Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
26#include <linux/page_counter.h>
27#include <linux/vmpressure.h>
28#include <linux/eventfd.h>
29#include <linux/mm.h>
30#include <linux/vmstat.h>
31#include <linux/writeback.h>
32#include <linux/page-flags.h>
33
34struct mem_cgroup;
35struct page;
36struct mm_struct;
37struct kmem_cache;
38
39/* Cgroup-specific page state, on top of universal node page state */
40enum memcg_stat_item {
41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 MEMCG_RSS,
43 MEMCG_RSS_HUGE,
44 MEMCG_SWAP,
45 MEMCG_SOCK,
46 /* XXX: why are these zone and not node counters? */
47 MEMCG_KERNEL_STACK_KB,
48 MEMCG_NR_STAT,
49};
50
51enum memcg_memory_event {
52 MEMCG_LOW,
53 MEMCG_HIGH,
54 MEMCG_MAX,
55 MEMCG_OOM,
56 MEMCG_OOM_KILL,
57 MEMCG_SWAP_MAX,
58 MEMCG_SWAP_FAIL,
59 MEMCG_NR_MEMORY_EVENTS,
60};
61
62enum mem_cgroup_protection {
63 MEMCG_PROT_NONE,
64 MEMCG_PROT_LOW,
65 MEMCG_PROT_MIN,
66};
67
68struct mem_cgroup_reclaim_cookie {
69 pg_data_t *pgdat;
70 int priority;
71 unsigned int generation;
72};
73
74#ifdef CONFIG_MEMCG
75
76#define MEM_CGROUP_ID_SHIFT 16
77#define MEM_CGROUP_ID_MAX USHRT_MAX
78
79struct mem_cgroup_id {
80 int id;
81 refcount_t ref;
82};
83
84/*
85 * Per memcg event counter is incremented at every pagein/pageout. With THP,
86 * it will be incremated by the number of pages. This counter is used for
87 * for trigger some periodic events. This is straightforward and better
88 * than using jiffies etc. to handle periodic memcg event.
89 */
90enum mem_cgroup_events_target {
91 MEM_CGROUP_TARGET_THRESH,
92 MEM_CGROUP_TARGET_SOFTLIMIT,
93 MEM_CGROUP_TARGET_NUMAINFO,
94 MEM_CGROUP_NTARGETS,
95};
96
97struct memcg_vmstats_percpu {
98 long stat[MEMCG_NR_STAT];
99 unsigned long events[NR_VM_EVENT_ITEMS];
100 unsigned long nr_page_events;
101 unsigned long targets[MEM_CGROUP_NTARGETS];
102};
103
104struct mem_cgroup_reclaim_iter {
105 struct mem_cgroup *position;
106 /* scan generation, increased every round-trip */
107 unsigned int generation;
108};
109
110struct lruvec_stat {
111 long count[NR_VM_NODE_STAT_ITEMS];
112};
113
114/*
115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116 * which have elements charged to this memcg.
117 */
118struct memcg_shrinker_map {
119 struct rcu_head rcu;
120 unsigned long map[0];
121};
122
123/*
124 * per-zone information in memory controller.
125 */
126struct mem_cgroup_per_node {
127 struct lruvec lruvec;
128
129 struct lruvec_stat __percpu *lruvec_stat_cpu;
130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131 atomic_long_t lruvec_stat_local[NR_VM_NODE_STAT_ITEMS];
132
133 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
134
135 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
136
137#ifdef CONFIG_MEMCG_KMEM
138 struct memcg_shrinker_map __rcu *shrinker_map;
139#endif
140 struct rb_node tree_node; /* RB tree node */
141 unsigned long usage_in_excess;/* Set to the value by which */
142 /* the soft limit is exceeded*/
143 bool on_tree;
144 bool congested; /* memcg has many dirty pages */
145 /* backed by a congested BDI */
146
147 struct mem_cgroup *memcg; /* Back pointer, we cannot */
148 /* use container_of */
149};
150
151struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 unsigned long threshold;
154};
155
156/* For threshold */
157struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below or equal to usage. */
159 int current_threshold;
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[0];
164};
165
166struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175};
176
177enum memcg_kmem_state {
178 KMEM_NONE,
179 KMEM_ALLOCATED,
180 KMEM_ONLINE,
181};
182
183#if defined(CONFIG_SMP)
184struct memcg_padding {
185 char x[0];
186} ____cacheline_internodealigned_in_smp;
187#define MEMCG_PADDING(name) struct memcg_padding name;
188#else
189#define MEMCG_PADDING(name)
190#endif
191
192/*
193 * The memory controller data structure. The memory controller controls both
194 * page cache and RSS per cgroup. We would eventually like to provide
195 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
196 * to help the administrator determine what knobs to tune.
