Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393
394 dev_base_seq_inc(net);
395}
396
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
400static void unlist_netdevice(struct net_device *dev, bool lock)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
405 if (lock)
406 write_lock(&dev_base_lock);
407 list_del_rcu(&dev->dev_list);
408 netdev_name_node_del(dev->name_node);
409 hlist_del_rcu(&dev->index_hlist);
410 if (lock)
411 write_unlock(&dev_base_lock);
412
413 dev_base_seq_inc(dev_net(dev));
414}
415
416/*
417 * Our notifier list
418 */
419
420static RAW_NOTIFIER_HEAD(netdev_chain);
421
422/*
423 * Device drivers call our routines to queue packets here. We empty the
424 * queue in the local softnet handler.
425 */
426
427DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430#ifdef CONFIG_LOCKDEP
431/*
432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433 * according to dev->type
434 */
435static const unsigned short netdev_lock_type[] = {
436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452static const char *const netdev_lock_name[] = {
453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473{
474 int i;
475
476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 if (netdev_lock_type[i] == dev_type)
478 return i;
479 /* the last key is used by default */
480 return ARRAY_SIZE(netdev_lock_type) - 1;
481}
482
483static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 unsigned short dev_type)
485{
486 int i;
487
488 i = netdev_lock_pos(dev_type);
489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 netdev_lock_name[i]);
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495 int i;
496
497 i = netdev_lock_pos(dev->type);
498 lockdep_set_class_and_name(&dev->addr_list_lock,
499 &netdev_addr_lock_key[i],
500 netdev_lock_name[i]);
501}
502#else
503static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 unsigned short dev_type)
505{
506}
507
508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509{
510}
511#endif
512
513/*******************************************************************************
514 *
515 * Protocol management and registration routines
516 *
517 *******************************************************************************/
518
519
520/*
521 * Add a protocol ID to the list. Now that the input handler is
522 * smarter we can dispense with all the messy stuff that used to be
523 * here.
524 *
525 * BEWARE!!! Protocol handlers, mangling input packets,
526 * MUST BE last in hash buckets and checking protocol handlers
527 * MUST start from promiscuous ptype_all chain in net_bh.
528 * It is true now, do not change it.
529 * Explanation follows: if protocol handler, mangling packet, will
530 * be the first on list, it is not able to sense, that packet
531 * is cloned and should be copied-on-write, so that it will
532 * change it and subsequent readers will get broken packet.
533 * --ANK (980803)
534 */
535
536static inline struct list_head *ptype_head(const struct packet_type *pt)
537{
538 if (pt->type == htons(ETH_P_ALL))
539 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 else
541 return pt->dev ? &pt->dev->ptype_specific :
542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543}
544
545/**
546 * dev_add_pack - add packet handler
547 * @pt: packet type declaration
548 *
549 * Add a protocol handler to the networking stack. The passed &packet_type
550 * is linked into kernel lists and may not be freed until it has been
551 * removed from the kernel lists.
552 *
553 * This call does not sleep therefore it can not
554 * guarantee all CPU's that are in middle of receiving packets
555 * will see the new packet type (until the next received packet).
556 */
557
558void dev_add_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561
562 spin_lock(&ptype_lock);
563 list_add_rcu(&pt->list, head);
564 spin_unlock(&ptype_lock);
565}
566EXPORT_SYMBOL(dev_add_pack);
567
568/**
569 * __dev_remove_pack - remove packet handler
570 * @pt: packet type declaration
571 *
572 * Remove a protocol handler that was previously added to the kernel
573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
574 * from the kernel lists and can be freed or reused once this function
575 * returns.
576 *
577 * The packet type might still be in use by receivers
578 * and must not be freed until after all the CPU's have gone
579 * through a quiescent state.
580 */
581void __dev_remove_pack(struct packet_type *pt)
582{
583 struct list_head *head = ptype_head(pt);
584 struct packet_type *pt1;
585
586 spin_lock(&ptype_lock);
587
588 list_for_each_entry(pt1, head, list) {
589 if (pt == pt1) {
590 list_del_rcu(&pt->list);
591 goto out;
592 }
593 }
594
595 pr_warn("dev_remove_pack: %p not found\n", pt);
596out:
597 spin_unlock(&ptype_lock);
598}
599EXPORT_SYMBOL(__dev_remove_pack);
600
601/**
602 * dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
604 *
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
608 * returns.
609 *
610 * This call sleeps to guarantee that no CPU is looking at the packet
611 * type after return.
612 */
613void dev_remove_pack(struct packet_type *pt)
614{
615 __dev_remove_pack(pt);
616
617 synchronize_net();
618}
619EXPORT_SYMBOL(dev_remove_pack);
620
621
622/*******************************************************************************
623 *
624 * Device Interface Subroutines
625 *
626 *******************************************************************************/
627
628/**
629 * dev_get_iflink - get 'iflink' value of a interface
630 * @dev: targeted interface
631 *
632 * Indicates the ifindex the interface is linked to.
633 * Physical interfaces have the same 'ifindex' and 'iflink' values.
634 */
635
636int dev_get_iflink(const struct net_device *dev)
637{
638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 return dev->netdev_ops->ndo_get_iflink(dev);
640
641 return dev->ifindex;
642}
643EXPORT_SYMBOL(dev_get_iflink);
644
645/**
646 * dev_fill_metadata_dst - Retrieve tunnel egress information.
647 * @dev: targeted interface
648 * @skb: The packet.
649 *
650 * For better visibility of tunnel traffic OVS needs to retrieve
651 * egress tunnel information for a packet. Following API allows
652 * user to get this info.
653 */
654int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655{
656 struct ip_tunnel_info *info;
657
658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
659 return -EINVAL;
660
661 info = skb_tunnel_info_unclone(skb);
662 if (!info)
663 return -ENOMEM;
664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 return -EINVAL;
666
667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668}
669EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672{
673 int k = stack->num_paths++;
674
675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 return NULL;
677
678 return &stack->path[k];
679}
680
681int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 struct net_device_path_stack *stack)
683{
684 const struct net_device *last_dev;
685 struct net_device_path_ctx ctx = {
686 .dev = dev,
687 };
688 struct net_device_path *path;
689 int ret = 0;
690
691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 stack->num_paths = 0;
693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 last_dev = ctx.dev;
695 path = dev_fwd_path(stack);
696 if (!path)
697 return -1;
698
699 memset(path, 0, sizeof(struct net_device_path));
700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 if (ret < 0)
702 return -1;
703
704 if (WARN_ON_ONCE(last_dev == ctx.dev))
705 return -1;
706 }
707
708 if (!ctx.dev)
709 return ret;
710
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714 path->type = DEV_PATH_ETHERNET;
715 path->dev = ctx.dev;
716
717 return ret;
718}
719EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721/**
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
733struct net_device *__dev_get_by_name(struct net *net, const char *name)
734{
735 struct netdev_name_node *node_name;
736
737 node_name = netdev_name_node_lookup(net, name);
738 return node_name ? node_name->dev : NULL;
739}
740EXPORT_SYMBOL(__dev_get_by_name);
741
742/**
743 * dev_get_by_name_rcu - find a device by its name
744 * @net: the applicable net namespace
745 * @name: name to find
746 *
747 * Find an interface by name.
748 * If the name is found a pointer to the device is returned.
749 * If the name is not found then %NULL is returned.
750 * The reference counters are not incremented so the caller must be
751 * careful with locks. The caller must hold RCU lock.
752 */
753
754struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755{
756 struct netdev_name_node *node_name;
757
758 node_name = netdev_name_node_lookup_rcu(net, name);
759 return node_name ? node_name->dev : NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763/**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775struct net_device *dev_get_by_name(struct net *net, const char *name)
776{
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784}
785EXPORT_SYMBOL(dev_get_by_name);
786
787/**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800{
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809}
810EXPORT_SYMBOL(__dev_get_by_index);
811
812/**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824{
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833}
834EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837/**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848struct net_device *dev_get_by_index(struct net *net, int ifindex)
849{
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857}
858EXPORT_SYMBOL(dev_get_by_index);
859
860/**
861 * dev_get_by_napi_id - find a device by napi_id
862 * @napi_id: ID of the NAPI struct
863 *
864 * Search for an interface by NAPI ID. Returns %NULL if the device
865 * is not found or a pointer to the device. The device has not had
866 * its reference counter increased so the caller must be careful
867 * about locking. The caller must hold RCU lock.
868 */
869
870struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871{
872 struct napi_struct *napi;
873
874 WARN_ON_ONCE(!rcu_read_lock_held());
875
876 if (napi_id < MIN_NAPI_ID)
877 return NULL;
878
879 napi = napi_by_id(napi_id);
880
881 return napi ? napi->dev : NULL;
882}
883EXPORT_SYMBOL(dev_get_by_napi_id);
884
885/**
886 * netdev_get_name - get a netdevice name, knowing its ifindex.
887 * @net: network namespace
888 * @name: a pointer to the buffer where the name will be stored.
889 * @ifindex: the ifindex of the interface to get the name from.
890 */
891int netdev_get_name(struct net *net, char *name, int ifindex)
892{
893 struct net_device *dev;
894 int ret;
895
896 down_read(&devnet_rename_sem);
897 rcu_read_lock();
898
899 dev = dev_get_by_index_rcu(net, ifindex);
900 if (!dev) {
901 ret = -ENODEV;
902 goto out;
903 }
904
905 strcpy(name, dev->name);
906
907 ret = 0;
908out:
909 rcu_read_unlock();
910 up_read(&devnet_rename_sem);
911 return ret;
912}
913
914/**
915 * dev_getbyhwaddr_rcu - find a device by its hardware address
916 * @net: the applicable net namespace
917 * @type: media type of device
918 * @ha: hardware address
919 *
920 * Search for an interface by MAC address. Returns NULL if the device
921 * is not found or a pointer to the device.
922 * The caller must hold RCU or RTNL.
923 * The returned device has not had its ref count increased
924 * and the caller must therefore be careful about locking
925 *
926 */
927
928struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 const char *ha)
930{
931 struct net_device *dev;
932
933 for_each_netdev_rcu(net, dev)
934 if (dev->type == type &&
935 !memcmp(dev->dev_addr, ha, dev->addr_len))
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 if (!dev_valid_name(name))
1037 return -EINVAL;
1038
1039 p = strchr(name, '%');
1040 if (p) {
1041 /*
1042 * Verify the string as this thing may have come from
1043 * the user. There must be either one "%d" and no other "%"
1044 * characters.
1045 */
1046 if (p[1] != 'd' || strchr(p + 2, '%'))
1047 return -EINVAL;
1048
1049 /* Use one page as a bit array of possible slots */
1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 if (!inuse)
1052 return -ENOMEM;
1053
1054 for_each_netdev(net, d) {
1055 struct netdev_name_node *name_node;
1056 list_for_each_entry(name_node, &d->name_node->list, list) {
1057 if (!sscanf(name_node->name, name, &i))
1058 continue;
1059 if (i < 0 || i >= max_netdevices)
1060 continue;
1061
1062 /* avoid cases where sscanf is not exact inverse of printf */
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 __set_bit(i, inuse);
1066 }
1067 if (!sscanf(d->name, name, &i))
1068 continue;
1069 if (i < 0 || i >= max_netdevices)
1070 continue;
1071
1072 /* avoid cases where sscanf is not exact inverse of printf */
1073 snprintf(buf, IFNAMSIZ, name, i);
1074 if (!strncmp(buf, d->name, IFNAMSIZ))
1075 __set_bit(i, inuse);
1076 }
1077
1078 i = find_first_zero_bit(inuse, max_netdevices);
1079 free_page((unsigned long) inuse);
1080 }
1081
1082 snprintf(buf, IFNAMSIZ, name, i);
1083 if (!netdev_name_in_use(net, buf))
1084 return i;
1085
1086 /* It is possible to run out of possible slots
1087 * when the name is long and there isn't enough space left
1088 * for the digits, or if all bits are used.
1089 */
1090 return -ENFILE;
1091}
1092
1093static int dev_alloc_name_ns(struct net *net,
1094 struct net_device *dev,
1095 const char *name)
1096{
1097 char buf[IFNAMSIZ];
1098 int ret;
1099
1100 BUG_ON(!net);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strlcpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 return dev_alloc_name_ns(dev_net(dev), dev, name);
1124}
1125EXPORT_SYMBOL(dev_alloc_name);
1126
1127static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 const char *name)
1129{
1130 BUG_ON(!net);
1131
1132 if (!dev_valid_name(name))
1133 return -EINVAL;
1134
1135 if (strchr(name, '%'))
1136 return dev_alloc_name_ns(net, dev, name);
1137 else if (netdev_name_in_use(net, name))
1138 return -EEXIST;
1139 else if (dev->name != name)
1140 strlcpy(dev->name, name, IFNAMSIZ);
1141
1142 return 0;
1143}
1144
1145/**
1146 * dev_change_name - change name of a device
1147 * @dev: device
1148 * @newname: name (or format string) must be at least IFNAMSIZ
1149 *
1150 * Change name of a device, can pass format strings "eth%d".
1151 * for wildcarding.
1152 */
1153int dev_change_name(struct net_device *dev, const char *newname)
1154{
1155 unsigned char old_assign_type;
1156 char oldname[IFNAMSIZ];
1157 int err = 0;
1158 int ret;
1159 struct net *net;
1160
1161 ASSERT_RTNL();
1162 BUG_ON(!dev_net(dev));
1163
1164 net = dev_net(dev);
1165
1166 /* Some auto-enslaved devices e.g. failover slaves are
1167 * special, as userspace might rename the device after
1168 * the interface had been brought up and running since
1169 * the point kernel initiated auto-enslavement. Allow
1170 * live name change even when these slave devices are
1171 * up and running.
1172 *
1173 * Typically, users of these auto-enslaving devices
1174 * don't actually care about slave name change, as
1175 * they are supposed to operate on master interface
1176 * directly.
1177 */
1178 if (dev->flags & IFF_UP &&
1179 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180 return -EBUSY;
1181
1182 down_write(&devnet_rename_sem);
1183
1184 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185 up_write(&devnet_rename_sem);
1186 return 0;
1187 }
1188
1189 memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191 err = dev_get_valid_name(net, dev, newname);
1192 if (err < 0) {
1193 up_write(&devnet_rename_sem);
1194 return err;
1195 }
1196
1197 if (oldname[0] && !strchr(oldname, '%'))
1198 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200 old_assign_type = dev->name_assign_type;
1201 dev->name_assign_type = NET_NAME_RENAMED;
1202
1203rollback:
1204 ret = device_rename(&dev->dev, dev->name);
1205 if (ret) {
1206 memcpy(dev->name, oldname, IFNAMSIZ);
1207 dev->name_assign_type = old_assign_type;
1208 up_write(&devnet_rename_sem);
1209 return ret;
1210 }
1211
1212 up_write(&devnet_rename_sem);
1213
1214 netdev_adjacent_rename_links(dev, oldname);
1215
1216 write_lock(&dev_base_lock);
1217 netdev_name_node_del(dev->name_node);
1218 write_unlock(&dev_base_lock);
1219
1220 synchronize_rcu();
1221
1222 write_lock(&dev_base_lock);
1223 netdev_name_node_add(net, dev->name_node);
1224 write_unlock(&dev_base_lock);
1225
1226 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227 ret = notifier_to_errno(ret);
1228
1229 if (ret) {
1230 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231 if (err >= 0) {
1232 err = ret;
1233 down_write(&devnet_rename_sem);
1234 memcpy(dev->name, oldname, IFNAMSIZ);
1235 memcpy(oldname, newname, IFNAMSIZ);
1236 dev->name_assign_type = old_assign_type;
1237 old_assign_type = NET_NAME_RENAMED;
1238 goto rollback;
1239 } else {
1240 netdev_err(dev, "name change rollback failed: %d\n",
1241 ret);
1242 }
1243 }
1244
1245 return err;
1246}
1247
1248/**
1249 * dev_set_alias - change ifalias of a device
1250 * @dev: device
1251 * @alias: name up to IFALIASZ
1252 * @len: limit of bytes to copy from info
1253 *
1254 * Set ifalias for a device,
1255 */
1256int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257{
1258 struct dev_ifalias *new_alias = NULL;
1259
1260 if (len >= IFALIASZ)
1261 return -EINVAL;
1262
1263 if (len) {
1264 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265 if (!new_alias)
1266 return -ENOMEM;
1267
1268 memcpy(new_alias->ifalias, alias, len);
1269 new_alias->ifalias[len] = 0;
1270 }
1271
1272 mutex_lock(&ifalias_mutex);
1273 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274 mutex_is_locked(&ifalias_mutex));
1275 mutex_unlock(&ifalias_mutex);
1276
1277 if (new_alias)
1278 kfree_rcu(new_alias, rcuhead);
1279
1280 return len;
1281}
1282EXPORT_SYMBOL(dev_set_alias);
1283
1284/**
1285 * dev_get_alias - get ifalias of a device
1286 * @dev: device
1287 * @name: buffer to store name of ifalias
1288 * @len: size of buffer
1289 *
1290 * get ifalias for a device. Caller must make sure dev cannot go
1291 * away, e.g. rcu read lock or own a reference count to device.
1292 */
1293int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294{
1295 const struct dev_ifalias *alias;
1296 int ret = 0;
1297
1298 rcu_read_lock();
1299 alias = rcu_dereference(dev->ifalias);
1300 if (alias)
1301 ret = snprintf(name, len, "%s", alias->ifalias);
1302 rcu_read_unlock();
1303
1304 return ret;
1305}
1306
1307/**
1308 * netdev_features_change - device changes features
1309 * @dev: device to cause notification
1310 *
1311 * Called to indicate a device has changed features.
1312 */
1313void netdev_features_change(struct net_device *dev)
1314{
1315 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316}
1317EXPORT_SYMBOL(netdev_features_change);
1318
1319/**
1320 * netdev_state_change - device changes state
1321 * @dev: device to cause notification
1322 *
1323 * Called to indicate a device has changed state. This function calls
1324 * the notifier chains for netdev_chain and sends a NEWLINK message
1325 * to the routing socket.
1326 */
1327void netdev_state_change(struct net_device *dev)
1328{
1329 if (dev->flags & IFF_UP) {
1330 struct netdev_notifier_change_info change_info = {
1331 .info.dev = dev,
1332 };
1333
1334 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335 &change_info.info);
1336 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337 }
1338}
1339EXPORT_SYMBOL(netdev_state_change);
1340
1341/**
1342 * __netdev_notify_peers - notify network peers about existence of @dev,
1343 * to be called when rtnl lock is already held.
1344 * @dev: network device
1345 *
1346 * Generate traffic such that interested network peers are aware of
1347 * @dev, such as by generating a gratuitous ARP. This may be used when
1348 * a device wants to inform the rest of the network about some sort of
1349 * reconfiguration such as a failover event or virtual machine
1350 * migration.
1351 */
1352void __netdev_notify_peers(struct net_device *dev)
1353{
1354 ASSERT_RTNL();
1355 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357}
1358EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360/**
1361 * netdev_notify_peers - notify network peers about existence of @dev
1362 * @dev: network device
1363 *
1364 * Generate traffic such that interested network peers are aware of
1365 * @dev, such as by generating a gratuitous ARP. This may be used when
1366 * a device wants to inform the rest of the network about some sort of
1367 * reconfiguration such as a failover event or virtual machine
1368 * migration.
1369 */
1370void netdev_notify_peers(struct net_device *dev)
1371{
1372 rtnl_lock();
1373 __netdev_notify_peers(dev);
1374 rtnl_unlock();
1375}
1376EXPORT_SYMBOL(netdev_notify_peers);
1377
1378static int napi_threaded_poll(void *data);
1379
1380static int napi_kthread_create(struct napi_struct *n)
1381{
1382 int err = 0;
1383
1384 /* Create and wake up the kthread once to put it in
1385 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386 * warning and work with loadavg.
1387 */
1388 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389 n->dev->name, n->napi_id);
1390 if (IS_ERR(n->thread)) {
1391 err = PTR_ERR(n->thread);
1392 pr_err("kthread_run failed with err %d\n", err);
1393 n->thread = NULL;
1394 }
1395
1396 return err;
1397}
1398
1399static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400{
1401 const struct net_device_ops *ops = dev->netdev_ops;
1402 int ret;
1403
1404 ASSERT_RTNL();
1405 dev_addr_check(dev);
1406
1407 if (!netif_device_present(dev)) {
1408 /* may be detached because parent is runtime-suspended */
1409 if (dev->dev.parent)
1410 pm_runtime_resume(dev->dev.parent);
1411 if (!netif_device_present(dev))
1412 return -ENODEV;
1413 }
1414
1415 /* Block netpoll from trying to do any rx path servicing.
1416 * If we don't do this there is a chance ndo_poll_controller
1417 * or ndo_poll may be running while we open the device
1418 */
1419 netpoll_poll_disable(dev);
1420
1421 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422 ret = notifier_to_errno(ret);
1423 if (ret)
1424 return ret;
1425
1426 set_bit(__LINK_STATE_START, &dev->state);
1427
1428 if (ops->ndo_validate_addr)
1429 ret = ops->ndo_validate_addr(dev);
1430
1431 if (!ret && ops->ndo_open)
1432 ret = ops->ndo_open(dev);
1433
1434 netpoll_poll_enable(dev);
1435
1436 if (ret)
1437 clear_bit(__LINK_STATE_START, &dev->state);
1438 else {
1439 dev->flags |= IFF_UP;
1440 dev_set_rx_mode(dev);
1441 dev_activate(dev);
1442 add_device_randomness(dev->dev_addr, dev->addr_len);
1443 }
1444
1445 return ret;
1446}
1447
1448/**
1449 * dev_open - prepare an interface for use.
1450 * @dev: device to open
1451 * @extack: netlink extended ack
1452 *
1453 * Takes a device from down to up state. The device's private open
1454 * function is invoked and then the multicast lists are loaded. Finally
1455 * the device is moved into the up state and a %NETDEV_UP message is
1456 * sent to the netdev notifier chain.
1457 *
1458 * Calling this function on an active interface is a nop. On a failure
1459 * a negative errno code is returned.
1460 */
1461int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462{
1463 int ret;
1464
1465 if (dev->flags & IFF_UP)
1466 return 0;
1467
1468 ret = __dev_open(dev, extack);
1469 if (ret < 0)
1470 return ret;
1471
1472 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473 call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475 return ret;
1476}
1477EXPORT_SYMBOL(dev_open);
1478
1479static void __dev_close_many(struct list_head *head)
1480{
1481 struct net_device *dev;
1482
1483 ASSERT_RTNL();
1484 might_sleep();
1485
1486 list_for_each_entry(dev, head, close_list) {
1487 /* Temporarily disable netpoll until the interface is down */
1488 netpoll_poll_disable(dev);
1489
1490 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495 * can be even on different cpu. So just clear netif_running().
1496 *
1497 * dev->stop() will invoke napi_disable() on all of it's
1498 * napi_struct instances on this device.
1499 */
1500 smp_mb__after_atomic(); /* Commit netif_running(). */
1501 }
1502
1503 dev_deactivate_many(head);
1504
1505 list_for_each_entry(dev, head, close_list) {
1506 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508 /*
1509 * Call the device specific close. This cannot fail.
1510 * Only if device is UP
1511 *
1512 * We allow it to be called even after a DETACH hot-plug
1513 * event.
1514 */
1515 if (ops->ndo_stop)
1516 ops->ndo_stop(dev);
1517
1518 dev->flags &= ~IFF_UP;
1519 netpoll_poll_enable(dev);
1520 }
1521}
1522
1523static void __dev_close(struct net_device *dev)
1524{
1525 LIST_HEAD(single);
1526
1527 list_add(&dev->close_list, &single);
1528 __dev_close_many(&single);
1529 list_del(&single);
1530}
1531
1532void dev_close_many(struct list_head *head, bool unlink)
1533{
1534 struct net_device *dev, *tmp;
1535
1536 /* Remove the devices that don't need to be closed */
1537 list_for_each_entry_safe(dev, tmp, head, close_list)
1538 if (!(dev->flags & IFF_UP))
1539 list_del_init(&dev->close_list);
1540
1541 __dev_close_many(head);
1542
1543 list_for_each_entry_safe(dev, tmp, head, close_list) {
1544 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546 if (unlink)
1547 list_del_init(&dev->close_list);
1548 }
1549}
1550EXPORT_SYMBOL(dev_close_many);
1551
1552/**
1553 * dev_close - shutdown an interface.
1554 * @dev: device to shutdown
1555 *
1556 * This function moves an active device into down state. A
1557 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559 * chain.
1560 */
1561void dev_close(struct net_device *dev)
1562{
1563 if (dev->flags & IFF_UP) {
1564 LIST_HEAD(single);
1565
1566 list_add(&dev->close_list, &single);
1567 dev_close_many(&single, true);
1568 list_del(&single);
1569 }
1570}
1571EXPORT_SYMBOL(dev_close);
1572
1573
1574/**
1575 * dev_disable_lro - disable Large Receive Offload on a device
1576 * @dev: device
1577 *
1578 * Disable Large Receive Offload (LRO) on a net device. Must be
1579 * called under RTNL. This is needed if received packets may be
1580 * forwarded to another interface.
1581 */
1582void dev_disable_lro(struct net_device *dev)
1583{
1584 struct net_device *lower_dev;
1585 struct list_head *iter;
1586
1587 dev->wanted_features &= ~NETIF_F_LRO;
1588 netdev_update_features(dev);
1589
1590 if (unlikely(dev->features & NETIF_F_LRO))
1591 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593 netdev_for_each_lower_dev(dev, lower_dev, iter)
1594 dev_disable_lro(lower_dev);
1595}
1596EXPORT_SYMBOL(dev_disable_lro);
1597
1598/**
1599 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600 * @dev: device
1601 *
1602 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1603 * called under RTNL. This is needed if Generic XDP is installed on
1604 * the device.
1605 */
1606static void dev_disable_gro_hw(struct net_device *dev)
1607{
1608 dev->wanted_features &= ~NETIF_F_GRO_HW;
1609 netdev_update_features(dev);
1610
1611 if (unlikely(dev->features & NETIF_F_GRO_HW))
1612 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613}
1614
1615const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616{
1617#define N(val) \
1618 case NETDEV_##val: \
1619 return "NETDEV_" __stringify(val);
1620 switch (cmd) {
1621 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632 }
1633#undef N
1634 return "UNKNOWN_NETDEV_EVENT";
1635}
1636EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639 struct net_device *dev)
1640{
1641 struct netdev_notifier_info info = {
1642 .dev = dev,
1643 };
1644
1645 return nb->notifier_call(nb, val, &info);
1646}
1647
1648static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649 struct net_device *dev)
1650{
1651 int err;
1652
1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 err = notifier_to_errno(err);
1655 if (err)
1656 return err;
1657
1658 if (!(dev->flags & IFF_UP))
1659 return 0;
1660
1661 call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 return 0;
1663}
1664
1665static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666 struct net_device *dev)
1667{
1668 if (dev->flags & IFF_UP) {
1669 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670 dev);
1671 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672 }
1673 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674}
1675
1676static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677 struct net *net)
1678{
1679 struct net_device *dev;
1680 int err;
1681
1682 for_each_netdev(net, dev) {
1683 err = call_netdevice_register_notifiers(nb, dev);
1684 if (err)
1685 goto rollback;
1686 }
1687 return 0;
1688
1689rollback:
1690 for_each_netdev_continue_reverse(net, dev)
1691 call_netdevice_unregister_notifiers(nb, dev);
1692 return err;
1693}
1694
1695static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696 struct net *net)
1697{
1698 struct net_device *dev;
1699
1700 for_each_netdev(net, dev)
1701 call_netdevice_unregister_notifiers(nb, dev);
1702}
1703
1704static int dev_boot_phase = 1;
1705
1706/**
1707 * register_netdevice_notifier - register a network notifier block
1708 * @nb: notifier
1709 *
1710 * Register a notifier to be called when network device events occur.
1711 * The notifier passed is linked into the kernel structures and must
1712 * not be reused until it has been unregistered. A negative errno code
1713 * is returned on a failure.
1714 *
1715 * When registered all registration and up events are replayed
1716 * to the new notifier to allow device to have a race free
1717 * view of the network device list.
1718 */
1719
1720int register_netdevice_notifier(struct notifier_block *nb)
1721{
1722 struct net *net;
1723 int err;
1724
1725 /* Close race with setup_net() and cleanup_net() */
1726 down_write(&pernet_ops_rwsem);
1727 rtnl_lock();
1728 err = raw_notifier_chain_register(&netdev_chain, nb);
1729 if (err)
1730 goto unlock;
1731 if (dev_boot_phase)
1732 goto unlock;
1733 for_each_net(net) {
1734 err = call_netdevice_register_net_notifiers(nb, net);
1735 if (err)
1736 goto rollback;
1737 }
1738
1739unlock:
1740 rtnl_unlock();
1741 up_write(&pernet_ops_rwsem);
1742 return err;
1743
1744rollback:
1745 for_each_net_continue_reverse(net)
1746 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748 raw_notifier_chain_unregister(&netdev_chain, nb);
1749 goto unlock;
1750}
1751EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753/**
1754 * unregister_netdevice_notifier - unregister a network notifier block
1755 * @nb: notifier
1756 *
1757 * Unregister a notifier previously registered by
1758 * register_netdevice_notifier(). The notifier is unlinked into the
1759 * kernel structures and may then be reused. A negative errno code
1760 * is returned on a failure.
1761 *
1762 * After unregistering unregister and down device events are synthesized
1763 * for all devices on the device list to the removed notifier to remove
1764 * the need for special case cleanup code.
1765 */
1766
1767int unregister_netdevice_notifier(struct notifier_block *nb)
1768{
1769 struct net *net;
1770 int err;
1771
1772 /* Close race with setup_net() and cleanup_net() */
1773 down_write(&pernet_ops_rwsem);
1774 rtnl_lock();
1775 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776 if (err)
1777 goto unlock;
1778
1779 for_each_net(net)
1780 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782unlock:
1783 rtnl_unlock();
1784 up_write(&pernet_ops_rwsem);
1785 return err;
1786}
1787EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789static int __register_netdevice_notifier_net(struct net *net,
1790 struct notifier_block *nb,
1791 bool ignore_call_fail)
1792{
1793 int err;
1794
1795 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796 if (err)
1797 return err;
1798 if (dev_boot_phase)
1799 return 0;
1800
1801 err = call_netdevice_register_net_notifiers(nb, net);
1802 if (err && !ignore_call_fail)
1803 goto chain_unregister;
1804
1805 return 0;
1806
1807chain_unregister:
1808 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809 return err;
1810}
1811
1812static int __unregister_netdevice_notifier_net(struct net *net,
1813 struct notifier_block *nb)
1814{
1815 int err;
1816
1817 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818 if (err)
1819 return err;
1820
1821 call_netdevice_unregister_net_notifiers(nb, net);
1822 return 0;
1823}
1824
1825/**
1826 * register_netdevice_notifier_net - register a per-netns network notifier block
1827 * @net: network namespace
1828 * @nb: notifier
1829 *
1830 * Register a notifier to be called when network device events occur.
1831 * The notifier passed is linked into the kernel structures and must
1832 * not be reused until it has been unregistered. A negative errno code
1833 * is returned on a failure.
1834 *
1835 * When registered all registration and up events are replayed
1836 * to the new notifier to allow device to have a race free
1837 * view of the network device list.
1838 */
1839
1840int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841{
1842 int err;
1843
1844 rtnl_lock();
1845 err = __register_netdevice_notifier_net(net, nb, false);
1846 rtnl_unlock();
1847 return err;
1848}
1849EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851/**
1852 * unregister_netdevice_notifier_net - unregister a per-netns
1853 * network notifier block
1854 * @net: network namespace
1855 * @nb: notifier
1856 *
1857 * Unregister a notifier previously registered by
1858 * register_netdevice_notifier(). The notifier is unlinked into the
1859 * kernel structures and may then be reused. A negative errno code
1860 * is returned on a failure.
1861 *
1862 * After unregistering unregister and down device events are synthesized
1863 * for all devices on the device list to the removed notifier to remove
1864 * the need for special case cleanup code.
1865 */
1866
1867int unregister_netdevice_notifier_net(struct net *net,
1868 struct notifier_block *nb)
1869{
1870 int err;
1871
1872 rtnl_lock();
1873 err = __unregister_netdevice_notifier_net(net, nb);
1874 rtnl_unlock();
1875 return err;
1876}
1877EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879int register_netdevice_notifier_dev_net(struct net_device *dev,
1880 struct notifier_block *nb,
1881 struct netdev_net_notifier *nn)
1882{
1883 int err;
1884
1885 rtnl_lock();
1886 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887 if (!err) {
1888 nn->nb = nb;
1889 list_add(&nn->list, &dev->net_notifier_list);
1890 }
1891 rtnl_unlock();
1892 return err;
1893}
1894EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897 struct notifier_block *nb,
1898 struct netdev_net_notifier *nn)
1899{
1900 int err;
1901
1902 rtnl_lock();
1903 list_del(&nn->list);
1904 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905 rtnl_unlock();
1906 return err;
1907}
1908EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911 struct net *net)
1912{
1913 struct netdev_net_notifier *nn;
1914
1915 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917 __register_netdevice_notifier_net(net, nn->nb, true);
1918 }
1919}
1920
1921/**
1922 * call_netdevice_notifiers_info - call all network notifier blocks
1923 * @val: value passed unmodified to notifier function
1924 * @info: notifier information data
1925 *
1926 * Call all network notifier blocks. Parameters and return value
1927 * are as for raw_notifier_call_chain().
1928 */
1929
1930static int call_netdevice_notifiers_info(unsigned long val,
1931 struct netdev_notifier_info *info)
1932{
1933 struct net *net = dev_net(info->dev);
1934 int ret;
1935
1936 ASSERT_RTNL();
1937
1938 /* Run per-netns notifier block chain first, then run the global one.
1939 * Hopefully, one day, the global one is going to be removed after
1940 * all notifier block registrators get converted to be per-netns.
1941 */
1942 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943 if (ret & NOTIFY_STOP_MASK)
1944 return ret;
1945 return raw_notifier_call_chain(&netdev_chain, val, info);
1946}
1947
1948/**
1949 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950 * for and rollback on error
1951 * @val_up: value passed unmodified to notifier function
1952 * @val_down: value passed unmodified to the notifier function when
1953 * recovering from an error on @val_up
1954 * @info: notifier information data
1955 *
1956 * Call all per-netns network notifier blocks, but not notifier blocks on
1957 * the global notifier chain. Parameters and return value are as for
1958 * raw_notifier_call_chain_robust().
1959 */
1960
1961static int
1962call_netdevice_notifiers_info_robust(unsigned long val_up,
1963 unsigned long val_down,
1964 struct netdev_notifier_info *info)
1965{
1966 struct net *net = dev_net(info->dev);
1967
1968 ASSERT_RTNL();
1969
1970 return raw_notifier_call_chain_robust(&net->netdev_chain,
1971 val_up, val_down, info);
1972}
1973
1974static int call_netdevice_notifiers_extack(unsigned long val,
1975 struct net_device *dev,
1976 struct netlink_ext_ack *extack)
1977{
1978 struct netdev_notifier_info info = {
1979 .dev = dev,
1980 .extack = extack,
1981 };
1982
1983 return call_netdevice_notifiers_info(val, &info);
1984}
1985
1986/**
1987 * call_netdevice_notifiers - call all network notifier blocks
1988 * @val: value passed unmodified to notifier function
1989 * @dev: net_device pointer passed unmodified to notifier function
1990 *
1991 * Call all network notifier blocks. Parameters and return value
1992 * are as for raw_notifier_call_chain().
1993 */
1994
1995int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996{
1997 return call_netdevice_notifiers_extack(val, dev, NULL);
1998}
1999EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001/**
2002 * call_netdevice_notifiers_mtu - call all network notifier blocks
2003 * @val: value passed unmodified to notifier function
2004 * @dev: net_device pointer passed unmodified to notifier function
2005 * @arg: additional u32 argument passed to the notifier function
2006 *
2007 * Call all network notifier blocks. Parameters and return value
2008 * are as for raw_notifier_call_chain().
