at v5.2-rc2 307 lines 12 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __ASM_SH_PGTABLE_64_H 3#define __ASM_SH_PGTABLE_64_H 4 5/* 6 * include/asm-sh/pgtable_64.h 7 * 8 * This file contains the functions and defines necessary to modify and use 9 * the SuperH page table tree. 10 * 11 * Copyright (C) 2000, 2001 Paolo Alberelli 12 * Copyright (C) 2003, 2004 Paul Mundt 13 * Copyright (C) 2003, 2004 Richard Curnow 14 */ 15#include <linux/threads.h> 16#include <asm/processor.h> 17#include <asm/page.h> 18 19/* 20 * Error outputs. 21 */ 22#define pte_ERROR(e) \ 23 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) 24#define pgd_ERROR(e) \ 25 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 26 27/* 28 * Table setting routines. Used within arch/mm only. 29 */ 30#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 31 32static __inline__ void set_pte(pte_t *pteptr, pte_t pteval) 33{ 34 unsigned long long x = ((unsigned long long) pteval.pte_low); 35 unsigned long long *xp = (unsigned long long *) pteptr; 36 /* 37 * Sign-extend based on NPHYS. 38 */ 39 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x; 40} 41#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 42 43/* 44 * PGD defines. Top level. 45 */ 46 47/* To find an entry in a generic PGD. */ 48#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 49#define __pgd_offset(address) pgd_index(address) 50#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 51 52/* To find an entry in a kernel PGD. */ 53#define pgd_offset_k(address) pgd_offset(&init_mm, address) 54 55#define __pud_offset(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 56#define __pmd_offset(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 57 58/* 59 * PMD level access routines. Same notes as above. 60 */ 61#define _PMD_EMPTY 0x0 62/* Either the PMD is empty or present, it's not paged out */ 63#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT) 64#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) 65#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) 66#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 67 68#define pmd_page_vaddr(pmd_entry) \ 69 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK)) 70 71#define pmd_page(pmd) \ 72 (virt_to_page(pmd_val(pmd))) 73 74/* PMD to PTE dereferencing */ 75#define pte_index(address) \ 76 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 77 78#define __pte_offset(address) pte_index(address) 79 80#define pte_offset_kernel(dir, addr) \ 81 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr))) 82 83#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 84#define pte_unmap(pte) do { } while (0) 85 86#ifndef __ASSEMBLY__ 87/* 88 * PTEL coherent flags. 89 * See Chapter 17 ST50 CPU Core Volume 1, Architecture. 90 */ 91/* The bits that are required in the SH-5 TLB are placed in the h/w-defined 92 positions, to avoid expensive bit shuffling on every refill. The remaining 93 bits are used for s/w purposes and masked out on each refill. 94 95 Note, the PTE slots are used to hold data of type swp_entry_t when a page is 96 swapped out. Only the _PAGE_PRESENT flag is significant when the page is 97 swapped out, and it must be placed so that it doesn't overlap either the 98 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type 99 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This 100 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit 101 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split 102 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ 103#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ 104#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ 105#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ 106#define _PAGE_PRESENT 0x004 /* software: page referenced */ 107#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ 108#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ 109#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ 110#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ 111#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ 112#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ 113#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ 114#define _PAGE_DIRTY 0x400 /* software: page accessed in write */ 115#define _PAGE_ACCESSED 0x800 /* software: page referenced */ 116 117/* Wrapper for extended mode pgprot twiddling */ 118#define _PAGE_EXT(x) ((unsigned long long)(x) << 32) 119 120/* 121 * We can use the sign-extended bits in the PTEL to get 32 bits of 122 * software flags. This works for now because no implementations uses 123 * anything above the PPN field. 124 */ 125#define _PAGE_WIRED _PAGE_EXT(0x001) /* software: wire the tlb entry */ 126#define _PAGE_SPECIAL _PAGE_EXT(0x002) 127 128#define _PAGE_CLEAR_FLAGS (_PAGE_PRESENT | _PAGE_SHARED | \ 129 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_WIRED) 130 131/* Mask which drops software flags */ 132#define _PAGE_FLAGS_HARDWARE_MASK (NEFF_MASK & ~(_PAGE_CLEAR_FLAGS)) 133 134/* 135 * HugeTLB support 136 */ 137#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K) 138#define _PAGE_SZHUGE (_PAGE_SIZE0) 139#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB) 140#define _PAGE_SZHUGE (_PAGE_SIZE1) 141#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB) 142#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1) 143#endif 144 145/* 146 * Stub out _PAGE_SZHUGE if we don't have a good definition for it, 147 * to make pte_mkhuge() happy. 