Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/drivers/thermal/cpu_cooling.c
4 *
5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
6 *
7 * Copyright (C) 2012-2018 Linaro Limited.
8 *
9 * Authors: Amit Daniel <amit.kachhap@linaro.org>
10 * Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 */
13#include <linux/module.h>
14#include <linux/thermal.h>
15#include <linux/cpufreq.h>
16#include <linux/err.h>
17#include <linux/idr.h>
18#include <linux/pm_opp.h>
19#include <linux/slab.h>
20#include <linux/cpu.h>
21#include <linux/cpu_cooling.h>
22
23#include <trace/events/thermal.h>
24
25/*
26 * Cooling state <-> CPUFreq frequency
27 *
28 * Cooling states are translated to frequencies throughout this driver and this
29 * is the relation between them.
30 *
31 * Highest cooling state corresponds to lowest possible frequency.
32 *
33 * i.e.
34 * level 0 --> 1st Max Freq
35 * level 1 --> 2nd Max Freq
36 * ...
37 */
38
39/**
40 * struct freq_table - frequency table along with power entries
41 * @frequency: frequency in KHz
42 * @power: power in mW
43 *
44 * This structure is built when the cooling device registers and helps
45 * in translating frequency to power and vice versa.
46 */
47struct freq_table {
48 u32 frequency;
49 u32 power;
50};
51
52/**
53 * struct time_in_idle - Idle time stats
54 * @time: previous reading of the absolute time that this cpu was idle
55 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
56 */
57struct time_in_idle {
58 u64 time;
59 u64 timestamp;
60};
61
62/**
63 * struct cpufreq_cooling_device - data for cooling device with cpufreq
64 * @id: unique integer value corresponding to each cpufreq_cooling_device
65 * registered.
66 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
67 * @cpufreq_state: integer value representing the current state of cpufreq
68 * cooling devices.
69 * @clipped_freq: integer value representing the absolute value of the clipped
70 * frequency.
71 * @max_level: maximum cooling level. One less than total number of valid
72 * cpufreq frequencies.
73 * @freq_table: Freq table in descending order of frequencies
74 * @cdev: thermal_cooling_device pointer to keep track of the
75 * registered cooling device.
76 * @policy: cpufreq policy.
77 * @node: list_head to link all cpufreq_cooling_device together.
78 * @idle_time: idle time stats
79 *
80 * This structure is required for keeping information of each registered
81 * cpufreq_cooling_device.
82 */
83struct cpufreq_cooling_device {
84 int id;
85 u32 last_load;
86 unsigned int cpufreq_state;
87 unsigned int clipped_freq;
88 unsigned int max_level;
89 struct freq_table *freq_table; /* In descending order */
90 struct cpufreq_policy *policy;
91 struct list_head node;
92 struct time_in_idle *idle_time;
93};
94
95static DEFINE_IDA(cpufreq_ida);
96static DEFINE_MUTEX(cooling_list_lock);
97static LIST_HEAD(cpufreq_cdev_list);
98
99/* Below code defines functions to be used for cpufreq as cooling device */
100
101/**
102 * get_level: Find the level for a particular frequency
103 * @cpufreq_cdev: cpufreq_cdev for which the property is required
104 * @freq: Frequency
105 *
106 * Return: level corresponding to the frequency.
107 */
108static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
109 unsigned int freq)
110{
111 struct freq_table *freq_table = cpufreq_cdev->freq_table;
112 unsigned long level;
113
114 for (level = 1; level <= cpufreq_cdev->max_level; level++)
115 if (freq > freq_table[level].frequency)
116 break;
117
118 return level - 1;
119}
120
121/**
122 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
123 * @nb: struct notifier_block * with callback info.
124 * @event: value showing cpufreq event for which this function invoked.
125 * @data: callback-specific data
126 *
127 * Callback to hijack the notification on cpufreq policy transition.
128 * Every time there is a change in policy, we will intercept and
129 * update the cpufreq policy with thermal constraints.
