at v5.2-rc1 1382 lines 40 kB view raw
1#ifndef __KVM_HOST_H 2#define __KVM_HOST_H 3 4/* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9#include <linux/types.h> 10#include <linux/hardirq.h> 11#include <linux/list.h> 12#include <linux/mutex.h> 13#include <linux/spinlock.h> 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/bug.h> 17#include <linux/mm.h> 18#include <linux/mmu_notifier.h> 19#include <linux/preempt.h> 20#include <linux/msi.h> 21#include <linux/slab.h> 22#include <linux/vmalloc.h> 23#include <linux/rcupdate.h> 24#include <linux/ratelimit.h> 25#include <linux/err.h> 26#include <linux/irqflags.h> 27#include <linux/context_tracking.h> 28#include <linux/irqbypass.h> 29#include <linux/swait.h> 30#include <linux/refcount.h> 31#include <linux/nospec.h> 32#include <asm/signal.h> 33 34#include <linux/kvm.h> 35#include <linux/kvm_para.h> 36 37#include <linux/kvm_types.h> 38 39#include <asm/kvm_host.h> 40 41#ifndef KVM_MAX_VCPU_ID 42#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 43#endif 44 45/* 46 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 47 * in kvm, other bits are visible for userspace which are defined in 48 * include/linux/kvm_h. 49 */ 50#define KVM_MEMSLOT_INVALID (1UL << 16) 51 52/* 53 * Bit 63 of the memslot generation number is an "update in-progress flag", 54 * e.g. is temporarily set for the duration of install_new_memslots(). 55 * This flag effectively creates a unique generation number that is used to 56 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 57 * i.e. may (or may not) have come from the previous memslots generation. 58 * 59 * This is necessary because the actual memslots update is not atomic with 60 * respect to the generation number update. Updating the generation number 61 * first would allow a vCPU to cache a spte from the old memslots using the 62 * new generation number, and updating the generation number after switching 63 * to the new memslots would allow cache hits using the old generation number 64 * to reference the defunct memslots. 65 * 66 * This mechanism is used to prevent getting hits in KVM's caches while a 67 * memslot update is in-progress, and to prevent cache hits *after* updating 68 * the actual generation number against accesses that were inserted into the 69 * cache *before* the memslots were updated. 70 */ 71#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 72 73/* Two fragments for cross MMIO pages. */ 74#define KVM_MAX_MMIO_FRAGMENTS 2 75 76#ifndef KVM_ADDRESS_SPACE_NUM 77#define KVM_ADDRESS_SPACE_NUM 1 78#endif 79 80/* 81 * For the normal pfn, the highest 12 bits should be zero, 82 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 83 * mask bit 63 to indicate the noslot pfn. 84 */ 85#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 86#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 87#define KVM_PFN_NOSLOT (0x1ULL << 63) 88 89#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 90#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 91#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 92 93/* 94 * error pfns indicate that the gfn is in slot but faild to 95 * translate it to pfn on host. 96 */ 97static inline bool is_error_pfn(kvm_pfn_t pfn) 98{ 99 return !!(pfn & KVM_PFN_ERR_MASK); 100} 101 102/* 103 * error_noslot pfns indicate that the gfn can not be 104 * translated to pfn - it is not in slot or failed to 105 * translate it to pfn. 106 */ 107static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 108{ 109 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 110} 111 112/* noslot pfn indicates that the gfn is not in slot. */ 113static inline bool is_noslot_pfn(kvm_pfn_t pfn) 114{ 115 return pfn == KVM_PFN_NOSLOT; 116} 117 118/* 119 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 120 * provide own defines and kvm_is_error_hva 121 */ 122#ifndef KVM_HVA_ERR_BAD 123 124#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 125#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 126 127static inline bool kvm_is_error_hva(unsigned long addr) 128{ 129 return addr >= PAGE_OFFSET; 130} 131 132#endif 133 134#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 135 136static inline bool is_error_page(struct page *page) 137{ 138 return IS_ERR(page); 139} 140 141#define KVM_REQUEST_MASK GENMASK(7,0) 142#define KVM_REQUEST_NO_WAKEUP BIT(8) 143#define KVM_REQUEST_WAIT BIT(9) 144/* 145 * Architecture-independent vcpu->requests bit members 146 * Bits 4-7 are reserved for more arch-independent bits. 147 */ 148#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150#define KVM_REQ_PENDING_TIMER 2 151#define KVM_REQ_UNHALT 3 152#define KVM_REQUEST_ARCH_BASE 8 153 154#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 155 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 156 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 157}) 158#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 159 160#define KVM_USERSPACE_IRQ_SOURCE_ID 0 161#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 162 163extern struct kmem_cache *kvm_vcpu_cache; 164 165extern spinlock_t kvm_lock; 166extern struct list_head vm_list; 167 168struct kvm_io_range { 169 gpa_t addr; 170 int len; 171 struct kvm_io_device *dev; 172}; 173 174#define NR_IOBUS_DEVS 1000 175 176struct kvm_io_bus { 177 int dev_count; 178 int