Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef __KVM_HOST_H
2#define __KVM_HOST_H
3
4/*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9#include <linux/types.h>
10#include <linux/hardirq.h>
11#include <linux/list.h>
12#include <linux/mutex.h>
13#include <linux/spinlock.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/bug.h>
17#include <linux/mm.h>
18#include <linux/mmu_notifier.h>
19#include <linux/preempt.h>
20#include <linux/msi.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/rcupdate.h>
24#include <linux/ratelimit.h>
25#include <linux/err.h>
26#include <linux/irqflags.h>
27#include <linux/context_tracking.h>
28#include <linux/irqbypass.h>
29#include <linux/swait.h>
30#include <linux/refcount.h>
31#include <linux/nospec.h>
32#include <asm/signal.h>
33
34#include <linux/kvm.h>
35#include <linux/kvm_para.h>
36
37#include <linux/kvm_types.h>
38
39#include <asm/kvm_host.h>
40
41#ifndef KVM_MAX_VCPU_ID
42#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
43#endif
44
45/*
46 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
47 * in kvm, other bits are visible for userspace which are defined in
48 * include/linux/kvm_h.
49 */
50#define KVM_MEMSLOT_INVALID (1UL << 16)
51
52/*
53 * Bit 63 of the memslot generation number is an "update in-progress flag",
54 * e.g. is temporarily set for the duration of install_new_memslots().
55 * This flag effectively creates a unique generation number that is used to
56 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
57 * i.e. may (or may not) have come from the previous memslots generation.
58 *
59 * This is necessary because the actual memslots update is not atomic with
60 * respect to the generation number update. Updating the generation number
61 * first would allow a vCPU to cache a spte from the old memslots using the
62 * new generation number, and updating the generation number after switching
63 * to the new memslots would allow cache hits using the old generation number
64 * to reference the defunct memslots.
65 *
66 * This mechanism is used to prevent getting hits in KVM's caches while a
67 * memslot update is in-progress, and to prevent cache hits *after* updating
68 * the actual generation number against accesses that were inserted into the
69 * cache *before* the memslots were updated.
70 */
71#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
72
73/* Two fragments for cross MMIO pages. */
74#define KVM_MAX_MMIO_FRAGMENTS 2
75
76#ifndef KVM_ADDRESS_SPACE_NUM
77#define KVM_ADDRESS_SPACE_NUM 1
78#endif
79
80/*
81 * For the normal pfn, the highest 12 bits should be zero,
82 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
83 * mask bit 63 to indicate the noslot pfn.
84 */
85#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
86#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
87#define KVM_PFN_NOSLOT (0x1ULL << 63)
88
89#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
90#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
91#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
92
93/*
94 * error pfns indicate that the gfn is in slot but faild to
95 * translate it to pfn on host.
96 */
97static inline bool is_error_pfn(kvm_pfn_t pfn)
98{
99 return !!(pfn & KVM_PFN_ERR_MASK);
100}
101
102/*
103 * error_noslot pfns indicate that the gfn can not be
104 * translated to pfn - it is not in slot or failed to
105 * translate it to pfn.
106 */
107static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
108{
109 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
110}
111
112/* noslot pfn indicates that the gfn is not in slot. */
113static inline bool is_noslot_pfn(kvm_pfn_t pfn)
114{
115 return pfn == KVM_PFN_NOSLOT;
116}
117
118/*
119 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
120 * provide own defines and kvm_is_error_hva
121 */
122#ifndef KVM_HVA_ERR_BAD
123
124#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
125#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
126
127static inline bool kvm_is_error_hva(unsigned long addr)
128{
129 return addr >= PAGE_OFFSET;
130}
131
132#endif
133
134#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
135
136static inline bool is_error_page(struct page *page)
137{
138 return IS_ERR(page);
139}
140
141#define KVM_REQUEST_MASK GENMASK(7,0)
142#define KVM_REQUEST_NO_WAKEUP BIT(8)
143#define KVM_REQUEST_WAIT BIT(9)
144/*
145 * Architecture-independent vcpu->requests bit members
146 * Bits 4-7 are reserved for more arch-independent bits.