130 *
131 * Return: 0 (success)
132 */
133static int cpufreq_thermal_notifier(struct notifier_block *nb,
134 unsigned long event, void *data)
135{
136 struct cpufreq_policy *policy = data;
137 unsigned long clipped_freq;
138 struct cpufreq_cooling_device *cpufreq_cdev;
139
140 if (event != CPUFREQ_ADJUST)
141 return NOTIFY_DONE;
142
143 mutex_lock(&cooling_list_lock);
144 list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) {
145 /*
146 * A new copy of the policy is sent to the notifier and can't
147 * compare that directly.
148 */
149 if (policy->cpu != cpufreq_cdev->policy->cpu)
150 continue;
151
152 /*
153 * policy->max is the maximum allowed frequency defined by user
154 * and clipped_freq is the maximum that thermal constraints
155 * allow.
156 *
157 * If clipped_freq is lower than policy->max, then we need to
158 * readjust policy->max.
159 *
160 * But, if clipped_freq is greater than policy->max, we don't
161 * need to do anything.
162 */
163 clipped_freq = cpufreq_cdev->clipped_freq;
164
165 if (policy->max > clipped_freq)
166 cpufreq_verify_within_limits(policy, 0, clipped_freq);
167 break;
168 }
169 mutex_unlock(&cooling_list_lock);
170
171 return NOTIFY_OK;
172}
173
174/**
175 * update_freq_table() - Update the freq table with power numbers
176 * @cpufreq_cdev: the cpufreq cooling device in which to update the table
177 * @capacitance: dynamic power coefficient for these cpus
178 *
179 * Update the freq table with power numbers. This table will be used in
180 * cpu_power_to_freq() and cpu_freq_to_power() to convert between power and
181 * frequency efficiently. Power is stored in mW, frequency in KHz. The
182 * resulting table is in descending order.
183 *
184 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
185 * or -ENOMEM if we run out of memory.
186 */
187static int update_freq_table(struct cpufreq_cooling_device *cpufreq_cdev,
188 u32 capacitance)
189{
190 struct freq_table *freq_table = cpufreq_cdev->freq_table;
191 struct dev_pm_opp *opp;
192 struct device *dev = NULL;
193 int num_opps = 0, cpu = cpufreq_cdev->policy->cpu, i;
194
195 dev = get_cpu_device(cpu);
196 if (unlikely(!dev)) {
197 pr_warn("No cpu device for cpu %d\n", cpu);
198 return -ENODEV;
199 }
200
201 num_opps = dev_pm_opp_get_opp_count(dev);
202 if (num_opps < 0)
203 return num_opps;
204
205 /*
206 * The cpufreq table is also built from the OPP table and so the count
207 * should match.
208 */
209 if (num_opps != cpufreq_cdev->max_level + 1) {
210 dev_warn(dev, "Number of OPPs not matching with max_levels\n");
211 return -EINVAL;
212 }
213
214 for (i = 0; i <= cpufreq_cdev->max_level; i++) {
215 unsigned long freq = freq_table[i].frequency * 1000;
216 u32 freq_mhz = freq_table[i].frequency / 1000;
217 u64 power;
218 u32 voltage_mv;
219
220 /*
221 * Find ceil frequency as 'freq' may be slightly lower than OPP
222 * freq due to truncation while converting to kHz.
223 */
224 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
225 if (IS_ERR(opp)) {
226 dev_err(dev, "failed to get opp for %lu frequency\n",
227 freq);
228 return -EINVAL;
229 }
230
231 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
232 dev_pm_opp_put(opp);
233
234 /*
235 * Do the multiplication with MHz and millivolt so as
236 * to not overflow.
237 */
238 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
239 do_div(power, 1000000000);
240
241 /* power is stored in mW */
242 freq_table[i].power = power;
243 }
244
245 return 0;
246}
247
248static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
249 u32 freq)
250{
251 int i;
252 struct freq_table *freq_table = cpufreq_cdev->freq_table;
253
254 for (i = 1; i <= cpufreq_cdev->max_level; i++)
255 if (freq > freq_table[i].frequency)
256 break;
257
258 return freq_table[i - 1].power;
259}
260
261static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
262 u32 power)
263{
264 int i;
265 struct freq_table *freq_table = cpufreq_cdev->freq_table;
266
267 for (i = 1; i <= cpufreq_cdev->max_level; i++)
268 if (power > freq_table[i].power)
269 break;
270
271 return freq_table[i - 1].frequency;
272}
273
274/**
275 * get_load() - get load for a cpu since last updated
276 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu
277 * @cpu: cpu number
278 * @cpu_idx: index of the cpu in time_in_idle*
279 *
280 * Return: The average load of cpu @cpu in percentage since this
281 * function was last called.
