Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/swapops.h>
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
25#include <linux/jiffies.h>
26#include <linux/memblock.h>
27#include <linux/compiler.h>
28#include <linux/kernel.h>
29#include <linux/kasan.h>
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
35#include <linux/ratelimit.h>
36#include <linux/oom.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
41#include <linux/memory_hotplug.h>
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
44#include <linux/vmstat.h>
45#include <linux/mempolicy.h>
46#include <linux/memremap.h>
47#include <linux/stop_machine.h>
48#include <linux/random.h>
49#include <linux/sort.h>
50#include <linux/pfn.h>
51#include <linux/backing-dev.h>
52#include <linux/fault-inject.h>
53#include <linux/page-isolation.h>
54#include <linux/debugobjects.h>
55#include <linux/kmemleak.h>
56#include <linux/compaction.h>
57#include <trace/events/kmem.h>
58#include <trace/events/oom.h>
59#include <linux/prefetch.h>
60#include <linux/mm_inline.h>
61#include <linux/mmu_notifier.h>
62#include <linux/migrate.h>
63#include <linux/hugetlb.h>
64#include <linux/sched/rt.h>
65#include <linux/sched/mm.h>
66#include <linux/page_owner.h>
67#include <linux/page_table_check.h>
68#include <linux/kthread.h>
69#include <linux/memcontrol.h>
70#include <linux/ftrace.h>
71#include <linux/lockdep.h>
72#include <linux/nmi.h>
73#include <linux/psi.h>
74#include <linux/padata.h>
75#include <linux/khugepaged.h>
76#include <linux/buffer_head.h>
77#include <linux/delayacct.h>
78#include <asm/sections.h>
79#include <asm/tlbflush.h>
80#include <asm/div64.h>
81#include "internal.h"
82#include "shuffle.h"
83#include "page_reporting.h"
84#include "swap.h"
85
86/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87typedef int __bitwise fpi_t;
88
89/* No special request */
90#define FPI_NONE ((__force fpi_t)0)
91
92/*
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
99 */
100#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
101
102/*
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
106 *
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
110 * reporting).
111 */
112#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
113
114/*
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
122 */
123#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124
125/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126static DEFINE_MUTEX(pcp_batch_high_lock);
127#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128
129struct pagesets {
130 local_lock_t lock;
131};
132static DEFINE_PER_CPU(struct pagesets, pagesets) = {
133 .lock = INIT_LOCAL_LOCK(lock),
134};
135
136#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137DEFINE_PER_CPU(int, numa_node);
138EXPORT_PER_CPU_SYMBOL(numa_node);
139#endif
140
141DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142
143#ifdef CONFIG_HAVE_MEMORYLESS_NODES
144/*
145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148 * defined in <linux/topology.h>.
149 */
150DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
151EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152#endif
153
154/* work_structs for global per-cpu drains */
155struct pcpu_drain {
156 struct zone *zone;
157 struct work_struct work;
158};
159static DEFINE_MUTEX(pcpu_drain_mutex);
160static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161
162#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
163volatile unsigned long latent_entropy __latent_entropy;
164EXPORT_SYMBOL(latent_entropy);
165#endif
166
167/*
168 * Array of node states.
169 */
170nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 [N_POSSIBLE] = NODE_MASK_ALL,
172 [N_ONLINE] = { { [0] = 1UL } },
173#ifndef CONFIG_NUMA
174 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
175#ifdef CONFIG_HIGHMEM
176 [N_HIGH_MEMORY] = { { [0] = 1UL } },
177#endif
178 [N_MEMORY] = { { [0] = 1UL } },
179 [N_CPU] = { { [0] = 1UL } },
180#endif /* NUMA */
181};
182EXPORT_SYMBOL(node_states);
183
184atomic_long_t _totalram_pages __read_mostly;
185EXPORT_SYMBOL(_totalram_pages);
186unsigned long totalreserve_pages __read_mostly;
187unsigned long totalcma_pages __read_mostly;
188
189int percpu_pagelist_high_fraction;
190gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
191DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
192EXPORT_SYMBOL(init_on_alloc);
193
194DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
195EXPORT_SYMBOL(init_on_free);
196
197static bool _init_on_alloc_enabled_early __read_mostly
198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
199static int __init early_init_on_alloc(char *buf)
200{
201
202 return kstrtobool(buf, &_init_on_alloc_enabled_early);
203}
204early_param("init_on_alloc", early_init_on_alloc);
205
206static bool _init_on_free_enabled_early __read_mostly
207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
208static int __init early_init_on_free(char *buf)
209{
210 return kstrtobool(buf, &_init_on_free_enabled_early);
211}
212early_param("init_on_free", early_init_on_free);
213
214/*
215 * A cached value of the page's pageblock's migratetype, used when the page is
216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218 * Also the migratetype set in the page does not necessarily match the pcplist
219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220 * other index - this ensures that it will be put on the correct CMA freelist.
221 */
222static inline int get_pcppage_migratetype(struct page *page)
223{
224 return page->index;
225}
226
227static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228{
229 page->index = migratetype;
230}
231
232#ifdef CONFIG_PM_SLEEP
233/*
234 * The following functions are used by the suspend/hibernate code to temporarily
235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236 * while devices are suspended. To avoid races with the suspend/hibernate code,
237 * they should always be called with system_transition_mutex held
238 * (gfp_allowed_mask also should only be modified with system_transition_mutex
239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240 * with that modification).
241 */
242
243static gfp_t saved_gfp_mask;
244
245void pm_restore_gfp_mask(void)
246{
247 WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 if (saved_gfp_mask) {
249 gfp_allowed_mask = saved_gfp_mask;
250 saved_gfp_mask = 0;
251 }
252}
253
254void pm_restrict_gfp_mask(void)
255{
256 WARN_ON(!mutex_is_locked(&system_transition_mutex));
257 WARN_ON(saved_gfp_mask);
258 saved_gfp_mask = gfp_allowed_mask;
259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
260}
261
262bool pm_suspended_storage(void)
263{
264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
265 return false;
266 return true;
267}
268#endif /* CONFIG_PM_SLEEP */
269
270#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
271unsigned int pageblock_order __read_mostly;
272#endif
273
274static void __free_pages_ok(struct page *page, unsigned int order,
275 fpi_t fpi_flags);
276
277/*
278 * results with 256, 32 in the lowmem_reserve sysctl:
279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280 * 1G machine -> (16M dma, 784M normal, 224M high)
281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284 *
285 * TBD: should special case ZONE_DMA32 machines here - in those we normally
286 * don't need any ZONE_NORMAL reservation
287 */
288int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
289#ifdef CONFIG_ZONE_DMA
290 [ZONE_DMA] = 256,
291#endif
292#ifdef CONFIG_ZONE_DMA32
293 [ZONE_DMA32] = 256,
294#endif
295 [ZONE_NORMAL] = 32,
296#ifdef CONFIG_HIGHMEM
297 [ZONE_HIGHMEM] = 0,
298#endif
299 [ZONE_MOVABLE] = 0,
300};
301
302static char * const zone_names[MAX_NR_ZONES] = {
303#ifdef CONFIG_ZONE_DMA
304 "DMA",
305#endif
306#ifdef CONFIG_ZONE_DMA32
307 "DMA32",
308#endif
309 "Normal",
310#ifdef CONFIG_HIGHMEM
311 "HighMem",
312#endif
313 "Movable",
314#ifdef CONFIG_ZONE_DEVICE
315 "Device",
316#endif
317};
318
319const char * const migratetype_names[MIGRATE_TYPES] = {
320 "Unmovable",
321 "Movable",
322 "Reclaimable",
323 "HighAtomic",
324#ifdef CONFIG_CMA
325 "CMA",
326#endif
327#ifdef CONFIG_MEMORY_ISOLATION
328 "Isolate",
329#endif
330};
331
332compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 [NULL_COMPOUND_DTOR] = NULL,
334 [COMPOUND_PAGE_DTOR] = free_compound_page,
335#ifdef CONFIG_HUGETLB_PAGE
336 [HUGETLB_PAGE_DTOR] = free_huge_page,
337#endif
338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
340#endif
341};
342
343int min_free_kbytes = 1024;
344int user_min_free_kbytes = -1;
345int watermark_boost_factor __read_mostly = 15000;
346int watermark_scale_factor = 10;
347
348static unsigned long nr_kernel_pages __initdata;
349static unsigned long nr_all_pages __initdata;
350static unsigned long dma_reserve __initdata;
351
352static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354static unsigned long required_kernelcore __initdata;
355static unsigned long required_kernelcore_percent __initdata;
356static unsigned long required_movablecore __initdata;
357static unsigned long required_movablecore_percent __initdata;
358static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359static bool mirrored_kernelcore __meminitdata;
360
361/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362int movable_zone;
363EXPORT_SYMBOL(movable_zone);
364
365#if MAX_NUMNODES > 1
366unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367unsigned int nr_online_nodes __read_mostly = 1;
368EXPORT_SYMBOL(nr_node_ids);
369EXPORT_SYMBOL(nr_online_nodes);
370#endif
371
372int page_group_by_mobility_disabled __read_mostly;
373
374#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375/*
376 * During boot we initialize deferred pages on-demand, as needed, but once
377 * page_alloc_init_late() has finished, the deferred pages are all initialized,
378 * and we can permanently disable that path.
379 */
380static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381
382static inline bool deferred_pages_enabled(void)
383{
384 return static_branch_unlikely(&deferred_pages);
385}
386
387/* Returns true if the struct page for the pfn is uninitialised */
388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389{
390 int nid = early_pfn_to_nid(pfn);
391
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
393 return true;
394
395 return false;
396}
397
398/*
399 * Returns true when the remaining initialisation should be deferred until
400 * later in the boot cycle when it can be parallelised.
401 */
402static bool __meminit
403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404{
405 static unsigned long prev_end_pfn, nr_initialised;
406
407 /*
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
410 */
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
413 nr_initialised = 0;
414 }
415
416 /* Always populate low zones for address-constrained allocations */
417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
418 return false;
419
420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 return true;
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433}
434#else
435static inline bool deferred_pages_enabled(void)
436{
437 return false;
438}
439
440static inline bool early_page_uninitialised(unsigned long pfn)
441{
442 return false;
443}
444
445static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
446{
447 return false;
448}
449#endif
450
451/* Return a pointer to the bitmap storing bits affecting a block of pages */
452static inline unsigned long *get_pageblock_bitmap(const struct page *page,
453 unsigned long pfn)
454{
455#ifdef CONFIG_SPARSEMEM
456 return section_to_usemap(__pfn_to_section(pfn));
457#else
458 return page_zone(page)->pageblock_flags;
459#endif /* CONFIG_SPARSEMEM */
460}
461
462static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
463{
464#ifdef CONFIG_SPARSEMEM
465 pfn &= (PAGES_PER_SECTION-1);
466#else
467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
468#endif /* CONFIG_SPARSEMEM */
469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
470}
471
472static __always_inline
473unsigned long __get_pfnblock_flags_mask(const struct page *page,
474 unsigned long pfn,
475 unsigned long mask)
476{
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
479 unsigned long word;
480
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
485 /*
486 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
487 * a consistent read of the memory array, so that results, even though
488 * racy, are not corrupted.
489 */
490 word = READ_ONCE(bitmap[word_bitidx]);
491 return (word >> bitidx) & mask;
492}
493
494/**
495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
496 * @page: The page within the block of interest
497 * @pfn: The target page frame number
498 * @mask: mask of bits that the caller is interested in
499 *
500 * Return: pageblock_bits flags
501 */
502unsigned long get_pfnblock_flags_mask(const struct page *page,
503 unsigned long pfn, unsigned long mask)
504{
505 return __get_pfnblock_flags_mask(page, pfn, mask);
506}
507
508static __always_inline int get_pfnblock_migratetype(const struct page *page,
509 unsigned long pfn)
510{
511 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
512}
513
514/**
515 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
516 * @page: The page within the block of interest
517 * @flags: The flags to set
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 */
521void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
522 unsigned long pfn,
523 unsigned long mask)
524{
525 unsigned long *bitmap;
526 unsigned long bitidx, word_bitidx;
527 unsigned long old_word, word;
528
529 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
530 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
531
532 bitmap = get_pageblock_bitmap(page, pfn);
533 bitidx = pfn_to_bitidx(page, pfn);
534 word_bitidx = bitidx / BITS_PER_LONG;
535 bitidx &= (BITS_PER_LONG-1);
536
537 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
538
539 mask <<= bitidx;
540 flags <<= bitidx;
541
542 word = READ_ONCE(bitmap[word_bitidx]);
543 for (;;) {
544 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
545 if (word == old_word)
546 break;
547 word = old_word;
548 }
549}
550
551void set_pageblock_migratetype(struct page *page, int migratetype)
552{
553 if (unlikely(page_group_by_mobility_disabled &&
554 migratetype < MIGRATE_PCPTYPES))
555 migratetype = MIGRATE_UNMOVABLE;
556
557 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
558 page_to_pfn(page), MIGRATETYPE_MASK);
559}
560
561#ifdef CONFIG_DEBUG_VM
562static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
563{
564 int ret = 0;
565 unsigned seq;
566 unsigned long pfn = page_to_pfn(page);
567 unsigned long sp, start_pfn;
568
569 do {
570 seq = zone_span_seqbegin(zone);
571 start_pfn = zone->zone_start_pfn;
572 sp = zone->spanned_pages;
573 if (!zone_spans_pfn(zone, pfn))
574 ret = 1;
575 } while (zone_span_seqretry(zone, seq));
576
577 if (ret)
578 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
579 pfn, zone_to_nid(zone), zone->name,
580 start_pfn, start_pfn + sp);
581
582 return ret;
583}
584
585static int page_is_consistent(struct zone *zone, struct page *page)
586{
587 if (zone != page_zone(page))
588 return 0;
589
590 return 1;
591}
592/*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
595static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596{
597 if (page_outside_zone_boundaries(zone, page))
598 return 1;
599 if (!page_is_consistent(zone, page))
600 return 1;
601
602 return 0;
603}
604#else
605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606{
607 return 0;
608}
609#endif
610
611static void bad_page(struct page *page, const char *reason)
612{
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
627 pr_alert(
628 "BUG: Bad page state: %lu messages suppressed\n",
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 dump_page(page, reason);
640
641 print_modules();
642 dump_stack();
643out:
644 /* Leave bad fields for debug, except PageBuddy could make trouble */
645 page_mapcount_reset(page); /* remove PageBuddy */
646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
647}
648
649static inline unsigned int order_to_pindex(int migratetype, int order)
650{
651 int base = order;
652
653#ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 if (order > PAGE_ALLOC_COSTLY_ORDER) {
655 VM_BUG_ON(order != pageblock_order);
656 base = PAGE_ALLOC_COSTLY_ORDER + 1;
657 }
658#else
659 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
660#endif
661
662 return (MIGRATE_PCPTYPES * base) + migratetype;
663}
664
665static inline int pindex_to_order(unsigned int pindex)
666{
667 int order = pindex / MIGRATE_PCPTYPES;
668
669#ifdef CONFIG_TRANSPARENT_HUGEPAGE
670 if (order > PAGE_ALLOC_COSTLY_ORDER)
671 order = pageblock_order;
672#else
673 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
674#endif
675
676 return order;
677}
678
679static inline bool pcp_allowed_order(unsigned int order)
680{
681 if (order <= PAGE_ALLOC_COSTLY_ORDER)
682 return true;
683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 if (order == pageblock_order)
685 return true;
686#endif
687 return false;
688}
689
690static inline void free_the_page(struct page *page, unsigned int order)
691{
692 if (pcp_allowed_order(order)) /* Via pcp? */
693 free_unref_page(page, order);
694 else
695 __free_pages_ok(page, order, FPI_NONE);
696}
697
698/*
699 * Higher-order pages are called "compound pages". They are structured thusly:
700 *
701 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
702 *
703 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
704 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
705 *
706 * The first tail page's ->compound_dtor holds the offset in array of compound
707 * page destructors. See compound_page_dtors.
708 *
709 * The first tail page's ->compound_order holds the order of allocation.
710 * This usage means that zero-order pages may not be compound.
711 */
712
713void free_compound_page(struct page *page)
714{
715 mem_cgroup_uncharge(page_folio(page));
716 free_the_page(page, compound_order(page));
717}
718
719static void prep_compound_head(struct page *page, unsigned int order)
720{
721 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
722 set_compound_order(page, order);
723 atomic_set(compound_mapcount_ptr(page), -1);
724 atomic_set(compound_pincount_ptr(page), 0);
725}
726
727static void prep_compound_tail(struct page *head, int tail_idx)
728{
729 struct page *p = head + tail_idx;
730
731 p->mapping = TAIL_MAPPING;
732 set_compound_head(p, head);
733}
734
735void prep_compound_page(struct page *page, unsigned int order)
736{
737 int i;
738 int nr_pages = 1 << order;
739
740 __SetPageHead(page);
741 for (i = 1; i < nr_pages; i++)
742 prep_compound_tail(page, i);
743
744 prep_compound_head(page, order);
745}
746
747#ifdef CONFIG_DEBUG_PAGEALLOC
748unsigned int _debug_guardpage_minorder;
749
750bool _debug_pagealloc_enabled_early __read_mostly
751 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
752EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
753DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
754EXPORT_SYMBOL(_debug_pagealloc_enabled);
755
756DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
757
758static int __init early_debug_pagealloc(char *buf)
759{
760 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
761}
762early_param("debug_pagealloc", early_debug_pagealloc);
763
764static int __init debug_guardpage_minorder_setup(char *buf)
765{
766 unsigned long res;
767
768 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
769 pr_err("Bad debug_guardpage_minorder value\n");
770 return 0;
771 }
772 _debug_guardpage_minorder = res;
773 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
774 return 0;
775}
776early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
777
778static inline bool set_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype)
780{
781 if (!debug_guardpage_enabled())
782 return false;
783
784 if (order >= debug_guardpage_minorder())
785 return false;
786
787 __SetPageGuard(page);
788 INIT_LIST_HEAD(&page->lru);
789 set_page_private(page, order);
790 /* Guard pages are not available for any usage */
791 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
792
793 return true;
794}
795
796static inline void clear_page_guard(struct zone *zone, struct page *page,
797 unsigned int order, int migratetype)
798{
799 if (!debug_guardpage_enabled())
800 return;
801
802 __ClearPageGuard(page);
803
804 set_page_private(page, 0);
805 if (!is_migrate_isolate(migratetype))
806 __mod_zone_freepage_state(zone, (1 << order), migratetype);
807}
808#else
809static inline bool set_page_guard(struct zone *zone, struct page *page,
810 unsigned int order, int migratetype) { return false; }
811static inline void clear_page_guard(struct zone *zone, struct page *page,
812 unsigned int order, int migratetype) {}
813#endif
814
815/*
816 * Enable static keys related to various memory debugging and hardening options.
817 * Some override others, and depend on early params that are evaluated in the
818 * order of appearance. So we need to first gather the full picture of what was
819 * enabled, and then make decisions.
820 */
821void init_mem_debugging_and_hardening(void)
822{
823 bool page_poisoning_requested = false;
824
825#ifdef CONFIG_PAGE_POISONING
826 /*
827 * Page poisoning is debug page alloc for some arches. If
828 * either of those options are enabled, enable poisoning.
829 */
830 if (page_poisoning_enabled() ||
831 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
832 debug_pagealloc_enabled())) {
833 static_branch_enable(&_page_poisoning_enabled);
834 page_poisoning_requested = true;
835 }
836#endif
837
838 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
839 page_poisoning_requested) {
840 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
841 "will take precedence over init_on_alloc and init_on_free\n");
842 _init_on_alloc_enabled_early = false;
843 _init_on_free_enabled_early = false;
844 }
845
846 if (_init_on_alloc_enabled_early)
847 static_branch_enable(&init_on_alloc);
848 else
849 static_branch_disable(&init_on_alloc);
850
851 if (_init_on_free_enabled_early)
852 static_branch_enable(&init_on_free);
853 else
854 static_branch_disable(&init_on_free);
855
856#ifdef CONFIG_DEBUG_PAGEALLOC
857 if (!debug_pagealloc_enabled())
858 return;
859
860 static_branch_enable(&_debug_pagealloc_enabled);
861
862 if (!debug_guardpage_minorder())
863 return;
864
865 static_branch_enable(&_debug_guardpage_enabled);
866#endif
867}
868
869static inline void set_buddy_order(struct page *page, unsigned int order)
870{
871 set_page_private(page, order);
872 __SetPageBuddy(page);
873}
874
875#ifdef CONFIG_COMPACTION
876static inline struct capture_control *task_capc(struct zone *zone)
877{
878 struct capture_control *capc = current->capture_control;
879
880 return unlikely(capc) &&
881 !(current->flags & PF_KTHREAD) &&
882 !capc->page &&
883 capc->cc->zone == zone ? capc : NULL;
884}
885
886static inline bool
887compaction_capture(struct capture_control *capc, struct page *page,
888 int order, int migratetype)
889{
890 if (!capc || order != capc->cc->order)
891 return false;
892
893 /* Do not accidentally pollute CMA or isolated regions*/
894 if (is_migrate_cma(migratetype) ||
895 is_migrate_isolate(migratetype))
896 return false;
897
898 /*
899 * Do not let lower order allocations pollute a movable pageblock.
900 * This might let an unmovable request use a reclaimable pageblock
901 * and vice-versa but no more than normal fallback logic which can
902 * have trouble finding a high-order free page.
903 */
904 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
905 return false;
906
907 capc->page = page;
908 return true;
909}
910
911#else
912static inline struct capture_control *task_capc(struct zone *zone)
913{
914 return NULL;
915}
916
917static inline bool
918compaction_capture(struct capture_control *capc, struct page *page,
919 int order, int migratetype)
920{
921 return false;
922}
923#endif /* CONFIG_COMPACTION */
924
925/* Used for pages not on another list */
926static inline void add_to_free_list(struct page *page, struct zone *zone,
927 unsigned int order, int migratetype)
928{
929 struct free_area *area = &zone->free_area[order];
930
931 list_add(&page->lru, &area->free_list[migratetype]);
932 area->nr_free++;
933}
934
935/* Used for pages not on another list */
936static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
937 unsigned int order, int migratetype)
938{
939 struct free_area *area = &zone->free_area[order];
940
941 list_add_tail(&page->lru, &area->free_list[migratetype]);
942 area->nr_free++;
943}
944
945/*
946 * Used for pages which are on another list. Move the pages to the tail
947 * of the list - so the moved pages won't immediately be considered for
948 * allocation again (e.g., optimization for memory onlining).
949 */
950static inline void move_to_free_list(struct page *page, struct zone *zone,
951 unsigned int order, int migratetype)
952{
953 struct free_area *area = &zone->free_area[order];
954
955 list_move_tail(&page->lru, &area->free_list[migratetype]);
956}
957
958static inline void del_page_from_free_list(struct page *page, struct zone *zone,
959 unsigned int order)
960{
961 /* clear reported state and update reported page count */
962 if (page_reported(page))
963 __ClearPageReported(page);
964
965 list_del(&page->lru);
966 __ClearPageBuddy(page);
967 set_page_private(page, 0);
968 zone->free_area[order].nr_free--;
969}
970
971/*
972 * If this is not the largest possible page, check if the buddy
973 * of the next-highest order is free. If it is, it's possible
974 * that pages are being freed that will coalesce soon. In case,
975 * that is happening, add the free page to the tail of the list
976 * so it's less likely to be used soon and more likely to be merged
977 * as a higher order page
978 */
979static inline bool
980buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
981 struct page *page, unsigned int order)
982{
983 unsigned long higher_page_pfn;
984 struct page *higher_page;
985
986 if (order >= MAX_ORDER - 2)
987 return false;
988
989 higher_page_pfn = buddy_pfn & pfn;
990 higher_page = page + (higher_page_pfn - pfn);
991
992 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
993 NULL) != NULL;
994}
995
996/*
997 * Freeing function for a buddy system allocator.
998 *
999 * The concept of a buddy system is to maintain direct-mapped table
1000 * (containing bit values) for memory blocks of various "orders".
1001 * The bottom level table contains the map for the smallest allocatable
1002 * units of memory (here, pages), and each level above it describes
1003 * pairs of units from the levels below, hence, "buddies".
1004 * At a high level, all that happens here is marking the table entry
1005 * at the bottom level available, and propagating the changes upward
1006 * as necessary, plus some accounting needed to play nicely with other
1007 * parts of the VM system.