147 */
148#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150#define KVM_REQ_PENDING_TIMER 2
151#define KVM_REQ_UNHALT 3
152#define KVM_REQUEST_ARCH_BASE 8
153
154#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
155 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
156 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
157})
158#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
159
160#define KVM_USERSPACE_IRQ_SOURCE_ID 0
161#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
162
163extern struct kmem_cache *kvm_vcpu_cache;
164
165extern spinlock_t kvm_lock;
166extern struct list_head vm_list;
167
168struct kvm_io_range {
169 gpa_t addr;
170 int len;
171 struct kvm_io_device *dev;
172};
173
174#define NR_IOBUS_DEVS 1000
175
176struct kvm_io_bus {
177 int dev_count;
178 int ioeventfd_count;
179 struct kvm_io_range range[];
180};
181
182enum kvm_bus {
183 KVM_MMIO_BUS,
184 KVM_PIO_BUS,
185 KVM_VIRTIO_CCW_NOTIFY_BUS,
186 KVM_FAST_MMIO_BUS,
187 KVM_NR_BUSES
188};
189
190int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
191 int len, const void *val);
192int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
193 gpa_t addr, int len, const void *val, long cookie);
194int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
195 int len, void *val);
196int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
197 int len, struct kvm_io_device *dev);
198void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
199 struct kvm_io_device *dev);
200struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
201 gpa_t addr);
202
203#ifdef CONFIG_KVM_ASYNC_PF
204struct kvm_async_pf {
205 struct work_struct work;
206 struct list_head link;
207 struct list_head queue;
208 struct kvm_vcpu *vcpu;
209 struct mm_struct *mm;
210 gva_t gva;
211 unsigned long addr;
212 struct kvm_arch_async_pf arch;
213 bool wakeup_all;
214};
215
216void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
217void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
218int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
219 struct kvm_arch_async_pf *arch);
220int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
221#endif
222
223enum {
224 OUTSIDE_GUEST_MODE,
225 IN_GUEST_MODE,
226 EXITING_GUEST_MODE,
227 READING_SHADOW_PAGE_TABLES,
228};
229
230#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
231
232struct kvm_host_map {
233 /*
234 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
235 * a 'struct page' for it. When using mem= kernel parameter some memory
236 * can be used as guest memory but they are not managed by host
237 * kernel).
238 * If 'pfn' is not managed by the host kernel, this field is
239 * initialized to KVM_UNMAPPED_PAGE.
240 */
241 struct page *page;
242 void *hva;
243 kvm_pfn_t pfn;
244 kvm_pfn_t gfn;
245};
246
247/*
248 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
249 * directly to check for that.
250 */
251static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
252{
253 return !!map->hva;
254}
255
256/*
257 * Sometimes a large or cross-page mmio needs to be broken up into separate
258 * exits for userspace servicing.
259 */
260struct kvm_mmio_fragment {
261 gpa_t gpa;
262 void *data;
263 unsigned len;
264};
265
266struct kvm_vcpu {
267 struct kvm *kvm;
268#ifdef CONFIG_PREEMPT_NOTIFIERS
269 struct preempt_notifier preempt_notifier;
270#endif
271 int cpu;
272 int vcpu_id;
273 int srcu_idx;
274 int mode;
275 u64 requests;
276 unsigned long guest_debug;
277
278 int pre_pcpu;
279 struct list_head blocked_vcpu_list;
280
281 struct mutex mutex;
282 struct kvm_run *run;
283
284 int guest_xcr0_loaded;
285 struct swait_queue_head wq;
286 struct pid __rcu *pid;
287 int sigset_active;
288 sigset_t sigset;
289 struct kvm_vcpu_stat stat;
290 unsigned int halt_poll_ns;
291 bool valid_wakeup;
292
293#ifdef CONFIG_HAS_IOMEM
294 int mmio_needed;
295 int mmio_read_completed;
296 int mmio_is_write;
297 int mmio_cur_fragment;
298 int mmio_nr_fragments;
299 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
300#endif
301
302#ifdef CONFIG_KVM_ASYNC_PF
303 struct {
304 u32 queued;
305 struct list_head queue;
306 struct list_head done;
307 spinlock_t lock;
308 } async_pf;
309#endif
310
311#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
312 /*
313 * Cpu relax intercept or pause loop exit optimization
314 * in_spin_loop: set when a vcpu does a pause loop exit
315 * or cpu relax intercepted.
316 * dy_eligible: indicates whether vcpu is eligible for directed yield.
317 */
318 struct {
319 bool in_spin_loop;
320 bool dy_eligible;
321 } spin_loop;
322#endif
323 bool preempted;
324 struct kvm_vcpu_arch arch;
325 struct dentry *debugfs_dentry;
326};
327
328static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
329{
330 /*
331 * The memory barrier ensures a previous write to vcpu->requests cannot
332 * be reordered with the read of vcpu->mode. It pairs with the general
333 * memory barrier following the write of vcpu->mode in VCPU RUN.