148 */ 149#ifndef _PAGE_SZHUGE 150# define _PAGE_SZHUGE (0) 151#endif 152 153/* 154 * Default flags for a Kernel page. 155 * This is fundametally also SHARED because the main use of this define 156 * (other than for PGD/PMD entries) is for the VMALLOC pool which is 157 * contextless. 158 * 159 * _PAGE_EXECUTE is required for modules 160 * 161 */ 162#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 163 _PAGE_EXECUTE | \ 164 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ 165 _PAGE_SHARED) 166 167/* Default flags for a User page */ 168#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) 169 170#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | \ 171 _PAGE_SPECIAL) 172 173/* 174 * We have full permissions (Read/Write/Execute/Shared). 175 */ 176#define _PAGE_COMMON (_PAGE_PRESENT | _PAGE_USER | \ 177 _PAGE_CACHABLE | _PAGE_ACCESSED) 178 179#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) 180#define PAGE_SHARED __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_WRITE | \ 181 _PAGE_SHARED) 182#define PAGE_EXECREAD __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_EXECUTE) 183 184/* 185 * We need to include PAGE_EXECUTE in PAGE_COPY because it is the default 186 * protection mode for the stack. 187 */ 188#define PAGE_COPY PAGE_EXECREAD 189 190#define PAGE_READONLY __pgprot(_PAGE_COMMON | _PAGE_READ) 191#define PAGE_WRITEONLY __pgprot(_PAGE_COMMON | _PAGE_WRITE) 192#define PAGE_RWX __pgprot(_PAGE_COMMON | _PAGE_READ | \ 193 _PAGE_WRITE | _PAGE_EXECUTE) 194#define PAGE_KERNEL __pgprot(_KERNPG_TABLE) 195 196#define PAGE_KERNEL_NOCACHE \ 197 __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 198 _PAGE_EXECUTE | _PAGE_ACCESSED | \ 199 _PAGE_DIRTY | _PAGE_SHARED) 200 201/* Make it a device mapping for maximum safety (e.g. for mapping device 202 registers into user-space via /dev/map). */ 203#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) 204#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE) 205 206/* 207 * PTE level access routines. 208 * 209 * Note1: 210 * It's the tree walk leaf. This is physical address to be stored. 211 * 212 * Note 2: 213 * Regarding the choice of _PTE_EMPTY: 214 215 We must choose a bit pattern that cannot be valid, whether or not the page 216 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped 217 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is 218 left for us to select. If we force bit[7]==0 when swapped out, we could use 219 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if 220 we force bit[7]==1 when swapped out, we can use all zeroes to indicate 221 empty. This is convenient, because the page tables get cleared to zero 222 when they are allocated. 223 224 */ 225#define _PTE_EMPTY 0x0 226#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 227#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY))) 228#define pte_none(x) (pte_val(x) == _PTE_EMPTY) 229 230/* 231 * Some definitions to translate between mem_map, PTEs, and page 232 * addresses: 233 */ 234 235/* 236 * Given a PTE, return the index of the mem_map[] entry corresponding 237 * to the page frame the PTE. Get the absolute physical address, make 238 * a relative physical address and translate it to an index. 239 */ 240#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ 241 __MEMORY_START) >> PAGE_SHIFT) 242 243/* 244 * Given a PTE, return the "struct page *". 245 */ 246#define pte_page(x) (mem_map + pte_pagenr(x)) 247 248/* 249 * Return number of (down rounded) MB corresponding to x pages. 250 */ 251#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 252 253 254/* 255 * The following have defined behavior only work if pte_present() is true. 256 */ 257static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 258static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 259static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 260static inline int pte_special(pte_t pte){ return pte_val(pte) & _PAGE_SPECIAL; } 261 262static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } 263static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } 264static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } 265static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } 266static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } 267static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } 268static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; } 269static inline pte_t pte_mkspecial(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SPECIAL)); return pte; } 270 271/* 272 * Conversion functions: convert a page and protection to a page entry. 273 * 274 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) 275 */ 276#define mk_pte(page,pgprot) \ 277({ \ 278 pte_t __pte; \ 279 \ 280 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ 281 __MEMORY_START | pgprot_val((pgprot)))); \ 282 __pte; \ 283}) 284 285/* 286 * This takes a (absolute) physical page address that is used 287 * by the remapping functions 288 */ 289#define mk_pte_phys(physpage, pgprot) \ 290({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) 291 292static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 293{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } 294 295/* Encode and decode a swap entry */ 296#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) 297#define __swp_offset(x) ((x).val >> 8) 298#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) }) 299#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 300#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 301 302#endif /* !__ASSEMBLY__ */ 303 304#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 305#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 306 307#endif /* __ASM_SH_PGTABLE_64_H */