at v5.2-rc1 2130 lines 53 kB view raw
1/* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12#include <linux/fs.h> 13#include <linux/mm.h> 14#include <linux/err.h> 15#include <linux/module.h> 16#include <linux/slab.h> 17#include <linux/cpu.h> 18#include <linux/cpumask.h> 19#include <linux/vmstat.h> 20#include <linux/proc_fs.h> 21#include <linux/seq_file.h> 22#include <linux/debugfs.h> 23#include <linux/sched.h> 24#include <linux/math64.h> 25#include <linux/writeback.h> 26#include <linux/compaction.h> 27#include <linux/mm_inline.h> 28#include <linux/page_ext.h> 29#include <linux/page_owner.h> 30 31#include "internal.h" 32 33#define NUMA_STATS_THRESHOLD (U16_MAX - 2) 34 35#ifdef CONFIG_NUMA 36int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 37 38/* zero numa counters within a zone */ 39static void zero_zone_numa_counters(struct zone *zone) 40{ 41 int item, cpu; 42 43 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) { 44 atomic_long_set(&zone->vm_numa_stat[item], 0); 45 for_each_online_cpu(cpu) 46 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item] 47 = 0; 48 } 49} 50 51/* zero numa counters of all the populated zones */ 52static void zero_zones_numa_counters(void) 53{ 54 struct zone *zone; 55 56 for_each_populated_zone(zone) 57 zero_zone_numa_counters(zone); 58} 59 60/* zero global numa counters */ 61static void zero_global_numa_counters(void) 62{ 63 int item; 64 65 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) 66 atomic_long_set(&vm_numa_stat[item], 0); 67} 68 69static void invalid_numa_statistics(void) 70{ 71 zero_zones_numa_counters(); 72 zero_global_numa_counters(); 73} 74 75static DEFINE_MUTEX(vm_numa_stat_lock); 76 77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 78 void __user *buffer, size_t *length, loff_t *ppos) 79{ 80 int ret, oldval; 81 82 mutex_lock(&vm_numa_stat_lock); 83 if (write) 84 oldval = sysctl_vm_numa_stat; 85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 86 if (ret || !write) 87 goto out; 88 89 if (oldval == sysctl_vm_numa_stat) 90 goto out; 91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 92 static_branch_enable(&vm_numa_stat_key); 93 pr_info("enable numa statistics\n"); 94 } else { 95 static_branch_disable(&vm_numa_stat_key); 96 invalid_numa_statistics(); 97 pr_info("disable numa statistics, and clear numa counters\n"); 98 } 99 100out: 101 mutex_unlock(&vm_numa_stat_lock); 102 return ret; 103} 104#endif 105 106#ifdef CONFIG_VM_EVENT_COUNTERS 107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 110static void sum_vm_events(unsigned long *ret) 111{ 112 int cpu; 113 int i; 114 115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 117 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[i]; 122 } 123} 124 125/* 126 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it can change 128 * during and after execution of this function. 129*/ 130void all_vm_events(unsigned long *ret) 131{ 132 get_online_cpus(); 133 sum_vm_events(ret); 134 put_online_cpus(); 135} 136EXPORT_SYMBOL_GPL(all_vm_events); 137 138/* 139 * Fold the foreign cpu events into our own. 140 * 141 * This is adding to the events on one processor 142 * but keeps the global counts constant. 143 */ 144void vm_events_fold_cpu(int cpu) 145{ 146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 148 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 152 } 153} 154 155#endif /* CONFIG_VM_EVENT_COUNTERS */ 156 157/* 158 * Manage combined zone based / global counters 159 * 160 * vm_stat contains the global counters 161 */ 162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; 164atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 165EXPORT_SYMBOL(vm_zone_stat); 166EXPORT_SYMBOL(vm_numa_stat); 167EXPORT_SYMBOL(vm_node_stat); 168 169#ifdef CONFIG_SMP 170 171int calculate_pressure_threshold(struct zone *zone) 172{ 173 int threshold; 174 int watermark_distance; 175 176 /* 177 * As vmstats are not up to date, there is drift between the estimated 178 * and real values. For high thresholds and a high number of CPUs, it 179 * is possible for the min watermark to be breached while the estimated 180 * value looks fine. The pressure threshold is a reduced value such 181 * that even the maximum amount of drift will not accidentally breach 182 * the min watermark 183 */ 184 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 185 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 186 187 /* 188 * Maximum threshold is 125 189 */ 190 threshold = min(125, threshold); 191 192 return threshold; 193} 194 195int calculate_normal_threshold(struct zone *zone) 196{ 197 int threshold; 198 int mem; /* memory in 128 MB units */ 199 200 /* 201 * The threshold scales with the number of processors and the amount 202 * of memory per zone. More memory means that we can defer updates for 203 * longer, more processors could lead to more contention. 204 * fls() is used to have a cheap way of logarithmic scaling. 205 * 206 * Some sample thresholds: 207 * 208 * Threshold Processors (fls) Zonesize fls(mem+1) 209 * ------------------------------------------------------------------ 210 * 8 1 1 0.9-1 GB 4 211 * 16 2 2 0.9-1 GB 4 212 * 20 2 2 1-2 GB 5 213 * 24 2 2 2-4 GB 6 214 * 28 2 2 4-8 GB 7 215 * 32 2 2 8-16 GB 8 216 * 4 2 2 <128M 1 217 * 30 4 3 2-4 GB 5 218 * 48 4 3 8-16 GB 8 219 * 32 8 4 1-2 GB 4 220 * 32 8 4 0.9-1GB 4 221 * 10 16 5 <128M 1 222 * 40 16 5 900M 4 223 * 70 64 7 2-4 GB 5 224 * 84 64 7 4-8 GB 6 225 * 108 512 9 4-8 GB 6 226 * 125 1024 10 8-16 GB 8 227 * 125 1024 10 16-32 GB 9 228 */ 229 230 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 231 232 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 233 234 /* 235 * Maximum threshold is 125 236 */ 237 threshold = min(125, threshold); 238 239 return threshold; 240} 241 242/* 243 * Refresh the thresholds for each zone. 244 */ 245void refresh_zone_stat_thresholds(void) 246{ 247 struct pglist_data *pgdat; 248 struct zone *zone; 249 int cpu; 250 int threshold; 251 252 /* Zero current pgdat thresholds */ 253 for_each_online_pgdat(pgdat) { 254 for_each_online_cpu(cpu) { 255 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 256 } 257 } 258 259 for_each_populated_zone(zone) { 260 struct pglist_data *pgdat = zone->zone_pgdat; 261 unsigned long max_drift, tolerate_drift; 262 263 threshold = calculate_normal_threshold(zone); 264 265 for_each_online_cpu(cpu) { 266 int pgdat_threshold; 267 268 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 269 = threshold; 270 271 /* Base nodestat threshold on the largest populated zone. */ 272 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 273 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 274 = max(threshold, pgdat_threshold); 275 } 276 277 /* 278 * Only set percpu_drift_mark if there is a danger that 279 * NR_FREE_PAGES reports the low watermark is ok when in fact 280 * the min watermark could be breached by an allocation 281 */ 282 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 283 max_drift = num_online_cpus() * threshold; 284 if (max_drift > tolerate_drift) 285 zone->percpu_drift_mark = high_wmark_pages(zone) + 286 max_drift; 287 } 288} 289 290void set_pgdat_percpu_threshold(pg_data_t *pgdat, 291 int (*calculate_pressure)(struct zone *)) 292{ 293 struct zone *zone; 294 int cpu; 295 int threshold; 296 int i; 297 298 for (i = 0; i < pgdat->nr_zones; i++) { 299 zone = &pgdat->node_zones[i]; 300 if (!zone->percpu_drift_mark) 301 continue; 302 303 threshold = (*calculate_pressure)(zone); 304 for_each_online_cpu(cpu) 305 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 306 = threshold; 307 } 308} 309 310/* 311 * For use when we know that interrupts are disabled, 312 * or when we know that preemption is disabled and that 313 * particular counter cannot be updated from interrupt context. 