2009 */
2010static int call_netdevice_notifiers_mtu(unsigned long val,
2011 struct net_device *dev, u32 arg)
2012{
2013 struct netdev_notifier_info_ext info = {
2014 .info.dev = dev,
2015 .ext.mtu = arg,
2016 };
2017
2018 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020 return call_netdevice_notifiers_info(val, &info.info);
2021}
2022
2023#ifdef CONFIG_NET_INGRESS
2024static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026void net_inc_ingress_queue(void)
2027{
2028 static_branch_inc(&ingress_needed_key);
2029}
2030EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032void net_dec_ingress_queue(void)
2033{
2034 static_branch_dec(&ingress_needed_key);
2035}
2036EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037#endif
2038
2039#ifdef CONFIG_NET_EGRESS
2040static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042void net_inc_egress_queue(void)
2043{
2044 static_branch_inc(&egress_needed_key);
2045}
2046EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048void net_dec_egress_queue(void)
2049{
2050 static_branch_dec(&egress_needed_key);
2051}
2052EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053#endif
2054
2055DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056EXPORT_SYMBOL(netstamp_needed_key);
2057#ifdef CONFIG_JUMP_LABEL
2058static atomic_t netstamp_needed_deferred;
2059static atomic_t netstamp_wanted;
2060static void netstamp_clear(struct work_struct *work)
2061{
2062 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063 int wanted;
2064
2065 wanted = atomic_add_return(deferred, &netstamp_wanted);
2066 if (wanted > 0)
2067 static_branch_enable(&netstamp_needed_key);
2068 else
2069 static_branch_disable(&netstamp_needed_key);
2070}
2071static DECLARE_WORK(netstamp_work, netstamp_clear);
2072#endif
2073
2074void net_enable_timestamp(void)
2075{
2076#ifdef CONFIG_JUMP_LABEL
2077 int wanted;
2078
2079 while (1) {
2080 wanted = atomic_read(&netstamp_wanted);
2081 if (wanted <= 0)
2082 break;
2083 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084 return;
2085 }
2086 atomic_inc(&netstamp_needed_deferred);
2087 schedule_work(&netstamp_work);
2088#else
2089 static_branch_inc(&netstamp_needed_key);
2090#endif
2091}
2092EXPORT_SYMBOL(net_enable_timestamp);
2093
2094void net_disable_timestamp(void)
2095{
2096#ifdef CONFIG_JUMP_LABEL
2097 int wanted;
2098
2099 while (1) {
2100 wanted = atomic_read(&netstamp_wanted);
2101 if (wanted <= 1)
2102 break;
2103 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104 return;
2105 }
2106 atomic_dec(&netstamp_needed_deferred);
2107 schedule_work(&netstamp_work);
2108#else
2109 static_branch_dec(&netstamp_needed_key);
2110#endif
2111}
2112EXPORT_SYMBOL(net_disable_timestamp);
2113
2114static inline void net_timestamp_set(struct sk_buff *skb)
2115{
2116 skb->tstamp = 0;
2117 skb->mono_delivery_time = 0;
2118 if (static_branch_unlikely(&netstamp_needed_key))
2119 skb->tstamp = ktime_get_real();
2120}
2121
2122#define net_timestamp_check(COND, SKB) \
2123 if (static_branch_unlikely(&netstamp_needed_key)) { \
2124 if ((COND) && !(SKB)->tstamp) \
2125 (SKB)->tstamp = ktime_get_real(); \
2126 } \
2127
2128bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129{
2130 return __is_skb_forwardable(dev, skb, true);
2131}
2132EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135 bool check_mtu)
2136{
2137 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139 if (likely(!ret)) {
2140 skb->protocol = eth_type_trans(skb, dev);
2141 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142 }
2143
2144 return ret;
2145}
2146
2147int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148{
2149 return __dev_forward_skb2(dev, skb, true);
2150}
2151EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153/**
2154 * dev_forward_skb - loopback an skb to another netif
2155 *
2156 * @dev: destination network device
2157 * @skb: buffer to forward
2158 *
2159 * return values:
2160 * NET_RX_SUCCESS (no congestion)
2161 * NET_RX_DROP (packet was dropped, but freed)
2162 *
2163 * dev_forward_skb can be used for injecting an skb from the
2164 * start_xmit function of one device into the receive queue
2165 * of another device.
2166 *
2167 * The receiving device may be in another namespace, so
2168 * we have to clear all information in the skb that could
2169 * impact namespace isolation.
2170 */
2171int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172{
2173 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174}
2175EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178{
2179 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180}
2181
2182static inline int deliver_skb(struct sk_buff *skb,
2183 struct packet_type *pt_prev,
2184 struct net_device *orig_dev)
2185{
2186 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187 return -ENOMEM;
2188 refcount_inc(&skb->users);
2189 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190}
2191
2192static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193 struct packet_type **pt,
2194 struct net_device *orig_dev,
2195 __be16 type,
2196 struct list_head *ptype_list)
2197{
2198 struct packet_type *ptype, *pt_prev = *pt;
2199
2200 list_for_each_entry_rcu(ptype, ptype_list, list) {
2201 if (ptype->type != type)
2202 continue;
2203 if (pt_prev)
2204 deliver_skb(skb, pt_prev, orig_dev);
2205 pt_prev = ptype;
2206 }
2207 *pt = pt_prev;
2208}
2209
2210static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211{
2212 if (!ptype->af_packet_priv || !skb->sk)
2213 return false;
2214
2215 if (ptype->id_match)
2216 return ptype->id_match(ptype, skb->sk);
2217 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218 return true;
2219
2220 return false;
2221}
2222
2223/**
2224 * dev_nit_active - return true if any network interface taps are in use
2225 *
2226 * @dev: network device to check for the presence of taps
2227 */
2228bool dev_nit_active(struct net_device *dev)
2229{
2230 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231}
2232EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234/*
2235 * Support routine. Sends outgoing frames to any network
2236 * taps currently in use.
2237 */
2238
2239void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240{
2241 struct packet_type *ptype;
2242 struct sk_buff *skb2 = NULL;
2243 struct packet_type *pt_prev = NULL;
2244 struct list_head *ptype_list = &ptype_all;
2245
2246 rcu_read_lock();
2247again:
2248 list_for_each_entry_rcu(ptype, ptype_list, list) {
2249 if (ptype->ignore_outgoing)
2250 continue;
2251
2252 /* Never send packets back to the socket
2253 * they originated from - MvS (miquels@drinkel.ow.org)
2254 */
2255 if (skb_loop_sk(ptype, skb))
2256 continue;
2257
2258 if (pt_prev) {
2259 deliver_skb(skb2, pt_prev, skb->dev);
2260 pt_prev = ptype;
2261 continue;
2262 }
2263
2264 /* need to clone skb, done only once */
2265 skb2 = skb_clone(skb, GFP_ATOMIC);
2266 if (!skb2)
2267 goto out_unlock;
2268
2269 net_timestamp_set(skb2);
2270
2271 /* skb->nh should be correctly
2272 * set by sender, so that the second statement is
2273 * just protection against buggy protocols.
2274 */
2275 skb_reset_mac_header(skb2);
2276
2277 if (skb_network_header(skb2) < skb2->data ||
2278 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280 ntohs(skb2->protocol),
2281 dev->name);
2282 skb_reset_network_header(skb2);
2283 }
2284
2285 skb2->transport_header = skb2->network_header;
2286 skb2->pkt_type = PACKET_OUTGOING;
2287 pt_prev = ptype;
2288 }
2289
2290 if (ptype_list == &ptype_all) {
2291 ptype_list = &dev->ptype_all;
2292 goto again;
2293 }
2294out_unlock:
2295 if (pt_prev) {
2296 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298 else
2299 kfree_skb(skb2);
2300 }
2301 rcu_read_unlock();
2302}
2303EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305/**
2306 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307 * @dev: Network device
2308 * @txq: number of queues available
2309 *
2310 * If real_num_tx_queues is changed the tc mappings may no longer be
2311 * valid. To resolve this verify the tc mapping remains valid and if
2312 * not NULL the mapping. With no priorities mapping to this
2313 * offset/count pair it will no longer be used. In the worst case TC0
2314 * is invalid nothing can be done so disable priority mappings. If is
2315 * expected that drivers will fix this mapping if they can before
2316 * calling netif_set_real_num_tx_queues.
2317 */
2318static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319{
2320 int i;
2321 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323 /* If TC0 is invalidated disable TC mapping */
2324 if (tc->offset + tc->count > txq) {
2325 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326 dev->num_tc = 0;
2327 return;
2328 }
2329
2330 /* Invalidated prio to tc mappings set to TC0 */
2331 for (i = 1; i < TC_BITMASK + 1; i++) {
2332 int q = netdev_get_prio_tc_map(dev, i);
2333
2334 tc = &dev->tc_to_txq[q];
2335 if (tc->offset + tc->count > txq) {
2336 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337 i, q);
2338 netdev_set_prio_tc_map(dev, i, 0);
2339 }
2340 }
2341}
2342
2343int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344{
2345 if (dev->num_tc) {
2346 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347 int i;
2348
2349 /* walk through the TCs and see if it falls into any of them */
2350 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351 if ((txq - tc->offset) < tc->count)
2352 return i;
2353 }
2354
2355 /* didn't find it, just return -1 to indicate no match */
2356 return -1;
2357 }
2358
2359 return 0;
2360}
2361EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363#ifdef CONFIG_XPS
2364static struct static_key xps_needed __read_mostly;
2365static struct static_key xps_rxqs_needed __read_mostly;
2366static DEFINE_MUTEX(xps_map_mutex);
2367#define xmap_dereference(P) \
2368 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371 struct xps_dev_maps *old_maps, int tci, u16 index)
2372{
2373 struct xps_map *map = NULL;
2374 int pos;
2375
2376 if (dev_maps)
2377 map = xmap_dereference(dev_maps->attr_map[tci]);
2378 if (!map)
2379 return false;
2380
2381 for (pos = map->len; pos--;) {
2382 if (map->queues[pos] != index)
2383 continue;
2384
2385 if (map->len > 1) {
2386 map->queues[pos] = map->queues[--map->len];
2387 break;
2388 }
2389
2390 if (old_maps)
2391 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393 kfree_rcu(map, rcu);
2394 return false;
2395 }
2396
2397 return true;
2398}
2399
2400static bool remove_xps_queue_cpu(struct net_device *dev,
2401 struct xps_dev_maps *dev_maps,
2402 int cpu, u16 offset, u16 count)
2403{
2404 int num_tc = dev_maps->num_tc;
2405 bool active = false;
2406 int tci;
2407
2408 for (tci = cpu * num_tc; num_tc--; tci++) {
2409 int i, j;
2410
2411 for (i = count, j = offset; i--; j++) {
2412 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413 break;
2414 }
2415
2416 active |= i < 0;
2417 }
2418
2419 return active;
2420}
2421
2422static void reset_xps_maps(struct net_device *dev,
2423 struct xps_dev_maps *dev_maps,
2424 enum xps_map_type type)
2425{
2426 static_key_slow_dec_cpuslocked(&xps_needed);
2427 if (type == XPS_RXQS)
2428 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432 kfree_rcu(dev_maps, rcu);
2433}
2434
2435static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436 u16 offset, u16 count)
2437{
2438 struct xps_dev_maps *dev_maps;
2439 bool active = false;
2440 int i, j;
2441
2442 dev_maps = xmap_dereference(dev->xps_maps[type]);
2443 if (!dev_maps)
2444 return;
2445
2446 for (j = 0; j < dev_maps->nr_ids; j++)
2447 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448 if (!active)
2449 reset_xps_maps(dev, dev_maps, type);
2450
2451 if (type == XPS_CPUS) {
2452 for (i = offset + (count - 1); count--; i--)
2453 netdev_queue_numa_node_write(
2454 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455 }
2456}
2457
2458static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459 u16 count)
2460{
2461 if (!static_key_false(&xps_needed))
2462 return;
2463
2464 cpus_read_lock();
2465 mutex_lock(&xps_map_mutex);
2466
2467 if (static_key_false(&xps_rxqs_needed))
2468 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470 clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472 mutex_unlock(&xps_map_mutex);
2473 cpus_read_unlock();
2474}
2475
2476static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477{
2478 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479}
2480
2481static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482 u16 index, bool is_rxqs_map)
2483{
2484 struct xps_map *new_map;
2485 int alloc_len = XPS_MIN_MAP_ALLOC;
2486 int i, pos;
2487
2488 for (pos = 0; map && pos < map->len; pos++) {
2489 if (map->queues[pos] != index)
2490 continue;
2491 return map;
2492 }
2493
2494 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495 if (map) {
2496 if (pos < map->alloc_len)
2497 return map;
2498
2499 alloc_len = map->alloc_len * 2;
2500 }
2501
2502 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503 * map
2504 */
2505 if (is_rxqs_map)
2506 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507 else
2508 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509 cpu_to_node(attr_index));
2510 if (!new_map)
2511 return NULL;
2512
2513 for (i = 0; i < pos; i++)
2514 new_map->queues[i] = map->queues[i];
2515 new_map->alloc_len = alloc_len;
2516 new_map->len = pos;
2517
2518 return new_map;
2519}
2520
2521/* Copy xps maps at a given index */
2522static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523 struct xps_dev_maps *new_dev_maps, int index,
2524 int tc, bool skip_tc)
2525{
2526 int i, tci = index * dev_maps->num_tc;
2527 struct xps_map *map;
2528
2529 /* copy maps belonging to foreign traffic classes */
2530 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531 if (i == tc && skip_tc)
2532 continue;
2533
2534 /* fill in the new device map from the old device map */
2535 map = xmap_dereference(dev_maps->attr_map[tci]);
2536 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537 }
2538}
2539
2540/* Must be called under cpus_read_lock */
2541int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542 u16 index, enum xps_map_type type)
2543{
2544 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545 const unsigned long *online_mask = NULL;
2546 bool active = false, copy = false;
2547 int i, j, tci, numa_node_id = -2;
2548 int maps_sz, num_tc = 1, tc = 0;
2549 struct xps_map *map, *new_map;
2550 unsigned int nr_ids;
2551
2552 if (dev->num_tc) {
2553 /* Do not allow XPS on subordinate device directly */
2554 num_tc = dev->num_tc;
2555 if (num_tc < 0)
2556 return -EINVAL;
2557
2558 /* If queue belongs to subordinate dev use its map */
2559 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561 tc = netdev_txq_to_tc(dev, index);
2562 if (tc < 0)
2563 return -EINVAL;
2564 }
2565
2566 mutex_lock(&xps_map_mutex);
2567
2568 dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 if (type == XPS_RXQS) {
2570 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 nr_ids = dev->num_rx_queues;
2572 } else {
2573 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 if (num_possible_cpus() > 1)
2575 online_mask = cpumask_bits(cpu_online_mask);
2576 nr_ids = nr_cpu_ids;
2577 }
2578
2579 if (maps_sz < L1_CACHE_BYTES)
2580 maps_sz = L1_CACHE_BYTES;
2581
2582 /* The old dev_maps could be larger or smaller than the one we're
2583 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 * between. We could try to be smart, but let's be safe instead and only
2585 * copy foreign traffic classes if the two map sizes match.
2586 */
2587 if (dev_maps &&
2588 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 copy = true;
2590
2591 /* allocate memory for queue storage */
2592 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593 j < nr_ids;) {
2594 if (!new_dev_maps) {
2595 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596 if (!new_dev_maps) {
2597 mutex_unlock(&xps_map_mutex);
2598 return -ENOMEM;
2599 }
2600
2601 new_dev_maps->nr_ids = nr_ids;
2602 new_dev_maps->num_tc = num_tc;
2603 }
2604
2605 tci = j * num_tc + tc;
2606 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609 if (!map)
2610 goto error;
2611
2612 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 }
2614
2615 if (!new_dev_maps)
2616 goto out_no_new_maps;
2617
2618 if (!dev_maps) {
2619 /* Increment static keys at most once per type */
2620 static_key_slow_inc_cpuslocked(&xps_needed);
2621 if (type == XPS_RXQS)
2622 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 }
2624
2625 for (j = 0; j < nr_ids; j++) {
2626 bool skip_tc = false;
2627
2628 tci = j * num_tc + tc;
2629 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630 netif_attr_test_online(j, online_mask, nr_ids)) {
2631 /* add tx-queue to CPU/rx-queue maps */
2632 int pos = 0;
2633
2634 skip_tc = true;
2635
2636 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 while ((pos < map->len) && (map->queues[pos] != index))
2638 pos++;
2639
2640 if (pos == map->len)
2641 map->queues[map->len++] = index;
2642#ifdef CONFIG_NUMA
2643 if (type == XPS_CPUS) {
2644 if (numa_node_id == -2)
2645 numa_node_id = cpu_to_node(j);
2646 else if (numa_node_id != cpu_to_node(j))
2647 numa_node_id = -1;
2648 }
2649#endif
2650 }
2651
2652 if (copy)
2653 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654 skip_tc);
2655 }
2656
2657 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659 /* Cleanup old maps */
2660 if (!dev_maps)
2661 goto out_no_old_maps;
2662
2663 for (j = 0; j < dev_maps->nr_ids; j++) {
2664 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 map = xmap_dereference(dev_maps->attr_map[tci]);
2666 if (!map)
2667 continue;
2668
2669 if (copy) {
2670 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 if (map == new_map)
2672 continue;
2673 }
2674
2675 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 kfree_rcu(map, rcu);
2677 }
2678 }
2679
2680 old_dev_maps = dev_maps;
2681
2682out_no_old_maps:
2683 dev_maps = new_dev_maps;
2684 active = true;
2685
2686out_no_new_maps:
2687 if (type == XPS_CPUS)
2688 /* update Tx queue numa node */
2689 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690 (numa_node_id >= 0) ?
2691 numa_node_id : NUMA_NO_NODE);
2692
2693 if (!dev_maps)
2694 goto out_no_maps;
2695
2696 /* removes tx-queue from unused CPUs/rx-queues */
2697 for (j = 0; j < dev_maps->nr_ids; j++) {
2698 tci = j * dev_maps->num_tc;
2699
2700 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 if (i == tc &&
2702 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 continue;
2705
2706 active |= remove_xps_queue(dev_maps,
2707 copy ? old_dev_maps : NULL,
2708 tci, index);
2709 }
2710 }
2711
2712 if (old_dev_maps)
2713 kfree_rcu(old_dev_maps, rcu);
2714
2715 /* free map if not active */
2716 if (!active)
2717 reset_xps_maps(dev, dev_maps, type);
2718
2719out_no_maps:
2720 mutex_unlock(&xps_map_mutex);
2721
2722 return 0;
2723error:
2724 /* remove any maps that we added */
2725 for (j = 0; j < nr_ids; j++) {
2726 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 map = copy ?
2729 xmap_dereference(dev_maps->attr_map[tci]) :
2730 NULL;
2731 if (new_map && new_map != map)
2732 kfree(new_map);
2733 }
2734 }
2735
2736 mutex_unlock(&xps_map_mutex);
2737
2738 kfree(new_dev_maps);
2739 return -ENOMEM;
2740}
2741EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 u16 index)
2745{
2746 int ret;
2747
2748 cpus_read_lock();
2749 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 cpus_read_unlock();
2751
2752 return ret;
2753}
2754EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756#endif
2757static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758{
2759 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761 /* Unbind any subordinate channels */
2762 while (txq-- != &dev->_tx[0]) {
2763 if (txq->sb_dev)
2764 netdev_unbind_sb_channel(dev, txq->sb_dev);
2765 }
2766}
2767
2768void netdev_reset_tc(struct net_device *dev)
2769{
2770#ifdef CONFIG_XPS
2771 netif_reset_xps_queues_gt(dev, 0);
2772#endif
2773 netdev_unbind_all_sb_channels(dev);
2774
2775 /* Reset TC configuration of device */
2776 dev->num_tc = 0;
2777 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779}
2780EXPORT_SYMBOL(netdev_reset_tc);
2781
2782int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783{
2784 if (tc >= dev->num_tc)
2785 return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues(dev, offset, count);
2789#endif
2790 dev->tc_to_txq[tc].count = count;
2791 dev->tc_to_txq[tc].offset = offset;
2792 return 0;
2793}
2794EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797{
2798 if (num_tc > TC_MAX_QUEUE)
2799 return -EINVAL;
2800
2801#ifdef CONFIG_XPS
2802 netif_reset_xps_queues_gt(dev, 0);
2803#endif
2804 netdev_unbind_all_sb_channels(dev);
2805
2806 dev->num_tc = num_tc;
2807 return 0;
2808}
2809EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811void netdev_unbind_sb_channel(struct net_device *dev,
2812 struct net_device *sb_dev)
2813{
2814 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816#ifdef CONFIG_XPS
2817 netif_reset_xps_queues_gt(sb_dev, 0);
2818#endif
2819 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822 while (txq-- != &dev->_tx[0]) {
2823 if (txq->sb_dev == sb_dev)
2824 txq->sb_dev = NULL;
2825 }
2826}
2827EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 struct net_device *sb_dev,
2831 u8 tc, u16 count, u16 offset)
2832{
2833 /* Make certain the sb_dev and dev are already configured */
2834 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 return -EINVAL;
2836
2837 /* We cannot hand out queues we don't have */
2838 if ((offset + count) > dev->real_num_tx_queues)
2839 return -EINVAL;
2840
2841 /* Record the mapping */
2842 sb_dev->tc_to_txq[tc].count = count;
2843 sb_dev->tc_to_txq[tc].offset = offset;
2844
2845 /* Provide a way for Tx queue to find the tc_to_txq map or
2846 * XPS map for itself.
2847 */
2848 while (count--)
2849 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851 return 0;
2852}
2853EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856{
2857 /* Do not use a multiqueue device to represent a subordinate channel */
2858 if (netif_is_multiqueue(dev))
2859 return -ENODEV;
2860
2861 /* We allow channels 1 - 32767 to be used for subordinate channels.
2862 * Channel 0 is meant to be "native" mode and used only to represent
2863 * the main root device. We allow writing 0 to reset the device back
2864 * to normal mode after being used as a subordinate channel.
2865 */
2866 if (channel > S16_MAX)
2867 return -EINVAL;
2868
2869 dev->num_tc = -channel;
2870
2871 return 0;
2872}
2873EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875/*
2876 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878 */
2879int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880{
2881 bool disabling;
2882 int rc;
2883
2884 disabling = txq < dev->real_num_tx_queues;
2885
2886 if (txq < 1 || txq > dev->num_tx_queues)
2887 return -EINVAL;
2888
2889 if (dev->reg_state == NETREG_REGISTERED ||
2890 dev->reg_state == NETREG_UNREGISTERING) {
2891 ASSERT_RTNL();
2892
2893 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894 txq);
2895 if (rc)
2896 return rc;
2897
2898 if (dev->num_tc)
2899 netif_setup_tc(dev, txq);
2900
2901 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903 dev->real_num_tx_queues = txq;
2904
2905 if (disabling) {
2906 synchronize_net();
2907 qdisc_reset_all_tx_gt(dev, txq);
2908#ifdef CONFIG_XPS
2909 netif_reset_xps_queues_gt(dev, txq);
2910#endif
2911 }
2912 } else {
2913 dev->real_num_tx_queues = txq;
2914 }
2915
2916 return 0;
2917}
2918EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920#ifdef CONFIG_SYSFS
2921/**
2922 * netif_set_real_num_rx_queues - set actual number of RX queues used
2923 * @dev: Network device
2924 * @rxq: Actual number of RX queues
2925 *
2926 * This must be called either with the rtnl_lock held or before
2927 * registration of the net device. Returns 0 on success, or a
2928 * negative error code. If called before registration, it always
2929 * succeeds.
2930 */
2931int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932{
2933 int rc;
2934
2935 if (rxq < 1 || rxq > dev->num_rx_queues)
2936 return -EINVAL;
2937
2938 if (dev->reg_state == NETREG_REGISTERED) {
2939 ASSERT_RTNL();
2940
2941 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942 rxq);
2943 if (rc)
2944 return rc;
2945 }
2946
2947 dev->real_num_rx_queues = rxq;
2948 return 0;
2949}
2950EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951#endif
2952
2953/**
2954 * netif_set_real_num_queues - set actual number of RX and TX queues used
2955 * @dev: Network device
2956 * @txq: Actual number of TX queues
2957 * @rxq: Actual number of RX queues
2958 *
2959 * Set the real number of both TX and RX queues.
2960 * Does nothing if the number of queues is already correct.
2961 */
2962int netif_set_real_num_queues(struct net_device *dev,
2963 unsigned int txq, unsigned int rxq)
2964{
2965 unsigned int old_rxq = dev->real_num_rx_queues;
2966 int err;
2967
2968 if (txq < 1 || txq > dev->num_tx_queues ||
2969 rxq < 1 || rxq > dev->num_rx_queues)
2970 return -EINVAL;
2971
2972 /* Start from increases, so the error path only does decreases -
2973 * decreases can't fail.
2974 */
2975 if (rxq > dev->real_num_rx_queues) {
2976 err = netif_set_real_num_rx_queues(dev, rxq);
2977 if (err)
2978 return err;
2979 }
2980 if (txq > dev->real_num_tx_queues) {
2981 err = netif_set_real_num_tx_queues(dev, txq);
2982 if (err)
2983 goto undo_rx;
2984 }
2985 if (rxq < dev->real_num_rx_queues)
2986 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 if (txq < dev->real_num_tx_queues)
2988 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990 return 0;
2991undo_rx:
2992 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 return err;
2994}
2995EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997/**
2998 * netif_set_tso_max_size() - set the max size of TSO frames supported
2999 * @dev: netdev to update
3000 * @size: max skb->len of a TSO frame
3001 *
3002 * Set the limit on the size of TSO super-frames the device can handle.
3003 * Unless explicitly set the stack will assume the value of
3004 * %GSO_LEGACY_MAX_SIZE.
3005 */
3006void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007{
3008 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 if (size < READ_ONCE(dev->gso_max_size))
3010 netif_set_gso_max_size(dev, size);
3011}
3012EXPORT_SYMBOL(netif_set_tso_max_size);
3013
3014/**
3015 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016 * @dev: netdev to update
3017 * @segs: max number of TCP segments
3018 *
3019 * Set the limit on the number of TCP segments the device can generate from
3020 * a single TSO super-frame.
3021 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022 */
3023void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024{
3025 dev->tso_max_segs = segs;
3026 if (segs < READ_ONCE(dev->gso_max_segs))
3027 netif_set_gso_max_segs(dev, segs);
3028}
3029EXPORT_SYMBOL(netif_set_tso_max_segs);
3030
3031/**
3032 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033 * @to: netdev to update
3034 * @from: netdev from which to copy the limits
3035 */
3036void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037{
3038 netif_set_tso_max_size(to, from->tso_max_size);
3039 netif_set_tso_max_segs(to, from->tso_max_segs);
3040}
3041EXPORT_SYMBOL(netif_inherit_tso_max);
3042
3043/**
3044 * netif_get_num_default_rss_queues - default number of RSS queues
3045 *
3046 * Default value is the number of physical cores if there are only 1 or 2, or
3047 * divided by 2 if there are more.
3048 */
3049int netif_get_num_default_rss_queues(void)
3050{
3051 cpumask_var_t cpus;
3052 int cpu, count = 0;
3053
3054 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055 return 1;
3056
3057 cpumask_copy(cpus, cpu_online_mask);
3058 for_each_cpu(cpu, cpus) {
3059 ++count;
3060 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061 }
3062 free_cpumask_var(cpus);
3063
3064 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065}
3066EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067
3068static void __netif_reschedule(struct Qdisc *q)
3069{
3070 struct softnet_data *sd;
3071 unsigned long flags;
3072
3073 local_irq_save(flags);
3074 sd = this_cpu_ptr(&softnet_data);
3075 q->next_sched = NULL;
3076 *sd->output_queue_tailp = q;
3077 sd->output_queue_tailp = &q->next_sched;
3078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079 local_irq_restore(flags);
3080}
3081
3082void __netif_schedule(struct Qdisc *q)
3083{
3084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085 __netif_reschedule(q);
3086}
3087EXPORT_SYMBOL(__netif_schedule);
3088
3089struct dev_kfree_skb_cb {
3090 enum skb_free_reason reason;
3091};
3092
3093static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094{
3095 return (struct dev_kfree_skb_cb *)skb->cb;
3096}
3097
3098void netif_schedule_queue(struct netdev_queue *txq)
3099{
3100 rcu_read_lock();
3101 if (!netif_xmit_stopped(txq)) {
3102 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103
3104 __netif_schedule(q);
3105 }
3106 rcu_read_unlock();
3107}
3108EXPORT_SYMBOL(netif_schedule_queue);
3109
3110void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111{
3112 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113 struct Qdisc *q;
3114
3115 rcu_read_lock();
3116 q = rcu_dereference(dev_queue->qdisc);
3117 __netif_schedule(q);
3118 rcu_read_unlock();
3119 }
3120}
3121EXPORT_SYMBOL(netif_tx_wake_queue);
3122
3123void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124{
3125 unsigned long flags;
3126
3127 if (unlikely(!skb))
3128 return;
3129
3130 if (likely(refcount_read(&skb->users) == 1)) {
3131 smp_rmb();
3132 refcount_set(&skb->users, 0);
3133 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134 return;
3135 }
3136 get_kfree_skb_cb(skb)->reason = reason;
3137 local_irq_save(flags);
3138 skb->next = __this_cpu_read(softnet_data.completion_queue);
3139 __this_cpu_write(softnet_data.completion_queue, skb);
3140 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141 local_irq_restore(flags);
3142}
3143EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144
3145void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146{
3147 if (in_hardirq() || irqs_disabled())
3148 __dev_kfree_skb_irq(skb, reason);
3149 else
3150 dev_kfree_skb(skb);
3151}
3152EXPORT_SYMBOL(__dev_kfree_skb_any);
3153
3154
3155/**
3156 * netif_device_detach - mark device as removed
3157 * @dev: network device
3158 *
3159 * Mark device as removed from system and therefore no longer available.
3160 */
3161void netif_device_detach(struct net_device *dev)
3162{
3163 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164 netif_running(dev)) {
3165 netif_tx_stop_all_queues(dev);
3166 }
3167}
3168EXPORT_SYMBOL(netif_device_detach);
3169
3170/**
3171 * netif_device_attach - mark device as attached
3172 * @dev: network device
3173 *
3174 * Mark device as attached from system and restart if needed.
3175 */
3176void netif_device_attach(struct net_device *dev)
3177{
3178 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179 netif_running(dev)) {
3180 netif_tx_wake_all_queues(dev);
3181 __netdev_watchdog_up(dev);
3182 }
3183}
3184EXPORT_SYMBOL(netif_device_attach);
3185
3186/*
3187 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188 * to be used as a distribution range.
3189 */
3190static u16 skb_tx_hash(const struct net_device *dev,
3191 const struct net_device *sb_dev,
3192 struct sk_buff *skb)
3193{
3194 u32 hash;
3195 u16 qoffset = 0;
3196 u16 qcount = dev->real_num_tx_queues;
3197
3198 if (dev->num_tc) {
3199 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200
3201 qoffset = sb_dev->tc_to_txq[tc].offset;
3202 qcount = sb_dev->tc_to_txq[tc].count;
3203 if (unlikely(!qcount)) {
3204 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205 sb_dev->name, qoffset, tc);
3206 qoffset = 0;
3207 qcount = dev->real_num_tx_queues;
3208 }
3209 }
3210
3211 if (skb_rx_queue_recorded(skb)) {
3212 hash = skb_get_rx_queue(skb);
3213 if (hash >= qoffset)
3214 hash -= qoffset;
3215 while (unlikely(hash >= qcount))
3216 hash -= qcount;
3217 return hash + qoffset;
3218 }
3219
3220 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221}
3222
3223static void skb_warn_bad_offload(const struct sk_buff *skb)
3224{
3225 static const netdev_features_t null_features;
3226 struct net_device *dev = skb->dev;
3227 const char *name = "";
3228
3229 if (!net_ratelimit())
3230 return;
3231
3232 if (dev) {
3233 if (dev->dev.parent)
3234 name = dev_driver_string(dev->dev.parent);
3235 else
3236 name = netdev_name(dev);
3237 }
3238 skb_dump(KERN_WARNING, skb, false);
3239 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240 name, dev ? &dev->features : &null_features,
3241 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242}
3243
3244/*
3245 * Invalidate hardware checksum when packet is to be mangled, and
3246 * complete checksum manually on outgoing path.
3247 */
3248int skb_checksum_help(struct sk_buff *skb)
3249{
3250 __wsum csum;
3251 int ret = 0, offset;
3252
3253 if (skb->ip_summed == CHECKSUM_COMPLETE)
3254 goto out_set_summed;
3255
3256 if (unlikely(skb_is_gso(skb))) {
3257 skb_warn_bad_offload(skb);
3258 return -EINVAL;
3259 }
3260
3261 /* Before computing a checksum, we should make sure no frag could
3262 * be modified by an external entity : checksum could be wrong.
3263 */
3264 if (skb_has_shared_frag(skb)) {
3265 ret = __skb_linearize(skb);
3266 if (ret)
3267 goto out;
3268 }
3269
3270 offset = skb_checksum_start_offset(skb);
3271 ret = -EINVAL;
3272 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274 goto out;
3275 }
3276 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277
3278 offset += skb->csum_offset;
3279 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281 goto out;
3282 }
3283 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284 if (ret)
3285 goto out;
3286
3287 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288out_set_summed:
3289 skb->ip_summed = CHECKSUM_NONE;
3290out:
3291 return ret;
3292}
3293EXPORT_SYMBOL(skb_checksum_help);
3294
3295int skb_crc32c_csum_help(struct sk_buff *skb)
3296{
3297 __le32 crc32c_csum;
3298 int ret = 0, offset, start;
3299
3300 if (skb->ip_summed != CHECKSUM_PARTIAL)
3301 goto out;
3302
3303 if (unlikely(skb_is_gso(skb)))
3304 goto out;
3305
3306 /* Before computing a checksum, we should make sure no frag could
3307 * be modified by an external entity : checksum could be wrong.
3308 */
3309 if (unlikely(skb_has_shared_frag(skb))) {
3310 ret = __skb_linearize(skb);
3311 if (ret)
3312 goto out;
3313 }
3314 start = skb_checksum_start_offset(skb);
3315 offset = start + offsetof(struct sctphdr, checksum);
3316 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317 ret = -EINVAL;
3318 goto out;
3319 }
3320
3321 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322 if (ret)
3323 goto out;
3324
3325 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326 skb->len - start, ~(__u32)0,
3327 crc32c_csum_stub));
3328 *(__le32 *)(skb->data + offset) = crc32c_csum;
3329 skb->ip_summed = CHECKSUM_NONE;
3330 skb->csum_not_inet = 0;
3331out:
3332 return ret;
3333}
3334
3335__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336{
3337 __be16 type = skb->protocol;
3338
3339 /* Tunnel gso handlers can set protocol to ethernet. */
3340 if (type == htons(ETH_P_TEB)) {
3341 struct ethhdr *eth;
3342
3343 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344 return 0;
3345
3346 eth = (struct ethhdr *)skb->data;
3347 type = eth->h_proto;
3348 }
3349
3350 return __vlan_get_protocol(skb, type, depth);
3351}
3352
3353/* openvswitch calls this on rx path, so we need a different check.
3354 */
3355static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356{
3357 if (tx_path)
3358 return skb->ip_summed != CHECKSUM_PARTIAL &&
3359 skb->ip_summed != CHECKSUM_UNNECESSARY;
3360
3361 return skb->ip_summed == CHECKSUM_NONE;
3362}
3363
3364/**
3365 * __skb_gso_segment - Perform segmentation on skb.
3366 * @skb: buffer to segment
3367 * @features: features for the output path (see dev->features)
3368 * @tx_path: whether it is called in TX path
3369 *
3370 * This function segments the given skb and returns a list of segments.
3371 *
3372 * It may return NULL if the skb requires no segmentation. This is
3373 * only possible when GSO is used for verifying header integrity.
3374 *
3375 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376 */
3377struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378 netdev_features_t features, bool tx_path)
3379{
3380 struct sk_buff *segs;
3381
3382 if (unlikely(skb_needs_check(skb, tx_path))) {
3383 int err;
3384
3385 /* We're going to init ->check field in TCP or UDP header */
3386 err = skb_cow_head(skb, 0);
3387 if (err < 0)
3388 return ERR_PTR(err);
3389 }
3390
3391 /* Only report GSO partial support if it will enable us to
3392 * support segmentation on this frame without needing additional
3393 * work.
3394 */
3395 if (features & NETIF_F_GSO_PARTIAL) {
3396 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397 struct net_device *dev = skb->dev;
3398
3399 partial_features |= dev->features & dev->gso_partial_features;
3400 if (!skb_gso_ok(skb, features | partial_features))
3401 features &= ~NETIF_F_GSO_PARTIAL;
3402 }
3403
3404 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406
3407 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408 SKB_GSO_CB(skb)->encap_level = 0;
3409
3410 skb_reset_mac_header(skb);
3411 skb_reset_mac_len(skb);
3412
3413 segs = skb_mac_gso_segment(skb, features);
3414
3415 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416 skb_warn_bad_offload(skb);
3417
3418 return segs;
3419}
3420EXPORT_SYMBOL(__skb_gso_segment);
3421
3422/* Take action when hardware reception checksum errors are detected. */
3423#ifdef CONFIG_BUG
3424static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425{
3426 netdev_err(dev, "hw csum failure\n");
3427 skb_dump(KERN_ERR, skb, true);
3428 dump_stack();
3429}
3430
3431void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432{
3433 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434}
3435EXPORT_SYMBOL(netdev_rx_csum_fault);
3436#endif
3437
3438/* XXX: check that highmem exists at all on the given machine. */
3439static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440{
3441#ifdef CONFIG_HIGHMEM
3442 int i;
3443
3444 if (!(dev->features & NETIF_F_HIGHDMA)) {
3445 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447
3448 if (PageHighMem(skb_frag_page(frag)))
3449 return 1;
3450 }
3451 }
3452#endif
3453 return 0;
3454}
3455
3456/* If MPLS offload request, verify we are testing hardware MPLS features
3457 * instead of standard features for the netdev.
3458 */
3459#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461 netdev_features_t features,
3462 __be16 type)
3463{
3464 if (eth_p_mpls(type))
3465 features &= skb->dev->mpls_features;
3466
3467 return features;
3468}
3469#else
3470static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471 netdev_features_t features,
3472 __be16 type)
3473{
3474 return features;
3475}
3476#endif
3477
3478static netdev_features_t harmonize_features(struct sk_buff *skb,
3479 netdev_features_t features)
3480{
3481 __be16 type;
3482
3483 type = skb_network_protocol(skb, NULL);
3484 features = net_mpls_features(skb, features, type);
3485
3486 if (skb->ip_summed != CHECKSUM_NONE &&
3487 !can_checksum_protocol(features, type)) {
3488 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489 }
3490 if (illegal_highdma(skb->dev, skb))
3491 features &= ~NETIF_F_SG;
3492
3493 return features;
3494}
3495
3496netdev_features_t passthru_features_check(struct sk_buff *skb,
3497 struct net_device *dev,
3498 netdev_features_t features)
3499{
3500 return features;
3501}
3502EXPORT_SYMBOL(passthru_features_check);
3503
3504static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505 struct net_device *dev,
3506 netdev_features_t features)
3507{
3508 return vlan_features_check(skb, features);
3509}
3510
3511static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512 struct net_device *dev,
3513 netdev_features_t features)
3514{
3515 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516
3517 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518 return features & ~NETIF_F_GSO_MASK;
3519
3520 if (!skb_shinfo(skb)->gso_type) {
3521 skb_warn_bad_offload(skb);
3522 return features & ~NETIF_F_GSO_MASK;
3523 }
3524
3525 /* Support for GSO partial features requires software
3526 * intervention before we can actually process the packets
3527 * so we need to strip support for any partial features now
3528 * and we can pull them back in after we have partially
3529 * segmented the frame.