197 */
198struct mem_cgroup {
199 struct cgroup_subsys_state css;
200
201 /* Private memcg ID. Used to ID objects that outlive the cgroup */
202 struct mem_cgroup_id id;
203
204 /* Accounted resources */
205 struct page_counter memory;
206 struct page_counter swap;
207
208 /* Legacy consumer-oriented counters */
209 struct page_counter memsw;
210 struct page_counter kmem;
211 struct page_counter tcpmem;
212
213 /* Upper bound of normal memory consumption range */
214 unsigned long high;
215
216 /* Range enforcement for interrupt charges */
217 struct work_struct high_work;
218
219 unsigned long soft_limit;
220
221 /* vmpressure notifications */
222 struct vmpressure vmpressure;
223
224 /*
225 * Should the accounting and control be hierarchical, per subtree?
226 */
227 bool use_hierarchy;
228
229 /*
230 * Should the OOM killer kill all belonging tasks, had it kill one?
231 */
232 bool oom_group;
233
234 /* protected by memcg_oom_lock */
235 bool oom_lock;
236 int under_oom;
237
238 int swappiness;
239 /* OOM-Killer disable */
240 int oom_kill_disable;
241
242 /* memory.events */
243 struct cgroup_file events_file;
244
245 /* handle for "memory.swap.events" */
246 struct cgroup_file swap_events_file;
247
248 /* protect arrays of thresholds */
249 struct mutex thresholds_lock;
250
251 /* thresholds for memory usage. RCU-protected */
252 struct mem_cgroup_thresholds thresholds;
253
254 /* thresholds for mem+swap usage. RCU-protected */
255 struct mem_cgroup_thresholds memsw_thresholds;
256
257 /* For oom notifier event fd */
258 struct list_head oom_notify;
259
260 /*
261 * Should we move charges of a task when a task is moved into this
262 * mem_cgroup ? And what type of charges should we move ?
263 */
264 unsigned long move_charge_at_immigrate;
265 /* taken only while moving_account > 0 */
266 spinlock_t move_lock;
267 unsigned long move_lock_flags;
268
269 MEMCG_PADDING(_pad1_);
270
271 /*
272 * set > 0 if pages under this cgroup are moving to other cgroup.
273 */
274 atomic_t moving_account;
275 struct task_struct *move_lock_task;
276
277 /* memory.stat */
278 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
279
280 MEMCG_PADDING(_pad2_);
281
282 atomic_long_t vmstats[MEMCG_NR_STAT];
283 atomic_long_t vmstats_local[MEMCG_NR_STAT];
284
285 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
286 atomic_long_t vmevents_local[NR_VM_EVENT_ITEMS];
287
288 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
289
290 unsigned long socket_pressure;
291
292 /* Legacy tcp memory accounting */
293 bool tcpmem_active;
294 int tcpmem_pressure;
295
296#ifdef CONFIG_MEMCG_KMEM
297 /* Index in the kmem_cache->memcg_params.memcg_caches array */
298 int kmemcg_id;
299 enum memcg_kmem_state kmem_state;
300 struct list_head kmem_caches;
301#endif
302
303 int last_scanned_node;
304#if MAX_NUMNODES > 1
305 nodemask_t scan_nodes;
306 atomic_t numainfo_events;
307 atomic_t numainfo_updating;
308#endif
309
310#ifdef CONFIG_CGROUP_WRITEBACK
311 struct list_head cgwb_list;
312 struct wb_domain cgwb_domain;
313#endif
314
315 /* List of events which userspace want to receive */
316 struct list_head event_list;
317 spinlock_t event_list_lock;
318
319 struct mem_cgroup_per_node *nodeinfo[0];
320 /* WARNING: nodeinfo must be the last member here */
321};
322
323/*
324 * size of first charge trial. "32" comes from vmscan.c's magic value.
325 * TODO: maybe necessary to use big numbers in big irons.