314 */ 315void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 316 long delta) 317{ 318 struct per_cpu_pageset __percpu *pcp = zone->pageset; 319 s8 __percpu *p = pcp->vm_stat_diff + item; 320 long x; 321 long t; 322 323 x = delta + __this_cpu_read(*p); 324 325 t = __this_cpu_read(pcp->stat_threshold); 326 327 if (unlikely(x > t || x < -t)) { 328 zone_page_state_add(x, zone, item); 329 x = 0; 330 } 331 __this_cpu_write(*p, x); 332} 333EXPORT_SYMBOL(__mod_zone_page_state); 334 335void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 336 long delta) 337{ 338 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 339 s8 __percpu *p = pcp->vm_node_stat_diff + item; 340 long x; 341 long t; 342 343 x = delta + __this_cpu_read(*p); 344 345 t = __this_cpu_read(pcp->stat_threshold); 346 347 if (unlikely(x > t || x < -t)) { 348 node_page_state_add(x, pgdat, item); 349 x = 0; 350 } 351 __this_cpu_write(*p, x); 352} 353EXPORT_SYMBOL(__mod_node_page_state); 354 355/* 356 * Optimized increment and decrement functions. 357 * 358 * These are only for a single page and therefore can take a struct page * 359 * argument instead of struct zone *. This allows the inclusion of the code 360 * generated for page_zone(page) into the optimized functions. 361 * 362 * No overflow check is necessary and therefore the differential can be 363 * incremented or decremented in place which may allow the compilers to 364 * generate better code. 365 * The increment or decrement is known and therefore one boundary check can 366 * be omitted. 367 * 368 * NOTE: These functions are very performance sensitive. Change only 369 * with care. 370 * 371 * Some processors have inc/dec instructions that are atomic vs an interrupt. 372 * However, the code must first determine the differential location in a zone 373 * based on the processor number and then inc/dec the counter. There is no 374 * guarantee without disabling preemption that the processor will not change 375 * in between and therefore the atomicity vs. interrupt cannot be exploited 376 * in a useful way here. 377 */ 378void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 379{ 380 struct per_cpu_pageset __percpu *pcp = zone->pageset; 381 s8 __percpu *p = pcp->vm_stat_diff + item; 382 s8 v, t; 383 384 v = __this_cpu_inc_return(*p); 385 t = __this_cpu_read(pcp->stat_threshold); 386 if (unlikely(v > t)) { 387 s8 overstep = t >> 1; 388 389 zone_page_state_add(v + overstep, zone, item); 390 __this_cpu_write(*p, -overstep); 391 } 392} 393 394void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 395{ 396 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 397 s8 __percpu *p = pcp->vm_node_stat_diff + item; 398 s8 v, t; 399 400 v = __this_cpu_inc_return(*p); 401 t = __this_cpu_read(pcp->stat_threshold); 402 if (unlikely(v > t)) { 403 s8 overstep = t >> 1; 404 405 node_page_state_add(v + overstep, pgdat, item); 406 __this_cpu_write(*p, -overstep); 407 } 408} 409 410void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 411{ 412 __inc_zone_state(page_zone(page), item); 413} 414EXPORT_SYMBOL(__inc_zone_page_state); 415 416void __inc_node_page_state(struct page *page, enum node_stat_item item) 417{ 418 __inc_node_state(page_pgdat(page), item); 419} 420EXPORT_SYMBOL(__inc_node_page_state); 421 422void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 423{ 424 struct per_cpu_pageset __percpu *pcp = zone->pageset; 425 s8 __percpu *p = pcp->vm_stat_diff + item; 426 s8 v, t; 427 428 v = __this_cpu_dec_return(*p); 429 t = __this_cpu_read(pcp->stat_threshold); 430 if (unlikely(v < - t)) { 431 s8 overstep = t >> 1; 432 433 zone_page_state_add(v - overstep, zone, item); 434 __this_cpu_write(*p, overstep); 435 } 436} 437 438void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 439{ 440 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 441 s8 __percpu *p = pcp->vm_node_stat_diff + item; 442 s8 v, t; 443 444 v = __this_cpu_dec_return(*p); 445 t = __this_cpu_read(pcp->stat_threshold); 446 if (unlikely(v < - t)) { 447 s8 overstep = t >> 1; 448 449 node_page_state_add(v - overstep, pgdat, item); 450 __this_cpu_write(*p, overstep); 451 } 452} 453 454void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 455{ 456 __dec_zone_state(page_zone(page), item); 457} 458EXPORT_SYMBOL(__dec_zone_page_state); 459 460void __dec_node_page_state(struct page *page, enum node_stat_item item) 461{ 462 __dec_node_state(page_pgdat(page), item); 463} 464EXPORT_SYMBOL(__dec_node_page_state); 465 466#ifdef CONFIG_HAVE_CMPXCHG_LOCAL 467/* 468 * If we have cmpxchg_local support then we do not need to incur the overhead 469 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 470 * 471 * mod_state() modifies the zone counter state through atomic per cpu 472 * operations. 473 * 474 * Overstep mode specifies how overstep should handled: 475 * 0 No overstepping 476 * 1 Overstepping half of threshold 477 * -1 Overstepping minus half of threshold 478*/ 479static inline void mod_zone_state(struct zone *zone, 480 enum zone_stat_item item, long delta, int overstep_mode) 481{ 482 struct per_cpu_pageset __percpu *pcp = zone->pageset; 483 s8 __percpu *p = pcp->vm_stat_diff + item; 484 long o, n, t, z; 485 486 do { 487 z = 0; /* overflow to zone counters */ 488 489 /* 490 * The fetching of the stat_threshold is racy. We may apply 491 * a counter threshold to the wrong the cpu if we get 492 * rescheduled while executing here. However, the next 493 * counter update will apply the threshold again and 494 * therefore bring the counter under the threshold again. 495 * 496 * Most of the time the thresholds are the same anyways 497 * for all cpus in a zone. 498 */ 499 t = this_cpu_read(pcp->stat_threshold); 500 501 o = this_cpu_read(*p); 502 n = delta + o; 503 504 if (n > t || n < -t) { 505 int os = overstep_mode * (t >> 1) ; 506 507 /* Overflow must be added to zone counters */ 508 z = n + os; 509 n = -os; 510 } 511 } while (this_cpu_cmpxchg(*p, o, n) != o); 512 513 if (z) 514 zone_page_state_add(z, zone, item); 515} 516 517void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 518 long delta) 519{ 520 mod_zone_state(zone, item, delta, 0); 521} 522EXPORT_SYMBOL(mod_zone_page_state); 523 524void inc_zone_page_state(struct page *page, enum zone_stat_item item) 525{ 526 mod_zone_state(page_zone(page), item, 1, 1); 527} 528EXPORT_SYMBOL(inc_zone_page_state); 529 530void dec_zone_page_state(struct page *page, enum zone_stat_item item) 531{ 532 mod_zone_state(page_zone(page), item, -1, -1); 533} 534EXPORT_SYMBOL(dec_zone_page_state); 535 536static inline void mod_node_state(struct pglist_data *pgdat, 537 enum node_stat_item item, int delta, int overstep_mode) 538{ 539 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 540 s8 __percpu *p = pcp->vm_node_stat_diff + item; 541 long o, n, t, z; 542 543 do { 544 z = 0; /* overflow to node counters */ 545 546 /* 547 * The fetching of the stat_threshold is racy. We may apply 548 * a counter threshold to the wrong the cpu if we get 549 * rescheduled while executing here. However, the next 550 * counter update will apply the threshold again and 551 * therefore bring the counter under the threshold again. 