ioeventfd_count; 179 struct kvm_io_range range[]; 180}; 181 182enum kvm_bus { 183 KVM_MMIO_BUS, 184 KVM_PIO_BUS, 185 KVM_VIRTIO_CCW_NOTIFY_BUS, 186 KVM_FAST_MMIO_BUS, 187 KVM_NR_BUSES 188}; 189 190int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 191 int len, const void *val); 192int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 193 gpa_t addr, int len, const void *val, long cookie); 194int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 195 int len, void *val); 196int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 197 int len, struct kvm_io_device *dev); 198void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 199 struct kvm_io_device *dev); 200struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 201 gpa_t addr); 202 203#ifdef CONFIG_KVM_ASYNC_PF 204struct kvm_async_pf { 205 struct work_struct work; 206 struct list_head link; 207 struct list_head queue; 208 struct kvm_vcpu *vcpu; 209 struct mm_struct *mm; 210 gva_t gva; 211 unsigned long addr; 212 struct kvm_arch_async_pf arch; 213 bool wakeup_all; 214}; 215 216void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 217void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 218int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 219 struct kvm_arch_async_pf *arch); 220int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 221#endif 222 223enum { 224 OUTSIDE_GUEST_MODE, 225 IN_GUEST_MODE, 226 EXITING_GUEST_MODE, 227 READING_SHADOW_PAGE_TABLES, 228}; 229 230#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 231 232struct kvm_host_map { 233 /* 234 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 235 * a 'struct page' for it. When using mem= kernel parameter some memory 236 * can be used as guest memory but they are not managed by host 237 * kernel). 238 * If 'pfn' is not managed by the host kernel, this field is 239 * initialized to KVM_UNMAPPED_PAGE. 240 */ 241 struct page *page; 242 void *hva; 243 kvm_pfn_t pfn; 244 kvm_pfn_t gfn; 245}; 246 247/* 248 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 249 * directly to check for that. 250 */ 251static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 252{ 253 return !!map->hva; 254} 255 256/* 257 * Sometimes a large or cross-page mmio needs to be broken up into separate 258 * exits for userspace servicing. 259 */ 260struct kvm_mmio_fragment { 261 gpa_t gpa; 262 void *data; 263 unsigned len; 264}; 265 266struct kvm_vcpu { 267 struct kvm *kvm; 268#ifdef CONFIG_PREEMPT_NOTIFIERS 269 struct preempt_notifier preempt_notifier; 270#endif 271 int cpu; 272 int vcpu_id; 273 int srcu_idx; 274 int mode; 275 u64 requests; 276 unsigned long guest_debug; 277 278 int pre_pcpu; 279 struct list_head blocked_vcpu_list; 280 281 struct mutex mutex; 282 struct kvm_run *run; 283 284 int guest_xcr0_loaded; 285 struct swait_queue_head wq; 286 struct pid __rcu *pid; 287 int sigset_active; 288 sigset_t sigset; 289 struct kvm_vcpu_stat stat; 290 unsigned int halt_poll_ns; 291 bool valid_wakeup; 292 293#ifdef CONFIG_HAS_IOMEM 294 int mmio_needed; 295 int mmio_read_completed; 296 int mmio_is_write; 297 int mmio_cur_fragment; 298 int mmio_nr_fragments; 299 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 300#endif 301 302#ifdef CONFIG_KVM_ASYNC_PF 303 struct { 304 u32 queued; 305 struct list_head queue; 306 struct list_head done; 307 spinlock_t lock; 308 } async_pf; 309#endif 310 311#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 312 /* 313 * Cpu relax intercept or pause loop exit optimization 314 * in_spin_loop: set when a vcpu does a pause loop exit 315 * or cpu relax intercepted. 316 * dy_eligible: indicates whether vcpu is eligible for directed yield. 317 */ 318 struct { 319 bool in_spin_loop; 320 bool dy_eligible; 321 } spin_loop; 322#endif 323 bool preempted; 324 struct kvm_vcpu_arch arch; 325 struct dentry *debugfs_dentry; 326}; 327 328static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 329{ 330 /* 331 * The memory barrier ensures a previous write to vcpu->requests cannot 332 * be reordered with the read of vcpu->mode. It pairs with the general 333 * memory barrier following the write of vcpu->mode in VCPU RUN. 334 */ 335 smp_mb__before_atomic(); 336 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 337} 338 339/* 340 * Some of the bitops functions do not support too long bitmaps. 341 * This number must be determined not to exceed such limits. 342 */ 343#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 344 345struct kvm_memory_slot { 346 gfn_t base_gfn; 347 unsigned long npages; 348 unsigned long *dirty_bitmap; 349 struct kvm_arch_memory_slot arch; 350 unsigned long userspace_addr; 351 u32 flags; 352 short id; 353}; 354 355static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 356{ 357 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 358} 359 360static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 361{ 362 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 363 364 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 365} 366 367struct kvm_s390_adapter_int { 368 u64 ind_addr; 369 u64 summary_addr; 370 u64 ind_offset; 371 u32 summary_offset; 372 u32 adapter_id; 373}; 374 375struct kvm_hv_sint { 376 u32 vcpu; 377 u32 sint; 378}; 379 380struct kvm_kernel_irq_routing_entry { 381 u32 gsi; 382 u32 type; 383 int (*set)(struct kvm_kernel_irq_routing_entry *e, 384 struct kvm *kvm, int irq_source_id, int level, 385 bool line_status); 386 union { 387 struct { 388 unsigned irqchip; 389 unsigned pin; 390 } irqchip; 391 struct { 392 u32 address_lo; 393 u32 address_hi; 394 u32 data; 395 u32 flags; 396 u32 devid; 397 } msi; 398 struct kvm_s390_adapter_int adapter; 399 struct kvm_hv_sint hv_sint; 400 }; 401 struct hlist_node link; 402}; 403 404#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 405struct kvm_irq_routing_table { 406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 407 u32 nr_rt_entries; 408 /* 409 * Array indexed by gsi. Each entry contains list of irq chips 410 * the gsi is connected to. 411 */ 412 struct hlist_head map[0]; 413}; 414#endif 415 416#ifndef KVM_PRIVATE_MEM_SLOTS 417#define KVM_PRIVATE_MEM_SLOTS 0 418#endif 419 420#ifndef KVM_MEM_SLOTS_NUM 421#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 422#endif 423 424#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 425static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 426{ 427 return 0; 428} 429#endif 430 431/* 432 * Note: 433 * memslots are not sorted by id anymore, please use id_to_memslot() 434 * to get the memslot by its id. 435 */ 436struct kvm_memslots { 437 u64 generation; 438 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 439 /* The mapping table from slot id to the index in memslots[]. */ 440 short id_to_index[KVM_MEM_SLOTS_NUM]; 441 atomic_t lru_slot; 442 int used_slots; 443}; 444 445struct kvm { 446 spinlock_t mmu_lock; 447 struct mutex slots_lock; 448 struct mm_struct *mm; /* userspace tied to this vm */ 449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 451 452 /* 453 * created_vcpus is protected by kvm->lock, and is incremented 454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 455 * incremented after storing the kvm_vcpu pointer in vcpus, 456 * and is accessed atomically. 457 */ 458 atomic_t online_vcpus; 459 int created_vcpus; 460 int last_boosted_vcpu; 461 struct list_head vm_list; 462 struct mutex lock; 463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 464#ifdef CONFIG_HAVE_KVM_EVENTFD 465 struct { 466 spinlock_t lock; 467 struct list_head items; 468 struct list_head resampler_list; 469 struct mutex resampler_lock; 470 } irqfds; 471 struct list_head ioeventfds; 472#endif 473 struct kvm_vm_stat stat; 474 struct kvm_arch arch; 475 refcount_t users_count; 476#ifdef CONFIG_KVM_MMIO 477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 478 spinlock_t ring_lock; 479 struct list_head coalesced_zones; 480#endif 481 482 struct mutex irq_lock; 483#ifdef CONFIG_HAVE_KVM_IRQCHIP 484 /* 485 * Update side is protected by irq_lock. 486 */ 487 struct kvm_irq_routing_table __rcu *irq_routing; 488#endif 489#ifdef CONFIG_HAVE_KVM_IRQFD 490 struct hlist_head irq_ack_notifier_list; 491#endif 492 493#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 494 struct mmu_notifier mmu_notifier; 495 unsigned long mmu_notifier_seq; 496 long mmu_notifier_count; 497#endif 498 long tlbs_dirty; 499 struct list_head devices; 500 bool manual_dirty_log_protect; 501 struct dentry *debugfs_dentry; 502 struct kvm_stat_data **debugfs_stat_data; 503 struct srcu_struct srcu; 504 struct srcu_struct irq_srcu; 505 pid_t userspace_pid; 506}; 507 508#define kvm_err(fmt, ...) \ 509 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510#define kvm_info(fmt, ...) \ 511 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512#define kvm_debug(fmt, ...) \ 513 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 514#define kvm_debug_ratelimited(fmt, ...) \ 515 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 516 ## __VA_ARGS__) 517#define kvm_pr_unimpl(fmt, ...) \ 518 pr_err_ratelimited("kvm [%i]: " fmt, \ 519 task_tgid_nr(current), ## __VA_ARGS__) 520 521/* The guest did something we don't support. */ 522#define vcpu_unimpl(vcpu, fmt, ...) \ 523 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 524 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 525 526#define vcpu_debug(vcpu, fmt, ...) \ 527 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 528#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 529 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 530 ## __VA_ARGS__) 531#define vcpu_err(vcpu, fmt, ...) \ 532 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 533 534static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 535{ 536 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 537 lockdep_is_held(&kvm->slots_lock) || 538 !refcount_read(&kvm->users_count)); 539} 540 541static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 542{ 543 int num_vcpus = atomic_read(&kvm->online_vcpus); 544 i = array_index_nospec(i, num_vcpus); 545 546 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 547 smp_rmb(); 548 return kvm->vcpus[i]; 549} 550 551#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 552 for (idx = 0; \ 553 idx < atomic_read(&kvm->online_vcpus) && \ 554 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 555 idx++) 556 557static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 558{ 559 struct kvm_vcpu *vcpu = NULL; 560 int i; 561 562 if (id < 0) 563 return NULL; 564 if (id < KVM_MAX_VCPUS) 565 vcpu = kvm_get_vcpu(kvm, id); 566 if (vcpu && vcpu->vcpu_id == id) 567 return vcpu; 568 kvm_for_each_vcpu(i, vcpu, kvm) 