1008 * At each level, we keep a list of pages, which are heads of continuous
1009 * free pages of length of (1 << order) and marked with PageBuddy.
1010 * Page's order is recorded in page_private(page) field.
1011 * So when we are allocating or freeing one, we can derive the state of the
1012 * other. That is, if we allocate a small block, and both were
1013 * free, the remainder of the region must be split into blocks.
1014 * If a block is freed, and its buddy is also free, then this
1015 * triggers coalescing into a block of larger size.
1016 *
1017 * -- nyc
1018 */
1019
1020static inline void __free_one_page(struct page *page,
1021 unsigned long pfn,
1022 struct zone *zone, unsigned int order,
1023 int migratetype, fpi_t fpi_flags)
1024{
1025 struct capture_control *capc = task_capc(zone);
1026 unsigned long buddy_pfn;
1027 unsigned long combined_pfn;
1028 struct page *buddy;
1029 bool to_tail;
1030
1031 VM_BUG_ON(!zone_is_initialized(zone));
1032 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1033
1034 VM_BUG_ON(migratetype == -1);
1035 if (likely(!is_migrate_isolate(migratetype)))
1036 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1037
1038 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1039 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1040
1041 while (order < MAX_ORDER - 1) {
1042 if (compaction_capture(capc, page, order, migratetype)) {
1043 __mod_zone_freepage_state(zone, -(1 << order),
1044 migratetype);
1045 return;
1046 }
1047
1048 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1049 if (!buddy)
1050 goto done_merging;
1051
1052 if (unlikely(order >= pageblock_order)) {
1053 /*
1054 * We want to prevent merge between freepages on pageblock
1055 * without fallbacks and normal pageblock. Without this,
1056 * pageblock isolation could cause incorrect freepage or CMA
1057 * accounting or HIGHATOMIC accounting.
1058 */
1059 int buddy_mt = get_pageblock_migratetype(buddy);
1060
1061 if (migratetype != buddy_mt
1062 && (!migratetype_is_mergeable(migratetype) ||
1063 !migratetype_is_mergeable(buddy_mt)))
1064 goto done_merging;
1065 }
1066
1067 /*
1068 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1069 * merge with it and move up one order.
1070 */
1071 if (page_is_guard(buddy))
1072 clear_page_guard(zone, buddy, order, migratetype);
1073 else
1074 del_page_from_free_list(buddy, zone, order);
1075 combined_pfn = buddy_pfn & pfn;
1076 page = page + (combined_pfn - pfn);
1077 pfn = combined_pfn;
1078 order++;
1079 }
1080
1081done_merging:
1082 set_buddy_order(page, order);
1083
1084 if (fpi_flags & FPI_TO_TAIL)
1085 to_tail = true;
1086 else if (is_shuffle_order(order))
1087 to_tail = shuffle_pick_tail();
1088 else
1089 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1090
1091 if (to_tail)
1092 add_to_free_list_tail(page, zone, order, migratetype);
1093 else
1094 add_to_free_list(page, zone, order, migratetype);
1095
1096 /* Notify page reporting subsystem of freed page */
1097 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1098 page_reporting_notify_free(order);
1099}
1100
1101/**
1102 * split_free_page() -- split a free page at split_pfn_offset
1103 * @free_page: the original free page
1104 * @order: the order of the page
1105 * @split_pfn_offset: split offset within the page
1106 *
1107 * Return -ENOENT if the free page is changed, otherwise 0
1108 *
1109 * It is used when the free page crosses two pageblocks with different migratetypes
1110 * at split_pfn_offset within the page. The split free page will be put into
1111 * separate migratetype lists afterwards. Otherwise, the function achieves
1112 * nothing.
1113 */
1114int split_free_page(struct page *free_page,
1115 unsigned int order, unsigned long split_pfn_offset)
1116{
1117 struct zone *zone = page_zone(free_page);
1118 unsigned long free_page_pfn = page_to_pfn(free_page);
1119 unsigned long pfn;
1120 unsigned long flags;
1121 int free_page_order;
1122 int mt;
1123 int ret = 0;
1124
1125 if (split_pfn_offset == 0)
1126 return ret;
1127
1128 spin_lock_irqsave(&zone->lock, flags);
1129
1130 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1131 ret = -ENOENT;
1132 goto out;
1133 }
1134
1135 mt = get_pageblock_migratetype(free_page);
1136 if (likely(!is_migrate_isolate(mt)))
1137 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1138
1139 del_page_from_free_list(free_page, zone, order);
1140 for (pfn = free_page_pfn;
1141 pfn < free_page_pfn + (1UL << order);) {
1142 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1143
1144 free_page_order = min_t(unsigned int,
1145 pfn ? __ffs(pfn) : order,
1146 __fls(split_pfn_offset));
1147 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1148 mt, FPI_NONE);
1149 pfn += 1UL << free_page_order;
1150 split_pfn_offset -= (1UL << free_page_order);
1151 /* we have done the first part, now switch to second part */
1152 if (split_pfn_offset == 0)
1153 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1154 }
1155out:
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157 return ret;
1158}
1159/*
1160 * A bad page could be due to a number of fields. Instead of multiple branches,
1161 * try and check multiple fields with one check. The caller must do a detailed
1162 * check if necessary.
1163 */
1164static inline bool page_expected_state(struct page *page,
1165 unsigned long check_flags)
1166{
1167 if (unlikely(atomic_read(&page->_mapcount) != -1))
1168 return false;
1169
1170 if (unlikely((unsigned long)page->mapping |
1171 page_ref_count(page) |
1172#ifdef CONFIG_MEMCG
1173 page->memcg_data |
1174#endif
1175 (page->flags & check_flags)))
1176 return false;
1177
1178 return true;
1179}
1180
1181static const char *page_bad_reason(struct page *page, unsigned long flags)
1182{
1183 const char *bad_reason = NULL;
1184
1185 if (unlikely(atomic_read(&page->_mapcount) != -1))
1186 bad_reason = "nonzero mapcount";
1187 if (unlikely(page->mapping != NULL))
1188 bad_reason = "non-NULL mapping";
1189 if (unlikely(page_ref_count(page) != 0))
1190 bad_reason = "nonzero _refcount";
1191 if (unlikely(page->flags & flags)) {
1192 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1193 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1194 else
1195 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1196 }
1197#ifdef CONFIG_MEMCG
1198 if (unlikely(page->memcg_data))
1199 bad_reason = "page still charged to cgroup";
1200#endif
1201 return bad_reason;
1202}
1203
1204static void check_free_page_bad(struct page *page)
1205{
1206 bad_page(page,
1207 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1208}
1209
1210static inline int check_free_page(struct page *page)
1211{
1212 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1213 return 0;
1214
1215 /* Something has gone sideways, find it */
1216 check_free_page_bad(page);
1217 return 1;
1218}
1219
1220static int free_tail_pages_check(struct page *head_page, struct page *page)
1221{
1222 int ret = 1;
1223
1224 /*
1225 * We rely page->lru.next never has bit 0 set, unless the page
1226 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1227 */
1228 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1229
1230 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1231 ret = 0;
1232 goto out;
1233 }
1234 switch (page - head_page) {
1235 case 1:
1236 /* the first tail page: ->mapping may be compound_mapcount() */
1237 if (unlikely(compound_mapcount(page))) {
1238 bad_page(page, "nonzero compound_mapcount");
1239 goto out;
1240 }
1241 break;
1242 case 2:
1243 /*
1244 * the second tail page: ->mapping is
1245 * deferred_list.next -- ignore value.
1246 */
1247 break;
1248 default:
1249 if (page->mapping != TAIL_MAPPING) {
1250 bad_page(page, "corrupted mapping in tail page");
1251 goto out;
1252 }
1253 break;
1254 }
1255 if (unlikely(!PageTail(page))) {
1256 bad_page(page, "PageTail not set");
1257 goto out;
1258 }
1259 if (unlikely(compound_head(page) != head_page)) {
1260 bad_page(page, "compound_head not consistent");
1261 goto out;
1262 }
1263 ret = 0;
1264out:
1265 page->mapping = NULL;
1266 clear_compound_head(page);
1267 return ret;
1268}
1269
1270/*
1271 * Skip KASAN memory poisoning when either:
1272 *
1273 * 1. Deferred memory initialization has not yet completed,
1274 * see the explanation below.
1275 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1276 * see the comment next to it.
1277 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1278 * see the comment next to it.
1279 *
1280 * Poisoning pages during deferred memory init will greatly lengthen the
1281 * process and cause problem in large memory systems as the deferred pages
1282 * initialization is done with interrupt disabled.
1283 *
1284 * Assuming that there will be no reference to those newly initialized
1285 * pages before they are ever allocated, this should have no effect on
1286 * KASAN memory tracking as the poison will be properly inserted at page
1287 * allocation time. The only corner case is when pages are allocated by
1288 * on-demand allocation and then freed again before the deferred pages
1289 * initialization is done, but this is not likely to happen.
1290 */
1291static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1292{
1293 return deferred_pages_enabled() ||
1294 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1295 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1296 PageSkipKASanPoison(page);
1297}
1298
1299static void kernel_init_free_pages(struct page *page, int numpages)
1300{
1301 int i;
1302
1303 /* s390's use of memset() could override KASAN redzones. */
1304 kasan_disable_current();
1305 for (i = 0; i < numpages; i++) {
1306 u8 tag = page_kasan_tag(page + i);
1307 page_kasan_tag_reset(page + i);
1308 clear_highpage(page + i);
1309 page_kasan_tag_set(page + i, tag);
1310 }
1311 kasan_enable_current();
1312}
1313
1314static __always_inline bool free_pages_prepare(struct page *page,
1315 unsigned int order, bool check_free, fpi_t fpi_flags)
1316{
1317 int bad = 0;
1318 bool init = want_init_on_free();
1319
1320 VM_BUG_ON_PAGE(PageTail(page), page);
1321
1322 trace_mm_page_free(page, order);
1323
1324 if (unlikely(PageHWPoison(page)) && !order) {
1325 /*
1326 * Do not let hwpoison pages hit pcplists/buddy
1327 * Untie memcg state and reset page's owner
1328 */
1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 __memcg_kmem_uncharge_page(page, order);
1331 reset_page_owner(page, order);
1332 page_table_check_free(page, order);
1333 return false;
1334 }
1335
1336 /*
1337 * Check tail pages before head page information is cleared to
1338 * avoid checking PageCompound for order-0 pages.
1339 */
1340 if (unlikely(order)) {
1341 bool compound = PageCompound(page);
1342 int i;
1343
1344 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1345
1346 if (compound) {
1347 ClearPageDoubleMap(page);
1348 ClearPageHasHWPoisoned(page);
1349 }
1350 for (i = 1; i < (1 << order); i++) {
1351 if (compound)
1352 bad += free_tail_pages_check(page, page + i);
1353 if (unlikely(check_free_page(page + i))) {
1354 bad++;
1355 continue;
1356 }
1357 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1358 }
1359 }
1360 if (PageMappingFlags(page))
1361 page->mapping = NULL;
1362 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1363 __memcg_kmem_uncharge_page(page, order);
1364 if (check_free)
1365 bad += check_free_page(page);
1366 if (bad)
1367 return false;
1368
1369 page_cpupid_reset_last(page);
1370 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1371 reset_page_owner(page, order);
1372 page_table_check_free(page, order);
1373
1374 if (!PageHighMem(page)) {
1375 debug_check_no_locks_freed(page_address(page),
1376 PAGE_SIZE << order);
1377 debug_check_no_obj_freed(page_address(page),
1378 PAGE_SIZE << order);
1379 }
1380
1381 kernel_poison_pages(page, 1 << order);
1382
1383 /*
1384 * As memory initialization might be integrated into KASAN,
1385 * KASAN poisoning and memory initialization code must be
1386 * kept together to avoid discrepancies in behavior.
1387 *
1388 * With hardware tag-based KASAN, memory tags must be set before the
1389 * page becomes unavailable via debug_pagealloc or arch_free_page.
1390 */
1391 if (!should_skip_kasan_poison(page, fpi_flags)) {
1392 kasan_poison_pages(page, order, init);
1393
1394 /* Memory is already initialized if KASAN did it internally. */
1395 if (kasan_has_integrated_init())
1396 init = false;
1397 }
1398 if (init)
1399 kernel_init_free_pages(page, 1 << order);
1400
1401 /*
1402 * arch_free_page() can make the page's contents inaccessible. s390
1403 * does this. So nothing which can access the page's contents should
1404 * happen after this.
1405 */
1406 arch_free_page(page, order);
1407
1408 debug_pagealloc_unmap_pages(page, 1 << order);
1409
1410 return true;
1411}
1412
1413#ifdef CONFIG_DEBUG_VM
1414/*
1415 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1416 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1417 * moved from pcp lists to free lists.
1418 */
1419static bool free_pcp_prepare(struct page *page, unsigned int order)
1420{
1421 return free_pages_prepare(page, order, true, FPI_NONE);
1422}
1423
1424static bool bulkfree_pcp_prepare(struct page *page)
1425{
1426 if (debug_pagealloc_enabled_static())
1427 return check_free_page(page);
1428 else
1429 return false;
1430}
1431#else
1432/*
1433 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1434 * moving from pcp lists to free list in order to reduce overhead. With
1435 * debug_pagealloc enabled, they are checked also immediately when being freed
1436 * to the pcp lists.
1437 */
1438static bool free_pcp_prepare(struct page *page, unsigned int order)
1439{
1440 if (debug_pagealloc_enabled_static())
1441 return free_pages_prepare(page, order, true, FPI_NONE);
1442 else
1443 return free_pages_prepare(page, order, false, FPI_NONE);
1444}
1445
1446static bool bulkfree_pcp_prepare(struct page *page)
1447{
1448 return check_free_page(page);
1449}
1450#endif /* CONFIG_DEBUG_VM */
1451
1452/*
1453 * Frees a number of pages from the PCP lists
1454 * Assumes all pages on list are in same zone.
1455 * count is the number of pages to free.
1456 */
1457static void free_pcppages_bulk(struct zone *zone, int count,
1458 struct per_cpu_pages *pcp,
1459 int pindex)
1460{
1461 int min_pindex = 0;
1462 int max_pindex = NR_PCP_LISTS - 1;
1463 unsigned int order;
1464 bool isolated_pageblocks;
1465 struct page *page;
1466
1467 /*
1468 * Ensure proper count is passed which otherwise would stuck in the
1469 * below while (list_empty(list)) loop.
1470 */
1471 count = min(pcp->count, count);
1472
1473 /* Ensure requested pindex is drained first. */
1474 pindex = pindex - 1;
1475
1476 /*
1477 * local_lock_irq held so equivalent to spin_lock_irqsave for
1478 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1479 */
1480 spin_lock(&zone->lock);
1481 isolated_pageblocks = has_isolate_pageblock(zone);
1482
1483 while (count > 0) {
1484 struct list_head *list;
1485 int nr_pages;
1486
1487 /* Remove pages from lists in a round-robin fashion. */
1488 do {
1489 if (++pindex > max_pindex)
1490 pindex = min_pindex;
1491 list = &pcp->lists[pindex];
1492 if (!list_empty(list))
1493 break;
1494
1495 if (pindex == max_pindex)
1496 max_pindex--;
1497 if (pindex == min_pindex)
1498 min_pindex++;
1499 } while (1);
1500
1501 order = pindex_to_order(pindex);
1502 nr_pages = 1 << order;
1503 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1504 do {
1505 int mt;
1506
1507 page = list_last_entry(list, struct page, lru);
1508 mt = get_pcppage_migratetype(page);
1509
1510 /* must delete to avoid corrupting pcp list */
1511 list_del(&page->lru);
1512 count -= nr_pages;
1513 pcp->count -= nr_pages;
1514
1515 if (bulkfree_pcp_prepare(page))
1516 continue;
1517
1518 /* MIGRATE_ISOLATE page should not go to pcplists */
1519 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1520 /* Pageblock could have been isolated meanwhile */
1521 if (unlikely(isolated_pageblocks))
1522 mt = get_pageblock_migratetype(page);
1523
1524 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1525 trace_mm_page_pcpu_drain(page, order, mt);
1526 } while (count > 0 && !list_empty(list));
1527 }
1528
1529 spin_unlock(&zone->lock);
1530}
1531
1532static void free_one_page(struct zone *zone,
1533 struct page *page, unsigned long pfn,
1534 unsigned int order,
1535 int migratetype, fpi_t fpi_flags)
1536{
1537 unsigned long flags;
1538
1539 spin_lock_irqsave(&zone->lock, flags);
1540 if (unlikely(has_isolate_pageblock(zone) ||
1541 is_migrate_isolate(migratetype))) {
1542 migratetype = get_pfnblock_migratetype(page, pfn);
1543 }
1544 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1545 spin_unlock_irqrestore(&zone->lock, flags);
1546}
1547
1548static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1549 unsigned long zone, int nid)
1550{
1551 mm_zero_struct_page(page);
1552 set_page_links(page, zone, nid, pfn);
1553 init_page_count(page);
1554 page_mapcount_reset(page);
1555 page_cpupid_reset_last(page);
1556 page_kasan_tag_reset(page);
1557
1558 INIT_LIST_HEAD(&page->lru);
1559#ifdef WANT_PAGE_VIRTUAL
1560 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1561 if (!is_highmem_idx(zone))
1562 set_page_address(page, __va(pfn << PAGE_SHIFT));
1563#endif
1564}
1565
1566#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1567static void __meminit init_reserved_page(unsigned long pfn)
1568{
1569 pg_data_t *pgdat;
1570 int nid, zid;
1571
1572 if (!early_page_uninitialised(pfn))
1573 return;
1574
1575 nid = early_pfn_to_nid(pfn);
1576 pgdat = NODE_DATA(nid);
1577
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 struct zone *zone = &pgdat->node_zones[zid];
1580
1581 if (zone_spans_pfn(zone, pfn))
1582 break;
1583 }
1584 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1585}
1586#else
1587static inline void init_reserved_page(unsigned long pfn)
1588{
1589}
1590#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1591
1592/*
1593 * Initialised pages do not have PageReserved set. This function is
1594 * called for each range allocated by the bootmem allocator and
1595 * marks the pages PageReserved. The remaining valid pages are later
1596 * sent to the buddy page allocator.
1597 */
1598void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1599{
1600 unsigned long start_pfn = PFN_DOWN(start);
1601 unsigned long end_pfn = PFN_UP(end);
1602
1603 for (; start_pfn < end_pfn; start_pfn++) {
1604 if (pfn_valid(start_pfn)) {
1605 struct page *page = pfn_to_page(start_pfn);
1606
1607 init_reserved_page(start_pfn);
1608
1609 /* Avoid false-positive PageTail() */
1610 INIT_LIST_HEAD(&page->lru);
1611
1612 /*
1613 * no need for atomic set_bit because the struct
1614 * page is not visible yet so nobody should
1615 * access it yet.
1616 */
1617 __SetPageReserved(page);
1618 }
1619 }
1620}
1621
1622static void __free_pages_ok(struct page *page, unsigned int order,
1623 fpi_t fpi_flags)
1624{
1625 unsigned long flags;
1626 int migratetype;
1627 unsigned long pfn = page_to_pfn(page);
1628 struct zone *zone = page_zone(page);
1629
1630 if (!free_pages_prepare(page, order, true, fpi_flags))
1631 return;
1632
1633 migratetype = get_pfnblock_migratetype(page, pfn);
1634
1635 spin_lock_irqsave(&zone->lock, flags);
1636 if (unlikely(has_isolate_pageblock(zone) ||
1637 is_migrate_isolate(migratetype))) {
1638 migratetype = get_pfnblock_migratetype(page, pfn);
1639 }
1640 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1641 spin_unlock_irqrestore(&zone->lock, flags);
1642
1643 __count_vm_events(PGFREE, 1 << order);
1644}
1645
1646void __free_pages_core(struct page *page, unsigned int order)
1647{
1648 unsigned int nr_pages = 1 << order;
1649 struct page *p = page;
1650 unsigned int loop;
1651
1652 /*
1653 * When initializing the memmap, __init_single_page() sets the refcount
1654 * of all pages to 1 ("allocated"/"not free"). We have to set the
1655 * refcount of all involved pages to 0.
1656 */
1657 prefetchw(p);
1658 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1659 prefetchw(p + 1);
1660 __ClearPageReserved(p);
1661 set_page_count(p, 0);
1662 }
1663 __ClearPageReserved(p);
1664 set_page_count(p, 0);
1665
1666 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1667
1668 /*
1669 * Bypass PCP and place fresh pages right to the tail, primarily
1670 * relevant for memory onlining.
1671 */
1672 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1673}
1674
1675#ifdef CONFIG_NUMA
1676
1677/*
1678 * During memory init memblocks map pfns to nids. The search is expensive and
1679 * this caches recent lookups. The implementation of __early_pfn_to_nid
1680 * treats start/end as pfns.
1681 */
1682struct mminit_pfnnid_cache {
1683 unsigned long last_start;
1684 unsigned long last_end;
1685 int last_nid;
1686};
1687
1688static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1689
1690/*
1691 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1692 */
1693static int __meminit __early_pfn_to_nid(unsigned long pfn,
1694 struct mminit_pfnnid_cache *state)
1695{
1696 unsigned long start_pfn, end_pfn;
1697 int nid;
1698
1699 if (state->last_start <= pfn && pfn < state->last_end)
1700 return state->last_nid;
1701
1702 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1703 if (nid != NUMA_NO_NODE) {
1704 state->last_start = start_pfn;
1705 state->last_end = end_pfn;
1706 state->last_nid = nid;
1707 }
1708
1709 return nid;
1710}
1711
1712int __meminit early_pfn_to_nid(unsigned long pfn)
1713{
1714 static DEFINE_SPINLOCK(early_pfn_lock);
1715 int nid;
1716
1717 spin_lock(&early_pfn_lock);
1718 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1719 if (nid < 0)
1720 nid = first_online_node;
1721 spin_unlock(&early_pfn_lock);
1722
1723 return nid;
1724}
1725#endif /* CONFIG_NUMA */
1726
1727void __init memblock_free_pages(struct page *page, unsigned long pfn,
1728 unsigned int order)
1729{
1730 if (early_page_uninitialised(pfn))
1731 return;
1732 __free_pages_core(page, order);
1733}
1734
1735/*
1736 * Check that the whole (or subset of) a pageblock given by the interval of
1737 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1738 * with the migration of free compaction scanner.
1739 *
1740 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1741 *
1742 * It's possible on some configurations to have a setup like node0 node1 node0
1743 * i.e. it's possible that all pages within a zones range of pages do not
1744 * belong to a single zone. We assume that a border between node0 and node1
1745 * can occur within a single pageblock, but not a node0 node1 node0
1746 * interleaving within a single pageblock. It is therefore sufficient to check
1747 * the first and last page of a pageblock and avoid checking each individual
1748 * page in a pageblock.
1749 */
1750struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1751 unsigned long end_pfn, struct zone *zone)
1752{
1753 struct page *start_page;
1754 struct page *end_page;
1755
1756 /* end_pfn is one past the range we are checking */
1757 end_pfn--;
1758
1759 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1760 return NULL;
1761
1762 start_page = pfn_to_online_page(start_pfn);
1763 if (!start_page)
1764 return NULL;
1765
1766 if (page_zone(start_page) != zone)
1767 return NULL;
1768
1769 end_page = pfn_to_page(end_pfn);
1770
1771 /* This gives a shorter code than deriving page_zone(end_page) */
1772 if (page_zone_id(start_page) != page_zone_id(end_page))
1773 return NULL;
1774
1775 return start_page;
1776}
1777
1778void set_zone_contiguous(struct zone *zone)
1779{
1780 unsigned long block_start_pfn = zone->zone_start_pfn;
1781 unsigned long block_end_pfn;
1782
1783 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1784 for (; block_start_pfn < zone_end_pfn(zone);
1785 block_start_pfn = block_end_pfn,
1786 block_end_pfn += pageblock_nr_pages) {
1787
1788 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1789
1790 if (!__pageblock_pfn_to_page(block_start_pfn,
1791 block_end_pfn, zone))
1792 return;
1793 cond_resched();
1794 }
1795
1796 /* We confirm that there is no hole */
1797 zone->contiguous = true;
1798}
1799
1800void clear_zone_contiguous(struct zone *zone)
1801{
1802 zone->contiguous = false;
1803}
1804
1805#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1806static void __init deferred_free_range(unsigned long pfn,
1807 unsigned long nr_pages)
1808{
1809 struct page *page;
1810 unsigned long i;
1811
1812 if (!nr_pages)
1813 return;
1814
1815 page = pfn_to_page(pfn);
1816
1817 /* Free a large naturally-aligned chunk if possible */
1818 if (nr_pages == pageblock_nr_pages &&
1819 (pfn & (pageblock_nr_pages - 1)) == 0) {
1820 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1821 __free_pages_core(page, pageblock_order);
1822 return;
1823 }
1824
1825 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1826 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1827 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1828 __free_pages_core(page, 0);
1829 }
1830}
1831
1832/* Completion tracking for deferred_init_memmap() threads */
1833static atomic_t pgdat_init_n_undone __initdata;
1834static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1835
1836static inline void __init pgdat_init_report_one_done(void)
1837{
1838 if (atomic_dec_and_test(&pgdat_init_n_undone))
1839 complete(&pgdat_init_all_done_comp);
1840}
1841
1842/*
1843 * Returns true if page needs to be initialized or freed to buddy allocator.