552 * 553 * Most of the time the thresholds are the same anyways 554 * for all cpus in a node. 555 */ 556 t = this_cpu_read(pcp->stat_threshold); 557 558 o = this_cpu_read(*p); 559 n = delta + o; 560 561 if (n > t || n < -t) { 562 int os = overstep_mode * (t >> 1) ; 563 564 /* Overflow must be added to node counters */ 565 z = n + os; 566 n = -os; 567 } 568 } while (this_cpu_cmpxchg(*p, o, n) != o); 569 570 if (z) 571 node_page_state_add(z, pgdat, item); 572} 573 574void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 575 long delta) 576{ 577 mod_node_state(pgdat, item, delta, 0); 578} 579EXPORT_SYMBOL(mod_node_page_state); 580 581void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 582{ 583 mod_node_state(pgdat, item, 1, 1); 584} 585 586void inc_node_page_state(struct page *page, enum node_stat_item item) 587{ 588 mod_node_state(page_pgdat(page), item, 1, 1); 589} 590EXPORT_SYMBOL(inc_node_page_state); 591 592void dec_node_page_state(struct page *page, enum node_stat_item item) 593{ 594 mod_node_state(page_pgdat(page), item, -1, -1); 595} 596EXPORT_SYMBOL(dec_node_page_state); 597#else 598/* 599 * Use interrupt disable to serialize counter updates 600 */ 601void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 602 long delta) 603{ 604 unsigned long flags; 605 606 local_irq_save(flags); 607 __mod_zone_page_state(zone, item, delta); 608 local_irq_restore(flags); 609} 610EXPORT_SYMBOL(mod_zone_page_state); 611 612void inc_zone_page_state(struct page *page, enum zone_stat_item item) 613{ 614 unsigned long flags; 615 struct zone *zone; 616 617 zone = page_zone(page); 618 local_irq_save(flags); 619 __inc_zone_state(zone, item); 620 local_irq_restore(flags); 621} 622EXPORT_SYMBOL(inc_zone_page_state); 623 624void dec_zone_page_state(struct page *page, enum zone_stat_item item) 625{ 626 unsigned long flags; 627 628 local_irq_save(flags); 629 __dec_zone_page_state(page, item); 630 local_irq_restore(flags); 631} 632EXPORT_SYMBOL(dec_zone_page_state); 633 634void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 635{ 636 unsigned long flags; 637 638 local_irq_save(flags); 639 __inc_node_state(pgdat, item); 640 local_irq_restore(flags); 641} 642EXPORT_SYMBOL(inc_node_state); 643 644void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 645 long delta) 646{ 647 unsigned long flags; 648 649 local_irq_save(flags); 650 __mod_node_page_state(pgdat, item, delta); 651 local_irq_restore(flags); 652} 653EXPORT_SYMBOL(mod_node_page_state); 654 655void inc_node_page_state(struct page *page, enum node_stat_item item) 656{ 657 unsigned long flags; 658 struct pglist_data *pgdat; 659 660 pgdat = page_pgdat(page); 661 local_irq_save(flags); 662 __inc_node_state(pgdat, item); 663 local_irq_restore(flags); 664} 665EXPORT_SYMBOL(inc_node_page_state); 666 667void dec_node_page_state(struct page *page, enum node_stat_item item) 668{ 669 unsigned long flags; 670 671 local_irq_save(flags); 672 __dec_node_page_state(page, item); 673 local_irq_restore(flags); 674} 675EXPORT_SYMBOL(dec_node_page_state); 676#endif 677 678/* 679 * Fold a differential into the global counters. 680 * Returns the number of counters updated. 681 */ 682#ifdef CONFIG_NUMA 683static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) 684{ 685 int i; 686 int changes = 0; 687 688 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 689 if (zone_diff[i]) { 690 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 691 changes++; 692 } 693 694 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 695 if (numa_diff[i]) { 696 atomic_long_add(numa_diff[i], &vm_numa_stat[i]); 697 changes++; 698 } 699 700 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 701 if (node_diff[i]) { 702 atomic_long_add(node_diff[i], &vm_node_stat[i]); 703 changes++; 704 } 705 return changes; 706} 707#else 708static int fold_diff(int *zone_diff, int *node_diff) 709{ 710 int i; 711 int changes = 0; 712 713 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 714 if (zone_diff[i]) { 715 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 716 changes++; 717 } 718 719 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 720 if (node_diff[i]) { 721 atomic_long_add(node_diff[i], &vm_node_stat[i]); 722 changes++; 723 } 724 return changes; 725} 726#endif /* CONFIG_NUMA */ 727 728/* 729 * Update the zone counters for the current cpu. 730 * 731 * Note that refresh_cpu_vm_stats strives to only access 732 * node local memory. The per cpu pagesets on remote zones are placed 733 * in the memory local to the processor using that pageset. So the 734 * loop over all zones will access a series of cachelines local to 735 * the processor. 736 * 737 * The call to zone_page_state_add updates the cachelines with the 738 * statistics in the remote zone struct as well as the global cachelines 739 * with the global counters. These could cause remote node cache line 740 * bouncing and will have to be only done when necessary. 741 * 742 * The function returns the number of global counters updated. 743 */ 744static int refresh_cpu_vm_stats(bool do_pagesets) 745{ 746 struct pglist_data *pgdat; 747 struct zone *zone; 748 int i; 749 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 750#ifdef CONFIG_NUMA 751 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 752#endif 753 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 754 int changes = 0; 755 756 for_each_populated_zone(zone) { 757 struct per_cpu_pageset __percpu *p = zone->pageset; 758 759 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 760 int v; 761 762 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 763 if (v) { 764 765 atomic_long_add(v, &zone->vm_stat[i]); 766 global_zone_diff[i] += v; 767#ifdef CONFIG_NUMA 768 /* 3 seconds idle till flush */ 769 __this_cpu_write(p->expire, 3); 770#endif 771 } 772 } 773#ifdef CONFIG_NUMA 774 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 775 int v; 776 777 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); 778 if (v) { 779 780 atomic_long_add(v, &zone->vm_numa_stat[i]); 781 global_numa_diff[i] += v; 782 __this_cpu_write(p->expire, 3); 783 } 784 } 785 786 if (do_pagesets) { 787 cond_resched(); 788 /* 789 * Deal with draining the remote pageset of this 790 * processor 791 * 792 * Check if there are pages remaining in this pageset 793 * if not then there is nothing to expire. 794 */ 795 if (!__this_cpu_read(p->expire) || 796 !__this_cpu_read(p->pcp.count)) 797 continue; 798 799 /* 800 * We never drain zones local to this processor. 