at v5.2-rc2 2214 lines 56 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/block_dev.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 7 */ 8 9#include <linux/init.h> 10#include <linux/mm.h> 11#include <linux/fcntl.h> 12#include <linux/slab.h> 13#include <linux/kmod.h> 14#include <linux/major.h> 15#include <linux/device_cgroup.h> 16#include <linux/highmem.h> 17#include <linux/blkdev.h> 18#include <linux/backing-dev.h> 19#include <linux/module.h> 20#include <linux/blkpg.h> 21#include <linux/magic.h> 22#include <linux/dax.h> 23#include <linux/buffer_head.h> 24#include <linux/swap.h> 25#include <linux/pagevec.h> 26#include <linux/writeback.h> 27#include <linux/mpage.h> 28#include <linux/mount.h> 29#include <linux/uio.h> 30#include <linux/namei.h> 31#include <linux/log2.h> 32#include <linux/cleancache.h> 33#include <linux/task_io_accounting_ops.h> 34#include <linux/falloc.h> 35#include <linux/uaccess.h> 36#include "internal.h" 37 38struct bdev_inode { 39 struct block_device bdev; 40 struct inode vfs_inode; 41}; 42 43static const struct address_space_operations def_blk_aops; 44 45static inline struct bdev_inode *BDEV_I(struct inode *inode) 46{ 47 return container_of(inode, struct bdev_inode, vfs_inode); 48} 49 50struct block_device *I_BDEV(struct inode *inode) 51{ 52 return &BDEV_I(inode)->bdev; 53} 54EXPORT_SYMBOL(I_BDEV); 55 56static void bdev_write_inode(struct block_device *bdev) 57{ 58 struct inode *inode = bdev->bd_inode; 59 int ret; 60 61 spin_lock(&inode->i_lock); 62 while (inode->i_state & I_DIRTY) { 63 spin_unlock(&inode->i_lock); 64 ret = write_inode_now(inode, true); 65 if (ret) { 66 char name[BDEVNAME_SIZE]; 67 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 68 "for block device %s (err=%d).\n", 69 bdevname(bdev, name), ret); 70 } 71 spin_lock(&inode->i_lock); 72 } 73 spin_unlock(&inode->i_lock); 74} 75 76/* Kill _all_ buffers and pagecache , dirty or not.. */ 77void kill_bdev(struct block_device *bdev) 78{ 79 struct address_space *mapping = bdev->bd_inode->i_mapping; 80 81 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 82 return; 83 84 invalidate_bh_lrus(); 85 truncate_inode_pages(mapping, 0); 86} 87EXPORT_SYMBOL(kill_bdev); 88 89/* Invalidate clean unused buffers and pagecache. */ 90void invalidate_bdev(struct block_device *bdev) 91{ 92 struct address_space *mapping = bdev->bd_inode->i_mapping; 93 94 if (mapping->nrpages) { 95 invalidate_bh_lrus(); 96 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 97 invalidate_mapping_pages(mapping, 0, -1); 98 } 99 /* 99% of the time, we don't need to flush the cleancache on the bdev. 100 * But, for the strange corners, lets be cautious 101 */ 102 cleancache_invalidate_inode(mapping); 103} 104EXPORT_SYMBOL(invalidate_bdev); 105 106static void set_init_blocksize(struct block_device *bdev) 107{ 108 unsigned bsize = bdev_logical_block_size(bdev); 109 loff_t size = i_size_read(bdev->bd_inode); 110 111 while (bsize < PAGE_SIZE) { 112 if (size & bsize) 113 break; 114 bsize <<= 1; 115 } 116 bdev->bd_block_size = bsize; 117 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 118} 119 120int set_blocksize(struct block_device *bdev, int size) 121{ 122 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 123 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 124 return -EINVAL; 125 126 /* Size cannot be smaller than the size supported by the device */ 127 if (size < bdev_logical_block_size(bdev)) 128 return -EINVAL; 129 130 /* Don't change the size if it is same as current */ 131 if (bdev->bd_block_size != size) { 132 sync_blockdev(bdev); 133 bdev->bd_block_size = size; 134 bdev->bd_inode->i_blkbits = blksize_bits(size); 135 kill_bdev(bdev); 136 } 137 return 0; 138} 139 140EXPORT_SYMBOL(set_blocksize); 141 142int sb_set_blocksize(struct super_block *sb, int size) 143{ 144 if (set_blocksize(sb->s_bdev, size)) 145 return 0; 146 /* If we get here, we know size is power of two 147 * and it's value is between 512 and PAGE_SIZE */ 148 sb->s_blocksize = size; 149 sb->s_blocksize_bits = blksize_bits(size); 150 return sb->s_blocksize; 151} 152 153EXPORT_SYMBOL(sb_set_blocksize); 154 155int sb_min_blocksize(struct super_block *sb, int size) 156{ 157 int minsize = bdev_logical_block_size(sb->s_bdev); 158 if (size < minsize) 159 size = minsize; 160 return sb_set_blocksize(sb, size); 161} 162 163EXPORT_SYMBOL(sb_min_blocksize); 164 165static int 166blkdev_get_block(struct inode *inode, sector_t iblock, 167 struct buffer_head *bh, int create) 168{ 169 bh->b_bdev = I_BDEV(inode); 170 bh->b_blocknr = iblock; 171 set_buffer_mapped(bh); 172 return 0; 173} 174 175static struct inode *bdev_file_inode(struct file *file) 176{ 177 return file->f_mapping->host; 178} 179 180static unsigned int dio_bio_write_op(struct kiocb *iocb) 181{ 182 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 183 184 /* avoid the need for a I/O completion work item */ 185 if (iocb->ki_flags & IOCB_DSYNC) 186 op |= REQ_FUA; 187 return op; 188} 189 190#define DIO_INLINE_BIO_VECS 4 191 192static void blkdev_bio_end_io_simple(struct bio *bio) 193{ 194 struct task_struct *waiter = bio->bi_private; 195 196 WRITE_ONCE(bio->bi_private, NULL); 197 blk_wake_io_task(waiter); 198} 199 200static ssize_t 201__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 202 int nr_pages) 203{ 204 struct file *file = iocb->ki_filp; 205 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 206 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 207 loff_t pos = iocb->ki_pos; 208 bool should_dirty = false; 209 struct bio bio; 210 ssize_t ret; 211 blk_qc_t qc; 212 struct bvec_iter_all iter_all; 213 214 if ((pos | iov_iter_alignment(iter)) & 215 (bdev_logical_block_size(bdev) - 1)) 216 return -EINVAL; 217 218 if (nr_pages <= DIO_INLINE_BIO_VECS) 219 vecs = inline_vecs; 220 else { 221 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 222 GFP_KERNEL); 223 if (!vecs) 224 return -ENOMEM; 225 } 226 227 bio_init(&bio, vecs, nr_pages); 228 bio_set_dev(&bio, bdev); 229 bio.bi_iter.bi_sector = pos >> 9; 230 bio.bi_write_hint = iocb->ki_hint; 231 bio.bi_private = current; 232 bio.bi_end_io = blkdev_bio_end_io_simple; 233 bio.bi_ioprio = iocb->ki_ioprio; 234 235 ret = bio_iov_iter_get_pages(&bio, iter); 236 if (unlikely(ret)) 237 goto out; 238 ret = bio.bi_iter.bi_size; 239 240 if (iov_iter_rw(iter) == READ) { 241 bio.bi_opf = REQ_OP_READ; 242 if (iter_is_iovec(iter)) 243 should_dirty = true; 244 } else { 245 bio.bi_opf = dio_bio_write_op(iocb); 246 task_io_account_write(ret); 247 } 248 if (iocb->ki_flags & IOCB_HIPRI) 249 bio_set_polled(&bio, iocb); 250 251 qc = submit_bio(&bio); 252 for (;;) { 253 set_current_state(TASK_UNINTERRUPTIBLE); 254 if (!READ_ONCE(bio.bi_private)) 255 break; 256 if (!