3530 */
3531 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 features &= ~dev->gso_partial_features;
3533
3534 /* Make sure to clear the IPv4 ID mangling feature if the
3535 * IPv4 header has the potential to be fragmented.
3536 */
3537 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 struct iphdr *iph = skb->encapsulation ?
3539 inner_ip_hdr(skb) : ip_hdr(skb);
3540
3541 if (!(iph->frag_off & htons(IP_DF)))
3542 features &= ~NETIF_F_TSO_MANGLEID;
3543 }
3544
3545 return features;
3546}
3547
3548netdev_features_t netif_skb_features(struct sk_buff *skb)
3549{
3550 struct net_device *dev = skb->dev;
3551 netdev_features_t features = dev->features;
3552
3553 if (skb_is_gso(skb))
3554 features = gso_features_check(skb, dev, features);
3555
3556 /* If encapsulation offload request, verify we are testing
3557 * hardware encapsulation features instead of standard
3558 * features for the netdev
3559 */
3560 if (skb->encapsulation)
3561 features &= dev->hw_enc_features;
3562
3563 if (skb_vlan_tagged(skb))
3564 features = netdev_intersect_features(features,
3565 dev->vlan_features |
3566 NETIF_F_HW_VLAN_CTAG_TX |
3567 NETIF_F_HW_VLAN_STAG_TX);
3568
3569 if (dev->netdev_ops->ndo_features_check)
3570 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 features);
3572 else
3573 features &= dflt_features_check(skb, dev, features);
3574
3575 return harmonize_features(skb, features);
3576}
3577EXPORT_SYMBOL(netif_skb_features);
3578
3579static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 struct netdev_queue *txq, bool more)
3581{
3582 unsigned int len;
3583 int rc;
3584
3585 if (dev_nit_active(dev))
3586 dev_queue_xmit_nit(skb, dev);
3587
3588 len = skb->len;
3589 trace_net_dev_start_xmit(skb, dev);
3590 rc = netdev_start_xmit(skb, dev, txq, more);
3591 trace_net_dev_xmit(skb, rc, dev, len);
3592
3593 return rc;
3594}
3595
3596struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 struct netdev_queue *txq, int *ret)
3598{
3599 struct sk_buff *skb = first;
3600 int rc = NETDEV_TX_OK;
3601
3602 while (skb) {
3603 struct sk_buff *next = skb->next;
3604
3605 skb_mark_not_on_list(skb);
3606 rc = xmit_one(skb, dev, txq, next != NULL);
3607 if (unlikely(!dev_xmit_complete(rc))) {
3608 skb->next = next;
3609 goto out;
3610 }
3611
3612 skb = next;
3613 if (netif_tx_queue_stopped(txq) && skb) {
3614 rc = NETDEV_TX_BUSY;
3615 break;
3616 }
3617 }
3618
3619out:
3620 *ret = rc;
3621 return skb;
3622}
3623
3624static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 netdev_features_t features)
3626{
3627 if (skb_vlan_tag_present(skb) &&
3628 !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 skb = __vlan_hwaccel_push_inside(skb);
3630 return skb;
3631}
3632
3633int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 const netdev_features_t features)
3635{
3636 if (unlikely(skb_csum_is_sctp(skb)))
3637 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 skb_crc32c_csum_help(skb);
3639
3640 if (features & NETIF_F_HW_CSUM)
3641 return 0;
3642
3643 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 switch (skb->csum_offset) {
3645 case offsetof(struct tcphdr, check):
3646 case offsetof(struct udphdr, check):
3647 return 0;
3648 }
3649 }
3650
3651 return skb_checksum_help(skb);
3652}
3653EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656{
3657 netdev_features_t features;
3658
3659 features = netif_skb_features(skb);
3660 skb = validate_xmit_vlan(skb, features);
3661 if (unlikely(!skb))
3662 goto out_null;
3663
3664 skb = sk_validate_xmit_skb(skb, dev);
3665 if (unlikely(!skb))
3666 goto out_null;
3667
3668 if (netif_needs_gso(skb, features)) {
3669 struct sk_buff *segs;
3670
3671 segs = skb_gso_segment(skb, features);
3672 if (IS_ERR(segs)) {
3673 goto out_kfree_skb;
3674 } else if (segs) {
3675 consume_skb(skb);
3676 skb = segs;
3677 }
3678 } else {
3679 if (skb_needs_linearize(skb, features) &&
3680 __skb_linearize(skb))
3681 goto out_kfree_skb;
3682
3683 /* If packet is not checksummed and device does not
3684 * support checksumming for this protocol, complete
3685 * checksumming here.
3686 */
3687 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 if (skb->encapsulation)
3689 skb_set_inner_transport_header(skb,
3690 skb_checksum_start_offset(skb));
3691 else
3692 skb_set_transport_header(skb,
3693 skb_checksum_start_offset(skb));
3694 if (skb_csum_hwoffload_help(skb, features))
3695 goto out_kfree_skb;
3696 }
3697 }
3698
3699 skb = validate_xmit_xfrm(skb, features, again);
3700
3701 return skb;
3702
3703out_kfree_skb:
3704 kfree_skb(skb);
3705out_null:
3706 dev_core_stats_tx_dropped_inc(dev);
3707 return NULL;
3708}
3709
3710struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711{
3712 struct sk_buff *next, *head = NULL, *tail;
3713
3714 for (; skb != NULL; skb = next) {
3715 next = skb->next;
3716 skb_mark_not_on_list(skb);
3717
3718 /* in case skb wont be segmented, point to itself */
3719 skb->prev = skb;
3720
3721 skb = validate_xmit_skb(skb, dev, again);
3722 if (!skb)
3723 continue;
3724
3725 if (!head)
3726 head = skb;
3727 else
3728 tail->next = skb;
3729 /* If skb was segmented, skb->prev points to
3730 * the last segment. If not, it still contains skb.
3731 */
3732 tail = skb->prev;
3733 }
3734 return head;
3735}
3736EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738static void qdisc_pkt_len_init(struct sk_buff *skb)
3739{
3740 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742 qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744 /* To get more precise estimation of bytes sent on wire,
3745 * we add to pkt_len the headers size of all segments
3746 */
3747 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 unsigned int hdr_len;
3749 u16 gso_segs = shinfo->gso_segs;
3750
3751 /* mac layer + network layer */
3752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754 /* + transport layer */
3755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 const struct tcphdr *th;
3757 struct tcphdr _tcphdr;
3758
3759 th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 sizeof(_tcphdr), &_tcphdr);
3761 if (likely(th))
3762 hdr_len += __tcp_hdrlen(th);
3763 } else {
3764 struct udphdr _udphdr;
3765
3766 if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 sizeof(_udphdr), &_udphdr))
3768 hdr_len += sizeof(struct udphdr);
3769 }
3770
3771 if (shinfo->gso_type & SKB_GSO_DODGY)
3772 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 shinfo->gso_size);
3774
3775 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 }
3777}
3778
3779static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 struct sk_buff **to_free,
3781 struct netdev_queue *txq)
3782{
3783 int rc;
3784
3785 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 if (rc == NET_XMIT_SUCCESS)
3787 trace_qdisc_enqueue(q, txq, skb);
3788 return rc;
3789}
3790
3791static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 struct net_device *dev,
3793 struct netdev_queue *txq)
3794{
3795 spinlock_t *root_lock = qdisc_lock(q);
3796 struct sk_buff *to_free = NULL;
3797 bool contended;
3798 int rc;
3799
3800 qdisc_calculate_pkt_len(skb, q);
3801
3802 if (q->flags & TCQ_F_NOLOCK) {
3803 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 qdisc_run_begin(q)) {
3805 /* Retest nolock_qdisc_is_empty() within the protection
3806 * of q->seqlock to protect from racing with requeuing.
3807 */
3808 if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 __qdisc_run(q);
3811 qdisc_run_end(q);
3812
3813 goto no_lock_out;
3814 }
3815
3816 qdisc_bstats_cpu_update(q, skb);
3817 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 !nolock_qdisc_is_empty(q))
3819 __qdisc_run(q);
3820
3821 qdisc_run_end(q);
3822 return NET_XMIT_SUCCESS;
3823 }
3824
3825 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 qdisc_run(q);
3827
3828no_lock_out:
3829 if (unlikely(to_free))
3830 kfree_skb_list_reason(to_free,
3831 SKB_DROP_REASON_QDISC_DROP);
3832 return rc;
3833 }
3834
3835 /*
3836 * Heuristic to force contended enqueues to serialize on a
3837 * separate lock before trying to get qdisc main lock.
3838 * This permits qdisc->running owner to get the lock more
3839 * often and dequeue packets faster.
3840 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841 * and then other tasks will only enqueue packets. The packets will be
3842 * sent after the qdisc owner is scheduled again. To prevent this
3843 * scenario the task always serialize on the lock.
3844 */
3845 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846 if (unlikely(contended))
3847 spin_lock(&q->busylock);
3848
3849 spin_lock(root_lock);
3850 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851 __qdisc_drop(skb, &to_free);
3852 rc = NET_XMIT_DROP;
3853 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854 qdisc_run_begin(q)) {
3855 /*
3856 * This is a work-conserving queue; there are no old skbs
3857 * waiting to be sent out; and the qdisc is not running -
3858 * xmit the skb directly.
3859 */
3860
3861 qdisc_bstats_update(q, skb);
3862
3863 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864 if (unlikely(contended)) {
3865 spin_unlock(&q->busylock);
3866 contended = false;
3867 }
3868 __qdisc_run(q);
3869 }
3870
3871 qdisc_run_end(q);
3872 rc = NET_XMIT_SUCCESS;
3873 } else {
3874 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875 if (qdisc_run_begin(q)) {
3876 if (unlikely(contended)) {
3877 spin_unlock(&q->busylock);
3878 contended = false;
3879 }
3880 __qdisc_run(q);
3881 qdisc_run_end(q);
3882 }
3883 }
3884 spin_unlock(root_lock);
3885 if (unlikely(to_free))
3886 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887 if (unlikely(contended))
3888 spin_unlock(&q->busylock);
3889 return rc;
3890}
3891
3892#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893static void skb_update_prio(struct sk_buff *skb)
3894{
3895 const struct netprio_map *map;
3896 const struct sock *sk;
3897 unsigned int prioidx;
3898
3899 if (skb->priority)
3900 return;
3901 map = rcu_dereference_bh(skb->dev->priomap);
3902 if (!map)
3903 return;
3904 sk = skb_to_full_sk(skb);
3905 if (!sk)
3906 return;
3907
3908 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909
3910 if (prioidx < map->priomap_len)
3911 skb->priority = map->priomap[prioidx];
3912}
3913#else
3914#define skb_update_prio(skb)
3915#endif
3916
3917/**
3918 * dev_loopback_xmit - loop back @skb
3919 * @net: network namespace this loopback is happening in
3920 * @sk: sk needed to be a netfilter okfn
3921 * @skb: buffer to transmit
3922 */
3923int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924{
3925 skb_reset_mac_header(skb);
3926 __skb_pull(skb, skb_network_offset(skb));
3927 skb->pkt_type = PACKET_LOOPBACK;
3928 if (skb->ip_summed == CHECKSUM_NONE)
3929 skb->ip_summed = CHECKSUM_UNNECESSARY;
3930 WARN_ON(!skb_dst(skb));
3931 skb_dst_force(skb);
3932 netif_rx(skb);
3933 return 0;
3934}
3935EXPORT_SYMBOL(dev_loopback_xmit);
3936
3937#ifdef CONFIG_NET_EGRESS
3938static struct sk_buff *
3939sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940{
3941#ifdef CONFIG_NET_CLS_ACT
3942 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943 struct tcf_result cl_res;
3944
3945 if (!miniq)
3946 return skb;
3947
3948 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949 tc_skb_cb(skb)->mru = 0;
3950 tc_skb_cb(skb)->post_ct = false;
3951 mini_qdisc_bstats_cpu_update(miniq, skb);
3952
3953 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954 case TC_ACT_OK:
3955 case TC_ACT_RECLASSIFY:
3956 skb->tc_index = TC_H_MIN(cl_res.classid);
3957 break;
3958 case TC_ACT_SHOT:
3959 mini_qdisc_qstats_cpu_drop(miniq);
3960 *ret = NET_XMIT_DROP;
3961 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962 return NULL;
3963 case TC_ACT_STOLEN:
3964 case TC_ACT_QUEUED:
3965 case TC_ACT_TRAP:
3966 *ret = NET_XMIT_SUCCESS;
3967 consume_skb(skb);
3968 return NULL;
3969 case TC_ACT_REDIRECT:
3970 /* No need to push/pop skb's mac_header here on egress! */
3971 skb_do_redirect(skb);
3972 *ret = NET_XMIT_SUCCESS;
3973 return NULL;
3974 default:
3975 break;
3976 }
3977#endif /* CONFIG_NET_CLS_ACT */
3978
3979 return skb;
3980}
3981
3982static struct netdev_queue *
3983netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984{
3985 int qm = skb_get_queue_mapping(skb);
3986
3987 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988}
3989
3990static bool netdev_xmit_txqueue_skipped(void)
3991{
3992 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993}
3994
3995void netdev_xmit_skip_txqueue(bool skip)
3996{
3997 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998}
3999EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000#endif /* CONFIG_NET_EGRESS */
4001
4002#ifdef CONFIG_XPS
4003static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004 struct xps_dev_maps *dev_maps, unsigned int tci)
4005{
4006 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007 struct xps_map *map;
4008 int queue_index = -1;
4009
4010 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011 return queue_index;
4012
4013 tci *= dev_maps->num_tc;
4014 tci += tc;
4015
4016 map = rcu_dereference(dev_maps->attr_map[tci]);
4017 if (map) {
4018 if (map->len == 1)
4019 queue_index = map->queues[0];
4020 else
4021 queue_index = map->queues[reciprocal_scale(
4022 skb_get_hash(skb), map->len)];
4023 if (unlikely(queue_index >= dev->real_num_tx_queues))
4024 queue_index = -1;
4025 }
4026 return queue_index;
4027}
4028#endif
4029
4030static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031 struct sk_buff *skb)
4032{
4033#ifdef CONFIG_XPS
4034 struct xps_dev_maps *dev_maps;
4035 struct sock *sk = skb->sk;
4036 int queue_index = -1;
4037
4038 if (!static_key_false(&xps_needed))
4039 return -1;
4040
4041 rcu_read_lock();
4042 if (!static_key_false(&xps_rxqs_needed))
4043 goto get_cpus_map;
4044
4045 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046 if (dev_maps) {
4047 int tci = sk_rx_queue_get(sk);
4048
4049 if (tci >= 0)
4050 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051 tci);
4052 }
4053
4054get_cpus_map:
4055 if (queue_index < 0) {
4056 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057 if (dev_maps) {
4058 unsigned int tci = skb->sender_cpu - 1;
4059
4060 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061 tci);
4062 }
4063 }
4064 rcu_read_unlock();
4065
4066 return queue_index;
4067#else
4068 return -1;
4069#endif
4070}
4071
4072u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073 struct net_device *sb_dev)
4074{
4075 return 0;
4076}
4077EXPORT_SYMBOL(dev_pick_tx_zero);
4078
4079u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080 struct net_device *sb_dev)
4081{
4082 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083}
4084EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085
4086u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087 struct net_device *sb_dev)
4088{
4089 struct sock *sk = skb->sk;
4090 int queue_index = sk_tx_queue_get(sk);
4091
4092 sb_dev = sb_dev ? : dev;
4093
4094 if (queue_index < 0 || skb->ooo_okay ||
4095 queue_index >= dev->real_num_tx_queues) {
4096 int new_index = get_xps_queue(dev, sb_dev, skb);
4097
4098 if (new_index < 0)
4099 new_index = skb_tx_hash(dev, sb_dev, skb);
4100
4101 if (queue_index != new_index && sk &&
4102 sk_fullsock(sk) &&
4103 rcu_access_pointer(sk->sk_dst_cache))
4104 sk_tx_queue_set(sk, new_index);
4105
4106 queue_index = new_index;
4107 }
4108
4109 return queue_index;
4110}
4111EXPORT_SYMBOL(netdev_pick_tx);
4112
4113struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114 struct sk_buff *skb,
4115 struct net_device *sb_dev)
4116{
4117 int queue_index = 0;
4118
4119#ifdef CONFIG_XPS
4120 u32 sender_cpu = skb->sender_cpu - 1;
4121
4122 if (sender_cpu >= (u32)NR_CPUS)
4123 skb->sender_cpu = raw_smp_processor_id() + 1;
4124#endif
4125
4126 if (dev->real_num_tx_queues != 1) {
4127 const struct net_device_ops *ops = dev->netdev_ops;
4128
4129 if (ops->ndo_select_queue)
4130 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131 else
4132 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133
4134 queue_index = netdev_cap_txqueue(dev, queue_index);
4135 }
4136
4137 skb_set_queue_mapping(skb, queue_index);
4138 return netdev_get_tx_queue(dev, queue_index);
4139}
4140
4141/**
4142 * __dev_queue_xmit() - transmit a buffer
4143 * @skb: buffer to transmit
4144 * @sb_dev: suboordinate device used for L2 forwarding offload
4145 *
4146 * Queue a buffer for transmission to a network device. The caller must
4147 * have set the device and priority and built the buffer before calling
4148 * this function. The function can be called from an interrupt.
4149 *
4150 * When calling this method, interrupts MUST be enabled. This is because
4151 * the BH enable code must have IRQs enabled so that it will not deadlock.
4152 *
4153 * Regardless of the return value, the skb is consumed, so it is currently
4154 * difficult to retry a send to this method. (You can bump the ref count
4155 * before sending to hold a reference for retry if you are careful.)
4156 *
4157 * Return:
4158 * * 0 - buffer successfully transmitted
4159 * * positive qdisc return code - NET_XMIT_DROP etc.
4160 * * negative errno - other errors
4161 */
4162int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163{
4164 struct net_device *dev = skb->dev;
4165 struct netdev_queue *txq = NULL;
4166 struct Qdisc *q;
4167 int rc = -ENOMEM;
4168 bool again = false;
4169
4170 skb_reset_mac_header(skb);
4171
4172 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4173 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4174
4175 /* Disable soft irqs for various locks below. Also
4176 * stops preemption for RCU.
4177 */
4178 rcu_read_lock_bh();
4179
4180 skb_update_prio(skb);
4181
4182 qdisc_pkt_len_init(skb);
4183#ifdef CONFIG_NET_CLS_ACT
4184 skb->tc_at_ingress = 0;
4185#endif
4186#ifdef CONFIG_NET_EGRESS
4187 if (static_branch_unlikely(&egress_needed_key)) {
4188 if (nf_hook_egress_active()) {
4189 skb = nf_hook_egress(skb, &rc, dev);
4190 if (!skb)
4191 goto out;
4192 }
4193
4194 netdev_xmit_skip_txqueue(false);
4195
4196 nf_skip_egress(skb, true);
4197 skb = sch_handle_egress(skb, &rc, dev);
4198 if (!skb)
4199 goto out;
4200 nf_skip_egress(skb, false);
4201
4202 if (netdev_xmit_txqueue_skipped())
4203 txq = netdev_tx_queue_mapping(dev, skb);
4204 }
4205#endif
4206 /* If device/qdisc don't need skb->dst, release it right now while
4207 * its hot in this cpu cache.
4208 */
4209 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4210 skb_dst_drop(skb);
4211 else
4212 skb_dst_force(skb);
4213
4214 if (!txq)
4215 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4216
4217 q = rcu_dereference_bh(txq->qdisc);
4218
4219 trace_net_dev_queue(skb);
4220 if (q->enqueue) {
4221 rc = __dev_xmit_skb(skb, q, dev, txq);
4222 goto out;
4223 }
4224
4225 /* The device has no queue. Common case for software devices:
4226 * loopback, all the sorts of tunnels...
4227
4228 * Really, it is unlikely that netif_tx_lock protection is necessary
4229 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4230 * counters.)
4231 * However, it is possible, that they rely on protection
4232 * made by us here.
4233
4234 * Check this and shot the lock. It is not prone from deadlocks.
4235 *Either shot noqueue qdisc, it is even simpler 8)
4236 */
4237 if (dev->flags & IFF_UP) {
4238 int cpu = smp_processor_id(); /* ok because BHs are off */
4239
4240 /* Other cpus might concurrently change txq->xmit_lock_owner
4241 * to -1 or to their cpu id, but not to our id.
4242 */
4243 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4244 if (dev_xmit_recursion())
4245 goto recursion_alert;
4246
4247 skb = validate_xmit_skb(skb, dev, &again);
4248 if (!skb)
4249 goto out;
4250
4251 HARD_TX_LOCK(dev, txq, cpu);
4252
4253 if (!netif_xmit_stopped(txq)) {
4254 dev_xmit_recursion_inc();
4255 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4256 dev_xmit_recursion_dec();
4257 if (dev_xmit_complete(rc)) {
4258 HARD_TX_UNLOCK(dev, txq);
4259 goto out;
4260 }
4261 }
4262 HARD_TX_UNLOCK(dev, txq);
4263 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4264 dev->name);
4265 } else {
4266 /* Recursion is detected! It is possible,
4267 * unfortunately
4268 */
4269recursion_alert:
4270 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4271 dev->name);
4272 }
4273 }
4274
4275 rc = -ENETDOWN;
4276 rcu_read_unlock_bh();
4277
4278 dev_core_stats_tx_dropped_inc(dev);
4279 kfree_skb_list(skb);
4280 return rc;
4281out:
4282 rcu_read_unlock_bh();
4283 return rc;
4284}
4285EXPORT_SYMBOL(__dev_queue_xmit);
4286
4287int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4288{
4289 struct net_device *dev = skb->dev;
4290 struct sk_buff *orig_skb = skb;
4291 struct netdev_queue *txq;
4292 int ret = NETDEV_TX_BUSY;
4293 bool again = false;
4294
4295 if (unlikely(!netif_running(dev) ||
4296 !netif_carrier_ok(dev)))
4297 goto drop;
4298
4299 skb = validate_xmit_skb_list(skb, dev, &again);
4300 if (skb != orig_skb)
4301 goto drop;
4302
4303 skb_set_queue_mapping(skb, queue_id);
4304 txq = skb_get_tx_queue(dev, skb);
4305
4306 local_bh_disable();
4307
4308 dev_xmit_recursion_inc();
4309 HARD_TX_LOCK(dev, txq, smp_processor_id());
4310 if (!netif_xmit_frozen_or_drv_stopped(txq))
4311 ret = netdev_start_xmit(skb, dev, txq, false);
4312 HARD_TX_UNLOCK(dev, txq);
4313 dev_xmit_recursion_dec();
4314
4315 local_bh_enable();
4316 return ret;
4317drop:
4318 dev_core_stats_tx_dropped_inc(dev);
4319 kfree_skb_list(skb);
4320 return NET_XMIT_DROP;
4321}
4322EXPORT_SYMBOL(__dev_direct_xmit);
4323
4324/*************************************************************************
4325 * Receiver routines
4326 *************************************************************************/
4327
4328int netdev_max_backlog __read_mostly = 1000;
4329EXPORT_SYMBOL(netdev_max_backlog);
4330
4331int netdev_tstamp_prequeue __read_mostly = 1;
4332unsigned int sysctl_skb_defer_max __read_mostly = 64;
4333int netdev_budget __read_mostly = 300;
4334/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4335unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4336int weight_p __read_mostly = 64; /* old backlog weight */
4337int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4338int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4339int dev_rx_weight __read_mostly = 64;
4340int dev_tx_weight __read_mostly = 64;
4341
4342/* Called with irq disabled */
4343static inline void ____napi_schedule(struct softnet_data *sd,
4344 struct napi_struct *napi)
4345{
4346 struct task_struct *thread;
4347
4348 lockdep_assert_irqs_disabled();
4349
4350 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4351 /* Paired with smp_mb__before_atomic() in
4352 * napi_enable()/dev_set_threaded().
4353 * Use READ_ONCE() to guarantee a complete
4354 * read on napi->thread. Only call
4355 * wake_up_process() when it's not NULL.
4356 */
4357 thread = READ_ONCE(napi->thread);
4358 if (thread) {
4359 /* Avoid doing set_bit() if the thread is in
4360 * INTERRUPTIBLE state, cause napi_thread_wait()
4361 * makes sure to proceed with napi polling
4362 * if the thread is explicitly woken from here.
4363 */
4364 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4365 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4366 wake_up_process(thread);
4367 return;
4368 }
4369 }
4370
4371 list_add_tail(&napi->poll_list, &sd->poll_list);
4372 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4373}
4374
4375#ifdef CONFIG_RPS
4376
4377/* One global table that all flow-based protocols share. */
4378struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4379EXPORT_SYMBOL(rps_sock_flow_table);
4380u32 rps_cpu_mask __read_mostly;
4381EXPORT_SYMBOL(rps_cpu_mask);
4382
4383struct static_key_false rps_needed __read_mostly;
4384EXPORT_SYMBOL(rps_needed);
4385struct static_key_false rfs_needed __read_mostly;
4386EXPORT_SYMBOL(rfs_needed);
4387
4388static struct rps_dev_flow *
4389set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4390 struct rps_dev_flow *rflow, u16 next_cpu)
4391{
4392 if (next_cpu < nr_cpu_ids) {
4393#ifdef CONFIG_RFS_ACCEL
4394 struct netdev_rx_queue *rxqueue;
4395 struct rps_dev_flow_table *flow_table;
4396 struct rps_dev_flow *old_rflow;
4397 u32 flow_id;
4398 u16 rxq_index;
4399 int rc;
4400
4401 /* Should we steer this flow to a different hardware queue? */
4402 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4403 !(dev->features & NETIF_F_NTUPLE))
4404 goto out;
4405 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4406 if (rxq_index == skb_get_rx_queue(skb))
4407 goto out;
4408
4409 rxqueue = dev->_rx + rxq_index;
4410 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4411 if (!flow_table)
4412 goto out;
4413 flow_id = skb_get_hash(skb) & flow_table->mask;
4414 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4415 rxq_index, flow_id);
4416 if (rc < 0)
4417 goto out;
4418 old_rflow = rflow;
4419 rflow = &flow_table->flows[flow_id];
4420 rflow->filter = rc;
4421 if (old_rflow->filter == rflow->filter)
4422 old_rflow->filter = RPS_NO_FILTER;
4423 out:
4424#endif
4425 rflow->last_qtail =
4426 per_cpu(softnet_data, next_cpu).input_queue_head;
4427 }
4428
4429 rflow->cpu = next_cpu;
4430 return rflow;
4431}
4432
4433/*
4434 * get_rps_cpu is called from netif_receive_skb and returns the target
4435 * CPU from the RPS map of the receiving queue for a given skb.
4436 * rcu_read_lock must be held on entry.
4437 */
4438static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4439 struct rps_dev_flow **rflowp)
4440{
4441 const struct rps_sock_flow_table *sock_flow_table;
4442 struct netdev_rx_queue *rxqueue = dev->_rx;
4443 struct rps_dev_flow_table *flow_table;
4444 struct rps_map *map;
4445 int cpu = -1;
4446 u32 tcpu;
4447 u32 hash;
4448
4449 if (skb_rx_queue_recorded(skb)) {
4450 u16 index = skb_get_rx_queue(skb);
4451
4452 if (unlikely(index >= dev->real_num_rx_queues)) {
4453 WARN_ONCE(dev->real_num_rx_queues > 1,
4454 "%s received packet on queue %u, but number "
4455 "of RX queues is %u\n",
4456 dev->name, index, dev->real_num_rx_queues);
4457 goto done;
4458 }
4459 rxqueue += index;
4460 }
4461
4462 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4463
4464 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4465 map = rcu_dereference(rxqueue->rps_map);
4466 if (!flow_table && !map)
4467 goto done;
4468
4469 skb_reset_network_header(skb);
4470 hash = skb_get_hash(skb);
4471 if (!hash)
4472 goto done;
4473
4474 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4475 if (flow_table && sock_flow_table) {
4476 struct rps_dev_flow *rflow;
4477 u32 next_cpu;
4478 u32 ident;
4479
4480 /* First check into global flow table if there is a match */
4481 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4482 if ((ident ^ hash) & ~rps_cpu_mask)
4483 goto try_rps;
4484
4485 next_cpu = ident & rps_cpu_mask;
4486
4487 /* OK, now we know there is a match,
4488 * we can look at the local (per receive queue) flow table
4489 */
4490 rflow = &flow_table->flows[hash & flow_table->mask];
4491 tcpu = rflow->cpu;
4492
4493 /*
4494 * If the desired CPU (where last recvmsg was done) is
4495 * different from current CPU (one in the rx-queue flow
4496 * table entry), switch if one of the following holds:
4497 * - Current CPU is unset (>= nr_cpu_ids).
4498 * - Current CPU is offline.
4499 * - The current CPU's queue tail has advanced beyond the
4500 * last packet that was enqueued using this table entry.
4501 * This guarantees that all previous packets for the flow
4502 * have been dequeued, thus preserving in order delivery.
4503 */
4504 if (unlikely(tcpu != next_cpu) &&
4505 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4506 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4507 rflow->last_qtail)) >= 0)) {
4508 tcpu = next_cpu;
4509 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4510 }
4511
4512 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4513 *rflowp = rflow;
4514 cpu = tcpu;
4515 goto done;
4516 }
4517 }
4518
4519try_rps:
4520
4521 if (map) {
4522 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4523 if (cpu_online(tcpu)) {
4524 cpu = tcpu;
4525 goto done;
4526 }
4527 }
4528
4529done:
4530 return cpu;
4531}
4532
4533#ifdef CONFIG_RFS_ACCEL
4534
4535/**
4536 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4537 * @dev: Device on which the filter was set
4538 * @rxq_index: RX queue index
4539 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4540 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4541 *
4542 * Drivers that implement ndo_rx_flow_steer() should periodically call
4543 * this function for each installed filter and remove the filters for
4544 * which it returns %true.
4545 */
4546bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4547 u32 flow_id, u16 filter_id)
4548{
4549 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4550 struct rps_dev_flow_table *flow_table;
4551 struct rps_dev_flow *rflow;
4552 bool expire = true;
4553 unsigned int cpu;
4554
4555 rcu_read_lock();
4556 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4557 if (flow_table && flow_id <= flow_table->mask) {
4558 rflow = &flow_table->flows[flow_id];
4559 cpu = READ_ONCE(rflow->cpu);
4560 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4561 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4562 rflow->last_qtail) <
4563 (int)(10 * flow_table->mask)))
4564 expire = false;
4565 }
4566 rcu_read_unlock();
4567 return expire;
4568}
4569EXPORT_SYMBOL(rps_may_expire_flow);
4570
4571#endif /* CONFIG_RFS_ACCEL */
4572
4573/* Called from hardirq (IPI) context */
4574static void rps_trigger_softirq(void *data)
4575{
4576 struct softnet_data *sd = data;
4577
4578 ____napi_schedule(sd, &sd->backlog);
4579 sd->received_rps++;
4580}
4581
4582#endif /* CONFIG_RPS */
4583
4584/* Called from hardirq (IPI) context */
4585static void trigger_rx_softirq(void *data)
4586{
4587 struct softnet_data *sd = data;
4588
4589 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4590 smp_store_release(&sd->defer_ipi_scheduled, 0);
4591}
4592
4593/*
4594 * Check if this softnet_data structure is another cpu one
4595 * If yes, queue it to our IPI list and return 1
4596 * If no, return 0
4597 */
4598static int napi_schedule_rps(struct softnet_data *sd)
4599{
4600 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4601
4602#ifdef CONFIG_RPS
4603 if (sd != mysd) {
4604 sd->rps_ipi_next = mysd->rps_ipi_list;
4605 mysd->rps_ipi_list = sd;
4606
4607 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4608 return 1;
4609 }
4610#endif /* CONFIG_RPS */
4611 __napi_schedule_irqoff(&mysd->backlog);
4612 return 0;
4613}
4614
4615#ifdef CONFIG_NET_FLOW_LIMIT
4616int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4617#endif
4618
4619static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4620{
4621#ifdef CONFIG_NET_FLOW_LIMIT
4622 struct sd_flow_limit *fl;
4623 struct softnet_data *sd;
4624 unsigned int old_flow, new_flow;
4625
4626 if (qlen < (netdev_max_backlog >> 1))
4627 return false;
4628
4629 sd = this_cpu_ptr(&softnet_data);
4630
4631 rcu_read_lock();
4632 fl = rcu_dereference(sd->flow_limit);
4633 if (fl) {
4634 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4635 old_flow = fl->history[fl->history_head];
4636 fl->history[fl->history_head] = new_flow;
4637
4638 fl->history_head++;
4639 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4640
4641 if (likely(fl->buckets[old_flow]))
4642 fl->buckets[old_flow]--;
4643
4644 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4645 fl->count++;
4646 rcu_read_unlock();
4647 return true;
4648 }
4649 }
4650 rcu_read_unlock();
4651#endif
4652 return false;
4653}
4654
4655/*
4656 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4657 * queue (may be a remote CPU queue).
4658 */
4659static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4660 unsigned int *qtail)
4661{
4662 enum skb_drop_reason reason;
4663 struct softnet_data *sd;
4664 unsigned long flags;
4665 unsigned int qlen;
4666
4667 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4668 sd = &per_cpu(softnet_data, cpu);
4669
4670 rps_lock_irqsave(sd, &flags);
4671 if (!netif_running(skb->dev))
4672 goto drop;
4673 qlen = skb_queue_len(&sd->input_pkt_queue);
4674 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4675 if (qlen) {
4676enqueue:
4677 __skb_queue_tail(&sd->input_pkt_queue, skb);
4678 input_queue_tail_incr_save(sd, qtail);
4679 rps_unlock_irq_restore(sd, &flags);
4680 return NET_RX_SUCCESS;
4681 }
4682
4683 /* Schedule NAPI for backlog device
4684 * We can use non atomic operation since we own the queue lock
4685 */
4686 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4687 napi_schedule_rps(sd);
4688 goto enqueue;
4689 }
4690 reason = SKB_DROP_REASON_CPU_BACKLOG;
4691
4692drop:
4693 sd->dropped++;
4694 rps_unlock_irq_restore(sd, &flags);
4695
4696 dev_core_stats_rx_dropped_inc(skb->dev);
4697 kfree_skb_reason(skb, reason);
4698 return NET_RX_DROP;
4699}
4700
4701static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4702{
4703 struct net_device *dev = skb->dev;
4704 struct netdev_rx_queue *rxqueue;
4705
4706 rxqueue = dev->_rx;
4707
4708 if (skb_rx_queue_recorded(skb)) {
4709 u16 index = skb_get_rx_queue(skb);
4710
4711 if (unlikely(index >= dev->real_num_rx_queues)) {
4712 WARN_ONCE(dev->real_num_rx_queues > 1,
4713 "%s received packet on queue %u, but number "
4714 "of RX queues is %u\n",
4715 dev->name, index, dev->real_num_rx_queues);
4716
4717 return rxqueue; /* Return first rxqueue */
4718 }
4719 rxqueue += index;
4720 }
4721 return rxqueue;
4722}
4723
4724u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4725 struct bpf_prog *xdp_prog)
4726{
4727 void *orig_data, *orig_data_end, *hard_start;
4728 struct netdev_rx_queue *rxqueue;
4729 bool orig_bcast, orig_host;
4730 u32 mac_len, frame_sz;
4731 __be16 orig_eth_type;
4732 struct ethhdr *eth;
4733 u32 metalen, act;
4734 int off;
4735
4736 /* The XDP program wants to see the packet starting at the MAC
4737 * header.
4738 */
4739 mac_len = skb->data - skb_mac_header(skb);
4740 hard_start = skb->data - skb_headroom(skb);
4741
4742 /* SKB "head" area always have tailroom for skb_shared_info */
4743 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4744 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4745
4746 rxqueue = netif_get_rxqueue(skb);
4747 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4748 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4749 skb_headlen(skb) + mac_len, true);
4750
4751 orig_data_end = xdp->data_end;
4752 orig_data = xdp->data;
4753 eth = (struct ethhdr *)xdp->data;
4754 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4755 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4756 orig_eth_type = eth->h_proto;
4757
4758 act = bpf_prog_run_xdp(xdp_prog, xdp);
4759
4760 /* check if bpf_xdp_adjust_head was used */
4761 off = xdp->data - orig_data;
4762 if (off) {
4763 if (off > 0)
4764 __skb_pull(skb, off);
4765 else if (off < 0)
4766 __skb_push(skb, -off);
4767
4768 skb->mac_header += off;
4769 skb_reset_network_header(skb);
4770 }
4771
4772 /* check if bpf_xdp_adjust_tail was used */
4773 off = xdp->data_end - orig_data_end;
4774 if (off != 0) {
4775 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4776 skb->len += off; /* positive on grow, negative on shrink */
4777 }
4778
4779 /* check if XDP changed eth hdr such SKB needs update */
4780 eth = (struct ethhdr *)xdp->data;
4781 if ((orig_eth_type != eth->h_proto) ||
4782 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4783 skb->dev->dev_addr)) ||
4784 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4785 __skb_push(skb, ETH_HLEN);
4786 skb->pkt_type = PACKET_HOST;
4787 skb->protocol = eth_type_trans(skb, skb->dev);
4788 }
4789
4790 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4791 * before calling us again on redirect path. We do not call do_redirect
4792 * as we leave that up to the caller.
4793 *
4794 * Caller is responsible for managing lifetime of skb (i.e. calling
4795 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4796 */
4797 switch (act) {
4798 case XDP_REDIRECT:
4799 case XDP_TX:
4800 __skb_push(skb, mac_len);
4801 break;
4802 case XDP_PASS:
4803 metalen = xdp->data - xdp->data_meta;
4804 if (metalen)
4805 skb_metadata_set(skb, metalen);
4806 break;
4807 }
4808
4809 return act;
4810}
4811
4812static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4813 struct xdp_buff *xdp,
4814 struct bpf_prog *xdp_prog)
4815{
4816 u32 act = XDP_DROP;
4817
4818 /* Reinjected packets coming from act_mirred or similar should
4819 * not get XDP generic processing.
