 unsigned char perm_addr[MAX_ADDR_LEN]; 1867 unsigned char addr_assign_type; 1868 unsigned char addr_len; 1869 unsigned short neigh_priv_len; 1870 unsigned short dev_id; 1871 unsigned short dev_port; 1872 spinlock_t addr_list_lock; 1873 unsigned char name_assign_type; 1874 bool uc_promisc; 1875 struct netdev_hw_addr_list uc; 1876 struct netdev_hw_addr_list mc; 1877 struct netdev_hw_addr_list dev_addrs; 1878 1879#ifdef CONFIG_SYSFS 1880 struct kset *queues_kset; 1881#endif 1882 unsigned int promiscuity; 1883 unsigned int allmulti; 1884 1885 1886 /* Protocol-specific pointers */ 1887 1888#if IS_ENABLED(CONFIG_VLAN_8021Q) 1889 struct vlan_info __rcu *vlan_info; 1890#endif 1891#if IS_ENABLED(CONFIG_NET_DSA) 1892 struct dsa_port *dsa_ptr; 1893#endif 1894#if IS_ENABLED(CONFIG_TIPC) 1895 struct tipc_bearer __rcu *tipc_ptr; 1896#endif 1897#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1898 void *atalk_ptr; 1899#endif 1900 struct in_device __rcu *ip_ptr; 1901#if IS_ENABLED(CONFIG_DECNET) 1902 struct dn_dev __rcu *dn_ptr; 1903#endif 1904 struct inet6_dev __rcu *ip6_ptr; 1905#if IS_ENABLED(CONFIG_AX25) 1906 void *ax25_ptr; 1907#endif 1908 struct wireless_dev *ieee80211_ptr; 1909 struct wpan_dev *ieee802154_ptr; 1910#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1911 struct mpls_dev __rcu *mpls_ptr; 1912#endif 1913 1914/* 1915 * Cache lines mostly used on receive path (including eth_type_trans()) 1916 */ 1917 /* Interface address info used in eth_type_trans() */ 1918 unsigned char *dev_addr; 1919 1920 struct netdev_rx_queue *_rx; 1921 unsigned int num_rx_queues; 1922 unsigned int real_num_rx_queues; 1923 1924 struct bpf_prog __rcu *xdp_prog; 1925 unsigned long gro_flush_timeout; 1926 rx_handler_func_t __rcu *rx_handler; 1927 void __rcu *rx_handler_data; 1928 1929#ifdef CONFIG_NET_CLS_ACT 1930 struct mini_Qdisc __rcu *miniq_ingress; 1931#endif 1932 struct netdev_queue __rcu *ingress_queue; 1933#ifdef CONFIG_NETFILTER_INGRESS 1934 struct nf_hook_entries __rcu *nf_hooks_ingress; 1935#endif 1936 1937 unsigned char broadcast[MAX_ADDR_LEN]; 1938#ifdef CONFIG_RFS_ACCEL 1939 struct cpu_rmap *rx_cpu_rmap; 1940#endif 1941 struct hlist_node index_hlist; 1942 1943/* 1944 * Cache lines mostly used on transmit path 1945 */ 1946 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1947 unsigned int num_tx_queues; 1948 unsigned int real_num_tx_queues; 1949 struct Qdisc *qdisc; 1950#ifdef CONFIG_NET_SCHED 1951 DECLARE_HASHTABLE (qdisc_hash, 4); 1952#endif 1953 unsigned int tx_queue_len; 1954 spinlock_t tx_global_lock; 1955 int watchdog_timeo; 1956 1957#ifdef CONFIG_XPS 1958 struct xps_dev_maps __rcu *xps_cpus_map; 1959 struct xps_dev_maps __rcu *xps_rxqs_map; 1960#endif 1961#ifdef CONFIG_NET_CLS_ACT 1962 struct mini_Qdisc __rcu *miniq_egress; 1963#endif 1964 1965 /* These may be needed for future network-power-down code. */ 1966 struct timer_list watchdog_timer; 1967 1968 int __percpu *pcpu_refcnt; 1969 struct list_head todo_list; 1970 1971 struct list_head link_watch_list; 1972 1973 enum { NETREG_UNINITIALIZED=0, 1974 NETREG_REGISTERED, /* completed register_netdevice */ 1975 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1976 NETREG_UNREGISTERED, /* completed unregister todo */ 1977 NETREG_RELEASED, /* called free_netdev */ 1978 NETREG_DUMMY, /* dummy device for NAPI poll */ 1979 } reg_state:8; 1980 1981 bool dismantle; 1982 1983 enum { 1984 RTNL_LINK_INITIALIZED, 1985 RTNL_LINK_INITIALIZING, 1986 } rtnl_link_state:16; 1987 1988 bool needs_free_netdev; 1989 void (*priv_destructor)(struct net_device *dev); 1990 1991#ifdef CONFIG_NETPOLL 1992 struct netpoll_info __rcu *npinfo; 1993#endif 1994 1995 possible_net_t nd_net; 1996 1997 /* mid-layer private */ 1998 union { 1999 void *ml_priv; 2000 struct pcpu_lstats __percpu *lstats; 2001 struct pcpu_sw_netstats __percpu *tstats; 2002 struct pcpu_dstats __percpu *dstats; 2003 }; 2004 2005#if IS_ENABLED(CONFIG_GARP) 2006 struct garp_port __rcu *garp_port; 2007#endif 2008#if IS_ENABLED(CONFIG_MRP) 2009 struct mrp_port __rcu *mrp_port; 2010#endif 2011 2012 struct device dev; 2013 const struct attribute_group *sysfs_groups[4]; 2014 const struct attribute_group *sysfs_rx_queue_group; 2015 2016 const struct rtnl_link_ops *rtnl_link_ops; 2017 2018 /* for setting kernel sock attribute on TCP connection setup */ 2019#define GSO_MAX_SIZE 65536 2020 unsigned int gso_max_size; 2021#define GSO_MAX_SEGS 65535 2022 u16 gso_max_segs; 2023 2024#ifdef CONFIG_DCB 2025 const struct dcbnl_rtnl_ops *dcbnl_ops; 2026#endif 2027 s16 num_tc; 2028 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2029 u8 prio_tc_map[TC_BITMASK + 1]; 2030 2031#if IS_ENABLED(CONFIG_FCOE) 2032 unsigned int fcoe_ddp_xid; 2033#endif 2034#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2035 struct netprio_map __rcu *priomap; 2036#endif 2037 struct phy_device *phydev; 2038 struct sfp_bus *sfp_bus; 2039 struct lock_class_key *qdisc_tx_busylock; 2040 struct lock_class_key *qdisc_running_key; 2041 bool proto_down; 2042 unsigned wol_enabled:1; 2043}; 2044#define to_net_dev(d) container_of(d, struct net_device, dev) 2045 2046static inline bool netif_elide_gro(const struct net_device *dev) 2047{ 2048 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2049 return true; 2050 return false; 2051} 2052 2053#define NETDEV_ALIGN 32 2054 2055static inline 2056int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2057{ 2058 return dev->prio_tc_map[prio & TC_BITMASK]; 2059} 2060 2061static inline 2062int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2063{ 2064 if (tc >= dev->num_tc) 2065 return -EINVAL; 2066 2067 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2068 return 0; 2069} 2070 2071int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2072void netdev_reset_tc(struct net_device *dev); 2073int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2074int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2075 2076static inline 2077int netdev_get_num_tc(struct net_device *dev) 2078{ 2079 return dev->num_tc; 2080} 2081 2082void netdev_unbind_sb_channel(struct net_device *dev, 2083 struct net_device *sb_dev); 2084int netdev_bind_sb_channel_queue(struct net_device *dev, 2085 struct net_device *sb_dev, 2086 u8 tc, u16 count, u16 offset); 2087int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2088static inline int netdev_get_sb_channel(struct net_device *dev) 2089{ 2090 return max_t(int, -dev->num_tc, 0); 2091} 2092 2093static inline 2094struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2095 unsigned int index) 2096{ 2097 return &dev->_tx[index]; 2098} 2099 2100static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2101 const struct sk_buff *skb) 2102{ 2103 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2104} 2105 2106static inline void netdev_for_each_tx_queue(struct net_device *dev, 2107 void (*f)(struct net_device *, 2108 struct netdev_queue *, 2109 void *), 2110 void *arg) 2111{ 2112 unsigned int i; 2113 2114 for (i = 0; i < dev->num_tx_queues; i++) 2115 f(dev, &dev->_tx[i], arg); 2116} 2117 2118#define netdev_lockdep_set_classes(dev) \ 2119{ \ 2120 static struct lock_class_key qdisc_tx_busylock_key; \ 2121 static struct lock_class_key qdisc_running_key; \ 2122 static struct lock_class_key qdisc_xmit_lock_key; \ 2123 static struct lock_class_key dev_addr_list_lock_key; \ 2124 unsigned int i; \ 2125 \ 2126 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2127 (dev)->qdisc_running_key = &qdisc_running_key; \ 2128 lockdep_set_class(&(dev)->addr_list_lock, \ 2129 &dev_addr_list_lock_key); \ 2130 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2131 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2132 &qdisc_xmit_lock_key); \ 2133} 2134 2135u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2136 struct net_device *sb_dev); 2137struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2138 struct sk_buff *skb, 2139 struct net_device *sb_dev); 2140 2141/* returns the headroom that the master device needs to take in account 2142 * when forwarding to this dev 2143 */ 2144static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2145{ 2146 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2147} 2148 2149static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2150{ 2151 if (dev->netdev_ops->ndo_set_rx_headroom) 2152 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2153} 2154 2155/* set the device rx headroom to the dev's default */ 2156static inline void netdev_reset_rx_headroom(struct net_device *dev) 2157{ 2158 netdev_set_rx_headroom(dev, -1); 2159} 2160 2161/* 2162 * Net namespace inlines 2163 */ 2164static inline 2165struct net *dev_net(const struct net_device *dev) 2166{ 2167 return read_pnet(&dev->nd_net); 2168} 2169 2170static inline 2171void dev_net_set(struct net_device *dev, struct net *net) 2172{ 2173 write_pnet(&dev->nd_net, net); 2174} 2175 2176/** 2177 * netdev_priv - access network device private data 2178 * @dev: network device 2179 * 2180 * Get network device private data 2181 */ 2182static inline void *netdev_priv(const struct net_device *dev) 2183{ 2184 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2185} 2186 2187/* Set the sysfs physical device reference for the network logical device 2188 * if set prior to registration will cause a symlink during initialization. 2189 */ 2190#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2191 2192/* Set the sysfs device type for the network logical device to allow 2193 * fine-grained identification of different network device types. For 2194 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2195 */ 2196#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2197 2198/* Default NAPI poll() weight 2199 * Device drivers are strongly advised to not use bigger value 2200 */ 2201#define NAPI_POLL_WEIGHT 64 2202 2203/** 2204 * netif_napi_add - initialize a NAPI context 2205 * @dev: network device 2206 * @napi: NAPI context 2207 * @poll: polling function 2208 * @weight: default weight 2209 * 2210 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2211 * *any* of the other NAPI-related functions. 2212 */ 2213void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2214 int (*poll)(struct napi_struct *, int), int weight); 2215 2216/** 2217 * netif_tx_napi_add - initialize a NAPI context 2218 * @dev: network device 2219 * @napi: NAPI context 2220 * @poll: polling function 2221 * @weight: default weight 2222 * 2223 * This variant of netif_napi_add() should be used from drivers using NAPI 2224 * to exclusively poll a TX queue. 