1844 *
1845 * First we check if pfn is valid on architectures where it is possible to have
1846 * holes within pageblock_nr_pages. On systems where it is not possible, this
1847 * function is optimized out.
1848 *
1849 * Then, we check if a current large page is valid by only checking the validity
1850 * of the head pfn.
1851 */
1852static inline bool __init deferred_pfn_valid(unsigned long pfn)
1853{
1854 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1855 return false;
1856 return true;
1857}
1858
1859/*
1860 * Free pages to buddy allocator. Try to free aligned pages in
1861 * pageblock_nr_pages sizes.
1862 */
1863static void __init deferred_free_pages(unsigned long pfn,
1864 unsigned long end_pfn)
1865{
1866 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1867 unsigned long nr_free = 0;
1868
1869 for (; pfn < end_pfn; pfn++) {
1870 if (!deferred_pfn_valid(pfn)) {
1871 deferred_free_range(pfn - nr_free, nr_free);
1872 nr_free = 0;
1873 } else if (!(pfn & nr_pgmask)) {
1874 deferred_free_range(pfn - nr_free, nr_free);
1875 nr_free = 1;
1876 } else {
1877 nr_free++;
1878 }
1879 }
1880 /* Free the last block of pages to allocator */
1881 deferred_free_range(pfn - nr_free, nr_free);
1882}
1883
1884/*
1885 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1886 * by performing it only once every pageblock_nr_pages.
1887 * Return number of pages initialized.
1888 */
1889static unsigned long __init deferred_init_pages(struct zone *zone,
1890 unsigned long pfn,
1891 unsigned long end_pfn)
1892{
1893 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1894 int nid = zone_to_nid(zone);
1895 unsigned long nr_pages = 0;
1896 int zid = zone_idx(zone);
1897 struct page *page = NULL;
1898
1899 for (; pfn < end_pfn; pfn++) {
1900 if (!deferred_pfn_valid(pfn)) {
1901 page = NULL;
1902 continue;
1903 } else if (!page || !(pfn & nr_pgmask)) {
1904 page = pfn_to_page(pfn);
1905 } else {
1906 page++;
1907 }
1908 __init_single_page(page, pfn, zid, nid);
1909 nr_pages++;
1910 }
1911 return (nr_pages);
1912}
1913
1914/*
1915 * This function is meant to pre-load the iterator for the zone init.
1916 * Specifically it walks through the ranges until we are caught up to the
1917 * first_init_pfn value and exits there. If we never encounter the value we
1918 * return false indicating there are no valid ranges left.
1919 */
1920static bool __init
1921deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1922 unsigned long *spfn, unsigned long *epfn,
1923 unsigned long first_init_pfn)
1924{
1925 u64 j;
1926
1927 /*
1928 * Start out by walking through the ranges in this zone that have
1929 * already been initialized. We don't need to do anything with them
1930 * so we just need to flush them out of the system.
1931 */
1932 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1933 if (*epfn <= first_init_pfn)
1934 continue;
1935 if (*spfn < first_init_pfn)
1936 *spfn = first_init_pfn;
1937 *i = j;
1938 return true;
1939 }
1940
1941 return false;
1942}
1943
1944/*
1945 * Initialize and free pages. We do it in two loops: first we initialize
1946 * struct page, then free to buddy allocator, because while we are
1947 * freeing pages we can access pages that are ahead (computing buddy
1948 * page in __free_one_page()).
1949 *
1950 * In order to try and keep some memory in the cache we have the loop
1951 * broken along max page order boundaries. This way we will not cause
1952 * any issues with the buddy page computation.
1953 */
1954static unsigned long __init
1955deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1956 unsigned long *end_pfn)
1957{
1958 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1959 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1960 unsigned long nr_pages = 0;
1961 u64 j = *i;
1962
1963 /* First we loop through and initialize the page values */
1964 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1965 unsigned long t;
1966
1967 if (mo_pfn <= *start_pfn)
1968 break;
1969
1970 t = min(mo_pfn, *end_pfn);
1971 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1972
1973 if (mo_pfn < *end_pfn) {
1974 *start_pfn = mo_pfn;
1975 break;
1976 }
1977 }
1978
1979 /* Reset values and now loop through freeing pages as needed */
1980 swap(j, *i);
1981
1982 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1983 unsigned long t;
1984
1985 if (mo_pfn <= spfn)
1986 break;
1987
1988 t = min(mo_pfn, epfn);
1989 deferred_free_pages(spfn, t);
1990
1991 if (mo_pfn <= epfn)
1992 break;
1993 }
1994
1995 return nr_pages;
1996}
1997
1998static void __init
1999deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2000 void *arg)
2001{
2002 unsigned long spfn, epfn;
2003 struct zone *zone = arg;
2004 u64 i;
2005
2006 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2007
2008 /*
2009 * Initialize and free pages in MAX_ORDER sized increments so that we
2010 * can avoid introducing any issues with the buddy allocator.
2011 */
2012 while (spfn < end_pfn) {
2013 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2014 cond_resched();
2015 }
2016}
2017
2018/* An arch may override for more concurrency. */
2019__weak int __init
2020deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2021{
2022 return 1;
2023}
2024
2025/* Initialise remaining memory on a node */
2026static int __init deferred_init_memmap(void *data)
2027{
2028 pg_data_t *pgdat = data;
2029 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2030 unsigned long spfn = 0, epfn = 0;
2031 unsigned long first_init_pfn, flags;
2032 unsigned long start = jiffies;
2033 struct zone *zone;
2034 int zid, max_threads;
2035 u64 i;
2036
2037 /* Bind memory initialisation thread to a local node if possible */
2038 if (!cpumask_empty(cpumask))
2039 set_cpus_allowed_ptr(current, cpumask);
2040
2041 pgdat_resize_lock(pgdat, &flags);
2042 first_init_pfn = pgdat->first_deferred_pfn;
2043 if (first_init_pfn == ULONG_MAX) {
2044 pgdat_resize_unlock(pgdat, &flags);
2045 pgdat_init_report_one_done();
2046 return 0;
2047 }
2048
2049 /* Sanity check boundaries */
2050 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2051 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2052 pgdat->first_deferred_pfn = ULONG_MAX;
2053
2054 /*
2055 * Once we unlock here, the zone cannot be grown anymore, thus if an
2056 * interrupt thread must allocate this early in boot, zone must be
2057 * pre-grown prior to start of deferred page initialization.
2058 */
2059 pgdat_resize_unlock(pgdat, &flags);
2060
2061 /* Only the highest zone is deferred so find it */
2062 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2063 zone = pgdat->node_zones + zid;
2064 if (first_init_pfn < zone_end_pfn(zone))
2065 break;
2066 }
2067
2068 /* If the zone is empty somebody else may have cleared out the zone */
2069 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2070 first_init_pfn))
2071 goto zone_empty;
2072
2073 max_threads = deferred_page_init_max_threads(cpumask);
2074
2075 while (spfn < epfn) {
2076 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2077 struct padata_mt_job job = {
2078 .thread_fn = deferred_init_memmap_chunk,
2079 .fn_arg = zone,
2080 .start = spfn,
2081 .size = epfn_align - spfn,
2082 .align = PAGES_PER_SECTION,
2083 .min_chunk = PAGES_PER_SECTION,
2084 .max_threads = max_threads,
2085 };
2086
2087 padata_do_multithreaded(&job);
2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2089 epfn_align);
2090 }
2091zone_empty:
2092 /* Sanity check that the next zone really is unpopulated */
2093 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2094
2095 pr_info("node %d deferred pages initialised in %ums\n",
2096 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2097
2098 pgdat_init_report_one_done();
2099 return 0;
2100}
2101
2102/*
2103 * If this zone has deferred pages, try to grow it by initializing enough
2104 * deferred pages to satisfy the allocation specified by order, rounded up to
2105 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2106 * of SECTION_SIZE bytes by initializing struct pages in increments of
2107 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2108 *
2109 * Return true when zone was grown, otherwise return false. We return true even
2110 * when we grow less than requested, to let the caller decide if there are
2111 * enough pages to satisfy the allocation.
2112 *
2113 * Note: We use noinline because this function is needed only during boot, and
2114 * it is called from a __ref function _deferred_grow_zone. This way we are
2115 * making sure that it is not inlined into permanent text section.
2116 */
2117static noinline bool __init
2118deferred_grow_zone(struct zone *zone, unsigned int order)
2119{
2120 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2121 pg_data_t *pgdat = zone->zone_pgdat;
2122 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2123 unsigned long spfn, epfn, flags;
2124 unsigned long nr_pages = 0;
2125 u64 i;
2126
2127 /* Only the last zone may have deferred pages */
2128 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2129 return false;
2130
2131 pgdat_resize_lock(pgdat, &flags);
2132
2133 /*
2134 * If someone grew this zone while we were waiting for spinlock, return
2135 * true, as there might be enough pages already.
2136 */
2137 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2138 pgdat_resize_unlock(pgdat, &flags);
2139 return true;
2140 }
2141
2142 /* If the zone is empty somebody else may have cleared out the zone */
2143 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2144 first_deferred_pfn)) {
2145 pgdat->first_deferred_pfn = ULONG_MAX;
2146 pgdat_resize_unlock(pgdat, &flags);
2147 /* Retry only once. */
2148 return first_deferred_pfn != ULONG_MAX;
2149 }
2150
2151 /*
2152 * Initialize and free pages in MAX_ORDER sized increments so
2153 * that we can avoid introducing any issues with the buddy
2154 * allocator.
2155 */
2156 while (spfn < epfn) {
2157 /* update our first deferred PFN for this section */
2158 first_deferred_pfn = spfn;
2159
2160 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2161 touch_nmi_watchdog();
2162
2163 /* We should only stop along section boundaries */
2164 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2165 continue;
2166
2167 /* If our quota has been met we can stop here */
2168 if (nr_pages >= nr_pages_needed)
2169 break;
2170 }
2171
2172 pgdat->first_deferred_pfn = spfn;
2173 pgdat_resize_unlock(pgdat, &flags);
2174
2175 return nr_pages > 0;
2176}
2177
2178/*
2179 * deferred_grow_zone() is __init, but it is called from
2180 * get_page_from_freelist() during early boot until deferred_pages permanently
2181 * disables this call. This is why we have refdata wrapper to avoid warning,
2182 * and to ensure that the function body gets unloaded.
2183 */
2184static bool __ref
2185_deferred_grow_zone(struct zone *zone, unsigned int order)
2186{
2187 return deferred_grow_zone(zone, order);
2188}
2189
2190#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2191
2192void __init page_alloc_init_late(void)
2193{
2194 struct zone *zone;
2195 int nid;
2196
2197#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2198
2199 /* There will be num_node_state(N_MEMORY) threads */
2200 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2201 for_each_node_state(nid, N_MEMORY) {
2202 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2203 }
2204
2205 /* Block until all are initialised */
2206 wait_for_completion(&pgdat_init_all_done_comp);
2207
2208 /*
2209 * We initialized the rest of the deferred pages. Permanently disable
2210 * on-demand struct page initialization.
2211 */
2212 static_branch_disable(&deferred_pages);
2213
2214 /* Reinit limits that are based on free pages after the kernel is up */
2215 files_maxfiles_init();
2216#endif
2217
2218 buffer_init();
2219
2220 /* Discard memblock private memory */
2221 memblock_discard();
2222
2223 for_each_node_state(nid, N_MEMORY)
2224 shuffle_free_memory(NODE_DATA(nid));
2225
2226 for_each_populated_zone(zone)
2227 set_zone_contiguous(zone);
2228}
2229
2230#ifdef CONFIG_CMA
2231/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2232void __init init_cma_reserved_pageblock(struct page *page)
2233{
2234 unsigned i = pageblock_nr_pages;
2235 struct page *p = page;
2236
2237 do {
2238 __ClearPageReserved(p);
2239 set_page_count(p, 0);
2240 } while (++p, --i);
2241
2242 set_pageblock_migratetype(page, MIGRATE_CMA);
2243 set_page_refcounted(page);
2244 __free_pages(page, pageblock_order);
2245
2246 adjust_managed_page_count(page, pageblock_nr_pages);
2247 page_zone(page)->cma_pages += pageblock_nr_pages;
2248}
2249#endif
2250
2251/*
2252 * The order of subdivision here is critical for the IO subsystem.
2253 * Please do not alter this order without good reasons and regression
2254 * testing. Specifically, as large blocks of memory are subdivided,
2255 * the order in which smaller blocks are delivered depends on the order
2256 * they're subdivided in this function. This is the primary factor
2257 * influencing the order in which pages are delivered to the IO
2258 * subsystem according to empirical testing, and this is also justified
2259 * by considering the behavior of a buddy system containing a single
2260 * large block of memory acted on by a series of small allocations.
2261 * This behavior is a critical factor in sglist merging's success.
2262 *
2263 * -- nyc
2264 */
2265static inline void expand(struct zone *zone, struct page *page,
2266 int low, int high, int migratetype)
2267{
2268 unsigned long size = 1 << high;
2269
2270 while (high > low) {
2271 high--;
2272 size >>= 1;
2273 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2274
2275 /*
2276 * Mark as guard pages (or page), that will allow to
2277 * merge back to allocator when buddy will be freed.
2278 * Corresponding page table entries will not be touched,
2279 * pages will stay not present in virtual address space
2280 */
2281 if (set_page_guard(zone, &page[size], high, migratetype))
2282 continue;
2283
2284 add_to_free_list(&page[size], zone, high, migratetype);
2285 set_buddy_order(&page[size], high);
2286 }
2287}
2288
2289static void check_new_page_bad(struct page *page)
2290{
2291 if (unlikely(page->flags & __PG_HWPOISON)) {
2292 /* Don't complain about hwpoisoned pages */
2293 page_mapcount_reset(page); /* remove PageBuddy */
2294 return;
2295 }
2296
2297 bad_page(page,
2298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2299}
2300
2301/*
2302 * This page is about to be returned from the page allocator
2303 */
2304static inline int check_new_page(struct page *page)
2305{
2306 if (likely(page_expected_state(page,
2307 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2308 return 0;
2309
2310 check_new_page_bad(page);
2311 return 1;
2312}
2313
2314static bool check_new_pages(struct page *page, unsigned int order)
2315{
2316 int i;
2317 for (i = 0; i < (1 << order); i++) {
2318 struct page *p = page + i;
2319
2320 if (unlikely(check_new_page(p)))
2321 return true;
2322 }
2323
2324 return false;
2325}
2326
2327#ifdef CONFIG_DEBUG_VM
2328/*
2329 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2330 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2331 * also checked when pcp lists are refilled from the free lists.
2332 */
2333static inline bool check_pcp_refill(struct page *page, unsigned int order)
2334{
2335 if (debug_pagealloc_enabled_static())
2336 return check_new_pages(page, order);
2337 else
2338 return false;
2339}
2340
2341static inline bool check_new_pcp(struct page *page, unsigned int order)
2342{
2343 return check_new_pages(page, order);
2344}
2345#else
2346/*
2347 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2348 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2349 * enabled, they are also checked when being allocated from the pcp lists.
2350 */
2351static inline bool check_pcp_refill(struct page *page, unsigned int order)
2352{
2353 return check_new_pages(page, order);
2354}
2355static inline bool check_new_pcp(struct page *page, unsigned int order)
2356{
2357 if (debug_pagealloc_enabled_static())
2358 return check_new_pages(page, order);
2359 else
2360 return false;
2361}
2362#endif /* CONFIG_DEBUG_VM */
2363
2364static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2365{
2366 /* Don't skip if a software KASAN mode is enabled. */
2367 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2368 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2369 return false;
2370
2371 /* Skip, if hardware tag-based KASAN is not enabled. */
2372 if (!kasan_hw_tags_enabled())
2373 return true;
2374
2375 /*
2376 * With hardware tag-based KASAN enabled, skip if either:
2377 *
2378 * 1. Memory tags have already been cleared via tag_clear_highpage().
2379 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2380 */
2381 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2382}
2383
2384static inline bool should_skip_init(gfp_t flags)
2385{
2386 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2387 if (!kasan_hw_tags_enabled())
2388 return false;
2389
2390 /* For hardware tag-based KASAN, skip if requested. */
2391 return (flags & __GFP_SKIP_ZERO);
2392}
2393
2394inline void post_alloc_hook(struct page *page, unsigned int order,
2395 gfp_t gfp_flags)
2396{
2397 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2398 !should_skip_init(gfp_flags);
2399 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2400
2401 set_page_private(page, 0);
2402 set_page_refcounted(page);
2403
2404 arch_alloc_page(page, order);
2405 debug_pagealloc_map_pages(page, 1 << order);
2406
2407 /*
2408 * Page unpoisoning must happen before memory initialization.
2409 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410 * allocations and the page unpoisoning code will complain.
2411 */
2412 kernel_unpoison_pages(page, 1 << order);
2413
2414 /*
2415 * As memory initialization might be integrated into KASAN,
2416 * KASAN unpoisoning and memory initializion code must be
2417 * kept together to avoid discrepancies in behavior.
2418 */
2419
2420 /*
2421 * If memory tags should be zeroed (which happens only when memory
2422 * should be initialized as well).
2423 */
2424 if (init_tags) {
2425 int i;
2426
2427 /* Initialize both memory and tags. */
2428 for (i = 0; i != 1 << order; ++i)
2429 tag_clear_highpage(page + i);
2430
2431 /* Note that memory is already initialized by the loop above. */
2432 init = false;
2433 }
2434 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2435 /* Unpoison shadow memory or set memory tags. */
2436 kasan_unpoison_pages(page, order, init);
2437
2438 /* Note that memory is already initialized by KASAN. */
2439 if (kasan_has_integrated_init())
2440 init = false;
2441 }
2442 /* If memory is still not initialized, do it now. */
2443 if (init)
2444 kernel_init_free_pages(page, 1 << order);
2445 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2446 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2447 SetPageSkipKASanPoison(page);
2448
2449 set_page_owner(page, order, gfp_flags);
2450 page_table_check_alloc(page, order);
2451}
2452
2453static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2454 unsigned int alloc_flags)
2455{
2456 post_alloc_hook(page, order, gfp_flags);
2457
2458 if (order && (gfp_flags & __GFP_COMP))
2459 prep_compound_page(page, order);
2460
2461 /*
2462 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2463 * allocate the page. The expectation is that the caller is taking
2464 * steps that will free more memory. The caller should avoid the page
2465 * being used for !PFMEMALLOC purposes.
2466 */
2467 if (alloc_flags & ALLOC_NO_WATERMARKS)
2468 set_page_pfmemalloc(page);
2469 else
2470 clear_page_pfmemalloc(page);
2471}
2472
2473/*
2474 * Go through the free lists for the given migratetype and remove
2475 * the smallest available page from the freelists
2476 */
2477static __always_inline
2478struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2479 int migratetype)
2480{
2481 unsigned int current_order;
2482 struct free_area *area;
2483 struct page *page;
2484
2485 /* Find a page of the appropriate size in the preferred list */
2486 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2487 area = &(zone->free_area[current_order]);
2488 page = get_page_from_free_area(area, migratetype);
2489 if (!page)
2490 continue;
2491 del_page_from_free_list(page, zone, current_order);
2492 expand(zone, page, order, current_order, migratetype);
2493 set_pcppage_migratetype(page, migratetype);
2494 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2495 pcp_allowed_order(order) &&
2496 migratetype < MIGRATE_PCPTYPES);
2497 return page;
2498 }
2499
2500 return NULL;
2501}
2502
2503
2504/*
2505 * This array describes the order lists are fallen back to when
2506 * the free lists for the desirable migrate type are depleted
2507 *
2508 * The other migratetypes do not have fallbacks.
2509 */
2510static int fallbacks[MIGRATE_TYPES][3] = {
2511 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2512 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2513 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2514};
2515
2516#ifdef CONFIG_CMA
2517static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2518 unsigned int order)
2519{
2520 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2521}
2522#else
2523static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2524 unsigned int order) { return NULL; }
2525#endif
2526
2527/*
2528 * Move the free pages in a range to the freelist tail of the requested type.
2529 * Note that start_page and end_pages are not aligned on a pageblock
2530 * boundary. If alignment is required, use move_freepages_block()
2531 */
2532static int move_freepages(struct zone *zone,
2533 unsigned long start_pfn, unsigned long end_pfn,
2534 int migratetype, int *num_movable)
2535{
2536 struct page *page;
2537 unsigned long pfn;
2538 unsigned int order;
2539 int pages_moved = 0;
2540
2541 for (pfn = start_pfn; pfn <= end_pfn;) {
2542 page = pfn_to_page(pfn);
2543 if (!PageBuddy(page)) {
2544 /*
2545 * We assume that pages that could be isolated for
2546 * migration are movable. But we don't actually try
2547 * isolating, as that would be expensive.
2548 */
2549 if (num_movable &&
2550 (PageLRU(page) || __PageMovable(page)))
2551 (*num_movable)++;
2552 pfn++;
2553 continue;
2554 }
2555
2556 /* Make sure we are not inadvertently changing nodes */
2557 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2558 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2559
2560 order = buddy_order(page);
2561 move_to_free_list(page, zone, order, migratetype);
2562 pfn += 1 << order;
2563 pages_moved += 1 << order;
2564 }
2565
2566 return pages_moved;
2567}
2568
2569int move_freepages_block(struct zone *zone, struct page *page,
2570 int migratetype, int *num_movable)
2571{
2572 unsigned long start_pfn, end_pfn, pfn;
2573
2574 if (num_movable)
2575 *num_movable = 0;
2576
2577 pfn = page_to_pfn(page);
2578 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2579 end_pfn = start_pfn + pageblock_nr_pages - 1;
2580
2581 /* Do not cross zone boundaries */
2582 if (!zone_spans_pfn(zone, start_pfn))
2583 start_pfn = pfn;
2584 if (!zone_spans_pfn(zone, end_pfn))
2585 return 0;
2586
2587 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2588 num_movable);
2589}
2590
2591static void change_pageblock_range(struct page *pageblock_page,
2592 int start_order, int migratetype)
2593{
2594 int nr_pageblocks = 1 << (start_order - pageblock_order);
2595
2596 while (nr_pageblocks--) {
2597 set_pageblock_migratetype(pageblock_page, migratetype);
2598 pageblock_page += pageblock_nr_pages;
2599 }
2600}
2601
2602/*
2603 * When we are falling back to another migratetype during allocation, try to
2604 * steal extra free pages from the same pageblocks to satisfy further
2605 * allocations, instead of polluting multiple pageblocks.
2606 *
2607 * If we are stealing a relatively large buddy page, it is likely there will
2608 * be more free pages in the pageblock, so try to steal them all. For
2609 * reclaimable and unmovable allocations, we steal regardless of page size,
2610 * as fragmentation caused by those allocations polluting movable pageblocks
2611 * is worse than movable allocations stealing from unmovable and reclaimable
2612 * pageblocks.
2613 */
2614static bool can_steal_fallback(unsigned int order, int start_mt)
2615{
2616 /*
2617 * Leaving this order check is intended, although there is
2618 * relaxed order check in next check. The reason is that
2619 * we can actually steal whole pageblock if this condition met,
2620 * but, below check doesn't guarantee it and that is just heuristic
2621 * so could be changed anytime.