4820 */
4821 if (skb_is_redirected(skb))
4822 return XDP_PASS;
4823
4824 /* XDP packets must be linear and must have sufficient headroom
4825 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4826 * native XDP provides, thus we need to do it here as well.
4827 */
4828 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4829 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4830 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4831 int troom = skb->tail + skb->data_len - skb->end;
4832
4833 /* In case we have to go down the path and also linearize,
4834 * then lets do the pskb_expand_head() work just once here.
4835 */
4836 if (pskb_expand_head(skb,
4837 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4838 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4839 goto do_drop;
4840 if (skb_linearize(skb))
4841 goto do_drop;
4842 }
4843
4844 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4845 switch (act) {
4846 case XDP_REDIRECT:
4847 case XDP_TX:
4848 case XDP_PASS:
4849 break;
4850 default:
4851 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4852 fallthrough;
4853 case XDP_ABORTED:
4854 trace_xdp_exception(skb->dev, xdp_prog, act);
4855 fallthrough;
4856 case XDP_DROP:
4857 do_drop:
4858 kfree_skb(skb);
4859 break;
4860 }
4861
4862 return act;
4863}
4864
4865/* When doing generic XDP we have to bypass the qdisc layer and the
4866 * network taps in order to match in-driver-XDP behavior. This also means
4867 * that XDP packets are able to starve other packets going through a qdisc,
4868 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4869 * queues, so they do not have this starvation issue.
4870 */
4871void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4872{
4873 struct net_device *dev = skb->dev;
4874 struct netdev_queue *txq;
4875 bool free_skb = true;
4876 int cpu, rc;
4877
4878 txq = netdev_core_pick_tx(dev, skb, NULL);
4879 cpu = smp_processor_id();
4880 HARD_TX_LOCK(dev, txq, cpu);
4881 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4882 rc = netdev_start_xmit(skb, dev, txq, 0);
4883 if (dev_xmit_complete(rc))
4884 free_skb = false;
4885 }
4886 HARD_TX_UNLOCK(dev, txq);
4887 if (free_skb) {
4888 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4889 dev_core_stats_tx_dropped_inc(dev);
4890 kfree_skb(skb);
4891 }
4892}
4893
4894static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4895
4896int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4897{
4898 if (xdp_prog) {
4899 struct xdp_buff xdp;
4900 u32 act;
4901 int err;
4902
4903 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4904 if (act != XDP_PASS) {
4905 switch (act) {
4906 case XDP_REDIRECT:
4907 err = xdp_do_generic_redirect(skb->dev, skb,
4908 &xdp, xdp_prog);
4909 if (err)
4910 goto out_redir;
4911 break;
4912 case XDP_TX:
4913 generic_xdp_tx(skb, xdp_prog);
4914 break;
4915 }
4916 return XDP_DROP;
4917 }
4918 }
4919 return XDP_PASS;
4920out_redir:
4921 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4922 return XDP_DROP;
4923}
4924EXPORT_SYMBOL_GPL(do_xdp_generic);
4925
4926static int netif_rx_internal(struct sk_buff *skb)
4927{
4928 int ret;
4929
4930 net_timestamp_check(netdev_tstamp_prequeue, skb);
4931
4932 trace_netif_rx(skb);
4933
4934#ifdef CONFIG_RPS
4935 if (static_branch_unlikely(&rps_needed)) {
4936 struct rps_dev_flow voidflow, *rflow = &voidflow;
4937 int cpu;
4938
4939 rcu_read_lock();
4940
4941 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4942 if (cpu < 0)
4943 cpu = smp_processor_id();
4944
4945 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4946
4947 rcu_read_unlock();
4948 } else
4949#endif
4950 {
4951 unsigned int qtail;
4952
4953 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4954 }
4955 return ret;
4956}
4957
4958/**
4959 * __netif_rx - Slightly optimized version of netif_rx
4960 * @skb: buffer to post
4961 *
4962 * This behaves as netif_rx except that it does not disable bottom halves.
4963 * As a result this function may only be invoked from the interrupt context
4964 * (either hard or soft interrupt).
4965 */
4966int __netif_rx(struct sk_buff *skb)
4967{
4968 int ret;
4969
4970 lockdep_assert_once(hardirq_count() | softirq_count());
4971
4972 trace_netif_rx_entry(skb);
4973 ret = netif_rx_internal(skb);
4974 trace_netif_rx_exit(ret);
4975 return ret;
4976}
4977EXPORT_SYMBOL(__netif_rx);
4978
4979/**
4980 * netif_rx - post buffer to the network code
4981 * @skb: buffer to post
4982 *
4983 * This function receives a packet from a device driver and queues it for
4984 * the upper (protocol) levels to process via the backlog NAPI device. It
4985 * always succeeds. The buffer may be dropped during processing for
4986 * congestion control or by the protocol layers.
4987 * The network buffer is passed via the backlog NAPI device. Modern NIC
4988 * driver should use NAPI and GRO.
4989 * This function can used from interrupt and from process context. The
4990 * caller from process context must not disable interrupts before invoking
4991 * this function.
4992 *
4993 * return values:
4994 * NET_RX_SUCCESS (no congestion)
4995 * NET_RX_DROP (packet was dropped)
4996 *
4997 */
4998int netif_rx(struct sk_buff *skb)
4999{
5000 bool need_bh_off = !(hardirq_count() | softirq_count());
5001 int ret;
5002
5003 if (need_bh_off)
5004 local_bh_disable();
5005 trace_netif_rx_entry(skb);
5006 ret = netif_rx_internal(skb);
5007 trace_netif_rx_exit(ret);
5008 if (need_bh_off)
5009 local_bh_enable();
5010 return ret;
5011}
5012EXPORT_SYMBOL(netif_rx);
5013
5014static __latent_entropy void net_tx_action(struct softirq_action *h)
5015{
5016 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5017
5018 if (sd->completion_queue) {
5019 struct sk_buff *clist;
5020
5021 local_irq_disable();
5022 clist = sd->completion_queue;
5023 sd->completion_queue = NULL;
5024 local_irq_enable();
5025
5026 while (clist) {
5027 struct sk_buff *skb = clist;
5028
5029 clist = clist->next;
5030
5031 WARN_ON(refcount_read(&skb->users));
5032 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5033 trace_consume_skb(skb);
5034 else
5035 trace_kfree_skb(skb, net_tx_action,
5036 SKB_DROP_REASON_NOT_SPECIFIED);
5037
5038 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5039 __kfree_skb(skb);
5040 else
5041 __kfree_skb_defer(skb);
5042 }
5043 }
5044
5045 if (sd->output_queue) {
5046 struct Qdisc *head;
5047
5048 local_irq_disable();
5049 head = sd->output_queue;
5050 sd->output_queue = NULL;
5051 sd->output_queue_tailp = &sd->output_queue;
5052 local_irq_enable();
5053
5054 rcu_read_lock();
5055
5056 while (head) {
5057 struct Qdisc *q = head;
5058 spinlock_t *root_lock = NULL;
5059
5060 head = head->next_sched;
5061
5062 /* We need to make sure head->next_sched is read
5063 * before clearing __QDISC_STATE_SCHED
5064 */
5065 smp_mb__before_atomic();
5066
5067 if (!(q->flags & TCQ_F_NOLOCK)) {
5068 root_lock = qdisc_lock(q);
5069 spin_lock(root_lock);
5070 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5071 &q->state))) {
5072 /* There is a synchronize_net() between
5073 * STATE_DEACTIVATED flag being set and
5074 * qdisc_reset()/some_qdisc_is_busy() in
5075 * dev_deactivate(), so we can safely bail out
5076 * early here to avoid data race between
5077 * qdisc_deactivate() and some_qdisc_is_busy()
5078 * for lockless qdisc.
5079 */
5080 clear_bit(__QDISC_STATE_SCHED, &q->state);
5081 continue;
5082 }
5083
5084 clear_bit(__QDISC_STATE_SCHED, &q->state);
5085 qdisc_run(q);
5086 if (root_lock)
5087 spin_unlock(root_lock);
5088 }
5089
5090 rcu_read_unlock();
5091 }
5092
5093 xfrm_dev_backlog(sd);
5094}
5095
5096#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5097/* This hook is defined here for ATM LANE */
5098int (*br_fdb_test_addr_hook)(struct net_device *dev,
5099 unsigned char *addr) __read_mostly;
5100EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5101#endif
5102
5103static inline struct sk_buff *
5104sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5105 struct net_device *orig_dev, bool *another)
5106{
5107#ifdef CONFIG_NET_CLS_ACT
5108 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5109 struct tcf_result cl_res;
5110
5111 /* If there's at least one ingress present somewhere (so
5112 * we get here via enabled static key), remaining devices
5113 * that are not configured with an ingress qdisc will bail
5114 * out here.
5115 */
5116 if (!miniq)
5117 return skb;
5118
5119 if (*pt_prev) {
5120 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5121 *pt_prev = NULL;
5122 }
5123
5124 qdisc_skb_cb(skb)->pkt_len = skb->len;
5125 tc_skb_cb(skb)->mru = 0;
5126 tc_skb_cb(skb)->post_ct = false;
5127 skb->tc_at_ingress = 1;
5128 mini_qdisc_bstats_cpu_update(miniq, skb);
5129
5130 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5131 case TC_ACT_OK:
5132 case TC_ACT_RECLASSIFY:
5133 skb->tc_index = TC_H_MIN(cl_res.classid);
5134 break;
5135 case TC_ACT_SHOT:
5136 mini_qdisc_qstats_cpu_drop(miniq);
5137 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5138 return NULL;
5139 case TC_ACT_STOLEN:
5140 case TC_ACT_QUEUED:
5141 case TC_ACT_TRAP:
5142 consume_skb(skb);
5143 return NULL;
5144 case TC_ACT_REDIRECT:
5145 /* skb_mac_header check was done by cls/act_bpf, so
5146 * we can safely push the L2 header back before
5147 * redirecting to another netdev
5148 */
5149 __skb_push(skb, skb->mac_len);
5150 if (skb_do_redirect(skb) == -EAGAIN) {
5151 __skb_pull(skb, skb->mac_len);
5152 *another = true;
5153 break;
5154 }
5155 return NULL;
5156 case TC_ACT_CONSUMED:
5157 return NULL;
5158 default:
5159 break;
5160 }
5161#endif /* CONFIG_NET_CLS_ACT */
5162 return skb;
5163}
5164
5165/**
5166 * netdev_is_rx_handler_busy - check if receive handler is registered
5167 * @dev: device to check
5168 *
5169 * Check if a receive handler is already registered for a given device.
5170 * Return true if there one.
5171 *
5172 * The caller must hold the rtnl_mutex.
5173 */
5174bool netdev_is_rx_handler_busy(struct net_device *dev)
5175{
5176 ASSERT_RTNL();
5177 return dev && rtnl_dereference(dev->rx_handler);
5178}
5179EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5180
5181/**
5182 * netdev_rx_handler_register - register receive handler
5183 * @dev: device to register a handler for
5184 * @rx_handler: receive handler to register
5185 * @rx_handler_data: data pointer that is used by rx handler
5186 *
5187 * Register a receive handler for a device. This handler will then be
5188 * called from __netif_receive_skb. A negative errno code is returned
5189 * on a failure.
5190 *
5191 * The caller must hold the rtnl_mutex.
5192 *
5193 * For a general description of rx_handler, see enum rx_handler_result.
5194 */
5195int netdev_rx_handler_register(struct net_device *dev,
5196 rx_handler_func_t *rx_handler,
5197 void *rx_handler_data)
5198{
5199 if (netdev_is_rx_handler_busy(dev))
5200 return -EBUSY;
5201
5202 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5203 return -EINVAL;
5204
5205 /* Note: rx_handler_data must be set before rx_handler */
5206 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5207 rcu_assign_pointer(dev->rx_handler, rx_handler);
5208
5209 return 0;
5210}
5211EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5212
5213/**
5214 * netdev_rx_handler_unregister - unregister receive handler
5215 * @dev: device to unregister a handler from
5216 *
5217 * Unregister a receive handler from a device.
5218 *
5219 * The caller must hold the rtnl_mutex.
5220 */
5221void netdev_rx_handler_unregister(struct net_device *dev)
5222{
5223
5224 ASSERT_RTNL();
5225 RCU_INIT_POINTER(dev->rx_handler, NULL);
5226 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5227 * section has a guarantee to see a non NULL rx_handler_data
5228 * as well.
5229 */
5230 synchronize_net();
5231 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5232}
5233EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5234
5235/*
5236 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5237 * the special handling of PFMEMALLOC skbs.
5238 */
5239static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5240{
5241 switch (skb->protocol) {
5242 case htons(ETH_P_ARP):
5243 case htons(ETH_P_IP):
5244 case htons(ETH_P_IPV6):
5245 case htons(ETH_P_8021Q):
5246 case htons(ETH_P_8021AD):
5247 return true;
5248 default:
5249 return false;
5250 }
5251}
5252
5253static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5254 int *ret, struct net_device *orig_dev)
5255{
5256 if (nf_hook_ingress_active(skb)) {
5257 int ingress_retval;
5258
5259 if (*pt_prev) {
5260 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5261 *pt_prev = NULL;
5262 }
5263
5264 rcu_read_lock();
5265 ingress_retval = nf_hook_ingress(skb);
5266 rcu_read_unlock();
5267 return ingress_retval;
5268 }
5269 return 0;
5270}
5271
5272static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5273 struct packet_type **ppt_prev)
5274{
5275 struct packet_type *ptype, *pt_prev;
5276 rx_handler_func_t *rx_handler;
5277 struct sk_buff *skb = *pskb;
5278 struct net_device *orig_dev;
5279 bool deliver_exact = false;
5280 int ret = NET_RX_DROP;
5281 __be16 type;
5282
5283 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5284
5285 trace_netif_receive_skb(skb);
5286
5287 orig_dev = skb->dev;
5288
5289 skb_reset_network_header(skb);
5290 if (!skb_transport_header_was_set(skb))
5291 skb_reset_transport_header(skb);
5292 skb_reset_mac_len(skb);
5293
5294 pt_prev = NULL;
5295
5296another_round:
5297 skb->skb_iif = skb->dev->ifindex;
5298
5299 __this_cpu_inc(softnet_data.processed);
5300
5301 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5302 int ret2;
5303
5304 migrate_disable();
5305 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5306 migrate_enable();
5307
5308 if (ret2 != XDP_PASS) {
5309 ret = NET_RX_DROP;
5310 goto out;
5311 }
5312 }
5313
5314 if (eth_type_vlan(skb->protocol)) {
5315 skb = skb_vlan_untag(skb);
5316 if (unlikely(!skb))
5317 goto out;
5318 }
5319
5320 if (skb_skip_tc_classify(skb))
5321 goto skip_classify;
5322
5323 if (pfmemalloc)
5324 goto skip_taps;
5325
5326 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5327 if (pt_prev)
5328 ret = deliver_skb(skb, pt_prev, orig_dev);
5329 pt_prev = ptype;
5330 }
5331
5332 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5333 if (pt_prev)
5334 ret = deliver_skb(skb, pt_prev, orig_dev);
5335 pt_prev = ptype;
5336 }
5337
5338skip_taps:
5339#ifdef CONFIG_NET_INGRESS
5340 if (static_branch_unlikely(&ingress_needed_key)) {
5341 bool another = false;
5342
5343 nf_skip_egress(skb, true);
5344 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5345 &another);
5346 if (another)
5347 goto another_round;
5348 if (!skb)
5349 goto out;
5350
5351 nf_skip_egress(skb, false);
5352 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5353 goto out;
5354 }
5355#endif
5356 skb_reset_redirect(skb);
5357skip_classify:
5358 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5359 goto drop;
5360
5361 if (skb_vlan_tag_present(skb)) {
5362 if (pt_prev) {
5363 ret = deliver_skb(skb, pt_prev, orig_dev);
5364 pt_prev = NULL;
5365 }
5366 if (vlan_do_receive(&skb))
5367 goto another_round;
5368 else if (unlikely(!skb))
5369 goto out;
5370 }
5371
5372 rx_handler = rcu_dereference(skb->dev->rx_handler);
5373 if (rx_handler) {
5374 if (pt_prev) {
5375 ret = deliver_skb(skb, pt_prev, orig_dev);
5376 pt_prev = NULL;
5377 }
5378 switch (rx_handler(&skb)) {
5379 case RX_HANDLER_CONSUMED:
5380 ret = NET_RX_SUCCESS;
5381 goto out;
5382 case RX_HANDLER_ANOTHER:
5383 goto another_round;
5384 case RX_HANDLER_EXACT:
5385 deliver_exact = true;
5386 break;
5387 case RX_HANDLER_PASS:
5388 break;
5389 default:
5390 BUG();
5391 }
5392 }
5393
5394 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5395check_vlan_id:
5396 if (skb_vlan_tag_get_id(skb)) {
5397 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5398 * find vlan device.
5399 */
5400 skb->pkt_type = PACKET_OTHERHOST;
5401 } else if (eth_type_vlan(skb->protocol)) {
5402 /* Outer header is 802.1P with vlan 0, inner header is
5403 * 802.1Q or 802.1AD and vlan_do_receive() above could
5404 * not find vlan dev for vlan id 0.
5405 */
5406 __vlan_hwaccel_clear_tag(skb);
5407 skb = skb_vlan_untag(skb);
5408 if (unlikely(!skb))
5409 goto out;
5410 if (vlan_do_receive(&skb))
5411 /* After stripping off 802.1P header with vlan 0
5412 * vlan dev is found for inner header.
5413 */
5414 goto another_round;
5415 else if (unlikely(!skb))
5416 goto out;
5417 else
5418 /* We have stripped outer 802.1P vlan 0 header.
5419 * But could not find vlan dev.
5420 * check again for vlan id to set OTHERHOST.
5421 */
5422 goto check_vlan_id;
5423 }
5424 /* Note: we might in the future use prio bits
5425 * and set skb->priority like in vlan_do_receive()
5426 * For the time being, just ignore Priority Code Point
5427 */
5428 __vlan_hwaccel_clear_tag(skb);
5429 }
5430
5431 type = skb->protocol;
5432
5433 /* deliver only exact match when indicated */
5434 if (likely(!deliver_exact)) {
5435 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5436 &ptype_base[ntohs(type) &
5437 PTYPE_HASH_MASK]);
5438 }
5439
5440 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441 &orig_dev->ptype_specific);
5442
5443 if (unlikely(skb->dev != orig_dev)) {
5444 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5445 &skb->dev->ptype_specific);
5446 }
5447
5448 if (pt_prev) {
5449 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5450 goto drop;
5451 *ppt_prev = pt_prev;
5452 } else {
5453drop:
5454 if (!deliver_exact)
5455 dev_core_stats_rx_dropped_inc(skb->dev);
5456 else
5457 dev_core_stats_rx_nohandler_inc(skb->dev);
5458 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5459 /* Jamal, now you will not able to escape explaining
5460 * me how you were going to use this. :-)
5461 */
5462 ret = NET_RX_DROP;
5463 }
5464
5465out:
5466 /* The invariant here is that if *ppt_prev is not NULL
5467 * then skb should also be non-NULL.
5468 *
5469 * Apparently *ppt_prev assignment above holds this invariant due to
5470 * skb dereferencing near it.
5471 */
5472 *pskb = skb;
5473 return ret;
5474}
5475
5476static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5477{
5478 struct net_device *orig_dev = skb->dev;
5479 struct packet_type *pt_prev = NULL;
5480 int ret;
5481
5482 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5483 if (pt_prev)
5484 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5485 skb->dev, pt_prev, orig_dev);
5486 return ret;
5487}
5488
5489/**
5490 * netif_receive_skb_core - special purpose version of netif_receive_skb
5491 * @skb: buffer to process
5492 *
5493 * More direct receive version of netif_receive_skb(). It should
5494 * only be used by callers that have a need to skip RPS and Generic XDP.
5495 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5496 *
5497 * This function may only be called from softirq context and interrupts
5498 * should be enabled.
5499 *
5500 * Return values (usually ignored):
5501 * NET_RX_SUCCESS: no congestion
5502 * NET_RX_DROP: packet was dropped
5503 */
5504int netif_receive_skb_core(struct sk_buff *skb)
5505{
5506 int ret;
5507
5508 rcu_read_lock();
5509 ret = __netif_receive_skb_one_core(skb, false);
5510 rcu_read_unlock();
5511
5512 return ret;
5513}
5514EXPORT_SYMBOL(netif_receive_skb_core);
5515
5516static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5517 struct packet_type *pt_prev,
5518 struct net_device *orig_dev)
5519{
5520 struct sk_buff *skb, *next;
5521
5522 if (!pt_prev)
5523 return;
5524 if (list_empty(head))
5525 return;
5526 if (pt_prev->list_func != NULL)
5527 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5528 ip_list_rcv, head, pt_prev, orig_dev);
5529 else
5530 list_for_each_entry_safe(skb, next, head, list) {
5531 skb_list_del_init(skb);
5532 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5533 }
5534}
5535
5536static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5537{
5538 /* Fast-path assumptions:
5539 * - There is no RX handler.
5540 * - Only one packet_type matches.
5541 * If either of these fails, we will end up doing some per-packet
5542 * processing in-line, then handling the 'last ptype' for the whole
5543 * sublist. This can't cause out-of-order delivery to any single ptype,
5544 * because the 'last ptype' must be constant across the sublist, and all
5545 * other ptypes are handled per-packet.
5546 */
5547 /* Current (common) ptype of sublist */
5548 struct packet_type *pt_curr = NULL;
5549 /* Current (common) orig_dev of sublist */
5550 struct net_device *od_curr = NULL;
5551 struct list_head sublist;
5552 struct sk_buff *skb, *next;
5553
5554 INIT_LIST_HEAD(&sublist);
5555 list_for_each_entry_safe(skb, next, head, list) {
5556 struct net_device *orig_dev = skb->dev;
5557 struct packet_type *pt_prev = NULL;
5558
5559 skb_list_del_init(skb);
5560 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5561 if (!pt_prev)
5562 continue;
5563 if (pt_curr != pt_prev || od_curr != orig_dev) {
5564 /* dispatch old sublist */
5565 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5566 /* start new sublist */
5567 INIT_LIST_HEAD(&sublist);
5568 pt_curr = pt_prev;
5569 od_curr = orig_dev;
5570 }
5571 list_add_tail(&skb->list, &sublist);
5572 }
5573
5574 /* dispatch final sublist */
5575 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5576}
5577
5578static int __netif_receive_skb(struct sk_buff *skb)
5579{
5580 int ret;
5581
5582 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5583 unsigned int noreclaim_flag;
5584
5585 /*
5586 * PFMEMALLOC skbs are special, they should
5587 * - be delivered to SOCK_MEMALLOC sockets only
5588 * - stay away from userspace
5589 * - have bounded memory usage
5590 *
5591 * Use PF_MEMALLOC as this saves us from propagating the allocation
5592 * context down to all allocation sites.
5593 */
5594 noreclaim_flag = memalloc_noreclaim_save();
5595 ret = __netif_receive_skb_one_core(skb, true);
5596 memalloc_noreclaim_restore(noreclaim_flag);
5597 } else
5598 ret = __netif_receive_skb_one_core(skb, false);
5599
5600 return ret;
5601}
5602
5603static void __netif_receive_skb_list(struct list_head *head)
5604{
5605 unsigned long noreclaim_flag = 0;
5606 struct sk_buff *skb, *next;
5607 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5608
5609 list_for_each_entry_safe(skb, next, head, list) {
5610 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5611 struct list_head sublist;
5612
5613 /* Handle the previous sublist */
5614 list_cut_before(&sublist, head, &skb->list);
5615 if (!list_empty(&sublist))
5616 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5617 pfmemalloc = !pfmemalloc;
5618 /* See comments in __netif_receive_skb */
5619 if (pfmemalloc)
5620 noreclaim_flag = memalloc_noreclaim_save();
5621 else
5622 memalloc_noreclaim_restore(noreclaim_flag);
5623 }
5624 }
5625 /* Handle the remaining sublist */
5626 if (!list_empty(head))
5627 __netif_receive_skb_list_core(head, pfmemalloc);
5628 /* Restore pflags */
5629 if (pfmemalloc)
5630 memalloc_noreclaim_restore(noreclaim_flag);
5631}
5632
5633static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5634{
5635 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5636 struct bpf_prog *new = xdp->prog;
5637 int ret = 0;
5638
5639 switch (xdp->command) {
5640 case XDP_SETUP_PROG:
5641 rcu_assign_pointer(dev->xdp_prog, new);
5642 if (old)
5643 bpf_prog_put(old);
5644
5645 if (old && !new) {
5646 static_branch_dec(&generic_xdp_needed_key);
5647 } else if (new && !old) {
5648 static_branch_inc(&generic_xdp_needed_key);
5649 dev_disable_lro(dev);
5650 dev_disable_gro_hw(dev);
5651 }
5652 break;
5653
5654 default:
5655 ret = -EINVAL;
5656 break;
5657 }
5658
5659 return ret;
5660}
5661
5662static int netif_receive_skb_internal(struct sk_buff *skb)
5663{
5664 int ret;
5665
5666 net_timestamp_check(netdev_tstamp_prequeue, skb);
5667
5668 if (skb_defer_rx_timestamp(skb))
5669 return NET_RX_SUCCESS;
5670
5671 rcu_read_lock();
5672#ifdef CONFIG_RPS
5673 if (static_branch_unlikely(&rps_needed)) {
5674 struct rps_dev_flow voidflow, *rflow = &voidflow;
5675 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5676
5677 if (cpu >= 0) {
5678 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5679 rcu_read_unlock();
5680 return ret;
5681 }
5682 }
5683#endif
5684 ret = __netif_receive_skb(skb);
5685 rcu_read_unlock();
5686 return ret;
5687}
5688
5689void netif_receive_skb_list_internal(struct list_head *head)
5690{
5691 struct sk_buff *skb, *next;
5692 struct list_head sublist;
5693
5694 INIT_LIST_HEAD(&sublist);
5695 list_for_each_entry_safe(skb, next, head, list) {
5696 net_timestamp_check(netdev_tstamp_prequeue, skb);
5697 skb_list_del_init(skb);
5698 if (!skb_defer_rx_timestamp(skb))
5699 list_add_tail(&skb->list, &sublist);
5700 }
5701 list_splice_init(&sublist, head);
5702
5703 rcu_read_lock();
5704#ifdef CONFIG_RPS
5705 if (static_branch_unlikely(&rps_needed)) {
5706 list_for_each_entry_safe(skb, next, head, list) {
5707 struct rps_dev_flow voidflow, *rflow = &voidflow;
5708 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709
5710 if (cpu >= 0) {
5711 /* Will be handled, remove from list */
5712 skb_list_del_init(skb);
5713 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5714 }
5715 }
5716 }
5717#endif
5718 __netif_receive_skb_list(head);
5719 rcu_read_unlock();
5720}
5721
5722/**
5723 * netif_receive_skb - process receive buffer from network
5724 * @skb: buffer to process
5725 *
5726 * netif_receive_skb() is the main receive data processing function.
5727 * It always succeeds. The buffer may be dropped during processing
5728 * for congestion control or by the protocol layers.
5729 *
5730 * This function may only be called from softirq context and interrupts
5731 * should be enabled.
5732 *
5733 * Return values (usually ignored):
5734 * NET_RX_SUCCESS: no congestion
5735 * NET_RX_DROP: packet was dropped
5736 */
5737int netif_receive_skb(struct sk_buff *skb)
5738{
5739 int ret;
5740
5741 trace_netif_receive_skb_entry(skb);
5742
5743 ret = netif_receive_skb_internal(skb);
5744 trace_netif_receive_skb_exit(ret);
5745
5746 return ret;
5747}
5748EXPORT_SYMBOL(netif_receive_skb);
5749
5750/**
5751 * netif_receive_skb_list - process many receive buffers from network
5752 * @head: list of skbs to process.
5753 *
5754 * Since return value of netif_receive_skb() is normally ignored, and
5755 * wouldn't be meaningful for a list, this function returns void.
5756 *
5757 * This function may only be called from softirq context and interrupts
5758 * should be enabled.
5759 */
5760void netif_receive_skb_list(struct list_head *head)
5761{
5762 struct sk_buff *skb;
5763
5764 if (list_empty(head))
5765 return;
5766 if (trace_netif_receive_skb_list_entry_enabled()) {
5767 list_for_each_entry(skb, head, list)
5768 trace_netif_receive_skb_list_entry(skb);
5769 }
5770 netif_receive_skb_list_internal(head);
5771 trace_netif_receive_skb_list_exit(0);
5772}
5773EXPORT_SYMBOL(netif_receive_skb_list);
5774
5775static DEFINE_PER_CPU(struct work_struct, flush_works);
5776
5777/* Network device is going away, flush any packets still pending */
5778static void flush_backlog(struct work_struct *work)
5779{
5780 struct sk_buff *skb, *tmp;
5781 struct softnet_data *sd;
5782
5783 local_bh_disable();
5784 sd = this_cpu_ptr(&softnet_data);
5785
5786 rps_lock_irq_disable(sd);
5787 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5788 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5789 __skb_unlink(skb, &sd->input_pkt_queue);
5790 dev_kfree_skb_irq(skb);
5791 input_queue_head_incr(sd);
5792 }
5793 }
5794 rps_unlock_irq_enable(sd);
5795
5796 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5797 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5798 __skb_unlink(skb, &sd->process_queue);
5799 kfree_skb(skb);
5800 input_queue_head_incr(sd);
5801 }
5802 }
5803 local_bh_enable();
5804}
5805
5806static bool flush_required(int cpu)
5807{
5808#if IS_ENABLED(CONFIG_RPS)
5809 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5810 bool do_flush;
5811
5812 rps_lock_irq_disable(sd);
5813
5814 /* as insertion into process_queue happens with the rps lock held,
5815 * process_queue access may race only with dequeue
5816 */
5817 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5818 !skb_queue_empty_lockless(&sd->process_queue);
5819 rps_unlock_irq_enable(sd);
5820
5821 return do_flush;
5822#endif
5823 /* without RPS we can't safely check input_pkt_queue: during a
5824 * concurrent remote skb_queue_splice() we can detect as empty both
5825 * input_pkt_queue and process_queue even if the latter could end-up
5826 * containing a lot of packets.
5827 */
5828 return true;
5829}
5830
5831static void flush_all_backlogs(void)
5832{
5833 static cpumask_t flush_cpus;
5834 unsigned int cpu;
5835
5836 /* since we are under rtnl lock protection we can use static data
5837 * for the cpumask and avoid allocating on stack the possibly
5838 * large mask
5839 */
5840 ASSERT_RTNL();
5841
5842 cpus_read_lock();
5843
5844 cpumask_clear(&flush_cpus);
5845 for_each_online_cpu(cpu) {
5846 if (flush_required(cpu)) {
5847 queue_work_on(cpu, system_highpri_wq,
5848 per_cpu_ptr(&flush_works, cpu));
5849 cpumask_set_cpu(cpu, &flush_cpus);
5850 }
5851 }
5852
5853 /* we can have in flight packet[s] on the cpus we are not flushing,
5854 * synchronize_net() in unregister_netdevice_many() will take care of
5855 * them
5856 */
5857 for_each_cpu(cpu, &flush_cpus)
5858 flush_work(per_cpu_ptr(&flush_works, cpu));
5859
5860 cpus_read_unlock();
5861}
5862
5863static void net_rps_send_ipi(struct softnet_data *remsd)
5864{
5865#ifdef CONFIG_RPS
5866 while (remsd) {
5867 struct softnet_data *next = remsd->rps_ipi_next;
5868
5869 if (cpu_online(remsd->cpu))
5870 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5871 remsd = next;
5872 }
5873#endif
5874}
5875
5876/*
5877 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5878 * Note: called with local irq disabled, but exits with local irq enabled.
5879 */
5880static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5881{
5882#ifdef CONFIG_RPS
5883 struct softnet_data *remsd = sd->rps_ipi_list;
5884
5885 if (remsd) {
5886 sd->rps_ipi_list = NULL;
5887
5888 local_irq_enable();
5889
5890 /* Send pending IPI's to kick RPS processing on remote cpus. */
5891 net_rps_send_ipi(remsd);
5892 } else
5893#endif
5894 local_irq_enable();
5895}
5896
5897static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5898{
5899#ifdef CONFIG_RPS
5900 return sd->rps_ipi_list != NULL;
5901#else
5902 return false;
5903#endif
5904}
5905
5906static int process_backlog(struct napi_struct *napi, int quota)
5907{
5908 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5909 bool again = true;
5910 int work = 0;
5911
5912 /* Check if we have pending ipi, its better to send them now,
5913 * not waiting net_rx_action() end.
5914 */
5915 if (sd_has_rps_ipi_waiting(sd)) {
5916 local_irq_disable();
5917 net_rps_action_and_irq_enable(sd);
5918 }
5919
5920 napi->weight = dev_rx_weight;
5921 while (again) {
5922 struct sk_buff *skb;
5923
5924 while ((skb = __skb_dequeue(&sd->process_queue))) {
5925 rcu_read_lock();
5926 __netif_receive_skb(skb);
5927 rcu_read_unlock();
5928 input_queue_head_incr(sd);
5929 if (++work >= quota)
5930 return work;
5931
5932 }
5933
5934 rps_lock_irq_disable(sd);
5935 if (skb_queue_empty(&sd->input_pkt_queue)) {
5936 /*
5937 * Inline a custom version of __napi_complete().
5938 * only current cpu owns and manipulates this napi,
5939 * and NAPI_STATE_SCHED is the only possible flag set
5940 * on backlog.
5941 * We can use a plain write instead of clear_bit(),
5942 * and we dont need an smp_mb() memory barrier.
5943 */
5944 napi->state = 0;
5945 again = false;
5946 } else {
5947 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5948 &sd->process_queue);
5949 }
5950 rps_unlock_irq_enable(sd);
5951 }
5952
5953 return work;
5954}
5955
5956/**
5957 * __napi_schedule - schedule for receive
5958 * @n: entry to schedule
5959 *
5960 * The entry's receive function will be scheduled to run.
5961 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5962 */
5963void __napi_schedule(struct napi_struct *n)
5964{
5965 unsigned long flags;
5966
5967 local_irq_save(flags);
5968 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5969 local_irq_restore(flags);
5970}
5971EXPORT_SYMBOL(__napi_schedule);
5972
5973/**
5974 * napi_schedule_prep - check if napi can be scheduled
5975 * @n: napi context
5976 *
5977 * Test if NAPI routine is already running, and if not mark
5978 * it as running. This is used as a condition variable to
5979 * insure only one NAPI poll instance runs. We also make
5980 * sure there is no pending NAPI disable.
5981 */
5982bool napi_schedule_prep(struct napi_struct *n)
5983{
5984 unsigned long val, new;
5985
5986 do {
5987 val = READ_ONCE(n->state);
5988 if (unlikely(val & NAPIF_STATE_DISABLE))
5989 return false;
5990 new = val | NAPIF_STATE_SCHED;
5991
5992 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5993 * This was suggested by Alexander Duyck, as compiler
5994 * emits better code than :
5995 * if (val & NAPIF_STATE_SCHED)
5996 * new |= NAPIF_STATE_MISSED;
5997 */
5998 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5999 NAPIF_STATE_MISSED;
6000 } while (cmpxchg(&n->state, val, new) != val);
6001
6002 return !(val & NAPIF_STATE_SCHED);
6003}
6004EXPORT_SYMBOL(napi_schedule_prep);
6005
6006/**
6007 * __napi_schedule_irqoff - schedule for receive
6008 * @n: entry to schedule
6009 *
6010 * Variant of __napi_schedule() assuming hard irqs are masked.
6011 *
6012 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6013 * because the interrupt disabled assumption might not be true
6014 * due to force-threaded interrupts and spinlock substitution.
6015 */
6016void __napi_schedule_irqoff(struct napi_struct *n)
6017{
6018 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6019 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6020 else
6021 __napi_schedule(n);
6022}
6023EXPORT_SYMBOL(__napi_schedule_irqoff);
6024
6025bool napi_complete_done(struct napi_struct *n, int work_done)
6026{
6027 unsigned long flags, val, new, timeout = 0;
6028 bool ret = true;
6029
6030 /*
6031 * 1) Don't let napi dequeue from the cpu poll list
6032 * just in case its running on a different cpu.
6033 * 2) If we are busy polling, do nothing here, we have
6034 * the guarantee we will be called later.
6035 */
6036 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6037 NAPIF_STATE_IN_BUSY_POLL)))
6038 return false;
6039
6040 if (work_done) {
6041 if (n->gro_bitmask)
6042 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6043 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6044 }
6045 if (n->defer_hard_irqs_count > 0) {
6046 n->defer_hard_irqs_count--;
6047 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6048 if (timeout)
6049 ret = false;
6050 }
6051 if (n->gro_bitmask) {
6052 /* When the NAPI instance uses a timeout and keeps postponing
6053 * it, we need to bound somehow the time packets are kept in
6054 * the GRO layer
6055 */
6056 napi_gro_flush(n, !!timeout);
6057 }
6058
6059 gro_normal_list(n);
6060
6061 if (unlikely(!list_empty(&n->poll_list))) {
6062 /* If n->poll_list is not empty, we need to mask irqs */
6063 local_irq_save(flags);
6064 list_del_init(&n->poll_list);
6065 local_irq_restore(flags);
6066 }
6067
6068 do {
6069 val = READ_ONCE(n->state);
6070
6071 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6072
6073 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6074 NAPIF_STATE_SCHED_THREADED |
6075 NAPIF_STATE_PREFER_BUSY_POLL);
6076
6077 /* If STATE_MISSED was set, leave STATE_SCHED set,
6078 * because we will call napi->poll() one more time.