2225 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2226 */ 2227static inline void netif_tx_napi_add(struct net_device *dev, 2228 struct napi_struct *napi, 2229 int (*poll)(struct napi_struct *, int), 2230 int weight) 2231{ 2232 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2233 netif_napi_add(dev, napi, poll, weight); 2234} 2235 2236/** 2237 * netif_napi_del - remove a NAPI context 2238 * @napi: NAPI context 2239 * 2240 * netif_napi_del() removes a NAPI context from the network device NAPI list 2241 */ 2242void netif_napi_del(struct napi_struct *napi); 2243 2244struct napi_gro_cb { 2245 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2246 void *frag0; 2247 2248 /* Length of frag0. */ 2249 unsigned int frag0_len; 2250 2251 /* This indicates where we are processing relative to skb->data. */ 2252 int data_offset; 2253 2254 /* This is non-zero if the packet cannot be merged with the new skb. */ 2255 u16 flush; 2256 2257 /* Save the IP ID here and check when we get to the transport layer */ 2258 u16 flush_id; 2259 2260 /* Number of segments aggregated. */ 2261 u16 count; 2262 2263 /* Start offset for remote checksum offload */ 2264 u16 gro_remcsum_start; 2265 2266 /* jiffies when first packet was created/queued */ 2267 unsigned long age; 2268 2269 /* Used in ipv6_gro_receive() and foo-over-udp */ 2270 u16 proto; 2271 2272 /* This is non-zero if the packet may be of the same flow. */ 2273 u8 same_flow:1; 2274 2275 /* Used in tunnel GRO receive */ 2276 u8 encap_mark:1; 2277 2278 /* GRO checksum is valid */ 2279 u8 csum_valid:1; 2280 2281 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2282 u8 csum_cnt:3; 2283 2284 /* Free the skb? */ 2285 u8 free:2; 2286#define NAPI_GRO_FREE 1 2287#define NAPI_GRO_FREE_STOLEN_HEAD 2 2288 2289 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2290 u8 is_ipv6:1; 2291 2292 /* Used in GRE, set in fou/gue_gro_receive */ 2293 u8 is_fou:1; 2294 2295 /* Used to determine if flush_id can be ignored */ 2296 u8 is_atomic:1; 2297 2298 /* Number of gro_receive callbacks this packet already went through */ 2299 u8 recursion_counter:4; 2300 2301 /* 1 bit hole */ 2302 2303 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2304 __wsum csum; 2305 2306 /* used in skb_gro_receive() slow path */ 2307 struct sk_buff *last; 2308}; 2309 2310#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2311 2312#define GRO_RECURSION_LIMIT 15 2313static inline int gro_recursion_inc_test(struct sk_buff *skb) 2314{ 2315 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2316} 2317 2318typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2319static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2320 struct list_head *head, 2321 struct sk_buff *skb) 2322{ 2323 if (unlikely(gro_recursion_inc_test(skb))) { 2324 NAPI_GRO_CB(skb)->flush |= 1; 2325 return NULL; 2326 } 2327 2328 return cb(head, skb); 2329} 2330 2331typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2332 struct sk_buff *); 2333static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2334 struct sock *sk, 2335 struct list_head *head, 2336 struct sk_buff *skb) 2337{ 2338 if (unlikely(gro_recursion_inc_test(skb))) { 2339 NAPI_GRO_CB(skb)->flush |= 1; 2340 return NULL; 2341 } 2342 2343 return cb(sk, head, skb); 2344} 2345 2346struct packet_type { 2347 __be16 type; /* This is really htons(ether_type). */ 2348 bool ignore_outgoing; 2349 struct net_device *dev; /* NULL is wildcarded here */ 2350 int (*func) (struct sk_buff *, 2351 struct net_device *, 2352 struct packet_type *, 2353 struct net_device *); 2354 void (*list_func) (struct list_head *, 2355 struct packet_type *, 2356 struct net_device *); 2357 bool (*id_match)(struct packet_type *ptype, 2358 struct sock *sk); 2359 void *af_packet_priv; 2360 struct list_head list; 2361}; 2362 2363struct offload_callbacks { 2364 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2365 netdev_features_t features); 2366 struct sk_buff *(*gro_receive)(struct list_head *head, 2367 struct sk_buff *skb); 2368 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2369}; 2370 2371struct packet_offload { 2372 __be16 type; /* This is really htons(ether_type). */ 2373 u16 priority; 2374 struct offload_callbacks callbacks; 2375 struct list_head list; 2376}; 2377 2378/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2379struct pcpu_sw_netstats { 2380 u64 rx_packets; 2381 u64 rx_bytes; 2382 u64 tx_packets; 2383 u64 tx_bytes; 2384 struct u64_stats_sync syncp; 2385} __aligned(4 * sizeof(u64)); 2386 2387struct pcpu_lstats { 2388 u64 packets; 2389 u64 bytes; 2390 struct u64_stats_sync syncp; 2391} __aligned(2 * sizeof(u64)); 2392 2393#define __netdev_alloc_pcpu_stats(type, gfp) \ 2394({ \ 2395 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2396 if (pcpu_stats) { \ 2397 int __cpu; \ 2398 for_each_possible_cpu(__cpu) { \ 2399 typeof(type) *stat; \ 2400 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2401 u64_stats_init(&stat->syncp); \ 2402 } \ 2403 } \ 2404 pcpu_stats; \ 2405}) 2406 2407#define netdev_alloc_pcpu_stats(type) \ 2408 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2409 2410enum netdev_lag_tx_type { 2411 NETDEV_LAG_TX_TYPE_UNKNOWN, 2412 NETDEV_LAG_TX_TYPE_RANDOM, 2413 NETDEV_LAG_TX_TYPE_BROADCAST, 2414 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2415 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2416 NETDEV_LAG_TX_TYPE_HASH, 2417}; 2418 2419enum netdev_lag_hash { 2420 NETDEV_LAG_HASH_NONE, 2421 NETDEV_LAG_HASH_L2, 2422 NETDEV_LAG_HASH_L34, 2423 NETDEV_LAG_HASH_L23, 2424 NETDEV_LAG_HASH_E23, 2425 NETDEV_LAG_HASH_E34, 2426 NETDEV_LAG_HASH_UNKNOWN, 2427}; 2428 2429struct netdev_lag_upper_info { 2430 enum netdev_lag_tx_type tx_type; 2431 enum netdev_lag_hash hash_type; 2432}; 2433 2434struct netdev_lag_lower_state_info { 2435 u8 link_up : 1, 2436 tx_enabled : 1; 2437}; 2438 2439#include <linux/notifier.h> 2440 2441/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2442 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2443 * adding new types. 2444 */ 2445enum netdev_cmd { 2446 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2447 NETDEV_DOWN, 2448 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2449 detected a hardware crash and restarted 2450 - we can use this eg to kick tcp sessions 2451 once done */ 2452 NETDEV_CHANGE, /* Notify device state change */ 2453 NETDEV_REGISTER, 2454 NETDEV_UNREGISTER, 2455 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2456 NETDEV_CHANGEADDR, /* notify after the address change */ 2457 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2458 NETDEV_GOING_DOWN, 2459 NETDEV_CHANGENAME, 2460 NETDEV_FEAT_CHANGE, 2461 NETDEV_BONDING_FAILOVER, 2462 NETDEV_PRE_UP, 2463 NETDEV_PRE_TYPE_CHANGE, 2464 NETDEV_POST_TYPE_CHANGE, 2465 NETDEV_POST_INIT, 2466 NETDEV_RELEASE, 2467 NETDEV_NOTIFY_PEERS, 2468 NETDEV_JOIN, 2469 NETDEV_CHANGEUPPER, 2470 NETDEV_RESEND_IGMP, 2471 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2472 NETDEV_CHANGEINFODATA, 2473 NETDEV_BONDING_INFO, 2474 NETDEV_PRECHANGEUPPER, 2475 NETDEV_CHANGELOWERSTATE, 2476 NETDEV_UDP_TUNNEL_PUSH_INFO, 2477 NETDEV_UDP_TUNNEL_DROP_INFO, 2478 NETDEV_CHANGE_TX_QUEUE_LEN, 2479 NETDEV_CVLAN_FILTER_PUSH_INFO, 2480 NETDEV_CVLAN_FILTER_DROP_INFO, 2481 NETDEV_SVLAN_FILTER_PUSH_INFO, 2482 NETDEV_SVLAN_FILTER_DROP_INFO, 2483}; 2484const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2485 2486int register_netdevice_notifier(struct notifier_block *nb); 2487int unregister_netdevice_notifier(struct notifier_block *nb); 2488 2489struct netdev_notifier_info { 2490 struct net_device *dev; 2491 struct netlink_ext_ack *extack; 2492}; 2493 2494struct netdev_notifier_info_ext { 2495 struct netdev_notifier_info info; /* must be first */ 2496 union { 2497 u32 mtu; 2498 } ext; 2499}; 2500 2501struct netdev_notifier_change_info { 2502 struct netdev_notifier_info info; /* must be first */ 2503 unsigned int flags_changed; 2504}; 2505 2506struct netdev_notifier_changeupper_info { 2507 struct netdev_notifier_info info; /* must be first */ 2508 struct net_device *upper_dev; /* new upper dev */ 2509 bool master; /* is upper dev master */ 2510 bool linking; /* is the notification for link or unlink */ 2511 void *upper_info; /* upper dev info */ 2512}; 2513 2514struct netdev_notifier_changelowerstate_info { 2515 struct netdev_notifier_info info; /* must be first */ 2516 void *lower_state_info; /* is lower dev state */ 2517}; 2518 2519struct netdev_notifier_pre_changeaddr_info { 2520 struct netdev_notifier_info info; /* must be first */ 2521 const unsigned char *dev_addr; 2522}; 2523 2524static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2525 struct net_device *dev) 2526{ 2527 info->dev = dev; 2528 info->extack = NULL; 2529} 2530 2531static inline struct net_device * 2532netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2533{ 2534 return info->dev; 2535} 2536 2537static inline struct netlink_ext_ack * 2538netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2539{ 2540 return info->extack; 2541} 2542 2543int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2544 2545 2546extern rwlock_t dev_base_lock; /* Device list lock */ 2547 2548#define for_each_netdev(net, d) \ 2549 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2550#define for_each_netdev_reverse(net, d) \ 2551 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2552#define for_each_netdev_rcu(net, d) \ 2553 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2554#define for_each_netdev_safe(net, d, n) \ 2555 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2556#define for_each_netdev_continue(net, d) \ 2557 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2558#define for_each_netdev_continue_rcu(net, d) \ 2559 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2560#define for_each_netdev_in_bond_rcu(bond, slave) \ 2561 for_each_netdev_rcu(&init_net, slave) \ 2562 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2563#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2564 2565static inline struct net_device *next_net_device(struct net_device *dev) 2566{ 2567 struct list_head *lh; 2568 struct net *net; 2569 2570 net = dev_net(dev); 2571 lh = dev->dev_list.next; 2572 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2573} 2574 2575static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2576{ 2577 struct list_head *lh; 2578 struct net *net; 2579 2580 net = dev_net(dev); 2581 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2582 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2583} 2584 2585static inline struct net_device *first_net_device(struct net *net) 2586{ 2587 return list_empty(&net->dev_base_head) ? NULL : 2588 net_device_entry(net->dev_base_head.next); 2589} 2590 2591static inline struct net_device *first_net_device_rcu(struct net *net) 2592{ 2593 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2594 2595 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2596} 2597 2598int netdev_boot_setup_check(struct net_device *dev); 2599unsigned long netdev_boot_base(const char *prefix, int unit); 2600struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2601 const char *hwaddr); 2602struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2603struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2604void dev_add_pack(struct packet_type *pt); 2605void dev_remove_pack(struct packet_type *pt); 2606void __dev_remove_pack(struct packet_type *pt); 2607void dev_add_offload(struct packet_offload *po); 2608void dev_remove_offload(struct packet_offload *po); 2609 2610int dev_get_iflink(const struct net_device *dev); 2611int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2612struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2613 unsigned short mask); 2614struct net_device *dev_get_by_name(struct net *net, const char *name); 2615struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2616struct net_device *__dev_get_by_name(struct net *net, const char *name); 2617int dev_alloc_name(struct net_device *dev, const char *name); 2618int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2619void dev_close(struct net_device *dev); 2620void dev_close_many(struct list_head *head, bool unlink); 2621void dev_disable_lro(struct net_device *dev); 2622int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2623u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2624 struct net_device *sb_dev); 2625u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2626 struct net_device *sb_dev); 2627int dev_queue_xmit(struct sk_buff *skb); 2628int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2629int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2630int register_netdevice(struct net_device *dev); 2631void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2632void unregister_netdevice_many(struct list_head *head); 2633static inline void unregister_netdevice(struct net_device *dev) 2634{ 2635 unregister_netdevice_queue(dev, NULL); 2636} 2637 2638int netdev_refcnt_read(const struct net_device *dev); 