2622 */
2623 if (order >= pageblock_order)
2624 return true;
2625
2626 if (order >= pageblock_order / 2 ||
2627 start_mt == MIGRATE_RECLAIMABLE ||
2628 start_mt == MIGRATE_UNMOVABLE ||
2629 page_group_by_mobility_disabled)
2630 return true;
2631
2632 return false;
2633}
2634
2635static inline bool boost_watermark(struct zone *zone)
2636{
2637 unsigned long max_boost;
2638
2639 if (!watermark_boost_factor)
2640 return false;
2641 /*
2642 * Don't bother in zones that are unlikely to produce results.
2643 * On small machines, including kdump capture kernels running
2644 * in a small area, boosting the watermark can cause an out of
2645 * memory situation immediately.
2646 */
2647 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2648 return false;
2649
2650 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2651 watermark_boost_factor, 10000);
2652
2653 /*
2654 * high watermark may be uninitialised if fragmentation occurs
2655 * very early in boot so do not boost. We do not fall
2656 * through and boost by pageblock_nr_pages as failing
2657 * allocations that early means that reclaim is not going
2658 * to help and it may even be impossible to reclaim the
2659 * boosted watermark resulting in a hang.
2660 */
2661 if (!max_boost)
2662 return false;
2663
2664 max_boost = max(pageblock_nr_pages, max_boost);
2665
2666 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2667 max_boost);
2668
2669 return true;
2670}
2671
2672/*
2673 * This function implements actual steal behaviour. If order is large enough,
2674 * we can steal whole pageblock. If not, we first move freepages in this
2675 * pageblock to our migratetype and determine how many already-allocated pages
2676 * are there in the pageblock with a compatible migratetype. If at least half
2677 * of pages are free or compatible, we can change migratetype of the pageblock
2678 * itself, so pages freed in the future will be put on the correct free list.
2679 */
2680static void steal_suitable_fallback(struct zone *zone, struct page *page,
2681 unsigned int alloc_flags, int start_type, bool whole_block)
2682{
2683 unsigned int current_order = buddy_order(page);
2684 int free_pages, movable_pages, alike_pages;
2685 int old_block_type;
2686
2687 old_block_type = get_pageblock_migratetype(page);
2688
2689 /*
2690 * This can happen due to races and we want to prevent broken
2691 * highatomic accounting.
2692 */
2693 if (is_migrate_highatomic(old_block_type))
2694 goto single_page;
2695
2696 /* Take ownership for orders >= pageblock_order */
2697 if (current_order >= pageblock_order) {
2698 change_pageblock_range(page, current_order, start_type);
2699 goto single_page;
2700 }
2701
2702 /*
2703 * Boost watermarks to increase reclaim pressure to reduce the
2704 * likelihood of future fallbacks. Wake kswapd now as the node
2705 * may be balanced overall and kswapd will not wake naturally.
2706 */
2707 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2708 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2709
2710 /* We are not allowed to try stealing from the whole block */
2711 if (!whole_block)
2712 goto single_page;
2713
2714 free_pages = move_freepages_block(zone, page, start_type,
2715 &movable_pages);
2716 /*
2717 * Determine how many pages are compatible with our allocation.
2718 * For movable allocation, it's the number of movable pages which
2719 * we just obtained. For other types it's a bit more tricky.
2720 */
2721 if (start_type == MIGRATE_MOVABLE) {
2722 alike_pages = movable_pages;
2723 } else {
2724 /*
2725 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2726 * to MOVABLE pageblock, consider all non-movable pages as
2727 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2728 * vice versa, be conservative since we can't distinguish the
2729 * exact migratetype of non-movable pages.
2730 */
2731 if (old_block_type == MIGRATE_MOVABLE)
2732 alike_pages = pageblock_nr_pages
2733 - (free_pages + movable_pages);
2734 else
2735 alike_pages = 0;
2736 }
2737
2738 /* moving whole block can fail due to zone boundary conditions */
2739 if (!free_pages)
2740 goto single_page;
2741
2742 /*
2743 * If a sufficient number of pages in the block are either free or of
2744 * comparable migratability as our allocation, claim the whole block.
2745 */
2746 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2747 page_group_by_mobility_disabled)
2748 set_pageblock_migratetype(page, start_type);
2749
2750 return;
2751
2752single_page:
2753 move_to_free_list(page, zone, current_order, start_type);
2754}
2755
2756/*
2757 * Check whether there is a suitable fallback freepage with requested order.
2758 * If only_stealable is true, this function returns fallback_mt only if
2759 * we can steal other freepages all together. This would help to reduce
2760 * fragmentation due to mixed migratetype pages in one pageblock.
2761 */
2762int find_suitable_fallback(struct free_area *area, unsigned int order,
2763 int migratetype, bool only_stealable, bool *can_steal)
2764{
2765 int i;
2766 int fallback_mt;
2767
2768 if (area->nr_free == 0)
2769 return -1;
2770
2771 *can_steal = false;
2772 for (i = 0;; i++) {
2773 fallback_mt = fallbacks[migratetype][i];
2774 if (fallback_mt == MIGRATE_TYPES)
2775 break;
2776
2777 if (free_area_empty(area, fallback_mt))
2778 continue;
2779
2780 if (can_steal_fallback(order, migratetype))
2781 *can_steal = true;
2782
2783 if (!only_stealable)
2784 return fallback_mt;
2785
2786 if (*can_steal)
2787 return fallback_mt;
2788 }
2789
2790 return -1;
2791}
2792
2793/*
2794 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2795 * there are no empty page blocks that contain a page with a suitable order
2796 */
2797static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2798 unsigned int alloc_order)
2799{
2800 int mt;
2801 unsigned long max_managed, flags;
2802
2803 /*
2804 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2805 * Check is race-prone but harmless.
2806 */
2807 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2808 if (zone->nr_reserved_highatomic >= max_managed)
2809 return;
2810
2811 spin_lock_irqsave(&zone->lock, flags);
2812
2813 /* Recheck the nr_reserved_highatomic limit under the lock */
2814 if (zone->nr_reserved_highatomic >= max_managed)
2815 goto out_unlock;
2816
2817 /* Yoink! */
2818 mt = get_pageblock_migratetype(page);
2819 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2820 if (migratetype_is_mergeable(mt)) {
2821 zone->nr_reserved_highatomic += pageblock_nr_pages;
2822 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2823 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2824 }
2825
2826out_unlock:
2827 spin_unlock_irqrestore(&zone->lock, flags);
2828}
2829
2830/*
2831 * Used when an allocation is about to fail under memory pressure. This
2832 * potentially hurts the reliability of high-order allocations when under
2833 * intense memory pressure but failed atomic allocations should be easier
2834 * to recover from than an OOM.
2835 *
2836 * If @force is true, try to unreserve a pageblock even though highatomic
2837 * pageblock is exhausted.
2838 */
2839static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2840 bool force)
2841{
2842 struct zonelist *zonelist = ac->zonelist;
2843 unsigned long flags;
2844 struct zoneref *z;
2845 struct zone *zone;
2846 struct page *page;
2847 int order;
2848 bool ret;
2849
2850 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2851 ac->nodemask) {
2852 /*
2853 * Preserve at least one pageblock unless memory pressure
2854 * is really high.
2855 */
2856 if (!force && zone->nr_reserved_highatomic <=
2857 pageblock_nr_pages)
2858 continue;
2859
2860 spin_lock_irqsave(&zone->lock, flags);
2861 for (order = 0; order < MAX_ORDER; order++) {
2862 struct free_area *area = &(zone->free_area[order]);
2863
2864 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2865 if (!page)
2866 continue;
2867
2868 /*
2869 * In page freeing path, migratetype change is racy so
2870 * we can counter several free pages in a pageblock
2871 * in this loop although we changed the pageblock type
2872 * from highatomic to ac->migratetype. So we should
2873 * adjust the count once.
2874 */
2875 if (is_migrate_highatomic_page(page)) {
2876 /*
2877 * It should never happen but changes to
2878 * locking could inadvertently allow a per-cpu
2879 * drain to add pages to MIGRATE_HIGHATOMIC
2880 * while unreserving so be safe and watch for
2881 * underflows.
2882 */
2883 zone->nr_reserved_highatomic -= min(
2884 pageblock_nr_pages,
2885 zone->nr_reserved_highatomic);
2886 }
2887
2888 /*
2889 * Convert to ac->migratetype and avoid the normal
2890 * pageblock stealing heuristics. Minimally, the caller
2891 * is doing the work and needs the pages. More
2892 * importantly, if the block was always converted to
2893 * MIGRATE_UNMOVABLE or another type then the number
2894 * of pageblocks that cannot be completely freed
2895 * may increase.
2896 */
2897 set_pageblock_migratetype(page, ac->migratetype);
2898 ret = move_freepages_block(zone, page, ac->migratetype,
2899 NULL);
2900 if (ret) {
2901 spin_unlock_irqrestore(&zone->lock, flags);
2902 return ret;
2903 }
2904 }
2905 spin_unlock_irqrestore(&zone->lock, flags);
2906 }
2907
2908 return false;
2909}
2910
2911/*
2912 * Try finding a free buddy page on the fallback list and put it on the free
2913 * list of requested migratetype, possibly along with other pages from the same
2914 * block, depending on fragmentation avoidance heuristics. Returns true if
2915 * fallback was found so that __rmqueue_smallest() can grab it.
2916 *
2917 * The use of signed ints for order and current_order is a deliberate
2918 * deviation from the rest of this file, to make the for loop
2919 * condition simpler.
2920 */
2921static __always_inline bool
2922__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2923 unsigned int alloc_flags)
2924{
2925 struct free_area *area;
2926 int current_order;
2927 int min_order = order;
2928 struct page *page;
2929 int fallback_mt;
2930 bool can_steal;
2931
2932 /*
2933 * Do not steal pages from freelists belonging to other pageblocks
2934 * i.e. orders < pageblock_order. If there are no local zones free,
2935 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2936 */
2937 if (alloc_flags & ALLOC_NOFRAGMENT)
2938 min_order = pageblock_order;
2939
2940 /*
2941 * Find the largest available free page in the other list. This roughly
2942 * approximates finding the pageblock with the most free pages, which
2943 * would be too costly to do exactly.
2944 */
2945 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2946 --current_order) {
2947 area = &(zone->free_area[current_order]);
2948 fallback_mt = find_suitable_fallback(area, current_order,
2949 start_migratetype, false, &can_steal);
2950 if (fallback_mt == -1)
2951 continue;
2952
2953 /*
2954 * We cannot steal all free pages from the pageblock and the
2955 * requested migratetype is movable. In that case it's better to
2956 * steal and split the smallest available page instead of the
2957 * largest available page, because even if the next movable
2958 * allocation falls back into a different pageblock than this
2959 * one, it won't cause permanent fragmentation.
2960 */
2961 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2962 && current_order > order)
2963 goto find_smallest;
2964
2965 goto do_steal;
2966 }
2967
2968 return false;
2969
2970find_smallest:
2971 for (current_order = order; current_order < MAX_ORDER;
2972 current_order++) {
2973 area = &(zone->free_area[current_order]);
2974 fallback_mt = find_suitable_fallback(area, current_order,
2975 start_migratetype, false, &can_steal);
2976 if (fallback_mt != -1)
2977 break;
2978 }
2979
2980 /*
2981 * This should not happen - we already found a suitable fallback
2982 * when looking for the largest page.
2983 */
2984 VM_BUG_ON(current_order == MAX_ORDER);
2985
2986do_steal:
2987 page = get_page_from_free_area(area, fallback_mt);
2988
2989 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2990 can_steal);
2991
2992 trace_mm_page_alloc_extfrag(page, order, current_order,
2993 start_migratetype, fallback_mt);
2994
2995 return true;
2996
2997}
2998
2999/*
3000 * Do the hard work of removing an element from the buddy allocator.
3001 * Call me with the zone->lock already held.
3002 */
3003static __always_inline struct page *
3004__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3005 unsigned int alloc_flags)
3006{
3007 struct page *page;
3008
3009 if (IS_ENABLED(CONFIG_CMA)) {
3010 /*
3011 * Balance movable allocations between regular and CMA areas by
3012 * allocating from CMA when over half of the zone's free memory
3013 * is in the CMA area.
3014 */
3015 if (alloc_flags & ALLOC_CMA &&
3016 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3017 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3018 page = __rmqueue_cma_fallback(zone, order);
3019 if (page)
3020 return page;
3021 }
3022 }
3023retry:
3024 page = __rmqueue_smallest(zone, order, migratetype);
3025 if (unlikely(!page)) {
3026 if (alloc_flags & ALLOC_CMA)
3027 page = __rmqueue_cma_fallback(zone, order);
3028
3029 if (!page && __rmqueue_fallback(zone, order, migratetype,
3030 alloc_flags))
3031 goto retry;
3032 }
3033 return page;
3034}
3035
3036/*
3037 * Obtain a specified number of elements from the buddy allocator, all under
3038 * a single hold of the lock, for efficiency. Add them to the supplied list.
3039 * Returns the number of new pages which were placed at *list.
3040 */
3041static int rmqueue_bulk(struct zone *zone, unsigned int order,
3042 unsigned long count, struct list_head *list,
3043 int migratetype, unsigned int alloc_flags)
3044{
3045 int i, allocated = 0;
3046
3047 /*
3048 * local_lock_irq held so equivalent to spin_lock_irqsave for
3049 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3050 */
3051 spin_lock(&zone->lock);
3052 for (i = 0; i < count; ++i) {
3053 struct page *page = __rmqueue(zone, order, migratetype,
3054 alloc_flags);
3055 if (unlikely(page == NULL))
3056 break;
3057
3058 if (unlikely(check_pcp_refill(page, order)))
3059 continue;
3060
3061 /*
3062 * Split buddy pages returned by expand() are received here in
3063 * physical page order. The page is added to the tail of
3064 * caller's list. From the callers perspective, the linked list
3065 * is ordered by page number under some conditions. This is
3066 * useful for IO devices that can forward direction from the
3067 * head, thus also in the physical page order. This is useful
3068 * for IO devices that can merge IO requests if the physical
3069 * pages are ordered properly.
3070 */
3071 list_add_tail(&page->lru, list);
3072 allocated++;
3073 if (is_migrate_cma(get_pcppage_migratetype(page)))
3074 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3075 -(1 << order));
3076 }
3077
3078 /*
3079 * i pages were removed from the buddy list even if some leak due
3080 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3081 * on i. Do not confuse with 'allocated' which is the number of
3082 * pages added to the pcp list.
3083 */
3084 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3085 spin_unlock(&zone->lock);
3086 return allocated;
3087}
3088
3089#ifdef CONFIG_NUMA
3090/*
3091 * Called from the vmstat counter updater to drain pagesets of this
3092 * currently executing processor on remote nodes after they have
3093 * expired.
3094 *
3095 * Note that this function must be called with the thread pinned to
3096 * a single processor.
3097 */
3098void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3099{
3100 unsigned long flags;
3101 int to_drain, batch;
3102
3103 local_lock_irqsave(&pagesets.lock, flags);
3104 batch = READ_ONCE(pcp->batch);
3105 to_drain = min(pcp->count, batch);
3106 if (to_drain > 0)
3107 free_pcppages_bulk(zone, to_drain, pcp, 0);
3108 local_unlock_irqrestore(&pagesets.lock, flags);
3109}
3110#endif
3111
3112/*
3113 * Drain pcplists of the indicated processor and zone.
3114 *
3115 * The processor must either be the current processor and the
3116 * thread pinned to the current processor or a processor that
3117 * is not online.
3118 */
3119static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3120{
3121 unsigned long flags;
3122 struct per_cpu_pages *pcp;
3123
3124 local_lock_irqsave(&pagesets.lock, flags);
3125
3126 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3127 if (pcp->count)
3128 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3129
3130 local_unlock_irqrestore(&pagesets.lock, flags);
3131}
3132
3133/*
3134 * Drain pcplists of all zones on the indicated processor.
3135 *
3136 * The processor must either be the current processor and the
3137 * thread pinned to the current processor or a processor that
3138 * is not online.
3139 */
3140static void drain_pages(unsigned int cpu)
3141{
3142 struct zone *zone;
3143
3144 for_each_populated_zone(zone) {
3145 drain_pages_zone(cpu, zone);
3146 }
3147}
3148
3149/*
3150 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3151 *
3152 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3153 * the single zone's pages.
3154 */
3155void drain_local_pages(struct zone *zone)
3156{
3157 int cpu = smp_processor_id();
3158
3159 if (zone)
3160 drain_pages_zone(cpu, zone);
3161 else
3162 drain_pages(cpu);
3163}
3164
3165static void drain_local_pages_wq(struct work_struct *work)
3166{
3167 struct pcpu_drain *drain;
3168
3169 drain = container_of(work, struct pcpu_drain, work);
3170
3171 /*
3172 * drain_all_pages doesn't use proper cpu hotplug protection so
3173 * we can race with cpu offline when the WQ can move this from
3174 * a cpu pinned worker to an unbound one. We can operate on a different
3175 * cpu which is alright but we also have to make sure to not move to
3176 * a different one.
3177 */
3178 migrate_disable();
3179 drain_local_pages(drain->zone);
3180 migrate_enable();
3181}
3182
3183/*
3184 * The implementation of drain_all_pages(), exposing an extra parameter to
3185 * drain on all cpus.
3186 *
3187 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3188 * not empty. The check for non-emptiness can however race with a free to
3189 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3190 * that need the guarantee that every CPU has drained can disable the
3191 * optimizing racy check.
3192 */
3193static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3194{
3195 int cpu;
3196
3197 /*
3198 * Allocate in the BSS so we won't require allocation in
3199 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3200 */
3201 static cpumask_t cpus_with_pcps;
3202
3203 /*
3204 * Make sure nobody triggers this path before mm_percpu_wq is fully
3205 * initialized.
3206 */
3207 if (WARN_ON_ONCE(!mm_percpu_wq))
3208 return;
3209
3210 /*
3211 * Do not drain if one is already in progress unless it's specific to
3212 * a zone. Such callers are primarily CMA and memory hotplug and need
3213 * the drain to be complete when the call returns.
3214 */
3215 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3216 if (!zone)
3217 return;
3218 mutex_lock(&pcpu_drain_mutex);
3219 }
3220
3221 /*
3222 * We don't care about racing with CPU hotplug event
3223 * as offline notification will cause the notified
3224 * cpu to drain that CPU pcps and on_each_cpu_mask
3225 * disables preemption as part of its processing
3226 */
3227 for_each_online_cpu(cpu) {
3228 struct per_cpu_pages *pcp;
3229 struct zone *z;
3230 bool has_pcps = false;
3231
3232 if (force_all_cpus) {
3233 /*
3234 * The pcp.count check is racy, some callers need a
3235 * guarantee that no cpu is missed.
3236 */
3237 has_pcps = true;
3238 } else if (zone) {
3239 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3240 if (pcp->count)
3241 has_pcps = true;
3242 } else {
3243 for_each_populated_zone(z) {
3244 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3245 if (pcp->count) {
3246 has_pcps = true;
3247 break;
3248 }
3249 }
3250 }
3251
3252 if (has_pcps)
3253 cpumask_set_cpu(cpu, &cpus_with_pcps);
3254 else
3255 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3256 }
3257
3258 for_each_cpu(cpu, &cpus_with_pcps) {
3259 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3260
3261 drain->zone = zone;
3262 INIT_WORK(&drain->work, drain_local_pages_wq);
3263 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3264 }
3265 for_each_cpu(cpu, &cpus_with_pcps)
3266 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3267
3268 mutex_unlock(&pcpu_drain_mutex);
3269}
3270
3271/*
3272 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3273 *
3274 * When zone parameter is non-NULL, spill just the single zone's pages.
3275 *
3276 * Note that this can be extremely slow as the draining happens in a workqueue.
3277 */
3278void drain_all_pages(struct zone *zone)
3279{
3280 __drain_all_pages(zone, false);
3281}
3282
3283#ifdef CONFIG_HIBERNATION
3284
3285/*
3286 * Touch the watchdog for every WD_PAGE_COUNT pages.
3287 */
3288#define WD_PAGE_COUNT (128*1024)
3289
3290void mark_free_pages(struct zone *zone)
3291{
3292 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3293 unsigned long flags;
3294 unsigned int order, t;
3295 struct page *page;
3296
3297 if (zone_is_empty(zone))
3298 return;
3299
3300 spin_lock_irqsave(&zone->lock, flags);
3301
3302 max_zone_pfn = zone_end_pfn(zone);
3303 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3304 if (pfn_valid(pfn)) {
3305 page = pfn_to_page(pfn);
3306
3307 if (!--page_count) {
3308 touch_nmi_watchdog();
3309 page_count = WD_PAGE_COUNT;
3310 }
3311
3312 if (page_zone(page) != zone)
3313 continue;
3314
3315 if (!swsusp_page_is_forbidden(page))
3316 swsusp_unset_page_free(page);
3317 }
3318
3319 for_each_migratetype_order(order, t) {
3320 list_for_each_entry(page,
3321 &zone->free_area[order].free_list[t], lru) {
3322 unsigned long i;
3323
3324 pfn = page_to_pfn(page);
3325 for (i = 0; i < (1UL << order); i++) {
3326 if (!--page_count) {
3327 touch_nmi_watchdog();
3328 page_count = WD_PAGE_COUNT;
3329 }
3330 swsusp_set_page_free(pfn_to_page(pfn + i));
3331 }
3332 }
3333 }
3334 spin_unlock_irqrestore(&zone->lock, flags);
3335}
3336#endif /* CONFIG_PM */
3337
3338static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3339 unsigned int order)
3340{
3341 int migratetype;
3342
3343 if (!free_pcp_prepare(page, order))
3344 return false;
3345
3346 migratetype = get_pfnblock_migratetype(page, pfn);
3347 set_pcppage_migratetype(page, migratetype);
3348 return true;
3349}
3350
3351static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3352 bool free_high)
3353{
3354 int min_nr_free, max_nr_free;
3355
3356 /* Free everything if batch freeing high-order pages. */
3357 if (unlikely(free_high))
3358 return pcp->count;
3359
3360 /* Check for PCP disabled or boot pageset */
3361 if (unlikely(high < batch))
3362 return 1;
3363
3364 /* Leave at least pcp->batch pages on the list */
3365 min_nr_free = batch;
3366 max_nr_free = high - batch;
3367
3368 /*
3369 * Double the number of pages freed each time there is subsequent
3370 * freeing of pages without any allocation.
3371 */
3372 batch <<= pcp->free_factor;
3373 if (batch < max_nr_free)
3374 pcp->free_factor++;
3375 batch = clamp(batch, min_nr_free, max_nr_free);
3376
3377 return batch;
3378}
3379
3380static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3381 bool free_high)
3382{
3383 int high = READ_ONCE(pcp->high);
3384
3385 if (unlikely(!high || free_high))
3386 return 0;
3387
3388 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3389 return high;
3390
3391 /*
3392 * If reclaim is active, limit the number of pages that can be
3393 * stored on pcp lists
3394 */
3395 return min(READ_ONCE(pcp->batch) << 2, high);
3396}
3397
3398static void free_unref_page_commit(struct page *page, int migratetype,
3399 unsigned int order)
3400{
3401 struct zone *zone = page_zone(page);
3402 struct per_cpu_pages *pcp;
3403 int high;
3404 int pindex;
3405 bool free_high;
3406
3407 __count_vm_event(PGFREE);
3408 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3409 pindex = order_to_pindex(migratetype, order);
3410 list_add(&page->lru, &pcp->lists[pindex]);
3411 pcp->count += 1 << order;
3412
3413 /*
3414 * As high-order pages other than THP's stored on PCP can contribute
3415 * to fragmentation, limit the number stored when PCP is heavily
3416 * freeing without allocation. The remainder after bulk freeing
3417 * stops will be drained from vmstat refresh context.
3418 */
3419 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3420
3421 high = nr_pcp_high(pcp, zone, free_high);
3422 if (pcp->count >= high) {
3423 int batch = READ_ONCE(pcp->batch);
3424
3425 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3426 }
3427}
3428
3429/*
3430 * Free a pcp page
3431 */
3432void free_unref_page(struct page *page, unsigned int order)
3433{
3434 unsigned long flags;
3435 unsigned long pfn = page_to_pfn(page);
3436 int migratetype;
3437
3438 if (!free_unref_page_prepare(page, pfn, order))
3439 return;
3440
3441 /*
3442 * We only track unmovable, reclaimable and movable on pcp lists.