(iocb->ki_flags & IOCB_HIPRI) || 257 !blk_poll(bdev_get_queue(bdev), qc, true)) 258 io_schedule(); 259 } 260 __set_current_state(TASK_RUNNING); 261 262 bio_for_each_segment_all(bvec, &bio, iter_all) { 263 if (should_dirty && !PageCompound(bvec->bv_page)) 264 set_page_dirty_lock(bvec->bv_page); 265 if (!bio_flagged(&bio, BIO_NO_PAGE_REF)) 266 put_page(bvec->bv_page); 267 } 268 269 if (unlikely(bio.bi_status)) 270 ret = blk_status_to_errno(bio.bi_status); 271 272out: 273 if (vecs != inline_vecs) 274 kfree(vecs); 275 276 bio_uninit(&bio); 277 278 return ret; 279} 280 281struct blkdev_dio { 282 union { 283 struct kiocb *iocb; 284 struct task_struct *waiter; 285 }; 286 size_t size; 287 atomic_t ref; 288 bool multi_bio : 1; 289 bool should_dirty : 1; 290 bool is_sync : 1; 291 struct bio bio; 292}; 293 294static struct bio_set blkdev_dio_pool; 295 296static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 297{ 298 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 299 struct request_queue *q = bdev_get_queue(bdev); 300 301 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 302} 303 304static void blkdev_bio_end_io(struct bio *bio) 305{ 306 struct blkdev_dio *dio = bio->bi_private; 307 bool should_dirty = dio->should_dirty; 308 309 if (bio->bi_status && !dio->bio.bi_status) 310 dio->bio.bi_status = bio->bi_status; 311 312 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) { 313 if (!dio->is_sync) { 314 struct kiocb *iocb = dio->iocb; 315 ssize_t ret; 316 317 if (likely(!dio->bio.bi_status)) { 318 ret = dio->size; 319 iocb->ki_pos += ret; 320 } else { 321 ret = blk_status_to_errno(dio->bio.bi_status); 322 } 323 324 dio->iocb->ki_complete(iocb, ret, 0); 325 if (dio->multi_bio) 326 bio_put(&dio->bio); 327 } else { 328 struct task_struct *waiter = dio->waiter; 329 330 WRITE_ONCE(dio->waiter, NULL); 331 blk_wake_io_task(waiter); 332 } 333 } 334 335 if (should_dirty) { 336 bio_check_pages_dirty(bio); 337 } else { 338 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) { 339 struct bvec_iter_all iter_all; 340 struct bio_vec *bvec; 341 342 bio_for_each_segment_all(bvec, bio, iter_all) 343 put_page(bvec->bv_page); 344 } 345 bio_put(bio); 346 } 347} 348 349static ssize_t 350__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 351{ 352 struct file *file = iocb->ki_filp; 353 struct inode *inode = bdev_file_inode(file); 354 struct block_device *bdev = I_BDEV(inode); 355 struct blk_plug plug; 356 struct blkdev_dio *dio; 357 struct bio *bio; 358 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 359 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 360 loff_t pos = iocb->ki_pos; 361 blk_qc_t qc = BLK_QC_T_NONE; 362 int ret = 0; 363 364 if ((pos | iov_iter_alignment(iter)) & 365 (bdev_logical_block_size(bdev) - 1)) 366 return -EINVAL; 367 368 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 369 370 dio = container_of(bio, struct blkdev_dio, bio); 371 dio->is_sync = is_sync = is_sync_kiocb(iocb); 372 if (dio->is_sync) { 373 dio->waiter = current; 374 bio_get(bio); 375 } else { 376 dio->iocb = iocb; 377 } 378 379 dio->size = 0; 380 dio->multi_bio = false; 381 dio->should_dirty = is_read && iter_is_iovec(iter); 382 383 /* 384 * Don't plug for HIPRI/polled IO, as those should go straight 385 * to issue 386 */ 387 if (!is_poll) 388 blk_start_plug(&plug); 389 390 for (;;) { 391 bio_set_dev(bio, bdev); 392 bio->bi_iter.bi_sector = pos >> 9; 393 bio->bi_write_hint = iocb->ki_hint; 394 bio->bi_private = dio; 395 bio->bi_end_io = blkdev_bio_end_io; 396 bio->bi_ioprio = iocb->ki_ioprio; 397 398 ret = bio_iov_iter_get_pages(bio, iter); 399 if (unlikely(ret)) { 400 bio->bi_status = BLK_STS_IOERR; 401 bio_endio(bio); 402 break; 403 } 404 405 if (is_read) { 406 bio->bi_opf = REQ_OP_READ; 407 if (dio->should_dirty) 408 bio_set_pages_dirty(bio); 409 } else { 410 bio->bi_opf = dio_bio_write_op(iocb); 411 task_io_account_write(bio->bi_iter.bi_size); 412 } 413 414 dio->size += bio->bi_iter.bi_size; 415 pos += bio->bi_iter.bi_size; 416 417 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 418 if (!nr_pages) { 419 bool polled = false; 420 421 if (iocb->ki_flags & IOCB_HIPRI) { 422 bio_set_polled(bio, iocb); 423 polled = true; 424 } 425 426 qc = submit_bio(bio); 427 428 if (polled) 429 WRITE_ONCE(iocb->ki_cookie, qc); 430 break; 431 } 432 433 if (!dio->multi_bio) { 434 /* 435 * AIO needs an extra reference to ensure the dio 436 * structure which is embedded into the first bio 437 * stays around. 438 */ 439 if (!is_sync) 440 bio_get(bio); 441 dio->multi_bio = true; 442 atomic_set(&dio->ref, 2); 443 } else { 444 atomic_inc(&dio->ref); 445 } 446 447 submit_bio(bio); 448 bio = bio_alloc(GFP_KERNEL, nr_pages); 449 } 450 451 if (!is_poll) 452 blk_finish_plug(&plug); 453 454 if (!is_sync) 455 return -EIOCBQUEUED; 456 457 for (;;) { 458 set_current_state(TASK_UNINTERRUPTIBLE); 459 if (!READ_ONCE(dio->waiter)) 460 break; 461 462 if (!(iocb->ki_flags & IOCB_HIPRI) || 463 !blk_poll(bdev_get_queue(bdev), qc, true)) 464 io_schedule(); 465 } 466 __set_current_state(TASK_RUNNING); 467 468 if (!ret) 469 ret = blk_status_to_errno(dio->bio.bi_status); 470 if (likely(!ret)) 471 ret = dio->size; 472 473 bio_put(&dio->bio); 474 return ret; 475} 476 477static ssize_t 478blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 479{ 480 int nr_pages; 481 482 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 483 if (!nr_pages) 484 return 0; 485 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 486 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 487 488 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 489} 490 491static __init int blkdev_init(void) 492{ 493 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 494} 495module_init(blkdev_init); 496 497int __sync_blockdev(struct block_device *bdev, int wait) 498{ 499 if (!bdev) 500 return 0; 501 if (!wait) 502 return filemap_flush(bdev->bd_inode->i_mapping); 503 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 504} 505 506/* 507 * Write out and wait upon all the dirty data associated with a block 508 * device via its mapping. Does not take the superblock lock. 509 */ 510int sync_blockdev(struct block_device *bdev) 511{ 512 return __sync_blockdev(bdev, 1); 513} 514EXPORT_SYMBOL(sync_blockdev); 515 516/* 517 * Write out and wait upon all dirty data associated with this 518 * device. Filesystem data as well as the underlying block 519 * device. Takes the superblock lock. 520 */ 521int fsync_bdev(struct block_device *bdev) 522{ 523 struct super_block *sb = get_super(bdev); 524 if (sb) { 525 int res = sync_filesystem(sb); 526 drop_super(sb); 527 return res; 528 } 529 return sync_blockdev(bdev); 530} 531EXPORT_SYMBOL(fsync_bdev); 532 533/** 534 * freeze_bdev -- lock a filesystem and force it into a consistent state 535 * @bdev: blockdevice to lock 536 * 537 * If a superblock is found on this device, we take the s_umount semaphore 538 * on it to make sure nobody unmounts until the snapshot creation is done. 539 * The reference counter (bd_fsfreeze_count) guarantees that only the last 540 * unfreeze process can unfreeze the frozen filesystem actually when multiple 541 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 542 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 543 * actually. 544 */ 545struct super_block *freeze_bdev(struct block_device *bdev) 546{ 547 struct super_block *sb; 548 int error = 0; 549 550 mutex_lock(&bdev->bd_fsfreeze_mutex); 551 if (++bdev->bd_fsfreeze_count > 1) { 552 /* 553 * We don't even need to grab a reference - the first call 554 * to freeze_bdev grab an active reference and only the last 555 * thaw_bdev drops it. 556 */ 557 sb = get_super(bdev); 558 if (sb) 559 drop_super(sb); 560 mutex_unlock(&bdev->bd_fsfreeze_mutex); 561 return sb; 562 } 563 564 sb = get_active_super(bdev); 565 if (!sb) 566 goto out; 567 if (sb->s_op->freeze_super) 568 error = sb->s_op->freeze_super(sb); 569 else 570 error = freeze_super(sb); 571 if (error) { 572 deactivate_super(sb); 573 bdev->bd_fsfreeze_count--; 574 mutex_unlock(&bdev->bd_fsfreeze_mutex); 575 return ERR_PTR(error); 576 } 577 deactivate_super(sb); 578 out: 579 sync_blockdev(bdev); 580 mutex_unlock(&bdev->bd_fsfreeze_mutex); 581 return sb; /* thaw_bdev releases s->s_umount */ 582} 583EXPORT_SYMBOL(freeze_bdev); 584 585/** 586 * thaw_bdev -- unlock filesystem 587 * @bdev: blockdevice to unlock 588 * @sb: associated superblock 589 * 590 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 591 */ 592int thaw_bdev(struct block_device *bdev, struct super_block *sb) 593{ 594 int error = -EINVAL; 595 596 mutex_lock(&bdev->bd_fsfreeze_mutex); 597 if (!bdev->bd_fsfreeze_count) 598 goto out; 599 600 error = 0; 601 