2639void free_netdev(struct net_device *dev); 2640void netdev_freemem(struct net_device *dev); 2641void synchronize_net(void); 2642int init_dummy_netdev(struct net_device *dev); 2643 2644struct net_device *dev_get_by_index(struct net *net, int ifindex); 2645struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2646struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2647struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2648int netdev_get_name(struct net *net, char *name, int ifindex); 2649int dev_restart(struct net_device *dev); 2650int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2651 2652static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2653{ 2654 return NAPI_GRO_CB(skb)->data_offset; 2655} 2656 2657static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2658{ 2659 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2660} 2661 2662static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2663{ 2664 NAPI_GRO_CB(skb)->data_offset += len; 2665} 2666 2667static inline void *skb_gro_header_fast(struct sk_buff *skb, 2668 unsigned int offset) 2669{ 2670 return NAPI_GRO_CB(skb)->frag0 + offset; 2671} 2672 2673static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2674{ 2675 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2676} 2677 2678static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2679{ 2680 NAPI_GRO_CB(skb)->frag0 = NULL; 2681 NAPI_GRO_CB(skb)->frag0_len = 0; 2682} 2683 2684static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2685 unsigned int offset) 2686{ 2687 if (!pskb_may_pull(skb, hlen)) 2688 return NULL; 2689 2690 skb_gro_frag0_invalidate(skb); 2691 return skb->data + offset; 2692} 2693 2694static inline void *skb_gro_network_header(struct sk_buff *skb) 2695{ 2696 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2697 skb_network_offset(skb); 2698} 2699 2700static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2701 const void *start, unsigned int len) 2702{ 2703 if (NAPI_GRO_CB(skb)->csum_valid) 2704 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2705 csum_partial(start, len, 0)); 2706} 2707 2708/* GRO checksum functions. These are logical equivalents of the normal 2709 * checksum functions (in skbuff.h) except that they operate on the GRO 2710 * offsets and fields in sk_buff. 2711 */ 2712 2713__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2714 2715static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2716{ 2717 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2718} 2719 2720static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2721 bool zero_okay, 2722 __sum16 check) 2723{ 2724 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2725 skb_checksum_start_offset(skb) < 2726 skb_gro_offset(skb)) && 2727 !skb_at_gro_remcsum_start(skb) && 2728 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2729 (!zero_okay || check)); 2730} 2731 2732static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2733 __wsum psum) 2734{ 2735 if (NAPI_GRO_CB(skb)->csum_valid && 2736 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2737 return 0; 2738 2739 NAPI_GRO_CB(skb)->csum = psum; 2740 2741 return __skb_gro_checksum_complete(skb); 2742} 2743 2744static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2745{ 2746 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2747 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2748 NAPI_GRO_CB(skb)->csum_cnt--; 2749 } else { 2750 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2751 * verified a new top level checksum or an encapsulated one 2752 * during GRO. This saves work if we fallback to normal path. 2753 */ 2754 __skb_incr_checksum_unnecessary(skb); 2755 } 2756} 2757 2758#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2759 compute_pseudo) \ 2760({ \ 2761 __sum16 __ret = 0; \ 2762 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2763 __ret = __skb_gro_checksum_validate_complete(skb, \ 2764 compute_pseudo(skb, proto)); \ 2765 if (!__ret) \ 2766 skb_gro_incr_csum_unnecessary(skb); \ 2767 __ret; \ 2768}) 2769 2770#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2771 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2772 2773#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2774 compute_pseudo) \ 2775 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2776 2777#define skb_gro_checksum_simple_validate(skb) \ 2778 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2779 2780static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2781{ 2782 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2783 !NAPI_GRO_CB(skb)->csum_valid); 2784} 2785 2786static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2787 __sum16 check, __wsum pseudo) 2788{ 2789 NAPI_GRO_CB(skb)->csum = ~pseudo; 2790 NAPI_GRO_CB(skb)->csum_valid = 1; 2791} 2792 2793#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2794do { \ 2795 if (__skb_gro_checksum_convert_check(skb)) \ 2796 __skb_gro_checksum_convert(skb, check, \ 2797 compute_pseudo(skb, proto)); \ 2798} while (0) 2799 2800struct gro_remcsum { 2801 int offset; 2802 __wsum delta; 2803}; 2804 2805static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2806{ 2807 grc->offset = 0; 2808 grc->delta = 0; 2809} 2810 2811static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2812 unsigned int off, size_t hdrlen, 2813 int start, int offset, 2814 struct gro_remcsum *grc, 2815 bool nopartial) 2816{ 2817 __wsum delta; 2818 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2819 2820 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2821 2822 if (!nopartial) { 2823 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2824 return ptr; 2825 } 2826 2827 ptr = skb_gro_header_fast(skb, off); 2828 if (skb_gro_header_hard(skb, off + plen)) { 2829 ptr = skb_gro_header_slow(skb, off + plen, off); 2830 if (!ptr) 2831 return NULL; 2832 } 2833 2834 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2835 start, offset); 2836 2837 /* Adjust skb->csum since we changed the packet */ 2838 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2839 2840 grc->offset = off + hdrlen + offset; 2841 grc->delta = delta; 2842 2843 return ptr; 2844} 2845 2846static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2847 struct gro_remcsum *grc) 2848{ 2849 void *ptr; 2850 size_t plen = grc->offset + sizeof(u16); 2851 2852 if (!grc->delta) 2853 return; 2854 2855 ptr = skb_gro_header_fast(skb, grc->offset); 2856 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2857 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2858 if (!ptr) 2859 return; 2860 } 2861 2862 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2863} 2864 2865#ifdef CONFIG_XFRM_OFFLOAD 2866static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2867{ 2868 if (PTR_ERR(pp) != -EINPROGRESS) 2869 NAPI_GRO_CB(skb)->flush |= flush; 2870} 2871static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2872 struct sk_buff *pp, 2873 int flush, 2874 struct gro_remcsum *grc) 2875{ 2876 if (PTR_ERR(pp) != -EINPROGRESS) { 2877 NAPI_GRO_CB(skb)->flush |= flush; 2878 skb_gro_remcsum_cleanup(skb, grc); 2879 skb->remcsum_offload = 0; 2880 } 2881} 2882#else 2883static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2884{ 2885 NAPI_GRO_CB(skb)->flush |= flush; 2886} 2887static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2888 struct sk_buff *pp, 2889 int flush, 2890 struct gro_remcsum *grc) 2891{ 2892 NAPI_GRO_CB(skb)->flush |= flush; 2893 skb_gro_remcsum_cleanup(skb, grc); 2894 skb->remcsum_offload = 0; 2895} 2896#endif 2897 2898static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2899 unsigned short type, 2900 const void *daddr, const void *saddr, 2901 unsigned int len) 2902{ 2903 if (!dev->header_ops || !dev->header_ops->create) 2904 return 0; 2905 2906 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2907} 2908 2909static inline int dev_parse_header(const struct sk_buff *skb, 2910 unsigned char *haddr) 2911{ 2912 const struct net_device *dev = skb->dev; 2913 2914 if (!dev->header_ops || !dev->header_ops->parse) 2915 return 0; 2916 return dev->header_ops->parse(skb, haddr); 2917} 2918 2919static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2920{ 2921 const struct net_device *dev = skb->dev; 2922 2923 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2924 return 0; 2925 return dev->header_ops->parse_protocol(skb); 2926} 2927 2928/* ll_header must have at least hard_header_len allocated */ 2929static inline bool dev_validate_header(const struct net_device *dev, 2930 char *ll_header, int len) 2931{ 2932 if (likely(len >= dev->hard_header_len)) 2933 return true; 2934 if (len < dev->min_header_len) 2935 return false; 2936 2937 if (capable(CAP_SYS_RAWIO)) { 2938 memset(ll_header + len, 0, dev->hard_header_len - len); 2939 return true; 2940 } 2941 2942 if (dev->header_ops && dev->header_ops->validate) 2943 return dev->header_ops->validate(ll_header, len); 2944 2945 return false; 2946} 2947 2948typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2949 int len, int size); 2950int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2951static inline int unregister_gifconf(unsigned int family) 2952{ 2953 return register_gifconf(family, NULL); 2954} 2955 2956#ifdef CONFIG_NET_FLOW_LIMIT 2957#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2958struct sd_flow_limit { 2959 u64 count; 2960 unsigned int num_buckets; 2961 unsigned int history_head; 2962 u16 history[FLOW_LIMIT_HISTORY]; 2963 u8 buckets[]; 2964}; 2965 2966extern int netdev_flow_limit_table_len; 2967#endif /* CONFIG_NET_FLOW_LIMIT */ 2968 2969/* 2970 * Incoming packets are placed on per-CPU queues 2971 */ 2972struct softnet_data { 2973 struct list_head poll_list; 2974 struct sk_buff_head process_queue; 2975 2976 /* stats */ 2977 unsigned int processed; 2978 unsigned int time_squeeze; 2979 unsigned int received_rps; 2980#ifdef CONFIG_RPS 2981 struct softnet_data *rps_ipi_list; 2982#endif 2983#ifdef CONFIG_NET_FLOW_LIMIT 2984 struct sd_flow_limit __rcu *flow_limit; 2985#endif 2986 struct Qdisc *output_queue; 2987 struct Qdisc **output_queue_tailp; 2988 struct sk_buff *completion_queue; 2989#ifdef CONFIG_XFRM_OFFLOAD 2990 struct sk_buff_head xfrm_backlog; 2991#endif 2992 /* written and read only by owning cpu: */ 2993 struct { 2994 u16 recursion; 2995 u8 more; 2996 } xmit; 2997#ifdef CONFIG_RPS 2998 /* input_queue_head should be written by cpu owning this struct, 2999 * and only read by other cpus. Worth using a cache line. 3000 */ 3001 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3002 3003 /* Elements below can be accessed between CPUs for RPS/RFS */ 3004 call_single_data_t csd ____cacheline_aligned_in_smp; 3005 struct softnet_data *rps_ipi_next; 3006 unsigned int cpu; 3007 unsigned int input_queue_tail; 3008#endif 3009 unsigned int dropped; 3010 struct sk_buff_head input_pkt_queue; 3011 struct napi_struct backlog; 3012 3013}; 3014 3015static inline void input_queue_head_incr(struct softnet_data *sd) 3016{ 3017#ifdef CONFIG_RPS 3018 sd->input_queue_head++; 3019#endif 3020} 3021 3022static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3023 unsigned int *qtail) 3024{ 3025#ifdef CONFIG_RPS 3026 *qtail = ++sd->input_queue_tail; 3027#endif 3028} 3029 3030DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3031 3032static inline int dev_recursion_level(void) 3033{ 3034 return this_cpu_read(softnet_data.xmit.recursion); 3035} 3036 3037#define XMIT_RECURSION_LIMIT 10 3038static inline bool dev_xmit_recursion(void) 3039{ 3040 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3041 XMIT_RECURSION_LIMIT); 3042} 3043 3044static inline void dev_xmit_recursion_inc(void) 3045{ 3046 __this_cpu_inc(softnet_data.xmit.recursion); 3047} 3048 3049static inline void dev_xmit_recursion_dec(void) 3050{ 3051 __this_cpu_dec(softnet_data.xmit.recursion); 3052} 3053 3054void __netif_schedule(struct Qdisc *q); 3055void netif_schedule_queue(struct netdev_queue *txq); 3056 3057static inline void netif_tx_schedule_all(struct net_device *dev) 3058{ 3059 unsigned int i; 3060 3061 for (i = 0; i < dev->num_tx_queues; i++) 3062 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3063} 3064 3065static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3066{ 3067 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3068} 3069 3070/** 3071 * netif_start_queue - allow transmit 3072 * @dev: network device 3073 * 3074 * Allow upper layers to call the device hard_start_xmit routine. 