334 */
335 smp_mb__before_atomic();
336 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
337}
338
339/*
340 * Some of the bitops functions do not support too long bitmaps.
341 * This number must be determined not to exceed such limits.
342 */
343#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
344
345struct kvm_memory_slot {
346 gfn_t base_gfn;
347 unsigned long npages;
348 unsigned long *dirty_bitmap;
349 struct kvm_arch_memory_slot arch;
350 unsigned long userspace_addr;
351 u32 flags;
352 short id;
353};
354
355static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
356{
357 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
358}
359
360static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
361{
362 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
363
364 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
365}
366
367struct kvm_s390_adapter_int {
368 u64 ind_addr;
369 u64 summary_addr;
370 u64 ind_offset;
371 u32 summary_offset;
372 u32 adapter_id;
373};
374
375struct kvm_hv_sint {
376 u32 vcpu;
377 u32 sint;
378};
379
380struct kvm_kernel_irq_routing_entry {
381 u32 gsi;
382 u32 type;
383 int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 struct kvm *kvm, int irq_source_id, int level,
385 bool line_status);
386 union {
387 struct {
388 unsigned irqchip;
389 unsigned pin;
390 } irqchip;
391 struct {
392 u32 address_lo;
393 u32 address_hi;
394 u32 data;
395 u32 flags;
396 u32 devid;
397 } msi;
398 struct kvm_s390_adapter_int adapter;
399 struct kvm_hv_sint hv_sint;
400 };
401 struct hlist_node link;
402};
403
404#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405struct kvm_irq_routing_table {
406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 u32 nr_rt_entries;
408 /*
409 * Array indexed by gsi. Each entry contains list of irq chips
410 * the gsi is connected to.
411 */
412 struct hlist_head map[0];
413};
414#endif
415
416#ifndef KVM_PRIVATE_MEM_SLOTS
417#define KVM_PRIVATE_MEM_SLOTS 0
418#endif
419
420#ifndef KVM_MEM_SLOTS_NUM
421#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422#endif
423
424#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
425static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426{
427 return 0;
428}
429#endif
430
431/*
432 * Note:
433 * memslots are not sorted by id anymore, please use id_to_memslot()
434 * to get the memslot by its id.
435 */
436struct kvm_memslots {
437 u64 generation;
438 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
439 /* The mapping table from slot id to the index in memslots[]. */
440 short id_to_index[KVM_MEM_SLOTS_NUM];
441 atomic_t lru_slot;
442 int used_slots;
443};
444
445struct kvm {
446 spinlock_t mmu_lock;
447 struct mutex slots_lock;
448 struct mm_struct *mm; /* userspace tied to this vm */
449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451
452 /*
453 * created_vcpus is protected by kvm->lock, and is incremented
454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
455 * incremented after storing the kvm_vcpu pointer in vcpus,
456 * and is accessed atomically.
457 */
458 atomic_t online_vcpus;
459 int created_vcpus;
460 int last_boosted_vcpu;
461 struct list_head vm_list;
462 struct mutex lock;
463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464#ifdef CONFIG_HAVE_KVM_EVENTFD
465 struct {
466 spinlock_t lock;
467 struct list_head items;
468 struct list_head resampler_list;
469 struct mutex resampler_lock;
470 } irqfds;
471 struct list_head ioeventfds;
472#endif
473 struct kvm_vm_stat stat;
474 struct kvm_arch arch;
475 refcount_t users_count;
476#ifdef CONFIG_KVM_MMIO
477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 spinlock_t ring_lock;
479 struct list_head coalesced_zones;
480#endif
481
482 struct mutex irq_lock;
483#ifdef CONFIG_HAVE_KVM_IRQCHIP
484 /*
485 * Update side is protected by irq_lock.