3443 * Place ISOLATE pages on the isolated list because they are being
3444 * offlined but treat HIGHATOMIC as movable pages so we can get those
3445 * areas back if necessary. Otherwise, we may have to free
3446 * excessively into the page allocator
3447 */
3448 migratetype = get_pcppage_migratetype(page);
3449 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3450 if (unlikely(is_migrate_isolate(migratetype))) {
3451 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3452 return;
3453 }
3454 migratetype = MIGRATE_MOVABLE;
3455 }
3456
3457 local_lock_irqsave(&pagesets.lock, flags);
3458 free_unref_page_commit(page, migratetype, order);
3459 local_unlock_irqrestore(&pagesets.lock, flags);
3460}
3461
3462/*
3463 * Free a list of 0-order pages
3464 */
3465void free_unref_page_list(struct list_head *list)
3466{
3467 struct page *page, *next;
3468 unsigned long flags;
3469 int batch_count = 0;
3470 int migratetype;
3471
3472 /* Prepare pages for freeing */
3473 list_for_each_entry_safe(page, next, list, lru) {
3474 unsigned long pfn = page_to_pfn(page);
3475 if (!free_unref_page_prepare(page, pfn, 0)) {
3476 list_del(&page->lru);
3477 continue;
3478 }
3479
3480 /*
3481 * Free isolated pages directly to the allocator, see
3482 * comment in free_unref_page.
3483 */
3484 migratetype = get_pcppage_migratetype(page);
3485 if (unlikely(is_migrate_isolate(migratetype))) {
3486 list_del(&page->lru);
3487 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3488 continue;
3489 }
3490 }
3491
3492 local_lock_irqsave(&pagesets.lock, flags);
3493 list_for_each_entry_safe(page, next, list, lru) {
3494 /*
3495 * Non-isolated types over MIGRATE_PCPTYPES get added
3496 * to the MIGRATE_MOVABLE pcp list.
3497 */
3498 migratetype = get_pcppage_migratetype(page);
3499 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3500 migratetype = MIGRATE_MOVABLE;
3501
3502 trace_mm_page_free_batched(page);
3503 free_unref_page_commit(page, migratetype, 0);
3504
3505 /*
3506 * Guard against excessive IRQ disabled times when we get
3507 * a large list of pages to free.
3508 */
3509 if (++batch_count == SWAP_CLUSTER_MAX) {
3510 local_unlock_irqrestore(&pagesets.lock, flags);
3511 batch_count = 0;
3512 local_lock_irqsave(&pagesets.lock, flags);
3513 }
3514 }
3515 local_unlock_irqrestore(&pagesets.lock, flags);
3516}
3517
3518/*
3519 * split_page takes a non-compound higher-order page, and splits it into
3520 * n (1<<order) sub-pages: page[0..n]
3521 * Each sub-page must be freed individually.
3522 *
3523 * Note: this is probably too low level an operation for use in drivers.
3524 * Please consult with lkml before using this in your driver.
3525 */
3526void split_page(struct page *page, unsigned int order)
3527{
3528 int i;
3529
3530 VM_BUG_ON_PAGE(PageCompound(page), page);
3531 VM_BUG_ON_PAGE(!page_count(page), page);
3532
3533 for (i = 1; i < (1 << order); i++)
3534 set_page_refcounted(page + i);
3535 split_page_owner(page, 1 << order);
3536 split_page_memcg(page, 1 << order);
3537}
3538EXPORT_SYMBOL_GPL(split_page);
3539
3540int __isolate_free_page(struct page *page, unsigned int order)
3541{
3542 unsigned long watermark;
3543 struct zone *zone;
3544 int mt;
3545
3546 BUG_ON(!PageBuddy(page));
3547
3548 zone = page_zone(page);
3549 mt = get_pageblock_migratetype(page);
3550
3551 if (!is_migrate_isolate(mt)) {
3552 /*
3553 * Obey watermarks as if the page was being allocated. We can
3554 * emulate a high-order watermark check with a raised order-0
3555 * watermark, because we already know our high-order page
3556 * exists.
3557 */
3558 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3559 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3560 return 0;
3561
3562 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3563 }
3564
3565 /* Remove page from free list */
3566
3567 del_page_from_free_list(page, zone, order);
3568
3569 /*
3570 * Set the pageblock if the isolated page is at least half of a
3571 * pageblock
3572 */
3573 if (order >= pageblock_order - 1) {
3574 struct page *endpage = page + (1 << order) - 1;
3575 for (; page < endpage; page += pageblock_nr_pages) {
3576 int mt = get_pageblock_migratetype(page);
3577 /*
3578 * Only change normal pageblocks (i.e., they can merge
3579 * with others)
3580 */
3581 if (migratetype_is_mergeable(mt))
3582 set_pageblock_migratetype(page,
3583 MIGRATE_MOVABLE);
3584 }
3585 }
3586
3587
3588 return 1UL << order;
3589}
3590
3591/**
3592 * __putback_isolated_page - Return a now-isolated page back where we got it
3593 * @page: Page that was isolated
3594 * @order: Order of the isolated page
3595 * @mt: The page's pageblock's migratetype
3596 *
3597 * This function is meant to return a page pulled from the free lists via
3598 * __isolate_free_page back to the free lists they were pulled from.
3599 */
3600void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3601{
3602 struct zone *zone = page_zone(page);
3603
3604 /* zone lock should be held when this function is called */
3605 lockdep_assert_held(&zone->lock);
3606
3607 /* Return isolated page to tail of freelist. */
3608 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3609 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3610}
3611
3612/*
3613 * Update NUMA hit/miss statistics
3614 *
3615 * Must be called with interrupts disabled.
3616 */
3617static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3618 long nr_account)
3619{
3620#ifdef CONFIG_NUMA
3621 enum numa_stat_item local_stat = NUMA_LOCAL;
3622
3623 /* skip numa counters update if numa stats is disabled */
3624 if (!static_branch_likely(&vm_numa_stat_key))
3625 return;
3626
3627 if (zone_to_nid(z) != numa_node_id())
3628 local_stat = NUMA_OTHER;
3629
3630 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3631 __count_numa_events(z, NUMA_HIT, nr_account);
3632 else {
3633 __count_numa_events(z, NUMA_MISS, nr_account);
3634 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3635 }
3636 __count_numa_events(z, local_stat, nr_account);
3637#endif
3638}
3639
3640/* Remove page from the per-cpu list, caller must protect the list */
3641static inline
3642struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3643 int migratetype,
3644 unsigned int alloc_flags,
3645 struct per_cpu_pages *pcp,
3646 struct list_head *list)
3647{
3648 struct page *page;
3649
3650 do {
3651 if (list_empty(list)) {
3652 int batch = READ_ONCE(pcp->batch);
3653 int alloced;
3654
3655 /*
3656 * Scale batch relative to order if batch implies
3657 * free pages can be stored on the PCP. Batch can
3658 * be 1 for small zones or for boot pagesets which
3659 * should never store free pages as the pages may
3660 * belong to arbitrary zones.
3661 */
3662 if (batch > 1)
3663 batch = max(batch >> order, 2);
3664 alloced = rmqueue_bulk(zone, order,
3665 batch, list,
3666 migratetype, alloc_flags);
3667
3668 pcp->count += alloced << order;
3669 if (unlikely(list_empty(list)))
3670 return NULL;
3671 }
3672
3673 page = list_first_entry(list, struct page, lru);
3674 list_del(&page->lru);
3675 pcp->count -= 1 << order;
3676 } while (check_new_pcp(page, order));
3677
3678 return page;
3679}
3680
3681/* Lock and remove page from the per-cpu list */
3682static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3683 struct zone *zone, unsigned int order,
3684 gfp_t gfp_flags, int migratetype,
3685 unsigned int alloc_flags)
3686{
3687 struct per_cpu_pages *pcp;
3688 struct list_head *list;
3689 struct page *page;
3690 unsigned long flags;
3691
3692 local_lock_irqsave(&pagesets.lock, flags);
3693
3694 /*
3695 * On allocation, reduce the number of pages that are batch freed.
3696 * See nr_pcp_free() where free_factor is increased for subsequent
3697 * frees.
3698 */
3699 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3700 pcp->free_factor >>= 1;
3701 list = &pcp->lists[order_to_pindex(migratetype, order)];
3702 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3703 local_unlock_irqrestore(&pagesets.lock, flags);
3704 if (page) {
3705 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3706 zone_statistics(preferred_zone, zone, 1);
3707 }
3708 return page;
3709}
3710
3711/*
3712 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3713 */
3714static inline
3715struct page *rmqueue(struct zone *preferred_zone,
3716 struct zone *zone, unsigned int order,
3717 gfp_t gfp_flags, unsigned int alloc_flags,
3718 int migratetype)
3719{
3720 unsigned long flags;
3721 struct page *page;
3722
3723 if (likely(pcp_allowed_order(order))) {
3724 /*
3725 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3726 * we need to skip it when CMA area isn't allowed.
3727 */
3728 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3729 migratetype != MIGRATE_MOVABLE) {
3730 page = rmqueue_pcplist(preferred_zone, zone, order,
3731 gfp_flags, migratetype, alloc_flags);
3732 goto out;
3733 }
3734 }
3735
3736 /*
3737 * We most definitely don't want callers attempting to
3738 * allocate greater than order-1 page units with __GFP_NOFAIL.
3739 */
3740 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3741
3742 do {
3743 page = NULL;
3744 spin_lock_irqsave(&zone->lock, flags);
3745 /*
3746 * order-0 request can reach here when the pcplist is skipped
3747 * due to non-CMA allocation context. HIGHATOMIC area is
3748 * reserved for high-order atomic allocation, so order-0
3749 * request should skip it.
3750 */
3751 if (order > 0 && alloc_flags & ALLOC_HARDER)
3752 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3753 if (!page) {
3754 page = __rmqueue(zone, order, migratetype, alloc_flags);
3755 if (!page)
3756 goto failed;
3757 }
3758 __mod_zone_freepage_state(zone, -(1 << order),
3759 get_pcppage_migratetype(page));
3760 spin_unlock_irqrestore(&zone->lock, flags);
3761 } while (check_new_pages(page, order));
3762
3763 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3764 zone_statistics(preferred_zone, zone, 1);
3765
3766out:
3767 /* Separate test+clear to avoid unnecessary atomics */
3768 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3769 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3770 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3771 }
3772
3773 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3774 return page;
3775
3776failed:
3777 spin_unlock_irqrestore(&zone->lock, flags);
3778 return NULL;
3779}
3780
3781#ifdef CONFIG_FAIL_PAGE_ALLOC
3782
3783static struct {
3784 struct fault_attr attr;
3785
3786 bool ignore_gfp_highmem;
3787 bool ignore_gfp_reclaim;
3788 u32 min_order;
3789} fail_page_alloc = {
3790 .attr = FAULT_ATTR_INITIALIZER,
3791 .ignore_gfp_reclaim = true,
3792 .ignore_gfp_highmem = true,
3793 .min_order = 1,
3794};
3795
3796static int __init setup_fail_page_alloc(char *str)
3797{
3798 return setup_fault_attr(&fail_page_alloc.attr, str);
3799}
3800__setup("fail_page_alloc=", setup_fail_page_alloc);
3801
3802static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3803{
3804 if (order < fail_page_alloc.min_order)
3805 return false;
3806 if (gfp_mask & __GFP_NOFAIL)
3807 return false;
3808 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3809 return false;
3810 if (fail_page_alloc.ignore_gfp_reclaim &&
3811 (gfp_mask & __GFP_DIRECT_RECLAIM))
3812 return false;
3813
3814 if (gfp_mask & __GFP_NOWARN)
3815 fail_page_alloc.attr.no_warn = true;
3816
3817 return should_fail(&fail_page_alloc.attr, 1 << order);
3818}
3819
3820#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3821
3822static int __init fail_page_alloc_debugfs(void)
3823{
3824 umode_t mode = S_IFREG | 0600;
3825 struct dentry *dir;
3826
3827 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3828 &fail_page_alloc.attr);
3829
3830 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3831 &fail_page_alloc.ignore_gfp_reclaim);
3832 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3833 &fail_page_alloc.ignore_gfp_highmem);
3834 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3835
3836 return 0;
3837}
3838
3839late_initcall(fail_page_alloc_debugfs);
3840
3841#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3842
3843#else /* CONFIG_FAIL_PAGE_ALLOC */
3844
3845static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3846{
3847 return false;
3848}
3849
3850#endif /* CONFIG_FAIL_PAGE_ALLOC */
3851
3852noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3853{
3854 return __should_fail_alloc_page(gfp_mask, order);
3855}
3856ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3857
3858static inline long __zone_watermark_unusable_free(struct zone *z,
3859 unsigned int order, unsigned int alloc_flags)
3860{
3861 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3862 long unusable_free = (1 << order) - 1;
3863
3864 /*
3865 * If the caller does not have rights to ALLOC_HARDER then subtract
3866 * the high-atomic reserves. This will over-estimate the size of the
3867 * atomic reserve but it avoids a search.
3868 */
3869 if (likely(!alloc_harder))
3870 unusable_free += z->nr_reserved_highatomic;
3871
3872#ifdef CONFIG_CMA
3873 /* If allocation can't use CMA areas don't use free CMA pages */
3874 if (!(alloc_flags & ALLOC_CMA))
3875 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3876#endif
3877
3878 return unusable_free;
3879}
3880
3881/*
3882 * Return true if free base pages are above 'mark'. For high-order checks it
3883 * will return true of the order-0 watermark is reached and there is at least
3884 * one free page of a suitable size. Checking now avoids taking the zone lock
3885 * to check in the allocation paths if no pages are free.
3886 */
3887bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3888 int highest_zoneidx, unsigned int alloc_flags,
3889 long free_pages)
3890{
3891 long min = mark;
3892 int o;
3893 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3894
3895 /* free_pages may go negative - that's OK */
3896 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3897
3898 if (alloc_flags & ALLOC_HIGH)
3899 min -= min / 2;
3900
3901 if (unlikely(alloc_harder)) {
3902 /*
3903 * OOM victims can try even harder than normal ALLOC_HARDER
3904 * users on the grounds that it's definitely going to be in
3905 * the exit path shortly and free memory. Any allocation it
3906 * makes during the free path will be small and short-lived.
3907 */
3908 if (alloc_flags & ALLOC_OOM)
3909 min -= min / 2;
3910 else
3911 min -= min / 4;
3912 }
3913
3914 /*
3915 * Check watermarks for an order-0 allocation request. If these
3916 * are not met, then a high-order request also cannot go ahead
3917 * even if a suitable page happened to be free.
3918 */
3919 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3920 return false;
3921
3922 /* If this is an order-0 request then the watermark is fine */
3923 if (!order)
3924 return true;
3925
3926 /* For a high-order request, check at least one suitable page is free */
3927 for (o = order; o < MAX_ORDER; o++) {
3928 struct free_area *area = &z->free_area[o];
3929 int mt;
3930
3931 if (!area->nr_free)
3932 continue;
3933
3934 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3935 if (!free_area_empty(area, mt))
3936 return true;
3937 }
3938
3939#ifdef CONFIG_CMA
3940 if ((alloc_flags & ALLOC_CMA) &&
3941 !free_area_empty(area, MIGRATE_CMA)) {
3942 return true;
3943 }
3944#endif
3945 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3946 return true;
3947 }
3948 return false;
3949}
3950
3951bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3952 int highest_zoneidx, unsigned int alloc_flags)
3953{
3954 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3955 zone_page_state(z, NR_FREE_PAGES));
3956}
3957
3958static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3959 unsigned long mark, int highest_zoneidx,
3960 unsigned int alloc_flags, gfp_t gfp_mask)
3961{
3962 long free_pages;
3963
3964 free_pages = zone_page_state(z, NR_FREE_PAGES);
3965
3966 /*
3967 * Fast check for order-0 only. If this fails then the reserves
3968 * need to be calculated.
3969 */
3970 if (!order) {
3971 long usable_free;
3972 long reserved;
3973
3974 usable_free = free_pages;
3975 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3976
3977 /* reserved may over estimate high-atomic reserves. */
3978 usable_free -= min(usable_free, reserved);
3979 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3980 return true;
3981 }
3982
3983 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3984 free_pages))
3985 return true;
3986 /*
3987 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3988 * when checking the min watermark. The min watermark is the
3989 * point where boosting is ignored so that kswapd is woken up
3990 * when below the low watermark.
3991 */
3992 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3993 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3994 mark = z->_watermark[WMARK_MIN];
3995 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3996 alloc_flags, free_pages);
3997 }
3998
3999 return false;
4000}
4001
4002bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4003 unsigned long mark, int highest_zoneidx)
4004{
4005 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4006
4007 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4008 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4009
4010 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4011 free_pages);
4012}
4013
4014#ifdef CONFIG_NUMA
4015int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4016
4017static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4018{
4019 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4020 node_reclaim_distance;
4021}
4022#else /* CONFIG_NUMA */
4023static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4024{
4025 return true;
4026}
4027#endif /* CONFIG_NUMA */
4028
4029/*
4030 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4031 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4032 * premature use of a lower zone may cause lowmem pressure problems that
4033 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4034 * probably too small. It only makes sense to spread allocations to avoid
4035 * fragmentation between the Normal and DMA32 zones.
4036 */
4037static inline unsigned int
4038alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4039{
4040 unsigned int alloc_flags;
4041
4042 /*
4043 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4044 * to save a branch.
4045 */
4046 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4047
4048#ifdef CONFIG_ZONE_DMA32
4049 if (!zone)
4050 return alloc_flags;
4051
4052 if (zone_idx(zone) != ZONE_NORMAL)
4053 return alloc_flags;
4054
4055 /*
4056 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4057 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4058 * on UMA that if Normal is populated then so is DMA32.
4059 */
4060 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4061 if (nr_online_nodes > 1 && !populated_zone(--zone))
4062 return alloc_flags;
4063
4064 alloc_flags |= ALLOC_NOFRAGMENT;
4065#endif /* CONFIG_ZONE_DMA32 */
4066 return alloc_flags;
4067}
4068
4069/* Must be called after current_gfp_context() which can change gfp_mask */
4070static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4071 unsigned int alloc_flags)
4072{
4073#ifdef CONFIG_CMA
4074 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4075 alloc_flags |= ALLOC_CMA;
4076#endif
4077 return alloc_flags;
4078}
4079
4080/*
4081 * get_page_from_freelist goes through the zonelist trying to allocate
4082 * a page.
4083 */
4084static struct page *
4085get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4086 const struct alloc_context *ac)
4087{
4088 struct zoneref *z;
4089 struct zone *zone;
4090 struct pglist_data *last_pgdat = NULL;
4091 bool last_pgdat_dirty_ok = false;
4092 bool no_fallback;
4093
4094retry:
4095 /*
4096 * Scan zonelist, looking for a zone with enough free.
4097 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4098 */
4099 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4100 z = ac->preferred_zoneref;
4101 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4102 ac->nodemask) {
4103 struct page *page;
4104 unsigned long mark;
4105
4106 if (cpusets_enabled() &&
4107 (alloc_flags & ALLOC_CPUSET) &&
4108 !__cpuset_zone_allowed(zone, gfp_mask))
4109 continue;
4110 /*
4111 * When allocating a page cache page for writing, we
4112 * want to get it from a node that is within its dirty
4113 * limit, such that no single node holds more than its
4114 * proportional share of globally allowed dirty pages.
4115 * The dirty limits take into account the node's
4116 * lowmem reserves and high watermark so that kswapd
4117 * should be able to balance it without having to
4118 * write pages from its LRU list.
4119 *
4120 * XXX: For now, allow allocations to potentially
4121 * exceed the per-node dirty limit in the slowpath
4122 * (spread_dirty_pages unset) before going into reclaim,
4123 * which is important when on a NUMA setup the allowed
4124 * nodes are together not big enough to reach the
4125 * global limit. The proper fix for these situations
4126 * will require awareness of nodes in the
4127 * dirty-throttling and the flusher threads.
4128 */
4129 if (ac->spread_dirty_pages) {
4130 if (last_pgdat != zone->zone_pgdat) {
4131 last_pgdat = zone->zone_pgdat;
4132 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4133 }
4134
4135 if (!last_pgdat_dirty_ok)
4136 continue;
4137 }
4138
4139 if (no_fallback && nr_online_nodes > 1 &&
4140 zone != ac->preferred_zoneref->zone) {
4141 int local_nid;
4142
4143 /*
4144 * If moving to a remote node, retry but allow
4145 * fragmenting fallbacks. Locality is more important
4146 * than fragmentation avoidance.
4147 */
4148 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4149 if (zone_to_nid(zone) != local_nid) {
4150 alloc_flags &= ~ALLOC_NOFRAGMENT;
4151 goto retry;
4152 }
4153 }
4154
4155 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4156 if (!zone_watermark_fast(zone, order, mark,
4157 ac->highest_zoneidx, alloc_flags,
4158 gfp_mask)) {
4159 int ret;
4160
4161#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4162 /*
4163 * Watermark failed for this zone, but see if we can
4164 * grow this zone if it contains deferred pages.
4165 */
4166 if (static_branch_unlikely(&deferred_pages)) {
4167 if (_deferred_grow_zone(zone, order))
4168 goto try_this_zone;
4169 }
4170#endif
4171 /* Checked here to keep the fast path fast */
4172 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4173 if (alloc_flags & ALLOC_NO_WATERMARKS)
4174 goto try_this_zone;
4175
4176 if (!node_reclaim_enabled() ||
4177 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4178 continue;
4179
4180 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4181 switch (ret) {
4182 case NODE_RECLAIM_NOSCAN:
4183 /* did not scan */
4184 continue;
4185 case NODE_RECLAIM_FULL:
4186 /* scanned but unreclaimable */
4187 continue;
4188 default:
4189 /* did we reclaim enough */
4190 if (zone_watermark_ok(zone, order, mark,
4191 ac->highest_zoneidx, alloc_flags))
4192 goto try_this_zone;
4193
4194 continue;
4195 }
4196 }
4197
4198try_this_zone:
4199 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4200 gfp_mask, alloc_flags, ac->migratetype);
4201 if (page) {
4202 prep_new_page(page, order, gfp_mask, alloc_flags);
4203
4204 /*
4205 * If this is a high-order atomic allocation then check
4206 * if the pageblock should be reserved for the future
4207 */
4208 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4209 reserve_highatomic_pageblock(page, zone, order);
4210
4211 return page;
4212 } else {
4213#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4214 /* Try again if zone has deferred pages */
4215 if (static_branch_unlikely(&deferred_pages)) {
4216 if (_deferred_grow_zone(zone, order))
4217 goto try_this_zone;
4218 }
4219#endif
4220 }
4221 }
4222
4223 /*
4224 * It's possible on a UMA machine to get through all zones that are
4225 * fragmented. If avoiding fragmentation, reset and try again.
4226 */
4227 if (no_fallback) {
4228 alloc_flags &= ~ALLOC_NOFRAGMENT;
4229 goto retry;
4230 }
4231
4232 return NULL;
4233}
4234
4235static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4236{
4237 unsigned int filter = SHOW_MEM_FILTER_NODES;
4238
4239 /*
4240 * This documents exceptions given to allocations in certain
4241 * contexts that are allowed to allocate outside current's set
4242 * of allowed nodes.
4243 */
4244 if (!(gfp_mask & __GFP_NOMEMALLOC))
4245 if (tsk_is_oom_victim(current) ||
4246 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4247 filter &= ~SHOW_MEM_FILTER_NODES;
4248 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4249 filter &= ~SHOW_MEM_FILTER_NODES;
4250
4251 show_mem(filter, nodemask);
4252}
4253
4254void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4255{
4256 struct va_format vaf;
4257 va_list args;
4258 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4259
4260 if ((gfp_mask & __GFP_NOWARN) ||
4261 !__ratelimit(&nopage_rs) ||
4262 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4263 return;
4264
4265 va_start(args, fmt);
4266 vaf.fmt = fmt;
4267 vaf.va = &args;
4268 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4269 current->comm, &vaf, gfp_mask, &gfp_mask,
4270 nodemask_pr_args(nodemask));
4271 va_end(args);
4272
4273 cpuset_print_current_mems_allowed();
4274 pr_cont("\n");
4275 dump_stack();
4276 warn_alloc_show_mem(gfp_mask, nodemask);
4277}
4278
4279static inline struct page *
4280__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4281 unsigned int alloc_flags,
4282 const struct alloc_context *ac)
4283{
4284 struct page *page;
4285
4286 page = get_page_from_freelist(gfp_mask, order,
4287 alloc_flags|ALLOC_CPUSET, ac);
4288 /*
4289 * fallback to ignore cpuset restriction if our nodes
4290 * are depleted
4291 */
4292 if (!page)
4293 page = get_page_from_freelist(gfp_mask, order,
4294 alloc_flags, ac);
4295
4296 return page;
4297}
4298
4299static inline struct page *
4300__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4301 const struct alloc_context *ac, unsigned long *did_some_progress)
4302{
4303 struct oom_control oc = {
4304 .zonelist = ac->zonelist,
4305 .nodemask = ac->nodemask,
4306 .memcg = NULL,
4307 .gfp_mask = gfp_mask,
4308 .order = order,
4309 };
4310 struct page *page;
4311
4312 *did_some_progress = 0;
4313
4314 /*
4315 * Acquire the oom lock. If that fails, somebody else is
4316 * making progress for us.