6079 * This C code was suggested by Alexander Duyck to help gcc.
6080 */
6081 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6082 NAPIF_STATE_SCHED;
6083 } while (cmpxchg(&n->state, val, new) != val);
6084
6085 if (unlikely(val & NAPIF_STATE_MISSED)) {
6086 __napi_schedule(n);
6087 return false;
6088 }
6089
6090 if (timeout)
6091 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6092 HRTIMER_MODE_REL_PINNED);
6093 return ret;
6094}
6095EXPORT_SYMBOL(napi_complete_done);
6096
6097/* must be called under rcu_read_lock(), as we dont take a reference */
6098static struct napi_struct *napi_by_id(unsigned int napi_id)
6099{
6100 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6101 struct napi_struct *napi;
6102
6103 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6104 if (napi->napi_id == napi_id)
6105 return napi;
6106
6107 return NULL;
6108}
6109
6110#if defined(CONFIG_NET_RX_BUSY_POLL)
6111
6112static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6113{
6114 if (!skip_schedule) {
6115 gro_normal_list(napi);
6116 __napi_schedule(napi);
6117 return;
6118 }
6119
6120 if (napi->gro_bitmask) {
6121 /* flush too old packets
6122 * If HZ < 1000, flush all packets.
6123 */
6124 napi_gro_flush(napi, HZ >= 1000);
6125 }
6126
6127 gro_normal_list(napi);
6128 clear_bit(NAPI_STATE_SCHED, &napi->state);
6129}
6130
6131static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6132 u16 budget)
6133{
6134 bool skip_schedule = false;
6135 unsigned long timeout;
6136 int rc;
6137
6138 /* Busy polling means there is a high chance device driver hard irq
6139 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6140 * set in napi_schedule_prep().
6141 * Since we are about to call napi->poll() once more, we can safely
6142 * clear NAPI_STATE_MISSED.
6143 *
6144 * Note: x86 could use a single "lock and ..." instruction
6145 * to perform these two clear_bit()
6146 */
6147 clear_bit(NAPI_STATE_MISSED, &napi->state);
6148 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6149
6150 local_bh_disable();
6151
6152 if (prefer_busy_poll) {
6153 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6154 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6155 if (napi->defer_hard_irqs_count && timeout) {
6156 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6157 skip_schedule = true;
6158 }
6159 }
6160
6161 /* All we really want here is to re-enable device interrupts.
6162 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6163 */
6164 rc = napi->poll(napi, budget);
6165 /* We can't gro_normal_list() here, because napi->poll() might have
6166 * rearmed the napi (napi_complete_done()) in which case it could
6167 * already be running on another CPU.
6168 */
6169 trace_napi_poll(napi, rc, budget);
6170 netpoll_poll_unlock(have_poll_lock);
6171 if (rc == budget)
6172 __busy_poll_stop(napi, skip_schedule);
6173 local_bh_enable();
6174}
6175
6176void napi_busy_loop(unsigned int napi_id,
6177 bool (*loop_end)(void *, unsigned long),
6178 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6179{
6180 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6181 int (*napi_poll)(struct napi_struct *napi, int budget);
6182 void *have_poll_lock = NULL;
6183 struct napi_struct *napi;
6184
6185restart:
6186 napi_poll = NULL;
6187
6188 rcu_read_lock();
6189
6190 napi = napi_by_id(napi_id);
6191 if (!napi)
6192 goto out;
6193
6194 preempt_disable();
6195 for (;;) {
6196 int work = 0;
6197
6198 local_bh_disable();
6199 if (!napi_poll) {
6200 unsigned long val = READ_ONCE(napi->state);
6201
6202 /* If multiple threads are competing for this napi,
6203 * we avoid dirtying napi->state as much as we can.
6204 */
6205 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6206 NAPIF_STATE_IN_BUSY_POLL)) {
6207 if (prefer_busy_poll)
6208 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6209 goto count;
6210 }
6211 if (cmpxchg(&napi->state, val,
6212 val | NAPIF_STATE_IN_BUSY_POLL |
6213 NAPIF_STATE_SCHED) != val) {
6214 if (prefer_busy_poll)
6215 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6216 goto count;
6217 }
6218 have_poll_lock = netpoll_poll_lock(napi);
6219 napi_poll = napi->poll;
6220 }
6221 work = napi_poll(napi, budget);
6222 trace_napi_poll(napi, work, budget);
6223 gro_normal_list(napi);
6224count:
6225 if (work > 0)
6226 __NET_ADD_STATS(dev_net(napi->dev),
6227 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6228 local_bh_enable();
6229
6230 if (!loop_end || loop_end(loop_end_arg, start_time))
6231 break;
6232
6233 if (unlikely(need_resched())) {
6234 if (napi_poll)
6235 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6236 preempt_enable();
6237 rcu_read_unlock();
6238 cond_resched();
6239 if (loop_end(loop_end_arg, start_time))
6240 return;
6241 goto restart;
6242 }
6243 cpu_relax();
6244 }
6245 if (napi_poll)
6246 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6247 preempt_enable();
6248out:
6249 rcu_read_unlock();
6250}
6251EXPORT_SYMBOL(napi_busy_loop);
6252
6253#endif /* CONFIG_NET_RX_BUSY_POLL */
6254
6255static void napi_hash_add(struct napi_struct *napi)
6256{
6257 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6258 return;
6259
6260 spin_lock(&napi_hash_lock);
6261
6262 /* 0..NR_CPUS range is reserved for sender_cpu use */
6263 do {
6264 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6265 napi_gen_id = MIN_NAPI_ID;
6266 } while (napi_by_id(napi_gen_id));
6267 napi->napi_id = napi_gen_id;
6268
6269 hlist_add_head_rcu(&napi->napi_hash_node,
6270 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6271
6272 spin_unlock(&napi_hash_lock);
6273}
6274
6275/* Warning : caller is responsible to make sure rcu grace period
6276 * is respected before freeing memory containing @napi
6277 */
6278static void napi_hash_del(struct napi_struct *napi)
6279{
6280 spin_lock(&napi_hash_lock);
6281
6282 hlist_del_init_rcu(&napi->napi_hash_node);
6283
6284 spin_unlock(&napi_hash_lock);
6285}
6286
6287static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6288{
6289 struct napi_struct *napi;
6290
6291 napi = container_of(timer, struct napi_struct, timer);
6292
6293 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6294 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6295 */
6296 if (!napi_disable_pending(napi) &&
6297 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6298 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6299 __napi_schedule_irqoff(napi);
6300 }
6301
6302 return HRTIMER_NORESTART;
6303}
6304
6305static void init_gro_hash(struct napi_struct *napi)
6306{
6307 int i;
6308
6309 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6310 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6311 napi->gro_hash[i].count = 0;
6312 }
6313 napi->gro_bitmask = 0;
6314}
6315
6316int dev_set_threaded(struct net_device *dev, bool threaded)
6317{
6318 struct napi_struct *napi;
6319 int err = 0;
6320
6321 if (dev->threaded == threaded)
6322 return 0;
6323
6324 if (threaded) {
6325 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6326 if (!napi->thread) {
6327 err = napi_kthread_create(napi);
6328 if (err) {
6329 threaded = false;
6330 break;
6331 }
6332 }
6333 }
6334 }
6335
6336 dev->threaded = threaded;
6337
6338 /* Make sure kthread is created before THREADED bit
6339 * is set.
6340 */
6341 smp_mb__before_atomic();
6342
6343 /* Setting/unsetting threaded mode on a napi might not immediately
6344 * take effect, if the current napi instance is actively being
6345 * polled. In this case, the switch between threaded mode and
6346 * softirq mode will happen in the next round of napi_schedule().
6347 * This should not cause hiccups/stalls to the live traffic.
6348 */
6349 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6350 if (threaded)
6351 set_bit(NAPI_STATE_THREADED, &napi->state);
6352 else
6353 clear_bit(NAPI_STATE_THREADED, &napi->state);
6354 }
6355
6356 return err;
6357}
6358EXPORT_SYMBOL(dev_set_threaded);
6359
6360void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6361 int (*poll)(struct napi_struct *, int), int weight)
6362{
6363 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6364 return;
6365
6366 INIT_LIST_HEAD(&napi->poll_list);
6367 INIT_HLIST_NODE(&napi->napi_hash_node);
6368 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6369 napi->timer.function = napi_watchdog;
6370 init_gro_hash(napi);
6371 napi->skb = NULL;
6372 INIT_LIST_HEAD(&napi->rx_list);
6373 napi->rx_count = 0;
6374 napi->poll = poll;
6375 if (weight > NAPI_POLL_WEIGHT)
6376 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6377 weight);
6378 napi->weight = weight;
6379 napi->dev = dev;
6380#ifdef CONFIG_NETPOLL
6381 napi->poll_owner = -1;
6382#endif
6383 set_bit(NAPI_STATE_SCHED, &napi->state);
6384 set_bit(NAPI_STATE_NPSVC, &napi->state);
6385 list_add_rcu(&napi->dev_list, &dev->napi_list);
6386 napi_hash_add(napi);
6387 /* Create kthread for this napi if dev->threaded is set.
6388 * Clear dev->threaded if kthread creation failed so that
6389 * threaded mode will not be enabled in napi_enable().
6390 */
6391 if (dev->threaded && napi_kthread_create(napi))
6392 dev->threaded = 0;
6393}
6394EXPORT_SYMBOL(netif_napi_add_weight);
6395
6396void napi_disable(struct napi_struct *n)
6397{
6398 unsigned long val, new;
6399
6400 might_sleep();
6401 set_bit(NAPI_STATE_DISABLE, &n->state);
6402
6403 for ( ; ; ) {
6404 val = READ_ONCE(n->state);
6405 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6406 usleep_range(20, 200);
6407 continue;
6408 }
6409
6410 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6411 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6412
6413 if (cmpxchg(&n->state, val, new) == val)
6414 break;
6415 }
6416
6417 hrtimer_cancel(&n->timer);
6418
6419 clear_bit(NAPI_STATE_DISABLE, &n->state);
6420}
6421EXPORT_SYMBOL(napi_disable);
6422
6423/**
6424 * napi_enable - enable NAPI scheduling
6425 * @n: NAPI context
6426 *
6427 * Resume NAPI from being scheduled on this context.
6428 * Must be paired with napi_disable.
6429 */
6430void napi_enable(struct napi_struct *n)
6431{
6432 unsigned long val, new;
6433
6434 do {
6435 val = READ_ONCE(n->state);
6436 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6437
6438 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6439 if (n->dev->threaded && n->thread)
6440 new |= NAPIF_STATE_THREADED;
6441 } while (cmpxchg(&n->state, val, new) != val);
6442}
6443EXPORT_SYMBOL(napi_enable);
6444
6445static void flush_gro_hash(struct napi_struct *napi)
6446{
6447 int i;
6448
6449 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6450 struct sk_buff *skb, *n;
6451
6452 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6453 kfree_skb(skb);
6454 napi->gro_hash[i].count = 0;
6455 }
6456}
6457
6458/* Must be called in process context */
6459void __netif_napi_del(struct napi_struct *napi)
6460{
6461 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6462 return;
6463
6464 napi_hash_del(napi);
6465 list_del_rcu(&napi->dev_list);
6466 napi_free_frags(napi);
6467
6468 flush_gro_hash(napi);
6469 napi->gro_bitmask = 0;
6470
6471 if (napi->thread) {
6472 kthread_stop(napi->thread);
6473 napi->thread = NULL;
6474 }
6475}
6476EXPORT_SYMBOL(__netif_napi_del);
6477
6478static int __napi_poll(struct napi_struct *n, bool *repoll)
6479{
6480 int work, weight;
6481
6482 weight = n->weight;
6483
6484 /* This NAPI_STATE_SCHED test is for avoiding a race
6485 * with netpoll's poll_napi(). Only the entity which
6486 * obtains the lock and sees NAPI_STATE_SCHED set will
6487 * actually make the ->poll() call. Therefore we avoid
6488 * accidentally calling ->poll() when NAPI is not scheduled.
6489 */
6490 work = 0;
6491 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6492 work = n->poll(n, weight);
6493 trace_napi_poll(n, work, weight);
6494 }
6495
6496 if (unlikely(work > weight))
6497 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6498 n->poll, work, weight);
6499
6500 if (likely(work < weight))
6501 return work;
6502
6503 /* Drivers must not modify the NAPI state if they
6504 * consume the entire weight. In such cases this code
6505 * still "owns" the NAPI instance and therefore can
6506 * move the instance around on the list at-will.
6507 */
6508 if (unlikely(napi_disable_pending(n))) {
6509 napi_complete(n);
6510 return work;
6511 }
6512
6513 /* The NAPI context has more processing work, but busy-polling
6514 * is preferred. Exit early.
6515 */
6516 if (napi_prefer_busy_poll(n)) {
6517 if (napi_complete_done(n, work)) {
6518 /* If timeout is not set, we need to make sure
6519 * that the NAPI is re-scheduled.
6520 */
6521 napi_schedule(n);
6522 }
6523 return work;
6524 }
6525
6526 if (n->gro_bitmask) {
6527 /* flush too old packets
6528 * If HZ < 1000, flush all packets.
6529 */
6530 napi_gro_flush(n, HZ >= 1000);
6531 }
6532
6533 gro_normal_list(n);
6534
6535 /* Some drivers may have called napi_schedule
6536 * prior to exhausting their budget.
6537 */
6538 if (unlikely(!list_empty(&n->poll_list))) {
6539 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6540 n->dev ? n->dev->name : "backlog");
6541 return work;
6542 }
6543
6544 *repoll = true;
6545
6546 return work;
6547}
6548
6549static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6550{
6551 bool do_repoll = false;
6552 void *have;
6553 int work;
6554
6555 list_del_init(&n->poll_list);
6556
6557 have = netpoll_poll_lock(n);
6558
6559 work = __napi_poll(n, &do_repoll);
6560
6561 if (do_repoll)
6562 list_add_tail(&n->poll_list, repoll);
6563
6564 netpoll_poll_unlock(have);
6565
6566 return work;
6567}
6568
6569static int napi_thread_wait(struct napi_struct *napi)
6570{
6571 bool woken = false;
6572
6573 set_current_state(TASK_INTERRUPTIBLE);
6574
6575 while (!kthread_should_stop()) {
6576 /* Testing SCHED_THREADED bit here to make sure the current
6577 * kthread owns this napi and could poll on this napi.
6578 * Testing SCHED bit is not enough because SCHED bit might be
6579 * set by some other busy poll thread or by napi_disable().
6580 */
6581 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6582 WARN_ON(!list_empty(&napi->poll_list));
6583 __set_current_state(TASK_RUNNING);
6584 return 0;
6585 }
6586
6587 schedule();
6588 /* woken being true indicates this thread owns this napi. */
6589 woken = true;
6590 set_current_state(TASK_INTERRUPTIBLE);
6591 }
6592 __set_current_state(TASK_RUNNING);
6593
6594 return -1;
6595}
6596
6597static int napi_threaded_poll(void *data)
6598{
6599 struct napi_struct *napi = data;
6600 void *have;
6601
6602 while (!napi_thread_wait(napi)) {
6603 for (;;) {
6604 bool repoll = false;
6605
6606 local_bh_disable();
6607
6608 have = netpoll_poll_lock(napi);
6609 __napi_poll(napi, &repoll);
6610 netpoll_poll_unlock(have);
6611
6612 local_bh_enable();
6613
6614 if (!repoll)
6615 break;
6616
6617 cond_resched();
6618 }
6619 }
6620 return 0;
6621}
6622
6623static void skb_defer_free_flush(struct softnet_data *sd)
6624{
6625 struct sk_buff *skb, *next;
6626 unsigned long flags;
6627
6628 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6629 if (!READ_ONCE(sd->defer_list))
6630 return;
6631
6632 spin_lock_irqsave(&sd->defer_lock, flags);
6633 skb = sd->defer_list;
6634 sd->defer_list = NULL;
6635 sd->defer_count = 0;
6636 spin_unlock_irqrestore(&sd->defer_lock, flags);
6637
6638 while (skb != NULL) {
6639 next = skb->next;
6640 napi_consume_skb(skb, 1);
6641 skb = next;
6642 }
6643}
6644
6645static __latent_entropy void net_rx_action(struct softirq_action *h)
6646{
6647 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6648 unsigned long time_limit = jiffies +
6649 usecs_to_jiffies(netdev_budget_usecs);
6650 int budget = netdev_budget;
6651 LIST_HEAD(list);
6652 LIST_HEAD(repoll);
6653
6654 local_irq_disable();
6655 list_splice_init(&sd->poll_list, &list);
6656 local_irq_enable();
6657
6658 for (;;) {
6659 struct napi_struct *n;
6660
6661 skb_defer_free_flush(sd);
6662
6663 if (list_empty(&list)) {
6664 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6665 goto end;
6666 break;
6667 }
6668
6669 n = list_first_entry(&list, struct napi_struct, poll_list);
6670 budget -= napi_poll(n, &repoll);
6671
6672 /* If softirq window is exhausted then punt.
6673 * Allow this to run for 2 jiffies since which will allow
6674 * an average latency of 1.5/HZ.
6675 */
6676 if (unlikely(budget <= 0 ||
6677 time_after_eq(jiffies, time_limit))) {
6678 sd->time_squeeze++;
6679 break;
6680 }
6681 }
6682
6683 local_irq_disable();
6684
6685 list_splice_tail_init(&sd->poll_list, &list);
6686 list_splice_tail(&repoll, &list);
6687 list_splice(&list, &sd->poll_list);
6688 if (!list_empty(&sd->poll_list))
6689 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6690
6691 net_rps_action_and_irq_enable(sd);
6692end:;
6693}
6694
6695struct netdev_adjacent {
6696 struct net_device *dev;
6697 netdevice_tracker dev_tracker;
6698
6699 /* upper master flag, there can only be one master device per list */
6700 bool master;
6701
6702 /* lookup ignore flag */
6703 bool ignore;
6704
6705 /* counter for the number of times this device was added to us */
6706 u16 ref_nr;
6707
6708 /* private field for the users */
6709 void *private;
6710
6711 struct list_head list;
6712 struct rcu_head rcu;
6713};
6714
6715static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6716 struct list_head *adj_list)
6717{
6718 struct netdev_adjacent *adj;
6719
6720 list_for_each_entry(adj, adj_list, list) {
6721 if (adj->dev == adj_dev)
6722 return adj;
6723 }
6724 return NULL;
6725}
6726
6727static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6728 struct netdev_nested_priv *priv)
6729{
6730 struct net_device *dev = (struct net_device *)priv->data;
6731
6732 return upper_dev == dev;
6733}
6734
6735/**
6736 * netdev_has_upper_dev - Check if device is linked to an upper device
6737 * @dev: device
6738 * @upper_dev: upper device to check
6739 *
6740 * Find out if a device is linked to specified upper device and return true
6741 * in case it is. Note that this checks only immediate upper device,
6742 * not through a complete stack of devices. The caller must hold the RTNL lock.
6743 */
6744bool netdev_has_upper_dev(struct net_device *dev,
6745 struct net_device *upper_dev)
6746{
6747 struct netdev_nested_priv priv = {
6748 .data = (void *)upper_dev,
6749 };
6750
6751 ASSERT_RTNL();
6752
6753 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6754 &priv);
6755}
6756EXPORT_SYMBOL(netdev_has_upper_dev);
6757
6758/**
6759 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6760 * @dev: device
6761 * @upper_dev: upper device to check
6762 *
6763 * Find out if a device is linked to specified upper device and return true
6764 * in case it is. Note that this checks the entire upper device chain.
6765 * The caller must hold rcu lock.
6766 */
6767
6768bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6769 struct net_device *upper_dev)
6770{
6771 struct netdev_nested_priv priv = {
6772 .data = (void *)upper_dev,
6773 };
6774
6775 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6776 &priv);
6777}
6778EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6779
6780/**
6781 * netdev_has_any_upper_dev - Check if device is linked to some device
6782 * @dev: device
6783 *
6784 * Find out if a device is linked to an upper device and return true in case
6785 * it is. The caller must hold the RTNL lock.
6786 */
6787bool netdev_has_any_upper_dev(struct net_device *dev)
6788{
6789 ASSERT_RTNL();
6790
6791 return !list_empty(&dev->adj_list.upper);
6792}
6793EXPORT_SYMBOL(netdev_has_any_upper_dev);
6794
6795/**
6796 * netdev_master_upper_dev_get - Get master upper device
6797 * @dev: device
6798 *
6799 * Find a master upper device and return pointer to it or NULL in case
6800 * it's not there. The caller must hold the RTNL lock.
6801 */
6802struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6803{
6804 struct netdev_adjacent *upper;
6805
6806 ASSERT_RTNL();
6807
6808 if (list_empty(&dev->adj_list.upper))
6809 return NULL;
6810
6811 upper = list_first_entry(&dev->adj_list.upper,
6812 struct netdev_adjacent, list);
6813 if (likely(upper->master))
6814 return upper->dev;
6815 return NULL;
6816}
6817EXPORT_SYMBOL(netdev_master_upper_dev_get);
6818
6819static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6820{
6821 struct netdev_adjacent *upper;
6822
6823 ASSERT_RTNL();
6824
6825 if (list_empty(&dev->adj_list.upper))
6826 return NULL;
6827
6828 upper = list_first_entry(&dev->adj_list.upper,
6829 struct netdev_adjacent, list);
6830 if (likely(upper->master) && !upper->ignore)
6831 return upper->dev;
6832 return NULL;
6833}
6834
6835/**
6836 * netdev_has_any_lower_dev - Check if device is linked to some device
6837 * @dev: device
6838 *
6839 * Find out if a device is linked to a lower device and return true in case
6840 * it is. The caller must hold the RTNL lock.
6841 */
6842static bool netdev_has_any_lower_dev(struct net_device *dev)
6843{
6844 ASSERT_RTNL();
6845
6846 return !list_empty(&dev->adj_list.lower);
6847}
6848
6849void *netdev_adjacent_get_private(struct list_head *adj_list)
6850{
6851 struct netdev_adjacent *adj;
6852
6853 adj = list_entry(adj_list, struct netdev_adjacent, list);
6854
6855 return adj->private;
6856}
6857EXPORT_SYMBOL(netdev_adjacent_get_private);
6858
6859/**
6860 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6861 * @dev: device
6862 * @iter: list_head ** of the current position
6863 *
6864 * Gets the next device from the dev's upper list, starting from iter
6865 * position. The caller must hold RCU read lock.
6866 */
6867struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6868 struct list_head **iter)
6869{
6870 struct netdev_adjacent *upper;
6871
6872 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6873
6874 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6875
6876 if (&upper->list == &dev->adj_list.upper)
6877 return NULL;
6878
6879 *iter = &upper->list;
6880
6881 return upper->dev;
6882}
6883EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6884
6885static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6886 struct list_head **iter,
6887 bool *ignore)
6888{
6889 struct netdev_adjacent *upper;
6890
6891 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6892
6893 if (&upper->list == &dev->adj_list.upper)
6894 return NULL;
6895
6896 *iter = &upper->list;
6897 *ignore = upper->ignore;
6898
6899 return upper->dev;
6900}
6901
6902static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6903 struct list_head **iter)
6904{
6905 struct netdev_adjacent *upper;
6906
6907 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6908
6909 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6910
6911 if (&upper->list == &dev->adj_list.upper)
6912 return NULL;
6913
6914 *iter = &upper->list;
6915
6916 return upper->dev;
6917}
6918
6919static int __netdev_walk_all_upper_dev(struct net_device *dev,
6920 int (*fn)(struct net_device *dev,
6921 struct netdev_nested_priv *priv),
6922 struct netdev_nested_priv *priv)
6923{
6924 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6925 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6926 int ret, cur = 0;
6927 bool ignore;
6928
6929 now = dev;
6930 iter = &dev->adj_list.upper;
6931
6932 while (1) {
6933 if (now != dev) {
6934 ret = fn(now, priv);
6935 if (ret)
6936 return ret;
6937 }
6938
6939 next = NULL;
6940 while (1) {
6941 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6942 if (!udev)
6943 break;
6944 if (ignore)
6945 continue;
6946
6947 next = udev;
6948 niter = &udev->adj_list.upper;
6949 dev_stack[cur] = now;
6950 iter_stack[cur++] = iter;
6951 break;
6952 }
6953
6954 if (!next) {
6955 if (!cur)
6956 return 0;
6957 next = dev_stack[--cur];
6958 niter = iter_stack[cur];
6959 }
6960
6961 now = next;
6962 iter = niter;
6963 }
6964
6965 return 0;
6966}
6967
6968int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6969 int (*fn)(struct net_device *dev,
6970 struct netdev_nested_priv *priv),
6971 struct netdev_nested_priv *priv)
6972{
6973 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6974 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6975 int ret, cur = 0;
6976
6977 now = dev;
6978 iter = &dev->adj_list.upper;
6979
6980 while (1) {
6981 if (now != dev) {
6982 ret = fn(now, priv);
6983 if (ret)
6984 return ret;
6985 }
6986
6987 next = NULL;
6988 while (1) {
6989 udev = netdev_next_upper_dev_rcu(now, &iter);
6990 if (!udev)
6991 break;
6992
6993 next = udev;
6994 niter = &udev->adj_list.upper;
6995 dev_stack[cur] = now;
6996 iter_stack[cur++] = iter;
6997 break;
6998 }
6999
7000 if (!next) {
7001 if (!cur)
7002 return 0;
7003 next = dev_stack[--cur];
7004 niter = iter_stack[cur];
7005 }
7006
7007 now = next;
7008 iter = niter;
7009 }
7010
7011 return 0;
7012}
7013EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7014
7015static bool __netdev_has_upper_dev(struct net_device *dev,
7016 struct net_device *upper_dev)
7017{
7018 struct netdev_nested_priv priv = {
7019 .flags = 0,
7020 .data = (void *)upper_dev,
7021 };
7022
7023 ASSERT_RTNL();
7024
7025 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7026 &priv);
7027}
7028
7029/**
7030 * netdev_lower_get_next_private - Get the next ->private from the
7031 * lower neighbour list
7032 * @dev: device
7033 * @iter: list_head ** of the current position
7034 *
7035 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7036 * list, starting from iter position. The caller must hold either hold the
7037 * RTNL lock or its own locking that guarantees that the neighbour lower
7038 * list will remain unchanged.
7039 */
7040void *netdev_lower_get_next_private(struct net_device *dev,
7041 struct list_head **iter)
7042{
7043 struct netdev_adjacent *lower;
7044
7045 lower = list_entry(*iter, struct netdev_adjacent, list);
7046
7047 if (&lower->list == &dev->adj_list.lower)
7048 return NULL;
7049
7050 *iter = lower->list.next;
7051
7052 return lower->private;
7053}
7054EXPORT_SYMBOL(netdev_lower_get_next_private);
7055
7056/**
7057 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7058 * lower neighbour list, RCU
7059 * variant
7060 * @dev: device
7061 * @iter: list_head ** of the current position
7062 *
7063 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7064 * list, starting from iter position. The caller must hold RCU read lock.
7065 */
7066void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7067 struct list_head **iter)
7068{
7069 struct netdev_adjacent *lower;
7070
7071 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7072
7073 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7074
7075 if (&lower->list == &dev->adj_list.lower)
7076 return NULL;
7077
7078 *iter = &lower->list;
7079
7080 return lower->private;
7081}
7082EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7083
7084/**
7085 * netdev_lower_get_next - Get the next device from the lower neighbour
7086 * list
7087 * @dev: device
7088 * @iter: list_head ** of the current position
7089 *
7090 * Gets the next netdev_adjacent from the dev's lower neighbour
7091 * list, starting from iter position. The caller must hold RTNL lock or
7092 * its own locking that guarantees that the neighbour lower
7093 * list will remain unchanged.
7094 */
7095void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7096{
7097 struct netdev_adjacent *lower;
7098
7099 lower = list_entry(*iter, struct netdev_adjacent, list);
7100
7101 if (&lower->list == &dev->adj_list.lower)
7102 return NULL;
7103
7104 *iter = lower->list.next;
7105
7106 return lower->dev;
7107}
7108EXPORT_SYMBOL(netdev_lower_get_next);
7109
7110static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7111 struct list_head **iter)
7112{
7113 struct netdev_adjacent *lower;
7114
7115 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7116
7117 if (&lower->list == &dev->adj_list.lower)
7118 return NULL;
7119
7120 *iter = &lower->list;
7121
7122 return lower->dev;
7123}
7124
7125static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7126 struct list_head **iter,
7127 bool *ignore)
7128{
7129 struct netdev_adjacent *lower;
7130
7131 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7132
7133 if (&lower->list == &dev->adj_list.lower)
7134 return NULL;
7135
7136 *iter = &lower->list;
7137 *ignore = lower->ignore;
7138
7139 return lower->dev;
7140}
7141
7142int netdev_walk_all_lower_dev(struct net_device *dev,
7143 int (*fn)(struct net_device *dev,
7144 struct netdev_nested_priv *priv),
7145 struct netdev_nested_priv *priv)
7146{
7147 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7148 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7149 int ret, cur = 0;
7150
7151 now = dev;
7152 iter = &dev->adj_list.lower;
7153
7154 while (1) {
7155 if (now != dev) {
7156 ret = fn(now, priv);
7157 if (ret)
7158 return ret;
7159 }
7160
7161 next = NULL;
7162 while (1) {
7163 ldev = netdev_next_lower_dev(now, &iter);
7164 if (!ldev)
7165 break;
7166
7167 next = ldev;
7168 niter = &ldev->adj_list.lower;
7169 dev_stack[cur] = now;
7170 iter_stack[cur++] = iter;
7171 break;
7172 }
7173
7174 if (!next) {
7175 if (!cur)
7176 return 0;
7177 next = dev_stack[--cur];
7178 niter = iter_stack[cur];
7179 }
7180
7181 now = next;
7182 iter = niter;
7183 }
7184
7185 return 0;
7186}
7187EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7188
7189static int __netdev_walk_all_lower_dev(struct net_device *dev,
7190 int (*fn)(struct net_device *dev,
7191 struct netdev_nested_priv *priv),
7192 struct netdev_nested_priv *priv)
7193{
7194 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7195 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7196 int ret, cur = 0;
7197 bool ignore;
7198
7199 now = dev;
7200 iter = &dev->adj_list.lower;
7201
7202 while (1) {
7203 if (now != dev) {
7204 ret = fn(now, priv);
7205 if (ret)
7206 return ret;
7207 }
7208
7209 next = NULL;
7210 while (1) {
7211 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7212 if (!ldev)
7213 break;
7214 if (ignore)
7215 continue;
7216
7217 next = ldev;
7218 niter = &ldev->adj_list.lower;
7219 dev_stack[cur] = now;
7220 iter_stack[cur++] = iter;
7221 break;
7222 }
7223
7224 if (!next) {
7225 if (!cur)
7226 return 0;
7227 next = dev_stack[--cur];
7228 niter = iter_stack[cur];
7229 }
7230
7231 now = next;
7232 iter = niter;
7233 }
7234
7235 return 0;
7236}
7237
7238struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7239 struct list_head **iter)
7240{
7241 struct netdev_adjacent *lower;
7242
7243 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7244 if (&lower->list == &dev->adj_list.lower)
7245 return NULL;
7246
7247 *iter = &lower->list;
7248
7249 return lower->dev;
7250}
7251EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7252
7253static u8 __netdev_upper_depth(struct net_device *dev)
7254{
7255 struct net_device *udev;
7256 struct list_head *iter;
7257 u8 max_depth = 0;
7258 bool ignore;
7259
7260 for (iter = &dev->adj_list.upper,
7261 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7262 udev;
7263 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7264 if (ignore)
7265 continue;
7266 if (max_depth < udev->upper_level)
7267 max_depth = udev->upper_level;
7268 }
7269
7270 return max_depth;
7271}
7272
7273static u8 __netdev_lower_depth(struct net_device *dev)
7274{
7275 struct net_device *ldev;
7276 struct list_head *iter;
7277 u8 max_depth = 0;
7278 bool ignore;
7279
7280 for (iter = &dev->adj_list.lower,
7281 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7282 ldev;
7283 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7284 if (ignore)
7285 continue;
7286 if (max_depth < ldev->lower_level)
7287 max_depth = ldev->lower_level;
7288 }
7289
7290 return max_depth;
7291}
7292
7293static int __netdev_update_upper_level(struct net_device *dev,
7294 struct netdev_nested_priv *__unused)
7295{
7296 dev->upper_level = __netdev_upper_depth(dev) + 1;
7297 return 0;
7298}
7299
7300#ifdef CONFIG_LOCKDEP
7301static LIST_HEAD(net_unlink_list);
7302
7303static void net_unlink_todo(struct net_device *dev)
7304{
7305 if (list_empty(&dev->unlink_list))
7306 list_add_tail(&dev->unlink_list, &net_unlink_list);
7307}
7308#endif
7309
7310static int __netdev_update_lower_level(struct net_device *dev,
7311 struct netdev_nested_priv *priv)
7312{
7313 dev->lower_level = __netdev_lower_depth(dev) + 1;
7314
7315#ifdef CONFIG_LOCKDEP
7316 if (!priv)
7317 return 0;
7318
7319 if (priv->flags & NESTED_SYNC_IMM)
7320 dev->nested_level = dev->lower_level - 1;
7321 if (priv->flags & NESTED_SYNC_TODO)
7322 net_unlink_todo(dev);
7323#endif
7324 return 0;
7325}
7326
7327int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7328 int (*fn)(struct net_device *dev,
7329 struct netdev_nested_priv *priv),
7330 struct netdev_nested_priv *priv)
7331{
7332 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7333 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7334 int ret, cur = 0;
7335
7336 now = dev;
7337 iter = &dev->adj_list.lower;
7338
7339 while (1) {
7340 if (now != dev) {
7341 ret = fn(now, priv);
7342 if (ret)
7343 return ret;
7344 }
7345
7346 next = NULL;
7347 while (1) {
7348 ldev = netdev_next_lower_dev_rcu(now, &iter);
7349 if (!ldev)
7350 break;
7351
7352 next = ldev;
7353 niter = &ldev->adj_list.lower;
7354 dev_stack[cur] = now;
7355 iter_stack[cur++] = iter;
7356 break;
7357 }
7358
7359 if (!next) {
7360 if (!cur)
7361 return 0;
7362 next = dev_stack[--cur];
7363 niter = iter_stack[cur];
7364 }
7365
7366 now = next;
7367 iter = niter;
7368 }
7369
7370 return 0;
7371}
7372EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7373
7374/**
7375 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7376 * lower neighbour list, RCU
7377 * variant
7378 * @dev: device
7379 *
7380 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7381 * list. The caller must hold RCU read lock.
7382 */
7383void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7384{
7385 struct netdev_adjacent *lower;
7386
7387 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7388 struct netdev_adjacent, list);
7389 if (lower)
7390 return lower->private;
7391 return NULL;
7392}
7393EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7394
7395/**
7396 * netdev_master_upper_dev_get_rcu - Get master upper device
7397 * @dev: device
7398 *
7399 * Find a master upper device and return pointer to it or NULL in case
7400 * it's not there. The caller must hold the RCU read lock.