326 */
327#define MEMCG_CHARGE_BATCH 32U
328
329extern struct mem_cgroup *root_mem_cgroup;
330
331static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
332{
333 return (memcg == root_mem_cgroup);
334}
335
336static inline bool mem_cgroup_disabled(void)
337{
338 return !cgroup_subsys_enabled(memory_cgrp_subsys);
339}
340
341enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
342 struct mem_cgroup *memcg);
343
344int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
345 gfp_t gfp_mask, struct mem_cgroup **memcgp,
346 bool compound);
347int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
348 gfp_t gfp_mask, struct mem_cgroup **memcgp,
349 bool compound);
350void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
351 bool lrucare, bool compound);
352void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
353 bool compound);
354void mem_cgroup_uncharge(struct page *page);
355void mem_cgroup_uncharge_list(struct list_head *page_list);
356
357void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
358
359static struct mem_cgroup_per_node *
360mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
361{
362 return memcg->nodeinfo[nid];
363}
364
365/**
366 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
367 * @node: node of the wanted lruvec
368 * @memcg: memcg of the wanted lruvec
369 *
370 * Returns the lru list vector holding pages for a given @node or a given
371 * @memcg and @zone. This can be the node lruvec, if the memory controller
372 * is disabled.
373 */
374static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
375 struct mem_cgroup *memcg)
376{
377 struct mem_cgroup_per_node *mz;
378 struct lruvec *lruvec;
379
380 if (mem_cgroup_disabled()) {
381 lruvec = node_lruvec(pgdat);
382 goto out;
383 }
384
385 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
386 lruvec = &mz->lruvec;
387out:
388 /*
389 * Since a node can be onlined after the mem_cgroup was created,
390 * we have to be prepared to initialize lruvec->pgdat here;
391 * and if offlined then reonlined, we need to reinitialize it.
392 */
393 if (unlikely(lruvec->pgdat != pgdat))
394 lruvec->pgdat = pgdat;
395 return lruvec;
396}
397
398struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
399
400bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
401struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
402
403struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
404
405struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
406
407static inline
408struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
409 return css ? container_of(css, struct mem_cgroup, css) : NULL;
410}
411
412static inline void mem_cgroup_put(struct mem_cgroup *memcg)
413{
414 if (memcg)
415 css_put(&memcg->css);
416}
417
418#define mem_cgroup_from_counter(counter, member) \
419 container_of(counter, struct mem_cgroup, member)
420
421struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
422 struct mem_cgroup *,
423 struct mem_cgroup_reclaim_cookie *);
424void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
425int mem_cgroup_scan_tasks(struct mem_cgroup *,
426 int (*)(struct task_struct *, void *), void *);
427
428static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
429{
430 if (mem_cgroup_disabled())
431 return 0;
432
433 return memcg->id.id;
434}
435struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
436
437static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
438{
439 return mem_cgroup_from_css(seq_css(m));
440}
441
442static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
443{
444 struct mem_cgroup_per_node *mz;
445
446 if (mem_cgroup_disabled())
447 return NULL;
448
449 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
450 return mz->memcg;
451}
452
453/**
454 * parent_mem_cgroup - find the accounting parent of a memcg
455 * @memcg: memcg whose parent to find
456 *
457 * Returns the parent memcg, or NULL if this is the root or the memory
458 * controller is in legacy no-hierarchy mode.
459 */
460static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
461{
462 if (!memcg->memory.parent)
463 return NULL;
464 return mem_cgroup_from_counter(memcg->memory.parent, memory);
465}
466
467static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
468 struct mem_cgroup *root)
469{
470 if (root == memcg)
471 return true;
472 if (!root->use_hierarchy)
473 return false;
474 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
475}
476
477static inline bool mm_match_cgroup(struct mm_struct *mm,
478 struct mem_cgroup *memcg)
479{
480 struct mem_cgroup *task_memcg;
481 bool match = false;
482
483 rcu_read_lock();
484 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
485 if (task_memcg)
486 match = mem_cgroup_is_descendant(task_memcg, memcg);
487 rcu_read_unlock();
488 return match;
489}
490
491struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
492ino_t page_cgroup_ino(struct page *page);
493
494static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
495{
496 if (mem_cgroup_disabled())
497 return true;
498 return !!(memcg->css.flags & CSS_ONLINE);
499}
500
501/*
502 * For memory reclaim.