569 if (vcpu->vcpu_id == id) 570 return vcpu; 571 return NULL; 572} 573 574static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 575{ 576 struct kvm_vcpu *tmp; 577 int idx; 578 579 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 580 if (tmp == vcpu) 581 return idx; 582 BUG(); 583} 584 585#define kvm_for_each_memslot(memslot, slots) \ 586 for (memslot = &slots->memslots[0]; \ 587 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 588 memslot++) 589 590int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 591void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 592 593void vcpu_load(struct kvm_vcpu *vcpu); 594void vcpu_put(struct kvm_vcpu *vcpu); 595 596#ifdef __KVM_HAVE_IOAPIC 597void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 598void kvm_arch_post_irq_routing_update(struct kvm *kvm); 599#else 600static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 601{ 602} 603static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 604{ 605} 606#endif 607 608#ifdef CONFIG_HAVE_KVM_IRQFD 609int kvm_irqfd_init(void); 610void kvm_irqfd_exit(void); 611#else 612static inline int kvm_irqfd_init(void) 613{ 614 return 0; 615} 616 617static inline void kvm_irqfd_exit(void) 618{ 619} 620#endif 621int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 622 struct module *module); 623void kvm_exit(void); 624 625void kvm_get_kvm(struct kvm *kvm); 626void kvm_put_kvm(struct kvm *kvm); 627 628static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 629{ 630 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 631 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 632 lockdep_is_held(&kvm->slots_lock) || 633 !refcount_read(&kvm->users_count)); 634} 635 636static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 637{ 638 return __kvm_memslots(kvm, 0); 639} 640 641static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 642{ 643 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 644 645 return __kvm_memslots(vcpu->kvm, as_id); 646} 647 648static inline struct kvm_memory_slot * 649id_to_memslot(struct kvm_memslots *slots, int id) 650{ 651 int index = slots->id_to_index[id]; 652 struct kvm_memory_slot *slot; 653 654 slot = &slots->memslots[index]; 655 656 WARN_ON(slot->id != id); 657 return slot; 658} 659 660/* 661 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 662 * - create a new memory slot 663 * - delete an existing memory slot 664 * - modify an existing memory slot 665 * -- move it in the guest physical memory space 666 * -- just change its flags 667 * 668 * Since flags can be changed by some of these operations, the following 669 * differentiation is the best we can do for __kvm_set_memory_region(): 670 */ 671enum kvm_mr_change { 672 KVM_MR_CREATE, 673 KVM_MR_DELETE, 674 KVM_MR_MOVE, 675 KVM_MR_FLAGS_ONLY, 676}; 677 678int kvm_set_memory_region(struct kvm *kvm, 679 const struct kvm_userspace_memory_region *mem); 680int __kvm_set_memory_region(struct kvm *kvm, 681 const struct kvm_userspace_memory_region *mem); 682void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 683 struct kvm_memory_slot *dont); 684int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 685 unsigned long npages); 686void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 687int kvm_arch_prepare_memory_region(struct kvm *kvm, 688 struct kvm_memory_slot *memslot, 689 const struct kvm_userspace_memory_region *mem, 690 enum kvm_mr_change change); 691void kvm_arch_commit_memory_region(struct kvm *kvm, 692 const struct kvm_userspace_memory_region *mem, 693 const struct kvm_memory_slot *old, 694 const struct kvm_memory_slot *new, 695 enum kvm_mr_change change); 696bool kvm_largepages_enabled(void); 697void kvm_disable_largepages(void); 698/* flush all memory translations */ 699void kvm_arch_flush_shadow_all(struct kvm *kvm); 700/* flush memory translations pointing to 'slot' */ 701void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 702 struct kvm_memory_slot *slot); 703 704int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 705 struct page **pages, int nr_pages); 706 707struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 708unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 709unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 710unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 711unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 712 bool *writable); 713void kvm_release_page_clean(struct page *page); 714void kvm_release_page_dirty(struct page *page); 715void kvm_set_page_accessed(struct page *page); 716 717kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 718kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 719kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 720 bool *writable); 721kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 722kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 723kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 724 bool atomic, bool *async, bool write_fault, 725 bool *writable); 726 727void kvm_release_pfn_clean(kvm_pfn_t pfn); 728void kvm_release_pfn_dirty(kvm_pfn_t pfn); 729void kvm_set_pfn_dirty(kvm_pfn_t pfn); 730void kvm_set_pfn_accessed(kvm_pfn_t pfn); 731void kvm_get_pfn(kvm_pfn_t pfn); 732 733int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 734 int len); 735int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 