at v5.2-rc2 788 lines 19 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * General Purpose functions for the global management of the 4 * Communication Processor Module. 5 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) 6 * 7 * In addition to the individual control of the communication 8 * channels, there are a few functions that globally affect the 9 * communication processor. 10 * 11 * Buffer descriptors must be allocated from the dual ported memory 12 * space. The allocator for that is here. When the communication 13 * process is reset, we reclaim the memory available. There is 14 * currently no deallocator for this memory. 15 * The amount of space available is platform dependent. On the 16 * MBX, the EPPC software loads additional microcode into the 17 * communication processor, and uses some of the DP ram for this 18 * purpose. Current, the first 512 bytes and the last 256 bytes of 19 * memory are used. Right now I am conservative and only use the 20 * memory that can never be used for microcode. If there are 21 * applications that require more DP ram, we can expand the boundaries 22 * but then we have to be careful of any downloaded microcode. 23 */ 24#include <linux/errno.h> 25#include <linux/sched.h> 26#include <linux/kernel.h> 27#include <linux/dma-mapping.h> 28#include <linux/param.h> 29#include <linux/string.h> 30#include <linux/mm.h> 31#include <linux/interrupt.h> 32#include <linux/irq.h> 33#include <linux/module.h> 34#include <linux/spinlock.h> 35#include <linux/slab.h> 36#include <asm/page.h> 37#include <asm/pgtable.h> 38#include <asm/8xx_immap.h> 39#include <asm/cpm1.h> 40#include <asm/io.h> 41#include <asm/rheap.h> 42#include <asm/prom.h> 43#include <asm/cpm.h> 44 45#include <asm/fs_pd.h> 46 47#ifdef CONFIG_8xx_GPIO 48#include <linux/of_gpio.h> 49#endif 50 51#define CPM_MAP_SIZE (0x4000) 52 53cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */ 54immap_t __iomem *mpc8xx_immr; 55static cpic8xx_t __iomem *cpic_reg; 56 57static struct irq_domain *cpm_pic_host; 58 59static void cpm_mask_irq(struct irq_data *d) 60{ 61 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d); 62 63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 64} 65 66static void cpm_unmask_irq(struct irq_data *d) 67{ 68 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d); 69 70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 71} 72 73static void cpm_end_irq(struct irq_data *d) 74{ 75 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d); 76 77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); 78} 79 80static struct irq_chip cpm_pic = { 81 .name = "CPM PIC", 82 .irq_mask = cpm_mask_irq, 83 .irq_unmask = cpm_unmask_irq, 84 .irq_eoi = cpm_end_irq, 85}; 86 87int cpm_get_irq(void) 88{ 89 int cpm_vec; 90 91 /* Get the vector by setting the ACK bit and then reading 92 * the register. 93 */ 94 out_be16(&cpic_reg->cpic_civr, 1); 95 cpm_vec = in_be16(&cpic_reg->cpic_civr); 96 cpm_vec >>= 11; 97 98 return irq_linear_revmap(cpm_pic_host, cpm_vec); 99} 100 101static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq, 102 irq_hw_number_t hw) 103{ 104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); 105 106 irq_set_status_flags(virq, IRQ_LEVEL); 107 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); 108 return 0; 109} 110 111/* The CPM can generate the error interrupt when there is a race condition 112 * between generating and masking interrupts. All we have to do is ACK it 113 * and return. This is a no-op function so we don't need any special 114 * tests in the interrupt handler. 