282 */
283static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
284 int cpu_idx)
285{
286 u32 load;
287 u64 now, now_idle, delta_time, delta_idle;
288 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
289
290 now_idle = get_cpu_idle_time(cpu, &now, 0);
291 delta_idle = now_idle - idle_time->time;
292 delta_time = now - idle_time->timestamp;
293
294 if (delta_time <= delta_idle)
295 load = 0;
296 else
297 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
298
299 idle_time->time = now_idle;
300 idle_time->timestamp = now;
301
302 return load;
303}
304
305/**
306 * get_dynamic_power() - calculate the dynamic power
307 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
308 * @freq: current frequency
309 *
310 * Return: the dynamic power consumed by the cpus described by
311 * @cpufreq_cdev.
312 */
313static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
314 unsigned long freq)
315{
316 u32 raw_cpu_power;
317
318 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
319 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
320}
321
322/* cpufreq cooling device callback functions are defined below */
323
324/**
325 * cpufreq_get_max_state - callback function to get the max cooling state.
326 * @cdev: thermal cooling device pointer.
327 * @state: fill this variable with the max cooling state.
328 *
329 * Callback for the thermal cooling device to return the cpufreq
330 * max cooling state.
331 *
332 * Return: 0 on success, an error code otherwise.
333 */
334static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
335 unsigned long *state)
336{
337 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
338
339 *state = cpufreq_cdev->max_level;
340 return 0;
341}
342
343/**
344 * cpufreq_get_cur_state - callback function to get the current cooling state.
345 * @cdev: thermal cooling device pointer.
346 * @state: fill this variable with the current cooling state.
347 *
348 * Callback for the thermal cooling device to return the cpufreq
349 * current cooling state.
350 *
351 * Return: 0 on success, an error code otherwise.
352 */
353static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
354 unsigned long *state)
355{
356 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
357
358 *state = cpufreq_cdev->cpufreq_state;
359
360 return 0;
361}
362
363/**
364 * cpufreq_set_cur_state - callback function to set the current cooling state.
365 * @cdev: thermal cooling device pointer.
366 * @state: set this variable to the current cooling state.
367 *
368 * Callback for the thermal cooling device to change the cpufreq
369 * current cooling state.
370 *
371 * Return: 0 on success, an error code otherwise.
372 */
373static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
374 unsigned long state)
375{
376 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
377 unsigned int clip_freq;
378
379 /* Request state should be less than max_level */
380 if (WARN_ON(state > cpufreq_cdev->max_level))
381 return -EINVAL;
382
383 /* Check if the old cooling action is same as new cooling action */
384 if (cpufreq_cdev->cpufreq_state == state)
385 return 0;
386
387 clip_freq = cpufreq_cdev->freq_table[state].frequency;
388 cpufreq_cdev->cpufreq_state = state;
389 cpufreq_cdev->clipped_freq = clip_freq;
390
391 cpufreq_update_policy(cpufreq_cdev->policy->cpu);
392
393 return 0;
394}
395
396/**
397 * cpufreq_get_requested_power() - get the current power
398 * @cdev: &thermal_cooling_device pointer
399 * @tz: a valid thermal zone device pointer
400 * @power: pointer in which to store the resulting power
401 *
402 * Calculate the current power consumption of the cpus in milliwatts
403 * and store it in @power. This function should actually calculate
404 * the requested power, but it's hard to get the frequency that
405 * cpufreq would have assigned if there were no thermal limits.
406 * Instead, we calculate the current power on the assumption that the
407 * immediate future will look like the immediate past.