3075 */ 3076static inline void netif_start_queue(struct net_device *dev) 3077{ 3078 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3079} 3080 3081static inline void netif_tx_start_all_queues(struct net_device *dev) 3082{ 3083 unsigned int i; 3084 3085 for (i = 0; i < dev->num_tx_queues; i++) { 3086 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3087 netif_tx_start_queue(txq); 3088 } 3089} 3090 3091void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3092 3093/** 3094 * netif_wake_queue - restart transmit 3095 * @dev: network device 3096 * 3097 * Allow upper layers to call the device hard_start_xmit routine. 3098 * Used for flow control when transmit resources are available. 3099 */ 3100static inline void netif_wake_queue(struct net_device *dev) 3101{ 3102 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3103} 3104 3105static inline void netif_tx_wake_all_queues(struct net_device *dev) 3106{ 3107 unsigned int i; 3108 3109 for (i = 0; i < dev->num_tx_queues; i++) { 3110 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3111 netif_tx_wake_queue(txq); 3112 } 3113} 3114 3115static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3116{ 3117 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3118} 3119 3120/** 3121 * netif_stop_queue - stop transmitted packets 3122 * @dev: network device 3123 * 3124 * Stop upper layers calling the device hard_start_xmit routine. 3125 * Used for flow control when transmit resources are unavailable. 3126 */ 3127static inline void netif_stop_queue(struct net_device *dev) 3128{ 3129 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3130} 3131 3132void netif_tx_stop_all_queues(struct net_device *dev); 3133 3134static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3135{ 3136 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3137} 3138 3139/** 3140 * netif_queue_stopped - test if transmit queue is flowblocked 3141 * @dev: network device 3142 * 3143 * Test if transmit queue on device is currently unable to send. 3144 */ 3145static inline bool netif_queue_stopped(const struct net_device *dev) 3146{ 3147 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3148} 3149 3150static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3151{ 3152 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3153} 3154 3155static inline bool 3156netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3157{ 3158 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3159} 3160 3161static inline bool 3162netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3163{ 3164 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3165} 3166 3167/** 3168 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3169 * @dev_queue: pointer to transmit queue 3170 * 3171 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3172 * to give appropriate hint to the CPU. 3173 */ 3174static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3175{ 3176#ifdef CONFIG_BQL 3177 prefetchw(&dev_queue->dql.num_queued); 3178#endif 3179} 3180 3181/** 3182 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3183 * @dev_queue: pointer to transmit queue 3184 * 3185 * BQL enabled drivers might use this helper in their TX completion path, 3186 * to give appropriate hint to the CPU. 3187 */ 3188static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3189{ 3190#ifdef CONFIG_BQL 3191 prefetchw(&dev_queue->dql.limit); 3192#endif 3193} 3194 3195static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3196 unsigned int bytes) 3197{ 3198#ifdef CONFIG_BQL 3199 dql_queued(&dev_queue->dql, bytes); 3200 3201 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3202 return; 3203 3204 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3205 3206 /* 3207 * The XOFF flag must be set before checking the dql_avail below, 3208 * because in netdev_tx_completed_queue we update the dql_completed 3209 * before checking the XOFF flag. 3210 */ 3211 smp_mb(); 3212 3213 /* check again in case another CPU has just made room avail */ 3214 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3215 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3216#endif 3217} 3218 3219/* Variant of netdev_tx_sent_queue() for drivers that are aware 3220 * that they should not test BQL status themselves. 3221 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3222 * skb of a batch. 3223 * Returns true if the doorbell must be used to kick the NIC. 3224 */ 3225static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3226 unsigned int bytes, 3227 bool xmit_more) 3228{ 3229 if (xmit_more) { 3230#ifdef CONFIG_BQL 3231 dql_queued(&dev_queue->dql, bytes); 3232#endif 3233 return netif_tx_queue_stopped(dev_queue); 3234 } 3235 netdev_tx_sent_queue(dev_queue, bytes); 3236 return true; 3237} 3238 3239/** 3240 * netdev_sent_queue - report the number of bytes queued to hardware 3241 * @dev: network device 3242 * @bytes: number of bytes queued to the hardware device queue 3243 * 3244 * Report the number of bytes queued for sending/completion to the network 3245 * device hardware queue. @bytes should be a good approximation and should 3246 * exactly match netdev_completed_queue() @bytes 3247 */ 3248static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3249{ 3250 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3251} 3252 3253static inline bool __netdev_sent_queue(struct net_device *dev, 3254 unsigned int bytes, 3255 bool xmit_more) 3256{ 3257 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3258 xmit_more); 3259} 3260 3261static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3262 unsigned int pkts, unsigned int bytes) 3263{ 3264#ifdef CONFIG_BQL 3265 if (unlikely(!bytes)) 3266 return; 3267 3268 dql_completed(&dev_queue->dql, bytes); 3269 3270 /* 3271 * Without the memory barrier there is a small possiblity that 3272 * netdev_tx_sent_queue will miss the update and cause the queue to 3273 * be stopped forever 3274 */ 3275 smp_mb(); 3276 3277 if (dql_avail(&dev_queue->dql) < 0) 3278 return; 3279 3280 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3281 netif_schedule_queue(dev_queue); 3282#endif 3283} 3284 3285/** 3286 * netdev_completed_queue - report bytes and packets completed by device 3287 * @dev: network device 3288 * @pkts: actual number of packets sent over the medium 3289 * @bytes: actual number of bytes sent over the medium 3290 * 3291 * Report the number of bytes and packets transmitted by the network device 3292 * hardware queue over the physical medium, @bytes must exactly match the 3293 * @bytes amount passed to netdev_sent_queue() 3294 */ 3295static inline void netdev_completed_queue(struct net_device *dev, 3296 unsigned int pkts, unsigned int bytes) 3297{ 3298 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3299} 3300 3301static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3302{ 3303#ifdef CONFIG_BQL 3304 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3305 dql_reset(&q->dql); 3306#endif 3307} 3308 3309/** 3310 * netdev_reset_queue - reset the packets and bytes count of a network device 3311 * @dev_queue: network device 3312 * 3313 * Reset the bytes and packet count of a network device and clear the 3314 * software flow control OFF bit for this network device 3315 */ 3316static inline void netdev_reset_queue(struct net_device *dev_queue) 3317{ 3318 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3319} 3320 3321/** 3322 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3323 * @dev: network device 3324 * @queue_index: given tx queue index 3325 * 3326 * Returns 0 if given tx queue index >= number of device tx queues, 3327 * otherwise returns the originally passed tx queue index. 3328 */ 3329static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3330{ 3331 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3332 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3333 dev->name, queue_index, 3334 dev->real_num_tx_queues); 3335 return 0; 3336 } 3337 3338 return queue_index; 3339} 3340 3341/** 3342 * netif_running - test if up 3343 * @dev: network device 3344 * 3345 * Test if the device has been brought up. 3346 */ 3347static inline bool netif_running(const struct net_device *dev) 3348{ 3349 return test_bit(__LINK_STATE_START, &dev->state); 3350} 3351 3352/* 3353 * Routines to manage the subqueues on a device. We only need start, 3354 * stop, and a check if it's stopped. All other device management is 3355 * done at the overall netdevice level. 3356 * Also test the device if we're multiqueue. 3357 */ 3358 3359/** 3360 * netif_start_subqueue - allow sending packets on subqueue 3361 * @dev: network device 3362 * @queue_index: sub queue index 3363 * 3364 * Start individual transmit queue of a device with multiple transmit queues. 3365 */ 3366static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3367{ 3368 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3369 3370 netif_tx_start_queue(txq); 3371} 3372 3373/** 3374 * netif_stop_subqueue - stop sending packets on subqueue 3375 * @dev: network device 3376 * @queue_index: sub queue index 3377 * 3378 * Stop individual transmit queue of a device with multiple transmit queues. 3379 */ 3380static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3381{ 3382 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3383 netif_tx_stop_queue(txq); 3384} 3385 3386/** 3387 * netif_subqueue_stopped - test status of subqueue 3388 * @dev: network device 3389 * @queue_index: sub queue index 3390 * 3391 * Check individual transmit queue of a device with multiple transmit queues. 3392 */ 3393static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3394 u16 queue_index) 3395{ 3396 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3397 3398 return netif_tx_queue_stopped(txq); 3399} 3400 3401static inline bool netif_subqueue_stopped(const struct net_device *dev, 3402 struct sk_buff *skb) 3403{ 3404 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3405} 3406 3407/** 3408 * netif_wake_subqueue - allow sending packets on subqueue 3409 * @dev: network device 3410 * @queue_index: sub queue index 3411 * 3412 * Resume individual transmit queue of a device with multiple transmit queues. 3413 */ 3414static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3415{ 3416 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3417 3418 netif_tx_wake_queue(txq); 3419} 3420 3421#ifdef CONFIG_XPS 3422int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3423 u16 index); 3424int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3425 u16 index, bool is_rxqs_map); 3426 3427/** 3428 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3429 * @j: CPU/Rx queue index 3430 * @mask: bitmask of all cpus/rx queues 3431 * @nr_bits: number of bits in the bitmask 3432 * 3433 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3434 */ 3435static inline bool netif_attr_test_mask(unsigned long j, 3436 const unsigned long *mask, 3437 unsigned int nr_bits) 3438{ 3439 cpu_max_bits_warn(j, nr_bits); 3440 return test_bit(j, mask); 3441} 3442 3443/** 3444 * netif_attr_test_online - Test for online CPU/Rx queue 3445 * @j: CPU/Rx queue index 3446 * @online_mask: bitmask for CPUs/Rx queues that are online 3447 * @nr_bits: number of bits in the bitmask 3448 * 3449 * Returns true if a CPU/Rx queue is online. 