736 unsigned long len); 737int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 738int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 739 void *data, unsigned long len); 740int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 741 int offset, int len); 742int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 743 unsigned long len); 744int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 745 void *data, unsigned long len); 746int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 747 void *data, unsigned int offset, 748 unsigned long len); 749int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 750 gpa_t gpa, unsigned long len); 751int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 752int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 753struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 754bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 755unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 756void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 757 758struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 759struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 760kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 761kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 762int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 763struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 764void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 765unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 766unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 767int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 768 int len); 769int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 770 unsigned long len); 771int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 772 unsigned long len); 773int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 774 int offset, int len); 775int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 776 unsigned long len); 777void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 778 779void kvm_sigset_activate(struct kvm_vcpu *vcpu); 780void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 781 782void kvm_vcpu_block(struct kvm_vcpu *vcpu); 783void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 784void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 785bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 786void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 787int kvm_vcpu_yield_to(struct kvm_vcpu *target); 788void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 789 790void kvm_flush_remote_tlbs(struct kvm *kvm); 791void kvm_reload_remote_mmus(struct kvm *kvm); 792 793bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 794 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 795bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 796 797long kvm_arch_dev_ioctl(struct file *filp, 798 unsigned int ioctl, unsigned long arg); 799long kvm_arch_vcpu_ioctl(struct file *filp, 800 unsigned int ioctl, unsigned long arg); 801vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 802 803int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 804 805int kvm_get_dirty_log(struct kvm *kvm, 806 struct kvm_dirty_log *log, int *is_dirty); 807 808int kvm_get_dirty_log_protect(struct kvm *kvm, 809 struct kvm_dirty_log *log, bool *flush); 810int kvm_clear_dirty_log_protect(struct kvm *kvm, 811 struct kvm_clear_dirty_log *log, bool *flush); 812 813void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 814 struct kvm_memory_slot *slot, 815 gfn_t gfn_offset, 816 unsigned long mask); 817 818int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 819 struct kvm_dirty_log *log); 820int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 821 struct kvm_clear_dirty_log *log); 822 823int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 824 bool line_status); 825int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 826 struct kvm_enable_cap *cap); 827long kvm_arch_vm_ioctl(struct file *filp, 828 unsigned int ioctl, unsigned long arg); 829 830int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 831int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 832 833int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 834 struct kvm_translation *tr); 835 836int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 837int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 838int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 839 struct kvm_sregs *sregs); 840int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 841 struct kvm_sregs *sregs); 842int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 843 struct kvm_mp_state *mp_state); 844int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 845 struct kvm_mp_state *mp_state); 846int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 847 struct kvm_guest_debug *dbg); 848int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 849 850int kvm_arch_init(void *opaque); 851void kvm_arch_exit(void); 852 853int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 854void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 855 856void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 857 858void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 859void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 