801 */ 802 if (zone_to_nid(zone) == numa_node_id()) { 803 __this_cpu_write(p->expire, 0); 804 continue; 805 } 806 807 if (__this_cpu_dec_return(p->expire)) 808 continue; 809 810 if (__this_cpu_read(p->pcp.count)) { 811 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 812 changes++; 813 } 814 } 815#endif 816 } 817 818 for_each_online_pgdat(pgdat) { 819 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 820 821 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 822 int v; 823 824 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 825 if (v) { 826 atomic_long_add(v, &pgdat->vm_stat[i]); 827 global_node_diff[i] += v; 828 } 829 } 830 } 831 832#ifdef CONFIG_NUMA 833 changes += fold_diff(global_zone_diff, global_numa_diff, 834 global_node_diff); 835#else 836 changes += fold_diff(global_zone_diff, global_node_diff); 837#endif 838 return changes; 839} 840 841/* 842 * Fold the data for an offline cpu into the global array. 843 * There cannot be any access by the offline cpu and therefore 844 * synchronization is simplified. 845 */ 846void cpu_vm_stats_fold(int cpu) 847{ 848 struct pglist_data *pgdat; 849 struct zone *zone; 850 int i; 851 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 852#ifdef CONFIG_NUMA 853 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 854#endif 855 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 856 857 for_each_populated_zone(zone) { 858 struct per_cpu_pageset *p; 859 860 p = per_cpu_ptr(zone->pageset, cpu); 861 862 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 863 if (p->vm_stat_diff[i]) { 864 int v; 865 866 v = p->vm_stat_diff[i]; 867 p->vm_stat_diff[i] = 0; 868 atomic_long_add(v, &zone->vm_stat[i]); 869 global_zone_diff[i] += v; 870 } 871 872#ifdef CONFIG_NUMA 873 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 874 if (p->vm_numa_stat_diff[i]) { 875 int v; 876 877 v = p->vm_numa_stat_diff[i]; 878 p->vm_numa_stat_diff[i] = 0; 879 atomic_long_add(v, &zone->vm_numa_stat[i]); 880 global_numa_diff[i] += v; 881 } 882#endif 883 } 884 885 for_each_online_pgdat(pgdat) { 886 struct per_cpu_nodestat *p; 887 888 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 889 890 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 891 if (p->vm_node_stat_diff[i]) { 892 int v; 893 894 v = p->vm_node_stat_diff[i]; 895 p->vm_node_stat_diff[i] = 0; 896 atomic_long_add(v, &pgdat->vm_stat[i]); 897 global_node_diff[i] += v; 898 } 899 } 900 901#ifdef CONFIG_NUMA 902 fold_diff(global_zone_diff, global_numa_diff, global_node_diff); 903#else 904 fold_diff(global_zone_diff, global_node_diff); 905#endif 906} 907 908/* 909 * this is only called if !populated_zone(zone), which implies no other users of 910 * pset->vm_stat_diff[] exsist. 911 */ 912void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 913{ 914 int i; 915 916 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 917 if (pset->vm_stat_diff[i]) { 918 int v = pset->vm_stat_diff[i]; 919 pset->vm_stat_diff[i] = 0; 920 atomic_long_add(v, &zone->vm_stat[i]); 921 atomic_long_add(v, &vm_zone_stat[i]); 922 } 923 924#ifdef CONFIG_NUMA 925 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 926 if (pset->vm_numa_stat_diff[i]) { 927 int v = pset->vm_numa_stat_diff[i]; 928 929 pset->vm_numa_stat_diff[i] = 0; 930 atomic_long_add(v, &zone->vm_numa_stat[i]); 931 atomic_long_add(v, &vm_numa_stat[i]); 932 } 933#endif 934} 935#endif 936 937#ifdef CONFIG_NUMA 938void __inc_numa_state(struct zone *zone, 939 enum numa_stat_item item) 940{ 941 struct per_cpu_pageset __percpu *pcp = zone->pageset; 942 u16 __percpu *p = pcp->vm_numa_stat_diff + item; 943 u16 v; 944 945 v = __this_cpu_inc_return(*p); 946 947 if (unlikely(v > NUMA_STATS_THRESHOLD)) { 948 zone_numa_state_add(v, zone, item); 949 __this_cpu_write(*p, 0); 950 } 951} 952 953/* 954 * Determine the per node value of a stat item. This function 955 * is called frequently in a NUMA machine, so try to be as 956 * frugal as possible. 957 */ 958unsigned long sum_zone_node_page_state(int node, 959 enum zone_stat_item item) 960{ 961 struct zone *zones = NODE_DATA(node)->node_zones; 962 int i; 963 unsigned long count = 0; 964 965 for (i = 0; i < MAX_NR_ZONES; i++) 966 count += zone_page_state(zones + i, item); 967 968 return count; 969} 970 971/* 972 * Determine the per node value of a numa stat item. To avoid deviation, 973 * the per cpu stat number in vm_numa_stat_diff[] is also included. 974 */ 975unsigned long sum_zone_numa_state(int node, 976 enum numa_stat_item item) 977{ 978 struct zone *zones = NODE_DATA(node)->node_zones; 979 int i; 980 unsigned long count = 0; 981 982 for (i = 0; i < MAX_NR_ZONES; i++) 983 count += zone_numa_state_snapshot(zones + i, item); 984 985 return count; 986} 987 988/* 989 * Determine the per node value of a stat item. 990 */ 991unsigned long node_page_state(struct pglist_data *pgdat, 992 enum node_stat_item item) 993{ 994 long x = atomic_long_read(&pgdat->vm_stat[item]); 995#ifdef CONFIG_SMP 996 if (x < 0) 997 x = 0; 998#endif 999 return x; 1000} 1001#endif 1002 1003#ifdef CONFIG_COMPACTION 1004 1005struct contig_page_info { 1006 unsigned long free_pages; 1007 unsigned long free_blocks_total; 1008 unsigned long free_blocks_suitable; 1009}; 1010 1011/* 1012 * Calculate the number of free pages in a zone, how many contiguous 1013 * pages are free and how many are large enough to satisfy an allocation of 1014 * the target size. Note that this function makes no attempt to estimate 1015 * how many suitable free blocks there *might* be if MOVABLE pages were 1016 * migrated. Calculating that is possible, but expensive and can be 1017 * figured out from userspace 1018 */ 1019static void fill_contig_page_info(struct zone *zone, 1020 unsigned int suitable_order, 1021 struct contig_page_info *info) 1022{ 1023 unsigned int order; 1024 1025 info->free_pages = 0; 1026 info->free_blocks_total = 0; 1027 info->free_blocks_suitable = 0; 1028 1029 for (order = 0; order < MAX_ORDER; order++) { 1030 unsigned long blocks; 1031 1032 /* Count number of free blocks */ 1033 blocks = zone->free_area[order].nr_free; 1034 info->free_blocks_total += blocks; 1035 1036 /* Count free base pages */ 1037 info->free_pages += blocks << order; 1038 1039 /* Count the suitable free blocks */ 1040 if (order >= suitable_order) 1041 info->free_blocks_suitable += blocks << 1042 (order - suitable_order); 1043 } 1044} 1045 1046/* 1047 * A fragmentation index only makes sense if an allocation of a requested 1048 * size would fail. If that is true, the fragmentation index indicates 1049 * whether external fragmentation or a lack of memory was the problem. 