503 */
504int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
505
506void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
507 int zid, int nr_pages);
508
509static inline
510unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
511 enum lru_list lru, int zone_idx)
512{
513 struct mem_cgroup_per_node *mz;
514
515 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
516 return mz->lru_zone_size[zone_idx][lru];
517}
518
519void mem_cgroup_handle_over_high(void);
520
521unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
522
523void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
524 struct task_struct *p);
525
526void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
527
528static inline void mem_cgroup_enter_user_fault(void)
529{
530 WARN_ON(current->in_user_fault);
531 current->in_user_fault = 1;
532}
533
534static inline void mem_cgroup_exit_user_fault(void)
535{
536 WARN_ON(!current->in_user_fault);
537 current->in_user_fault = 0;
538}
539
540static inline bool task_in_memcg_oom(struct task_struct *p)
541{
542 return p->memcg_in_oom;
543}
544
545bool mem_cgroup_oom_synchronize(bool wait);
546struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
547 struct mem_cgroup *oom_domain);
548void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
549
550#ifdef CONFIG_MEMCG_SWAP
551extern int do_swap_account;
552#endif
553
554struct mem_cgroup *lock_page_memcg(struct page *page);
555void __unlock_page_memcg(struct mem_cgroup *memcg);
556void unlock_page_memcg(struct page *page);
557
558/*
559 * idx can be of type enum memcg_stat_item or node_stat_item.
560 * Keep in sync with memcg_exact_page_state().
561 */
562static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
563{
564 long x = atomic_long_read(&memcg->vmstats[idx]);
565#ifdef CONFIG_SMP
566 if (x < 0)
567 x = 0;
568#endif
569 return x;
570}
571
572/*
573 * idx can be of type enum memcg_stat_item or node_stat_item.
574 * Keep in sync with memcg_exact_page_state().
575 */
576static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
577 int idx)
578{
579 long x = atomic_long_read(&memcg->vmstats_local[idx]);
580#ifdef CONFIG_SMP
581 if (x < 0)
582 x = 0;
583#endif
584 return x;
585}
586
587void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
588
589/* idx can be of type enum memcg_stat_item or node_stat_item */
590static inline void mod_memcg_state(struct mem_cgroup *memcg,
591 int idx, int val)
592{
593 unsigned long flags;
594
595 local_irq_save(flags);
596 __mod_memcg_state(memcg, idx, val);
597 local_irq_restore(flags);
598}
599
600/**
601 * mod_memcg_page_state - update page state statistics
602 * @page: the page
603 * @idx: page state item to account
604 * @val: number of pages (positive or negative)
605 *
606 * The @page must be locked or the caller must use lock_page_memcg()
607 * to prevent double accounting when the page is concurrently being
608 * moved to another memcg:
609 *
610 * lock_page(page) or lock_page_memcg(page)
611 * if (TestClearPageState(page))
612 * mod_memcg_page_state(page, state, -1);
613 * unlock_page(page) or unlock_page_memcg(page)
614 *
615 * Kernel pages are an exception to this, since they'll never move.
616 */
617static inline void __mod_memcg_page_state(struct page *page,
618 int idx, int val)
619{
620 if (page->mem_cgroup)
621 __mod_memcg_state(page->mem_cgroup, idx, val);
622}
623
624static inline void mod_memcg_page_state(struct page *page,
625 int idx, int val)
626{
627 if (page->mem_cgroup)
628 mod_memcg_state(page->mem_cgroup, idx, val);
629}
630
631static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
632 enum node_stat_item idx)
633{
634 struct mem_cgroup_per_node *pn;
635 long x;
636
637 if (mem_cgroup_disabled())
638 return node_page_state(lruvec_pgdat(lruvec), idx);
639
640 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
641 x = atomic_long_read(&pn->lruvec_stat[idx]);
642#ifdef CONFIG_SMP
643 if (x < 0)
644 x = 0;
645#endif
646 return x;
647}
648
649static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
650 enum node_stat_item idx)
651{
652 struct mem_cgroup_per_node *pn;
653 long x;
654
655 if (mem_cgroup_disabled())
656 return node_page_state(lruvec_pgdat(lruvec), idx);
657
658 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
659 x = atomic_long_read(&pn->lruvec_stat_local[idx]);
660#ifdef CONFIG_SMP
661 if (x < 0)