3450 */ 3451static inline bool netif_attr_test_online(unsigned long j, 3452 const unsigned long *online_mask, 3453 unsigned int nr_bits) 3454{ 3455 cpu_max_bits_warn(j, nr_bits); 3456 3457 if (online_mask) 3458 return test_bit(j, online_mask); 3459 3460 return (j < nr_bits); 3461} 3462 3463/** 3464 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3465 * @n: CPU/Rx queue index 3466 * @srcp: the cpumask/Rx queue mask pointer 3467 * @nr_bits: number of bits in the bitmask 3468 * 3469 * Returns >= nr_bits if no further CPUs/Rx queues set. 3470 */ 3471static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3472 unsigned int nr_bits) 3473{ 3474 /* -1 is a legal arg here. */ 3475 if (n != -1) 3476 cpu_max_bits_warn(n, nr_bits); 3477 3478 if (srcp) 3479 return find_next_bit(srcp, nr_bits, n + 1); 3480 3481 return n + 1; 3482} 3483 3484/** 3485 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3486 * @n: CPU/Rx queue index 3487 * @src1p: the first CPUs/Rx queues mask pointer 3488 * @src2p: the second CPUs/Rx queues mask pointer 3489 * @nr_bits: number of bits in the bitmask 3490 * 3491 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3492 */ 3493static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3494 const unsigned long *src2p, 3495 unsigned int nr_bits) 3496{ 3497 /* -1 is a legal arg here. */ 3498 if (n != -1) 3499 cpu_max_bits_warn(n, nr_bits); 3500 3501 if (src1p && src2p) 3502 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3503 else if (src1p) 3504 return find_next_bit(src1p, nr_bits, n + 1); 3505 else if (src2p) 3506 return find_next_bit(src2p, nr_bits, n + 1); 3507 3508 return n + 1; 3509} 3510#else 3511static inline int netif_set_xps_queue(struct net_device *dev, 3512 const struct cpumask *mask, 3513 u16 index) 3514{ 3515 return 0; 3516} 3517 3518static inline int __netif_set_xps_queue(struct net_device *dev, 3519 const unsigned long *mask, 3520 u16 index, bool is_rxqs_map) 3521{ 3522 return 0; 3523} 3524#endif 3525 3526/** 3527 * netif_is_multiqueue - test if device has multiple transmit queues 3528 * @dev: network device 3529 * 3530 * Check if device has multiple transmit queues 3531 */ 3532static inline bool netif_is_multiqueue(const struct net_device *dev) 3533{ 3534 return dev->num_tx_queues > 1; 3535} 3536 3537int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3538 3539#ifdef CONFIG_SYSFS 3540int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3541#else 3542static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3543 unsigned int rxqs) 3544{ 3545 dev->real_num_rx_queues = rxqs; 3546 return 0; 3547} 3548#endif 3549 3550static inline struct netdev_rx_queue * 3551__netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3552{ 3553 return dev->_rx + rxq; 3554} 3555 3556#ifdef CONFIG_SYSFS 3557static inline unsigned int get_netdev_rx_queue_index( 3558 struct netdev_rx_queue *queue) 3559{ 3560 struct net_device *dev = queue->dev; 3561 int index = queue - dev->_rx; 3562 3563 BUG_ON(index >= dev->num_rx_queues); 3564 return index; 3565} 3566#endif 3567 3568#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3569int netif_get_num_default_rss_queues(void); 3570 3571enum skb_free_reason { 3572 SKB_REASON_CONSUMED, 3573 SKB_REASON_DROPPED, 3574}; 3575 3576void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3577void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3578 3579/* 3580 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3581 * interrupt context or with hardware interrupts being disabled. 3582 * (in_irq() || irqs_disabled()) 3583 * 3584 * We provide four helpers that can be used in following contexts : 3585 * 3586 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3587 * replacing kfree_skb(skb) 3588 * 3589 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3590 * Typically used in place of consume_skb(skb) in TX completion path 3591 * 3592 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3593 * replacing kfree_skb(skb) 3594 * 3595 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3596 * and consumed a packet. Used in place of consume_skb(skb) 3597 */ 3598static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3599{ 3600 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3601} 3602 3603static inline void dev_consume_skb_irq(struct sk_buff *skb) 3604{ 3605 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3606} 3607 3608static inline void dev_kfree_skb_any(struct sk_buff *skb) 3609{ 3610 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3611} 3612 3613static inline void dev_consume_skb_any(struct sk_buff *skb) 3614{ 3615 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3616} 3617 3618void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3619int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3620int netif_rx(struct sk_buff *skb); 3621int netif_rx_ni(struct sk_buff *skb); 3622int netif_receive_skb(struct sk_buff *skb); 3623int netif_receive_skb_core(struct sk_buff *skb); 3624void netif_receive_skb_list(struct list_head *head); 3625gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3626void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3627struct sk_buff *napi_get_frags(struct napi_struct *napi); 3628gro_result_t napi_gro_frags(struct napi_struct *napi); 3629struct packet_offload *gro_find_receive_by_type(__be16 type); 3630struct packet_offload *gro_find_complete_by_type(__be16 type); 3631 3632static inline void napi_free_frags(struct napi_struct *napi) 3633{ 3634 kfree_skb(napi->skb); 3635 napi->skb = NULL; 3636} 3637 3638bool netdev_is_rx_handler_busy(struct net_device *dev); 3639int netdev_rx_handler_register(struct net_device *dev, 3640 rx_handler_func_t *rx_handler, 3641 void *rx_handler_data); 3642void netdev_rx_handler_unregister(struct net_device *dev); 3643 3644bool dev_valid_name(const char *name); 3645int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3646 bool *need_copyout); 3647int dev_ifconf(struct net *net, struct ifconf *, int); 3648int dev_ethtool(struct net *net, struct ifreq *); 3649unsigned int dev_get_flags(const struct net_device *); 3650int __dev_change_flags(struct net_device *dev, unsigned int flags, 3651 struct netlink_ext_ack *extack); 3652int dev_change_flags(struct net_device *dev, unsigned int flags, 3653 struct netlink_ext_ack *extack); 3654void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3655 unsigned int gchanges); 3656int dev_change_name(struct net_device *, const char *); 3657int dev_set_alias(struct net_device *, const char *, size_t); 3658int dev_get_alias(const struct net_device *, char *, size_t); 3659int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3660int __dev_set_mtu(struct net_device *, int); 3661int dev_set_mtu_ext(struct net_device *dev, int mtu, 3662 struct netlink_ext_ack *extack); 3663int dev_set_mtu(struct net_device *, int); 3664int dev_change_tx_queue_len(struct net_device *, unsigned long); 3665void dev_set_group(struct net_device *, int); 3666int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3667 struct netlink_ext_ack *extack); 3668int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3669 struct netlink_ext_ack *extack); 3670int dev_change_carrier(struct net_device *, bool new_carrier); 3671int dev_get_phys_port_id(struct net_device *dev, 3672 struct netdev_phys_item_id *ppid); 3673int dev_get_phys_port_name(struct net_device *dev, 3674 char *name, size_t len); 3675int dev_get_port_parent_id(struct net_device *dev, 3676 struct netdev_phys_item_id *ppid, bool recurse); 3677bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3678int dev_change_proto_down(struct net_device *dev, bool proto_down); 3679int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3680struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3681struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3682 struct netdev_queue *txq, int *ret); 3683 3684typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3685int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3686 int fd, u32 flags); 3687u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3688 enum bpf_netdev_command cmd); 3689int xdp_umem_query(struct net_device *dev, u16 queue_id); 3690 3691int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3692int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3693bool is_skb_forwardable(const struct net_device *dev, 3694 const struct sk_buff *skb); 3695 3696static __always_inline int ____dev_forward_skb(struct net_device *dev, 3697 struct sk_buff *skb) 3698{ 3699 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3700 unlikely(!is_skb_forwardable(dev, skb))) { 3701 atomic_long_inc(&dev->rx_dropped); 3702 kfree_skb(skb); 3703 return NET_RX_DROP; 3704 } 3705 3706 skb_scrub_packet(skb, true); 3707 skb->priority = 0; 3708 return 0; 3709} 3710 3711bool dev_nit_active(struct net_device *dev); 3712void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3713 3714extern int netdev_budget; 3715extern unsigned int netdev_budget_usecs; 3716 3717/* Called by rtnetlink.c:rtnl_unlock() */ 3718void netdev_run_todo(void); 3719 3720/** 3721 * dev_put - release reference to device 3722 * @dev: network device 3723 * 3724 * Release reference to device to allow it to be freed. 3725 */ 3726static inline void dev_put(struct net_device *dev) 3727{ 3728 this_cpu_dec(*dev->pcpu_refcnt); 3729} 3730 3731/** 3732 * dev_hold - get reference to device 3733 * @dev: network device 3734 * 3735 * Hold reference to device to keep it from being freed. 3736 */ 3737static inline void dev_hold(struct net_device *dev) 3738{ 3739 this_cpu_inc(*dev->pcpu_refcnt); 3740} 3741 3742/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3743 * and _off may be called from IRQ context, but it is caller 3744 * who is responsible for serialization of these calls. 3745 * 3746 * The name carrier is inappropriate, these functions should really be 3747 * called netif_lowerlayer_*() because they represent the state of any 3748 * kind of lower layer not just hardware media. 3749 */ 3750 3751void linkwatch_init_dev(struct net_device *dev); 3752void linkwatch_fire_event(struct net_device *dev); 3753void linkwatch_forget_dev(struct net_device *dev); 3754 3755/** 3756 * netif_carrier_ok - test if carrier present 3757 * @dev: network device 3758 * 3759 * Check if carrier is present on device 3760 */ 3761static inline bool netif_carrier_ok(const struct net_device *dev) 3762{ 3763 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3764} 3765 3766unsigned long dev_trans_start(struct net_device *dev); 3767 3768void __netdev_watchdog_up(struct net_device *dev); 3769 3770void netif_carrier_on(struct net_device *dev); 3771 3772void netif_carrier_off(struct net_device *dev); 3773 3774/** 3775 * netif_dormant_on - mark device as dormant. 3776 * @dev: network device 3777 * 3778 * Mark device as dormant (as per RFC2863). 3779 * 3780 * The dormant state indicates that the relevant interface is not 3781 * actually in a condition to pass packets (i.e., it is not 'up') but is 3782 * in a "pending" state, waiting for some external event. For "on- 3783 * demand" interfaces, this new state identifies the situation where the 3784 * interface is waiting for events to place it in the up state. 3785 */ 3786static inline void netif_dormant_on(struct net_device *dev) 3787{ 3788 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3789 linkwatch_fire_event(dev); 3790} 3791 3792/** 3793 * netif_dormant_off - set device as not dormant. 3794 * @dev: network device 3795 * 3796 * Device is not in dormant state. 