408 *
409 * We use the current frequency and the average load since this
410 * function was last called. In reality, there could have been
411 * multiple opps since this function was last called and that affects
412 * the load calculation. While it's not perfectly accurate, this
413 * simplification is good enough and works. REVISIT this, as more
414 * complex code may be needed if experiments show that it's not
415 * accurate enough.
416 *
417 * Return: 0 on success, -E* if getting the static power failed.
418 */
419static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
420 struct thermal_zone_device *tz,
421 u32 *power)
422{
423 unsigned long freq;
424 int i = 0, cpu;
425 u32 total_load = 0;
426 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
427 struct cpufreq_policy *policy = cpufreq_cdev->policy;
428 u32 *load_cpu = NULL;
429
430 freq = cpufreq_quick_get(policy->cpu);
431
432 if (trace_thermal_power_cpu_get_power_enabled()) {
433 u32 ncpus = cpumask_weight(policy->related_cpus);
434
435 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
436 }
437
438 for_each_cpu(cpu, policy->related_cpus) {
439 u32 load;
440
441 if (cpu_online(cpu))
442 load = get_load(cpufreq_cdev, cpu, i);
443 else
444 load = 0;
445
446 total_load += load;
447 if (load_cpu)
448 load_cpu[i] = load;
449
450 i++;
451 }
452
453 cpufreq_cdev->last_load = total_load;
454
455 *power = get_dynamic_power(cpufreq_cdev, freq);
456
457 if (load_cpu) {
458 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
459 load_cpu, i, *power);
460
461 kfree(load_cpu);
462 }
463
464 return 0;
465}
466
467/**
468 * cpufreq_state2power() - convert a cpu cdev state to power consumed
469 * @cdev: &thermal_cooling_device pointer
470 * @tz: a valid thermal zone device pointer
471 * @state: cooling device state to be converted
472 * @power: pointer in which to store the resulting power
473 *
474 * Convert cooling device state @state into power consumption in
475 * milliwatts assuming 100% load. Store the calculated power in
476 * @power.
477 *
478 * Return: 0 on success, -EINVAL if the cooling device state could not
479 * be converted into a frequency or other -E* if there was an error
480 * when calculating the static power.
481 */
482static int cpufreq_state2power(struct thermal_cooling_device *cdev,
483 struct thermal_zone_device *tz,
484 unsigned long state, u32 *power)
485{
486 unsigned int freq, num_cpus;
487 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
488
489 /* Request state should be less than max_level */
490 if (WARN_ON(state > cpufreq_cdev->max_level))
491 return -EINVAL;
492
493 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
494
495 freq = cpufreq_cdev->freq_table[state].frequency;
496 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
497
498 return 0;
499}
500
501/**
502 * cpufreq_power2state() - convert power to a cooling device state
503 * @cdev: &thermal_cooling_device pointer
504 * @tz: a valid thermal zone device pointer
505 * @power: power in milliwatts to be converted
506 * @state: pointer in which to store the resulting state
507 *
508 * Calculate a cooling device state for the cpus described by @cdev
509 * that would allow them to consume at most @power mW and store it in
510 * @state. Note that this calculation depends on external factors
511 * such as the cpu load or the current static power. Calling this
512 * function with the same power as input can yield different cooling
513 * device states depending on those external factors.
514 *
515 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
516 * the calculated frequency could not be converted to a valid state.
517 * The latter should not happen unless the frequencies available to
518 * cpufreq have changed since the initialization of the cpu cooling
519 * device.