7401 */
7402struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7403{
7404 struct netdev_adjacent *upper;
7405
7406 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7407 struct netdev_adjacent, list);
7408 if (upper && likely(upper->master))
7409 return upper->dev;
7410 return NULL;
7411}
7412EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7413
7414static int netdev_adjacent_sysfs_add(struct net_device *dev,
7415 struct net_device *adj_dev,
7416 struct list_head *dev_list)
7417{
7418 char linkname[IFNAMSIZ+7];
7419
7420 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7421 "upper_%s" : "lower_%s", adj_dev->name);
7422 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7423 linkname);
7424}
7425static void netdev_adjacent_sysfs_del(struct net_device *dev,
7426 char *name,
7427 struct list_head *dev_list)
7428{
7429 char linkname[IFNAMSIZ+7];
7430
7431 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7432 "upper_%s" : "lower_%s", name);
7433 sysfs_remove_link(&(dev->dev.kobj), linkname);
7434}
7435
7436static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7437 struct net_device *adj_dev,
7438 struct list_head *dev_list)
7439{
7440 return (dev_list == &dev->adj_list.upper ||
7441 dev_list == &dev->adj_list.lower) &&
7442 net_eq(dev_net(dev), dev_net(adj_dev));
7443}
7444
7445static int __netdev_adjacent_dev_insert(struct net_device *dev,
7446 struct net_device *adj_dev,
7447 struct list_head *dev_list,
7448 void *private, bool master)
7449{
7450 struct netdev_adjacent *adj;
7451 int ret;
7452
7453 adj = __netdev_find_adj(adj_dev, dev_list);
7454
7455 if (adj) {
7456 adj->ref_nr += 1;
7457 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7458 dev->name, adj_dev->name, adj->ref_nr);
7459
7460 return 0;
7461 }
7462
7463 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7464 if (!adj)
7465 return -ENOMEM;
7466
7467 adj->dev = adj_dev;
7468 adj->master = master;
7469 adj->ref_nr = 1;
7470 adj->private = private;
7471 adj->ignore = false;
7472 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7473
7474 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7475 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7476
7477 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7478 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7479 if (ret)
7480 goto free_adj;
7481 }
7482
7483 /* Ensure that master link is always the first item in list. */
7484 if (master) {
7485 ret = sysfs_create_link(&(dev->dev.kobj),
7486 &(adj_dev->dev.kobj), "master");
7487 if (ret)
7488 goto remove_symlinks;
7489
7490 list_add_rcu(&adj->list, dev_list);
7491 } else {
7492 list_add_tail_rcu(&adj->list, dev_list);
7493 }
7494
7495 return 0;
7496
7497remove_symlinks:
7498 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7499 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7500free_adj:
7501 dev_put_track(adj_dev, &adj->dev_tracker);
7502 kfree(adj);
7503
7504 return ret;
7505}
7506
7507static void __netdev_adjacent_dev_remove(struct net_device *dev,
7508 struct net_device *adj_dev,
7509 u16 ref_nr,
7510 struct list_head *dev_list)
7511{
7512 struct netdev_adjacent *adj;
7513
7514 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7515 dev->name, adj_dev->name, ref_nr);
7516
7517 adj = __netdev_find_adj(adj_dev, dev_list);
7518
7519 if (!adj) {
7520 pr_err("Adjacency does not exist for device %s from %s\n",
7521 dev->name, adj_dev->name);
7522 WARN_ON(1);
7523 return;
7524 }
7525
7526 if (adj->ref_nr > ref_nr) {
7527 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7528 dev->name, adj_dev->name, ref_nr,
7529 adj->ref_nr - ref_nr);
7530 adj->ref_nr -= ref_nr;
7531 return;
7532 }
7533
7534 if (adj->master)
7535 sysfs_remove_link(&(dev->dev.kobj), "master");
7536
7537 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7538 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7539
7540 list_del_rcu(&adj->list);
7541 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7542 adj_dev->name, dev->name, adj_dev->name);
7543 dev_put_track(adj_dev, &adj->dev_tracker);
7544 kfree_rcu(adj, rcu);
7545}
7546
7547static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7548 struct net_device *upper_dev,
7549 struct list_head *up_list,
7550 struct list_head *down_list,
7551 void *private, bool master)
7552{
7553 int ret;
7554
7555 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7556 private, master);
7557 if (ret)
7558 return ret;
7559
7560 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7561 private, false);
7562 if (ret) {
7563 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7564 return ret;
7565 }
7566
7567 return 0;
7568}
7569
7570static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7571 struct net_device *upper_dev,
7572 u16 ref_nr,
7573 struct list_head *up_list,
7574 struct list_head *down_list)
7575{
7576 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7577 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7578}
7579
7580static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7581 struct net_device *upper_dev,
7582 void *private, bool master)
7583{
7584 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7585 &dev->adj_list.upper,
7586 &upper_dev->adj_list.lower,
7587 private, master);
7588}
7589
7590static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7591 struct net_device *upper_dev)
7592{
7593 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7594 &dev->adj_list.upper,
7595 &upper_dev->adj_list.lower);
7596}
7597
7598static int __netdev_upper_dev_link(struct net_device *dev,
7599 struct net_device *upper_dev, bool master,
7600 void *upper_priv, void *upper_info,
7601 struct netdev_nested_priv *priv,
7602 struct netlink_ext_ack *extack)
7603{
7604 struct netdev_notifier_changeupper_info changeupper_info = {
7605 .info = {
7606 .dev = dev,
7607 .extack = extack,
7608 },
7609 .upper_dev = upper_dev,
7610 .master = master,
7611 .linking = true,
7612 .upper_info = upper_info,
7613 };
7614 struct net_device *master_dev;
7615 int ret = 0;
7616
7617 ASSERT_RTNL();
7618
7619 if (dev == upper_dev)
7620 return -EBUSY;
7621
7622 /* To prevent loops, check if dev is not upper device to upper_dev. */
7623 if (__netdev_has_upper_dev(upper_dev, dev))
7624 return -EBUSY;
7625
7626 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7627 return -EMLINK;
7628
7629 if (!master) {
7630 if (__netdev_has_upper_dev(dev, upper_dev))
7631 return -EEXIST;
7632 } else {
7633 master_dev = __netdev_master_upper_dev_get(dev);
7634 if (master_dev)
7635 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7636 }
7637
7638 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7639 &changeupper_info.info);
7640 ret = notifier_to_errno(ret);
7641 if (ret)
7642 return ret;
7643
7644 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7645 master);
7646 if (ret)
7647 return ret;
7648
7649 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7650 &changeupper_info.info);
7651 ret = notifier_to_errno(ret);
7652 if (ret)
7653 goto rollback;
7654
7655 __netdev_update_upper_level(dev, NULL);
7656 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7657
7658 __netdev_update_lower_level(upper_dev, priv);
7659 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7660 priv);
7661
7662 return 0;
7663
7664rollback:
7665 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7666
7667 return ret;
7668}
7669
7670/**
7671 * netdev_upper_dev_link - Add a link to the upper device
7672 * @dev: device
7673 * @upper_dev: new upper device
7674 * @extack: netlink extended ack
7675 *
7676 * Adds a link to device which is upper to this one. The caller must hold
7677 * the RTNL lock. On a failure a negative errno code is returned.
7678 * On success the reference counts are adjusted and the function
7679 * returns zero.
7680 */
7681int netdev_upper_dev_link(struct net_device *dev,
7682 struct net_device *upper_dev,
7683 struct netlink_ext_ack *extack)
7684{
7685 struct netdev_nested_priv priv = {
7686 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7687 .data = NULL,
7688 };
7689
7690 return __netdev_upper_dev_link(dev, upper_dev, false,
7691 NULL, NULL, &priv, extack);
7692}
7693EXPORT_SYMBOL(netdev_upper_dev_link);
7694
7695/**
7696 * netdev_master_upper_dev_link - Add a master link to the upper device
7697 * @dev: device
7698 * @upper_dev: new upper device
7699 * @upper_priv: upper device private
7700 * @upper_info: upper info to be passed down via notifier
7701 * @extack: netlink extended ack
7702 *
7703 * Adds a link to device which is upper to this one. In this case, only
7704 * one master upper device can be linked, although other non-master devices
7705 * might be linked as well. The caller must hold the RTNL lock.
7706 * On a failure a negative errno code is returned. On success the reference
7707 * counts are adjusted and the function returns zero.
7708 */
7709int netdev_master_upper_dev_link(struct net_device *dev,
7710 struct net_device *upper_dev,
7711 void *upper_priv, void *upper_info,
7712 struct netlink_ext_ack *extack)
7713{
7714 struct netdev_nested_priv priv = {
7715 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7716 .data = NULL,
7717 };
7718
7719 return __netdev_upper_dev_link(dev, upper_dev, true,
7720 upper_priv, upper_info, &priv, extack);
7721}
7722EXPORT_SYMBOL(netdev_master_upper_dev_link);
7723
7724static void __netdev_upper_dev_unlink(struct net_device *dev,
7725 struct net_device *upper_dev,
7726 struct netdev_nested_priv *priv)
7727{
7728 struct netdev_notifier_changeupper_info changeupper_info = {
7729 .info = {
7730 .dev = dev,
7731 },
7732 .upper_dev = upper_dev,
7733 .linking = false,
7734 };
7735
7736 ASSERT_RTNL();
7737
7738 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7739
7740 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7741 &changeupper_info.info);
7742
7743 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7744
7745 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7746 &changeupper_info.info);
7747
7748 __netdev_update_upper_level(dev, NULL);
7749 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7750
7751 __netdev_update_lower_level(upper_dev, priv);
7752 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7753 priv);
7754}
7755
7756/**
7757 * netdev_upper_dev_unlink - Removes a link to upper device
7758 * @dev: device
7759 * @upper_dev: new upper device
7760 *
7761 * Removes a link to device which is upper to this one. The caller must hold
7762 * the RTNL lock.
7763 */
7764void netdev_upper_dev_unlink(struct net_device *dev,
7765 struct net_device *upper_dev)
7766{
7767 struct netdev_nested_priv priv = {
7768 .flags = NESTED_SYNC_TODO,
7769 .data = NULL,
7770 };
7771
7772 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7773}
7774EXPORT_SYMBOL(netdev_upper_dev_unlink);
7775
7776static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7777 struct net_device *lower_dev,
7778 bool val)
7779{
7780 struct netdev_adjacent *adj;
7781
7782 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7783 if (adj)
7784 adj->ignore = val;
7785
7786 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7787 if (adj)
7788 adj->ignore = val;
7789}
7790
7791static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7792 struct net_device *lower_dev)
7793{
7794 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7795}
7796
7797static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7798 struct net_device *lower_dev)
7799{
7800 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7801}
7802
7803int netdev_adjacent_change_prepare(struct net_device *old_dev,
7804 struct net_device *new_dev,
7805 struct net_device *dev,
7806 struct netlink_ext_ack *extack)
7807{
7808 struct netdev_nested_priv priv = {
7809 .flags = 0,
7810 .data = NULL,
7811 };
7812 int err;
7813
7814 if (!new_dev)
7815 return 0;
7816
7817 if (old_dev && new_dev != old_dev)
7818 netdev_adjacent_dev_disable(dev, old_dev);
7819 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7820 extack);
7821 if (err) {
7822 if (old_dev && new_dev != old_dev)
7823 netdev_adjacent_dev_enable(dev, old_dev);
7824 return err;
7825 }
7826
7827 return 0;
7828}
7829EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7830
7831void netdev_adjacent_change_commit(struct net_device *old_dev,
7832 struct net_device *new_dev,
7833 struct net_device *dev)
7834{
7835 struct netdev_nested_priv priv = {
7836 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7837 .data = NULL,
7838 };
7839
7840 if (!new_dev || !old_dev)
7841 return;
7842
7843 if (new_dev == old_dev)
7844 return;
7845
7846 netdev_adjacent_dev_enable(dev, old_dev);
7847 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7848}
7849EXPORT_SYMBOL(netdev_adjacent_change_commit);
7850
7851void netdev_adjacent_change_abort(struct net_device *old_dev,
7852 struct net_device *new_dev,
7853 struct net_device *dev)
7854{
7855 struct netdev_nested_priv priv = {
7856 .flags = 0,
7857 .data = NULL,
7858 };
7859
7860 if (!new_dev)
7861 return;
7862
7863 if (old_dev && new_dev != old_dev)
7864 netdev_adjacent_dev_enable(dev, old_dev);
7865
7866 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7867}
7868EXPORT_SYMBOL(netdev_adjacent_change_abort);
7869
7870/**
7871 * netdev_bonding_info_change - Dispatch event about slave change
7872 * @dev: device
7873 * @bonding_info: info to dispatch
7874 *
7875 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7876 * The caller must hold the RTNL lock.
7877 */
7878void netdev_bonding_info_change(struct net_device *dev,
7879 struct netdev_bonding_info *bonding_info)
7880{
7881 struct netdev_notifier_bonding_info info = {
7882 .info.dev = dev,
7883 };
7884
7885 memcpy(&info.bonding_info, bonding_info,
7886 sizeof(struct netdev_bonding_info));
7887 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7888 &info.info);
7889}
7890EXPORT_SYMBOL(netdev_bonding_info_change);
7891
7892static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7893 struct netlink_ext_ack *extack)
7894{
7895 struct netdev_notifier_offload_xstats_info info = {
7896 .info.dev = dev,
7897 .info.extack = extack,
7898 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7899 };
7900 int err;
7901 int rc;
7902
7903 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7904 GFP_KERNEL);
7905 if (!dev->offload_xstats_l3)
7906 return -ENOMEM;
7907
7908 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7909 NETDEV_OFFLOAD_XSTATS_DISABLE,
7910 &info.info);
7911 err = notifier_to_errno(rc);
7912 if (err)
7913 goto free_stats;
7914
7915 return 0;
7916
7917free_stats:
7918 kfree(dev->offload_xstats_l3);
7919 dev->offload_xstats_l3 = NULL;
7920 return err;
7921}
7922
7923int netdev_offload_xstats_enable(struct net_device *dev,
7924 enum netdev_offload_xstats_type type,
7925 struct netlink_ext_ack *extack)
7926{
7927 ASSERT_RTNL();
7928
7929 if (netdev_offload_xstats_enabled(dev, type))
7930 return -EALREADY;
7931
7932 switch (type) {
7933 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7934 return netdev_offload_xstats_enable_l3(dev, extack);
7935 }
7936
7937 WARN_ON(1);
7938 return -EINVAL;
7939}
7940EXPORT_SYMBOL(netdev_offload_xstats_enable);
7941
7942static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7943{
7944 struct netdev_notifier_offload_xstats_info info = {
7945 .info.dev = dev,
7946 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7947 };
7948
7949 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7950 &info.info);
7951 kfree(dev->offload_xstats_l3);
7952 dev->offload_xstats_l3 = NULL;
7953}
7954
7955int netdev_offload_xstats_disable(struct net_device *dev,
7956 enum netdev_offload_xstats_type type)
7957{
7958 ASSERT_RTNL();
7959
7960 if (!netdev_offload_xstats_enabled(dev, type))
7961 return -EALREADY;
7962
7963 switch (type) {
7964 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7965 netdev_offload_xstats_disable_l3(dev);
7966 return 0;
7967 }
7968
7969 WARN_ON(1);
7970 return -EINVAL;
7971}
7972EXPORT_SYMBOL(netdev_offload_xstats_disable);
7973
7974static void netdev_offload_xstats_disable_all(struct net_device *dev)
7975{
7976 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7977}
7978
7979static struct rtnl_hw_stats64 *
7980netdev_offload_xstats_get_ptr(const struct net_device *dev,
7981 enum netdev_offload_xstats_type type)
7982{
7983 switch (type) {
7984 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7985 return dev->offload_xstats_l3;
7986 }
7987
7988 WARN_ON(1);
7989 return NULL;
7990}
7991
7992bool netdev_offload_xstats_enabled(const struct net_device *dev,
7993 enum netdev_offload_xstats_type type)
7994{
7995 ASSERT_RTNL();
7996
7997 return netdev_offload_xstats_get_ptr(dev, type);
7998}
7999EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8000
8001struct netdev_notifier_offload_xstats_ru {
8002 bool used;
8003};
8004
8005struct netdev_notifier_offload_xstats_rd {
8006 struct rtnl_hw_stats64 stats;
8007 bool used;
8008};
8009
8010static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8011 const struct rtnl_hw_stats64 *src)
8012{
8013 dest->rx_packets += src->rx_packets;
8014 dest->tx_packets += src->tx_packets;
8015 dest->rx_bytes += src->rx_bytes;
8016 dest->tx_bytes += src->tx_bytes;
8017 dest->rx_errors += src->rx_errors;
8018 dest->tx_errors += src->tx_errors;
8019 dest->rx_dropped += src->rx_dropped;
8020 dest->tx_dropped += src->tx_dropped;
8021 dest->multicast += src->multicast;
8022}
8023
8024static int netdev_offload_xstats_get_used(struct net_device *dev,
8025 enum netdev_offload_xstats_type type,
8026 bool *p_used,
8027 struct netlink_ext_ack *extack)
8028{
8029 struct netdev_notifier_offload_xstats_ru report_used = {};
8030 struct netdev_notifier_offload_xstats_info info = {
8031 .info.dev = dev,
8032 .info.extack = extack,
8033 .type = type,
8034 .report_used = &report_used,
8035 };
8036 int rc;
8037
8038 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8039 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8040 &info.info);
8041 *p_used = report_used.used;
8042 return notifier_to_errno(rc);
8043}
8044
8045static int netdev_offload_xstats_get_stats(struct net_device *dev,
8046 enum netdev_offload_xstats_type type,
8047 struct rtnl_hw_stats64 *p_stats,
8048 bool *p_used,
8049 struct netlink_ext_ack *extack)
8050{
8051 struct netdev_notifier_offload_xstats_rd report_delta = {};
8052 struct netdev_notifier_offload_xstats_info info = {
8053 .info.dev = dev,
8054 .info.extack = extack,
8055 .type = type,
8056 .report_delta = &report_delta,
8057 };
8058 struct rtnl_hw_stats64 *stats;
8059 int rc;
8060
8061 stats = netdev_offload_xstats_get_ptr(dev, type);
8062 if (WARN_ON(!stats))
8063 return -EINVAL;
8064
8065 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8066 &info.info);
8067
8068 /* Cache whatever we got, even if there was an error, otherwise the
8069 * successful stats retrievals would get lost.
8070 */
8071 netdev_hw_stats64_add(stats, &report_delta.stats);
8072
8073 if (p_stats)
8074 *p_stats = *stats;
8075 *p_used = report_delta.used;
8076
8077 return notifier_to_errno(rc);
8078}
8079
8080int netdev_offload_xstats_get(struct net_device *dev,
8081 enum netdev_offload_xstats_type type,
8082 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8083 struct netlink_ext_ack *extack)
8084{
8085 ASSERT_RTNL();
8086
8087 if (p_stats)
8088 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8089 p_used, extack);
8090 else
8091 return netdev_offload_xstats_get_used(dev, type, p_used,
8092 extack);
8093}
8094EXPORT_SYMBOL(netdev_offload_xstats_get);
8095
8096void
8097netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8098 const struct rtnl_hw_stats64 *stats)
8099{
8100 report_delta->used = true;
8101 netdev_hw_stats64_add(&report_delta->stats, stats);
8102}
8103EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8104
8105void
8106netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8107{
8108 report_used->used = true;
8109}
8110EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8111
8112void netdev_offload_xstats_push_delta(struct net_device *dev,
8113 enum netdev_offload_xstats_type type,
8114 const struct rtnl_hw_stats64 *p_stats)
8115{
8116 struct rtnl_hw_stats64 *stats;
8117
8118 ASSERT_RTNL();
8119
8120 stats = netdev_offload_xstats_get_ptr(dev, type);
8121 if (WARN_ON(!stats))
8122 return;
8123
8124 netdev_hw_stats64_add(stats, p_stats);
8125}
8126EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8127
8128/**
8129 * netdev_get_xmit_slave - Get the xmit slave of master device
8130 * @dev: device
8131 * @skb: The packet
8132 * @all_slaves: assume all the slaves are active
8133 *
8134 * The reference counters are not incremented so the caller must be
8135 * careful with locks. The caller must hold RCU lock.
8136 * %NULL is returned if no slave is found.
8137 */
8138
8139struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8140 struct sk_buff *skb,
8141 bool all_slaves)
8142{
8143 const struct net_device_ops *ops = dev->netdev_ops;
8144
8145 if (!ops->ndo_get_xmit_slave)
8146 return NULL;
8147 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8148}
8149EXPORT_SYMBOL(netdev_get_xmit_slave);
8150
8151static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8152 struct sock *sk)
8153{
8154 const struct net_device_ops *ops = dev->netdev_ops;
8155
8156 if (!ops->ndo_sk_get_lower_dev)
8157 return NULL;
8158 return ops->ndo_sk_get_lower_dev(dev, sk);
8159}
8160
8161/**
8162 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8163 * @dev: device
8164 * @sk: the socket
8165 *
8166 * %NULL is returned if no lower device is found.
8167 */
8168
8169struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8170 struct sock *sk)
8171{
8172 struct net_device *lower;
8173
8174 lower = netdev_sk_get_lower_dev(dev, sk);
8175 while (lower) {
8176 dev = lower;
8177 lower = netdev_sk_get_lower_dev(dev, sk);
8178 }
8179
8180 return dev;
8181}
8182EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8183
8184static void netdev_adjacent_add_links(struct net_device *dev)
8185{
8186 struct netdev_adjacent *iter;
8187
8188 struct net *net = dev_net(dev);
8189
8190 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8191 if (!net_eq(net, dev_net(iter->dev)))
8192 continue;
8193 netdev_adjacent_sysfs_add(iter->dev, dev,
8194 &iter->dev->adj_list.lower);
8195 netdev_adjacent_sysfs_add(dev, iter->dev,
8196 &dev->adj_list.upper);
8197 }
8198
8199 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8200 if (!net_eq(net, dev_net(iter->dev)))
8201 continue;
8202 netdev_adjacent_sysfs_add(iter->dev, dev,
8203 &iter->dev->adj_list.upper);
8204 netdev_adjacent_sysfs_add(dev, iter->dev,
8205 &dev->adj_list.lower);
8206 }
8207}
8208
8209static void netdev_adjacent_del_links(struct net_device *dev)
8210{
8211 struct netdev_adjacent *iter;
8212
8213 struct net *net = dev_net(dev);
8214
8215 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8216 if (!net_eq(net, dev_net(iter->dev)))
8217 continue;
8218 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8219 &iter->dev->adj_list.lower);
8220 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8221 &dev->adj_list.upper);
8222 }
8223
8224 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8225 if (!net_eq(net, dev_net(iter->dev)))
8226 continue;
8227 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8228 &iter->dev->adj_list.upper);
8229 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8230 &dev->adj_list.lower);
8231 }
8232}
8233
8234void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8235{
8236 struct netdev_adjacent *iter;
8237
8238 struct net *net = dev_net(dev);
8239
8240 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8241 if (!net_eq(net, dev_net(iter->dev)))
8242 continue;
8243 netdev_adjacent_sysfs_del(iter->dev, oldname,
8244 &iter->dev->adj_list.lower);
8245 netdev_adjacent_sysfs_add(iter->dev, dev,
8246 &iter->dev->adj_list.lower);
8247 }
8248
8249 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8250 if (!net_eq(net, dev_net(iter->dev)))
8251 continue;
8252 netdev_adjacent_sysfs_del(iter->dev, oldname,
8253 &iter->dev->adj_list.upper);
8254 netdev_adjacent_sysfs_add(iter->dev, dev,
8255 &iter->dev->adj_list.upper);
8256 }
8257}
8258
8259void *netdev_lower_dev_get_private(struct net_device *dev,
8260 struct net_device *lower_dev)
8261{
8262 struct netdev_adjacent *lower;
8263
8264 if (!lower_dev)
8265 return NULL;
8266 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8267 if (!lower)
8268 return NULL;
8269
8270 return lower->private;
8271}
8272EXPORT_SYMBOL(netdev_lower_dev_get_private);
8273
8274
8275/**
8276 * netdev_lower_state_changed - Dispatch event about lower device state change
8277 * @lower_dev: device
8278 * @lower_state_info: state to dispatch
8279 *
8280 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8281 * The caller must hold the RTNL lock.
8282 */
8283void netdev_lower_state_changed(struct net_device *lower_dev,
8284 void *lower_state_info)
8285{
8286 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8287 .info.dev = lower_dev,
8288 };
8289
8290 ASSERT_RTNL();
8291 changelowerstate_info.lower_state_info = lower_state_info;
8292 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8293 &changelowerstate_info.info);
8294}
8295EXPORT_SYMBOL(netdev_lower_state_changed);
8296
8297static void dev_change_rx_flags(struct net_device *dev, int flags)
8298{
8299 const struct net_device_ops *ops = dev->netdev_ops;
8300
8301 if (ops->ndo_change_rx_flags)
8302 ops->ndo_change_rx_flags(dev, flags);
8303}
8304
8305static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8306{
8307 unsigned int old_flags = dev->flags;
8308 kuid_t uid;
8309 kgid_t gid;
8310
8311 ASSERT_RTNL();
8312
8313 dev->flags |= IFF_PROMISC;
8314 dev->promiscuity += inc;
8315 if (dev->promiscuity == 0) {
8316 /*
8317 * Avoid overflow.
8318 * If inc causes overflow, untouch promisc and return error.
8319 */
8320 if (inc < 0)
8321 dev->flags &= ~IFF_PROMISC;
8322 else {
8323 dev->promiscuity -= inc;
8324 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8325 return -EOVERFLOW;
8326 }
8327 }
8328 if (dev->flags != old_flags) {
8329 pr_info("device %s %s promiscuous mode\n",
8330 dev->name,
8331 dev->flags & IFF_PROMISC ? "entered" : "left");
8332 if (audit_enabled) {
8333 current_uid_gid(&uid, &gid);
8334 audit_log(audit_context(), GFP_ATOMIC,
8335 AUDIT_ANOM_PROMISCUOUS,
8336 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8337 dev->name, (dev->flags & IFF_PROMISC),
8338 (old_flags & IFF_PROMISC),
8339 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8340 from_kuid(&init_user_ns, uid),
8341 from_kgid(&init_user_ns, gid),
8342 audit_get_sessionid(current));
8343 }
8344
8345 dev_change_rx_flags(dev, IFF_PROMISC);
8346 }
8347 if (notify)
8348 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8349 return 0;
8350}
8351
8352/**
8353 * dev_set_promiscuity - update promiscuity count on a device
8354 * @dev: device
8355 * @inc: modifier
8356 *
8357 * Add or remove promiscuity from a device. While the count in the device
8358 * remains above zero the interface remains promiscuous. Once it hits zero
8359 * the device reverts back to normal filtering operation. A negative inc
8360 * value is used to drop promiscuity on the device.
8361 * Return 0 if successful or a negative errno code on error.
8362 */
8363int dev_set_promiscuity(struct net_device *dev, int inc)
8364{
8365 unsigned int old_flags = dev->flags;
8366 int err;
8367
8368 err = __dev_set_promiscuity(dev, inc, true);
8369 if (err < 0)
8370 return err;
8371 if (dev->flags != old_flags)
8372 dev_set_rx_mode(dev);
8373 return err;
8374}
8375EXPORT_SYMBOL(dev_set_promiscuity);
8376
8377static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8378{
8379 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8380
8381 ASSERT_RTNL();
8382
8383 dev->flags |= IFF_ALLMULTI;
8384 dev->allmulti += inc;
8385 if (dev->allmulti == 0) {
8386 /*
8387 * Avoid overflow.
8388 * If inc causes overflow, untouch allmulti and return error.
8389 */
8390 if (inc < 0)
8391 dev->flags &= ~IFF_ALLMULTI;
8392 else {
8393 dev->allmulti -= inc;
8394 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8395 return -EOVERFLOW;
8396 }
8397 }
8398 if (dev->flags ^ old_flags) {
8399 dev_change_rx_flags(dev, IFF_ALLMULTI);
8400 dev_set_rx_mode(dev);
8401 if (notify)
8402 __dev_notify_flags(dev, old_flags,
8403 dev->gflags ^ old_gflags);
8404 }
8405 return 0;
8406}
8407
8408/**
8409 * dev_set_allmulti - update allmulti count on a device
8410 * @dev: device
8411 * @inc: modifier
8412 *
8413 * Add or remove reception of all multicast frames to a device. While the
8414 * count in the device remains above zero the interface remains listening
8415 * to all interfaces. Once it hits zero the device reverts back to normal
8416 * filtering operation. A negative @inc value is used to drop the counter
8417 * when releasing a resource needing all multicasts.
8418 * Return 0 if successful or a negative errno code on error.
8419 */
8420
8421int dev_set_allmulti(struct net_device *dev, int inc)
8422{
8423 return __dev_set_allmulti(dev, inc, true);
8424}
8425EXPORT_SYMBOL(dev_set_allmulti);
8426
8427/*
8428 * Upload unicast and multicast address lists to device and
8429 * configure RX filtering. When the device doesn't support unicast
8430 * filtering it is put in promiscuous mode while unicast addresses
8431 * are present.
8432 */
8433void __dev_set_rx_mode(struct net_device *dev)
8434{
8435 const struct net_device_ops *ops = dev->netdev_ops;
8436
8437 /* dev_open will call this function so the list will stay sane. */
8438 if (!(dev->flags&IFF_UP))
8439 return;
8440
8441 if (!netif_device_present(dev))
8442 return;
8443
8444 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8445 /* Unicast addresses changes may only happen under the rtnl,
8446 * therefore calling __dev_set_promiscuity here is safe.
8447 */
8448 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8449 __dev_set_promiscuity(dev, 1, false);
8450 dev->uc_promisc = true;
8451 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8452 __dev_set_promiscuity(dev, -1, false);
8453 dev->uc_promisc = false;
8454 }
8455 }
8456
8457 if (ops->ndo_set_rx_mode)
8458 ops->ndo_set_rx_mode(dev);
8459}
8460
8461void dev_set_rx_mode(struct net_device *dev)
8462{
8463 netif_addr_lock_bh(dev);
8464 __dev_set_rx_mode(dev);
8465 netif_addr_unlock_bh(dev);
8466}
8467
8468/**
8469 * dev_get_flags - get flags reported to userspace
8470 * @dev: device
8471 *
8472 * Get the combination of flag bits exported through APIs to userspace.
8473 */
8474unsigned int dev_get_flags(const struct net_device *dev)
8475{
8476 unsigned int flags;
8477
8478 flags = (dev->flags & ~(IFF_PROMISC |
8479 IFF_ALLMULTI |
8480 IFF_RUNNING |
8481 IFF_LOWER_UP |
8482 IFF_DORMANT)) |
8483 (dev->gflags & (IFF_PROMISC |
8484 IFF_ALLMULTI));
8485
8486 if (netif_running(dev)) {
8487 if (netif_oper_up(dev))
8488 flags |= IFF_RUNNING;
8489 if (netif_carrier_ok(dev))
8490 flags |= IFF_LOWER_UP;
8491 if (netif_dormant(dev))
8492 flags |= IFF_DORMANT;
8493 }
8494
8495 return flags;
8496}
8497EXPORT_SYMBOL(dev_get_flags);
8498
8499int __dev_change_flags(struct net_device *dev, unsigned int flags,
8500 struct netlink_ext_ack *extack)
8501{
8502 unsigned int old_flags = dev->flags;
8503 int ret;
8504
8505 ASSERT_RTNL();
8506
8507 /*
8508 * Set the flags on our device.
8509 */
8510
8511 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8512 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8513 IFF_AUTOMEDIA)) |
8514 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8515 IFF_ALLMULTI));
8516
8517 /*
8518 * Load in the correct multicast list now the flags have changed.
8519 */
8520
8521 if ((old_flags ^ flags) & IFF_MULTICAST)
8522 dev_change_rx_flags(dev, IFF_MULTICAST);
8523
8524 dev_set_rx_mode(dev);
8525
8526 /*
8527 * Have we downed the interface. We handle IFF_UP ourselves
8528 * according to user attempts to set it, rather than blindly
8529 * setting it.
8530 */
8531
8532 ret = 0;
8533 if ((old_flags ^ flags) & IFF_UP) {
8534 if (old_flags & IFF_UP)
8535 __dev_close(dev);
8536 else
8537 ret = __dev_open(dev, extack);
8538 }
8539
8540 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8541 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8542 unsigned int old_flags = dev->flags;
8543
8544 dev->gflags ^= IFF_PROMISC;
8545
8546 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8547 if (dev->flags != old_flags)
8548 dev_set_rx_mode(dev);
8549 }
8550
8551 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8552 * is important. Some (broken) drivers set IFF_PROMISC, when
8553 * IFF_ALLMULTI is requested not asking us and not reporting.
8554 */
8555 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8556 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8557
8558 dev->gflags ^= IFF_ALLMULTI;
8559 __dev_set_allmulti(dev, inc, false);
8560 }
8561
8562 return ret;
8563}
8564
8565void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8566 unsigned int gchanges)
8567{
8568 unsigned int changes = dev->flags ^ old_flags;
8569
8570 if (gchanges)
8571 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8572
8573 if (changes & IFF_UP) {
8574 if (dev->flags & IFF_UP)
8575 call_netdevice_notifiers(NETDEV_UP, dev);
8576 else
8577 call_netdevice_notifiers(NETDEV_DOWN, dev);
8578 }
8579
8580 if (dev->flags & IFF_UP &&
8581 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8582 struct netdev_notifier_change_info change_info = {
8583 .info = {
8584 .dev = dev,
8585 },
8586 .flags_changed = changes,
8587 };
8588
8589 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8590 }
8591}
8592
8593/**
8594 * dev_change_flags - change device settings
8595 * @dev: device
8596 * @flags: device state flags
8597 * @extack: netlink extended ack
8598 *
8599 * Change settings on device based state flags. The flags are
8600 * in the userspace exported format.
8601 */
8602int dev_change_flags(struct net_device *dev, unsigned int flags,
8603 struct netlink_ext_ack *extack)
8604{
8605 int ret;
8606 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8607
8608 ret = __dev_change_flags(dev, flags, extack);
8609 if (ret < 0)
8610 return ret;
8611
8612 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8613 __dev_notify_flags(dev, old_flags, changes);
8614 return ret;
8615}
8616EXPORT_SYMBOL(dev_change_flags);
8617
8618int __dev_set_mtu(struct net_device *dev, int new_mtu)
8619{
8620 const struct net_device_ops *ops = dev->netdev_ops;
8621
8622 if (ops->ndo_change_mtu)
8623 return ops->ndo_change_mtu(dev, new_mtu);
8624
8625 /* Pairs with all the lockless reads of dev->mtu in the stack */
8626 WRITE_ONCE(dev->mtu, new_mtu);
8627 return 0;
8628}
8629EXPORT_SYMBOL(__dev_set_mtu);
8630
8631int dev_validate_mtu(struct net_device *dev, int new_mtu,
8632 struct netlink_ext_ack *extack)
8633{
8634 /* MTU must be positive, and in range */
8635 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8636 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8637 return -EINVAL;
8638 }
8639
8640 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8641 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8642 return -EINVAL;
8643 }
8644 return 0;
8645}
8646
8647/**
8648 * dev_set_mtu_ext - Change maximum transfer unit
8649 * @dev: device
8650 * @new_mtu: new transfer unit
8651 * @extack: netlink extended ack
8652 *
8653 * Change the maximum transfer size of the network device.
8654 */
8655int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8656 struct netlink_ext_ack *extack)
8657{
8658 int err, orig_mtu;
8659
8660 if (new_mtu == dev->mtu)
8661 return 0;
8662
8663 err = dev_validate_mtu(dev, new_mtu, extack);
8664 if (err)
8665 return err;
8666
8667 if (!netif_device_present(dev))
8668 return -ENODEV;
8669
8670 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8671 err = notifier_to_errno(err);
8672 if (err)
8673 return err;
8674
8675 orig_mtu = dev->mtu;
8676 err = __dev_set_mtu(dev, new_mtu);
8677
8678 if (!err) {
8679 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8680 orig_mtu);
8681 err = notifier_to_errno(err);
8682 if (err) {
8683 /* setting mtu back and notifying everyone again,
8684 * so that they have a chance to revert changes.
8685 */
8686 __dev_set_mtu(dev, orig_mtu);
8687 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8688 new_mtu);
8689 }
8690 }
8691 return err;
8692}
8693
8694int dev_set_mtu(struct net_device *dev, int new_mtu)
8695{
8696 struct netlink_ext_ack extack;
8697 int err;
8698
8699 memset(&extack, 0, sizeof(extack));
8700 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8701 if (err && extack._msg)
8702 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8703 return err;
8704}
8705EXPORT_SYMBOL(dev_set_mtu);
8706
8707/**
8708 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8709 * @dev: device
8710 * @new_len: new tx queue length
8711 */
8712int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8713{
8714 unsigned int orig_len = dev->tx_queue_len;
8715 int res;
8716
8717 if (new_len != (unsigned int)new_len)
8718 return -ERANGE;
8719
8720 if (new_len != orig_len) {
8721 dev->tx_queue_len = new_len;
8722 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8723 res = notifier_to_errno(res);
8724 if (res)
8725 goto err_rollback;
8726 res = dev_qdisc_change_tx_queue_len(dev);
8727 if (res)
8728 goto err_rollback;
8729 }
8730
8731 return 0;
8732
8733err_rollback:
8734 netdev_err(dev, "refused to change device tx_queue_len\n");
8735 dev->tx_queue_len = orig_len;
8736 return res;
8737}
8738
8739/**
8740 * dev_set_group - Change group this device belongs to
8741 * @dev: device
8742 * @new_group: group this device should belong to
8743 */
8744void dev_set_group(struct net_device *dev, int new_group)
8745{
8746 dev->group = new_group;
8747}
8748
8749/**
8750 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8751 * @dev: device
8752 * @addr: new address
8753 * @extack: netlink extended ack
8754 */
8755int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8756 struct netlink_ext_ack *extack)
8757{
8758 struct netdev_notifier_pre_changeaddr_info info = {
8759 .info.dev = dev,
8760 .info.extack = extack,
8761 .dev_addr = addr,
8762 };
8763 int rc;
8764
8765 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8766 return notifier_to_errno(rc);
8767}
8768EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8769
8770/**
8771 * dev_set_mac_address - Change Media Access Control Address
8772 * @dev: device
8773 * @sa: new address
8774 * @extack: netlink extended ack
8775 *
8776 * Change the hardware (MAC) address of the device
8777 */
8778int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8779 struct netlink_ext_ack *extack)
8780{
8781 const struct net_device_ops *ops = dev->netdev_ops;
8782 int err;
8783
8784 if (!ops->ndo_set_mac_address)
8785 return -EOPNOTSUPP;
8786 if (sa->sa_family != dev->type)
8787 return -EINVAL;
8788 if (!netif_device_present(dev))
8789 return -ENODEV;
8790 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8791 if (err)
8792 return err;
8793 err = ops->ndo_set_mac_address(dev, sa);
8794 if (err)
8795 return err;
8796 dev->addr_assign_type = NET_ADDR_SET;
8797 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8798 add_device_randomness(dev->dev_addr, dev->addr_len);
8799 return 0;
8800}
8801EXPORT_SYMBOL(dev_set_mac_address);
8802
8803static DECLARE_RWSEM(dev_addr_sem);
8804
8805int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8806 struct netlink_ext_ack *extack)
8807{
8808 int ret;
8809
8810 down_write(&dev_addr_sem);
8811 ret = dev_set_mac_address(dev, sa, extack);
8812 up_write(&dev_addr_sem);
8813 return ret;
8814}
8815EXPORT_SYMBOL(dev_set_mac_address_user);
8816
8817int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8818{
8819 size_t size = sizeof(sa->sa_data);
8820 struct net_device *dev;
8821 int ret = 0;
8822
8823 down_read(&dev_addr_sem);
8824 rcu_read_lock();
8825
8826 dev = dev_get_by_name_rcu(net, dev_name);
8827 if (!dev) {
8828 ret = -ENODEV;
8829 goto unlock;
8830 }
8831 if (!dev->addr_len)
8832 memset(sa->sa_data, 0, size);
8833 else
8834 memcpy(sa->sa_data, dev->dev_addr,
8835 min_t(size_t, size, dev->addr_len));
8836 sa->sa_family = dev->type;
8837
8838unlock:
8839 rcu_read_unlock();
8840 up_read(&dev_addr_sem);
8841 return ret;
8842}
8843EXPORT_SYMBOL(dev_get_mac_address);
8844
8845/**
8846 * dev_change_carrier - Change device carrier
8847 * @dev: device
8848 * @new_carrier: new value
8849 *
8850 * Change device carrier
8851 */
8852int dev_change_carrier(struct net_device *dev, bool new_carrier)
8853{
8854 const struct net_device_ops *ops = dev->netdev_ops;
8855
8856 if (!ops->ndo_change_carrier)
8857 return -EOPNOTSUPP;
8858 if (!netif_device_present(dev))
8859 return -ENODEV;
8860 return ops->ndo_change_carrier(dev, new_carrier);
8861}
8862
8863/**
8864 * dev_get_phys_port_id - Get device physical port ID
8865 * @dev: device
8866 * @ppid: port ID
8867 *
8868 * Get device physical port ID
8869 */
8870int dev_get_phys_port_id(struct net_device *dev,
8871 struct netdev_phys_item_id *ppid)
8872{
8873 const struct net_device_ops *ops = dev->netdev_ops;
8874
8875 if (!ops->ndo_get_phys_port_id)
8876 return -EOPNOTSUPP;
8877 return ops->ndo_get_phys_port_id(dev, ppid);
8878}
8879
8880/**
8881 * dev_get_phys_port_name - Get device physical port name
8882 * @dev: device
8883 * @name: port name
8884 * @len: limit of bytes to copy to name
8885 *
8886 * Get device physical port name
8887 */
8888int dev_get_phys_port_name(struct net_device *dev,
8889 char *name, size_t len)
8890{
8891 const struct net_device_ops *ops = dev->netdev_ops;
8892 int err;
8893
8894 if (ops->ndo_get_phys_port_name) {
8895 err = ops->ndo_get_phys_port_name(dev, name, len);
8896 if (err != -EOPNOTSUPP)
8897 return err;
8898 }
8899 return devlink_compat_phys_port_name_get(dev, name, len);
8900}
8901
8902/**
8903 * dev_get_port_parent_id - Get the device's port parent identifier
8904 * @dev: network device
8905 * @ppid: pointer to a storage for the port's parent identifier
8906 * @recurse: allow/disallow recursion to lower devices
8907 *
8908 * Get the devices's port parent identifier
8909 */
8910int dev_get_port_parent_id(struct net_device *dev,
8911 struct netdev_phys_item_id *ppid,
8912 bool recurse)
8913{
8914 const struct net_device_ops *ops = dev->netdev_ops;
8915 struct netdev_phys_item_id first = { };
8916 struct net_device *lower_dev;
8917 struct list_head *iter;
8918 int err;
8919
8920 if (ops->ndo_get_port_parent_id) {
8921 err = ops->ndo_get_port_parent_id(dev, ppid);
8922 if (err != -EOPNOTSUPP)
8923 return err;
8924 }
8925
8926 err = devlink_compat_switch_id_get(dev, ppid);
8927 if (!recurse || err != -EOPNOTSUPP)
8928 return err;
8929
8930 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8931 err = dev_get_port_parent_id(lower_dev, ppid, true);
8932 if (err)
8933 break;
8934 if (!first.id_len)
8935 first = *ppid;
8936 else if (memcmp(&first, ppid, sizeof(*ppid)))
8937 return -EOPNOTSUPP;
8938 }
8939
8940 return err;
8941}
8942EXPORT_SYMBOL(dev_get_port_parent_id);
8943
8944/**
8945 * netdev_port_same_parent_id - Indicate if two network devices have
8946 * the same port parent identifier
8947 * @a: first network device
8948 * @b: second network device
8949 */
8950bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8951{
8952 struct netdev_phys_item_id a_id = { };
8953 struct netdev_phys_item_id b_id = { };
8954
8955 if (dev_get_port_parent_id(a, &a_id, true) ||
8956 dev_get_port_parent_id(b, &b_id, true))
8957 return false;
8958
8959 return netdev_phys_item_id_same(&a_id, &b_id);
8960}
8961EXPORT_SYMBOL(netdev_port_same_parent_id);
8962
8963/**
8964 * dev_change_proto_down - set carrier according to proto_down.