3797 */ 3798static inline void netif_dormant_off(struct net_device *dev) 3799{ 3800 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3801 linkwatch_fire_event(dev); 3802} 3803 3804/** 3805 * netif_dormant - test if device is dormant 3806 * @dev: network device 3807 * 3808 * Check if device is dormant. 3809 */ 3810static inline bool netif_dormant(const struct net_device *dev) 3811{ 3812 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3813} 3814 3815 3816/** 3817 * netif_oper_up - test if device is operational 3818 * @dev: network device 3819 * 3820 * Check if carrier is operational 3821 */ 3822static inline bool netif_oper_up(const struct net_device *dev) 3823{ 3824 return (dev->operstate == IF_OPER_UP || 3825 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3826} 3827 3828/** 3829 * netif_device_present - is device available or removed 3830 * @dev: network device 3831 * 3832 * Check if device has not been removed from system. 3833 */ 3834static inline bool netif_device_present(struct net_device *dev) 3835{ 3836 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3837} 3838 3839void netif_device_detach(struct net_device *dev); 3840 3841void netif_device_attach(struct net_device *dev); 3842 3843/* 3844 * Network interface message level settings 3845 */ 3846 3847enum { 3848 NETIF_MSG_DRV = 0x0001, 3849 NETIF_MSG_PROBE = 0x0002, 3850 NETIF_MSG_LINK = 0x0004, 3851 NETIF_MSG_TIMER = 0x0008, 3852 NETIF_MSG_IFDOWN = 0x0010, 3853 NETIF_MSG_IFUP = 0x0020, 3854 NETIF_MSG_RX_ERR = 0x0040, 3855 NETIF_MSG_TX_ERR = 0x0080, 3856 NETIF_MSG_TX_QUEUED = 0x0100, 3857 NETIF_MSG_INTR = 0x0200, 3858 NETIF_MSG_TX_DONE = 0x0400, 3859 NETIF_MSG_RX_STATUS = 0x0800, 3860 NETIF_MSG_PKTDATA = 0x1000, 3861 NETIF_MSG_HW = 0x2000, 3862 NETIF_MSG_WOL = 0x4000, 3863}; 3864 3865#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3866#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3867#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3868#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3869#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3870#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3871#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3872#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3873#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3874#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3875#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3876#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3877#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3878#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3879#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3880 3881static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3882{ 3883 /* use default */ 3884 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3885 return default_msg_enable_bits; 3886 if (debug_value == 0) /* no output */ 3887 return 0; 3888 /* set low N bits */ 3889 return (1U << debug_value) - 1; 3890} 3891 3892static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3893{ 3894 spin_lock(&txq->_xmit_lock); 3895 txq->xmit_lock_owner = cpu; 3896} 3897 3898static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3899{ 3900 __acquire(&txq->_xmit_lock); 3901 return true; 3902} 3903 3904static inline void __netif_tx_release(struct netdev_queue *txq) 3905{ 3906 __release(&txq->_xmit_lock); 3907} 3908 3909static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3910{ 3911 spin_lock_bh(&txq->_xmit_lock); 3912 txq->xmit_lock_owner = smp_processor_id(); 3913} 3914 3915static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3916{ 3917 bool ok = spin_trylock(&txq->_xmit_lock); 3918 if (likely(ok)) 3919 txq->xmit_lock_owner = smp_processor_id(); 3920 return ok; 3921} 3922 3923static inline void __netif_tx_unlock(struct netdev_queue *txq) 3924{ 3925 txq->xmit_lock_owner = -1; 3926 spin_unlock(&txq->_xmit_lock); 3927} 3928 3929static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3930{ 3931 txq->xmit_lock_owner = -1; 3932 spin_unlock_bh(&txq->_xmit_lock); 3933} 3934 3935static inline void txq_trans_update(struct netdev_queue *txq) 3936{ 3937 if (txq->xmit_lock_owner != -1) 3938 txq->trans_start = jiffies; 3939} 3940 3941/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3942static inline void netif_trans_update(struct net_device *dev) 3943{ 3944 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3945 3946 if (txq->trans_start != jiffies) 3947 txq->trans_start = jiffies; 3948} 3949 3950/** 3951 * netif_tx_lock - grab network device transmit lock 3952 * @dev: network device 3953 * 3954 * Get network device transmit lock 3955 */ 3956static inline void netif_tx_lock(struct net_device *dev) 3957{ 3958 unsigned int i; 3959 int cpu; 3960 3961 spin_lock(&dev->tx_global_lock); 3962 cpu = smp_processor_id(); 3963 for (i = 0; i < dev->num_tx_queues; i++) { 3964 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3965 3966 /* We are the only thread of execution doing a 3967 * freeze, but we have to grab the _xmit_lock in 3968 * order to synchronize with threads which are in 3969 * the ->hard_start_xmit() handler and already 3970 * checked the frozen bit. 3971 */ 3972 __netif_tx_lock(txq, cpu); 3973 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3974 __netif_tx_unlock(txq); 3975 } 3976} 3977 3978static inline void netif_tx_lock_bh(struct net_device *dev) 3979{ 3980 local_bh_disable(); 3981 netif_tx_lock(dev); 3982} 3983 3984static inline void netif_tx_unlock(struct net_device *dev) 3985{ 3986 unsigned int i; 3987 3988 for (i = 0; i < dev->num_tx_queues; i++) { 3989 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3990 3991 /* No need to grab the _xmit_lock here. If the 3992 * queue is not stopped for another reason, we 3993 * force a schedule. 3994 */ 3995 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3996 netif_schedule_queue(txq); 3997 } 3998 spin_unlock(&dev->tx_global_lock); 3999} 4000 4001static inline void netif_tx_unlock_bh(struct net_device *dev) 4002{ 4003 netif_tx_unlock(dev); 4004 local_bh_enable(); 4005} 4006 4007#define HARD_TX_LOCK(dev, txq, cpu) { \ 4008 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4009 __netif_tx_lock(txq, cpu); \ 4010 } else { \ 4011 __netif_tx_acquire(txq); \ 4012 } \ 4013} 4014 4015#define HARD_TX_TRYLOCK(dev, txq) \ 4016 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4017 __netif_tx_trylock(txq) : \ 4018 __netif_tx_acquire(txq)) 4019 4020#define HARD_TX_UNLOCK(dev, txq) { \ 4021 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4022 __netif_tx_unlock(txq); \ 4023 } else { \ 4024 __netif_tx_release(txq); \ 4025 } \ 4026} 4027 4028static inline void netif_tx_disable(struct net_device *dev) 4029{ 4030 unsigned int i; 4031 int cpu; 4032 4033 local_bh_disable(); 4034 cpu = smp_processor_id(); 4035 for (i = 0; i < dev->num_tx_queues; i++) { 4036 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4037 4038 __netif_tx_lock(txq, cpu); 4039 netif_tx_stop_queue(txq); 4040 __netif_tx_unlock(txq); 4041 } 4042 local_bh_enable(); 4043} 4044 4045static inline void netif_addr_lock(struct net_device *dev) 4046{ 4047 spin_lock(&dev->addr_list_lock); 4048} 4049 4050static inline void netif_addr_lock_nested(struct net_device *dev) 4051{ 4052 int subclass = SINGLE_DEPTH_NESTING; 4053 4054 if (dev->netdev_ops->ndo_get_lock_subclass) 4055 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4056 4057 spin_lock_nested(&dev->addr_list_lock, subclass); 4058} 4059 4060static inline void netif_addr_lock_bh(struct net_device *dev) 4061{ 4062 spin_lock_bh(&dev->addr_list_lock); 4063} 4064 4065static inline void netif_addr_unlock(struct net_device *dev) 4066{ 4067 spin_unlock(&dev->addr_list_lock); 4068} 4069 4070static inline void netif_addr_unlock_bh(struct net_device *dev) 4071{ 4072 spin_unlock_bh(&dev->addr_list_lock); 4073} 4074 4075/* 4076 * dev_addrs walker. Should be used only for read access. Call with 4077 * rcu_read_lock held. 4078 */ 4079#define for_each_dev_addr(dev, ha) \ 4080 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4081 4082/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4083 4084void ether_setup(struct net_device *dev); 4085 4086/* Support for loadable net-drivers */ 4087struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4088 unsigned char name_assign_type, 4089 void (*setup)(struct net_device *), 4090 unsigned int txqs, unsigned int rxqs); 4091int dev_get_valid_name(struct net *net, struct net_device *dev, 4092 const char *name); 4093 4094#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4095 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4096 4097#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4098 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4099 count) 4100 4101int register_netdev(struct net_device *dev); 4102void unregister_netdev(struct net_device *dev); 4103 4104/* General hardware address lists handling functions */ 4105int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4106 struct netdev_hw_addr_list *from_list, int addr_len); 4107void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4108 struct netdev_hw_addr_list *from_list, int addr_len); 4109int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4110 struct net_device *dev, 4111 int (*sync)(struct net_device *, const unsigned char *), 4112 int (*unsync)(struct net_device *, 4113 const unsigned char *)); 4114int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4115 struct net_device *dev, 4116 int (*sync)(struct net_device *, 4117 const unsigned char *, int), 4118 int (*unsync)(struct net_device *, 4119 const unsigned char *, int)); 4120void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4121 struct net_device *dev, 4122 int (*unsync)(struct net_device *, 4123 const unsigned char *, int)); 4124void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4125 struct net_device *dev, 4126 int (*unsync)(struct net_device *, 4127 const unsigned char *)); 4128void __hw_addr_init(struct netdev_hw_addr_list *list); 4129 4130/* Functions used for device addresses handling */ 4131int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4132 unsigned char addr_type); 4133int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4134 unsigned char addr_type); 4135void dev_addr_flush(struct net_device *dev); 4136int dev_addr_init(struct net_device *dev); 4137 4138/* Functions used for unicast addresses handling */ 4139int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4140int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4141int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4142int dev_uc_sync(struct net_device *to, struct net_device *from); 4143int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4144void dev_uc_unsync(struct net_device *to, struct net_device *from); 4145void dev_uc_flush(struct net_device *dev); 4146void dev_uc_init(struct net_device *dev); 4147 4148/** 4149 * __dev_uc_sync - Synchonize device's unicast list 4150 * @dev: device to sync 4151 * @sync: function to call if address should be added 4152 * @unsync: function to call if address should be removed 4153 * 4154 * Add newly added addresses to the interface, and release 4155 * addresses that have been deleted. 4156 */ 4157static inline int __dev_uc_sync(struct net_device *dev, 4158 int (*sync)(struct net_device *, 4159 const unsigned char *), 4160 int (*unsync)(struct net_device *, 4161 const unsigned char *)) 4162{ 4163 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4164} 4165 4166/** 4167 * __dev_uc_unsync - Remove synchronized addresses from device 4168 * @dev: device to sync 4169 * @unsync: function to call if address should be removed 4170 * 4171 * Remove all addresses that were added to the device by dev_uc_sync(). 