4317 */
4318 if (!mutex_trylock(&oom_lock)) {
4319 *did_some_progress = 1;
4320 schedule_timeout_uninterruptible(1);
4321 return NULL;
4322 }
4323
4324 /*
4325 * Go through the zonelist yet one more time, keep very high watermark
4326 * here, this is only to catch a parallel oom killing, we must fail if
4327 * we're still under heavy pressure. But make sure that this reclaim
4328 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4329 * allocation which will never fail due to oom_lock already held.
4330 */
4331 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4332 ~__GFP_DIRECT_RECLAIM, order,
4333 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4334 if (page)
4335 goto out;
4336
4337 /* Coredumps can quickly deplete all memory reserves */
4338 if (current->flags & PF_DUMPCORE)
4339 goto out;
4340 /* The OOM killer will not help higher order allocs */
4341 if (order > PAGE_ALLOC_COSTLY_ORDER)
4342 goto out;
4343 /*
4344 * We have already exhausted all our reclaim opportunities without any
4345 * success so it is time to admit defeat. We will skip the OOM killer
4346 * because it is very likely that the caller has a more reasonable
4347 * fallback than shooting a random task.
4348 *
4349 * The OOM killer may not free memory on a specific node.
4350 */
4351 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4352 goto out;
4353 /* The OOM killer does not needlessly kill tasks for lowmem */
4354 if (ac->highest_zoneidx < ZONE_NORMAL)
4355 goto out;
4356 if (pm_suspended_storage())
4357 goto out;
4358 /*
4359 * XXX: GFP_NOFS allocations should rather fail than rely on
4360 * other request to make a forward progress.
4361 * We are in an unfortunate situation where out_of_memory cannot
4362 * do much for this context but let's try it to at least get
4363 * access to memory reserved if the current task is killed (see
4364 * out_of_memory). Once filesystems are ready to handle allocation
4365 * failures more gracefully we should just bail out here.
4366 */
4367
4368 /* Exhausted what can be done so it's blame time */
4369 if (out_of_memory(&oc) ||
4370 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4371 *did_some_progress = 1;
4372
4373 /*
4374 * Help non-failing allocations by giving them access to memory
4375 * reserves
4376 */
4377 if (gfp_mask & __GFP_NOFAIL)
4378 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4379 ALLOC_NO_WATERMARKS, ac);
4380 }
4381out:
4382 mutex_unlock(&oom_lock);
4383 return page;
4384}
4385
4386/*
4387 * Maximum number of compaction retries with a progress before OOM
4388 * killer is consider as the only way to move forward.
4389 */
4390#define MAX_COMPACT_RETRIES 16
4391
4392#ifdef CONFIG_COMPACTION
4393/* Try memory compaction for high-order allocations before reclaim */
4394static struct page *
4395__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4396 unsigned int alloc_flags, const struct alloc_context *ac,
4397 enum compact_priority prio, enum compact_result *compact_result)
4398{
4399 struct page *page = NULL;
4400 unsigned long pflags;
4401 unsigned int noreclaim_flag;
4402
4403 if (!order)
4404 return NULL;
4405
4406 psi_memstall_enter(&pflags);
4407 delayacct_compact_start();
4408 noreclaim_flag = memalloc_noreclaim_save();
4409
4410 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4411 prio, &page);
4412
4413 memalloc_noreclaim_restore(noreclaim_flag);
4414 psi_memstall_leave(&pflags);
4415 delayacct_compact_end();
4416
4417 if (*compact_result == COMPACT_SKIPPED)
4418 return NULL;
4419 /*
4420 * At least in one zone compaction wasn't deferred or skipped, so let's
4421 * count a compaction stall
4422 */
4423 count_vm_event(COMPACTSTALL);
4424
4425 /* Prep a captured page if available */
4426 if (page)
4427 prep_new_page(page, order, gfp_mask, alloc_flags);
4428
4429 /* Try get a page from the freelist if available */
4430 if (!page)
4431 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4432
4433 if (page) {
4434 struct zone *zone = page_zone(page);
4435
4436 zone->compact_blockskip_flush = false;
4437 compaction_defer_reset(zone, order, true);
4438 count_vm_event(COMPACTSUCCESS);
4439 return page;
4440 }
4441
4442 /*
4443 * It's bad if compaction run occurs and fails. The most likely reason
4444 * is that pages exist, but not enough to satisfy watermarks.
4445 */
4446 count_vm_event(COMPACTFAIL);
4447
4448 cond_resched();
4449
4450 return NULL;
4451}
4452
4453static inline bool
4454should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4455 enum compact_result compact_result,
4456 enum compact_priority *compact_priority,
4457 int *compaction_retries)
4458{
4459 int max_retries = MAX_COMPACT_RETRIES;
4460 int min_priority;
4461 bool ret = false;
4462 int retries = *compaction_retries;
4463 enum compact_priority priority = *compact_priority;
4464
4465 if (!order)
4466 return false;
4467
4468 if (fatal_signal_pending(current))
4469 return false;
4470
4471 if (compaction_made_progress(compact_result))
4472 (*compaction_retries)++;
4473
4474 /*
4475 * compaction considers all the zone as desperately out of memory
4476 * so it doesn't really make much sense to retry except when the
4477 * failure could be caused by insufficient priority
4478 */
4479 if (compaction_failed(compact_result))
4480 goto check_priority;
4481
4482 /*
4483 * compaction was skipped because there are not enough order-0 pages
4484 * to work with, so we retry only if it looks like reclaim can help.
4485 */
4486 if (compaction_needs_reclaim(compact_result)) {
4487 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4488 goto out;
4489 }
4490
4491 /*
4492 * make sure the compaction wasn't deferred or didn't bail out early
4493 * due to locks contention before we declare that we should give up.
4494 * But the next retry should use a higher priority if allowed, so
4495 * we don't just keep bailing out endlessly.
4496 */
4497 if (compaction_withdrawn(compact_result)) {
4498 goto check_priority;
4499 }
4500
4501 /*
4502 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4503 * costly ones because they are de facto nofail and invoke OOM
4504 * killer to move on while costly can fail and users are ready
4505 * to cope with that. 1/4 retries is rather arbitrary but we
4506 * would need much more detailed feedback from compaction to
4507 * make a better decision.
4508 */
4509 if (order > PAGE_ALLOC_COSTLY_ORDER)
4510 max_retries /= 4;
4511 if (*compaction_retries <= max_retries) {
4512 ret = true;
4513 goto out;
4514 }
4515
4516 /*
4517 * Make sure there are attempts at the highest priority if we exhausted
4518 * all retries or failed at the lower priorities.
4519 */
4520check_priority:
4521 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4522 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4523
4524 if (*compact_priority > min_priority) {
4525 (*compact_priority)--;
4526 *compaction_retries = 0;
4527 ret = true;
4528 }
4529out:
4530 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4531 return ret;
4532}
4533#else
4534static inline struct page *
4535__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4536 unsigned int alloc_flags, const struct alloc_context *ac,
4537 enum compact_priority prio, enum compact_result *compact_result)
4538{
4539 *compact_result = COMPACT_SKIPPED;
4540 return NULL;
4541}
4542
4543static inline bool
4544should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4545 enum compact_result compact_result,
4546 enum compact_priority *compact_priority,
4547 int *compaction_retries)
4548{
4549 struct zone *zone;
4550 struct zoneref *z;
4551
4552 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4553 return false;
4554
4555 /*
4556 * There are setups with compaction disabled which would prefer to loop
4557 * inside the allocator rather than hit the oom killer prematurely.
4558 * Let's give them a good hope and keep retrying while the order-0
4559 * watermarks are OK.
4560 */
4561 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4562 ac->highest_zoneidx, ac->nodemask) {
4563 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4564 ac->highest_zoneidx, alloc_flags))
4565 return true;
4566 }
4567 return false;
4568}
4569#endif /* CONFIG_COMPACTION */
4570
4571#ifdef CONFIG_LOCKDEP
4572static struct lockdep_map __fs_reclaim_map =
4573 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4574
4575static bool __need_reclaim(gfp_t gfp_mask)
4576{
4577 /* no reclaim without waiting on it */
4578 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4579 return false;
4580
4581 /* this guy won't enter reclaim */
4582 if (current->flags & PF_MEMALLOC)
4583 return false;
4584
4585 if (gfp_mask & __GFP_NOLOCKDEP)
4586 return false;
4587
4588 return true;
4589}
4590
4591void __fs_reclaim_acquire(unsigned long ip)
4592{
4593 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4594}
4595
4596void __fs_reclaim_release(unsigned long ip)
4597{
4598 lock_release(&__fs_reclaim_map, ip);
4599}
4600
4601void fs_reclaim_acquire(gfp_t gfp_mask)
4602{
4603 gfp_mask = current_gfp_context(gfp_mask);
4604
4605 if (__need_reclaim(gfp_mask)) {
4606 if (gfp_mask & __GFP_FS)
4607 __fs_reclaim_acquire(_RET_IP_);
4608
4609#ifdef CONFIG_MMU_NOTIFIER
4610 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4611 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4612#endif
4613
4614 }
4615}
4616EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4617
4618void fs_reclaim_release(gfp_t gfp_mask)
4619{
4620 gfp_mask = current_gfp_context(gfp_mask);
4621
4622 if (__need_reclaim(gfp_mask)) {
4623 if (gfp_mask & __GFP_FS)
4624 __fs_reclaim_release(_RET_IP_);
4625 }
4626}
4627EXPORT_SYMBOL_GPL(fs_reclaim_release);
4628#endif
4629
4630/* Perform direct synchronous page reclaim */
4631static unsigned long
4632__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4633 const struct alloc_context *ac)
4634{
4635 unsigned int noreclaim_flag;
4636 unsigned long progress;
4637
4638 cond_resched();
4639
4640 /* We now go into synchronous reclaim */
4641 cpuset_memory_pressure_bump();
4642 fs_reclaim_acquire(gfp_mask);
4643 noreclaim_flag = memalloc_noreclaim_save();
4644
4645 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4646 ac->nodemask);
4647
4648 memalloc_noreclaim_restore(noreclaim_flag);
4649 fs_reclaim_release(gfp_mask);
4650
4651 cond_resched();
4652
4653 return progress;
4654}
4655
4656/* The really slow allocator path where we enter direct reclaim */
4657static inline struct page *
4658__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4659 unsigned int alloc_flags, const struct alloc_context *ac,
4660 unsigned long *did_some_progress)
4661{
4662 struct page *page = NULL;
4663 unsigned long pflags;
4664 bool drained = false;
4665
4666 psi_memstall_enter(&pflags);
4667 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4668 if (unlikely(!(*did_some_progress)))
4669 goto out;
4670
4671retry:
4672 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4673
4674 /*
4675 * If an allocation failed after direct reclaim, it could be because
4676 * pages are pinned on the per-cpu lists or in high alloc reserves.
4677 * Shrink them and try again
4678 */
4679 if (!page && !drained) {
4680 unreserve_highatomic_pageblock(ac, false);
4681 drain_all_pages(NULL);
4682 drained = true;
4683 goto retry;
4684 }
4685out:
4686 psi_memstall_leave(&pflags);
4687
4688 return page;
4689}
4690
4691static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4692 const struct alloc_context *ac)
4693{
4694 struct zoneref *z;
4695 struct zone *zone;
4696 pg_data_t *last_pgdat = NULL;
4697 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4698
4699 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4700 ac->nodemask) {
4701 if (!managed_zone(zone))
4702 continue;
4703 if (last_pgdat != zone->zone_pgdat) {
4704 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4705 last_pgdat = zone->zone_pgdat;
4706 }
4707 }
4708}
4709
4710static inline unsigned int
4711gfp_to_alloc_flags(gfp_t gfp_mask)
4712{
4713 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4714
4715 /*
4716 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4717 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4718 * to save two branches.
4719 */
4720 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4721 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4722
4723 /*
4724 * The caller may dip into page reserves a bit more if the caller
4725 * cannot run direct reclaim, or if the caller has realtime scheduling
4726 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4727 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4728 */
4729 alloc_flags |= (__force int)
4730 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4731
4732 if (gfp_mask & __GFP_ATOMIC) {
4733 /*
4734 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4735 * if it can't schedule.
4736 */
4737 if (!(gfp_mask & __GFP_NOMEMALLOC))
4738 alloc_flags |= ALLOC_HARDER;
4739 /*
4740 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4741 * comment for __cpuset_node_allowed().
4742 */
4743 alloc_flags &= ~ALLOC_CPUSET;
4744 } else if (unlikely(rt_task(current)) && in_task())
4745 alloc_flags |= ALLOC_HARDER;
4746
4747 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4748
4749 return alloc_flags;
4750}
4751
4752static bool oom_reserves_allowed(struct task_struct *tsk)
4753{
4754 if (!tsk_is_oom_victim(tsk))
4755 return false;
4756
4757 /*
4758 * !MMU doesn't have oom reaper so give access to memory reserves
4759 * only to the thread with TIF_MEMDIE set
4760 */
4761 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4762 return false;
4763
4764 return true;
4765}
4766
4767/*
4768 * Distinguish requests which really need access to full memory
4769 * reserves from oom victims which can live with a portion of it
4770 */
4771static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4772{
4773 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4774 return 0;
4775 if (gfp_mask & __GFP_MEMALLOC)
4776 return ALLOC_NO_WATERMARKS;
4777 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4778 return ALLOC_NO_WATERMARKS;
4779 if (!in_interrupt()) {
4780 if (current->flags & PF_MEMALLOC)
4781 return ALLOC_NO_WATERMARKS;
4782 else if (oom_reserves_allowed(current))
4783 return ALLOC_OOM;
4784 }
4785
4786 return 0;
4787}
4788
4789bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4790{
4791 return !!__gfp_pfmemalloc_flags(gfp_mask);
4792}
4793
4794/*
4795 * Checks whether it makes sense to retry the reclaim to make a forward progress
4796 * for the given allocation request.
4797 *
4798 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4799 * without success, or when we couldn't even meet the watermark if we
4800 * reclaimed all remaining pages on the LRU lists.
4801 *
4802 * Returns true if a retry is viable or false to enter the oom path.
4803 */
4804static inline bool
4805should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4806 struct alloc_context *ac, int alloc_flags,
4807 bool did_some_progress, int *no_progress_loops)
4808{
4809 struct zone *zone;
4810 struct zoneref *z;
4811 bool ret = false;
4812
4813 /*
4814 * Costly allocations might have made a progress but this doesn't mean
4815 * their order will become available due to high fragmentation so
4816 * always increment the no progress counter for them
4817 */
4818 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4819 *no_progress_loops = 0;
4820 else
4821 (*no_progress_loops)++;
4822
4823 /*
4824 * Make sure we converge to OOM if we cannot make any progress
4825 * several times in the row.
4826 */
4827 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4828 /* Before OOM, exhaust highatomic_reserve */
4829 return unreserve_highatomic_pageblock(ac, true);
4830 }
4831
4832 /*
4833 * Keep reclaiming pages while there is a chance this will lead
4834 * somewhere. If none of the target zones can satisfy our allocation
4835 * request even if all reclaimable pages are considered then we are
4836 * screwed and have to go OOM.
4837 */
4838 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4839 ac->highest_zoneidx, ac->nodemask) {
4840 unsigned long available;
4841 unsigned long reclaimable;
4842 unsigned long min_wmark = min_wmark_pages(zone);
4843 bool wmark;
4844
4845 available = reclaimable = zone_reclaimable_pages(zone);
4846 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4847
4848 /*
4849 * Would the allocation succeed if we reclaimed all
4850 * reclaimable pages?
4851 */
4852 wmark = __zone_watermark_ok(zone, order, min_wmark,
4853 ac->highest_zoneidx, alloc_flags, available);
4854 trace_reclaim_retry_zone(z, order, reclaimable,
4855 available, min_wmark, *no_progress_loops, wmark);
4856 if (wmark) {
4857 ret = true;
4858 break;
4859 }
4860 }
4861
4862 /*
4863 * Memory allocation/reclaim might be called from a WQ context and the
4864 * current implementation of the WQ concurrency control doesn't
4865 * recognize that a particular WQ is congested if the worker thread is
4866 * looping without ever sleeping. Therefore we have to do a short sleep
4867 * here rather than calling cond_resched().
4868 */
4869 if (current->flags & PF_WQ_WORKER)
4870 schedule_timeout_uninterruptible(1);
4871 else
4872 cond_resched();
4873 return ret;
4874}
4875
4876static inline bool
4877check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4878{
4879 /*
4880 * It's possible that cpuset's mems_allowed and the nodemask from
4881 * mempolicy don't intersect. This should be normally dealt with by
4882 * policy_nodemask(), but it's possible to race with cpuset update in
4883 * such a way the check therein was true, and then it became false
4884 * before we got our cpuset_mems_cookie here.
4885 * This assumes that for all allocations, ac->nodemask can come only
4886 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4887 * when it does not intersect with the cpuset restrictions) or the
4888 * caller can deal with a violated nodemask.
4889 */
4890 if (cpusets_enabled() && ac->nodemask &&
4891 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4892 ac->nodemask = NULL;
4893 return true;
4894 }
4895
4896 /*
4897 * When updating a task's mems_allowed or mempolicy nodemask, it is
4898 * possible to race with parallel threads in such a way that our
4899 * allocation can fail while the mask is being updated. If we are about
4900 * to fail, check if the cpuset changed during allocation and if so,
4901 * retry.
4902 */
4903 if (read_mems_allowed_retry(cpuset_mems_cookie))
4904 return true;
4905
4906 return false;
4907}
4908
4909static inline struct page *
4910__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4911 struct alloc_context *ac)
4912{
4913 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4914 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4915 struct page *page = NULL;
4916 unsigned int alloc_flags;
4917 unsigned long did_some_progress;
4918 enum compact_priority compact_priority;
4919 enum compact_result compact_result;
4920 int compaction_retries;
4921 int no_progress_loops;
4922 unsigned int cpuset_mems_cookie;
4923 int reserve_flags;
4924
4925 /*
4926 * We also sanity check to catch abuse of atomic reserves being used by
4927 * callers that are not in atomic context.
4928 */
4929 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4930 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4931 gfp_mask &= ~__GFP_ATOMIC;
4932
4933retry_cpuset:
4934 compaction_retries = 0;
4935 no_progress_loops = 0;
4936 compact_priority = DEF_COMPACT_PRIORITY;
4937 cpuset_mems_cookie = read_mems_allowed_begin();
4938
4939 /*
4940 * The fast path uses conservative alloc_flags to succeed only until
4941 * kswapd needs to be woken up, and to avoid the cost of setting up
4942 * alloc_flags precisely. So we do that now.
4943 */
4944 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4945
4946 /*
4947 * We need to recalculate the starting point for the zonelist iterator
4948 * because we might have used different nodemask in the fast path, or
4949 * there was a cpuset modification and we are retrying - otherwise we
4950 * could end up iterating over non-eligible zones endlessly.
4951 */
4952 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4953 ac->highest_zoneidx, ac->nodemask);
4954 if (!ac->preferred_zoneref->zone)
4955 goto nopage;
4956
4957 /*
4958 * Check for insane configurations where the cpuset doesn't contain
4959 * any suitable zone to satisfy the request - e.g. non-movable
4960 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4961 */
4962 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4963 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4964 ac->highest_zoneidx,
4965 &cpuset_current_mems_allowed);
4966 if (!z->zone)
4967 goto nopage;
4968 }
4969
4970 if (alloc_flags & ALLOC_KSWAPD)
4971 wake_all_kswapds(order, gfp_mask, ac);
4972
4973 /*
4974 * The adjusted alloc_flags might result in immediate success, so try
4975 * that first
4976 */
4977 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4978 if (page)
4979 goto got_pg;
4980
4981 /*
4982 * For costly allocations, try direct compaction first, as it's likely
4983 * that we have enough base pages and don't need to reclaim. For non-
4984 * movable high-order allocations, do that as well, as compaction will
4985 * try prevent permanent fragmentation by migrating from blocks of the
4986 * same migratetype.
4987 * Don't try this for allocations that are allowed to ignore
4988 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4989 */
4990 if (can_direct_reclaim &&
4991 (costly_order ||
4992 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4993 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4994 page = __alloc_pages_direct_compact(gfp_mask, order,
4995 alloc_flags, ac,
4996 INIT_COMPACT_PRIORITY,
4997 &compact_result);
4998 if (page)
4999 goto got_pg;
5000
5001 /*
5002 * Checks for costly allocations with __GFP_NORETRY, which
5003 * includes some THP page fault allocations
5004 */
5005 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5006 /*
5007 * If allocating entire pageblock(s) and compaction
5008 * failed because all zones are below low watermarks
5009 * or is prohibited because it recently failed at this
5010 * order, fail immediately unless the allocator has
5011 * requested compaction and reclaim retry.
5012 *
5013 * Reclaim is
5014 * - potentially very expensive because zones are far
5015 * below their low watermarks or this is part of very
5016 * bursty high order allocations,
5017 * - not guaranteed to help because isolate_freepages()
5018 * may not iterate over freed pages as part of its
5019 * linear scan, and
5020 * - unlikely to make entire pageblocks free on its
5021 * own.
5022 */
5023 if (compact_result == COMPACT_SKIPPED ||
5024 compact_result == COMPACT_DEFERRED)
5025 goto nopage;
5026
5027 /*
5028 * Looks like reclaim/compaction is worth trying, but
5029 * sync compaction could be very expensive, so keep
5030 * using async compaction.
5031 */
5032 compact_priority = INIT_COMPACT_PRIORITY;
5033 }
5034 }
5035
5036retry:
5037 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5038 if (alloc_flags & ALLOC_KSWAPD)
5039 wake_all_kswapds(order, gfp_mask, ac);
5040
5041 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5042 if (reserve_flags)
5043 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5044
5045 /*
5046 * Reset the nodemask and zonelist iterators if memory policies can be
5047 * ignored. These allocations are high priority and system rather than
5048 * user oriented.
5049 */
5050 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5051 ac->nodemask = NULL;
5052 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5053 ac->highest_zoneidx, ac->nodemask);
5054 }
5055
5056 /* Attempt with potentially adjusted zonelist and alloc_flags */
5057 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5058 if (page)
5059 goto got_pg;
5060
5061 /* Caller is not willing to reclaim, we can't balance anything */
5062 if (!can_direct_reclaim)
5063 goto nopage;
5064
5065 /* Avoid recursion of direct reclaim */
5066 if (current->flags & PF_MEMALLOC)
5067 goto nopage;
5068
5069 /* Try direct reclaim and then allocating */
5070 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5071 &did_some_progress);
5072 if (page)
5073 goto got_pg;
5074
5075 /* Try direct compaction and then allocating */
5076 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5077 compact_priority, &compact_result);
5078 if (page)
5079 goto got_pg;
5080
5081 /* Do not loop if specifically requested */
5082 if (gfp_mask & __GFP_NORETRY)
5083 goto nopage;
5084
5085 /*
5086 * Do not retry costly high order allocations unless they are
5087 * __GFP_RETRY_MAYFAIL
5088 */
5089 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5090 goto nopage;
5091
5092 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5093 did_some_progress > 0, &no_progress_loops))
5094 goto retry;
5095
5096 /*
5097 * It doesn't make any sense to retry for the compaction if the order-0
5098 * reclaim is not able to make any progress because the current
5099 * implementation of the compaction depends on the sufficient amount
5100 * of free memory (see __compaction_suitable)
5101 */
5102 if (did_some_progress > 0 &&
5103 should_compact_retry(ac, order, alloc_flags,
5104 compact_result, &compact_priority,
5105 &compaction_retries))
5106 goto retry;
5107
5108
5109 /* Deal with possible cpuset update races before we start OOM killing */
5110 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5111 goto retry_cpuset;
5112
5113 /* Reclaim has failed us, start killing things */
5114 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5115 if (page)
5116 goto got_pg;
5117
5118 /* Avoid allocations with no watermarks from looping endlessly */
5119 if (tsk_is_oom_victim(current) &&
5120 (alloc_flags & ALLOC_OOM ||
5121 (gfp_mask & __GFP_NOMEMALLOC)))
5122 goto nopage;
5123
5124 /* Retry as long as the OOM killer is making progress */
5125 if (did_some_progress) {
5126 no_progress_loops = 0;
5127 goto retry;
5128 }
5129
5130nopage:
5131 /* Deal with possible cpuset update races before we fail */
5132 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5133 goto retry_cpuset;
5134
5135 /*
5136 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5137 * we always retry
5138 */
5139 if (gfp_mask & __GFP_NOFAIL) {
5140 /*
5141 * All existing users of the __GFP_NOFAIL are blockable, so warn
5142 * of any new users that actually require GFP_NOWAIT
5143 */
5144 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5145 goto fail;
5146
5147 /*
5148 * PF_MEMALLOC request from this context is rather bizarre
5149 * because we cannot reclaim anything and only can loop waiting
5150 * for somebody to do a work for us
5151 */
5152 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5153
5154 /*
5155 * non failing costly orders are a hard requirement which we
5156 * are not prepared for much so let's warn about these users
5157 * so that we can identify them and convert them to something
5158 * else.