8965 *
8966 * @dev: device
8967 * @proto_down: new value
8968 */
8969int dev_change_proto_down(struct net_device *dev, bool proto_down)
8970{
8971 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8972 return -EOPNOTSUPP;
8973 if (!netif_device_present(dev))
8974 return -ENODEV;
8975 if (proto_down)
8976 netif_carrier_off(dev);
8977 else
8978 netif_carrier_on(dev);
8979 dev->proto_down = proto_down;
8980 return 0;
8981}
8982
8983/**
8984 * dev_change_proto_down_reason - proto down reason
8985 *
8986 * @dev: device
8987 * @mask: proto down mask
8988 * @value: proto down value
8989 */
8990void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8991 u32 value)
8992{
8993 int b;
8994
8995 if (!mask) {
8996 dev->proto_down_reason = value;
8997 } else {
8998 for_each_set_bit(b, &mask, 32) {
8999 if (value & (1 << b))
9000 dev->proto_down_reason |= BIT(b);
9001 else
9002 dev->proto_down_reason &= ~BIT(b);
9003 }
9004 }
9005}
9006
9007struct bpf_xdp_link {
9008 struct bpf_link link;
9009 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9010 int flags;
9011};
9012
9013static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9014{
9015 if (flags & XDP_FLAGS_HW_MODE)
9016 return XDP_MODE_HW;
9017 if (flags & XDP_FLAGS_DRV_MODE)
9018 return XDP_MODE_DRV;
9019 if (flags & XDP_FLAGS_SKB_MODE)
9020 return XDP_MODE_SKB;
9021 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9022}
9023
9024static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9025{
9026 switch (mode) {
9027 case XDP_MODE_SKB:
9028 return generic_xdp_install;
9029 case XDP_MODE_DRV:
9030 case XDP_MODE_HW:
9031 return dev->netdev_ops->ndo_bpf;
9032 default:
9033 return NULL;
9034 }
9035}
9036
9037static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9038 enum bpf_xdp_mode mode)
9039{
9040 return dev->xdp_state[mode].link;
9041}
9042
9043static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9044 enum bpf_xdp_mode mode)
9045{
9046 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9047
9048 if (link)
9049 return link->link.prog;
9050 return dev->xdp_state[mode].prog;
9051}
9052
9053u8 dev_xdp_prog_count(struct net_device *dev)
9054{
9055 u8 count = 0;
9056 int i;
9057
9058 for (i = 0; i < __MAX_XDP_MODE; i++)
9059 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9060 count++;
9061 return count;
9062}
9063EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9064
9065u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9066{
9067 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9068
9069 return prog ? prog->aux->id : 0;
9070}
9071
9072static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9073 struct bpf_xdp_link *link)
9074{
9075 dev->xdp_state[mode].link = link;
9076 dev->xdp_state[mode].prog = NULL;
9077}
9078
9079static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9080 struct bpf_prog *prog)
9081{
9082 dev->xdp_state[mode].link = NULL;
9083 dev->xdp_state[mode].prog = prog;
9084}
9085
9086static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9087 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9088 u32 flags, struct bpf_prog *prog)
9089{
9090 struct netdev_bpf xdp;
9091 int err;
9092
9093 memset(&xdp, 0, sizeof(xdp));
9094 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9095 xdp.extack = extack;
9096 xdp.flags = flags;
9097 xdp.prog = prog;
9098
9099 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9100 * "moved" into driver), so they don't increment it on their own, but
9101 * they do decrement refcnt when program is detached or replaced.
9102 * Given net_device also owns link/prog, we need to bump refcnt here
9103 * to prevent drivers from underflowing it.
9104 */
9105 if (prog)
9106 bpf_prog_inc(prog);
9107 err = bpf_op(dev, &xdp);
9108 if (err) {
9109 if (prog)
9110 bpf_prog_put(prog);
9111 return err;
9112 }
9113
9114 if (mode != XDP_MODE_HW)
9115 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9116
9117 return 0;
9118}
9119
9120static void dev_xdp_uninstall(struct net_device *dev)
9121{
9122 struct bpf_xdp_link *link;
9123 struct bpf_prog *prog;
9124 enum bpf_xdp_mode mode;
9125 bpf_op_t bpf_op;
9126
9127 ASSERT_RTNL();
9128
9129 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9130 prog = dev_xdp_prog(dev, mode);
9131 if (!prog)
9132 continue;
9133
9134 bpf_op = dev_xdp_bpf_op(dev, mode);
9135 if (!bpf_op)
9136 continue;
9137
9138 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9139
9140 /* auto-detach link from net device */
9141 link = dev_xdp_link(dev, mode);
9142 if (link)
9143 link->dev = NULL;
9144 else
9145 bpf_prog_put(prog);
9146
9147 dev_xdp_set_link(dev, mode, NULL);
9148 }
9149}
9150
9151static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9152 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9153 struct bpf_prog *old_prog, u32 flags)
9154{
9155 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9156 struct bpf_prog *cur_prog;
9157 struct net_device *upper;
9158 struct list_head *iter;
9159 enum bpf_xdp_mode mode;
9160 bpf_op_t bpf_op;
9161 int err;
9162
9163 ASSERT_RTNL();
9164
9165 /* either link or prog attachment, never both */
9166 if (link && (new_prog || old_prog))
9167 return -EINVAL;
9168 /* link supports only XDP mode flags */
9169 if (link && (flags & ~XDP_FLAGS_MODES)) {
9170 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9171 return -EINVAL;
9172 }
9173 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9174 if (num_modes > 1) {
9175 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9176 return -EINVAL;
9177 }
9178 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9179 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9180 NL_SET_ERR_MSG(extack,
9181 "More than one program loaded, unset mode is ambiguous");
9182 return -EINVAL;
9183 }
9184 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9185 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9186 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9187 return -EINVAL;
9188 }
9189
9190 mode = dev_xdp_mode(dev, flags);
9191 /* can't replace attached link */
9192 if (dev_xdp_link(dev, mode)) {
9193 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9194 return -EBUSY;
9195 }
9196
9197 /* don't allow if an upper device already has a program */
9198 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9199 if (dev_xdp_prog_count(upper) > 0) {
9200 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9201 return -EEXIST;
9202 }
9203 }
9204
9205 cur_prog = dev_xdp_prog(dev, mode);
9206 /* can't replace attached prog with link */
9207 if (link && cur_prog) {
9208 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9209 return -EBUSY;
9210 }
9211 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9212 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9213 return -EEXIST;
9214 }
9215
9216 /* put effective new program into new_prog */
9217 if (link)
9218 new_prog = link->link.prog;
9219
9220 if (new_prog) {
9221 bool offload = mode == XDP_MODE_HW;
9222 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9223 ? XDP_MODE_DRV : XDP_MODE_SKB;
9224
9225 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9226 NL_SET_ERR_MSG(extack, "XDP program already attached");
9227 return -EBUSY;
9228 }
9229 if (!offload && dev_xdp_prog(dev, other_mode)) {
9230 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9231 return -EEXIST;
9232 }
9233 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9234 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9235 return -EINVAL;
9236 }
9237 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9238 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9239 return -EINVAL;
9240 }
9241 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9242 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9243 return -EINVAL;
9244 }
9245 }
9246
9247 /* don't call drivers if the effective program didn't change */
9248 if (new_prog != cur_prog) {
9249 bpf_op = dev_xdp_bpf_op(dev, mode);
9250 if (!bpf_op) {
9251 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9252 return -EOPNOTSUPP;
9253 }
9254
9255 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9256 if (err)
9257 return err;
9258 }
9259
9260 if (link)
9261 dev_xdp_set_link(dev, mode, link);
9262 else
9263 dev_xdp_set_prog(dev, mode, new_prog);
9264 if (cur_prog)
9265 bpf_prog_put(cur_prog);
9266
9267 return 0;
9268}
9269
9270static int dev_xdp_attach_link(struct net_device *dev,
9271 struct netlink_ext_ack *extack,
9272 struct bpf_xdp_link *link)
9273{
9274 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9275}
9276
9277static int dev_xdp_detach_link(struct net_device *dev,
9278 struct netlink_ext_ack *extack,
9279 struct bpf_xdp_link *link)
9280{
9281 enum bpf_xdp_mode mode;
9282 bpf_op_t bpf_op;
9283
9284 ASSERT_RTNL();
9285
9286 mode = dev_xdp_mode(dev, link->flags);
9287 if (dev_xdp_link(dev, mode) != link)
9288 return -EINVAL;
9289
9290 bpf_op = dev_xdp_bpf_op(dev, mode);
9291 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9292 dev_xdp_set_link(dev, mode, NULL);
9293 return 0;
9294}
9295
9296static void bpf_xdp_link_release(struct bpf_link *link)
9297{
9298 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9299
9300 rtnl_lock();
9301
9302 /* if racing with net_device's tear down, xdp_link->dev might be
9303 * already NULL, in which case link was already auto-detached
9304 */
9305 if (xdp_link->dev) {
9306 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9307 xdp_link->dev = NULL;
9308 }
9309
9310 rtnl_unlock();
9311}
9312
9313static int bpf_xdp_link_detach(struct bpf_link *link)
9314{
9315 bpf_xdp_link_release(link);
9316 return 0;
9317}
9318
9319static void bpf_xdp_link_dealloc(struct bpf_link *link)
9320{
9321 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9322
9323 kfree(xdp_link);
9324}
9325
9326static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9327 struct seq_file *seq)
9328{
9329 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9330 u32 ifindex = 0;
9331
9332 rtnl_lock();
9333 if (xdp_link->dev)
9334 ifindex = xdp_link->dev->ifindex;
9335 rtnl_unlock();
9336
9337 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9338}
9339
9340static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9341 struct bpf_link_info *info)
9342{
9343 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9344 u32 ifindex = 0;
9345
9346 rtnl_lock();
9347 if (xdp_link->dev)
9348 ifindex = xdp_link->dev->ifindex;
9349 rtnl_unlock();
9350
9351 info->xdp.ifindex = ifindex;
9352 return 0;
9353}
9354
9355static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9356 struct bpf_prog *old_prog)
9357{
9358 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9359 enum bpf_xdp_mode mode;
9360 bpf_op_t bpf_op;
9361 int err = 0;
9362
9363 rtnl_lock();
9364
9365 /* link might have been auto-released already, so fail */
9366 if (!xdp_link->dev) {
9367 err = -ENOLINK;
9368 goto out_unlock;
9369 }
9370
9371 if (old_prog && link->prog != old_prog) {
9372 err = -EPERM;
9373 goto out_unlock;
9374 }
9375 old_prog = link->prog;
9376 if (old_prog->type != new_prog->type ||
9377 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9378 err = -EINVAL;
9379 goto out_unlock;
9380 }
9381
9382 if (old_prog == new_prog) {
9383 /* no-op, don't disturb drivers */
9384 bpf_prog_put(new_prog);
9385 goto out_unlock;
9386 }
9387
9388 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9389 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9390 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9391 xdp_link->flags, new_prog);
9392 if (err)
9393 goto out_unlock;
9394
9395 old_prog = xchg(&link->prog, new_prog);
9396 bpf_prog_put(old_prog);
9397
9398out_unlock:
9399 rtnl_unlock();
9400 return err;
9401}
9402
9403static const struct bpf_link_ops bpf_xdp_link_lops = {
9404 .release = bpf_xdp_link_release,
9405 .dealloc = bpf_xdp_link_dealloc,
9406 .detach = bpf_xdp_link_detach,
9407 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9408 .fill_link_info = bpf_xdp_link_fill_link_info,
9409 .update_prog = bpf_xdp_link_update,
9410};
9411
9412int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9413{
9414 struct net *net = current->nsproxy->net_ns;
9415 struct bpf_link_primer link_primer;
9416 struct bpf_xdp_link *link;
9417 struct net_device *dev;
9418 int err, fd;
9419
9420 rtnl_lock();
9421 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9422 if (!dev) {
9423 rtnl_unlock();
9424 return -EINVAL;
9425 }
9426
9427 link = kzalloc(sizeof(*link), GFP_USER);
9428 if (!link) {
9429 err = -ENOMEM;
9430 goto unlock;
9431 }
9432
9433 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9434 link->dev = dev;
9435 link->flags = attr->link_create.flags;
9436
9437 err = bpf_link_prime(&link->link, &link_primer);
9438 if (err) {
9439 kfree(link);
9440 goto unlock;
9441 }
9442
9443 err = dev_xdp_attach_link(dev, NULL, link);
9444 rtnl_unlock();
9445
9446 if (err) {
9447 link->dev = NULL;
9448 bpf_link_cleanup(&link_primer);
9449 goto out_put_dev;
9450 }
9451
9452 fd = bpf_link_settle(&link_primer);
9453 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9454 dev_put(dev);
9455 return fd;
9456
9457unlock:
9458 rtnl_unlock();
9459
9460out_put_dev:
9461 dev_put(dev);
9462 return err;
9463}
9464
9465/**
9466 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9467 * @dev: device
9468 * @extack: netlink extended ack
9469 * @fd: new program fd or negative value to clear
9470 * @expected_fd: old program fd that userspace expects to replace or clear
9471 * @flags: xdp-related flags
9472 *
9473 * Set or clear a bpf program for a device
9474 */
9475int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9476 int fd, int expected_fd, u32 flags)
9477{
9478 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9479 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9480 int err;
9481
9482 ASSERT_RTNL();
9483
9484 if (fd >= 0) {
9485 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9486 mode != XDP_MODE_SKB);
9487 if (IS_ERR(new_prog))
9488 return PTR_ERR(new_prog);
9489 }
9490
9491 if (expected_fd >= 0) {
9492 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9493 mode != XDP_MODE_SKB);
9494 if (IS_ERR(old_prog)) {
9495 err = PTR_ERR(old_prog);
9496 old_prog = NULL;
9497 goto err_out;
9498 }
9499 }
9500
9501 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9502
9503err_out:
9504 if (err && new_prog)
9505 bpf_prog_put(new_prog);
9506 if (old_prog)
9507 bpf_prog_put(old_prog);
9508 return err;
9509}
9510
9511/**
9512 * dev_new_index - allocate an ifindex
9513 * @net: the applicable net namespace
9514 *
9515 * Returns a suitable unique value for a new device interface
9516 * number. The caller must hold the rtnl semaphore or the
9517 * dev_base_lock to be sure it remains unique.
9518 */
9519static int dev_new_index(struct net *net)
9520{
9521 int ifindex = net->ifindex;
9522
9523 for (;;) {
9524 if (++ifindex <= 0)
9525 ifindex = 1;
9526 if (!__dev_get_by_index(net, ifindex))
9527 return net->ifindex = ifindex;
9528 }
9529}
9530
9531/* Delayed registration/unregisteration */
9532LIST_HEAD(net_todo_list);
9533DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9534
9535static void net_set_todo(struct net_device *dev)
9536{
9537 list_add_tail(&dev->todo_list, &net_todo_list);
9538 atomic_inc(&dev_net(dev)->dev_unreg_count);
9539}
9540
9541static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9542 struct net_device *upper, netdev_features_t features)
9543{
9544 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9545 netdev_features_t feature;
9546 int feature_bit;
9547
9548 for_each_netdev_feature(upper_disables, feature_bit) {
9549 feature = __NETIF_F_BIT(feature_bit);
9550 if (!(upper->wanted_features & feature)
9551 && (features & feature)) {
9552 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9553 &feature, upper->name);
9554 features &= ~feature;
9555 }
9556 }
9557
9558 return features;
9559}
9560
9561static void netdev_sync_lower_features(struct net_device *upper,
9562 struct net_device *lower, netdev_features_t features)
9563{
9564 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9565 netdev_features_t feature;
9566 int feature_bit;
9567
9568 for_each_netdev_feature(upper_disables, feature_bit) {
9569 feature = __NETIF_F_BIT(feature_bit);
9570 if (!(features & feature) && (lower->features & feature)) {
9571 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9572 &feature, lower->name);
9573 lower->wanted_features &= ~feature;
9574 __netdev_update_features(lower);
9575
9576 if (unlikely(lower->features & feature))
9577 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9578 &feature, lower->name);
9579 else
9580 netdev_features_change(lower);
9581 }
9582 }
9583}
9584
9585static netdev_features_t netdev_fix_features(struct net_device *dev,
9586 netdev_features_t features)
9587{
9588 /* Fix illegal checksum combinations */
9589 if ((features & NETIF_F_HW_CSUM) &&
9590 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9591 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9592 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9593 }
9594
9595 /* TSO requires that SG is present as well. */
9596 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9597 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9598 features &= ~NETIF_F_ALL_TSO;
9599 }
9600
9601 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9602 !(features & NETIF_F_IP_CSUM)) {
9603 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9604 features &= ~NETIF_F_TSO;
9605 features &= ~NETIF_F_TSO_ECN;
9606 }
9607
9608 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9609 !(features & NETIF_F_IPV6_CSUM)) {
9610 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9611 features &= ~NETIF_F_TSO6;
9612 }
9613
9614 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9615 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9616 features &= ~NETIF_F_TSO_MANGLEID;
9617
9618 /* TSO ECN requires that TSO is present as well. */
9619 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9620 features &= ~NETIF_F_TSO_ECN;
9621
9622 /* Software GSO depends on SG. */
9623 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9624 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9625 features &= ~NETIF_F_GSO;
9626 }
9627
9628 /* GSO partial features require GSO partial be set */
9629 if ((features & dev->gso_partial_features) &&
9630 !(features & NETIF_F_GSO_PARTIAL)) {
9631 netdev_dbg(dev,
9632 "Dropping partially supported GSO features since no GSO partial.\n");
9633 features &= ~dev->gso_partial_features;
9634 }
9635
9636 if (!(features & NETIF_F_RXCSUM)) {
9637 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9638 * successfully merged by hardware must also have the
9639 * checksum verified by hardware. If the user does not
9640 * want to enable RXCSUM, logically, we should disable GRO_HW.
9641 */
9642 if (features & NETIF_F_GRO_HW) {
9643 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9644 features &= ~NETIF_F_GRO_HW;
9645 }
9646 }
9647
9648 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9649 if (features & NETIF_F_RXFCS) {
9650 if (features & NETIF_F_LRO) {
9651 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9652 features &= ~NETIF_F_LRO;
9653 }
9654
9655 if (features & NETIF_F_GRO_HW) {
9656 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9657 features &= ~NETIF_F_GRO_HW;
9658 }
9659 }
9660
9661 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9662 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9663 features &= ~NETIF_F_LRO;
9664 }
9665
9666 if (features & NETIF_F_HW_TLS_TX) {
9667 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9668 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9669 bool hw_csum = features & NETIF_F_HW_CSUM;
9670
9671 if (!ip_csum && !hw_csum) {
9672 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9673 features &= ~NETIF_F_HW_TLS_TX;
9674 }
9675 }
9676
9677 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9678 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9679 features &= ~NETIF_F_HW_TLS_RX;
9680 }
9681
9682 return features;
9683}
9684
9685int __netdev_update_features(struct net_device *dev)
9686{
9687 struct net_device *upper, *lower;
9688 netdev_features_t features;
9689 struct list_head *iter;
9690 int err = -1;
9691
9692 ASSERT_RTNL();
9693
9694 features = netdev_get_wanted_features(dev);
9695
9696 if (dev->netdev_ops->ndo_fix_features)
9697 features = dev->netdev_ops->ndo_fix_features(dev, features);
9698
9699 /* driver might be less strict about feature dependencies */
9700 features = netdev_fix_features(dev, features);
9701
9702 /* some features can't be enabled if they're off on an upper device */
9703 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9704 features = netdev_sync_upper_features(dev, upper, features);
9705
9706 if (dev->features == features)
9707 goto sync_lower;
9708
9709 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9710 &dev->features, &features);
9711
9712 if (dev->netdev_ops->ndo_set_features)
9713 err = dev->netdev_ops->ndo_set_features(dev, features);
9714 else
9715 err = 0;
9716
9717 if (unlikely(err < 0)) {
9718 netdev_err(dev,
9719 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9720 err, &features, &dev->features);
9721 /* return non-0 since some features might have changed and
9722 * it's better to fire a spurious notification than miss it
9723 */
9724 return -1;
9725 }
9726
9727sync_lower:
9728 /* some features must be disabled on lower devices when disabled
9729 * on an upper device (think: bonding master or bridge)
9730 */
9731 netdev_for_each_lower_dev(dev, lower, iter)
9732 netdev_sync_lower_features(dev, lower, features);
9733
9734 if (!err) {
9735 netdev_features_t diff = features ^ dev->features;
9736
9737 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9738 /* udp_tunnel_{get,drop}_rx_info both need
9739 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9740 * device, or they won't do anything.
9741 * Thus we need to update dev->features
9742 * *before* calling udp_tunnel_get_rx_info,
9743 * but *after* calling udp_tunnel_drop_rx_info.
9744 */
9745 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9746 dev->features = features;
9747 udp_tunnel_get_rx_info(dev);
9748 } else {
9749 udp_tunnel_drop_rx_info(dev);
9750 }
9751 }
9752
9753 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9754 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9755 dev->features = features;
9756 err |= vlan_get_rx_ctag_filter_info(dev);
9757 } else {
9758 vlan_drop_rx_ctag_filter_info(dev);
9759 }
9760 }
9761
9762 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9763 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9764 dev->features = features;
9765 err |= vlan_get_rx_stag_filter_info(dev);
9766 } else {
9767 vlan_drop_rx_stag_filter_info(dev);
9768 }
9769 }
9770
9771 dev->features = features;
9772 }
9773
9774 return err < 0 ? 0 : 1;
9775}
9776
9777/**
9778 * netdev_update_features - recalculate device features
9779 * @dev: the device to check
9780 *
9781 * Recalculate dev->features set and send notifications if it
9782 * has changed. Should be called after driver or hardware dependent
9783 * conditions might have changed that influence the features.
9784 */
9785void netdev_update_features(struct net_device *dev)
9786{
9787 if (__netdev_update_features(dev))
9788 netdev_features_change(dev);
9789}
9790EXPORT_SYMBOL(netdev_update_features);
9791
9792/**
9793 * netdev_change_features - recalculate device features
9794 * @dev: the device to check
9795 *
9796 * Recalculate dev->features set and send notifications even
9797 * if they have not changed. Should be called instead of
9798 * netdev_update_features() if also dev->vlan_features might
9799 * have changed to allow the changes to be propagated to stacked
9800 * VLAN devices.
9801 */
9802void netdev_change_features(struct net_device *dev)
9803{
9804 __netdev_update_features(dev);
9805 netdev_features_change(dev);
9806}
9807EXPORT_SYMBOL(netdev_change_features);
9808
9809/**
9810 * netif_stacked_transfer_operstate - transfer operstate
9811 * @rootdev: the root or lower level device to transfer state from
9812 * @dev: the device to transfer operstate to
9813 *
9814 * Transfer operational state from root to device. This is normally
9815 * called when a stacking relationship exists between the root
9816 * device and the device(a leaf device).
9817 */
9818void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9819 struct net_device *dev)
9820{
9821 if (rootdev->operstate == IF_OPER_DORMANT)
9822 netif_dormant_on(dev);
9823 else
9824 netif_dormant_off(dev);
9825
9826 if (rootdev->operstate == IF_OPER_TESTING)
9827 netif_testing_on(dev);
9828 else
9829 netif_testing_off(dev);
9830
9831 if (netif_carrier_ok(rootdev))
9832 netif_carrier_on(dev);
9833 else
9834 netif_carrier_off(dev);
9835}
9836EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9837
9838static int netif_alloc_rx_queues(struct net_device *dev)
9839{
9840 unsigned int i, count = dev->num_rx_queues;
9841 struct netdev_rx_queue *rx;
9842 size_t sz = count * sizeof(*rx);
9843 int err = 0;
9844
9845 BUG_ON(count < 1);
9846
9847 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9848 if (!rx)
9849 return -ENOMEM;
9850
9851 dev->_rx = rx;
9852
9853 for (i = 0; i < count; i++) {
9854 rx[i].dev = dev;
9855
9856 /* XDP RX-queue setup */
9857 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9858 if (err < 0)
9859 goto err_rxq_info;
9860 }
9861 return 0;
9862
9863err_rxq_info:
9864 /* Rollback successful reg's and free other resources */
9865 while (i--)
9866 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9867 kvfree(dev->_rx);
9868 dev->_rx = NULL;
9869 return err;
9870}
9871
9872static void netif_free_rx_queues(struct net_device *dev)
9873{
9874 unsigned int i, count = dev->num_rx_queues;
9875
9876 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9877 if (!dev->_rx)
9878 return;
9879
9880 for (i = 0; i < count; i++)
9881 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9882
9883 kvfree(dev->_rx);
9884}
9885
9886static void netdev_init_one_queue(struct net_device *dev,
9887 struct netdev_queue *queue, void *_unused)
9888{
9889 /* Initialize queue lock */
9890 spin_lock_init(&queue->_xmit_lock);
9891 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9892 queue->xmit_lock_owner = -1;
9893 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9894 queue->dev = dev;
9895#ifdef CONFIG_BQL
9896 dql_init(&queue->dql, HZ);
9897#endif
9898}
9899
9900static void netif_free_tx_queues(struct net_device *dev)
9901{
9902 kvfree(dev->_tx);
9903}
9904
9905static int netif_alloc_netdev_queues(struct net_device *dev)
9906{
9907 unsigned int count = dev->num_tx_queues;
9908 struct netdev_queue *tx;
9909 size_t sz = count * sizeof(*tx);
9910
9911 if (count < 1 || count > 0xffff)
9912 return -EINVAL;
9913
9914 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9915 if (!tx)
9916 return -ENOMEM;
9917
9918 dev->_tx = tx;
9919
9920 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9921 spin_lock_init(&dev->tx_global_lock);
9922
9923 return 0;
9924}
9925
9926void netif_tx_stop_all_queues(struct net_device *dev)
9927{
9928 unsigned int i;
9929
9930 for (i = 0; i < dev->num_tx_queues; i++) {
9931 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9932
9933 netif_tx_stop_queue(txq);
9934 }
9935}
9936EXPORT_SYMBOL(netif_tx_stop_all_queues);
9937
9938/**
9939 * register_netdevice() - register a network device
9940 * @dev: device to register
9941 *
9942 * Take a prepared network device structure and make it externally accessible.
9943 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9944 * Callers must hold the rtnl lock - you may want register_netdev()
9945 * instead of this.
9946 */
9947int register_netdevice(struct net_device *dev)
9948{
9949 int ret;
9950 struct net *net = dev_net(dev);
9951
9952 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9953 NETDEV_FEATURE_COUNT);
9954 BUG_ON(dev_boot_phase);
9955 ASSERT_RTNL();
9956
9957 might_sleep();
9958
9959 /* When net_device's are persistent, this will be fatal. */
9960 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9961 BUG_ON(!net);
9962
9963 ret = ethtool_check_ops(dev->ethtool_ops);
9964 if (ret)
9965 return ret;
9966
9967 spin_lock_init(&dev->addr_list_lock);
9968 netdev_set_addr_lockdep_class(dev);
9969
9970 ret = dev_get_valid_name(net, dev, dev->name);
9971 if (ret < 0)
9972 goto out;
9973
9974 ret = -ENOMEM;
9975 dev->name_node = netdev_name_node_head_alloc(dev);
9976 if (!dev->name_node)
9977 goto out;
9978
9979 /* Init, if this function is available */
9980 if (dev->netdev_ops->ndo_init) {
9981 ret = dev->netdev_ops->ndo_init(dev);
9982 if (ret) {
9983 if (ret > 0)
9984 ret = -EIO;
9985 goto err_free_name;
9986 }
9987 }
9988
9989 if (((dev->hw_features | dev->features) &
9990 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9991 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9992 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9993 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9994 ret = -EINVAL;
9995 goto err_uninit;
9996 }
9997
9998 ret = -EBUSY;
9999 if (!dev->ifindex)
10000 dev->ifindex = dev_new_index(net);
10001 else if (__dev_get_by_index(net, dev->ifindex))
10002 goto err_uninit;
10003
10004 /* Transfer changeable features to wanted_features and enable
10005 * software offloads (GSO and GRO).
10006 */
10007 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10008 dev->features |= NETIF_F_SOFT_FEATURES;
10009
10010 if (dev->udp_tunnel_nic_info) {
10011 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10012 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10013 }
10014
10015 dev->wanted_features = dev->features & dev->hw_features;
10016
10017 if (!(dev->flags & IFF_LOOPBACK))
10018 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10019
10020 /* If IPv4 TCP segmentation offload is supported we should also
10021 * allow the device to enable segmenting the frame with the option
10022 * of ignoring a static IP ID value. This doesn't enable the
10023 * feature itself but allows the user to enable it later.
10024 */
10025 if (dev->hw_features & NETIF_F_TSO)
10026 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10027 if (dev->vlan_features & NETIF_F_TSO)
10028 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10029 if (dev->mpls_features & NETIF_F_TSO)
10030 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10031 if (dev->hw_enc_features & NETIF_F_TSO)
10032 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10033
10034 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10035 */
10036 dev->vlan_features |= NETIF_F_HIGHDMA;
10037
10038 /* Make NETIF_F_SG inheritable to tunnel devices.
10039 */
10040 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10041
10042 /* Make NETIF_F_SG inheritable to MPLS.
10043 */
10044 dev->mpls_features |= NETIF_F_SG;
10045
10046 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10047 ret = notifier_to_errno(ret);
10048 if (ret)
10049 goto err_uninit;
10050
10051 ret = netdev_register_kobject(dev);
10052 write_lock(&dev_base_lock);
10053 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10054 write_unlock(&dev_base_lock);
10055 if (ret)
10056 goto err_uninit;
10057
10058 __netdev_update_features(dev);
10059
10060 /*
10061 * Default initial state at registry is that the
10062 * device is present.
10063 */
10064
10065 set_bit(__LINK_STATE_PRESENT, &dev->state);
10066
10067 linkwatch_init_dev(dev);
10068
10069 dev_init_scheduler(dev);
10070
10071 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10072 list_netdevice(dev);
10073
10074 add_device_randomness(dev->dev_addr, dev->addr_len);
10075
10076 /* If the device has permanent device address, driver should
10077 * set dev_addr and also addr_assign_type should be set to
10078 * NET_ADDR_PERM (default value).
10079 */
10080 if (dev->addr_assign_type == NET_ADDR_PERM)
10081 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10082
10083 /* Notify protocols, that a new device appeared. */
10084 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10085 ret = notifier_to_errno(ret);
10086 if (ret) {
10087 /* Expect explicit free_netdev() on failure */
10088 dev->needs_free_netdev = false;
10089 unregister_netdevice_queue(dev, NULL);
10090 goto out;
10091 }
10092 /*
10093 * Prevent userspace races by waiting until the network
10094 * device is fully setup before sending notifications.
10095 */
10096 if (!dev->rtnl_link_ops ||
10097 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10098 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10099
10100out:
10101 return ret;
10102
10103err_uninit:
10104 if (dev->netdev_ops->ndo_uninit)
10105 dev->netdev_ops->ndo_uninit(dev);
10106 if (dev->priv_destructor)
10107 dev->priv_destructor(dev);
10108err_free_name:
10109 netdev_name_node_free(dev->name_node);
10110 goto out;
10111}
10112EXPORT_SYMBOL(register_netdevice);
10113
10114/**
10115 * init_dummy_netdev - init a dummy network device for NAPI
10116 * @dev: device to init
10117 *
10118 * This takes a network device structure and initialize the minimum
10119 * amount of fields so it can be used to schedule NAPI polls without
10120 * registering a full blown interface. This is to be used by drivers
10121 * that need to tie several hardware interfaces to a single NAPI
10122 * poll scheduler due to HW limitations.
10123 */
10124int init_dummy_netdev(struct net_device *dev)
10125{
10126 /* Clear everything. Note we don't initialize spinlocks
10127 * are they aren't supposed to be taken by any of the
10128 * NAPI code and this dummy netdev is supposed to be
10129 * only ever used for NAPI polls
10130 */
10131 memset(dev, 0, sizeof(struct net_device));
10132
10133 /* make sure we BUG if trying to hit standard
10134 * register/unregister code path
10135 */
10136 dev->reg_state = NETREG_DUMMY;
10137
10138 /* NAPI wants this */
10139 INIT_LIST_HEAD(&dev->napi_list);
10140
10141 /* a dummy interface is started by default */
10142 set_bit(__LINK_STATE_PRESENT, &dev->state);
10143 set_bit(__LINK_STATE_START, &dev->state);
10144
10145 /* napi_busy_loop stats accounting wants this */
10146 dev_net_set(dev, &init_net);
10147
10148 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10149 * because users of this 'device' dont need to change
10150 * its refcount.
10151 */
10152
10153 return 0;
10154}
10155EXPORT_SYMBOL_GPL(init_dummy_netdev);
10156
10157
10158/**
10159 * register_netdev - register a network device
10160 * @dev: device to register
10161 *
10162 * Take a completed network device structure and add it to the kernel
10163 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10164 * chain. 0 is returned on success. A negative errno code is returned
10165 * on a failure to set up the device, or if the name is a duplicate.
10166 *
10167 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10168 * and expands the device name if you passed a format string to
10169 * alloc_netdev.
10170 */
10171int register_netdev(struct net_device *dev)
10172{
10173 int err;
10174
10175 if (rtnl_lock_killable())
10176 return -EINTR;
10177 err = register_netdevice(dev);
10178 rtnl_unlock();
10179 return err;
10180}
10181EXPORT_SYMBOL(register_netdev);
10182
10183int netdev_refcnt_read(const struct net_device *dev)
10184{
10185#ifdef CONFIG_PCPU_DEV_REFCNT
10186 int i, refcnt = 0;
10187
10188 for_each_possible_cpu(i)
10189 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10190 return refcnt;
10191#else
10192 return refcount_read(&dev->dev_refcnt);
10193#endif
10194}
10195EXPORT_SYMBOL(netdev_refcnt_read);
10196
10197int netdev_unregister_timeout_secs __read_mostly = 10;
10198
10199#define WAIT_REFS_MIN_MSECS 1
10200#define WAIT_REFS_MAX_MSECS 250
10201/**
10202 * netdev_wait_allrefs_any - wait until all references are gone.
10203 * @list: list of net_devices to wait on
10204 *
10205 * This is called when unregistering network devices.