1050 * The value can be used to determine if page reclaim or compaction 1051 * should be used 1052 */ 1053static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1054{ 1055 unsigned long requested = 1UL << order; 1056 1057 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1058 return 0; 1059 1060 if (!info->free_blocks_total) 1061 return 0; 1062 1063 /* Fragmentation index only makes sense when a request would fail */ 1064 if (info->free_blocks_suitable) 1065 return -1000; 1066 1067 /* 1068 * Index is between 0 and 1 so return within 3 decimal places 1069 * 1070 * 0 => allocation would fail due to lack of memory 1071 * 1 => allocation would fail due to fragmentation 1072 */ 1073 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1074} 1075 1076/* Same as __fragmentation index but allocs contig_page_info on stack */ 1077int fragmentation_index(struct zone *zone, unsigned int order) 1078{ 1079 struct contig_page_info info; 1080 1081 fill_contig_page_info(zone, order, &info); 1082 return __fragmentation_index(order, &info); 1083} 1084#endif 1085 1086#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 1087#ifdef CONFIG_ZONE_DMA 1088#define TEXT_FOR_DMA(xx) xx "_dma", 1089#else 1090#define TEXT_FOR_DMA(xx) 1091#endif 1092 1093#ifdef CONFIG_ZONE_DMA32 1094#define TEXT_FOR_DMA32(xx) xx "_dma32", 1095#else 1096#define TEXT_FOR_DMA32(xx) 1097#endif 1098 1099#ifdef CONFIG_HIGHMEM 1100#define TEXT_FOR_HIGHMEM(xx) xx "_high", 1101#else 1102#define TEXT_FOR_HIGHMEM(xx) 1103#endif 1104 1105#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1106 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1107 1108const char * const vmstat_text[] = { 1109 /* enum zone_stat_item countes */ 1110 "nr_free_pages", 1111 "nr_zone_inactive_anon", 1112 "nr_zone_active_anon", 1113 "nr_zone_inactive_file", 1114 "nr_zone_active_file", 1115 "nr_zone_unevictable", 1116 "nr_zone_write_pending", 1117 "nr_mlock", 1118 "nr_page_table_pages", 1119 "nr_kernel_stack", 1120 "nr_bounce", 1121#if IS_ENABLED(CONFIG_ZSMALLOC) 1122 "nr_zspages", 1123#endif 1124 "nr_free_cma", 1125 1126 /* enum numa_stat_item counters */ 1127#ifdef CONFIG_NUMA 1128 "numa_hit", 1129 "numa_miss", 1130 "numa_foreign", 1131 "numa_interleave", 1132 "numa_local", 1133 "numa_other", 1134#endif 1135 1136 /* Node-based counters */ 1137 "nr_inactive_anon", 1138 "nr_active_anon", 1139 "nr_inactive_file", 1140 "nr_active_file", 1141 "nr_unevictable", 1142 "nr_slab_reclaimable", 1143 "nr_slab_unreclaimable", 1144 "nr_isolated_anon", 1145 "nr_isolated_file", 1146 "workingset_nodes", 1147 "workingset_refault", 1148 "workingset_activate", 1149 "workingset_restore", 1150 "workingset_nodereclaim", 1151 "nr_anon_pages", 1152 "nr_mapped", 1153 "nr_file_pages", 1154 "nr_dirty", 1155 "nr_writeback", 1156 "nr_writeback_temp", 1157 "nr_shmem", 1158 "nr_shmem_hugepages", 1159 "nr_shmem_pmdmapped", 1160 "nr_anon_transparent_hugepages", 1161 "nr_unstable", 1162 "nr_vmscan_write", 1163 "nr_vmscan_immediate_reclaim", 1164 "nr_dirtied", 1165 "nr_written", 1166 "nr_kernel_misc_reclaimable", 1167 1168 /* enum writeback_stat_item counters */ 1169 "nr_dirty_threshold", 1170 "nr_dirty_background_threshold", 1171 1172#ifdef CONFIG_VM_EVENT_COUNTERS 1173 /* enum vm_event_item counters */ 1174 "pgpgin", 1175 "pgpgout", 1176 "pswpin", 1177 "pswpout", 1178 1179 TEXTS_FOR_ZONES("pgalloc") 1180 TEXTS_FOR_ZONES("allocstall") 1181 TEXTS_FOR_ZONES("pgskip") 1182 1183 "pgfree", 1184 "pgactivate", 1185 "pgdeactivate", 1186 "pglazyfree", 1187 1188 "pgfault", 1189 "pgmajfault", 1190 "pglazyfreed", 1191 1192 "pgrefill", 1193 "pgsteal_kswapd", 1194 "pgsteal_direct", 1195 "pgscan_kswapd", 1196 "pgscan_direct", 1197 "pgscan_direct_throttle", 1198 1199#ifdef CONFIG_NUMA 1200 "zone_reclaim_failed", 1201#endif 1202 "pginodesteal", 1203 "slabs_scanned", 1204 "kswapd_inodesteal", 1205 "kswapd_low_wmark_hit_quickly", 1206 "kswapd_high_wmark_hit_quickly", 1207 "pageoutrun", 1208 1209 "pgrotated", 1210 1211 "drop_pagecache", 1212 "drop_slab", 1213 "oom_kill", 1214 1215#ifdef CONFIG_NUMA_BALANCING 1216 "numa_pte_updates", 1217 "numa_huge_pte_updates", 1218 "numa_hint_faults", 1219 "numa_hint_faults_local", 1220 "numa_pages_migrated", 1221#endif 1222#ifdef CONFIG_MIGRATION 1223 "pgmigrate_success", 1224 "pgmigrate_fail", 1225#endif 1226#ifdef CONFIG_COMPACTION 1227 "compact_migrate_scanned", 1228 "compact_free_scanned", 1229 "compact_isolated", 1230 "compact_stall", 1231 "compact_fail", 1232 "compact_success", 1233 "compact_daemon_wake", 1234 "compact_daemon_migrate_scanned", 1235 "compact_daemon_free_scanned", 1236#endif 1237 1238#ifdef CONFIG_HUGETLB_PAGE 1239 "htlb_buddy_alloc_success", 1240 "htlb_buddy_alloc_fail", 1241#endif 1242 "unevictable_pgs_culled", 1243 "unevictable_pgs_scanned", 1244 "unevictable_pgs_rescued", 1245 "unevictable_pgs_mlocked", 1246 "unevictable_pgs_munlocked", 1247 "unevictable_pgs_cleared", 1248 "unevictable_pgs_stranded", 1249 1250#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1251 "thp_fault_alloc", 1252 "thp_fault_fallback", 1253 "thp_collapse_alloc", 1254 "thp_collapse_alloc_failed", 1255 "thp_file_alloc", 1256 "thp_file_mapped", 1257 "thp_split_page", 1258 "thp_split_page_failed", 1259 "thp_deferred_split_page", 1260 "thp_split_pmd", 1261#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1262 "thp_split_pud", 1263#endif 1264 "thp_zero_page_alloc", 1265 "thp_zero_page_alloc_failed", 1266 "thp_swpout", 1267 "thp_swpout_fallback", 1268#endif 1269#ifdef CONFIG_MEMORY_BALLOON 1270 "balloon_inflate", 1271 "balloon_deflate", 1272#ifdef CONFIG_BALLOON_COMPACTION 1273 "balloon_migrate", 1274#endif 1275#endif /* CONFIG_MEMORY_BALLOON */ 1276#ifdef CONFIG_DEBUG_TLBFLUSH 1277 "nr_tlb_remote_flush", 1278 "nr_tlb_remote_flush_received", 1279 "nr_tlb_local_flush_all", 1280 "nr_tlb_local_flush_one", 1281#endif /* CONFIG_DEBUG_TLBFLUSH */ 1282 1283#ifdef CONFIG_DEBUG_VM_VMACACHE 1284 "vmacache_find_calls", 1285 "vmacache_find_hits", 1286#endif 1287#ifdef CONFIG_SWAP 1288 "swap_ra", 1289 "swap_ra_hit", 1290#endif 1291#endif /* CONFIG_VM_EVENTS_COUNTERS */ 1292}; 1293#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 1294 1295#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1296 defined(CONFIG_PROC_FS) 1297static void *frag_start(struct seq_file *m, loff_t *pos) 1298{ 1299 pg_data_t *pgdat; 1300 loff_t node = *pos; 1301 1302 for (pgdat = first_online_pgdat(); 1303 pgdat && node; 1304 pgdat = next_online_pgdat(pgdat)) 1305 --node; 1306 1307 return pgdat; 1308} 1309 1310static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1311{ 1312 pg_data_t *pgdat = (pg_data_t *)arg; 1313 1314 (*pos)++; 1315 return next_online_pgdat(pgdat); 1316} 1317 1318static void frag_stop(struct seq_file *m, void *arg) 1319{ 1320} 1321 1322/* 1323 * Walk zones in a node and print using a callback. 1324 * If @assert_populated is true, only use callback for zones that are populated. 1325 */ 1326static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1327 bool assert_populated, bool nolock, 1328 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1329{ 1330 struct zone *zone; 1331 struct zone *node_zones = pgdat->node_zones; 1332 unsigned long flags; 1333 1334 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1335 if (assert_populated && !populated_zone(zone)) 1336 continue; 1337 1338 if (!nolock) 1339 spin_lock_irqsave(&zone->lock, flags); 1340 print(m, pgdat, zone); 1341 if (!nolock) 1342 spin_unlock_irqrestore(&zone->lock, flags); 1343 } 1344} 1345#endif 1346 1347#ifdef CONFIG_PROC_FS 1348static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1349 struct zone *zone) 1350{ 1351 int order; 1352 1353 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1354 for (order = 0; order < MAX_ORDER; ++order) 1355 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1356 seq_putc(m, '\n'); 1357} 1358 1359/* 1360 * This walks the free areas for each zone. 1361 */ 1362static int frag_show(struct seq_file *m, void *arg) 1363{ 1364 pg_data_t *pgdat = (pg_data_t *)arg; 1365 