115 */ 116static irqreturn_t cpm_error_interrupt(int irq, void *dev) 117{ 118 return IRQ_HANDLED; 119} 120 121static struct irqaction cpm_error_irqaction = { 122 .handler = cpm_error_interrupt, 123 .flags = IRQF_NO_THREAD, 124 .name = "error", 125}; 126 127static const struct irq_domain_ops cpm_pic_host_ops = { 128 .map = cpm_pic_host_map, 129}; 130 131unsigned int cpm_pic_init(void) 132{ 133 struct device_node *np = NULL; 134 struct resource res; 135 unsigned int sirq = 0, hwirq, eirq; 136 int ret; 137 138 pr_debug("cpm_pic_init\n"); 139 140 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic"); 141 if (np == NULL) 142 np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); 143 if (np == NULL) { 144 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); 145 return sirq; 146 } 147 148 ret = of_address_to_resource(np, 0, &res); 149 if (ret) 150 goto end; 151 152 cpic_reg = ioremap(res.start, resource_size(&res)); 153 if (cpic_reg == NULL) 154 goto end; 155 156 sirq = irq_of_parse_and_map(np, 0); 157 if (!sirq) 158 goto end; 159 160 /* Initialize the CPM interrupt controller. */ 161 hwirq = (unsigned int)virq_to_hw(sirq); 162 out_be32(&cpic_reg->cpic_cicr, 163 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | 164 ((hwirq/2) << 13) | CICR_HP_MASK); 165 166 out_be32(&cpic_reg->cpic_cimr, 0); 167 168 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL); 169 if (cpm_pic_host == NULL) { 170 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); 171 sirq = 0; 172 goto end; 173 } 174 175 /* Install our own error handler. */ 176 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1"); 177 if (np == NULL) 178 np = of_find_node_by_type(NULL, "cpm"); 179 if (np == NULL) { 180 printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); 181 goto end; 182 } 183 184 eirq = irq_of_parse_and_map(np, 0); 185 if (!eirq) 186 goto end; 187 188 if (setup_irq(eirq, &cpm_error_irqaction)) 189 printk(KERN_ERR "Could not allocate CPM error IRQ!"); 190 191 setbits32(&cpic_reg->cpic_cicr, CICR_IEN); 192 193end: 194 of_node_put(np); 195 return sirq; 196} 197 198void __init cpm_reset(void) 199{ 200 sysconf8xx_t __iomem *siu_conf; 201 202 mpc8xx_immr = ioremap(get_immrbase(), 0x4000); 203 if (!mpc8xx_immr) { 204 printk(KERN_CRIT "Could not map IMMR\n"); 205 return; 206 } 207 208 cpmp = &mpc8xx_immr->im_cpm; 209 210#ifndef CONFIG_PPC_EARLY_DEBUG_CPM 211 /* Perform a reset. 212 */ 213 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); 214 215 /* Wait for it. 216 */ 217 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG); 218#endif 219 220#ifdef CONFIG_UCODE_PATCH 221 cpm_load_patch(cpmp); 222#endif 223 224 /* Set SDMA Bus Request priority 5. 225 * On 860T, this also enables FEC priority 6. I am not sure 226 * this is what we really want for some applications, but the 227 * manual recommends it. 228 * Bit 25, FAM can also be set to use FEC aggressive mode (860T). 229 */ 230 siu_conf = immr_map(im_siu_conf); 231 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */ 232 out_be32(&siu_conf->sc_sdcr, 0x40); 233 else 234 out_be32(&siu_conf->sc_sdcr, 1); 235 immr_unmap(siu_conf); 236} 237 238static DEFINE_SPINLOCK(cmd_lock); 239 240#define MAX_CR_CMD_LOOPS 10000 241 242int cpm_command(u32 command, u8 opcode) 243{ 244 int i, ret; 245 unsigned long flags; 246 247 if (command & 0xffffff0f) 248 return -EINVAL; 249 250 spin_lock_irqsave(&cmd_lock, flags); 251 252 ret = 0; 253 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8)); 254 for (i = 0; i < MAX_CR_CMD_LOOPS; i++) 255 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) 256 goto out; 257 258 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__); 259 ret = -EIO; 260out: 261 spin_unlock_irqrestore(&cmd_lock, flags); 262 return ret; 263} 264EXPORT_SYMBOL(cpm_command); 265 266/* Set a baud rate generator. This needs lots of work. There are 267 * four BRGs, any of which can be wired to any channel. 