662 x = 0;
663#endif
664 return x;
665}
666
667void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
668 int val);
669
670static inline void mod_lruvec_state(struct lruvec *lruvec,
671 enum node_stat_item idx, int val)
672{
673 unsigned long flags;
674
675 local_irq_save(flags);
676 __mod_lruvec_state(lruvec, idx, val);
677 local_irq_restore(flags);
678}
679
680static inline void __mod_lruvec_page_state(struct page *page,
681 enum node_stat_item idx, int val)
682{
683 pg_data_t *pgdat = page_pgdat(page);
684 struct lruvec *lruvec;
685
686 /* Untracked pages have no memcg, no lruvec. Update only the node */
687 if (!page->mem_cgroup) {
688 __mod_node_page_state(pgdat, idx, val);
689 return;
690 }
691
692 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
693 __mod_lruvec_state(lruvec, idx, val);
694}
695
696static inline void mod_lruvec_page_state(struct page *page,
697 enum node_stat_item idx, int val)
698{
699 unsigned long flags;
700
701 local_irq_save(flags);
702 __mod_lruvec_page_state(page, idx, val);
703 local_irq_restore(flags);
704}
705
706unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
707 gfp_t gfp_mask,
708 unsigned long *total_scanned);
709
710void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
711 unsigned long count);
712
713static inline void count_memcg_events(struct mem_cgroup *memcg,
714 enum vm_event_item idx,
715 unsigned long count)
716{
717 unsigned long flags;
718
719 local_irq_save(flags);
720 __count_memcg_events(memcg, idx, count);
721 local_irq_restore(flags);
722}
723
724static inline void count_memcg_page_event(struct page *page,
725 enum vm_event_item idx)
726{
727 if (page->mem_cgroup)
728 count_memcg_events(page->mem_cgroup, idx, 1);
729}
730
731static inline void count_memcg_event_mm(struct mm_struct *mm,
732 enum vm_event_item idx)
733{
734 struct mem_cgroup *memcg;
735
736 if (mem_cgroup_disabled())
737 return;
738
739 rcu_read_lock();
740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
741 if (likely(memcg))
742 count_memcg_events(memcg, idx, 1);
743 rcu_read_unlock();
744}
745
746static inline void memcg_memory_event(struct mem_cgroup *memcg,
747 enum memcg_memory_event event)
748{
749 atomic_long_inc(&memcg->memory_events[event]);
750 cgroup_file_notify(&memcg->events_file);
751}
752
753static inline void memcg_memory_event_mm(struct mm_struct *mm,
754 enum memcg_memory_event event)
755{
756 struct mem_cgroup *memcg;
757
758 if (mem_cgroup_disabled())
759 return;
760
761 rcu_read_lock();
762 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
763 if (likely(memcg))
764 memcg_memory_event(memcg, event);
765 rcu_read_unlock();
766}
767
768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
769void mem_cgroup_split_huge_fixup(struct page *head);
770#endif
771
772#else /* CONFIG_MEMCG */
773
774#define MEM_CGROUP_ID_SHIFT 0
775#define MEM_CGROUP_ID_MAX 0
776
777struct mem_cgroup;
778
779static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
780{
781 return true;
782}
783
784static inline bool mem_cgroup_disabled(void)
785{
786 return true;
787}
788
789static inline void memcg_memory_event(struct mem_cgroup *memcg,
790 enum memcg_memory_event event)
791{
792}
793
794static inline void memcg_memory_event_mm(struct mm_struct *mm,
795 enum memcg_memory_event event)
796{
797}
798
799static inline enum mem_cgroup_protection mem_cgroup_protected(
800 struct mem_cgroup *root, struct mem_cgroup *memcg)
801{
802 return MEMCG_PROT_NONE;
803}
804
805static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
806 gfp_t gfp_mask,
807 struct mem_cgroup **memcgp,
808 bool compound)
809{
810 *memcgp = NULL;
811 return 0;
812}
813
814static inline int mem_cgroup_try_charge_delay(struct page *page,
815 struct mm_struct *mm,
816 gfp_t gfp_mask,
817 struct mem_cgroup **memcgp,
818 bool compound)
819{
820 *memcgp = NULL;
821 return 0;
822}
823
824static inline void mem_cgroup_commit_charge(struct page *page,
825 struct mem_cgroup *memcg,
826 bool lrucare, bool compound)
827{
828}
829
830static inline void mem_cgroup_cancel_charge(struct page *page,
831 struct mem_cgroup *memcg,
832 bool compound)
833{
834}
835
836static inline void mem_cgroup_uncharge(struct page *page)
837{
838}
839
840static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
841{
842}
843
844static inline void mem_cgroup_migrate(struct page *old, struct page *new)