486 */
487 struct kvm_irq_routing_table __rcu *irq_routing;
488#endif
489#ifdef CONFIG_HAVE_KVM_IRQFD
490 struct hlist_head irq_ack_notifier_list;
491#endif
492
493#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 struct mmu_notifier mmu_notifier;
495 unsigned long mmu_notifier_seq;
496 long mmu_notifier_count;
497#endif
498 long tlbs_dirty;
499 struct list_head devices;
500 bool manual_dirty_log_protect;
501 struct dentry *debugfs_dentry;
502 struct kvm_stat_data **debugfs_stat_data;
503 struct srcu_struct srcu;
504 struct srcu_struct irq_srcu;
505 pid_t userspace_pid;
506};
507
508#define kvm_err(fmt, ...) \
509 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510#define kvm_info(fmt, ...) \
511 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512#define kvm_debug(fmt, ...) \
513 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514#define kvm_debug_ratelimited(fmt, ...) \
515 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
516 ## __VA_ARGS__)
517#define kvm_pr_unimpl(fmt, ...) \
518 pr_err_ratelimited("kvm [%i]: " fmt, \
519 task_tgid_nr(current), ## __VA_ARGS__)
520
521/* The guest did something we don't support. */
522#define vcpu_unimpl(vcpu, fmt, ...) \
523 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
524 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
525
526#define vcpu_debug(vcpu, fmt, ...) \
527 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
528#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
529 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
530 ## __VA_ARGS__)
531#define vcpu_err(vcpu, fmt, ...) \
532 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
533
534static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
535{
536 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
537 lockdep_is_held(&kvm->slots_lock) ||
538 !refcount_read(&kvm->users_count));
539}
540
541static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
542{
543 int num_vcpus = atomic_read(&kvm->online_vcpus);
544 i = array_index_nospec(i, num_vcpus);
545
546 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
547 smp_rmb();
548 return kvm->vcpus[i];
549}
550
551#define kvm_for_each_vcpu(idx, vcpup, kvm) \
552 for (idx = 0; \
553 idx < atomic_read(&kvm->online_vcpus) && \
554 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
555 idx++)
556
557static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
558{
559 struct kvm_vcpu *vcpu = NULL;
560 int i;
561
562 if (id < 0)
563 return NULL;
564 if (id < KVM_MAX_VCPUS)
565 vcpu = kvm_get_vcpu(kvm, id);
566 if (vcpu && vcpu->vcpu_id == id)
567 return vcpu;
568 kvm_for_each_vcpu(i, vcpu, kvm)
569 if (vcpu->vcpu_id == id)
570 return vcpu;
571 return NULL;
572}
573
574static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
575{
576 struct kvm_vcpu *tmp;
577 int idx;
578
579 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
580 if (tmp == vcpu)
581 return idx;
582 BUG();
583}
584
585#define kvm_for_each_memslot(memslot, slots) \
586 for (memslot = &slots->memslots[0]; \
587 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
588 memslot++)
589
590int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
591void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
592
593void vcpu_load(struct kvm_vcpu *vcpu);
594void vcpu_put(struct kvm_vcpu *vcpu);
595
596#ifdef __KVM_HAVE_IOAPIC
597void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
598void kvm_arch_post_irq_routing_update(struct kvm *kvm);
599#else
600static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
601{
602}
603static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
604{
605}
606#endif
607
608#ifdef CONFIG_HAVE_KVM_IRQFD
609int kvm_irqfd_init(void);
610void kvm_irqfd_exit(void);
611#else
612static inline int kvm_irqfd_init(void)
613{
614 return 0;
615}
616
617static inline void kvm_irqfd_exit(void)
618{
619}
620#endif
621int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
622 struct module *module);
623void kvm_exit(void);
624
625void kvm_get_kvm(struct kvm *kvm);
626void kvm_put_kvm(struct kvm *kvm);
627
628static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
629{
630 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
631 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
632 lockdep_is_held(&kvm->slots_lock) ||
633 !refcount_read(&kvm->users_count));
634}
635
636static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
637{
638 return __kvm_memslots(kvm, 0);
639}
640
641static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
642{
643 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
644
645 return __kvm_memslots(vcpu->kvm, as_id);
646}
647
648static inline struct kvm_memory_slot *
649id_to_memslot(struct kvm_memslots *slots, int id)
650{
651 int index = slots->id_to_index[id];
652 struct kvm_memory_slot *slot;
653
654 slot = &slots->memslots[index];
655
656 WARN_ON(slot->id != id);
657 return slot;
658}
659
660/*
661 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
662 * - create a new memory slot
663 * - delete an existing memory slot
664 * - modify an existing memory slot
665 * -- move it in the guest physical memory space
666 * -- just change its flags
667 *
668 * Since flags can be changed by some of these operations, the following
669 * differentiation is the best we can do for __kvm_set_memory_region():
670 */
671enum kvm_mr_change {
672 KVM_MR_CREATE,
673 KVM_MR_DELETE,
674 KVM_MR_MOVE,
675 KVM_MR_FLAGS_ONLY,
676};
677
678int kvm_set_memory_region(struct kvm *kvm,
679 const struct kvm_userspace_memory_region *mem);
680int __kvm_set_memory_region(struct kvm *kvm,
681 const struct kvm_userspace_memory_region *mem);
682void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
683 struct kvm_memory_slot *dont);
684int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
685 unsigned long npages);
686void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
687int kvm_arch_prepare_memory_region(struct kvm *kvm,
688 struct kvm_memory_slot *memslot,
689 const struct kvm_userspace_memory_region *mem,
690 enum kvm_mr_change change);
691void kvm_arch_commit_memory_region(struct kvm *kvm,
692 const struct kvm_userspace_memory_region *mem,
693 const struct kvm_memory_slot *old,
694 const struct kvm_memory_slot *new,
695 enum kvm_mr_change change);
696bool kvm_largepages_enabled(void);
697void kvm_disable_largepages(void);
698/* flush all memory translations */
699void kvm_arch_flush_shadow_all(struct kvm *kvm);
700/* flush memory translations pointing to 'slot' */
701void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
702 struct kvm_memory_slot *slot);
703
704int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
705 struct page **pages, int nr_pages);
706
707struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
708unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
709unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
710unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
711unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
712 bool *writable);
713void kvm_release_page_clean(struct page *page);
714void kvm_release_page_dirty(struct page *page);