520 */
521static int cpufreq_power2state(struct thermal_cooling_device *cdev,
522 struct thermal_zone_device *tz, u32 power,
523 unsigned long *state)
524{
525 unsigned int target_freq;
526 u32 last_load, normalised_power;
527 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
528 struct cpufreq_policy *policy = cpufreq_cdev->policy;
529
530 last_load = cpufreq_cdev->last_load ?: 1;
531 normalised_power = (power * 100) / last_load;
532 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
533
534 *state = get_level(cpufreq_cdev, target_freq);
535 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
536 power);
537 return 0;
538}
539
540/* Bind cpufreq callbacks to thermal cooling device ops */
541
542static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
543 .get_max_state = cpufreq_get_max_state,
544 .get_cur_state = cpufreq_get_cur_state,
545 .set_cur_state = cpufreq_set_cur_state,
546};
547
548static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
549 .get_max_state = cpufreq_get_max_state,
550 .get_cur_state = cpufreq_get_cur_state,
551 .set_cur_state = cpufreq_set_cur_state,
552 .get_requested_power = cpufreq_get_requested_power,
553 .state2power = cpufreq_state2power,
554 .power2state = cpufreq_power2state,
555};
556
557/* Notifier for cpufreq policy change */
558static struct notifier_block thermal_cpufreq_notifier_block = {
559 .notifier_call = cpufreq_thermal_notifier,
560};
561
562static unsigned int find_next_max(struct cpufreq_frequency_table *table,
563 unsigned int prev_max)
564{
565 struct cpufreq_frequency_table *pos;
566 unsigned int max = 0;
567
568 cpufreq_for_each_valid_entry(pos, table) {
569 if (pos->frequency > max && pos->frequency < prev_max)
570 max = pos->frequency;
571 }
572
573 return max;
574}
575
576/**
577 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
578 * @np: a valid struct device_node to the cooling device device tree node
579 * @policy: cpufreq policy
580 * Normally this should be same as cpufreq policy->related_cpus.
581 * @capacitance: dynamic power coefficient for these cpus
582 *
583 * This interface function registers the cpufreq cooling device with the name
584 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
585 * cooling devices. It also gives the opportunity to link the cooling device
586 * with a device tree node, in order to bind it via the thermal DT code.
587 *
588 * Return: a valid struct thermal_cooling_device pointer on success,
589 * on failure, it returns a corresponding ERR_PTR().
590 */
591static struct thermal_cooling_device *
592__cpufreq_cooling_register(struct device_node *np,
593 struct cpufreq_policy *policy, u32 capacitance)
594{
595 struct thermal_cooling_device *cdev;
596 struct cpufreq_cooling_device *cpufreq_cdev;
597 char dev_name[THERMAL_NAME_LENGTH];
598 unsigned int freq, i, num_cpus;
599 int ret;
600 struct thermal_cooling_device_ops *cooling_ops;
601 bool first;
602
603 if (IS_ERR_OR_NULL(policy)) {
604 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
605 return ERR_PTR(-EINVAL);
606 }
607
608 i = cpufreq_table_count_valid_entries(policy);
609 if (!i) {
610 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
611 __func__);
612 return ERR_PTR(-ENODEV);
613 }
614
615 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
616 if (!cpufreq_cdev)
617 return ERR_PTR(-ENOMEM);
618
619 cpufreq_cdev->policy = policy;
620 num_cpus = cpumask_weight(policy->related_cpus);
621 cpufreq_cdev->idle_time = kcalloc(num_cpus,
622 sizeof(*cpufreq_cdev->idle_time),
623 GFP_KERNEL);
624 if (!cpufreq_cdev->idle_time) {
625 cdev = ERR_PTR(-ENOMEM);
626 goto free_cdev;
627 }
628
629 /* max_level is an index, not a counter */
630 cpufreq_cdev->max_level = i - 1;
631
632 cpufreq_cdev->freq_table = kmalloc_array(i,
633 sizeof(*cpufreq_cdev->freq_table),
634 GFP_KERNEL);
635 if (!cpufreq_cdev->freq_table) {
636 cdev = ERR_PTR(-ENOMEM);
637 goto free_idle_time;
638 }
639
640 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
641 if (ret < 0) {
642 cdev = ERR_PTR(ret);
643 goto free_table;
644 }
645 cpufreq_cdev->id = ret;
646
647 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
648 cpufreq_cdev->id);
649
650 /* Fill freq-table in descending order of frequencies */
651 for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
652 freq = find_next_max(policy->freq_table, freq);
653 cpufreq_cdev->freq_table[i].frequency = freq;
654
655 /* Warn for duplicate entries */
656 if (!freq)
657 pr_warn("%s: table has duplicate entries\n", __func__);
658 else
659 pr_debug("%s: freq:%u KHz\n", __func__, freq);
660 }
661
662 if (capacitance) {
663 ret = update_freq_table(cpufreq_cdev, capacitance);
664 if (ret) {
665 cdev = ERR_PTR(ret);
666 goto remove_ida;
667 }
668
669 cooling_ops = &cpufreq_power_cooling_ops;
670 } else {
671 cooling_ops = &cpufreq_cooling_ops;
672 }
673
674 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
675 cooling_ops);
676 if (IS_ERR(cdev))
677 goto remove_ida;
678
679 cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0].frequency;
680
681 mutex_lock(&cooling_list_lock);
682 /* Register the notifier for first cpufreq cooling device */
683 first = list_empty(&cpufreq_cdev_list);
684 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
685 mutex_unlock(&cooling_list_lock);
686
687 if (first)
688 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
689 CPUFREQ_POLICY_NOTIFIER);
690
691 return cdev;
692
693remove_ida:
694 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
695free_table:
696 kfree(cpufreq_cdev->freq_table);
697free_idle_time:
698 kfree(cpufreq_cdev->idle_time);
699free_cdev:
700 kfree(cpufreq_cdev);
701 return cdev;
702}
703
704/**
705 * cpufreq_cooling_register - function to create cpufreq cooling device.