268 * The internal baud rate clock is the system clock divided by 16. 269 * This assumes the baudrate is 16x oversampled by the uart. 270 */ 271#define BRG_INT_CLK (get_brgfreq()) 272#define BRG_UART_CLK (BRG_INT_CLK/16) 273#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) 274 275void 276cpm_setbrg(uint brg, uint rate) 277{ 278 u32 __iomem *bp; 279 280 /* This is good enough to get SMCs running..... 281 */ 282 bp = &cpmp->cp_brgc1; 283 bp += brg; 284 /* The BRG has a 12-bit counter. For really slow baud rates (or 285 * really fast processors), we may have to further divide by 16. 286 */ 287 if (((BRG_UART_CLK / rate) - 1) < 4096) 288 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN); 289 else 290 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | 291 CPM_BRG_EN | CPM_BRG_DIV16); 292} 293 294struct cpm_ioport16 { 295 __be16 dir, par, odr_sor, dat, intr; 296 __be16 res[3]; 297}; 298 299struct cpm_ioport32b { 300 __be32 dir, par, odr, dat; 301}; 302 303struct cpm_ioport32e { 304 __be32 dir, par, sor, odr, dat; 305}; 306 307static void cpm1_set_pin32(int port, int pin, int flags) 308{ 309 struct cpm_ioport32e __iomem *iop; 310 pin = 1 << (31 - pin); 311 312 if (port == CPM_PORTB) 313 iop = (struct cpm_ioport32e __iomem *) 314 &mpc8xx_immr->im_cpm.cp_pbdir; 315 else 316 iop = (struct cpm_ioport32e __iomem *) 317 &mpc8xx_immr->im_cpm.cp_pedir; 318 319 if (flags & CPM_PIN_OUTPUT) 320 setbits32(&iop->dir, pin); 321 else 322 clrbits32(&iop->dir, pin); 323 324 if (!(flags & CPM_PIN_GPIO)) 325 setbits32(&iop->par, pin); 326 else 327 clrbits32(&iop->par, pin); 328 329 if (port == CPM_PORTB) { 330 if (flags & CPM_PIN_OPENDRAIN) 331 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 332 else 333 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 334 } 335 336 if (port == CPM_PORTE) { 337 if (flags & CPM_PIN_SECONDARY) 338 setbits32(&iop->sor, pin); 339 else 340 clrbits32(&iop->sor, pin); 341 342 if (flags & CPM_PIN_OPENDRAIN) 343 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 344 else 345 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 346 } 347} 348 349static void cpm1_set_pin16(int port, int pin, int flags) 350{ 351 struct cpm_ioport16 __iomem *iop = 352 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport; 353 354 pin = 1 << (15 - pin); 355 356 if (port != 0) 357 iop += port - 1; 358 359 if (flags & CPM_PIN_OUTPUT) 360 setbits16(&iop->dir, pin); 361 else 362 clrbits16(&iop->dir, pin); 363 364 if (!(flags & CPM_PIN_GPIO)) 365 setbits16(&iop->par, pin); 366 else 367 clrbits16(&iop->par, pin); 368 369 if (port == CPM_PORTA) { 370 if (flags & CPM_PIN_OPENDRAIN) 371 setbits16(&iop->odr_sor, pin); 372 else 373 clrbits16(&iop->odr_sor, pin); 374 } 375 if (port == CPM_PORTC) { 376 if (flags & CPM_PIN_SECONDARY) 377 setbits16(&iop->odr_sor, pin); 378 else 379 clrbits16(&iop->odr_sor, pin); 380 if (flags & CPM_PIN_FALLEDGE) 381 setbits16(&iop->intr, pin); 382 else 383 clrbits16(&iop->intr, pin); 384 } 385} 386 387void cpm1_set_pin(enum cpm_port port, int pin, int flags) 388{ 389 if (port == CPM_PORTB || port == CPM_PORTE) 390 cpm1_set_pin32(port, pin, flags); 391 else 392 cpm1_set_pin16(port, pin, flags); 393} 394 395int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode) 396{ 397 int shift; 398 int i, bits = 0; 399 u32 __iomem *reg; 400 u32 mask = 7; 401 402 u8 clk_map[][3] = { 403 {CPM_CLK_SCC1, CPM_BRG1, 0}, 404 {CPM_CLK_SCC1, CPM_BRG2, 1}, 405 {CPM_CLK_SCC1, CPM_BRG3, 2}, 406 {CPM_CLK_SCC1, CPM_BRG4, 3}, 407 {CPM_CLK_SCC1, CPM_CLK1, 4}, 408 {CPM_CLK_SCC1, CPM_CLK2, 5}, 409 {CPM_CLK_SCC1, CPM_CLK3, 6}, 410 {CPM_CLK_SCC1, CPM_CLK4, 7}, 411 412 {CPM_CLK_SCC2, CPM_BRG1, 0}, 413 {CPM_CLK_SCC2, CPM_BRG2, 1}, 414 {CPM_CLK_SCC2, CPM_BRG3, 2}, 415 {CPM_CLK_SCC2, CPM_BRG4, 3}, 416 {CPM_CLK_SCC2, CPM_CLK1, 4}, 417 {CPM_CLK_SCC2, CPM_CLK2, 5}, 418 {CPM_CLK_SCC2, CPM_CLK3, 6}, 419 {CPM_CLK_SCC2, CPM_CLK4, 7}, 420 421 {CPM_CLK_SCC3, CPM_BRG1, 0}, 422 {CPM_CLK_SCC3, CPM_BRG2, 1}, 423 {CPM_CLK_SCC3, CPM_BRG3, 2}, 424 {CPM_CLK_SCC3, CPM_BRG4, 3}, 425 {CPM_CLK_SCC3, CPM_CLK5, 4}, 426 {CPM_CLK_SCC3, CPM_CLK6, 5}, 427 {CPM_CLK_SCC3, CPM_CLK7, 6}, 428 {CPM_CLK_SCC3, CPM_CLK8, 7}, 429 430 {CPM_CLK_SCC4, CPM_BRG1, 0}, 431 {CPM_CLK_SCC4, CPM_BRG2, 1}, 432 {CPM_CLK_SCC4, CPM_BRG3, 2}, 433 {CPM_CLK_SCC4, CPM_BRG4, 3}, 434 {CPM_CLK_SCC4, CPM_CLK5, 4}, 435 {CPM_CLK_SCC4, CPM_CLK6, 5}, 436 {CPM_CLK_SCC4, CPM_CLK7, 6}, 437 {CPM_CLK_SCC4, CPM_CLK8, 7}, 438 439 {CPM_CLK_SMC1, CPM_BRG1, 0}, 440 {CPM_CLK_SMC1, CPM_BRG2, 1}, 441 {CPM_CLK_SMC1, CPM_BRG3, 2}, 442 {CPM_CLK_SMC1, CPM_BRG4, 3}, 443 {CPM_CLK_SMC1, CPM_CLK1, 4}, 444 {CPM_CLK_SMC1, CPM_CLK2, 5}, 445 {CPM_CLK_SMC1, CPM_CLK3, 6}, 446 {CPM_CLK_SMC1, CPM_CLK4, 7}, 447 448 {CPM_CLK_SMC2, CPM_BRG1, 0}, 449 {CPM_CLK_SMC2, CPM_BRG2, 1}, 450 {CPM_CLK_SMC2, CPM_BRG3, 2}, 451 {CPM_CLK_SMC2, CPM_BRG4, 3}, 452 {CPM_CLK_SMC2, CPM_CLK5, 4}, 453 {CPM_CLK_SMC2, CPM_CLK6, 5}, 454 {CPM_CLK_SMC2, CPM_CLK7, 6}, 455 {CPM_CLK_SMC2, CPM_CLK8, 7}, 456 }; 457 458 switch (target) { 459 case CPM_CLK_SCC1: 460 reg = &mpc8xx_immr->im_cpm.cp_sicr; 461 shift = 0; 462 break; 463 464 case CPM_CLK_SCC2: 465 reg = &mpc8xx_immr->im_cpm.cp_sicr; 466 shift = 8; 467 break; 468 469 case CPM_CLK_SCC3: 470 reg = &mpc8xx_immr->im_cpm.cp_sicr; 471 shift = 16; 472 break; 473 474 case CPM_CLK_SCC4: 475 reg = &mpc8xx_immr->im_cpm.cp_sicr; 476 shift = 24; 477 break; 478 479 case CPM_CLK_SMC1: 480 reg = &mpc8xx_immr->im_cpm.cp_simode; 481 shift = 12; 482 break; 483 484 case CPM_CLK_SMC2: 485 reg = &mpc8xx_immr->im_cpm.cp_simode; 486 shift = 28; 487 break; 488 489 default: 490 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n"); 491 return -EINVAL; 492 } 493 494 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 495 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 496 bits = clk_map[i][2]; 497 break; 498 } 499 } 500 501 if (i == ARRAY_SIZE(clk_map)) { 502 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n"); 503 return -EINVAL; 504 } 505 506 bits <<= shift; 507 mask <<= shift; 508 509 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) { 510 if (mode == CPM_CLK_RTX) { 511 bits |= bits << 3; 512 mask |= mask << 3; 513 } else if (mode == CPM_CLK_RX) { 514 bits <<= 3; 515 mask <<= 3; 516 } 517 } 518 519 out_be32(reg, (in_be32(reg) & ~mask) | bits); 520 521 return 0; 522} 523 524/* 525 * GPIO LIB API implementation 526 */ 527#ifdef CONFIG_8xx_GPIO 528 529struct cpm1_gpio16_chip { 530 struct of_mm_gpio_chip mm_gc; 531 spinlock_t lock; 532 533 /* shadowed data register to clear/set bits safely */ 534 u16 cpdata; 535 536 /* IRQ associated with