4172 */ 4173static inline void __dev_uc_unsync(struct net_device *dev, 4174 int (*unsync)(struct net_device *, 4175 const unsigned char *)) 4176{ 4177 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4178} 4179 4180/* Functions used for multicast addresses handling */ 4181int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4182int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4183int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4184int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4185int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4186int dev_mc_sync(struct net_device *to, struct net_device *from); 4187int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4188void dev_mc_unsync(struct net_device *to, struct net_device *from); 4189void dev_mc_flush(struct net_device *dev); 4190void dev_mc_init(struct net_device *dev); 4191 4192/** 4193 * __dev_mc_sync - Synchonize device's multicast list 4194 * @dev: device to sync 4195 * @sync: function to call if address should be added 4196 * @unsync: function to call if address should be removed 4197 * 4198 * Add newly added addresses to the interface, and release 4199 * addresses that have been deleted. 4200 */ 4201static inline int __dev_mc_sync(struct net_device *dev, 4202 int (*sync)(struct net_device *, 4203 const unsigned char *), 4204 int (*unsync)(struct net_device *, 4205 const unsigned char *)) 4206{ 4207 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4208} 4209 4210/** 4211 * __dev_mc_unsync - Remove synchronized addresses from device 4212 * @dev: device to sync 4213 * @unsync: function to call if address should be removed 4214 * 4215 * Remove all addresses that were added to the device by dev_mc_sync(). 4216 */ 4217static inline void __dev_mc_unsync(struct net_device *dev, 4218 int (*unsync)(struct net_device *, 4219 const unsigned char *)) 4220{ 4221 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4222} 4223 4224/* Functions used for secondary unicast and multicast support */ 4225void dev_set_rx_mode(struct net_device *dev); 4226void __dev_set_rx_mode(struct net_device *dev); 4227int dev_set_promiscuity(struct net_device *dev, int inc); 4228int dev_set_allmulti(struct net_device *dev, int inc); 4229void netdev_state_change(struct net_device *dev); 4230void netdev_notify_peers(struct net_device *dev); 4231void netdev_features_change(struct net_device *dev); 4232/* Load a device via the kmod */ 4233void dev_load(struct net *net, const char *name); 4234struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4235 struct rtnl_link_stats64 *storage); 4236void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4237 const struct net_device_stats *netdev_stats); 4238 4239extern int netdev_max_backlog; 4240extern int netdev_tstamp_prequeue; 4241extern int weight_p; 4242extern int dev_weight_rx_bias; 4243extern int dev_weight_tx_bias; 4244extern int dev_rx_weight; 4245extern int dev_tx_weight; 4246 4247bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4248struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4249 struct list_head **iter); 4250struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4251 struct list_head **iter); 4252 4253/* iterate through upper list, must be called under RCU read lock */ 4254#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4255 for (iter = &(dev)->adj_list.upper, \ 4256 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4257 updev; \ 4258 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4259 4260int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4261 int (*fn)(struct net_device *upper_dev, 4262 void *data), 4263 void *data); 4264 4265bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4266 struct net_device *upper_dev); 4267 4268bool netdev_has_any_upper_dev(struct net_device *dev); 4269 4270void *netdev_lower_get_next_private(struct net_device *dev, 4271 struct list_head **iter); 4272void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4273 struct list_head **iter); 4274 4275#define netdev_for_each_lower_private(dev, priv, iter) \ 4276 for (iter = (dev)->adj_list.lower.next, \ 4277 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4278 priv; \ 4279 priv = netdev_lower_get_next_private(dev, &(iter))) 4280 4281#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4282 for (iter = &(dev)->adj_list.lower, \ 4283 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4284 priv; \ 4285 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4286 4287void *netdev_lower_get_next(struct net_device *dev, 4288 struct list_head **iter); 4289 4290#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4291 for (iter = (dev)->adj_list.lower.next, \ 4292 ldev = netdev_lower_get_next(dev, &(iter)); \ 4293 ldev; \ 4294 ldev = netdev_lower_get_next(dev, &(iter))) 4295 4296struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4297 struct list_head **iter); 4298struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4299 struct list_head **iter); 4300 4301int netdev_walk_all_lower_dev(struct net_device *dev, 4302 int (*fn)(struct net_device *lower_dev, 4303 void *data), 4304 void *data); 4305int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4306 int (*fn)(struct net_device *lower_dev, 4307 void *data), 4308 void *data); 4309 4310void *netdev_adjacent_get_private(struct list_head *adj_list); 4311void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4312struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4313struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4314int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4315 struct netlink_ext_ack *extack); 4316int netdev_master_upper_dev_link(struct net_device *dev, 4317 struct net_device *upper_dev, 4318 void *upper_priv, void *upper_info, 4319 struct netlink_ext_ack *extack); 4320void netdev_upper_dev_unlink(struct net_device *dev, 4321 struct net_device *upper_dev); 4322void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4323void *netdev_lower_dev_get_private(struct net_device *dev, 4324 struct net_device *lower_dev); 4325void netdev_lower_state_changed(struct net_device *lower_dev, 4326 void *lower_state_info); 4327 4328/* RSS keys are 40 or 52 bytes long */ 4329#define NETDEV_RSS_KEY_LEN 52 4330extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4331void netdev_rss_key_fill(void *buffer, size_t len); 4332 4333int dev_get_nest_level(struct net_device *dev); 4334int skb_checksum_help(struct sk_buff *skb); 4335int skb_crc32c_csum_help(struct sk_buff *skb); 4336int skb_csum_hwoffload_help(struct sk_buff *skb, 4337 const netdev_features_t features); 4338 4339struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4340 netdev_features_t features, bool tx_path); 4341struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4342 netdev_features_t features); 4343 4344struct netdev_bonding_info { 4345 ifslave slave; 4346 ifbond master; 4347}; 4348 4349struct netdev_notifier_bonding_info { 4350 struct netdev_notifier_info info; /* must be first */ 4351 struct netdev_bonding_info bonding_info; 4352}; 4353 4354void netdev_bonding_info_change(struct net_device *dev, 4355 struct netdev_bonding_info *bonding_info); 4356 4357static inline 4358struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4359{ 4360 return __skb_gso_segment(skb, features, true); 4361} 4362__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4363 4364static inline bool can_checksum_protocol(netdev_features_t features, 4365 __be16 protocol) 4366{ 4367 if (protocol == htons(ETH_P_FCOE)) 4368 return !!(features & NETIF_F_FCOE_CRC); 4369 4370 /* Assume this is an IP checksum (not SCTP CRC) */ 4371 4372 if (features & NETIF_F_HW_CSUM) { 4373 /* Can checksum everything */ 4374 return true; 4375 } 4376 4377 switch (protocol) { 4378 case htons(ETH_P_IP): 4379 return !!(features & NETIF_F_IP_CSUM); 4380 case htons(ETH_P_IPV6): 4381 return !!(features & NETIF_F_IPV6_CSUM); 4382 default: 4383 return false; 4384 } 4385} 4386 4387#ifdef CONFIG_BUG 4388void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4389#else 4390static inline void netdev_rx_csum_fault(struct net_device *dev, 4391 struct sk_buff *skb) 4392{ 4393} 4394#endif 4395/* rx skb timestamps */ 4396void net_enable_timestamp(void); 4397void net_disable_timestamp(void); 4398 4399#ifdef CONFIG_PROC_FS 4400int __init dev_proc_init(void); 4401#else 4402#define dev_proc_init() 0 4403#endif 4404 4405static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4406 struct sk_buff *skb, struct net_device *dev, 4407 bool more) 4408{ 4409 __this_cpu_write(softnet_data.xmit.more, more); 4410 return ops->ndo_start_xmit(skb, dev); 4411} 4412 4413static inline bool netdev_xmit_more(void) 4414{ 4415 return __this_cpu_read(softnet_data.xmit.more); 4416} 4417 4418static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4419 struct netdev_queue *txq, bool more) 4420{ 4421 const struct net_device_ops *ops = dev->netdev_ops; 4422 netdev_tx_t rc; 4423 4424 rc = __netdev_start_xmit(ops, skb, dev, more); 4425 if (rc == NETDEV_TX_OK) 4426 txq_trans_update(txq); 4427 4428 return rc; 4429} 4430 4431int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4432 const void *ns); 4433void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4434 const void *ns); 4435 4436static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4437{ 4438 return netdev_class_create_file_ns(class_attr, NULL); 4439} 4440 4441static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4442{ 4443 netdev_class_remove_file_ns(class_attr, NULL); 4444} 4445 4446extern const struct kobj_ns_type_operations net_ns_type_operations; 4447 4448const char *netdev_drivername(const struct net_device *dev); 4449 4450void linkwatch_run_queue(void); 4451 4452static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4453 netdev_features_t f2) 4454{ 4455 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4456 if (f1 & NETIF_F_HW_CSUM) 4457 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4458 else 4459 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4460 } 4461 4462 return f1 & f2; 4463} 4464 4465static inline netdev_features_t netdev_get_wanted_features( 4466 struct net_device *dev) 4467{ 4468 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4469} 4470netdev_features_t netdev_increment_features(netdev_features_t all, 4471 netdev_features_t one, netdev_features_t mask); 4472 4473/* Allow TSO being used on stacked device : 4474 * Performing the GSO segmentation before last device 4475 * is a performance improvement. 