706 * @policy: cpufreq policy
707 *
708 * This interface function registers the cpufreq cooling device with the name
709 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
710 * cooling devices.
711 *
712 * Return: a valid struct thermal_cooling_device pointer on success,
713 * on failure, it returns a corresponding ERR_PTR().
714 */
715struct thermal_cooling_device *
716cpufreq_cooling_register(struct cpufreq_policy *policy)
717{
718 return __cpufreq_cooling_register(NULL, policy, 0);
719}
720EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
721
722/**
723 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
724 * @policy: cpufreq policy
725 *
726 * This interface function registers the cpufreq cooling device with the name
727 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
728 * cooling devices. Using this API, the cpufreq cooling device will be
729 * linked to the device tree node provided.
730 *
731 * Using this function, the cooling device will implement the power
732 * extensions by using a simple cpu power model. The cpus must have
733 * registered their OPPs using the OPP library.
734 *
735 * It also takes into account, if property present in policy CPU node, the
736 * static power consumed by the cpu.
737 *
738 * Return: a valid struct thermal_cooling_device pointer on success,
739 * and NULL on failure.
740 */
741struct thermal_cooling_device *
742of_cpufreq_cooling_register(struct cpufreq_policy *policy)
743{
744 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
745 struct thermal_cooling_device *cdev = NULL;
746 u32 capacitance = 0;
747
748 if (!np) {
749 pr_err("cpu_cooling: OF node not available for cpu%d\n",
750 policy->cpu);
751 return NULL;
752 }
753
754 if (of_find_property(np, "#cooling-cells", NULL)) {
755 of_property_read_u32(np, "dynamic-power-coefficient",
756 &capacitance);
757
758 cdev = __cpufreq_cooling_register(np, policy, capacitance);
759 if (IS_ERR(cdev)) {
760 pr_err("cpu_cooling: cpu%d failed to register as cooling device: %ld\n",
761 policy->cpu, PTR_ERR(cdev));
762 cdev = NULL;
763 }
764 }
765
766 of_node_put(np);
767 return cdev;
768}
769EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
770
771/**
772 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
773 * @cdev: thermal cooling device pointer.
774 *
775 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
776 */
777void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
778{
779 struct cpufreq_cooling_device *cpufreq_cdev;
780 bool last;
781
782 if (!cdev)
783 return;
784
785 cpufreq_cdev = cdev->devdata;
786
787 mutex_lock(&cooling_list_lock);
788 list_del(&cpufreq_cdev->node);
789 /* Unregister the notifier for the last cpufreq cooling device */
790 last = list_empty(&cpufreq_cdev_list);
791 mutex_unlock(&cooling_list_lock);
792
793 if (last)
794 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
795 CPUFREQ_POLICY_NOTIFIER);
796
797 thermal_cooling_device_unregister(cdev);
798 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
799 kfree(cpufreq_cdev->idle_time);
800 kfree(cpufreq_cdev->freq_table);
801 kfree(cpufreq_cdev);
802}
803EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);