5159 */
5160 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5161
5162 /*
5163 * Help non-failing allocations by giving them access to memory
5164 * reserves but do not use ALLOC_NO_WATERMARKS because this
5165 * could deplete whole memory reserves which would just make
5166 * the situation worse
5167 */
5168 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5169 if (page)
5170 goto got_pg;
5171
5172 cond_resched();
5173 goto retry;
5174 }
5175fail:
5176 warn_alloc(gfp_mask, ac->nodemask,
5177 "page allocation failure: order:%u", order);
5178got_pg:
5179 return page;
5180}
5181
5182static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5183 int preferred_nid, nodemask_t *nodemask,
5184 struct alloc_context *ac, gfp_t *alloc_gfp,
5185 unsigned int *alloc_flags)
5186{
5187 ac->highest_zoneidx = gfp_zone(gfp_mask);
5188 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5189 ac->nodemask = nodemask;
5190 ac->migratetype = gfp_migratetype(gfp_mask);
5191
5192 if (cpusets_enabled()) {
5193 *alloc_gfp |= __GFP_HARDWALL;
5194 /*
5195 * When we are in the interrupt context, it is irrelevant
5196 * to the current task context. It means that any node ok.
5197 */
5198 if (in_task() && !ac->nodemask)
5199 ac->nodemask = &cpuset_current_mems_allowed;
5200 else
5201 *alloc_flags |= ALLOC_CPUSET;
5202 }
5203
5204 fs_reclaim_acquire(gfp_mask);
5205 fs_reclaim_release(gfp_mask);
5206
5207 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5208
5209 if (should_fail_alloc_page(gfp_mask, order))
5210 return false;
5211
5212 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5213
5214 /* Dirty zone balancing only done in the fast path */
5215 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5216
5217 /*
5218 * The preferred zone is used for statistics but crucially it is
5219 * also used as the starting point for the zonelist iterator. It
5220 * may get reset for allocations that ignore memory policies.
5221 */
5222 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5223 ac->highest_zoneidx, ac->nodemask);
5224
5225 return true;
5226}
5227
5228/*
5229 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5230 * @gfp: GFP flags for the allocation
5231 * @preferred_nid: The preferred NUMA node ID to allocate from
5232 * @nodemask: Set of nodes to allocate from, may be NULL
5233 * @nr_pages: The number of pages desired on the list or array
5234 * @page_list: Optional list to store the allocated pages
5235 * @page_array: Optional array to store the pages
5236 *
5237 * This is a batched version of the page allocator that attempts to
5238 * allocate nr_pages quickly. Pages are added to page_list if page_list
5239 * is not NULL, otherwise it is assumed that the page_array is valid.
5240 *
5241 * For lists, nr_pages is the number of pages that should be allocated.
5242 *
5243 * For arrays, only NULL elements are populated with pages and nr_pages
5244 * is the maximum number of pages that will be stored in the array.
5245 *
5246 * Returns the number of pages on the list or array.
5247 */
5248unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5249 nodemask_t *nodemask, int nr_pages,
5250 struct list_head *page_list,
5251 struct page **page_array)
5252{
5253 struct page *page;
5254 unsigned long flags;
5255 struct zone *zone;
5256 struct zoneref *z;
5257 struct per_cpu_pages *pcp;
5258 struct list_head *pcp_list;
5259 struct alloc_context ac;
5260 gfp_t alloc_gfp;
5261 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5262 int nr_populated = 0, nr_account = 0;
5263
5264 /*
5265 * Skip populated array elements to determine if any pages need
5266 * to be allocated before disabling IRQs.
5267 */
5268 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5269 nr_populated++;
5270
5271 /* No pages requested? */
5272 if (unlikely(nr_pages <= 0))
5273 goto out;
5274
5275 /* Already populated array? */
5276 if (unlikely(page_array && nr_pages - nr_populated == 0))
5277 goto out;
5278
5279 /* Bulk allocator does not support memcg accounting. */
5280 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5281 goto failed;
5282
5283 /* Use the single page allocator for one page. */
5284 if (nr_pages - nr_populated == 1)
5285 goto failed;
5286
5287#ifdef CONFIG_PAGE_OWNER
5288 /*
5289 * PAGE_OWNER may recurse into the allocator to allocate space to
5290 * save the stack with pagesets.lock held. Releasing/reacquiring
5291 * removes much of the performance benefit of bulk allocation so
5292 * force the caller to allocate one page at a time as it'll have
5293 * similar performance to added complexity to the bulk allocator.
5294 */
5295 if (static_branch_unlikely(&page_owner_inited))
5296 goto failed;
5297#endif
5298
5299 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5300 gfp &= gfp_allowed_mask;
5301 alloc_gfp = gfp;
5302 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5303 goto out;
5304 gfp = alloc_gfp;
5305
5306 /* Find an allowed local zone that meets the low watermark. */
5307 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5308 unsigned long mark;
5309
5310 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5311 !__cpuset_zone_allowed(zone, gfp)) {
5312 continue;
5313 }
5314
5315 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5316 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5317 goto failed;
5318 }
5319
5320 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5321 if (zone_watermark_fast(zone, 0, mark,
5322 zonelist_zone_idx(ac.preferred_zoneref),
5323 alloc_flags, gfp)) {
5324 break;
5325 }
5326 }
5327
5328 /*
5329 * If there are no allowed local zones that meets the watermarks then
5330 * try to allocate a single page and reclaim if necessary.
5331 */
5332 if (unlikely(!zone))
5333 goto failed;
5334
5335 /* Attempt the batch allocation */
5336 local_lock_irqsave(&pagesets.lock, flags);
5337 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5338 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5339
5340 while (nr_populated < nr_pages) {
5341
5342 /* Skip existing pages */
5343 if (page_array && page_array[nr_populated]) {
5344 nr_populated++;
5345 continue;
5346 }
5347
5348 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5349 pcp, pcp_list);
5350 if (unlikely(!page)) {
5351 /* Try and allocate at least one page */
5352 if (!nr_account)
5353 goto failed_irq;
5354 break;
5355 }
5356 nr_account++;
5357
5358 prep_new_page(page, 0, gfp, 0);
5359 if (page_list)
5360 list_add(&page->lru, page_list);
5361 else
5362 page_array[nr_populated] = page;
5363 nr_populated++;
5364 }
5365
5366 local_unlock_irqrestore(&pagesets.lock, flags);
5367
5368 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5369 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5370
5371out:
5372 return nr_populated;
5373
5374failed_irq:
5375 local_unlock_irqrestore(&pagesets.lock, flags);
5376
5377failed:
5378 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5379 if (page) {
5380 if (page_list)
5381 list_add(&page->lru, page_list);
5382 else
5383 page_array[nr_populated] = page;
5384 nr_populated++;
5385 }
5386
5387 goto out;
5388}
5389EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5390
5391/*
5392 * This is the 'heart' of the zoned buddy allocator.
5393 */
5394struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5395 nodemask_t *nodemask)
5396{
5397 struct page *page;
5398 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5399 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5400 struct alloc_context ac = { };
5401
5402 /*
5403 * There are several places where we assume that the order value is sane
5404 * so bail out early if the request is out of bound.
5405 */
5406 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5407 return NULL;
5408
5409 gfp &= gfp_allowed_mask;
5410 /*
5411 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5412 * resp. GFP_NOIO which has to be inherited for all allocation requests
5413 * from a particular context which has been marked by
5414 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5415 * movable zones are not used during allocation.
5416 */
5417 gfp = current_gfp_context(gfp);
5418 alloc_gfp = gfp;
5419 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5420 &alloc_gfp, &alloc_flags))
5421 return NULL;
5422
5423 /*
5424 * Forbid the first pass from falling back to types that fragment
5425 * memory until all local zones are considered.
5426 */
5427 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5428
5429 /* First allocation attempt */
5430 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5431 if (likely(page))
5432 goto out;
5433
5434 alloc_gfp = gfp;
5435 ac.spread_dirty_pages = false;
5436
5437 /*
5438 * Restore the original nodemask if it was potentially replaced with
5439 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5440 */
5441 ac.nodemask = nodemask;
5442
5443 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5444
5445out:
5446 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5447 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5448 __free_pages(page, order);
5449 page = NULL;
5450 }
5451
5452 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5453
5454 return page;
5455}
5456EXPORT_SYMBOL(__alloc_pages);
5457
5458struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5459 nodemask_t *nodemask)
5460{
5461 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5462 preferred_nid, nodemask);
5463
5464 if (page && order > 1)
5465 prep_transhuge_page(page);
5466 return (struct folio *)page;
5467}
5468EXPORT_SYMBOL(__folio_alloc);
5469
5470/*
5471 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5472 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5473 * you need to access high mem.
5474 */
5475unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5476{
5477 struct page *page;
5478
5479 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5480 if (!page)
5481 return 0;
5482 return (unsigned long) page_address(page);
5483}
5484EXPORT_SYMBOL(__get_free_pages);
5485
5486unsigned long get_zeroed_page(gfp_t gfp_mask)
5487{
5488 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5489}
5490EXPORT_SYMBOL(get_zeroed_page);
5491
5492/**
5493 * __free_pages - Free pages allocated with alloc_pages().
5494 * @page: The page pointer returned from alloc_pages().
5495 * @order: The order of the allocation.
5496 *
5497 * This function can free multi-page allocations that are not compound
5498 * pages. It does not check that the @order passed in matches that of
5499 * the allocation, so it is easy to leak memory. Freeing more memory
5500 * than was allocated will probably emit a warning.
5501 *
5502 * If the last reference to this page is speculative, it will be released
5503 * by put_page() which only frees the first page of a non-compound
5504 * allocation. To prevent the remaining pages from being leaked, we free
5505 * the subsequent pages here. If you want to use the page's reference
5506 * count to decide when to free the allocation, you should allocate a
5507 * compound page, and use put_page() instead of __free_pages().
5508 *
5509 * Context: May be called in interrupt context or while holding a normal
5510 * spinlock, but not in NMI context or while holding a raw spinlock.
5511 */
5512void __free_pages(struct page *page, unsigned int order)
5513{
5514 if (put_page_testzero(page))
5515 free_the_page(page, order);
5516 else if (!PageHead(page))
5517 while (order-- > 0)
5518 free_the_page(page + (1 << order), order);
5519}
5520EXPORT_SYMBOL(__free_pages);
5521
5522void free_pages(unsigned long addr, unsigned int order)
5523{
5524 if (addr != 0) {
5525 VM_BUG_ON(!virt_addr_valid((void *)addr));
5526 __free_pages(virt_to_page((void *)addr), order);
5527 }
5528}
5529
5530EXPORT_SYMBOL(free_pages);
5531
5532/*
5533 * Page Fragment:
5534 * An arbitrary-length arbitrary-offset area of memory which resides
5535 * within a 0 or higher order page. Multiple fragments within that page
5536 * are individually refcounted, in the page's reference counter.
5537 *
5538 * The page_frag functions below provide a simple allocation framework for
5539 * page fragments. This is used by the network stack and network device
5540 * drivers to provide a backing region of memory for use as either an
5541 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5542 */
5543static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5544 gfp_t gfp_mask)
5545{
5546 struct page *page = NULL;
5547 gfp_t gfp = gfp_mask;
5548
5549#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5550 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5551 __GFP_NOMEMALLOC;
5552 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5553 PAGE_FRAG_CACHE_MAX_ORDER);
5554 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5555#endif
5556 if (unlikely(!page))
5557 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5558
5559 nc->va = page ? page_address(page) : NULL;
5560
5561 return page;
5562}
5563
5564void __page_frag_cache_drain(struct page *page, unsigned int count)
5565{
5566 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5567
5568 if (page_ref_sub_and_test(page, count))
5569 free_the_page(page, compound_order(page));
5570}
5571EXPORT_SYMBOL(__page_frag_cache_drain);
5572
5573void *page_frag_alloc_align(struct page_frag_cache *nc,
5574 unsigned int fragsz, gfp_t gfp_mask,
5575 unsigned int align_mask)
5576{
5577 unsigned int size = PAGE_SIZE;
5578 struct page *page;
5579 int offset;
5580
5581 if (unlikely(!nc->va)) {
5582refill:
5583 page = __page_frag_cache_refill(nc, gfp_mask);
5584 if (!page)
5585 return NULL;
5586
5587#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5588 /* if size can vary use size else just use PAGE_SIZE */
5589 size = nc->size;
5590#endif
5591 /* Even if we own the page, we do not use atomic_set().
5592 * This would break get_page_unless_zero() users.
5593 */
5594 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5595
5596 /* reset page count bias and offset to start of new frag */
5597 nc->pfmemalloc = page_is_pfmemalloc(page);
5598 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5599 nc->offset = size;
5600 }
5601
5602 offset = nc->offset - fragsz;
5603 if (unlikely(offset < 0)) {
5604 page = virt_to_page(nc->va);
5605
5606 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5607 goto refill;
5608
5609 if (unlikely(nc->pfmemalloc)) {
5610 free_the_page(page, compound_order(page));
5611 goto refill;
5612 }
5613
5614#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5615 /* if size can vary use size else just use PAGE_SIZE */
5616 size = nc->size;
5617#endif
5618 /* OK, page count is 0, we can safely set it */
5619 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5620
5621 /* reset page count bias and offset to start of new frag */
5622 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5623 offset = size - fragsz;
5624 }
5625
5626 nc->pagecnt_bias--;
5627 offset &= align_mask;
5628 nc->offset = offset;
5629
5630 return nc->va + offset;
5631}
5632EXPORT_SYMBOL(page_frag_alloc_align);
5633
5634/*
5635 * Frees a page fragment allocated out of either a compound or order 0 page.
5636 */
5637void page_frag_free(void *addr)
5638{
5639 struct page *page = virt_to_head_page(addr);
5640
5641 if (unlikely(put_page_testzero(page)))
5642 free_the_page(page, compound_order(page));
5643}
5644EXPORT_SYMBOL(page_frag_free);
5645
5646static void *make_alloc_exact(unsigned long addr, unsigned int order,
5647 size_t size)
5648{
5649 if (addr) {
5650 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5651 unsigned long used = addr + PAGE_ALIGN(size);
5652
5653 split_page(virt_to_page((void *)addr), order);
5654 while (used < alloc_end) {
5655 free_page(used);
5656 used += PAGE_SIZE;
5657 }
5658 }
5659 return (void *)addr;
5660}
5661
5662/**
5663 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5664 * @size: the number of bytes to allocate
5665 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5666 *
5667 * This function is similar to alloc_pages(), except that it allocates the
5668 * minimum number of pages to satisfy the request. alloc_pages() can only
5669 * allocate memory in power-of-two pages.
5670 *
5671 * This function is also limited by MAX_ORDER.
5672 *
5673 * Memory allocated by this function must be released by free_pages_exact().
5674 *
5675 * Return: pointer to the allocated area or %NULL in case of error.
5676 */
5677void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5678{
5679 unsigned int order = get_order(size);
5680 unsigned long addr;
5681
5682 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5683 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5684
5685 addr = __get_free_pages(gfp_mask, order);
5686 return make_alloc_exact(addr, order, size);
5687}
5688EXPORT_SYMBOL(alloc_pages_exact);
5689
5690/**
5691 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5692 * pages on a node.
5693 * @nid: the preferred node ID where memory should be allocated
5694 * @size: the number of bytes to allocate
5695 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5696 *
5697 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5698 * back.
5699 *
5700 * Return: pointer to the allocated area or %NULL in case of error.
5701 */
5702void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5703{
5704 unsigned int order = get_order(size);
5705 struct page *p;
5706
5707 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5708 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5709
5710 p = alloc_pages_node(nid, gfp_mask, order);
5711 if (!p)
5712 return NULL;
5713 return make_alloc_exact((unsigned long)page_address(p), order, size);
5714}
5715
5716/**
5717 * free_pages_exact - release memory allocated via alloc_pages_exact()
5718 * @virt: the value returned by alloc_pages_exact.
5719 * @size: size of allocation, same value as passed to alloc_pages_exact().
5720 *
5721 * Release the memory allocated by a previous call to alloc_pages_exact.
5722 */
5723void free_pages_exact(void *virt, size_t size)
5724{
5725 unsigned long addr = (unsigned long)virt;
5726 unsigned long end = addr + PAGE_ALIGN(size);
5727
5728 while (addr < end) {
5729 free_page(addr);
5730 addr += PAGE_SIZE;
5731 }
5732}
5733EXPORT_SYMBOL(free_pages_exact);
5734
5735/**
5736 * nr_free_zone_pages - count number of pages beyond high watermark
5737 * @offset: The zone index of the highest zone
5738 *
5739 * nr_free_zone_pages() counts the number of pages which are beyond the
5740 * high watermark within all zones at or below a given zone index. For each
5741 * zone, the number of pages is calculated as:
5742 *
5743 * nr_free_zone_pages = managed_pages - high_pages
5744 *
5745 * Return: number of pages beyond high watermark.
5746 */
5747static unsigned long nr_free_zone_pages(int offset)
5748{
5749 struct zoneref *z;
5750 struct zone *zone;
5751
5752 /* Just pick one node, since fallback list is circular */
5753 unsigned long sum = 0;
5754
5755 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5756
5757 for_each_zone_zonelist(zone, z, zonelist, offset) {
5758 unsigned long size = zone_managed_pages(zone);
5759 unsigned long high = high_wmark_pages(zone);
5760 if (size > high)
5761 sum += size - high;
5762 }
5763
5764 return sum;
5765}
5766
5767/**
5768 * nr_free_buffer_pages - count number of pages beyond high watermark
5769 *
5770 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5771 * watermark within ZONE_DMA and ZONE_NORMAL.
5772 *
5773 * Return: number of pages beyond high watermark within ZONE_DMA and
5774 * ZONE_NORMAL.
5775 */
5776unsigned long nr_free_buffer_pages(void)
5777{
5778 return nr_free_zone_pages(gfp_zone(GFP_USER));
5779}
5780EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5781
5782static inline void show_node(struct zone *zone)
5783{
5784 if (IS_ENABLED(CONFIG_NUMA))
5785 printk("Node %d ", zone_to_nid(zone));
5786}
5787
5788long si_mem_available(void)
5789{
5790 long available;
5791 unsigned long pagecache;
5792 unsigned long wmark_low = 0;
5793 unsigned long pages[NR_LRU_LISTS];
5794 unsigned long reclaimable;
5795 struct zone *zone;
5796 int lru;
5797
5798 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5799 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5800
5801 for_each_zone(zone)
5802 wmark_low += low_wmark_pages(zone);
5803
5804 /*
5805 * Estimate the amount of memory available for userspace allocations,
5806 * without causing swapping.
5807 */
5808 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5809
5810 /*
5811 * Not all the page cache can be freed, otherwise the system will
5812 * start swapping. Assume at least half of the page cache, or the
5813 * low watermark worth of cache, needs to stay.
5814 */
5815 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5816 pagecache -= min(pagecache / 2, wmark_low);
5817 available += pagecache;
5818
5819 /*
5820 * Part of the reclaimable slab and other kernel memory consists of
5821 * items that are in use, and cannot be freed. Cap this estimate at the
5822 * low watermark.
5823 */
5824 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5825 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5826 available += reclaimable - min(reclaimable / 2, wmark_low);
5827
5828 if (available < 0)
5829 available = 0;
5830 return available;
5831}
5832EXPORT_SYMBOL_GPL(si_mem_available);
5833
5834void si_meminfo(struct sysinfo *val)
5835{
5836 val->totalram = totalram_pages();
5837 val->sharedram = global_node_page_state(NR_SHMEM);
5838 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5839 val->bufferram = nr_blockdev_pages();
5840 val->totalhigh = totalhigh_pages();
5841 val->freehigh = nr_free_highpages();
5842 val->mem_unit = PAGE_SIZE;
5843}
5844
5845EXPORT_SYMBOL(si_meminfo);
5846
5847#ifdef CONFIG_NUMA
5848void si_meminfo_node(struct sysinfo *val, int nid)
5849{
5850 int zone_type; /* needs to be signed */
5851 unsigned long managed_pages = 0;
5852 unsigned long managed_highpages = 0;
5853 unsigned long free_highpages = 0;
5854 pg_data_t *pgdat = NODE_DATA(nid);
5855
5856 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5857 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5858 val->totalram = managed_pages;
5859 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5860 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5861#ifdef CONFIG_HIGHMEM
5862 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5863 struct zone *zone = &pgdat->node_zones[zone_type];
5864
5865 if (is_highmem(zone)) {
5866 managed_highpages += zone_managed_pages(zone);
5867 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5868 }
5869 }
5870 val->totalhigh = managed_highpages;
5871 val->freehigh = free_highpages;
5872#else
5873 val->totalhigh = managed_highpages;
5874 val->freehigh = free_highpages;
5875#endif
5876 val->mem_unit = PAGE_SIZE;
5877}
5878#endif
5879
5880/*
5881 * Determine whether the node should be displayed or not, depending on whether
5882 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5883 */
5884static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5885{
5886 if (!(flags & SHOW_MEM_FILTER_NODES))
5887 return false;
5888
5889 /*
5890 * no node mask - aka implicit memory numa policy. Do not bother with
5891 * the synchronization - read_mems_allowed_begin - because we do not
5892 * have to be precise here.
5893 */
5894 if (!nodemask)
5895 nodemask = &cpuset_current_mems_allowed;
5896
5897 return !node_isset(nid, *nodemask);
5898}
5899
5900#define K(x) ((x) << (PAGE_SHIFT-10))
5901
5902static void show_migration_types(unsigned char type)
5903{
5904 static const char types[MIGRATE_TYPES] = {
5905 [MIGRATE_UNMOVABLE] = 'U',
5906 [MIGRATE_MOVABLE] = 'M',
5907 [MIGRATE_RECLAIMABLE] = 'E',
5908 [MIGRATE_HIGHATOMIC] = 'H',
5909#ifdef CONFIG_CMA
5910 [MIGRATE_CMA] = 'C',
5911#endif
5912#ifdef CONFIG_MEMORY_ISOLATION
5913 [MIGRATE_ISOLATE] = 'I',
5914#endif
5915 };
5916 char tmp[MIGRATE_TYPES + 1];
5917 char *p = tmp;
5918 int i;
5919
5920 for (i = 0; i < MIGRATE_TYPES; i++) {
5921 if (type & (1 << i))
5922 *p++ = types[i];
5923 }
5924
5925 *p = '\0';
5926 printk(KERN_CONT "(%s) ", tmp);
5927}
5928
5929/*
5930 * Show free area list (used inside shift_scroll-lock stuff)
5931 * We also calculate the percentage fragmentation. We do this by counting the
5932 * memory on each free list with the exception of the first item on the list.
5933 *
5934 * Bits in @filter:
5935 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5936 * cpuset.