715void kvm_set_page_accessed(struct page *page);
716
717kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
718kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
719kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
720 bool *writable);
721kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
722kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
723kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
724 bool atomic, bool *async, bool write_fault,
725 bool *writable);
726
727void kvm_release_pfn_clean(kvm_pfn_t pfn);
728void kvm_release_pfn_dirty(kvm_pfn_t pfn);
729void kvm_set_pfn_dirty(kvm_pfn_t pfn);
730void kvm_set_pfn_accessed(kvm_pfn_t pfn);
731void kvm_get_pfn(kvm_pfn_t pfn);
732
733int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
734 int len);
735int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
736 unsigned long len);
737int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
738int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
739 void *data, unsigned long len);
740int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
741 int offset, int len);
742int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
743 unsigned long len);
744int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 void *data, unsigned long len);
746int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 void *data, unsigned int offset,
748 unsigned long len);
749int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
750 gpa_t gpa, unsigned long len);
751int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
752int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
753struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
754bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
755unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
756void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
757
758struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
759struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
760kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
761kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
762int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
763struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
764void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
765unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
766unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
767int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
768 int len);
769int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
770 unsigned long len);
771int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
772 unsigned long len);
773int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
774 int offset, int len);
775int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
776 unsigned long len);
777void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
778
779void kvm_sigset_activate(struct kvm_vcpu *vcpu);
780void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
781
782void kvm_vcpu_block(struct kvm_vcpu *vcpu);
783void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
784void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
785bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
786void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
787int kvm_vcpu_yield_to(struct kvm_vcpu *target);
788void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
789
790void kvm_flush_remote_tlbs(struct kvm *kvm);
791void kvm_reload_remote_mmus(struct kvm *kvm);
792
793bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
794 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
795bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
796
797long kvm_arch_dev_ioctl(struct file *filp,
798 unsigned int ioctl, unsigned long arg);
799long kvm_arch_vcpu_ioctl(struct file *filp,
800 unsigned int ioctl, unsigned long arg);
801vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
802
803int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
804
805int kvm_get_dirty_log(struct kvm *kvm,
806 struct kvm_dirty_log *log, int *is_dirty);
807
808int kvm_get_dirty_log_protect(struct kvm *kvm,
809 struct kvm_dirty_log *log, bool *flush);
810int kvm_clear_dirty_log_protect(struct kvm *kvm,
811 struct kvm_clear_dirty_log *log, bool *flush);
812
813void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
814 struct kvm_memory_slot *slot,
815 gfn_t gfn_offset,
816 unsigned long mask);
817
818int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
819 struct kvm_dirty_log *log);
820int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
821 struct kvm_clear_dirty_log *log);
822
823int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
824 bool line_status);
825int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
826 struct kvm_enable_cap *cap);
827long kvm_arch_vm_ioctl(struct file *filp,
828 unsigned int ioctl, unsigned long arg);
829
830int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
831int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
832
833int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
834 struct kvm_translation *tr);
835
836int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
837int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
838int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
839 struct kvm_sregs *sregs);
840int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
841 struct kvm_sregs *sregs);
842int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
843 struct kvm_mp_state *mp_state);
844int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
845 struct kvm_mp_state *mp_state);
846int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
847 struct kvm_guest_debug *dbg);
848int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
849
850int kvm_arch_init(void *opaque);
851void kvm_arch_exit(void);
852
853int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
854void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
855
856void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
857
858void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
859void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
860void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
861struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
862int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
863void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
864void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
865
866bool kvm_arch_has_vcpu_debugfs(void);
867int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
868
869int kvm_arch_hardware_enable(void);
870void kvm_arch_hardware_disable(void);
871int kvm_arch_hardware_setup(void);
872void kvm_arch_hardware_unsetup(void);
873void kvm_arch_check_processor_compat(void *rtn);
874int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
875bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
876int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
877
878#ifndef __KVM_HAVE_ARCH_VM_ALLOC
879/*
880 * All architectures that want to use vzalloc currently also
881 * need their own kvm_arch_alloc_vm implementation.