if (--bdev->bd_fsfreeze_count > 0) 602 goto out; 603 604 if (!sb) 605 goto out; 606 607 if (sb->s_op->thaw_super) 608 error = sb->s_op->thaw_super(sb); 609 else 610 error = thaw_super(sb); 611 if (error) 612 bdev->bd_fsfreeze_count++; 613out: 614 mutex_unlock(&bdev->bd_fsfreeze_mutex); 615 return error; 616} 617EXPORT_SYMBOL(thaw_bdev); 618 619static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 620{ 621 return block_write_full_page(page, blkdev_get_block, wbc); 622} 623 624static int blkdev_readpage(struct file * file, struct page * page) 625{ 626 return block_read_full_page(page, blkdev_get_block); 627} 628 629static int blkdev_readpages(struct file *file, struct address_space *mapping, 630 struct list_head *pages, unsigned nr_pages) 631{ 632 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 633} 634 635static int blkdev_write_begin(struct file *file, struct address_space *mapping, 636 loff_t pos, unsigned len, unsigned flags, 637 struct page **pagep, void **fsdata) 638{ 639 return block_write_begin(mapping, pos, len, flags, pagep, 640 blkdev_get_block); 641} 642 643static int blkdev_write_end(struct file *file, struct address_space *mapping, 644 loff_t pos, unsigned len, unsigned copied, 645 struct page *page, void *fsdata) 646{ 647 int ret; 648 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 649 650 unlock_page(page); 651 put_page(page); 652 653 return ret; 654} 655 656/* 657 * private llseek: 658 * for a block special file file_inode(file)->i_size is zero 659 * so we compute the size by hand (just as in block_read/write above) 660 */ 661static loff_t block_llseek(struct file *file, loff_t offset, int whence) 662{ 663 struct inode *bd_inode = bdev_file_inode(file); 664 loff_t retval; 665 666 inode_lock(bd_inode); 667 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 668 inode_unlock(bd_inode); 669 return retval; 670} 671 672int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 673{ 674 struct inode *bd_inode = bdev_file_inode(filp); 675 struct block_device *bdev = I_BDEV(bd_inode); 676 int error; 677 678 error = file_write_and_wait_range(filp, start, end); 679 if (error) 680 return error; 681 682 /* 683 * There is no need to serialise calls to blkdev_issue_flush with 684 * i_mutex and doing so causes performance issues with concurrent 685 * O_SYNC writers to a block device. 686 */ 687 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 688 if (error == -EOPNOTSUPP) 689 error = 0; 690 691 return error; 692} 693EXPORT_SYMBOL(blkdev_fsync); 694 695/** 696 * bdev_read_page() - Start reading a page from a block device 697 * @bdev: The device to read the page from 698 * @sector: The offset on the device to read the page to (need not be aligned) 699 * @page: The page to read 700 * 701 * On entry, the page should be locked. It will be unlocked when the page 702 * has been read. If the block driver implements rw_page synchronously, 703 * that will be true on exit from this function, but it need not be. 704 * 705 * Errors returned by this function are usually "soft", eg out of memory, or 706 * queue full; callers should try a different route to read this page rather 707 * than propagate an error back up the stack. 708 * 709 * Return: negative errno if an error occurs, 0 if submission was successful. 710 */ 711int bdev_read_page(struct block_device *bdev, sector_t sector, 712 struct page *page) 713{ 714 const struct block_device_operations *ops = bdev->bd_disk->fops; 715 int result = -EOPNOTSUPP; 716 717 if (!ops->rw_page || bdev_get_integrity(bdev)) 718 return result; 719 720 result = blk_queue_enter(bdev->bd_queue, 0); 721 if (result) 722 return result; 723 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 724 REQ_OP_READ); 725 blk_queue_exit(bdev->bd_queue); 726 return result; 727} 728EXPORT_SYMBOL_GPL(bdev_read_page); 729 730/** 731 * bdev_write_page() - Start writing a page to a block device 732 * @bdev: The device to write the page to 733 * @sector: The offset on the device to write the page to (need not be aligned) 734 * @page: The page to write 735 * @wbc: The writeback_control for the write 736 * 737 * On entry, the page should be locked and not currently under writeback. 738 * On exit, if the write started successfully, the page will be unlocked and 739 * under writeback. If the write failed already (eg the driver failed to 740 * queue the page to the device), the page will still be locked. If the 741 * caller is a ->writepage implementation, it will need to unlock the page. 742 * 743 * Errors returned by this function are usually "soft", eg out of memory, or 744 * queue full; callers should try a different route to write this page rather 745 * than propagate an error back up the stack. 746 * 747 * Return: negative errno if an error occurs, 0 if submission was successful. 748 */ 749int bdev_write_page(struct block_device *bdev, sector_t sector, 750 struct page *page, struct writeback_control *wbc) 751{ 752 int result; 753 const struct block_device_operations *ops = bdev->bd_disk->fops; 754 755 if (!ops->rw_page || bdev_get_integrity(bdev)) 756 return -EOPNOTSUPP; 757 result = blk_queue_enter(bdev->bd_queue, 0); 758 if (result) 759 return result; 760 761 set_page_writeback(page); 762 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 763 REQ_OP_WRITE); 764 if (result) { 765 end_page_writeback(page); 766 } else { 767 clean_page_buffers(page); 768 unlock_page(page); 769 } 770 blk_queue_exit(bdev->bd_queue); 771 return result; 772} 773EXPORT_SYMBOL_GPL(bdev_write_page); 774 775/* 776 * pseudo-fs 777 */ 778 779static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 780static struct kmem_cache * bdev_cachep __read_mostly; 781 782static struct inode *bdev_alloc_inode(struct super_block *sb) 783{ 784 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 785 if (!ei) 786 return NULL; 787 return &ei->vfs_inode; 788} 789 790static void bdev_free_inode(struct inode *inode) 791{ 792 kmem_cache_free(bdev_cachep, BDEV_I(inode)); 793} 794 795static void init_once(void *foo) 796{ 797 struct bdev_inode *ei = (struct bdev_inode *) foo; 798 struct block_device *bdev = &ei->bdev; 799 800 memset(bdev, 0, sizeof(*bdev)); 801 mutex_init(&bdev->bd_mutex); 802 INIT_LIST_HEAD(&bdev->bd_list); 803#ifdef CONFIG_SYSFS 804 INIT_LIST_HEAD(&bdev->bd_holder_disks); 805#endif 806 bdev->bd_bdi = &noop_backing_dev_info; 807 inode_init_once(&ei->vfs_inode); 808 /* Initialize mutex for freeze. */ 809 mutex_init(&bdev->bd_fsfreeze_mutex); 810} 811 812static void bdev_evict_inode(struct inode *inode) 813{ 814 struct block_device *bdev = &BDEV_I(inode)->bdev; 815 truncate_inode_pages_final(&inode->i_data); 816 invalidate_inode_buffers(inode); /* is it needed here? */ 817 clear_inode(inode); 818 spin_lock(&bdev_lock); 819 list_del_init(&bdev->bd_list); 820 spin_unlock(&bdev_lock); 821 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 822 inode_detach_wb(inode); 823 if (bdev->bd_bdi != &noop_backing_dev_info) { 824 bdi_put(bdev->bd_bdi); 825 bdev->bd_bdi = &noop_backing_dev_info; 826 } 827} 828 829static const struct super_operations bdev_sops = { 830 .statfs = simple_statfs, 831 .alloc_inode = bdev_alloc_inode, 832 .free_inode = bdev_free_inode, 833 .drop_inode = generic_delete_inode, 834 .evict_inode = bdev_evict_inode, 835}; 836 837static struct dentry *bd_mount(struct file_system_type *fs_type, 838 int flags, const char *dev_name, void *data) 839{ 840 struct dentry *dent; 841 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 842 if (!IS_ERR(dent)) 843 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 844 return dent; 845} 846 847static struct file_system_type bd_type = { 848 .name = "bdev", 849 .mount = bd_mount, 850 .kill_sb = kill_anon_super, 