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1366 return 0; 1367} 1368 1369static void pagetypeinfo_showfree_print(struct seq_file *m, 1370 pg_data_t *pgdat, struct zone *zone) 1371{ 1372 int order, mtype; 1373 1374 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1375 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1376 pgdat->node_id, 1377 zone->name, 1378 migratetype_names[mtype]); 1379 for (order = 0; order < MAX_ORDER; ++order) { 1380 unsigned long freecount = 0; 1381 struct free_area *area; 1382 struct list_head *curr; 1383 1384 area = &(zone->free_area[order]); 1385 1386 list_for_each(curr, &area->free_list[mtype]) 1387 freecount++; 1388 seq_printf(m, "%6lu ", freecount); 1389 } 1390 seq_putc(m, '\n'); 1391 } 1392} 1393 1394/* Print out the free pages at each order for each migatetype */ 1395static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1396{ 1397 int order; 1398 pg_data_t *pgdat = (pg_data_t *)arg; 1399 1400 /* Print header */ 1401 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1402 for (order = 0; order < MAX_ORDER; ++order) 1403 seq_printf(m, "%6d ", order); 1404 seq_putc(m, '\n'); 1405 1406 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1407 1408 return 0; 1409} 1410 1411static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1412 pg_data_t *pgdat, struct zone *zone) 1413{ 1414 int mtype; 1415 unsigned long pfn; 1416 unsigned long start_pfn = zone->zone_start_pfn; 1417 unsigned long end_pfn = zone_end_pfn(zone); 1418 unsigned long count[MIGRATE_TYPES] = { 0, }; 1419 1420 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1421 struct page *page; 1422 1423 page = pfn_to_online_page(pfn); 1424 if (!page) 1425 continue; 1426 1427 /* Watch for unexpected holes punched in the memmap */ 1428 if (!memmap_valid_within(pfn, page, zone)) 1429 continue; 1430 1431 if (page_zone(page) != zone) 1432 continue; 1433 1434 mtype = get_pageblock_migratetype(page); 1435 1436 if (mtype < MIGRATE_TYPES) 1437 count[mtype]++; 1438 } 1439 1440 /* Print counts */ 1441 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1442 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1443 seq_printf(m, "%12lu ", count[mtype]); 1444 seq_putc(m, '\n'); 1445} 1446 1447/* Print out the number of pageblocks for each migratetype */ 1448static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1449{ 1450 int mtype; 1451 pg_data_t *pgdat = (pg_data_t *)arg; 1452 1453 seq_printf(m, "\n%-23s", "Number of blocks type "); 1454 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1455 seq_printf(m, "%12s ", migratetype_names[mtype]); 1456 seq_putc(m, '\n'); 1457 walk_zones_in_node(m, pgdat, true, false, 1458 pagetypeinfo_showblockcount_print); 1459 1460 return 0; 1461} 1462 1463/* 1464 * Print out the number of pageblocks for each migratetype that contain pages 1465 * of other types. This gives an indication of how well fallbacks are being 1466 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1467 * to determine what is going on 1468 */ 1469static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1470{ 1471#ifdef CONFIG_PAGE_OWNER 1472 int mtype; 1473 1474 if (!static_branch_unlikely(&page_owner_inited)) 1475 return; 1476 1477 drain_all_pages(NULL); 1478 1479 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1480 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1481 seq_printf(m, "%12s ", migratetype_names[mtype]); 1482 seq_putc(m, '\n'); 1483 1484 walk_zones_in_node(m, pgdat, true, true, 1485 pagetypeinfo_showmixedcount_print); 1486#endif /* CONFIG_PAGE_OWNER */ 1487} 1488 1489/* 1490 * This prints out statistics in relation to grouping pages by mobility. 1491 * It is expensive to collect so do not constantly read the file. 1492 */ 1493static int pagetypeinfo_show(struct seq_file *m, void *arg) 1494{ 1495 pg_data_t *pgdat = (pg_data_t *)arg; 1496 1497 /* check memoryless node */ 1498 if (!node_state(pgdat->node_id, N_MEMORY)) 1499 return 0; 1500 1501 seq_printf(m, "Page block order: %d\n", pageblock_order); 1502 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1503 seq_putc(m, '\n'); 1504 pagetypeinfo_showfree(m, pgdat); 1505 pagetypeinfo_showblockcount(m, pgdat); 1506 pagetypeinfo_showmixedcount(m, pgdat); 1507 1508 return 0; 1509} 1510 1511static const struct seq_operations fragmentation_op = { 1512 .start = frag_start, 1513 .next = frag_next, 1514 .stop = frag_stop, 1515 .show = frag_show, 1516}; 1517 1518static const struct seq_operations pagetypeinfo_op = { 1519 .start = frag_start, 1520 .next = frag_next, 1521 .stop = frag_stop, 1522 .show = pagetypeinfo_show, 1523}; 1524 1525static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1526{ 1527 int zid; 1528 1529 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1530 struct zone *compare = &pgdat->node_zones[zid]; 1531 1532 if (populated_zone(compare)) 1533 return zone == compare; 1534 } 1535 1536 return false; 1537} 1538 1539static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1540 struct zone *zone) 1541{ 1542 int i; 1543 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1544 if (is_zone_first_populated(pgdat, zone)) { 1545 seq_printf(m, "\n per-node stats"); 1546 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1547 seq_printf(m, "\n %-12s %lu", 1548 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + 1549 NR_VM_NUMA_STAT_ITEMS], 1550 node_page_state(pgdat, i)); 1551 } 1552 } 1553 seq_printf(m, 1554 "\n pages free %lu" 1555 "\n min %lu" 1556 "\n low %lu" 1557 "\n high %lu" 1558 "\n spanned %lu" 1559 "\n present %lu" 1560 "\n managed %lu", 1561 zone_page_state(zone, NR_FREE_PAGES), 1562 min_wmark_pages(zone), 1563 low_wmark_pages(zone), 1564 high_wmark_pages(zone), 1565 zone->spanned_pages, 1566 zone->present_pages, 1567 zone_managed_pages(zone)); 1568 1569 seq_printf(m, 1570 "\n protection: (%ld", 1571 zone->lowmem_reserve[0]); 1572 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1573 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1574 seq_putc(m, ')'); 1575 1576 /* If unpopulated, no other information is useful */ 1577 if (!populated_zone(zone)) { 1578 seq_putc(m, '\n'); 1579 return; 1580 } 1581 1582 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1583 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1584 zone_page_state(zone, i)); 1585 1586#ifdef CONFIG_NUMA 1587 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1588 seq_printf(m, "\n %-12s %lu", 1589 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], 1590 zone_numa_state_snapshot(zone, i)); 1591#endif 1592 1593 seq_printf(m, "\n pagesets"); 1594 for_each_online_cpu(i) { 1595 struct per_cpu_pageset *pageset; 1596 1597 pageset = per_cpu_ptr(zone->pageset, i); 1598 seq_printf(m, 1599 "\n cpu: %i" 1600 "\n count: %i" 1601 "\n high: %i" 1602 "\n batch: %i", 1603 i, 1604 pageset->pcp.count, 1605 pageset->pcp.high, 1606 pageset->pcp.batch); 1607#ifdef CONFIG_SMP 1608 seq_printf(m, "\n vm stats threshold: %d", 1609 pageset->stat_threshold); 1610#endif 1611 } 1612 seq_printf(m, 1613 "\n node_unreclaimable: %u" 1614 "\n start_pfn: %lu", 1615 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1616 zone->zone_start_pfn); 1617 seq_putc(m, '\n'); 1618} 1619 1620/* 1621 * Output information