845{
846}
847
848static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
849 struct mem_cgroup *memcg)
850{
851 return node_lruvec(pgdat);
852}
853
854static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
855 struct pglist_data *pgdat)
856{
857 return &pgdat->lruvec;
858}
859
860static inline bool mm_match_cgroup(struct mm_struct *mm,
861 struct mem_cgroup *memcg)
862{
863 return true;
864}
865
866static inline bool task_in_mem_cgroup(struct task_struct *task,
867 const struct mem_cgroup *memcg)
868{
869 return true;
870}
871
872static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
873{
874 return NULL;
875}
876
877static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
878{
879 return NULL;
880}
881
882static inline void mem_cgroup_put(struct mem_cgroup *memcg)
883{
884}
885
886static inline struct mem_cgroup *
887mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
890{
891 return NULL;
892}
893
894static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
895 struct mem_cgroup *prev)
896{
897}
898
899static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
900 int (*fn)(struct task_struct *, void *), void *arg)
901{
902 return 0;
903}
904
905static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
906{
907 return 0;
908}
909
910static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
911{
912 WARN_ON_ONCE(id);
913 /* XXX: This should always return root_mem_cgroup */
914 return NULL;
915}
916
917static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
918{
919 return NULL;
920}
921
922static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
923{
924 return NULL;
925}
926
927static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
928{
929 return true;
930}
931
932static inline
933unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
934 enum lru_list lru, int zone_idx)
935{
936 return 0;
937}
938
939static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
940{
941 return 0;
942}
943
944static inline void
945mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
946{
947}
948
949static inline void
950mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
951{
952}
953
954static inline struct mem_cgroup *lock_page_memcg(struct page *page)
955{
956 return NULL;
957}
958
959static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
960{
961}
962
963static inline void unlock_page_memcg(struct page *page)
964{
965}
966
967static inline void mem_cgroup_handle_over_high(void)
968{
969}
970
971static inline void mem_cgroup_enter_user_fault(void)
972{
973}
974
975static inline void mem_cgroup_exit_user_fault(void)
976{
977}
978
979static inline bool task_in_memcg_oom(struct task_struct *p)
980{
981 return false;
982}
983
984static inline bool mem_cgroup_oom_synchronize(bool wait)
985{
986 return false;
987}
988
989static inline struct mem_cgroup *mem_cgroup_get_oom_group(
990 struct task_struct *victim, struct mem_cgroup *oom_domain)
991{
992 return NULL;
993}
994
995static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
996{
997}
998
999static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1000{
1001 return 0;
1002}
1003
1004static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1005 int idx)
1006{
1007 return 0;
1008}
1009
1010static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1011 int idx,
1012 int nr)
1013{
1014}
1015
1016static inline void mod_memcg_state(struct mem_cgroup *memcg,
1017 int idx,
1018 int nr)
1019{
1020}
1021
1022static inline void __mod_memcg_page_state(struct page *page,
1023 int idx,
1024 int nr)
1025{
1026}
1027
1028static inline void mod_memcg_page_state(struct page *page,
1029 int idx,
1030 int nr)
1031{
1032}
1033
1034static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1035 enum node_stat_item idx)
1036{
1037 return node_page_state(lruvec_pgdat(lruvec), idx);
1038}
1039
1040static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1041 enum node_stat_item idx)
1042{
1043 return node_page_state(lruvec_pgdat(lruvec), idx);
1044}
1045
1046static inline void __mod_lruvec_state(struct lruvec *lruvec,
1047 enum node_stat_item idx, int val)
1048{
1049 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1050}
1051
1052static inline void mod_lruvec_state(struct lruvec *lruvec,
1053 enum node_stat_item idx, int val)
1054{
1055 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1056}