851}; 852 853struct super_block *blockdev_superblock __read_mostly; 854EXPORT_SYMBOL_GPL(blockdev_superblock); 855 856void __init bdev_cache_init(void) 857{ 858 int err; 859 static struct vfsmount *bd_mnt; 860 861 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 862 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 863 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 864 init_once); 865 err = register_filesystem(&bd_type); 866 if (err) 867 panic("Cannot register bdev pseudo-fs"); 868 bd_mnt = kern_mount(&bd_type); 869 if (IS_ERR(bd_mnt)) 870 panic("Cannot create bdev pseudo-fs"); 871 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 872} 873 874/* 875 * Most likely _very_ bad one - but then it's hardly critical for small 876 * /dev and can be fixed when somebody will need really large one. 877 * Keep in mind that it will be fed through icache hash function too. 878 */ 879static inline unsigned long hash(dev_t dev) 880{ 881 return MAJOR(dev)+MINOR(dev); 882} 883 884static int bdev_test(struct inode *inode, void *data) 885{ 886 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 887} 888 889static int bdev_set(struct inode *inode, void *data) 890{ 891 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 892 return 0; 893} 894 895static LIST_HEAD(all_bdevs); 896 897/* 898 * If there is a bdev inode for this device, unhash it so that it gets evicted 899 * as soon as last inode reference is dropped. 900 */ 901void bdev_unhash_inode(dev_t dev) 902{ 903 struct inode *inode; 904 905 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 906 if (inode) { 907 remove_inode_hash(inode); 908 iput(inode); 909 } 910} 911 912struct block_device *bdget(dev_t dev) 913{ 914 struct block_device *bdev; 915 struct inode *inode; 916 917 inode = iget5_locked(blockdev_superblock, hash(dev), 918 bdev_test, bdev_set, &dev); 919 920 if (!inode) 921 return NULL; 922 923 bdev = &BDEV_I(inode)->bdev; 924 925 if (inode->i_state & I_NEW) { 926 bdev->bd_contains = NULL; 927 bdev->bd_super = NULL; 928 bdev->bd_inode = inode; 929 bdev->bd_block_size = i_blocksize(inode); 930 bdev->bd_part_count = 0; 931 bdev->bd_invalidated = 0; 932 inode->i_mode = S_IFBLK; 933 inode->i_rdev = dev; 934 inode->i_bdev = bdev; 935 inode->i_data.a_ops = &def_blk_aops; 936 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 937 spin_lock(&bdev_lock); 938 list_add(&bdev->bd_list, &all_bdevs); 939 spin_unlock(&bdev_lock); 940 unlock_new_inode(inode); 941 } 942 return bdev; 943} 944 945EXPORT_SYMBOL(bdget); 946 947/** 948 * bdgrab -- Grab a reference to an already referenced block device 949 * @bdev: Block device to grab a reference to. 950 */ 951struct block_device *bdgrab(struct block_device *bdev) 952{ 953 ihold(bdev->bd_inode); 954 return bdev; 955} 956EXPORT_SYMBOL(bdgrab); 957 958long nr_blockdev_pages(void) 959{ 960 struct block_device *bdev; 961 long ret = 0; 962 spin_lock(&bdev_lock); 963 list_for_each_entry(bdev, &all_bdevs, bd_list) { 964 ret += bdev->bd_inode->i_mapping->nrpages; 965 } 966 spin_unlock(&bdev_lock); 967 return ret; 968} 969 970void bdput(struct block_device *bdev) 971{ 972 iput(bdev->bd_inode); 973} 974 975EXPORT_SYMBOL(bdput); 976 977static struct block_device *bd_acquire(struct inode *inode) 978{ 979 struct block_device *bdev; 980 981 spin_lock(&bdev_lock); 982 bdev = inode->i_bdev; 983 if (bdev && !inode_unhashed(bdev->bd_inode)) { 984 bdgrab(bdev); 985 spin_unlock(&bdev_lock); 986 return bdev; 987 } 988 spin_unlock(&bdev_lock); 989 990 /* 991 * i_bdev references block device inode that was already shut down 992 * (corresponding device got removed). Remove the reference and look 993 * up block device inode again just in case new device got 994 * reestablished under the same device number. 995 */ 996 if (bdev) 997 bd_forget(inode); 998 999 bdev = bdget(inode->i_rdev); 1000 if (bdev) { 1001 spin_lock(&bdev_lock); 1002 if (!inode->i_bdev) { 1003 /* 1004 * We take an additional reference to bd_inode, 1005 * and it's released in clear_inode() of inode. 1006 * So, we can access it via ->i_mapping always 1007 * without igrab(). 1008 */ 1009 bdgrab(bdev); 1010 inode->i_bdev = bdev; 1011 inode->i_mapping = bdev->bd_inode->i_mapping; 1012 } 1013 spin_unlock(&bdev_lock); 1014 } 1015 return bdev; 1016} 1017 1018/* Call when you free inode */ 1019 1020void bd_forget(struct inode *inode) 1021{ 1022 struct block_device *bdev = NULL; 1023 1024 spin_lock(&bdev_lock); 1025 if (!sb_is_blkdev_sb(inode->i_sb)) 1026 bdev = inode->i_bdev; 1027 inode->i_bdev = NULL; 1028 inode->i_mapping = &inode->i_data; 1029 spin_unlock(&bdev_lock); 1030 1031 if (bdev) 1032 bdput(bdev); 1033} 1034 1035/** 1036 * bd_may_claim - test whether a block device can be claimed 1037 * @bdev: block device of interest 1038 * @whole: whole block device containing @bdev, may equal @bdev 1039 * @holder: holder trying to claim @bdev 1040 * 1041 * Test whether @bdev can be claimed by @holder. 1042 * 1043 * CONTEXT: 1044 * spin_lock(&bdev_lock). 1045 * 1046 * RETURNS: 1047 * %true if @bdev can be claimed, %false otherwise. 1048 */ 1049static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1050 void *holder) 1051{ 1052 if (bdev->bd_holder == holder) 1053 return true; /* already a holder */ 1054 else if (bdev->bd_holder != NULL) 1055 return false; /* held by someone else */ 1056 else if (whole == bdev) 1057 return true; /* is a whole device which isn't held */ 1058 1059 else if (whole->bd_holder == bd_may_claim) 1060 return true; /* is a partition of a device that is being partitioned */ 1061 else if (whole->bd_holder != NULL) 1062 return false; /* is a partition of a held device */ 1063 else 1064 return true; /* is a partition of an un-held device */ 1065} 1066 1067/** 1068 * bd_prepare_to_claim - prepare to claim a block device 1069 * @bdev: block device of interest 1070 * @whole: the whole device containing @bdev, may equal @bdev 1071 * @holder: holder trying to claim @bdev 1072 * 1073 * Prepare to claim @bdev. This function fails if @bdev is already 1074 * claimed by another holder and waits if another claiming is in 1075 * progress. This function doesn't actually claim. On successful 1076 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1077 * 1078 * CONTEXT: 1079 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1080 * it multiple times. 1081 * 1082 * RETURNS: 1083 * 0 if @bdev can be claimed, -EBUSY otherwise. 1084 */ 1085static int bd_prepare_to_claim(struct block_device *bdev, 1086 struct block_device *whole, void *holder) 1087{ 1088retry: 1089 /* if someone else claimed, fail */ 1090 if (!bd_may_claim(bdev, whole, holder)) 1091 return -EBUSY; 1092 1093 /* if claiming is already in progress, wait for it to finish */ 1094 if (whole->bd_claiming) { 1095 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1096 DEFINE_WAIT(wait); 1097 1098 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1099 spin_unlock(&bdev_lock); 1100 schedule(); 1101 finish_wait(wq, &wait); 1102 spin_lock(&bdev_lock); 1103 goto retry; 1104 } 1105 1106 /* yay, all mine */ 1107 return 0; 1108} 1109 1110static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1111{ 1112 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1113 1114 if (!disk) 1115 return NULL; 1116 /* 1117 * Now that we hold gendisk reference we make sure bdev we looked up is 1118 * not stale. If it is, it means device got removed and created before 1119 * we looked up gendisk and we fail open in such case. Associating 1120 * unhashed bdev with newly created gendisk could lead to two bdevs 1121 * (and thus two independent caches) being associated with one device 1122 * which is bad. 1123 */ 1124 if (inode_unhashed(bdev->bd_inode)) { 1125 put_disk_and_module(disk); 1126 return NULL; 1127 } 1128 return disk; 1129} 1130 1131/** 1132 * bd_start_claiming - start claiming a block device 1133 * @bdev: block device of interest 1134 * @holder: holder trying to claim @bdev 1135 * 1136 * @bdev is about to be opened exclusively. Check @bdev can be opened 1137 * exclusively and mark that an exclusive open is in progress. Each 1138 * successful call to this function must be matched with a call to 1139 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1140 * fail). 