882 */
883static inline struct kvm *kvm_arch_alloc_vm(void)
884{
885 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
886}
887
888static inline void kvm_arch_free_vm(struct kvm *kvm)
889{
890 kfree(kvm);
891}
892#endif
893
894#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
895static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
896{
897 return -ENOTSUPP;
898}
899#endif
900
901#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
902void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
903void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
904bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
905#else
906static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
907{
908}
909
910static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
911{
912}
913
914static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
915{
916 return false;
917}
918#endif
919#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
920void kvm_arch_start_assignment(struct kvm *kvm);
921void kvm_arch_end_assignment(struct kvm *kvm);
922bool kvm_arch_has_assigned_device(struct kvm *kvm);
923#else
924static inline void kvm_arch_start_assignment(struct kvm *kvm)
925{
926}
927
928static inline void kvm_arch_end_assignment(struct kvm *kvm)
929{
930}
931
932static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
933{
934 return false;
935}
936#endif
937
938static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
939{
940#ifdef __KVM_HAVE_ARCH_WQP
941 return vcpu->arch.wqp;
942#else
943 return &vcpu->wq;
944#endif
945}
946
947#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
948/*
949 * returns true if the virtual interrupt controller is initialized and
950 * ready to accept virtual IRQ. On some architectures the virtual interrupt
951 * controller is dynamically instantiated and this is not always true.
952 */
953bool kvm_arch_intc_initialized(struct kvm *kvm);
954#else
955static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
956{
957 return true;
958}
959#endif
960
961int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
962void kvm_arch_destroy_vm(struct kvm *kvm);
963void kvm_arch_sync_events(struct kvm *kvm);
964
965int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
966void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
967
968bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
969
970struct kvm_irq_ack_notifier {
971 struct hlist_node link;
972 unsigned gsi;
973 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
974};
975
976int kvm_irq_map_gsi(struct kvm *kvm,
977 struct kvm_kernel_irq_routing_entry *entries, int gsi);
978int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
979
980int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
981 bool line_status);
982int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
983 int irq_source_id, int level, bool line_status);
984int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
985 struct kvm *kvm, int irq_source_id,
986 int level, bool line_status);
987bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
988void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
989void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
990void kvm_register_irq_ack_notifier(struct kvm *kvm,
991 struct kvm_irq_ack_notifier *kian);
992void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
993 struct kvm_irq_ack_notifier *kian);
994int kvm_request_irq_source_id(struct kvm *kvm);
995void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
996
997/*
998 * search_memslots() and __gfn_to_memslot() are here because they are
999 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1000 * gfn_to_memslot() itself isn't here as an inline because that would
1001 * bloat other code too much.