Pins when relevant */ 537 int irq[16]; 538}; 539 540static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc) 541{ 542 struct cpm1_gpio16_chip *cpm1_gc = 543 container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc); 544 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 545 546 cpm1_gc->cpdata = in_be16(&iop->dat); 547} 548 549static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio) 550{ 551 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 552 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 553 u16 pin_mask; 554 555 pin_mask = 1 << (15 - gpio); 556 557 return !!(in_be16(&iop->dat) & pin_mask); 558} 559 560static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask, 561 int value) 562{ 563 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 564 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 565 566 if (value) 567 cpm1_gc->cpdata |= pin_mask; 568 else 569 cpm1_gc->cpdata &= ~pin_mask; 570 571 out_be16(&iop->dat, cpm1_gc->cpdata); 572} 573 574static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value) 575{ 576 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 577 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 578 unsigned long flags; 579 u16 pin_mask = 1 << (15 - gpio); 580 581 spin_lock_irqsave(&cpm1_gc->lock, flags); 582 583 __cpm1_gpio16_set(mm_gc, pin_mask, value); 584 585 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 586} 587 588static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio) 589{ 590 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 591 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 592 593 return cpm1_gc->irq[gpio] ? : -ENXIO; 594} 595 596static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val) 597{ 598 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 599 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 600 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 601 unsigned long flags; 602 u16 pin_mask = 1 << (15 - gpio); 603 604 spin_lock_irqsave(&cpm1_gc->lock, flags); 605 606 setbits16(&iop->dir, pin_mask); 607 __cpm1_gpio16_set(mm_gc, pin_mask, val); 608 609 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 610 611 return 0; 612} 613 614static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio) 615{ 616 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 617 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 618 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 619 unsigned long flags; 620 u16 pin_mask = 1 << (15 - gpio); 621 622 spin_lock_irqsave(&cpm1_gc->lock, flags); 623 624 clrbits16(&iop->dir, pin_mask); 625 626 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 627 628 return 0; 629} 630 631int cpm1_gpiochip_add16(struct device *dev) 632{ 633 struct device_node *np = dev->of_node; 634 struct cpm1_gpio16_chip *cpm1_gc; 635 struct of_mm_gpio_chip *mm_gc; 636 struct gpio_chip *gc; 637 u16 mask; 638 639 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL); 640 if (!cpm1_gc) 641 return -ENOMEM; 642 643 spin_lock_init(&cpm1_gc->lock); 644 645 if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) { 646 int i, j; 647 648 for (i = 0, j = 0; i < 16; i++) 649 if (mask & (1 << (15 - i))) 650 cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++); 651 } 652 653 mm_gc = &cpm1_gc->mm_gc; 654 gc = &mm_gc->gc; 655 656 mm_gc->save_regs = cpm1_gpio16_save_regs; 657 gc->ngpio = 16; 658 gc->direction_input = cpm1_gpio16_dir_in; 659 gc->direction_output = cpm1_gpio16_dir_out; 660 gc->get = cpm1_gpio16_get; 661 gc->set = cpm1_gpio16_set; 662 gc->to_irq = cpm1_gpio16_to_irq; 663 gc->parent = dev; 664 gc->owner = THIS_MODULE; 665 666 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc); 667} 668 669struct cpm1_gpio32_chip { 670 struct of_mm_gpio_chip mm_gc; 671 spinlock_t lock; 672 673 /* shadowed data register to clear/set bits safely */ 674 u32 cpdata; 675}; 676 677static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc) 678{ 679 struct cpm1_gpio32_chip *cpm1_gc = 680 container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc); 681 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 682 683 cpm1_gc->cpdata = in_be32(&iop->dat); 684} 685 686static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio) 687{ 688 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 689 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 690 u32 pin_mask; 691 692 pin_mask = 1 << (31 - gpio); 693 694 return !!(in_be32(&iop->dat) & pin_mask); 695} 696 697static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask, 698 int value) 699{ 700 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 701 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 702 703 if (value) 704 cpm1_gc->cpdata |= pin_mask; 705 else 706 cpm1_gc->cpdata &= ~pin_mask; 707 708 out_be32(&iop->dat, cpm1_gc->cpdata); 709} 710 711static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value) 712{ 713 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 714 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 715 unsigned long flags; 716 u32 pin_mask = 1 << (31 - gpio); 717 718 spin_lock_irqsave(&cpm1_gc->lock, flags); 719 720 __cpm1_gpio32_set(mm_gc, pin_mask, value); 721 722 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 723} 724 725static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val) 726{ 727 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 728 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 729 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 730 unsigned long flags; 731 u32 pin_mask = 1 << (31 - gpio); 732 733 spin_lock_irqsave(&cpm1_gc->lock, flags); 734 735 setbits32(&iop->dir, pin_mask); 736 __cpm1_gpio32_set(mm_gc, pin_mask, val); 737 738 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 739 740 return 0; 741} 742 743static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio) 744{ 745 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 746 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 747 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 748 unsigned long flags; 749 u32 pin_mask = 1 << (31 - gpio); 750 751 spin_lock_irqsave(&cpm1_gc->lock, flags); 752 753 clrbits32(&iop->dir, pin_mask); 754 755 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 756 757 return 0; 758} 759 760int cpm1_gpiochip_add32(struct device *dev) 761{ 762 struct device_node *np = dev->of_node; 763 struct cpm1_gpio32_chip *cpm1_gc; 764 struct of_mm_gpio_chip *mm_gc; 765 struct gpio_chip *gc; 766 767 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL); 768 if (!cpm1_gc) 769 return -ENOMEM; 770 771 spin_lock_init(&cpm1_gc->lock); 772 773 mm_gc = &cpm1_gc->mm_gc; 774 gc = &mm_gc->gc; 775 776 mm_gc->save_regs = cpm1_gpio32_save_regs; 777 gc->ngpio = 32; 778 gc->direction_input = cpm1_gpio32_dir_in; 779 gc->direction_output = cpm1_gpio32_dir_out; 780 gc->get = cpm1_gpio32_get; 781 gc->set = cpm1_gpio32_set; 782 gc->parent = dev; 783 gc->owner = THIS_MODULE; 784 785 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc); 786} 787 788#endif /* CONFIG_8xx_GPIO */