1141 * 1142 * This function is used to gain exclusive access to the block device 1143 * without actually causing other exclusive open attempts to fail. It 1144 * should be used when the open sequence itself requires exclusive 1145 * access but may subsequently fail. 1146 * 1147 * CONTEXT: 1148 * Might sleep. 1149 * 1150 * RETURNS: 1151 * Pointer to the block device containing @bdev on success, ERR_PTR() 1152 * value on failure. 1153 */ 1154static struct block_device *bd_start_claiming(struct block_device *bdev, 1155 void *holder) 1156{ 1157 struct gendisk *disk; 1158 struct block_device *whole; 1159 int partno, err; 1160 1161 might_sleep(); 1162 1163 /* 1164 * @bdev might not have been initialized properly yet, look up 1165 * and grab the outer block device the hard way. 1166 */ 1167 disk = bdev_get_gendisk(bdev, &partno); 1168 if (!disk) 1169 return ERR_PTR(-ENXIO); 1170 1171 /* 1172 * Normally, @bdev should equal what's returned from bdget_disk() 1173 * if partno is 0; however, some drivers (floppy) use multiple 1174 * bdev's for the same physical device and @bdev may be one of the 1175 * aliases. Keep @bdev if partno is 0. This means claimer 1176 * tracking is broken for those devices but it has always been that 1177 * way. 1178 */ 1179 if (partno) 1180 whole = bdget_disk(disk, 0); 1181 else 1182 whole = bdgrab(bdev); 1183 1184 put_disk_and_module(disk); 1185 if (!whole) 1186 return ERR_PTR(-ENOMEM); 1187 1188 /* prepare to claim, if successful, mark claiming in progress */ 1189 spin_lock(&bdev_lock); 1190 1191 err = bd_prepare_to_claim(bdev, whole, holder); 1192 if (err == 0) { 1193 whole->bd_claiming = holder; 1194 spin_unlock(&bdev_lock); 1195 return whole; 1196 } else { 1197 spin_unlock(&bdev_lock); 1198 bdput(whole); 1199 return ERR_PTR(err); 1200 } 1201} 1202 1203#ifdef CONFIG_SYSFS 1204struct bd_holder_disk { 1205 struct list_head list; 1206 struct gendisk *disk; 1207 int refcnt; 1208}; 1209 1210static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1211 struct gendisk *disk) 1212{ 1213 struct bd_holder_disk *holder; 1214 1215 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1216 if (holder->disk == disk) 1217 return holder; 1218 return NULL; 1219} 1220 1221static int add_symlink(struct kobject *from, struct kobject *to) 1222{ 1223 return sysfs_create_link(from, to, kobject_name(to)); 1224} 1225 1226static void del_symlink(struct kobject *from, struct kobject *to) 1227{ 1228 sysfs_remove_link(from, kobject_name(to)); 1229} 1230 1231/** 1232 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1233 * @bdev: the claimed slave bdev 1234 * @disk: the holding disk 1235 * 1236 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1237 * 1238 * This functions creates the following sysfs symlinks. 1239 * 1240 * - from "slaves" directory of the holder @disk to the claimed @bdev 1241 * - from "holders" directory of the @bdev to the holder @disk 1242 * 1243 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1244 * passed to bd_link_disk_holder(), then: 1245 * 1246 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1247 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1248 * 1249 * The caller must have claimed @bdev before calling this function and 1250 * ensure that both @bdev and @disk are valid during the creation and 1251 * lifetime of these symlinks. 1252 * 1253 * CONTEXT: 1254 * Might sleep. 1255 * 1256 * RETURNS: 1257 * 0 on success, -errno on failure. 1258 */ 1259int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1260{ 1261 struct bd_holder_disk *holder; 1262 int ret = 0; 1263 1264 mutex_lock(&bdev->bd_mutex); 1265 1266 WARN_ON_ONCE(!bdev->bd_holder); 1267 1268 /* FIXME: remove the following once add_disk() handles errors */ 1269 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1270 goto out_unlock; 1271 1272 holder = bd_find_holder_disk(bdev, disk); 1273 if (holder) { 1274 holder->refcnt++; 1275 goto out_unlock; 1276 } 1277 1278 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1279 if (!holder) { 1280 ret = -ENOMEM; 1281 goto out_unlock; 1282 } 1283 1284 INIT_LIST_HEAD(&holder->list); 1285 holder->disk = disk; 1286 holder->refcnt = 1; 1287 1288 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1289 if (ret) 1290 goto out_free; 1291 1292 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1293 if (ret) 1294 goto out_del; 1295 /* 1296 * bdev could be deleted beneath us which would implicitly destroy 1297 * the holder directory. Hold on to it. 1298 */ 1299 kobject_get(bdev->bd_part->holder_dir); 1300 1301 list_add(&holder->list, &bdev->bd_holder_disks); 1302 goto out_unlock; 1303 1304out_del: 1305 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1306out_free: 1307 kfree(holder); 1308out_unlock: 1309 mutex_unlock(&bdev->bd_mutex); 1310 return ret; 1311} 1312EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1313 1314/** 1315 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1316 * @bdev: the calimed slave bdev 1317 * @disk: the holding disk 1318 * 1319 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1320 * 1321 * CONTEXT: 1322 * Might sleep. 1323 */ 1324void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1325{ 1326 struct bd_holder_disk *holder; 1327 1328 mutex_lock(&bdev->bd_mutex); 1329 1330 holder = bd_find_holder_disk(bdev, disk); 1331 1332 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1333 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1334 del_symlink(bdev->bd_part->holder_dir, 1335 &disk_to_dev(disk)->kobj); 1336 kobject_put(bdev->bd_part->holder_dir); 1337 list_del_init(&holder->list); 1338 kfree(holder); 1339 } 1340 1341 mutex_unlock(&bdev->bd_mutex); 1342} 1343EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1344#endif 1345 1346/** 1347 * flush_disk - invalidates all buffer-cache entries on a disk 1348 * 1349 * @bdev: struct block device to be flushed 1350 * @kill_dirty: flag to guide handling of dirty inodes 1351 * 1352 * Invalidates all buffer-cache entries on a disk. It should be called 1353 * when a disk has been changed -- either by a media change or online 1354 * resize. 1355 */ 1356static void flush_disk(struct block_device *bdev, bool kill_dirty) 1357{ 1358 if (__invalidate_device(bdev, kill_dirty)) { 1359 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1360 "resized disk %s\n", 1361 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1362 } 1363 1364 if (!bdev->bd_disk) 1365 return; 1366 if (disk_part_scan_enabled(bdev->bd_disk)) 1367 bdev->bd_invalidated = 1; 1368} 1369 1370/** 1371 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1372 * @disk: struct gendisk to check 1373 * @bdev: struct bdev to adjust. 1374 * @verbose: if %true log a message about a size change if there is any 1375 * 1376 * This routine checks to see if the bdev size does not match the disk size 1377 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1378 * are freed. 