860void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 861struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 862int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 863void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 864void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 865 866bool kvm_arch_has_vcpu_debugfs(void); 867int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 868 869int kvm_arch_hardware_enable(void); 870void kvm_arch_hardware_disable(void); 871int kvm_arch_hardware_setup(void); 872void kvm_arch_hardware_unsetup(void); 873void kvm_arch_check_processor_compat(void *rtn); 874int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 875bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 876int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 877 878#ifndef __KVM_HAVE_ARCH_VM_ALLOC 879/* 880 * All architectures that want to use vzalloc currently also 881 * need their own kvm_arch_alloc_vm implementation. 882 */ 883static inline struct kvm *kvm_arch_alloc_vm(void) 884{ 885 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 886} 887 888static inline void kvm_arch_free_vm(struct kvm *kvm) 889{ 890 kfree(kvm); 891} 892#endif 893 894#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 895static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 896{ 897 return -ENOTSUPP; 898} 899#endif 900 901#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 902void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 903void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 904bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 905#else 906static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 907{ 908} 909 910static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 911{ 912} 913 914static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 915{ 916 return false; 917} 918#endif 919#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 920void kvm_arch_start_assignment(struct kvm *kvm); 921void kvm_arch_end_assignment(struct kvm *kvm); 922bool kvm_arch_has_assigned_device(struct kvm *kvm); 923#else 924static inline void kvm_arch_start_assignment(struct kvm *kvm) 925{ 926} 927 928static inline void kvm_arch_end_assignment(struct kvm *kvm) 929{ 930} 931 932static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 933{ 934 return false; 935} 936#endif 937 938static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 939{ 940#ifdef __KVM_HAVE_ARCH_WQP 941 return vcpu->arch.wqp; 942#else 943 return &vcpu->wq; 944#endif 945} 946 947#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 948/* 949 * returns true if the virtual interrupt controller is initialized and 950 * ready to accept virtual IRQ. On some architectures the virtual interrupt 951 * controller is dynamically instantiated and this is not always true. 952 */ 953bool kvm_arch_intc_initialized(struct kvm *kvm); 954#else 955static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 956{ 957 return true; 958} 959#endif 960 961int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 962void kvm_arch_destroy_vm(struct kvm *kvm); 963void kvm_arch_sync_events(struct kvm *kvm); 964 965int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 966void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 967 968bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 969 970struct kvm_irq_ack_notifier { 971 struct hlist_node link; 972 unsigned gsi; 973 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 974}; 975 976int kvm_irq_map_gsi(struct kvm *kvm, 977 struct kvm_kernel_irq_routing_entry *entries, int gsi); 978int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 979 980int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 981 bool line_status); 982int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 983 int irq_source_id, int level, bool line_status); 984int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 985 struct kvm *kvm, int irq_source_id, 986 int level, bool line_status); 987bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 988void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 989void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 990void kvm_register_irq_ack_notifier(struct kvm *kvm, 991 struct kvm_irq_ack_notifier *kian); 992void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 993 struct kvm_irq_ack_notifier *kian); 994int kvm_request_irq_source_id(struct kvm *kvm); 995void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 996 997/* 998 * search_memslots() and __gfn_to_memslot() are here because they are 999 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1000 * gfn_to_memslot() itself isn't here as an inline because that would 1001 * bloat other code too much. 1002 */ 1003static inline struct kvm_memory_slot * 1004search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1005{ 1006 int start = 0, end = slots->used_slots; 1007 int slot = atomic_read(&slots->lru_slot); 1008 struct kvm_memory_slot *memslots = slots->memslots; 1009 1010 if (gfn >= memslots[slot].base_gfn && 1011 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1012 return &memslots[slot]; 1013 1014 while (start < end) { 1015 slot = start + (end - start) / 2; 1016 1017 if (gfn >= memslots[slot].base_gfn) 1018 end = slot; 1019 else 1020 start = slot + 1; 1021 } 1022 