about zones in @pgdat. All zones are printed regardless 1622 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1623 * set of all zones and userspace would not be aware of such zones if they are 1624 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1625 */ 1626static int zoneinfo_show(struct seq_file *m, void *arg) 1627{ 1628 pg_data_t *pgdat = (pg_data_t *)arg; 1629 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1630 return 0; 1631} 1632 1633static const struct seq_operations zoneinfo_op = { 1634 .start = frag_start, /* iterate over all zones. The same as in 1635 * fragmentation. */ 1636 .next = frag_next, 1637 .stop = frag_stop, 1638 .show = zoneinfo_show, 1639}; 1640 1641enum writeback_stat_item { 1642 NR_DIRTY_THRESHOLD, 1643 NR_DIRTY_BG_THRESHOLD, 1644 NR_VM_WRITEBACK_STAT_ITEMS, 1645}; 1646 1647static void *vmstat_start(struct seq_file *m, loff_t *pos) 1648{ 1649 unsigned long *v; 1650 int i, stat_items_size; 1651 1652 if (*pos >= ARRAY_SIZE(vmstat_text)) 1653 return NULL; 1654 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1655 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) + 1656 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + 1657 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1658 1659#ifdef CONFIG_VM_EVENT_COUNTERS 1660 stat_items_size += sizeof(struct vm_event_state); 1661#endif 1662 1663 BUILD_BUG_ON(stat_items_size != 1664 ARRAY_SIZE(vmstat_text) * sizeof(unsigned long)); 1665 v = kmalloc(stat_items_size, GFP_KERNEL); 1666 m->private = v; 1667 if (!v) 1668 return ERR_PTR(-ENOMEM); 1669 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1670 v[i] = global_zone_page_state(i); 1671 v += NR_VM_ZONE_STAT_ITEMS; 1672 1673#ifdef CONFIG_NUMA 1674 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1675 v[i] = global_numa_state(i); 1676 v += NR_VM_NUMA_STAT_ITEMS; 1677#endif 1678 1679 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1680 v[i] = global_node_page_state(i); 1681 v += NR_VM_NODE_STAT_ITEMS; 1682 1683 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1684 v + NR_DIRTY_THRESHOLD); 1685 v += NR_VM_WRITEBACK_STAT_ITEMS; 1686 1687#ifdef CONFIG_VM_EVENT_COUNTERS 1688 all_vm_events(v); 1689 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1690 v[PGPGOUT] /= 2; 1691#endif 1692 return (unsigned long *)m->private + *pos; 1693} 1694 1695static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1696{ 1697 (*pos)++; 1698 if (*pos >= ARRAY_SIZE(vmstat_text)) 1699 return NULL; 1700 return (unsigned long *)m->private + *pos; 1701} 1702 1703static int vmstat_show(struct seq_file *m, void *arg) 1704{ 1705 unsigned long *l = arg; 1706 unsigned long off = l - (unsigned long *)m->private; 1707 1708 seq_puts(m, vmstat_text[off]); 1709 seq_put_decimal_ull(m, " ", *l); 1710 seq_putc(m, '\n'); 1711 return 0; 1712} 1713 1714static void vmstat_stop(struct seq_file *m, void *arg) 1715{ 1716 kfree(m->private); 1717 m->private = NULL; 1718} 1719 1720static const struct seq_operations vmstat_op = { 1721 .start = vmstat_start, 1722 .next = vmstat_next, 1723 .stop = vmstat_stop, 1724 .show = vmstat_show, 1725}; 1726#endif /* CONFIG_PROC_FS */ 1727 1728#ifdef CONFIG_SMP 1729static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1730int sysctl_stat_interval __read_mostly = HZ; 1731 1732#ifdef CONFIG_PROC_FS 1733static void refresh_vm_stats(struct work_struct *work) 1734{ 1735 refresh_cpu_vm_stats(true); 1736} 1737 1738int vmstat_refresh(struct ctl_table *table, int write, 1739 void __user *buffer, size_t *lenp, loff_t *ppos) 1740{ 1741 long val; 1742 int err; 1743 int i; 1744 1745 /* 1746 * The regular update, every sysctl_stat_interval, may come later 1747 * than expected: leaving a significant amount in per_cpu buckets. 1748 * This is particularly misleading when checking a quantity of HUGE 1749 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1750 * which can equally be echo'ed to or cat'ted from (by root), 1751 * can be used to update the stats just before reading them. 1752 * 1753 * Oh, and since global_zone_page_state() etc. are so careful to hide 1754 * transiently negative values, report an error here if any of 1755 * the stats is negative, so we know to go looking for imbalance. 1756 */ 1757 err = schedule_on_each_cpu(refresh_vm_stats); 1758 if (err) 1759 return err; 1760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1761 val = atomic_long_read(&vm_zone_stat[i]); 1762 if (val < 0) { 1763 pr_warn("%s: %s %ld\n", 1764 __func__, vmstat_text[i], val); 1765 err = -EINVAL; 1766 } 1767 } 1768#ifdef CONFIG_NUMA 1769 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 1770 val = atomic_long_read(&vm_numa_stat[i]); 1771 if (val < 0) { 1772 pr_warn("%s: %s %ld\n", 1773 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val); 1774 err = -EINVAL; 1775 } 1776 } 1777#endif 1778 if (err) 1779 return err; 1780 if (write) 1781 *ppos += *lenp; 1782 else 1783 *lenp = 0; 1784 return 0; 1785} 1786#endif /* CONFIG_PROC_FS */ 1787 1788static void vmstat_update(struct work_struct *w) 1789{ 1790 if (refresh_cpu_vm_stats(true)) { 1791 /* 1792 * Counters were updated so we expect more updates 1793 * to occur in the future. Keep on running the 1794 * update worker thread. 1795 */ 1796 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1797 this_cpu_ptr(&vmstat_work), 1798 round_jiffies_relative(sysctl_stat_interval)); 1799 } 1800} 1801 1802/* 1803 * Switch off vmstat processing and then fold all the remaining differentials 1804 * until the diffs stay at zero. The function is used by NOHZ and can only be 1805 * invoked when tick processing is not active. 1806 */ 1807/* 1808 * Check if the diffs for a certain cpu indicate that 1809 * an update is needed. 1810 */ 1811static bool need_update(int cpu) 1812{ 1813 struct zone *zone; 1814 1815 for_each_populated_zone(zone) { 1816 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1817 1818 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1819#ifdef CONFIG_NUMA 1820 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); 1821#endif 1822 1823 /* 1824 * The fast way of checking if there are any vmstat diffs. 1825 */ 1826 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS * 1827 sizeof(p->vm_stat_diff[0]))) 1828 return true; 1829#ifdef CONFIG_NUMA 1830 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS * 1831 sizeof(p->vm_numa_stat_diff[0]))) 1832 return true; 1833#endif 1834 } 1835 return false; 1836} 1837 1838/* 1839 * Switch off vmstat processing and then fold all the remaining differentials 1840 * until the diffs stay at zero. The function is used by NOHZ and can only be 1841 * invoked when tick processing is not active. 1842 */ 1843void quiet_vmstat(void) 1844{ 1845 if (system_state != SYSTEM_RUNNING) 1846 return; 1847 1848 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1849 return; 1850 1851 if (!need_update(smp_processor_id())) 1852 return; 1853 1854 /* 1855 * Just refresh counters and do not care about the pending delayed 1856 * vmstat_update. It doesn't fire that often to matter and canceling 1857 * it would be too expensive from this path. 1858 * vmstat_shepherd will take care about that for us. 1859 */ 1860 refresh_cpu_vm_stats(false); 1861} 1862 1863/* 1864 * Shepherd worker thread that checks the 1865 * differentials of processors that have their worker 1866 * threads for vm statistics updates disabled because of 1867 * inactivity. 