1379 */ 1380void check_disk_size_change(struct gendisk *disk, struct block_device *bdev, 1381 bool verbose) 1382{ 1383 loff_t disk_size, bdev_size; 1384 1385 disk_size = (loff_t)get_capacity(disk) << 9; 1386 bdev_size = i_size_read(bdev->bd_inode); 1387 if (disk_size != bdev_size) { 1388 if (verbose) { 1389 printk(KERN_INFO 1390 "%s: detected capacity change from %lld to %lld\n", 1391 disk->disk_name, bdev_size, disk_size); 1392 } 1393 i_size_write(bdev->bd_inode, disk_size); 1394 if (bdev_size > disk_size) 1395 flush_disk(bdev, false); 1396 } 1397} 1398 1399/** 1400 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1401 * @disk: struct gendisk to be revalidated 1402 * 1403 * This routine is a wrapper for lower-level driver's revalidate_disk 1404 * call-backs. It is used to do common pre and post operations needed 1405 * for all revalidate_disk operations. 1406 */ 1407int revalidate_disk(struct gendisk *disk) 1408{ 1409 struct block_device *bdev; 1410 int ret = 0; 1411 1412 if (disk->fops->revalidate_disk) 1413 ret = disk->fops->revalidate_disk(disk); 1414 bdev = bdget_disk(disk, 0); 1415 if (!bdev) 1416 return ret; 1417 1418 mutex_lock(&bdev->bd_mutex); 1419 check_disk_size_change(disk, bdev, ret == 0); 1420 bdev->bd_invalidated = 0; 1421 mutex_unlock(&bdev->bd_mutex); 1422 bdput(bdev); 1423 return ret; 1424} 1425EXPORT_SYMBOL(revalidate_disk); 1426 1427/* 1428 * This routine checks whether a removable media has been changed, 1429 * and invalidates all buffer-cache-entries in that case. This 1430 * is a relatively slow routine, so we have to try to minimize using 1431 * it. Thus it is called only upon a 'mount' or 'open'. This 1432 * is the best way of combining speed and utility, I think. 1433 * People changing diskettes in the middle of an operation deserve 1434 * to lose :-) 1435 */ 1436int check_disk_change(struct block_device *bdev) 1437{ 1438 struct gendisk *disk = bdev->bd_disk; 1439 const struct block_device_operations *bdops = disk->fops; 1440 unsigned int events; 1441 1442 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1443 DISK_EVENT_EJECT_REQUEST); 1444 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1445 return 0; 1446 1447 flush_disk(bdev, true); 1448 if (bdops->revalidate_disk) 1449 bdops->revalidate_disk(bdev->bd_disk); 1450 return 1; 1451} 1452 1453EXPORT_SYMBOL(check_disk_change); 1454 1455void bd_set_size(struct block_device *bdev, loff_t size) 1456{ 1457 inode_lock(bdev->bd_inode); 1458 i_size_write(bdev->bd_inode, size); 1459 inode_unlock(bdev->bd_inode); 1460} 1461EXPORT_SYMBOL(bd_set_size); 1462 1463static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1464 1465/* 1466 * bd_mutex locking: 1467 * 1468 * mutex_lock(part->bd_mutex) 1469 * mutex_lock_nested(whole->bd_mutex, 1) 1470 */ 1471 1472static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1473{ 1474 struct gendisk *disk; 1475 int ret; 1476 int partno; 1477 int perm = 0; 1478 bool first_open = false; 1479 1480 if (mode & FMODE_READ) 1481 perm |= MAY_READ; 1482 if (mode & FMODE_WRITE) 1483 perm |= MAY_WRITE; 1484 /* 1485 * hooks: /n/, see "layering violations". 1486 */ 1487 if (!for_part) { 1488 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1489 if (ret != 0) { 1490 bdput(bdev); 1491 return ret; 1492 } 1493 } 1494 1495 restart: 1496 1497 ret = -ENXIO; 1498 disk = bdev_get_gendisk(bdev, &partno); 1499 if (!disk) 1500 goto out; 1501 1502 disk_block_events(disk); 1503 mutex_lock_nested(&bdev->bd_mutex, for_part); 1504 if (!bdev->bd_openers) { 1505 first_open = true; 1506 bdev->bd_disk = disk; 1507 bdev->bd_queue = disk->queue; 1508 bdev->bd_contains = bdev; 1509 bdev->bd_partno = partno; 1510 1511 if (!partno) { 1512 ret = -ENXIO; 1513 bdev->bd_part = disk_get_part(disk, partno); 1514 if (!bdev->bd_part) 1515 goto out_clear; 1516 1517 ret = 0; 1518 if (disk->fops->open) { 1519 ret = disk->fops->open(bdev, mode); 1520 if (ret == -ERESTARTSYS) { 1521 /* Lost a race with 'disk' being 1522 * deleted, try again. 1523 * See md.c 1524 */ 1525 disk_put_part(bdev->bd_part); 1526 bdev->bd_part = NULL; 1527 bdev->bd_disk = NULL; 1528 bdev->bd_queue = NULL; 1529 mutex_unlock(&bdev->bd_mutex); 1530 disk_unblock_events(disk); 1531 put_disk_and_module(disk); 1532 goto restart; 1533 } 1534 } 1535 1536 if (!ret) { 1537 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1538 set_init_blocksize(bdev); 1539 } 1540 1541 /* 1542 * If the device is invalidated, rescan partition 1543 * if open succeeded or failed with -ENOMEDIUM. 1544 * The latter is necessary to prevent ghost 1545 * partitions on a removed medium. 1546 */ 1547 if (bdev->bd_invalidated) { 1548 if (!ret) 1549 rescan_partitions(disk, bdev); 1550 else if (ret == -ENOMEDIUM) 1551 invalidate_partitions(disk, bdev); 1552 } 1553 1554 if (ret) 1555 goto out_clear; 1556 } else { 1557 struct block_device *whole; 1558 whole = bdget_disk(disk, 0); 1559 ret = -ENOMEM; 1560 if (!whole) 1561 goto out_clear; 1562 BUG_ON(for_part); 1563 ret = __blkdev_get(whole, mode, 1); 1564 if (ret) 1565 goto out_clear; 1566 bdev->bd_contains = whole; 1567 bdev->bd_part = disk_get_part(disk, partno); 1568 if (!(disk->flags & GENHD_FL_UP) || 1569 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1570 ret = -ENXIO; 1571 goto out_clear; 1572 } 1573 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1574 set_init_blocksize(bdev); 1575 } 1576 1577 if (bdev->bd_bdi == &noop_backing_dev_info) 1578 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1579 } else { 1580 if (bdev->bd_contains == bdev) { 1581 ret = 0; 1582 if (bdev->bd_disk->fops->open) 1583 ret = bdev->bd_disk->fops->open(bdev, mode); 1584 /* the same as first opener case, read comment there */ 1585 if (bdev->bd_invalidated) { 1586 if (!ret) 1587 rescan_partitions(bdev->bd_disk, bdev); 1588 else if (ret == -ENOMEDIUM) 1589 invalidate_partitions(bdev->bd_disk, bdev); 1590 } 1591 if (ret) 1592 goto out_unlock_bdev; 1593 } 1594 } 1595 bdev->bd_openers++; 1596 if (for_part) 1597 bdev->bd_part_count++; 1598 mutex_unlock(&bdev->bd_mutex); 1599 disk_unblock_events(disk); 1600 /* only one opener holds refs to the module and disk */ 1601 if (!first_open) 1602 put_disk_and_module(disk); 1603 return 0; 1604 1605 out_clear: 1606 disk_put_part(bdev->bd_part); 1607 bdev->bd_disk = NULL; 1608 bdev->bd_part = NULL; 1609 bdev->bd_queue = NULL; 1610 if (bdev != bdev->bd_contains) 1611 __blkdev_put(bdev->bd_contains, mode, 1); 1612 bdev->bd_contains = NULL; 1613 out_unlock_bdev: 1614 mutex_unlock(&bdev->bd_mutex); 1615 disk_unblock_events(disk); 1616 put_disk_and_module(disk); 1617 out: 1618 bdput(bdev); 1619 1620 return ret; 1621} 1622 1623/** 1624 * blkdev_get - open a block device 1625 * @bdev: block_device to open 1626 * @mode: FMODE_* mask 1627 * @holder: exclusive holder identifier 1628 * 1629 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1630 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1631 * @holder is invalid. Exclusive opens may nest for the same @holder. 1632 * 1633 * On success, the reference count of @bdev is unchanged. On failure, 1634 * @bdev is put. 1635 * 1636 * CONTEXT: 1637 * Might sleep. 1638 * 1639 * RETURNS: 1640 * 0 on success, -errno on failure. 1641 */ 1642int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1643{ 1644 struct block_device *whole = NULL; 1645 int res; 1646 1647 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1648 1649 if ((mode & FMODE_EXCL) && holder) { 1650 whole = bd_start_claiming(bdev, holder); 1651 if (IS_ERR(whole)) { 1652 bdput(bdev); 1653 return PTR_ERR(whole); 1654 } 1655 } 1656 1657 res = __blkdev_get(bdev, mode, 0); 1658 1659 if (whole) { 1660 struct gendisk *disk = whole->bd_disk; 1661 1662 /* finish claiming */ 1663 mutex_lock(&bdev->bd_mutex); 1664 spin_lock(&bdev_lock); 1665 1666 if (!res) { 1667 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1668 /* 1669 * Note that for a whole device bd_holders 1670 * will be incremented twice, and bd_holder 1671 * will be set to bd_may_claim before being 1672 * set to holder 1673 */ 1674 whole->bd_holders++; 1675 whole->bd_holder = bd_may_claim; 1676 bdev->bd_holders++; 1677 bdev->bd_holder = holder; 1678 } 1679 1680 /* tell others that we're done */ 1681 BUG_ON(whole->bd_claiming != holder); 1682 whole->bd_claiming = NULL; 1683 wake_up_bit(&whole->bd_claiming, 0); 1684 1685 spin_unlock(&bdev_lock); 1686 1687 /* 1688 * Block event polling for write claims if requested. Any 1689 * write holder makes the write_holder state stick until 1690 * all are released. This is good enough and tracking 1691 * individual writeable reference is too fragile given the 1692 * way @mode is used in blkdev_get/put(). 