1002 */
1003static inline struct kvm_memory_slot *
1004search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1005{
1006 int start = 0, end = slots->used_slots;
1007 int slot = atomic_read(&slots->lru_slot);
1008 struct kvm_memory_slot *memslots = slots->memslots;
1009
1010 if (gfn >= memslots[slot].base_gfn &&
1011 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1012 return &memslots[slot];
1013
1014 while (start < end) {
1015 slot = start + (end - start) / 2;
1016
1017 if (gfn >= memslots[slot].base_gfn)
1018 end = slot;
1019 else
1020 start = slot + 1;
1021 }
1022
1023 if (gfn >= memslots[start].base_gfn &&
1024 gfn < memslots[start].base_gfn + memslots[start].npages) {
1025 atomic_set(&slots->lru_slot, start);
1026 return &memslots[start];
1027 }
1028
1029 return NULL;
1030}
1031
1032static inline struct kvm_memory_slot *
1033__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1034{
1035 return search_memslots(slots, gfn);
1036}
1037
1038static inline unsigned long
1039__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1040{
1041 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1042}
1043
1044static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1045{
1046 return gfn_to_memslot(kvm, gfn)->id;
1047}
1048
1049static inline gfn_t
1050hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1051{
1052 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1053
1054 return slot->base_gfn + gfn_offset;
1055}
1056
1057static inline gpa_t gfn_to_gpa(gfn_t gfn)
1058{
1059 return (gpa_t)gfn << PAGE_SHIFT;
1060}
1061
1062static inline gfn_t gpa_to_gfn(gpa_t gpa)
1063{
1064 return (gfn_t)(gpa >> PAGE_SHIFT);
1065}
1066
1067static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1068{
1069 return (hpa_t)pfn << PAGE_SHIFT;
1070}
1071
1072static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1073 gpa_t gpa)
1074{
1075 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1076}
1077
1078static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1079{
1080 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1081
1082 return kvm_is_error_hva(hva);
1083}
1084
1085enum kvm_stat_kind {
1086 KVM_STAT_VM,
1087 KVM_STAT_VCPU,
1088};
1089
1090struct kvm_stat_data {
1091 int offset;
1092 struct kvm *kvm;
1093};
1094
1095struct kvm_stats_debugfs_item {
1096 const char *name;
1097 int offset;
1098 enum kvm_stat_kind kind;
1099};
1100extern struct kvm_stats_debugfs_item debugfs_entries[];
1101extern struct dentry *kvm_debugfs_dir;
1102
1103#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1104static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1105{
1106 if (unlikely(kvm->mmu_notifier_count))
1107 return 1;
1108 /*
1109 * Ensure the read of mmu_notifier_count happens before the read
1110 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1111 * mmu_notifier_invalidate_range_end to make sure that the caller
1112 * either sees the old (non-zero) value of mmu_notifier_count or
1113 * the new (incremented) value of mmu_notifier_seq.
1114 * PowerPC Book3s HV KVM calls this under a per-page lock
1115 * rather than under kvm->mmu_lock, for scalability, so
1116 * can't rely on kvm->mmu_lock to keep things ordered.
1117 */
1118 smp_rmb();
1119 if (kvm->mmu_notifier_seq != mmu_seq)
1120 return 1;
1121 return 0;
1122}
1123#endif
1124
1125#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1126
1127#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1128
1129bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1130int kvm_set_irq_routing(struct kvm *kvm,
1131 const struct kvm_irq_routing_entry *entries,
1132 unsigned nr,
1133 unsigned flags);
1134int kvm_set_routing_entry(struct kvm *kvm,
1135 struct kvm_kernel_irq_routing_entry *e,
1136 const struct kvm_irq_routing_entry *ue);
1137void kvm_free_irq_routing(struct kvm *kvm);
1138
1139#else
1140
1141static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1142
1143#endif
1144
1145int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1146
1147#ifdef CONFIG_HAVE_KVM_EVENTFD
1148
1149void kvm_eventfd_init(struct kvm *kvm);
1150int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1151
1152#ifdef CONFIG_HAVE_KVM_IRQFD
1153int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1154void kvm_irqfd_release(struct kvm *kvm);
1155void kvm_irq_routing_update(struct kvm *);
1156#else
1157static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1158{
1159 return -EINVAL;
1160}
1161
1162static inline void kvm_irqfd_release(struct kvm *kvm) {}
1163#endif
1164
1165#else
1166
1167static inline void kvm_eventfd_init(struct kvm *kvm) {}
1168
1169static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1170{
1171 return -EINVAL;
1172}
1173
1174static inline void kvm_irqfd_release(struct kvm *kvm) {}
1175
1176#ifdef CONFIG_HAVE_KVM_IRQCHIP
1177static inline void kvm_irq_routing_update(struct kvm *kvm)
1178{
1179}
1180#endif
1181
1182static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1183{
1184 return -ENOSYS;
1185}
1186
1187#endif /* CONFIG_HAVE_KVM_EVENTFD */
1188
1189void kvm_arch_irq_routing_update(struct kvm *kvm);
1190
1191static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1192{
1193 /*
1194 * Ensure the rest of the request is published to kvm_check_request's
1195 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1196 */
1197 smp_wmb();
1198 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1199}
1200
1201static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1202{
1203 return READ_ONCE(vcpu->requests);
1204}
1205
1206static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1207{
1208 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1209}
1210
1211static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1212{
1213 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1214}
1215
1216static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1217{
1218 if (kvm_test_request(req, vcpu)) {
1219 kvm_clear_request(req, vcpu);
1220
1221 /*
1222 * Ensure the rest of the request is visible to kvm_check_request's
1223 * caller. Paired with the smp_wmb in kvm_make_request.