1868 */ 1869static void vmstat_shepherd(struct work_struct *w); 1870 1871static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1872 1873static void vmstat_shepherd(struct work_struct *w) 1874{ 1875 int cpu; 1876 1877 get_online_cpus(); 1878 /* Check processors whose vmstat worker threads have been disabled */ 1879 for_each_online_cpu(cpu) { 1880 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1881 1882 if (!delayed_work_pending(dw) && need_update(cpu)) 1883 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1884 } 1885 put_online_cpus(); 1886 1887 schedule_delayed_work(&shepherd, 1888 round_jiffies_relative(sysctl_stat_interval)); 1889} 1890 1891static void __init start_shepherd_timer(void) 1892{ 1893 int cpu; 1894 1895 for_each_possible_cpu(cpu) 1896 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1897 vmstat_update); 1898 1899 schedule_delayed_work(&shepherd, 1900 round_jiffies_relative(sysctl_stat_interval)); 1901} 1902 1903static void __init init_cpu_node_state(void) 1904{ 1905 int node; 1906 1907 for_each_online_node(node) { 1908 if (cpumask_weight(cpumask_of_node(node)) > 0) 1909 node_set_state(node, N_CPU); 1910 } 1911} 1912 1913static int vmstat_cpu_online(unsigned int cpu) 1914{ 1915 refresh_zone_stat_thresholds(); 1916 node_set_state(cpu_to_node(cpu), N_CPU); 1917 return 0; 1918} 1919 1920static int vmstat_cpu_down_prep(unsigned int cpu) 1921{ 1922 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1923 return 0; 1924} 1925 1926static int vmstat_cpu_dead(unsigned int cpu) 1927{ 1928 const struct cpumask *node_cpus; 1929 int node; 1930 1931 node = cpu_to_node(cpu); 1932 1933 refresh_zone_stat_thresholds(); 1934 node_cpus = cpumask_of_node(node); 1935 if (cpumask_weight(node_cpus) > 0) 1936 return 0; 1937 1938 node_clear_state(node, N_CPU); 1939 return 0; 1940} 1941 1942#endif 1943 1944struct workqueue_struct *mm_percpu_wq; 1945 1946void __init init_mm_internals(void) 1947{ 1948 int ret __maybe_unused; 1949 1950 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 1951 1952#ifdef CONFIG_SMP 1953 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 1954 NULL, vmstat_cpu_dead); 1955 if (ret < 0) 1956 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 1957 1958 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 1959 vmstat_cpu_online, 1960 vmstat_cpu_down_prep); 1961 if (ret < 0) 1962 pr_err("vmstat: failed to register 'online' hotplug state\n"); 1963 1964 get_online_cpus(); 1965 init_cpu_node_state(); 1966 put_online_cpus(); 1967 1968 start_shepherd_timer(); 1969#endif 1970#ifdef CONFIG_PROC_FS 1971 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 1972 proc_create_seq("pagetypeinfo", 0444, NULL, &pagetypeinfo_op); 1973 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 1974 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 1975#endif 1976} 1977 1978#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1979 1980/* 1981 * Return an index indicating how much of the available free memory is 1982 * unusable for an allocation of the requested size. 1983 */ 1984static int unusable_free_index(unsigned int order, 1985 struct contig_page_info *info) 1986{ 1987 /* No free memory is interpreted as all free memory is unusable */ 1988 if (info->free_pages == 0) 1989 return 1000; 1990 1991 /* 1992 * Index should be a value between 0 and 1. Return a value to 3 1993 * decimal places. 1994 * 1995 * 0 => no fragmentation 1996 * 1 => high fragmentation 1997 */ 1998 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1999 2000} 2001 2002static void unusable_show_print(struct seq_file *m, 2003 pg_data_t *pgdat, struct zone *zone) 2004{ 2005 unsigned int order; 2006 int index; 2007 struct contig_page_info info; 2008 2009 seq_printf(m, "Node %d, zone %8s ", 2010 pgdat->node_id, 2011 zone->name); 2012 for (order = 0; order < MAX_ORDER; ++order) { 2013 fill_contig_page_info(zone, order, &info); 2014 index = unusable_free_index(order, &info); 2015 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2016 } 2017 2018 seq_putc(m, '\n'); 2019} 2020 2021/* 2022 * Display unusable free space index 2023 * 2024 * The unusable free space index measures how much of the available free 2025 * memory cannot be used to satisfy an allocation of a given size and is a 2026 * value between 0 and 1. The higher the value, the more of free memory is 2027 * unusable and by implication, the worse the external fragmentation is. This 2028 * can be expressed as a percentage by multiplying by 100. 2029 */ 2030static int unusable_show(struct seq_file *m, void *arg) 2031{ 2032 pg_data_t *pgdat = (pg_data_t *)arg; 2033 2034 /* check memoryless node */ 2035 if (!node_state(pgdat->node_id, N_MEMORY)) 2036 return 0; 2037 2038 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2039 2040 return 0; 2041} 2042 2043static const struct seq_operations unusable_op = { 2044 .start = frag_start, 2045 .next = frag_next, 2046 .stop = frag_stop, 2047 .show = unusable_show, 2048}; 2049 2050static int unusable_open(struct inode *inode, struct file *file) 2051{ 2052 return seq_open(file, &unusable_op); 2053} 2054 2055static const struct file_operations unusable_file_ops = { 2056 .open = unusable_open, 2057 .read = seq_read, 2058 .llseek = seq_lseek, 2059 .release = seq_release, 2060}; 2061 2062static void extfrag_show_print(struct seq_file *m, 2063 pg_data_t *pgdat, struct zone *zone) 2064{ 2065 unsigned int order; 2066 int index; 2067 2068 /* Alloc on stack as interrupts are disabled for zone walk */ 2069 struct contig_page_info info; 2070 2071 seq_printf(m, "Node %d, zone %8s ", 2072 pgdat->node_id, 2073 zone->name); 2074 for (order = 0; order < MAX_ORDER; ++order) { 2075 fill_contig_page_info(zone, order, &info); 2076 index = __fragmentation_index(order, &info); 2077 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2078 } 2079 2080 seq_putc(m, '\n'); 2081} 2082 2083/* 2084 * Display fragmentation index for orders that allocations would fail for 2085 */ 2086static int extfrag_show(struct seq_file *m, void *arg) 2087{ 2088 pg_data_t *pgdat = (pg_data_t *)arg; 2089 2090 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2091 2092 return 0; 2093} 2094 2095static const struct seq_operations extfrag_op = { 2096 .start = frag_start, 2097 .next = frag_next, 2098 .stop = frag_stop, 2099 .show = extfrag_show, 2100}; 2101 2102static int extfrag_open(struct inode *inode, struct file *file) 2103{ 2104 return seq_open(file, &extfrag_op); 2105} 2106 2107static const struct file_operations extfrag_file_ops = { 2108 .open = extfrag_open, 2109 .read = seq_read, 2110 .llseek = seq_lseek, 2111 .release = seq_release, 2112}; 2113 2114static int __init extfrag_debug_init(void) 2115{ 2116 struct dentry *extfrag_debug_root; 2117 2118 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2119 2120 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2121 &unusable_file_ops); 2122 2123 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2124 &extfrag_file_ops); 2125 2126 return 0; 2127} 2128 2129module_init(extfrag_debug_init); 2130#endif