1693 */ 1694 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1695 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1696 bdev->bd_write_holder = true; 1697 disk_block_events(disk); 1698 } 1699 1700 mutex_unlock(&bdev->bd_mutex); 1701 bdput(whole); 1702 } 1703 1704 return res; 1705} 1706EXPORT_SYMBOL(blkdev_get); 1707 1708/** 1709 * blkdev_get_by_path - open a block device by name 1710 * @path: path to the block device to open 1711 * @mode: FMODE_* mask 1712 * @holder: exclusive holder identifier 1713 * 1714 * Open the blockdevice described by the device file at @path. @mode 1715 * and @holder are identical to blkdev_get(). 1716 * 1717 * On success, the returned block_device has reference count of one. 1718 * 1719 * CONTEXT: 1720 * Might sleep. 1721 * 1722 * RETURNS: 1723 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1724 */ 1725struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1726 void *holder) 1727{ 1728 struct block_device *bdev; 1729 int err; 1730 1731 bdev = lookup_bdev(path); 1732 if (IS_ERR(bdev)) 1733 return bdev; 1734 1735 err = blkdev_get(bdev, mode, holder); 1736 if (err) 1737 return ERR_PTR(err); 1738 1739 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1740 blkdev_put(bdev, mode); 1741 return ERR_PTR(-EACCES); 1742 } 1743 1744 return bdev; 1745} 1746EXPORT_SYMBOL(blkdev_get_by_path); 1747 1748/** 1749 * blkdev_get_by_dev - open a block device by device number 1750 * @dev: device number of block device to open 1751 * @mode: FMODE_* mask 1752 * @holder: exclusive holder identifier 1753 * 1754 * Open the blockdevice described by device number @dev. @mode and 1755 * @holder are identical to blkdev_get(). 1756 * 1757 * Use it ONLY if you really do not have anything better - i.e. when 1758 * you are behind a truly sucky interface and all you are given is a 1759 * device number. _Never_ to be used for internal purposes. If you 1760 * ever need it - reconsider your API. 1761 * 1762 * On success, the returned block_device has reference count of one. 1763 * 1764 * CONTEXT: 1765 * Might sleep. 1766 * 1767 * RETURNS: 1768 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1769 */ 1770struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1771{ 1772 struct block_device *bdev; 1773 int err; 1774 1775 bdev = bdget(dev); 1776 if (!bdev) 1777 return ERR_PTR(-ENOMEM); 1778 1779 err = blkdev_get(bdev, mode, holder); 1780 if (err) 1781 return ERR_PTR(err); 1782 1783 return bdev; 1784} 1785EXPORT_SYMBOL(blkdev_get_by_dev); 1786 1787static int blkdev_open(struct inode * inode, struct file * filp) 1788{ 1789 struct block_device *bdev; 1790 1791 /* 1792 * Preserve backwards compatibility and allow large file access 1793 * even if userspace doesn't ask for it explicitly. Some mkfs 1794 * binary needs it. We might want to drop this workaround 1795 * during an unstable branch. 1796 */ 1797 filp->f_flags |= O_LARGEFILE; 1798 1799 filp->f_mode |= FMODE_NOWAIT; 1800 1801 if (filp->f_flags & O_NDELAY) 1802 filp->f_mode |= FMODE_NDELAY; 1803 if (filp->f_flags & O_EXCL) 1804 filp->f_mode |= FMODE_EXCL; 1805 if ((filp->f_flags & O_ACCMODE) == 3) 1806 filp->f_mode |= FMODE_WRITE_IOCTL; 1807 1808 bdev = bd_acquire(inode); 1809 if (bdev == NULL) 1810 return -ENOMEM; 1811 1812 filp->f_mapping = bdev->bd_inode->i_mapping; 1813 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1814 1815 return blkdev_get(bdev, filp->f_mode, filp); 1816} 1817 1818static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1819{ 1820 struct gendisk *disk = bdev->bd_disk; 1821 struct block_device *victim = NULL; 1822 1823 mutex_lock_nested(&bdev->bd_mutex, for_part); 1824 if (for_part) 1825 bdev->bd_part_count--; 1826 1827 if (!--bdev->bd_openers) { 1828 WARN_ON_ONCE(bdev->bd_holders); 1829 sync_blockdev(bdev); 1830 kill_bdev(bdev); 1831 1832 bdev_write_inode(bdev); 1833 } 1834 if (bdev->bd_contains == bdev) { 1835 if (disk->fops->release) 1836 disk->fops->release(disk, mode); 1837 } 1838 if (!bdev->bd_openers) { 1839 disk_put_part(bdev->bd_part); 1840 bdev->bd_part = NULL; 1841 bdev->bd_disk = NULL; 1842 if (bdev != bdev->bd_contains) 1843 victim = bdev->bd_contains; 1844 bdev->bd_contains = NULL; 1845 1846 put_disk_and_module(disk); 1847 } 1848 mutex_unlock(&bdev->bd_mutex); 1849 bdput(bdev); 1850 if (victim) 1851 __blkdev_put(victim, mode, 1); 1852} 1853 1854void blkdev_put(struct block_device *bdev, fmode_t mode) 1855{ 1856 mutex_lock(&bdev->bd_mutex); 1857 1858 if (mode & FMODE_EXCL) { 1859 bool bdev_free; 1860 1861 /* 1862 * Release a claim on the device. The holder fields 1863 * are protected with bdev_lock. bd_mutex is to 1864 * synchronize disk_holder unlinking. 1865 */ 1866 spin_lock(&bdev_lock); 1867 1868 WARN_ON_ONCE(--bdev->bd_holders < 0); 1869 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1870 1871 /* bd_contains might point to self, check in a separate step */ 1872 if ((bdev_free = !bdev->bd_holders)) 1873 bdev->bd_holder = NULL; 1874 if (!bdev->bd_contains->bd_holders) 1875 bdev->bd_contains->bd_holder = NULL; 1876 1877 spin_unlock(&bdev_lock); 1878 1879 /* 1880 * If this was the last claim, remove holder link and 1881 * unblock evpoll if it was a write holder. 1882 */ 1883 if (bdev_free && bdev->bd_write_holder) { 1884 disk_unblock_events(bdev->bd_disk); 1885 bdev->bd_write_holder = false; 1886 } 1887 } 1888 1889 /* 1890 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1891 * event. This is to ensure detection of media removal commanded 1892 * from userland - e.g. eject(1). 1893 */ 1894 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1895 1896 mutex_unlock(&bdev->bd_mutex); 1897 1898 __blkdev_put(bdev, mode, 0); 1899} 1900EXPORT_SYMBOL(blkdev_put); 1901 1902static int blkdev_close(struct inode * inode, struct file * filp) 1903{ 1904 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1905 blkdev_put(bdev, filp->f_mode); 1906 return 0; 1907} 1908 1909static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1910{ 1911 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1912 fmode_t mode = file->f_mode; 1913 1914 /* 1915 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1916 * to updated it before every ioctl. 1917 */ 1918 if (file->f_flags & O_NDELAY) 1919 mode |= FMODE_NDELAY; 1920 else 1921 mode &= ~FMODE_NDELAY; 1922 1923 return blkdev_ioctl(bdev, mode, cmd, arg); 1924} 1925 1926/* 1927 * Write data to the block device. Only intended for the block device itself 1928 * and the raw driver which basically is a fake block device. 