10206 *
10207 * Any protocol or device that holds a reference should register
10208 * for netdevice notification, and cleanup and put back the
10209 * reference if they receive an UNREGISTER event.
10210 * We can get stuck here if buggy protocols don't correctly
10211 * call dev_put.
10212 */
10213static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10214{
10215 unsigned long rebroadcast_time, warning_time;
10216 struct net_device *dev;
10217 int wait = 0;
10218
10219 rebroadcast_time = warning_time = jiffies;
10220
10221 list_for_each_entry(dev, list, todo_list)
10222 if (netdev_refcnt_read(dev) == 1)
10223 return dev;
10224
10225 while (true) {
10226 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10227 rtnl_lock();
10228
10229 /* Rebroadcast unregister notification */
10230 list_for_each_entry(dev, list, todo_list)
10231 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10232
10233 __rtnl_unlock();
10234 rcu_barrier();
10235 rtnl_lock();
10236
10237 list_for_each_entry(dev, list, todo_list)
10238 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10239 &dev->state)) {
10240 /* We must not have linkwatch events
10241 * pending on unregister. If this
10242 * happens, we simply run the queue
10243 * unscheduled, resulting in a noop
10244 * for this device.
10245 */
10246 linkwatch_run_queue();
10247 break;
10248 }
10249
10250 __rtnl_unlock();
10251
10252 rebroadcast_time = jiffies;
10253 }
10254
10255 if (!wait) {
10256 rcu_barrier();
10257 wait = WAIT_REFS_MIN_MSECS;
10258 } else {
10259 msleep(wait);
10260 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10261 }
10262
10263 list_for_each_entry(dev, list, todo_list)
10264 if (netdev_refcnt_read(dev) == 1)
10265 return dev;
10266
10267 if (time_after(jiffies, warning_time +
10268 netdev_unregister_timeout_secs * HZ)) {
10269 list_for_each_entry(dev, list, todo_list) {
10270 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10271 dev->name, netdev_refcnt_read(dev));
10272 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10273 }
10274
10275 warning_time = jiffies;
10276 }
10277 }
10278}
10279
10280/* The sequence is:
10281 *
10282 * rtnl_lock();
10283 * ...
10284 * register_netdevice(x1);
10285 * register_netdevice(x2);
10286 * ...
10287 * unregister_netdevice(y1);
10288 * unregister_netdevice(y2);
10289 * ...
10290 * rtnl_unlock();
10291 * free_netdev(y1);
10292 * free_netdev(y2);
10293 *
10294 * We are invoked by rtnl_unlock().
10295 * This allows us to deal with problems:
10296 * 1) We can delete sysfs objects which invoke hotplug
10297 * without deadlocking with linkwatch via keventd.
10298 * 2) Since we run with the RTNL semaphore not held, we can sleep
10299 * safely in order to wait for the netdev refcnt to drop to zero.
10300 *
10301 * We must not return until all unregister events added during
10302 * the interval the lock was held have been completed.
10303 */
10304void netdev_run_todo(void)
10305{
10306 struct net_device *dev, *tmp;
10307 struct list_head list;
10308#ifdef CONFIG_LOCKDEP
10309 struct list_head unlink_list;
10310
10311 list_replace_init(&net_unlink_list, &unlink_list);
10312
10313 while (!list_empty(&unlink_list)) {
10314 struct net_device *dev = list_first_entry(&unlink_list,
10315 struct net_device,
10316 unlink_list);
10317 list_del_init(&dev->unlink_list);
10318 dev->nested_level = dev->lower_level - 1;
10319 }
10320#endif
10321
10322 /* Snapshot list, allow later requests */
10323 list_replace_init(&net_todo_list, &list);
10324
10325 __rtnl_unlock();
10326
10327 /* Wait for rcu callbacks to finish before next phase */
10328 if (!list_empty(&list))
10329 rcu_barrier();
10330
10331 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10332 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10333 netdev_WARN(dev, "run_todo but not unregistering\n");
10334 list_del(&dev->todo_list);
10335 continue;
10336 }
10337
10338 write_lock(&dev_base_lock);
10339 dev->reg_state = NETREG_UNREGISTERED;
10340 write_unlock(&dev_base_lock);
10341 linkwatch_forget_dev(dev);
10342 }
10343
10344 while (!list_empty(&list)) {
10345 dev = netdev_wait_allrefs_any(&list);
10346 list_del(&dev->todo_list);
10347
10348 /* paranoia */
10349 BUG_ON(netdev_refcnt_read(dev) != 1);
10350 BUG_ON(!list_empty(&dev->ptype_all));
10351 BUG_ON(!list_empty(&dev->ptype_specific));
10352 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10353 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10354#if IS_ENABLED(CONFIG_DECNET)
10355 WARN_ON(dev->dn_ptr);
10356#endif
10357 if (dev->priv_destructor)
10358 dev->priv_destructor(dev);
10359 if (dev->needs_free_netdev)
10360 free_netdev(dev);
10361
10362 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10363 wake_up(&netdev_unregistering_wq);
10364
10365 /* Free network device */
10366 kobject_put(&dev->dev.kobj);
10367 }
10368}
10369
10370/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10371 * all the same fields in the same order as net_device_stats, with only
10372 * the type differing, but rtnl_link_stats64 may have additional fields
10373 * at the end for newer counters.
10374 */
10375void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10376 const struct net_device_stats *netdev_stats)
10377{
10378#if BITS_PER_LONG == 64
10379 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10380 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10381 /* zero out counters that only exist in rtnl_link_stats64 */
10382 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10383 sizeof(*stats64) - sizeof(*netdev_stats));
10384#else
10385 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10386 const unsigned long *src = (const unsigned long *)netdev_stats;
10387 u64 *dst = (u64 *)stats64;
10388
10389 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10390 for (i = 0; i < n; i++)
10391 dst[i] = src[i];
10392 /* zero out counters that only exist in rtnl_link_stats64 */
10393 memset((char *)stats64 + n * sizeof(u64), 0,
10394 sizeof(*stats64) - n * sizeof(u64));
10395#endif
10396}
10397EXPORT_SYMBOL(netdev_stats_to_stats64);
10398
10399struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10400{
10401 struct net_device_core_stats __percpu *p;
10402
10403 p = alloc_percpu_gfp(struct net_device_core_stats,
10404 GFP_ATOMIC | __GFP_NOWARN);
10405
10406 if (p && cmpxchg(&dev->core_stats, NULL, p))
10407 free_percpu(p);
10408
10409 /* This READ_ONCE() pairs with the cmpxchg() above */
10410 return READ_ONCE(dev->core_stats);
10411}
10412EXPORT_SYMBOL(netdev_core_stats_alloc);
10413
10414/**
10415 * dev_get_stats - get network device statistics
10416 * @dev: device to get statistics from
10417 * @storage: place to store stats
10418 *
10419 * Get network statistics from device. Return @storage.
10420 * The device driver may provide its own method by setting
10421 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10422 * otherwise the internal statistics structure is used.
10423 */
10424struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10425 struct rtnl_link_stats64 *storage)
10426{
10427 const struct net_device_ops *ops = dev->netdev_ops;
10428 const struct net_device_core_stats __percpu *p;
10429
10430 if (ops->ndo_get_stats64) {
10431 memset(storage, 0, sizeof(*storage));
10432 ops->ndo_get_stats64(dev, storage);
10433 } else if (ops->ndo_get_stats) {
10434 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10435 } else {
10436 netdev_stats_to_stats64(storage, &dev->stats);
10437 }
10438
10439 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10440 p = READ_ONCE(dev->core_stats);
10441 if (p) {
10442 const struct net_device_core_stats *core_stats;
10443 int i;
10444
10445 for_each_possible_cpu(i) {
10446 core_stats = per_cpu_ptr(p, i);
10447 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10448 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10449 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10450 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10451 }
10452 }
10453 return storage;
10454}
10455EXPORT_SYMBOL(dev_get_stats);
10456
10457/**
10458 * dev_fetch_sw_netstats - get per-cpu network device statistics
10459 * @s: place to store stats
10460 * @netstats: per-cpu network stats to read from
10461 *
10462 * Read per-cpu network statistics and populate the related fields in @s.
10463 */
10464void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10465 const struct pcpu_sw_netstats __percpu *netstats)
10466{
10467 int cpu;
10468
10469 for_each_possible_cpu(cpu) {
10470 const struct pcpu_sw_netstats *stats;
10471 struct pcpu_sw_netstats tmp;
10472 unsigned int start;
10473
10474 stats = per_cpu_ptr(netstats, cpu);
10475 do {
10476 start = u64_stats_fetch_begin_irq(&stats->syncp);
10477 tmp.rx_packets = stats->rx_packets;
10478 tmp.rx_bytes = stats->rx_bytes;
10479 tmp.tx_packets = stats->tx_packets;
10480 tmp.tx_bytes = stats->tx_bytes;
10481 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10482
10483 s->rx_packets += tmp.rx_packets;
10484 s->rx_bytes += tmp.rx_bytes;
10485 s->tx_packets += tmp.tx_packets;
10486 s->tx_bytes += tmp.tx_bytes;
10487 }
10488}
10489EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10490
10491/**
10492 * dev_get_tstats64 - ndo_get_stats64 implementation
10493 * @dev: device to get statistics from
10494 * @s: place to store stats
10495 *
10496 * Populate @s from dev->stats and dev->tstats. Can be used as
10497 * ndo_get_stats64() callback.
10498 */
10499void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10500{
10501 netdev_stats_to_stats64(s, &dev->stats);
10502 dev_fetch_sw_netstats(s, dev->tstats);
10503}
10504EXPORT_SYMBOL_GPL(dev_get_tstats64);
10505
10506struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10507{
10508 struct netdev_queue *queue = dev_ingress_queue(dev);
10509
10510#ifdef CONFIG_NET_CLS_ACT
10511 if (queue)
10512 return queue;
10513 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10514 if (!queue)
10515 return NULL;
10516 netdev_init_one_queue(dev, queue, NULL);
10517 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10518 queue->qdisc_sleeping = &noop_qdisc;
10519 rcu_assign_pointer(dev->ingress_queue, queue);
10520#endif
10521 return queue;
10522}
10523
10524static const struct ethtool_ops default_ethtool_ops;
10525
10526void netdev_set_default_ethtool_ops(struct net_device *dev,
10527 const struct ethtool_ops *ops)
10528{
10529 if (dev->ethtool_ops == &default_ethtool_ops)
10530 dev->ethtool_ops = ops;
10531}
10532EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10533
10534void netdev_freemem(struct net_device *dev)
10535{
10536 char *addr = (char *)dev - dev->padded;
10537
10538 kvfree(addr);
10539}
10540
10541/**
10542 * alloc_netdev_mqs - allocate network device
10543 * @sizeof_priv: size of private data to allocate space for
10544 * @name: device name format string
10545 * @name_assign_type: origin of device name
10546 * @setup: callback to initialize device
10547 * @txqs: the number of TX subqueues to allocate
10548 * @rxqs: the number of RX subqueues to allocate
10549 *
10550 * Allocates a struct net_device with private data area for driver use
10551 * and performs basic initialization. Also allocates subqueue structs
10552 * for each queue on the device.
10553 */
10554struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10555 unsigned char name_assign_type,
10556 void (*setup)(struct net_device *),
10557 unsigned int txqs, unsigned int rxqs)
10558{
10559 struct net_device *dev;
10560 unsigned int alloc_size;
10561 struct net_device *p;
10562
10563 BUG_ON(strlen(name) >= sizeof(dev->name));
10564
10565 if (txqs < 1) {
10566 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10567 return NULL;
10568 }
10569
10570 if (rxqs < 1) {
10571 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10572 return NULL;
10573 }
10574
10575 alloc_size = sizeof(struct net_device);
10576 if (sizeof_priv) {
10577 /* ensure 32-byte alignment of private area */
10578 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10579 alloc_size += sizeof_priv;
10580 }
10581 /* ensure 32-byte alignment of whole construct */
10582 alloc_size += NETDEV_ALIGN - 1;
10583
10584 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10585 if (!p)
10586 return NULL;
10587
10588 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10589 dev->padded = (char *)dev - (char *)p;
10590
10591 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10592#ifdef CONFIG_PCPU_DEV_REFCNT
10593 dev->pcpu_refcnt = alloc_percpu(int);
10594 if (!dev->pcpu_refcnt)
10595 goto free_dev;
10596 __dev_hold(dev);
10597#else
10598 refcount_set(&dev->dev_refcnt, 1);
10599#endif
10600
10601 if (dev_addr_init(dev))
10602 goto free_pcpu;
10603
10604 dev_mc_init(dev);
10605 dev_uc_init(dev);
10606
10607 dev_net_set(dev, &init_net);
10608
10609 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10610 dev->gso_max_segs = GSO_MAX_SEGS;
10611 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10612 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10613 dev->tso_max_segs = TSO_MAX_SEGS;
10614 dev->upper_level = 1;
10615 dev->lower_level = 1;
10616#ifdef CONFIG_LOCKDEP
10617 dev->nested_level = 0;
10618 INIT_LIST_HEAD(&dev->unlink_list);
10619#endif
10620
10621 INIT_LIST_HEAD(&dev->napi_list);
10622 INIT_LIST_HEAD(&dev->unreg_list);
10623 INIT_LIST_HEAD(&dev->close_list);
10624 INIT_LIST_HEAD(&dev->link_watch_list);
10625 INIT_LIST_HEAD(&dev->adj_list.upper);
10626 INIT_LIST_HEAD(&dev->adj_list.lower);
10627 INIT_LIST_HEAD(&dev->ptype_all);
10628 INIT_LIST_HEAD(&dev->ptype_specific);
10629 INIT_LIST_HEAD(&dev->net_notifier_list);
10630#ifdef CONFIG_NET_SCHED
10631 hash_init(dev->qdisc_hash);
10632#endif
10633 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10634 setup(dev);
10635
10636 if (!dev->tx_queue_len) {
10637 dev->priv_flags |= IFF_NO_QUEUE;
10638 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10639 }
10640
10641 dev->num_tx_queues = txqs;
10642 dev->real_num_tx_queues = txqs;
10643 if (netif_alloc_netdev_queues(dev))
10644 goto free_all;
10645
10646 dev->num_rx_queues = rxqs;
10647 dev->real_num_rx_queues = rxqs;
10648 if (netif_alloc_rx_queues(dev))
10649 goto free_all;
10650
10651 strcpy(dev->name, name);
10652 dev->name_assign_type = name_assign_type;
10653 dev->group = INIT_NETDEV_GROUP;
10654 if (!dev->ethtool_ops)
10655 dev->ethtool_ops = &default_ethtool_ops;
10656
10657 nf_hook_netdev_init(dev);
10658
10659 return dev;
10660
10661free_all:
10662 free_netdev(dev);
10663 return NULL;
10664
10665free_pcpu:
10666#ifdef CONFIG_PCPU_DEV_REFCNT
10667 free_percpu(dev->pcpu_refcnt);
10668free_dev:
10669#endif
10670 netdev_freemem(dev);
10671 return NULL;
10672}
10673EXPORT_SYMBOL(alloc_netdev_mqs);
10674
10675/**
10676 * free_netdev - free network device
10677 * @dev: device
10678 *
10679 * This function does the last stage of destroying an allocated device
10680 * interface. The reference to the device object is released. If this
10681 * is the last reference then it will be freed.Must be called in process
10682 * context.
10683 */
10684void free_netdev(struct net_device *dev)
10685{
10686 struct napi_struct *p, *n;
10687
10688 might_sleep();
10689
10690 /* When called immediately after register_netdevice() failed the unwind
10691 * handling may still be dismantling the device. Handle that case by
10692 * deferring the free.
10693 */
10694 if (dev->reg_state == NETREG_UNREGISTERING) {
10695 ASSERT_RTNL();
10696 dev->needs_free_netdev = true;
10697 return;
10698 }
10699
10700 netif_free_tx_queues(dev);
10701 netif_free_rx_queues(dev);
10702
10703 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10704
10705 /* Flush device addresses */
10706 dev_addr_flush(dev);
10707
10708 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10709 netif_napi_del(p);
10710
10711 ref_tracker_dir_exit(&dev->refcnt_tracker);
10712#ifdef CONFIG_PCPU_DEV_REFCNT
10713 free_percpu(dev->pcpu_refcnt);
10714 dev->pcpu_refcnt = NULL;
10715#endif
10716 free_percpu(dev->core_stats);
10717 dev->core_stats = NULL;
10718 free_percpu(dev->xdp_bulkq);
10719 dev->xdp_bulkq = NULL;
10720
10721 /* Compatibility with error handling in drivers */
10722 if (dev->reg_state == NETREG_UNINITIALIZED) {
10723 netdev_freemem(dev);
10724 return;
10725 }
10726
10727 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10728 dev->reg_state = NETREG_RELEASED;
10729
10730 /* will free via device release */
10731 put_device(&dev->dev);
10732}
10733EXPORT_SYMBOL(free_netdev);
10734
10735/**
10736 * synchronize_net - Synchronize with packet receive processing
10737 *
10738 * Wait for packets currently being received to be done.
10739 * Does not block later packets from starting.
10740 */
10741void synchronize_net(void)
10742{
10743 might_sleep();
10744 if (rtnl_is_locked())
10745 synchronize_rcu_expedited();
10746 else
10747 synchronize_rcu();
10748}
10749EXPORT_SYMBOL(synchronize_net);
10750
10751/**
10752 * unregister_netdevice_queue - remove device from the kernel
10753 * @dev: device
10754 * @head: list
10755 *
10756 * This function shuts down a device interface and removes it
10757 * from the kernel tables.
10758 * If head not NULL, device is queued to be unregistered later.
10759 *
10760 * Callers must hold the rtnl semaphore. You may want
10761 * unregister_netdev() instead of this.
10762 */
10763
10764void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10765{
10766 ASSERT_RTNL();
10767
10768 if (head) {
10769 list_move_tail(&dev->unreg_list, head);
10770 } else {
10771 LIST_HEAD(single);
10772
10773 list_add(&dev->unreg_list, &single);
10774 unregister_netdevice_many(&single);
10775 }
10776}
10777EXPORT_SYMBOL(unregister_netdevice_queue);
10778
10779/**
10780 * unregister_netdevice_many - unregister many devices
10781 * @head: list of devices
10782 *
10783 * Note: As most callers use a stack allocated list_head,
10784 * we force a list_del() to make sure stack wont be corrupted later.
10785 */
10786void unregister_netdevice_many(struct list_head *head)
10787{
10788 struct net_device *dev, *tmp;
10789 LIST_HEAD(close_head);
10790
10791 BUG_ON(dev_boot_phase);
10792 ASSERT_RTNL();
10793
10794 if (list_empty(head))
10795 return;
10796
10797 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10798 /* Some devices call without registering
10799 * for initialization unwind. Remove those
10800 * devices and proceed with the remaining.
10801 */
10802 if (dev->reg_state == NETREG_UNINITIALIZED) {
10803 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10804 dev->name, dev);
10805
10806 WARN_ON(1);
10807 list_del(&dev->unreg_list);
10808 continue;
10809 }
10810 dev->dismantle = true;
10811 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10812 }
10813
10814 /* If device is running, close it first. */
10815 list_for_each_entry(dev, head, unreg_list)
10816 list_add_tail(&dev->close_list, &close_head);
10817 dev_close_many(&close_head, true);
10818
10819 list_for_each_entry(dev, head, unreg_list) {
10820 /* And unlink it from device chain. */
10821 write_lock(&dev_base_lock);
10822 unlist_netdevice(dev, false);
10823 dev->reg_state = NETREG_UNREGISTERING;
10824 write_unlock(&dev_base_lock);
10825 }
10826 flush_all_backlogs();
10827
10828 synchronize_net();
10829
10830 list_for_each_entry(dev, head, unreg_list) {
10831 struct sk_buff *skb = NULL;
10832
10833 /* Shutdown queueing discipline. */
10834 dev_shutdown(dev);
10835
10836 dev_xdp_uninstall(dev);
10837
10838 netdev_offload_xstats_disable_all(dev);
10839
10840 /* Notify protocols, that we are about to destroy
10841 * this device. They should clean all the things.
10842 */
10843 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10844
10845 if (!dev->rtnl_link_ops ||
10846 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10847 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10848 GFP_KERNEL, NULL, 0);
10849
10850 /*
10851 * Flush the unicast and multicast chains
10852 */
10853 dev_uc_flush(dev);
10854 dev_mc_flush(dev);
10855
10856 netdev_name_node_alt_flush(dev);
10857 netdev_name_node_free(dev->name_node);
10858
10859 if (dev->netdev_ops->ndo_uninit)
10860 dev->netdev_ops->ndo_uninit(dev);
10861
10862 if (skb)
10863 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10864
10865 /* Notifier chain MUST detach us all upper devices. */
10866 WARN_ON(netdev_has_any_upper_dev(dev));
10867 WARN_ON(netdev_has_any_lower_dev(dev));
10868
10869 /* Remove entries from kobject tree */
10870 netdev_unregister_kobject(dev);
10871#ifdef CONFIG_XPS
10872 /* Remove XPS queueing entries */
10873 netif_reset_xps_queues_gt(dev, 0);
10874#endif
10875 }
10876
10877 synchronize_net();
10878
10879 list_for_each_entry(dev, head, unreg_list) {
10880 dev_put_track(dev, &dev->dev_registered_tracker);
10881 net_set_todo(dev);
10882 }
10883
10884 list_del(head);
10885}
10886EXPORT_SYMBOL(unregister_netdevice_many);
10887
10888/**
10889 * unregister_netdev - remove device from the kernel
10890 * @dev: device
10891 *
10892 * This function shuts down a device interface and removes it
10893 * from the kernel tables.
10894 *
10895 * This is just a wrapper for unregister_netdevice that takes
10896 * the rtnl semaphore. In general you want to use this and not
10897 * unregister_netdevice.
10898 */
10899void unregister_netdev(struct net_device *dev)
10900{
10901 rtnl_lock();
10902 unregister_netdevice(dev);
10903 rtnl_unlock();
10904}
10905EXPORT_SYMBOL(unregister_netdev);
10906
10907/**
10908 * __dev_change_net_namespace - move device to different nethost namespace
10909 * @dev: device
10910 * @net: network namespace
10911 * @pat: If not NULL name pattern to try if the current device name
10912 * is already taken in the destination network namespace.
10913 * @new_ifindex: If not zero, specifies device index in the target
10914 * namespace.
10915 *
10916 * This function shuts down a device interface and moves it
10917 * to a new network namespace. On success 0 is returned, on
10918 * a failure a netagive errno code is returned.
10919 *
10920 * Callers must hold the rtnl semaphore.
10921 */
10922
10923int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10924 const char *pat, int new_ifindex)
10925{
10926 struct net *net_old = dev_net(dev);
10927 int err, new_nsid;
10928
10929 ASSERT_RTNL();
10930
10931 /* Don't allow namespace local devices to be moved. */
10932 err = -EINVAL;
10933 if (dev->features & NETIF_F_NETNS_LOCAL)
10934 goto out;
10935
10936 /* Ensure the device has been registrered */
10937 if (dev->reg_state != NETREG_REGISTERED)
10938 goto out;
10939
10940 /* Get out if there is nothing todo */
10941 err = 0;
10942 if (net_eq(net_old, net))
10943 goto out;
10944
10945 /* Pick the destination device name, and ensure
10946 * we can use it in the destination network namespace.
10947 */
10948 err = -EEXIST;
10949 if (netdev_name_in_use(net, dev->name)) {
10950 /* We get here if we can't use the current device name */
10951 if (!pat)
10952 goto out;
10953 err = dev_get_valid_name(net, dev, pat);
10954 if (err < 0)
10955 goto out;
10956 }
10957
10958 /* Check that new_ifindex isn't used yet. */
10959 err = -EBUSY;
10960 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10961 goto out;
10962
10963 /*
10964 * And now a mini version of register_netdevice unregister_netdevice.
10965 */
10966
10967 /* If device is running close it first. */
10968 dev_close(dev);
10969
10970 /* And unlink it from device chain */
10971 unlist_netdevice(dev, true);
10972
10973 synchronize_net();
10974
10975 /* Shutdown queueing discipline. */
10976 dev_shutdown(dev);
10977
10978 /* Notify protocols, that we are about to destroy
10979 * this device. They should clean all the things.
10980 *
10981 * Note that dev->reg_state stays at NETREG_REGISTERED.
10982 * This is wanted because this way 8021q and macvlan know
10983 * the device is just moving and can keep their slaves up.
10984 */
10985 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10986 rcu_barrier();
10987
10988 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10989 /* If there is an ifindex conflict assign a new one */
10990 if (!new_ifindex) {
10991 if (__dev_get_by_index(net, dev->ifindex))
10992 new_ifindex = dev_new_index(net);
10993 else
10994 new_ifindex = dev->ifindex;
10995 }
10996
10997 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10998 new_ifindex);
10999
11000 /*
11001 * Flush the unicast and multicast chains
11002 */
11003 dev_uc_flush(dev);
11004 dev_mc_flush(dev);
11005
11006 /* Send a netdev-removed uevent to the old namespace */
11007 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11008 netdev_adjacent_del_links(dev);
11009
11010 /* Move per-net netdevice notifiers that are following the netdevice */
11011 move_netdevice_notifiers_dev_net(dev, net);
11012
11013 /* Actually switch the network namespace */
11014 dev_net_set(dev, net);
11015 dev->ifindex = new_ifindex;
11016
11017 /* Send a netdev-add uevent to the new namespace */
11018 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11019 netdev_adjacent_add_links(dev);
11020
11021 /* Fixup kobjects */
11022 err = device_rename(&dev->dev, dev->name);
11023 WARN_ON(err);
11024
11025 /* Adapt owner in case owning user namespace of target network
11026 * namespace is different from the original one.
11027 */
11028 err = netdev_change_owner(dev, net_old, net);
11029 WARN_ON(err);
11030
11031 /* Add the device back in the hashes */
11032 list_netdevice(dev);
11033
11034 /* Notify protocols, that a new device appeared. */
11035 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11036
11037 /*
11038 * Prevent userspace races by waiting until the network
11039 * device is fully setup before sending notifications.
11040 */
11041 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11042
11043 synchronize_net();
11044 err = 0;
11045out:
11046 return err;
11047}
11048EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11049
11050static int dev_cpu_dead(unsigned int oldcpu)
11051{
11052 struct sk_buff **list_skb;
11053 struct sk_buff *skb;
11054 unsigned int cpu;
11055 struct softnet_data *sd, *oldsd, *remsd = NULL;
11056
11057 local_irq_disable();
11058 cpu = smp_processor_id();
11059 sd = &per_cpu(softnet_data, cpu);
11060 oldsd = &per_cpu(softnet_data, oldcpu);
11061
11062 /* Find end of our completion_queue. */
11063 list_skb = &sd->completion_queue;
11064 while (*list_skb)
11065 list_skb = &(*list_skb)->next;
11066 /* Append completion queue from offline CPU. */
11067 *list_skb = oldsd->completion_queue;
11068 oldsd->completion_queue = NULL;
11069
11070 /* Append output queue from offline CPU. */
11071 if (oldsd->output_queue) {
11072 *sd->output_queue_tailp = oldsd->output_queue;
11073 sd->output_queue_tailp = oldsd->output_queue_tailp;
11074 oldsd->output_queue = NULL;
11075 oldsd->output_queue_tailp = &oldsd->output_queue;
11076 }
11077 /* Append NAPI poll list from offline CPU, with one exception :
11078 * process_backlog() must be called by cpu owning percpu backlog.
11079 * We properly handle process_queue & input_pkt_queue later.
11080 */
11081 while (!list_empty(&oldsd->poll_list)) {
11082 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11083 struct napi_struct,
11084 poll_list);
11085
11086 list_del_init(&napi->poll_list);
11087 if (napi->poll == process_backlog)
11088 napi->state = 0;
11089 else
11090 ____napi_schedule(sd, napi);
11091 }
11092
11093 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11094 local_irq_enable();
11095
11096#ifdef CONFIG_RPS
11097 remsd = oldsd->rps_ipi_list;
11098 oldsd->rps_ipi_list = NULL;
11099#endif
11100 /* send out pending IPI's on offline CPU */
11101 net_rps_send_ipi(remsd);
11102
11103 /* Process offline CPU's input_pkt_queue */
11104 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11105 netif_rx(skb);
11106 input_queue_head_incr(oldsd);
11107 }
11108 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11109 netif_rx(skb);
11110 input_queue_head_incr(oldsd);
11111 }
11112
11113 return 0;
11114}
11115
11116/**
11117 * netdev_increment_features - increment feature set by one
11118 * @all: current feature set
11119 * @one: new feature set
11120 * @mask: mask feature set
11121 *
11122 * Computes a new feature set after adding a device with feature set
11123 * @one to the master device with current feature set @all. Will not
11124 * enable anything that is off in @mask. Returns the new feature set.
11125 */
11126netdev_features_t netdev_increment_features(netdev_features_t all,
11127 netdev_features_t one, netdev_features_t mask)
11128{
11129 if (mask & NETIF_F_HW_CSUM)
11130 mask |= NETIF_F_CSUM_MASK;
11131 mask |= NETIF_F_VLAN_CHALLENGED;
11132
11133 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11134 all &= one | ~NETIF_F_ALL_FOR_ALL;
11135
11136 /* If one device supports hw checksumming, set for all. */
11137 if (all & NETIF_F_HW_CSUM)
11138 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11139
11140 return all;
11141}
11142EXPORT_SYMBOL(netdev_increment_features);
11143
11144static struct hlist_head * __net_init netdev_create_hash(void)
11145{
11146 int i;
11147 struct hlist_head *hash;
11148
11149 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11150 if (hash != NULL)
11151 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11152 INIT_HLIST_HEAD(&hash[i]);
11153
11154 return hash;
11155}
11156
11157/* Initialize per network namespace state */
11158static int __net_init netdev_init(struct net *net)
11159{
11160 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11161 8 * sizeof_field(struct napi_struct, gro_bitmask));
11162
11163 INIT_LIST_HEAD(&net->dev_base_head);
11164
11165 net->dev_name_head = netdev_create_hash();
11166 if (net->dev_name_head == NULL)
11167 goto err_name;
11168
11169 net->dev_index_head = netdev_create_hash();
11170 if (net->dev_index_head == NULL)
11171 goto err_idx;
11172
11173 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11174
11175 return 0;
11176
11177err_idx:
11178 kfree(net->dev_name_head);
11179err_name:
11180 return -ENOMEM;
11181}
11182
11183/**
11184 * netdev_drivername - network driver for the device
11185 * @dev: network device
11186 *
11187 * Determine network driver for device.
11188 */
11189const char *netdev_drivername(const struct net_device *dev)
11190{
11191 const struct device_driver *driver;
11192 const struct device *parent;
11193 const char *empty = "";
11194
11195 parent = dev->dev.parent;
11196 if (!parent)
11197 return empty;
11198
11199 driver = parent->driver;
11200 if (driver && driver->name)
11201 return driver->name;
11202 return empty;
11203}
11204
11205static void __netdev_printk(const char *level, const struct net_device *dev,
11206 struct va_format *vaf)
11207{
11208 if (dev && dev->dev.parent) {
11209 dev_printk_emit(level[1] - '0',
11210 dev->dev.parent,
11211 "%s %s %s%s: %pV",
11212 dev_driver_string(dev->dev.parent),
11213 dev_name(dev->dev.parent),
11214 netdev_name(dev), netdev_reg_state(dev),
11215 vaf);
11216 } else if (dev) {
11217 printk("%s%s%s: %pV",
11218 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11219 } else {
11220 printk("%s(NULL net_device): %pV", level, vaf);
11221 }
11222}
11223
11224void netdev_printk(const char *level, const struct net_device *dev,
11225 const char *format, ...)
11226{
11227 struct va_format vaf;
11228 va_list args;
11229
11230 va_start(args, format);
11231
11232 vaf.fmt = format;
11233 vaf.va = &args;
11234
11235 __netdev_printk(level, dev, &vaf);
11236
11237 va_end(args);
11238}
11239EXPORT_SYMBOL(netdev_printk);
11240
11241#define define_netdev_printk_level(func, level) \
11242void func(const struct net_device *dev, const char *fmt, ...) \
11243{ \
11244 struct va_format vaf; \
11245 va_list args; \
11246 \
11247 va_start(args, fmt); \
11248 \
11249 vaf.fmt = fmt; \
11250 vaf.va = &args; \
11251 \
11252 __netdev_printk(level, dev, &vaf); \
11253 \
11254 va_end(args); \
11255} \
11256EXPORT_SYMBOL(func);
11257
11258define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11259define_netdev_printk_level(netdev_alert, KERN_ALERT);
11260define_netdev_printk_level(netdev_crit, KERN_CRIT);
11261define_netdev_printk_level(netdev_err, KERN_ERR);
11262define_netdev_printk_level(netdev_warn, KERN_WARNING);
11263define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11264define_netdev_printk_level(netdev_info, KERN_INFO);
11265
11266static void __net_exit netdev_exit(struct net *net)
11267{
11268 kfree(net->dev_name_head);
11269 kfree(net->dev_index_head);
11270 if (net != &init_net)
11271 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11272}
11273
11274static struct pernet_operations __net_initdata netdev_net_ops = {
11275 .init = netdev_init,
11276 .exit = netdev_exit,
11277};
11278
11279static void __net_exit default_device_exit_net(struct net *net)
11280{
11281 struct net_device *dev, *aux;
11282 /*
11283 * Push all migratable network devices back to the
11284 * initial network namespace
11285 */
11286 ASSERT_RTNL();
11287 for_each_netdev_safe(net, dev, aux) {
11288 int err;
11289 char fb_name[IFNAMSIZ];
11290
11291 /* Ignore unmoveable devices (i.e. loopback) */
11292 if (dev->features & NETIF_F_NETNS_LOCAL)
11293 continue;
11294
11295 /* Leave virtual devices for the generic cleanup */
11296 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11297 continue;
11298
11299 /* Push remaining network devices to init_net */
11300 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11301 if (netdev_name_in_use(&init_net, fb_name))
11302 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11303 err = dev_change_net_namespace(dev, &init_net, fb_name);
11304 if (err) {
11305 pr_emerg("%s: failed to move %s to init_net: %d\n",
11306 __func__, dev->name, err);
11307 BUG();
11308 }
11309 }
11310}
11311
11312static void __net_exit default_device_exit_batch(struct list_head *net_list)
11313{
11314 /* At exit all network devices most be removed from a network
11315 * namespace. Do this in the reverse order of registration.
11316 * Do this across as many network namespaces as possible to
11317 * improve batching efficiency.
11318 */
11319 struct net_device *dev;
11320 struct net *net;
11321 LIST_HEAD(dev_kill_list);
11322
11323 rtnl_lock();
11324 list_for_each_entry(net, net_list, exit_list) {
11325 default_device_exit_net(net);
11326 cond_resched();
11327 }
11328
11329 list_for_each_entry(net, net_list, exit_list) {
11330 for_each_netdev_reverse(net, dev) {
11331 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11332 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11333 else
11334 unregister_netdevice_queue(dev, &dev_kill_list);
11335 }
11336 }
11337 unregister_netdevice_many(&dev_kill_list);
11338 rtnl_unlock();
11339}
11340
11341static struct pernet_operations __net_initdata default_device_ops = {
11342 .exit_batch = default_device_exit_batch,
11343};
11344
11345/*
11346 * Initialize the DEV module. At boot time this walks the device list and
11347 * unhooks any devices that fail to initialise (normally hardware not
11348 * present) and leaves us with a valid list of present and active devices.
11349 *
11350 */
11351
11352/*
11353 * This is called single threaded during boot, so no need
11354 * to take the rtnl semaphore.
11355 */
11356static int __init net_dev_init(void)
11357{
11358 int i, rc = -ENOMEM;
11359
11360 BUG_ON(!dev_boot_phase);
11361
11362 if (dev_proc_init())
11363 goto out;
11364
11365 if (netdev_kobject_init())
11366 goto out;
11367
11368 INIT_LIST_HEAD(&ptype_all);
11369 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11370 INIT_LIST_HEAD(&ptype_base[i]);
11371
11372 if (register_pernet_subsys(&netdev_net_ops))
11373 goto out;
11374
11375 /*
11376 * Initialise the packet receive queues.
11377 */
11378
11379 for_each_possible_cpu(i) {
11380 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11381 struct softnet_data *sd = &per_cpu(softnet_data, i);
11382
11383 INIT_WORK(flush, flush_backlog);
11384
11385 skb_queue_head_init(&sd->input_pkt_queue);
11386 skb_queue_head_init(&sd->process_queue);
11387#ifdef CONFIG_XFRM_OFFLOAD
11388 skb_queue_head_init(&sd->xfrm_backlog);
11389#endif
11390 INIT_LIST_HEAD(&sd->poll_list);
11391 sd->output_queue_tailp = &sd->output_queue;
11392#ifdef CONFIG_RPS
11393 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11394 sd->cpu = i;
11395#endif
11396 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11397 spin_lock_init(&sd->defer_lock);
11398
11399 init_gro_hash(&sd->backlog);
11400 sd->backlog.poll = process_backlog;
11401 sd->backlog.weight = weight_p;
11402 }
11403
11404 dev_boot_phase = 0;
11405
11406 /* The loopback device is special if any other network devices
11407 * is present in a network namespace the loopback device must
11408 * be present. Since we now dynamically allocate and free the
11409 * loopback device ensure this invariant is maintained by
11410 * keeping the loopback device as the first device on the
11411 * list of network devices. Ensuring the loopback devices
11412 * is the first device that appears and the last network device
11413 * that disappears.
11414 */
11415 if (register_pernet_device(&loopback_net_ops))
11416 goto out;
11417
11418 if (register_pernet_device(&default_device_ops))
11419 goto out;
11420
11421 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11422 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11423
11424 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11425 NULL, dev_cpu_dead);
11426 WARN_ON(rc < 0);
11427 rc = 0;
11428out:
11429 return rc;
11430}
11431
11432subsys_initcall(net_dev_init);