4476 */ 4477static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4478 netdev_features_t mask) 4479{ 4480 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4481} 4482 4483int __netdev_update_features(struct net_device *dev); 4484void netdev_update_features(struct net_device *dev); 4485void netdev_change_features(struct net_device *dev); 4486 4487void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4488 struct net_device *dev); 4489 4490netdev_features_t passthru_features_check(struct sk_buff *skb, 4491 struct net_device *dev, 4492 netdev_features_t features); 4493netdev_features_t netif_skb_features(struct sk_buff *skb); 4494 4495static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4496{ 4497 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4498 4499 /* check flags correspondence */ 4500 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4501 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4502 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4503 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4504 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4505 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4506 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4507 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4508 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4509 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4510 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4511 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4512 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4513 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4514 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4515 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4516 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4517 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4518 4519 return (features & feature) == feature; 4520} 4521 4522static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4523{ 4524 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4525 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4526} 4527 4528static inline bool netif_needs_gso(struct sk_buff *skb, 4529 netdev_features_t features) 4530{ 4531 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4532 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4533 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4534} 4535 4536static inline void netif_set_gso_max_size(struct net_device *dev, 4537 unsigned int size) 4538{ 4539 dev->gso_max_size = size; 4540} 4541 4542static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4543 int pulled_hlen, u16 mac_offset, 4544 int mac_len) 4545{ 4546 skb->protocol = protocol; 4547 skb->encapsulation = 1; 4548 skb_push(skb, pulled_hlen); 4549 skb_reset_transport_header(skb); 4550 skb->mac_header = mac_offset; 4551 skb->network_header = skb->mac_header + mac_len; 4552 skb->mac_len = mac_len; 4553} 4554 4555static inline bool netif_is_macsec(const struct net_device *dev) 4556{ 4557 return dev->priv_flags & IFF_MACSEC; 4558} 4559 4560static inline bool netif_is_macvlan(const struct net_device *dev) 4561{ 4562 return dev->priv_flags & IFF_MACVLAN; 4563} 4564 4565static inline bool netif_is_macvlan_port(const struct net_device *dev) 4566{ 4567 return dev->priv_flags & IFF_MACVLAN_PORT; 4568} 4569 4570static inline bool netif_is_bond_master(const struct net_device *dev) 4571{ 4572 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4573} 4574 4575static inline bool netif_is_bond_slave(const struct net_device *dev) 4576{ 4577 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4578} 4579 4580static inline bool netif_supports_nofcs(struct net_device *dev) 4581{ 4582 return dev->priv_flags & IFF_SUPP_NOFCS; 4583} 4584 4585static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4586{ 4587 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4588} 4589 4590static inline bool netif_is_l3_master(const struct net_device *dev) 4591{ 4592 return dev->priv_flags & IFF_L3MDEV_MASTER; 4593} 4594 4595static inline bool netif_is_l3_slave(const struct net_device *dev) 4596{ 4597 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4598} 4599 4600static inline bool netif_is_bridge_master(const struct net_device *dev) 4601{ 4602 return dev->priv_flags & IFF_EBRIDGE; 4603} 4604 4605static inline bool netif_is_bridge_port(const struct net_device *dev) 4606{ 4607 return dev->priv_flags & IFF_BRIDGE_PORT; 4608} 4609 4610static inline bool netif_is_ovs_master(const struct net_device *dev) 4611{ 4612 return dev->priv_flags & IFF_OPENVSWITCH; 4613} 4614 4615static inline bool netif_is_ovs_port(const struct net_device *dev) 4616{ 4617 return dev->priv_flags & IFF_OVS_DATAPATH; 4618} 4619 4620static inline bool netif_is_team_master(const struct net_device *dev) 4621{ 4622 return dev->priv_flags & IFF_TEAM; 4623} 4624 4625static inline bool netif_is_team_port(const struct net_device *dev) 4626{ 4627 return dev->priv_flags & IFF_TEAM_PORT; 4628} 4629 4630static inline bool netif_is_lag_master(const struct net_device *dev) 4631{ 4632 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4633} 4634 4635static inline bool netif_is_lag_port(const struct net_device *dev) 4636{ 4637 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4638} 4639 4640static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4641{ 4642 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4643} 4644 4645static inline bool netif_is_failover(const struct net_device *dev) 4646{ 4647 return dev->priv_flags & IFF_FAILOVER; 4648} 4649 4650static inline bool netif_is_failover_slave(const struct net_device *dev) 4651{ 4652 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4653} 4654 4655/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4656static inline void netif_keep_dst(struct net_device *dev) 4657{ 4658 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4659} 4660 4661/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4662static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4663{ 4664 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4665 return dev->priv_flags & IFF_MACSEC; 4666} 4667 4668extern struct pernet_operations __net_initdata loopback_net_ops; 4669 4670/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4671 4672/* netdev_printk helpers, similar to dev_printk */ 4673 4674static inline const char *netdev_name(const struct net_device *dev) 4675{ 4676 if (!dev->name[0] || strchr(dev->name, '%')) 4677 return "(unnamed net_device)"; 4678 return dev->name; 4679} 4680 4681static inline bool netdev_unregistering(const struct net_device *dev) 4682{ 4683 return dev->reg_state == NETREG_UNREGISTERING; 4684} 4685 4686static inline const char *netdev_reg_state(const struct net_device *dev) 4687{ 4688 switch (dev->reg_state) { 4689 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4690 case NETREG_REGISTERED: return ""; 4691 case NETREG_UNREGISTERING: return " (unregistering)"; 4692 case NETREG_UNREGISTERED: return " (unregistered)"; 4693 case NETREG_RELEASED: return " (released)"; 4694 case NETREG_DUMMY: return " (dummy)"; 4695 } 4696 4697 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4698 return " (unknown)"; 4699} 4700 4701__printf(3, 4) __cold 4702void netdev_printk(const char *level, const struct net_device *dev, 4703 const char *format, ...); 4704__printf(2, 3) __cold 4705void netdev_emerg(const struct net_device *dev, const char *format, ...); 4706__printf(2, 3) __cold 4707void netdev_alert(const struct net_device *dev, const char *format, ...); 4708__printf(2, 3) __cold 4709void netdev_crit(const struct net_device *dev, const char *format, ...); 4710__printf(2, 3) __cold 4711void netdev_err(const struct net_device *dev, const char *format, ...); 4712__printf(2, 3) __cold 4713void netdev_warn(const struct net_device *dev, const char *format, ...); 4714__printf(2, 3) __cold 4715void netdev_notice(const struct net_device *dev, const char *format, ...); 4716__printf(2, 3) __cold 4717void netdev_info(const struct net_device *dev, const char *format, ...); 4718 4719#define netdev_level_once(level, dev, fmt, ...) \ 4720do { \ 4721 static bool __print_once __read_mostly; \ 4722 \ 4723 if (!__print_once) { \ 4724 __print_once = true; \ 4725 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4726 } \ 4727} while (0) 4728 4729#define netdev_emerg_once(dev, fmt, ...) \ 4730 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4731#define netdev_alert_once(dev, fmt, ...) \ 4732 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4733#define netdev_crit_once(dev, fmt, ...) \ 4734 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4735#define netdev_err_once(dev, fmt, ...) \ 4736 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4737#define netdev_warn_once(dev, fmt, ...) \ 4738 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4739#define netdev_notice_once(dev, fmt, ...) \ 4740 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4741#define netdev_info_once(dev, fmt, ...) \ 4742 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4743 4744#define MODULE_ALIAS_NETDEV(device) \ 4745 MODULE_ALIAS("netdev-" device) 4746 4747#if defined(CONFIG_DYNAMIC_DEBUG) 4748#define netdev_dbg(__dev, format, args...) \ 4749do { \ 4750 dynamic_netdev_dbg(__dev, format, ##args); \ 4751} while (0) 4752#elif defined(DEBUG) 4753#define netdev_dbg(__dev, format, args...) \ 4754 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4755#else 4756#define netdev_dbg(__dev, format, args...) \ 4757({ \ 4758 if (0) \ 4759 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4760}) 4761#endif 4762 4763#if defined(VERBOSE_DEBUG) 4764#define netdev_vdbg netdev_dbg 4765#else 4766 4767#define netdev_vdbg(dev, format, args...) \ 4768({ \ 4769 if (0) \ 4770 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4771 0; \ 4772}) 4773#endif 4774 4775/* 4776 * netdev_WARN() acts like dev_printk(), but with the key difference 4777 * of using a WARN/WARN_ON to get the message out, including the 4778 * file/line information and a backtrace. 4779 */ 4780#define netdev_WARN(dev, format, args...) \ 4781 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4782 netdev_reg_state(dev), ##args) 4783 4784#define netdev_WARN_ONCE(dev, format, args...) \ 4785 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4786 netdev_reg_state(dev), ##args) 4787 4788/* netif printk helpers, similar to netdev_printk */ 4789 4790#define netif_printk(priv, type, level, dev, fmt, args...) \ 4791do { \ 4792 if (netif_msg_##type(priv)) \ 4793 netdev_printk(level, (dev), fmt, ##args); \ 4794} while (0) 4795 4796#define netif_level(level, priv, type, dev, fmt, args...) \ 4797do { \ 4798 if (netif_msg_##type(priv)) \ 4799 netdev_##level(dev, fmt, ##args); \ 4800} while (0) 4801 4802#define netif_emerg(priv, type, dev, fmt, args...) \ 4803 netif_level(emerg, priv, type, dev, fmt, ##args) 4804#define netif_alert(priv, type, dev, fmt, args...) \ 4805 netif_level(alert, priv, type, dev, fmt, ##args) 4806#define netif_crit(priv, type, dev, fmt, args...) \ 4807 netif_level(crit, priv, type, dev, fmt, ##args) 4808#define netif_err(priv, type, dev, fmt, args...) \ 4809 netif_level(err, priv, type, dev, fmt, ##args) 4810#define netif_warn(priv, type, dev, fmt, args...) \ 4811 netif_level(warn, priv, type, dev, fmt, ##args) 4812#define netif_notice(priv, type, dev, fmt, args...) \ 4813 netif_level(notice, priv, type, dev, fmt, ##args) 4814#define netif_info(priv, type, dev, fmt, args...) \ 4815 netif_level(info, priv, type, dev, fmt, ##args) 4816 4817#if defined(CONFIG_DYNAMIC_DEBUG) 4818#define netif_dbg(priv, type, netdev, format, args...) \ 4819do { \ 4820 if (netif_msg_##type(priv)) \ 4821 dynamic_netdev_dbg(netdev, format, ##args); \ 4822} while (0) 4823#elif defined(DEBUG) 4824#define netif_dbg(priv, type, dev, format, args...) \ 4825 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4826#else 4827#define netif_dbg(priv, type, dev, format, args...) \ 4828({ \ 4829 if (0) \ 4830 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4831 0; \ 4832}) 4833#endif 4834 4835/* if @cond then downgrade to debug, else print at @level */ 4836#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4837 do { \ 4838 if (cond) \ 4839 netif_dbg(priv, type, netdev, fmt, ##args); \ 4840 else \ 4841 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4842 } while (0) 4843 4844#if defined(VERBOSE_DEBUG) 4845#define netif_vdbg netif_dbg 4846#else 4847#define netif_vdbg(priv, type, dev, format, args...) \ 4848({ \ 4849 if (0) \ 4850 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4851 0; \ 4852}) 4853#endif 4854 4855/* 4856 * The list of packet types we will receive (as opposed to discard) 4857 * and the routines to invoke. 4858 * 4859 * Why 16. Because with 16 the only overlap we get on a hash of the 4860 * low nibble of the protocol value is RARP/SNAP/X.25. 4861 * 4862 * 0800 IP 4863 * 0001 802.3 4864 * 0002 AX.25 4865 * 0004 802.2 4866 * 8035 RARP 4867 * 0005 SNAP 4868 * 0805 X.25 4869 * 0806 ARP 4870 * 8137 IPX 4871 * 0009 Localtalk 4872 * 86DD IPv6 4873 */ 4874#define PTYPE_HASH_SIZE (16) 4875#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4876 4877#endif /* _LINUX_NETDEVICE_H */