1929 * 1930 * Does not take i_mutex for the write and thus is not for general purpose 1931 * use. 1932 */ 1933ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1934{ 1935 struct file *file = iocb->ki_filp; 1936 struct inode *bd_inode = bdev_file_inode(file); 1937 loff_t size = i_size_read(bd_inode); 1938 struct blk_plug plug; 1939 ssize_t ret; 1940 1941 if (bdev_read_only(I_BDEV(bd_inode))) 1942 return -EPERM; 1943 1944 if (!iov_iter_count(from)) 1945 return 0; 1946 1947 if (iocb->ki_pos >= size) 1948 return -ENOSPC; 1949 1950 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1951 return -EOPNOTSUPP; 1952 1953 iov_iter_truncate(from, size - iocb->ki_pos); 1954 1955 blk_start_plug(&plug); 1956 ret = __generic_file_write_iter(iocb, from); 1957 if (ret > 0) 1958 ret = generic_write_sync(iocb, ret); 1959 blk_finish_plug(&plug); 1960 return ret; 1961} 1962EXPORT_SYMBOL_GPL(blkdev_write_iter); 1963 1964ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1965{ 1966 struct file *file = iocb->ki_filp; 1967 struct inode *bd_inode = bdev_file_inode(file); 1968 loff_t size = i_size_read(bd_inode); 1969 loff_t pos = iocb->ki_pos; 1970 1971 if (pos >= size) 1972 return 0; 1973 1974 size -= pos; 1975 iov_iter_truncate(to, size); 1976 return generic_file_read_iter(iocb, to); 1977} 1978EXPORT_SYMBOL_GPL(blkdev_read_iter); 1979 1980/* 1981 * Try to release a page associated with block device when the system 1982 * is under memory pressure. 1983 */ 1984static int blkdev_releasepage(struct page *page, gfp_t wait) 1985{ 1986 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1987 1988 if (super && super->s_op->bdev_try_to_free_page) 1989 return super->s_op->bdev_try_to_free_page(super, page, wait); 1990 1991 return try_to_free_buffers(page); 1992} 1993 1994static int blkdev_writepages(struct address_space *mapping, 1995 struct writeback_control *wbc) 1996{ 1997 return generic_writepages(mapping, wbc); 1998} 1999 2000static const struct address_space_operations def_blk_aops = { 2001 .readpage = blkdev_readpage, 2002 .readpages = blkdev_readpages, 2003 .writepage = blkdev_writepage, 2004 .write_begin = blkdev_write_begin, 2005 .write_end = blkdev_write_end, 2006 .writepages = blkdev_writepages, 2007 .releasepage = blkdev_releasepage, 2008 .direct_IO = blkdev_direct_IO, 2009 .migratepage = buffer_migrate_page_norefs, 2010 .is_dirty_writeback = buffer_check_dirty_writeback, 2011}; 2012 2013#define BLKDEV_FALLOC_FL_SUPPORTED \ 2014 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2015 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2016 2017static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2018 loff_t len) 2019{ 2020 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2021 struct address_space *mapping; 2022 loff_t end = start + len - 1; 2023 loff_t isize; 2024 int error; 2025 2026 /* Fail if we don't recognize the flags. */ 2027 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2028 return -EOPNOTSUPP; 2029 2030 /* Don't go off the end of the device. */ 2031 isize = i_size_read(bdev->bd_inode); 2032 if (start >= isize) 2033 return -EINVAL; 2034 if (end >= isize) { 2035 if (mode & FALLOC_FL_KEEP_SIZE) { 2036 len = isize - start; 2037 end = start + len - 1; 2038 } else 2039 return -EINVAL; 2040 } 2041 2042 /* 2043 * Don't allow IO that isn't aligned to logical block size. 2044 */ 2045 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2046 return -EINVAL; 2047 2048 /* Invalidate the page cache, including dirty pages. */ 2049 mapping = bdev->bd_inode->i_mapping; 2050 truncate_inode_pages_range(mapping, start, end); 2051 2052 switch (mode) { 2053 case FALLOC_FL_ZERO_RANGE: 2054 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2055 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2056 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2057 break; 2058 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2059 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2060 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2061 break; 2062 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2063 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2064 GFP_KERNEL, 0); 2065 break; 2066 default: 2067 return -EOPNOTSUPP; 2068 } 2069 if (error) 2070 return error; 2071 2072 /* 2073 * Invalidate again; if someone wandered in and dirtied a page, 2074 * the caller will be given -EBUSY. The third argument is 2075 * inclusive, so the rounding here is safe. 2076 */ 2077 return invalidate_inode_pages2_range(mapping, 2078 start >> PAGE_SHIFT, 2079 end >> PAGE_SHIFT); 2080} 2081 2082const struct file_operations def_blk_fops = { 2083 .open = blkdev_open, 2084 .release = blkdev_close, 2085 .llseek = block_llseek, 2086 .read_iter = blkdev_read_iter, 2087 .write_iter = blkdev_write_iter, 2088 .iopoll = blkdev_iopoll, 2089 .mmap = generic_file_mmap, 2090 .fsync = blkdev_fsync, 2091 .unlocked_ioctl = block_ioctl, 2092#ifdef CONFIG_COMPAT 2093 .compat_ioctl = compat_blkdev_ioctl, 2094#endif 2095 .splice_read = generic_file_splice_read, 2096 .splice_write = iter_file_splice_write, 2097 .fallocate = blkdev_fallocate, 2098}; 2099 2100int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2101{ 2102 int res; 2103 mm_segment_t old_fs = get_fs(); 2104 set_fs(KERNEL_DS); 2105 res = blkdev_ioctl(bdev, 0, cmd, arg); 2106 set_fs(old_fs); 2107 return res; 2108} 2109 2110EXPORT_SYMBOL(ioctl_by_bdev); 2111 2112/** 2113 * lookup_bdev - lookup a struct block_device by name 2114 * @pathname: special file representing the block device 2115 * 2116 * Get a reference to the blockdevice at @pathname in the current 2117 * namespace if possible and return it. Return ERR_PTR(error) 2118 * otherwise. 2119 */ 2120struct block_device *lookup_bdev(const char *pathname) 2121{ 2122 struct block_device *bdev; 2123 struct inode *inode; 2124 struct path path; 2125 int error; 2126 2127 if (!pathname || !*pathname) 2128 return ERR_PTR(-EINVAL); 2129 2130 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2131 if (error) 2132 return ERR_PTR(error); 2133 2134 inode = d_backing_inode(path.dentry); 2135 error = -ENOTBLK; 2136 if (!S_ISBLK(inode->i_mode)) 2137 goto fail; 2138 error = -EACCES; 2139 if (!may_open_dev(&path)) 2140 goto fail; 2141 error = -ENOMEM; 2142 bdev = bd_acquire(inode); 2143 if (!bdev) 2144 goto fail; 2145out: 2146 path_put(&path); 2147 return bdev; 2148fail: 2149 bdev = ERR_PTR(error); 2150 goto out; 2151} 2152EXPORT_SYMBOL(lookup_bdev); 2153 2154int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2155{ 2156 struct super_block *sb = get_super(bdev); 2157 int res = 0; 2158 2159 if (sb) { 2160 /* 2161 * no need to lock the super, get_super holds the 2162 * read mutex so the filesystem cannot go away 2163 * under us (->put_super runs with the write lock 2164 * hold). 2165 */ 2166 shrink_dcache_sb(sb); 2167 res = invalidate_inodes(sb, kill_dirty); 2168 drop_super(sb); 2169 } 2170 invalidate_bdev(bdev); 2171 return res; 2172} 2173EXPORT_SYMBOL(__invalidate_device); 2174 2175void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2176{ 2177 struct inode *inode, *old_inode = NULL; 2178 2179 spin_lock(&blockdev_superblock->s_inode_list_lock); 2180 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2181 struct address_space *mapping = inode->i_mapping; 2182 struct block_device *bdev; 2183 2184 spin_lock(&inode->i_lock); 2185 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2186 mapping->nrpages == 0) { 2187 spin_unlock(&inode->i_lock); 2188 continue; 2189 } 2190 __iget(inode); 2191 spin_unlock(&inode->i_lock); 2192 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2193 /* 2194 * We hold a reference to 'inode' so it couldn't have been 2195 * removed from s_inodes list while we dropped the 2196 * s_inode_list_lock We cannot iput the inode now as we can 2197 * be holding the last reference and we cannot iput it under 2198 * s_inode_list_lock. So we keep the reference and iput it 2199 * later. 2200 */ 2201 iput(old_inode); 2202 old_inode = inode; 2203 bdev = I_BDEV(inode); 2204 2205 mutex_lock(&bdev->bd_mutex); 2206 if (bdev->bd_openers) 2207 func(bdev, arg); 2208 mutex_unlock(&bdev->bd_mutex); 2209 2210 spin_lock(&blockdev_superblock->s_inode_list_lock); 2211 } 2212 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2213 iput(old_inode); 2214}