1023 if (gfn >= memslots[start].base_gfn && 1024 gfn < memslots[start].base_gfn + memslots[start].npages) { 1025 atomic_set(&slots->lru_slot, start); 1026 return &memslots[start]; 1027 } 1028 1029 return NULL; 1030} 1031 1032static inline struct kvm_memory_slot * 1033__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1034{ 1035 return search_memslots(slots, gfn); 1036} 1037 1038static inline unsigned long 1039__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1040{ 1041 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1042} 1043 1044static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1045{ 1046 return gfn_to_memslot(kvm, gfn)->id; 1047} 1048 1049static inline gfn_t 1050hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1051{ 1052 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1053 1054 return slot->base_gfn + gfn_offset; 1055} 1056 1057static inline gpa_t gfn_to_gpa(gfn_t gfn) 1058{ 1059 return (gpa_t)gfn << PAGE_SHIFT; 1060} 1061 1062static inline gfn_t gpa_to_gfn(gpa_t gpa) 1063{ 1064 return (gfn_t)(gpa >> PAGE_SHIFT); 1065} 1066 1067static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1068{ 1069 return (hpa_t)pfn << PAGE_SHIFT; 1070} 1071 1072static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1073 gpa_t gpa) 1074{ 1075 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1076} 1077 1078static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1079{ 1080 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1081 1082 return kvm_is_error_hva(hva); 1083} 1084 1085enum kvm_stat_kind { 1086 KVM_STAT_VM, 1087 KVM_STAT_VCPU, 1088}; 1089 1090struct kvm_stat_data { 1091 int offset; 1092 struct kvm *kvm; 1093}; 1094 1095struct kvm_stats_debugfs_item { 1096 const char *name; 1097 int offset; 1098 enum kvm_stat_kind kind; 1099}; 1100extern struct kvm_stats_debugfs_item debugfs_entries[]; 1101extern struct dentry *kvm_debugfs_dir; 1102 1103#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1104static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1105{ 1106 if (unlikely(kvm->mmu_notifier_count)) 1107 return 1; 1108 /* 1109 * Ensure the read of mmu_notifier_count happens before the read 1110 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1111 * mmu_notifier_invalidate_range_end to make sure that the caller 1112 * either sees the old (non-zero) value of mmu_notifier_count or 1113 * the new (incremented) value of mmu_notifier_seq. 1114 * PowerPC Book3s HV KVM calls this under a per-page lock 1115 * rather than under kvm->mmu_lock, for scalability, so 1116 * can't rely on kvm->mmu_lock to keep things ordered. 1117 */ 1118 smp_rmb(); 1119 if (kvm->mmu_notifier_seq != mmu_seq) 1120 return 1; 1121 return 0; 1122} 1123#endif 1124 1125#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1126 1127#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1128 1129bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1130int kvm_set_irq_routing(struct kvm *kvm, 1131 const struct kvm_irq_routing_entry *entries, 1132 unsigned nr, 1133 unsigned flags); 1134int kvm_set_routing_entry(struct kvm *kvm, 1135 struct kvm_kernel_irq_routing_entry *e, 1136 const struct kvm_irq_routing_entry *ue); 1137void kvm_free_irq_routing(struct kvm *kvm); 1138 1139#else 1140 1141static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1142 1143#endif 1144 1145int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1146 1147#ifdef CONFIG_HAVE_KVM_EVENTFD 1148 1149void kvm_eventfd_init(struct kvm *kvm); 1150int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1151 1152#ifdef CONFIG_HAVE_KVM_IRQFD 1153int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1154void kvm_irqfd_release(struct kvm *kvm); 1155void kvm_irq_routing_update(struct kvm *); 1156#else 1157static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1158{ 1159 return -EINVAL; 1160} 1161 1162static inline void kvm_irqfd_release(struct kvm *kvm) {} 1163#endif 1164 1165#else 1166 1167static inline void kvm_eventfd_init(struct kvm *kvm) {} 1168 1169static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1170{ 1171 return -EINVAL; 1172} 1173 1174static inline void kvm_irqfd_release(struct kvm *kvm) {} 1175 1176#ifdef CONFIG_HAVE_KVM_IRQCHIP 1177static inline void kvm_irq_routing_update(struct kvm *kvm) 1178{ 1179} 1180#endif 1181 1182static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1183{ 1184 return -ENOSYS; 1185} 1186 1187#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1188 1189void kvm_arch_irq_routing_update(struct kvm *kvm); 1190 1191static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1192{ 1193 /* 1194 * Ensure the rest of the request is published to kvm_check_request's 1195 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1196 */ 1197 smp_wmb(); 1198 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1199} 1200 1201static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1202{ 1203 return READ_ONCE(vcpu->requests); 1204} 1205 1206static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1207{ 1208 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1209} 1210 1211static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1212{ 1213 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1214} 1215 1216static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1217{ 1218 if (kvm_test_request(req, vcpu)) { 1219 kvm_clear_request(req, vcpu); 1220 1221 /* 1222 * Ensure the rest of the request is visible to kvm_check_request's 1223 * caller. Paired with the smp_wmb in kvm_make_request. 