1224 */
1225 smp_mb__after_atomic();
1226 return true;
1227 } else {
1228 return false;
1229 }
1230}
1231
1232extern bool kvm_rebooting;
1233
1234extern unsigned int halt_poll_ns;
1235extern unsigned int halt_poll_ns_grow;
1236extern unsigned int halt_poll_ns_grow_start;
1237extern unsigned int halt_poll_ns_shrink;
1238
1239struct kvm_device {
1240 struct kvm_device_ops *ops;
1241 struct kvm *kvm;
1242 void *private;
1243 struct list_head vm_node;
1244};
1245
1246/* create, destroy, and name are mandatory */
1247struct kvm_device_ops {
1248 const char *name;
1249
1250 /*
1251 * create is called holding kvm->lock and any operations not suitable
1252 * to do while holding the lock should be deferred to init (see
1253 * below).
1254 */
1255 int (*create)(struct kvm_device *dev, u32 type);
1256
1257 /*
1258 * init is called after create if create is successful and is called
1259 * outside of holding kvm->lock.
1260 */
1261 void (*init)(struct kvm_device *dev);
1262
1263 /*
1264 * Destroy is responsible for freeing dev.
1265 *
1266 * Destroy may be called before or after destructors are called
1267 * on emulated I/O regions, depending on whether a reference is
1268 * held by a vcpu or other kvm component that gets destroyed
1269 * after the emulated I/O.
1270 */
1271 void (*destroy)(struct kvm_device *dev);
1272
1273 /*
1274 * Release is an alternative method to free the device. It is
1275 * called when the device file descriptor is closed. Once
1276 * release is called, the destroy method will not be called
1277 * anymore as the device is removed from the device list of
1278 * the VM. kvm->lock is held.
1279 */
1280 void (*release)(struct kvm_device *dev);
1281
1282 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1283 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1284 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1285 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1286 unsigned long arg);
1287 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1288};
1289
1290void kvm_device_get(struct kvm_device *dev);
1291void kvm_device_put(struct kvm_device *dev);
1292struct kvm_device *kvm_device_from_filp(struct file *filp);
1293int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1294void kvm_unregister_device_ops(u32 type);
1295
1296extern struct kvm_device_ops kvm_mpic_ops;
1297extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1298extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1299
1300#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1301
1302static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1303{
1304 vcpu->spin_loop.in_spin_loop = val;
1305}
1306static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1307{
1308 vcpu->spin_loop.dy_eligible = val;
1309}
1310
1311#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1312
1313static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1314{
1315}
1316
1317static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1318{
1319}
1320#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1321
1322#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1323bool kvm_arch_has_irq_bypass(void);
1324int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1325 struct irq_bypass_producer *);
1326void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1327 struct irq_bypass_producer *);
1328void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1329void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1330int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1331 uint32_t guest_irq, bool set);
1332#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1333
1334#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1335/* If we wakeup during the poll time, was it a sucessful poll? */
1336static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1337{
1338 return vcpu->valid_wakeup;
1339}
1340
1341#else
1342static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1343{
1344 return true;
1345}
1346#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1347
1348#ifdef CONFIG_HAVE_KVM_NO_POLL
1349/* Callback that tells if we must not poll */
1350bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1351#else
1352static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1353{
1354 return false;
1355}
1356#endif /* CONFIG_HAVE_KVM_NO_POLL */
1357
1358#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1359long kvm_arch_vcpu_async_ioctl(struct file *filp,
1360 unsigned int ioctl, unsigned long arg);
1361#else
1362static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1363 unsigned int ioctl,
1364 unsigned long arg)
1365{
1366 return -ENOIOCTLCMD;
1367}
1368#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1369
1370int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1371 unsigned long start, unsigned long end, bool blockable);
1372
1373#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1374int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1375#else
1376static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1377{
1378 return 0;
1379}
1380#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1381
1382#endif