1057
1058static inline void __mod_lruvec_page_state(struct page *page,
1059 enum node_stat_item idx, int val)
1060{
1061 __mod_node_page_state(page_pgdat(page), idx, val);
1062}
1063
1064static inline void mod_lruvec_page_state(struct page *page,
1065 enum node_stat_item idx, int val)
1066{
1067 mod_node_page_state(page_pgdat(page), idx, val);
1068}
1069
1070static inline
1071unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1072 gfp_t gfp_mask,
1073 unsigned long *total_scanned)
1074{
1075 return 0;
1076}
1077
1078static inline void mem_cgroup_split_huge_fixup(struct page *head)
1079{
1080}
1081
1082static inline void count_memcg_events(struct mem_cgroup *memcg,
1083 enum vm_event_item idx,
1084 unsigned long count)
1085{
1086}
1087
1088static inline void __count_memcg_events(struct mem_cgroup *memcg,
1089 enum vm_event_item idx,
1090 unsigned long count)
1091{
1092}
1093
1094static inline void count_memcg_page_event(struct page *page,
1095 int idx)
1096{
1097}
1098
1099static inline
1100void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1101{
1102}
1103#endif /* CONFIG_MEMCG */
1104
1105/* idx can be of type enum memcg_stat_item or node_stat_item */
1106static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1107 int idx)
1108{
1109 __mod_memcg_state(memcg, idx, 1);
1110}
1111
1112/* idx can be of type enum memcg_stat_item or node_stat_item */
1113static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1114 int idx)
1115{
1116 __mod_memcg_state(memcg, idx, -1);
1117}
1118
1119/* idx can be of type enum memcg_stat_item or node_stat_item */
1120static inline void __inc_memcg_page_state(struct page *page,
1121 int idx)
1122{
1123 __mod_memcg_page_state(page, idx, 1);
1124}
1125
1126/* idx can be of type enum memcg_stat_item or node_stat_item */
1127static inline void __dec_memcg_page_state(struct page *page,
1128 int idx)
1129{
1130 __mod_memcg_page_state(page, idx, -1);
1131}
1132
1133static inline void __inc_lruvec_state(struct lruvec *lruvec,
1134 enum node_stat_item idx)
1135{
1136 __mod_lruvec_state(lruvec, idx, 1);
1137}
1138
1139static inline void __dec_lruvec_state(struct lruvec *lruvec,
1140 enum node_stat_item idx)
1141{
1142 __mod_lruvec_state(lruvec, idx, -1);
1143}
1144
1145static inline void __inc_lruvec_page_state(struct page *page,
1146 enum node_stat_item idx)
1147{
1148 __mod_lruvec_page_state(page, idx, 1);
1149}
1150
1151static inline void __dec_lruvec_page_state(struct page *page,
1152 enum node_stat_item idx)
1153{
1154 __mod_lruvec_page_state(page, idx, -1);
1155}
1156
1157/* idx can be of type enum memcg_stat_item or node_stat_item */
1158static inline void inc_memcg_state(struct mem_cgroup *memcg,
1159 int idx)
1160{
1161 mod_memcg_state(memcg, idx, 1);
1162}
1163
1164/* idx can be of type enum memcg_stat_item or node_stat_item */
1165static inline void dec_memcg_state(struct mem_cgroup *memcg,
1166 int idx)
1167{
1168 mod_memcg_state(memcg, idx, -1);
1169}
1170
1171/* idx can be of type enum memcg_stat_item or node_stat_item */
1172static inline void inc_memcg_page_state(struct page *page,
1173 int idx)
1174{
1175 mod_memcg_page_state(page, idx, 1);
1176}
1177
1178/* idx can be of type enum memcg_stat_item or node_stat_item */
1179static inline void dec_memcg_page_state(struct page *page,
1180 int idx)
1181{
1182 mod_memcg_page_state(page, idx, -1);
1183}
1184
1185static inline void inc_lruvec_state(struct lruvec *lruvec,
1186 enum node_stat_item idx)
1187{
1188 mod_lruvec_state(lruvec, idx, 1);
1189}
1190
1191static inline void dec_lruvec_state(struct lruvec *lruvec,
1192 enum node_stat_item idx)
1193{
1194 mod_lruvec_state(lruvec, idx, -1);
1195}
1196
1197static inline void inc_lruvec_page_state(struct page *page,
1198 enum node_stat_item idx)
1199{
1200 mod_lruvec_page_state(page, idx, 1);
1201}
1202
1203static inline void dec_lruvec_page_state(struct page *page,
1204 enum node_stat_item idx)
1205{
1206 mod_lruvec_page_state(page, idx, -1);
1207}
1208
1209#ifdef CONFIG_CGROUP_WRITEBACK
1210
1211struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1212void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1213 unsigned long *pheadroom, unsigned long *pdirty,
1214 unsigned long *pwriteback);
1215
1216#else /* CONFIG_CGROUP_WRITEBACK */
1217
1218static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1219{