1224 */ 1225 smp_mb__after_atomic(); 1226 return true; 1227 } else { 1228 return false; 1229 } 1230} 1231 1232extern bool kvm_rebooting; 1233 1234extern unsigned int halt_poll_ns; 1235extern unsigned int halt_poll_ns_grow; 1236extern unsigned int halt_poll_ns_grow_start; 1237extern unsigned int halt_poll_ns_shrink; 1238 1239struct kvm_device { 1240 struct kvm_device_ops *ops; 1241 struct kvm *kvm; 1242 void *private; 1243 struct list_head vm_node; 1244}; 1245 1246/* create, destroy, and name are mandatory */ 1247struct kvm_device_ops { 1248 const char *name; 1249 1250 /* 1251 * create is called holding kvm->lock and any operations not suitable 1252 * to do while holding the lock should be deferred to init (see 1253 * below). 1254 */ 1255 int (*create)(struct kvm_device *dev, u32 type); 1256 1257 /* 1258 * init is called after create if create is successful and is called 1259 * outside of holding kvm->lock. 1260 */ 1261 void (*init)(struct kvm_device *dev); 1262 1263 /* 1264 * Destroy is responsible for freeing dev. 1265 * 1266 * Destroy may be called before or after destructors are called 1267 * on emulated I/O regions, depending on whether a reference is 1268 * held by a vcpu or other kvm component that gets destroyed 1269 * after the emulated I/O. 1270 */ 1271 void (*destroy)(struct kvm_device *dev); 1272 1273 /* 1274 * Release is an alternative method to free the device. It is 1275 * called when the device file descriptor is closed. Once 1276 * release is called, the destroy method will not be called 1277 * anymore as the device is removed from the device list of 1278 * the VM. kvm->lock is held. 1279 */ 1280 void (*release)(struct kvm_device *dev); 1281 1282 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1283 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1284 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1285 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1286 unsigned long arg); 1287 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1288}; 1289 1290void kvm_device_get(struct kvm_device *dev); 1291void kvm_device_put(struct kvm_device *dev); 1292struct kvm_device *kvm_device_from_filp(struct file *filp); 1293int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1294void kvm_unregister_device_ops(u32 type); 1295 1296extern struct kvm_device_ops kvm_mpic_ops; 1297extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1298extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1299 1300#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1301 1302static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1303{ 1304 vcpu->spin_loop.in_spin_loop = val; 1305} 1306static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1307{ 1308 vcpu->spin_loop.dy_eligible = val; 1309} 1310 1311#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1312 1313static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1314{ 1315} 1316 1317static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1318{ 1319} 1320#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1321 1322#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1323bool kvm_arch_has_irq_bypass(void); 1324int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1325 struct irq_bypass_producer *); 1326void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1327 struct irq_bypass_producer *); 1328void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1329void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1330int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1331 uint32_t guest_irq, bool set); 1332#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1333 1334#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1335/* If we wakeup during the poll time, was it a sucessful poll? */ 1336static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1337{ 1338 return vcpu->valid_wakeup; 1339} 1340 1341#else 1342static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1343{ 1344 return true; 1345} 1346#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1347 1348#ifdef CONFIG_HAVE_KVM_NO_POLL 1349/* Callback that tells if we must not poll */ 1350bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1351#else 1352static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1353{ 1354 return false; 1355} 1356#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1357 1358#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1359long kvm_arch_vcpu_async_ioctl(struct file *filp, 1360 unsigned int ioctl, unsigned long arg); 1361#else 1362static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1363 unsigned int ioctl, 1364 unsigned long arg) 1365{ 1366 return -ENOIOCTLCMD; 1367} 1368#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1369 1370int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1371 unsigned long start, unsigned long end, bool blockable); 1372 1373#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1374int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1375#else 1376static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1377{ 1378 return 0; 1379} 1380#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1381 1382#endif