1220 return NULL;
1221}
1222
1223static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1224 unsigned long *pfilepages,
1225 unsigned long *pheadroom,
1226 unsigned long *pdirty,
1227 unsigned long *pwriteback)
1228{
1229}
1230
1231#endif /* CONFIG_CGROUP_WRITEBACK */
1232
1233struct sock;
1234bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1235void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1236#ifdef CONFIG_MEMCG
1237extern struct static_key_false memcg_sockets_enabled_key;
1238#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1239void mem_cgroup_sk_alloc(struct sock *sk);
1240void mem_cgroup_sk_free(struct sock *sk);
1241static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1242{
1243 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1244 return true;
1245 do {
1246 if (time_before(jiffies, memcg->socket_pressure))
1247 return true;
1248 } while ((memcg = parent_mem_cgroup(memcg)));
1249 return false;
1250}
1251#else
1252#define mem_cgroup_sockets_enabled 0
1253static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1254static inline void mem_cgroup_sk_free(struct sock *sk) { };
1255static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1256{
1257 return false;
1258}
1259#endif
1260
1261struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1262void memcg_kmem_put_cache(struct kmem_cache *cachep);
1263
1264#ifdef CONFIG_MEMCG_KMEM
1265int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1266void __memcg_kmem_uncharge(struct page *page, int order);
1267int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1268 struct mem_cgroup *memcg);
1269
1270extern struct static_key_false memcg_kmem_enabled_key;
1271extern struct workqueue_struct *memcg_kmem_cache_wq;
1272
1273extern int memcg_nr_cache_ids;
1274void memcg_get_cache_ids(void);
1275void memcg_put_cache_ids(void);
1276
1277/*
1278 * Helper macro to loop through all memcg-specific caches. Callers must still
1279 * check if the cache is valid (it is either valid or NULL).
1280 * the slab_mutex must be held when looping through those caches
1281 */
1282#define for_each_memcg_cache_index(_idx) \
1283 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1284
1285static inline bool memcg_kmem_enabled(void)
1286{
1287 return static_branch_unlikely(&memcg_kmem_enabled_key);
1288}
1289
1290static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1291{
1292 if (memcg_kmem_enabled())
1293 return __memcg_kmem_charge(page, gfp, order);
1294 return 0;
1295}
1296
1297static inline void memcg_kmem_uncharge(struct page *page, int order)
1298{
1299 if (memcg_kmem_enabled())
1300 __memcg_kmem_uncharge(page, order);
1301}
1302
1303static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1304 int order, struct mem_cgroup *memcg)
1305{
1306 if (memcg_kmem_enabled())
1307 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1308 return 0;
1309}
1310/*
1311 * helper for accessing a memcg's index. It will be used as an index in the
1312 * child cache array in kmem_cache, and also to derive its name. This function
1313 * will return -1 when this is not a kmem-limited memcg.
1314 */
1315static inline int memcg_cache_id(struct mem_cgroup *memcg)
1316{
1317 return memcg ? memcg->kmemcg_id : -1;
1318}
1319
1320extern int memcg_expand_shrinker_maps(int new_id);
1321
1322extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1323 int nid, int shrinker_id);
1324#else
1325
1326static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1327{
1328 return 0;
1329}
1330
1331static inline void memcg_kmem_uncharge(struct page *page, int order)
1332{
1333}
1334
1335static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1336{
1337 return 0;
1338}
1339
1340static inline void __memcg_kmem_uncharge(struct page *page, int order)
1341{
1342}
1343
1344#define for_each_memcg_cache_index(_idx) \
1345 for (; NULL; )
1346
1347static inline bool memcg_kmem_enabled(void)
1348{
1349 return false;
1350}
1351
1352static inline int memcg_cache_id(struct mem_cgroup *memcg)
1353{
1354 return -1;
1355}
1356
1357static inline void memcg_get_cache_ids(void)
1358{
1359}
1360
1361static inline void memcg_put_cache_ids(void)
1362{
1363}
1364
1365static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1366 int nid, int shrinker_id) { }
1367#endif /* CONFIG_MEMCG_KMEM */
1368
1369#endif /* _LINUX_MEMCONTROL_H */