5937 */
5938void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5939{
5940 unsigned long free_pcp = 0;
5941 int cpu;
5942 struct zone *zone;
5943 pg_data_t *pgdat;
5944
5945 for_each_populated_zone(zone) {
5946 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5947 continue;
5948
5949 for_each_online_cpu(cpu)
5950 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5951 }
5952
5953 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5954 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5955 " unevictable:%lu dirty:%lu writeback:%lu\n"
5956 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5957 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5958 " kernel_misc_reclaimable:%lu\n"
5959 " free:%lu free_pcp:%lu free_cma:%lu\n",
5960 global_node_page_state(NR_ACTIVE_ANON),
5961 global_node_page_state(NR_INACTIVE_ANON),
5962 global_node_page_state(NR_ISOLATED_ANON),
5963 global_node_page_state(NR_ACTIVE_FILE),
5964 global_node_page_state(NR_INACTIVE_FILE),
5965 global_node_page_state(NR_ISOLATED_FILE),
5966 global_node_page_state(NR_UNEVICTABLE),
5967 global_node_page_state(NR_FILE_DIRTY),
5968 global_node_page_state(NR_WRITEBACK),
5969 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5970 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5971 global_node_page_state(NR_FILE_MAPPED),
5972 global_node_page_state(NR_SHMEM),
5973 global_node_page_state(NR_PAGETABLE),
5974 global_zone_page_state(NR_BOUNCE),
5975 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5976 global_zone_page_state(NR_FREE_PAGES),
5977 free_pcp,
5978 global_zone_page_state(NR_FREE_CMA_PAGES));
5979
5980 for_each_online_pgdat(pgdat) {
5981 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5982 continue;
5983
5984 printk("Node %d"
5985 " active_anon:%lukB"
5986 " inactive_anon:%lukB"
5987 " active_file:%lukB"
5988 " inactive_file:%lukB"
5989 " unevictable:%lukB"
5990 " isolated(anon):%lukB"
5991 " isolated(file):%lukB"
5992 " mapped:%lukB"
5993 " dirty:%lukB"
5994 " writeback:%lukB"
5995 " shmem:%lukB"
5996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5997 " shmem_thp: %lukB"
5998 " shmem_pmdmapped: %lukB"
5999 " anon_thp: %lukB"
6000#endif
6001 " writeback_tmp:%lukB"
6002 " kernel_stack:%lukB"
6003#ifdef CONFIG_SHADOW_CALL_STACK
6004 " shadow_call_stack:%lukB"
6005#endif
6006 " pagetables:%lukB"
6007 " all_unreclaimable? %s"
6008 "\n",
6009 pgdat->node_id,
6010 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6011 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6012 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6013 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6014 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6015 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6016 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6017 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6018 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6019 K(node_page_state(pgdat, NR_WRITEBACK)),
6020 K(node_page_state(pgdat, NR_SHMEM)),
6021#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6022 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6023 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6024 K(node_page_state(pgdat, NR_ANON_THPS)),
6025#endif
6026 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6027 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6028#ifdef CONFIG_SHADOW_CALL_STACK
6029 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6030#endif
6031 K(node_page_state(pgdat, NR_PAGETABLE)),
6032 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6033 "yes" : "no");
6034 }
6035
6036 for_each_populated_zone(zone) {
6037 int i;
6038
6039 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6040 continue;
6041
6042 free_pcp = 0;
6043 for_each_online_cpu(cpu)
6044 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6045
6046 show_node(zone);
6047 printk(KERN_CONT
6048 "%s"
6049 " free:%lukB"
6050 " boost:%lukB"
6051 " min:%lukB"
6052 " low:%lukB"
6053 " high:%lukB"
6054 " reserved_highatomic:%luKB"
6055 " active_anon:%lukB"
6056 " inactive_anon:%lukB"
6057 " active_file:%lukB"
6058 " inactive_file:%lukB"
6059 " unevictable:%lukB"
6060 " writepending:%lukB"
6061 " present:%lukB"
6062 " managed:%lukB"
6063 " mlocked:%lukB"
6064 " bounce:%lukB"
6065 " free_pcp:%lukB"
6066 " local_pcp:%ukB"
6067 " free_cma:%lukB"
6068 "\n",
6069 zone->name,
6070 K(zone_page_state(zone, NR_FREE_PAGES)),
6071 K(zone->watermark_boost),
6072 K(min_wmark_pages(zone)),
6073 K(low_wmark_pages(zone)),
6074 K(high_wmark_pages(zone)),
6075 K(zone->nr_reserved_highatomic),
6076 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6077 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6078 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6079 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6080 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6081 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6082 K(zone->present_pages),
6083 K(zone_managed_pages(zone)),
6084 K(zone_page_state(zone, NR_MLOCK)),
6085 K(zone_page_state(zone, NR_BOUNCE)),
6086 K(free_pcp),
6087 K(this_cpu_read(zone->per_cpu_pageset->count)),
6088 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6089 printk("lowmem_reserve[]:");
6090 for (i = 0; i < MAX_NR_ZONES; i++)
6091 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6092 printk(KERN_CONT "\n");
6093 }
6094
6095 for_each_populated_zone(zone) {
6096 unsigned int order;
6097 unsigned long nr[MAX_ORDER], flags, total = 0;
6098 unsigned char types[MAX_ORDER];
6099
6100 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6101 continue;
6102 show_node(zone);
6103 printk(KERN_CONT "%s: ", zone->name);
6104
6105 spin_lock_irqsave(&zone->lock, flags);
6106 for (order = 0; order < MAX_ORDER; order++) {
6107 struct free_area *area = &zone->free_area[order];
6108 int type;
6109
6110 nr[order] = area->nr_free;
6111 total += nr[order] << order;
6112
6113 types[order] = 0;
6114 for (type = 0; type < MIGRATE_TYPES; type++) {
6115 if (!free_area_empty(area, type))
6116 types[order] |= 1 << type;
6117 }
6118 }
6119 spin_unlock_irqrestore(&zone->lock, flags);
6120 for (order = 0; order < MAX_ORDER; order++) {
6121 printk(KERN_CONT "%lu*%lukB ",
6122 nr[order], K(1UL) << order);
6123 if (nr[order])
6124 show_migration_types(types[order]);
6125 }
6126 printk(KERN_CONT "= %lukB\n", K(total));
6127 }
6128
6129 hugetlb_show_meminfo();
6130
6131 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6132
6133 show_swap_cache_info();
6134}
6135
6136static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6137{
6138 zoneref->zone = zone;
6139 zoneref->zone_idx = zone_idx(zone);
6140}
6141
6142/*
6143 * Builds allocation fallback zone lists.
6144 *
6145 * Add all populated zones of a node to the zonelist.
6146 */
6147static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6148{
6149 struct zone *zone;
6150 enum zone_type zone_type = MAX_NR_ZONES;
6151 int nr_zones = 0;
6152
6153 do {
6154 zone_type--;
6155 zone = pgdat->node_zones + zone_type;
6156 if (populated_zone(zone)) {
6157 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6158 check_highest_zone(zone_type);
6159 }
6160 } while (zone_type);
6161
6162 return nr_zones;
6163}
6164
6165#ifdef CONFIG_NUMA
6166
6167static int __parse_numa_zonelist_order(char *s)
6168{
6169 /*
6170 * We used to support different zonelists modes but they turned
6171 * out to be just not useful. Let's keep the warning in place
6172 * if somebody still use the cmd line parameter so that we do
6173 * not fail it silently
6174 */
6175 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6176 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6177 return -EINVAL;
6178 }
6179 return 0;
6180}
6181
6182char numa_zonelist_order[] = "Node";
6183
6184/*
6185 * sysctl handler for numa_zonelist_order
6186 */
6187int numa_zonelist_order_handler(struct ctl_table *table, int write,
6188 void *buffer, size_t *length, loff_t *ppos)
6189{
6190 if (write)
6191 return __parse_numa_zonelist_order(buffer);
6192 return proc_dostring(table, write, buffer, length, ppos);
6193}
6194
6195
6196static int node_load[MAX_NUMNODES];
6197
6198/**
6199 * find_next_best_node - find the next node that should appear in a given node's fallback list
6200 * @node: node whose fallback list we're appending
6201 * @used_node_mask: nodemask_t of already used nodes
6202 *
6203 * We use a number of factors to determine which is the next node that should
6204 * appear on a given node's fallback list. The node should not have appeared
6205 * already in @node's fallback list, and it should be the next closest node
6206 * according to the distance array (which contains arbitrary distance values
6207 * from each node to each node in the system), and should also prefer nodes
6208 * with no CPUs, since presumably they'll have very little allocation pressure
6209 * on them otherwise.
6210 *
6211 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6212 */
6213int find_next_best_node(int node, nodemask_t *used_node_mask)
6214{
6215 int n, val;
6216 int min_val = INT_MAX;
6217 int best_node = NUMA_NO_NODE;
6218
6219 /* Use the local node if we haven't already */
6220 if (!node_isset(node, *used_node_mask)) {
6221 node_set(node, *used_node_mask);
6222 return node;
6223 }
6224
6225 for_each_node_state(n, N_MEMORY) {
6226
6227 /* Don't want a node to appear more than once */
6228 if (node_isset(n, *used_node_mask))
6229 continue;
6230
6231 /* Use the distance array to find the distance */
6232 val = node_distance(node, n);
6233
6234 /* Penalize nodes under us ("prefer the next node") */
6235 val += (n < node);
6236
6237 /* Give preference to headless and unused nodes */
6238 if (!cpumask_empty(cpumask_of_node(n)))
6239 val += PENALTY_FOR_NODE_WITH_CPUS;
6240
6241 /* Slight preference for less loaded node */
6242 val *= MAX_NUMNODES;
6243 val += node_load[n];
6244
6245 if (val < min_val) {
6246 min_val = val;
6247 best_node = n;
6248 }
6249 }
6250
6251 if (best_node >= 0)
6252 node_set(best_node, *used_node_mask);
6253
6254 return best_node;
6255}
6256
6257
6258/*
6259 * Build zonelists ordered by node and zones within node.
6260 * This results in maximum locality--normal zone overflows into local
6261 * DMA zone, if any--but risks exhausting DMA zone.
6262 */
6263static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6264 unsigned nr_nodes)
6265{
6266 struct zoneref *zonerefs;
6267 int i;
6268
6269 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6270
6271 for (i = 0; i < nr_nodes; i++) {
6272 int nr_zones;
6273
6274 pg_data_t *node = NODE_DATA(node_order[i]);
6275
6276 nr_zones = build_zonerefs_node(node, zonerefs);
6277 zonerefs += nr_zones;
6278 }
6279 zonerefs->zone = NULL;
6280 zonerefs->zone_idx = 0;
6281}
6282
6283/*
6284 * Build gfp_thisnode zonelists
6285 */
6286static void build_thisnode_zonelists(pg_data_t *pgdat)
6287{
6288 struct zoneref *zonerefs;
6289 int nr_zones;
6290
6291 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6292 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6293 zonerefs += nr_zones;
6294 zonerefs->zone = NULL;
6295 zonerefs->zone_idx = 0;
6296}
6297
6298/*
6299 * Build zonelists ordered by zone and nodes within zones.
6300 * This results in conserving DMA zone[s] until all Normal memory is
6301 * exhausted, but results in overflowing to remote node while memory
6302 * may still exist in local DMA zone.
6303 */
6304
6305static void build_zonelists(pg_data_t *pgdat)
6306{
6307 static int node_order[MAX_NUMNODES];
6308 int node, nr_nodes = 0;
6309 nodemask_t used_mask = NODE_MASK_NONE;
6310 int local_node, prev_node;
6311
6312 /* NUMA-aware ordering of nodes */
6313 local_node = pgdat->node_id;
6314 prev_node = local_node;
6315
6316 memset(node_order, 0, sizeof(node_order));
6317 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6318 /*
6319 * We don't want to pressure a particular node.
6320 * So adding penalty to the first node in same
6321 * distance group to make it round-robin.
6322 */
6323 if (node_distance(local_node, node) !=
6324 node_distance(local_node, prev_node))
6325 node_load[node] += 1;
6326
6327 node_order[nr_nodes++] = node;
6328 prev_node = node;
6329 }
6330
6331 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6332 build_thisnode_zonelists(pgdat);
6333 pr_info("Fallback order for Node %d: ", local_node);
6334 for (node = 0; node < nr_nodes; node++)
6335 pr_cont("%d ", node_order[node]);
6336 pr_cont("\n");
6337}
6338
6339#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6340/*
6341 * Return node id of node used for "local" allocations.
6342 * I.e., first node id of first zone in arg node's generic zonelist.
6343 * Used for initializing percpu 'numa_mem', which is used primarily
6344 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6345 */
6346int local_memory_node(int node)
6347{
6348 struct zoneref *z;
6349
6350 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6351 gfp_zone(GFP_KERNEL),
6352 NULL);
6353 return zone_to_nid(z->zone);
6354}
6355#endif
6356
6357static void setup_min_unmapped_ratio(void);
6358static void setup_min_slab_ratio(void);
6359#else /* CONFIG_NUMA */
6360
6361static void build_zonelists(pg_data_t *pgdat)
6362{
6363 int node, local_node;
6364 struct zoneref *zonerefs;
6365 int nr_zones;
6366
6367 local_node = pgdat->node_id;
6368
6369 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6370 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6371 zonerefs += nr_zones;
6372
6373 /*
6374 * Now we build the zonelist so that it contains the zones
6375 * of all the other nodes.
6376 * We don't want to pressure a particular node, so when
6377 * building the zones for node N, we make sure that the
6378 * zones coming right after the local ones are those from
6379 * node N+1 (modulo N)
6380 */
6381 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6382 if (!node_online(node))
6383 continue;
6384 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6385 zonerefs += nr_zones;
6386 }
6387 for (node = 0; node < local_node; node++) {
6388 if (!node_online(node))
6389 continue;
6390 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6391 zonerefs += nr_zones;
6392 }
6393
6394 zonerefs->zone = NULL;
6395 zonerefs->zone_idx = 0;
6396}
6397
6398#endif /* CONFIG_NUMA */
6399
6400/*
6401 * Boot pageset table. One per cpu which is going to be used for all
6402 * zones and all nodes. The parameters will be set in such a way
6403 * that an item put on a list will immediately be handed over to
6404 * the buddy list. This is safe since pageset manipulation is done
6405 * with interrupts disabled.
6406 *
6407 * The boot_pagesets must be kept even after bootup is complete for
6408 * unused processors and/or zones. They do play a role for bootstrapping
6409 * hotplugged processors.
6410 *
6411 * zoneinfo_show() and maybe other functions do
6412 * not check if the processor is online before following the pageset pointer.
6413 * Other parts of the kernel may not check if the zone is available.
6414 */
6415static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6416/* These effectively disable the pcplists in the boot pageset completely */
6417#define BOOT_PAGESET_HIGH 0
6418#define BOOT_PAGESET_BATCH 1
6419static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6420static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6421DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6422
6423static void __build_all_zonelists(void *data)
6424{
6425 int nid;
6426 int __maybe_unused cpu;
6427 pg_data_t *self = data;
6428 static DEFINE_SPINLOCK(lock);
6429
6430 spin_lock(&lock);
6431
6432#ifdef CONFIG_NUMA
6433 memset(node_load, 0, sizeof(node_load));
6434#endif
6435
6436 /*
6437 * This node is hotadded and no memory is yet present. So just
6438 * building zonelists is fine - no need to touch other nodes.
6439 */
6440 if (self && !node_online(self->node_id)) {
6441 build_zonelists(self);
6442 } else {
6443 /*
6444 * All possible nodes have pgdat preallocated
6445 * in free_area_init
6446 */
6447 for_each_node(nid) {
6448 pg_data_t *pgdat = NODE_DATA(nid);
6449
6450 build_zonelists(pgdat);
6451 }
6452
6453#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6454 /*
6455 * We now know the "local memory node" for each node--
6456 * i.e., the node of the first zone in the generic zonelist.
6457 * Set up numa_mem percpu variable for on-line cpus. During
6458 * boot, only the boot cpu should be on-line; we'll init the
6459 * secondary cpus' numa_mem as they come on-line. During
6460 * node/memory hotplug, we'll fixup all on-line cpus.
6461 */
6462 for_each_online_cpu(cpu)
6463 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6464#endif
6465 }
6466
6467 spin_unlock(&lock);
6468}
6469
6470static noinline void __init
6471build_all_zonelists_init(void)
6472{
6473 int cpu;
6474
6475 __build_all_zonelists(NULL);
6476
6477 /*
6478 * Initialize the boot_pagesets that are going to be used
6479 * for bootstrapping processors. The real pagesets for
6480 * each zone will be allocated later when the per cpu
6481 * allocator is available.
6482 *
6483 * boot_pagesets are used also for bootstrapping offline
6484 * cpus if the system is already booted because the pagesets
6485 * are needed to initialize allocators on a specific cpu too.
6486 * F.e. the percpu allocator needs the page allocator which
6487 * needs the percpu allocator in order to allocate its pagesets
6488 * (a chicken-egg dilemma).
6489 */
6490 for_each_possible_cpu(cpu)
6491 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6492
6493 mminit_verify_zonelist();
6494 cpuset_init_current_mems_allowed();
6495}
6496
6497/*
6498 * unless system_state == SYSTEM_BOOTING.
6499 *
6500 * __ref due to call of __init annotated helper build_all_zonelists_init
6501 * [protected by SYSTEM_BOOTING].
6502 */
6503void __ref build_all_zonelists(pg_data_t *pgdat)
6504{
6505 unsigned long vm_total_pages;
6506
6507 if (system_state == SYSTEM_BOOTING) {
6508 build_all_zonelists_init();
6509 } else {
6510 __build_all_zonelists(pgdat);
6511 /* cpuset refresh routine should be here */
6512 }
6513 /* Get the number of free pages beyond high watermark in all zones. */
6514 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6515 /*
6516 * Disable grouping by mobility if the number of pages in the
6517 * system is too low to allow the mechanism to work. It would be
6518 * more accurate, but expensive to check per-zone. This check is
6519 * made on memory-hotadd so a system can start with mobility
6520 * disabled and enable it later
6521 */
6522 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6523 page_group_by_mobility_disabled = 1;
6524 else
6525 page_group_by_mobility_disabled = 0;
6526
6527 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6528 nr_online_nodes,
6529 page_group_by_mobility_disabled ? "off" : "on",
6530 vm_total_pages);
6531#ifdef CONFIG_NUMA
6532 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6533#endif
6534}
6535
6536/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6537static bool __meminit
6538overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6539{
6540 static struct memblock_region *r;
6541
6542 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6543 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6544 for_each_mem_region(r) {
6545 if (*pfn < memblock_region_memory_end_pfn(r))
6546 break;
6547 }
6548 }
6549 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6550 memblock_is_mirror(r)) {
6551 *pfn = memblock_region_memory_end_pfn(r);
6552 return true;
6553 }
6554 }
6555 return false;
6556}
6557
6558/*
6559 * Initially all pages are reserved - free ones are freed
6560 * up by memblock_free_all() once the early boot process is
6561 * done. Non-atomic initialization, single-pass.
6562 *
6563 * All aligned pageblocks are initialized to the specified migratetype
6564 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6565 * zone stats (e.g., nr_isolate_pageblock) are touched.
6566 */
6567void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6568 unsigned long start_pfn, unsigned long zone_end_pfn,
6569 enum meminit_context context,
6570 struct vmem_altmap *altmap, int migratetype)
6571{
6572 unsigned long pfn, end_pfn = start_pfn + size;
6573 struct page *page;
6574
6575 if (highest_memmap_pfn < end_pfn - 1)
6576 highest_memmap_pfn = end_pfn - 1;
6577
6578#ifdef CONFIG_ZONE_DEVICE
6579 /*
6580 * Honor reservation requested by the driver for this ZONE_DEVICE
6581 * memory. We limit the total number of pages to initialize to just
6582 * those that might contain the memory mapping. We will defer the
6583 * ZONE_DEVICE page initialization until after we have released
6584 * the hotplug lock.
6585 */
6586 if (zone == ZONE_DEVICE) {
6587 if (!altmap)
6588 return;
6589
6590 if (start_pfn == altmap->base_pfn)
6591 start_pfn += altmap->reserve;
6592 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6593 }
6594#endif
6595
6596 for (pfn = start_pfn; pfn < end_pfn; ) {
6597 /*
6598 * There can be holes in boot-time mem_map[]s handed to this
6599 * function. They do not exist on hotplugged memory.
6600 */
6601 if (context == MEMINIT_EARLY) {
6602 if (overlap_memmap_init(zone, &pfn))
6603 continue;
6604 if (defer_init(nid, pfn, zone_end_pfn))
6605 break;
6606 }
6607
6608 page = pfn_to_page(pfn);
6609 __init_single_page(page, pfn, zone, nid);
6610 if (context == MEMINIT_HOTPLUG)
6611 __SetPageReserved(page);
6612
6613 /*
6614 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6615 * such that unmovable allocations won't be scattered all
6616 * over the place during system boot.
6617 */
6618 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6619 set_pageblock_migratetype(page, migratetype);
6620 cond_resched();
6621 }
6622 pfn++;
6623 }
6624}
6625
6626#ifdef CONFIG_ZONE_DEVICE
6627static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6628 unsigned long zone_idx, int nid,
6629 struct dev_pagemap *pgmap)
6630{
6631
6632 __init_single_page(page, pfn, zone_idx, nid);
6633
6634 /*
6635 * Mark page reserved as it will need to wait for onlining
6636 * phase for it to be fully associated with a zone.
6637 *
6638 * We can use the non-atomic __set_bit operation for setting
6639 * the flag as we are still initializing the pages.
6640 */
6641 __SetPageReserved(page);
6642
6643 /*
6644 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6645 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6646 * ever freed or placed on a driver-private list.
6647 */
6648 page->pgmap = pgmap;
6649 page->zone_device_data = NULL;
6650
6651 /*
6652 * Mark the block movable so that blocks are reserved for
6653 * movable at startup. This will force kernel allocations
6654 * to reserve their blocks rather than leaking throughout
6655 * the address space during boot when many long-lived
6656 * kernel allocations are made.
6657 *
6658 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6659 * because this is done early in section_activate()
6660 */
6661 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6662 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6663 cond_resched();
6664 }
6665}
6666
6667/*
6668 * With compound page geometry and when struct pages are stored in ram most
6669 * tail pages are reused. Consequently, the amount of unique struct pages to
6670 * initialize is a lot smaller that the total amount of struct pages being
6671 * mapped. This is a paired / mild layering violation with explicit knowledge
6672 * of how the sparse_vmemmap internals handle compound pages in the lack
6673 * of an altmap. See vmemmap_populate_compound_pages().
6674 */
6675static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6676 unsigned long nr_pages)
6677{
6678 return is_power_of_2(sizeof(struct page)) &&
6679 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6680}
6681
6682static void __ref memmap_init_compound(struct page *head,
6683 unsigned long head_pfn,
6684 unsigned long zone_idx, int nid,
6685 struct dev_pagemap *pgmap,
6686 unsigned long nr_pages)
6687{
6688 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6689 unsigned int order = pgmap->vmemmap_shift;
6690
6691 __SetPageHead(head);
6692 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6693 struct page *page = pfn_to_page(pfn);
6694
6695 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6696 prep_compound_tail(head, pfn - head_pfn);
6697 set_page_count(page, 0);
6698
6699 /*
6700 * The first tail page stores compound_mapcount_ptr() and
6701 * compound_order() and the second tail page stores
6702 * compound_pincount_ptr(). Call prep_compound_head() after
6703 * the first and second tail pages have been initialized to
6704 * not have the data overwritten.
6705 */
6706 if (pfn == head_pfn + 2)
6707 prep_compound_head(head, order);
6708 }
6709}
6710
6711void __ref memmap_init_zone_device(struct zone *zone,
6712 unsigned long start_pfn,
6713 unsigned long nr_pages,
6714 struct dev_pagemap *pgmap)
6715{
6716 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6717 struct pglist_data *pgdat = zone->zone_pgdat;
6718 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6719 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6720 unsigned long zone_idx = zone_idx(zone);
6721 unsigned long start = jiffies;
6722 int nid = pgdat->node_id;
6723
6724 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6725 return;
6726
6727 /*
6728 * The call to memmap_init should have already taken care
6729 * of the pages reserved for the memmap, so we can just jump to
6730 * the end of that region and start processing the device pages.
6731 */
6732 if (altmap) {
6733 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6734 nr_pages = end_pfn - start_pfn;
6735 }
6736
6737 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6738 struct page *page = pfn_to_page(pfn);
6739
6740 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6741
6742 if (pfns_per_compound == 1)
6743 continue;
6744
6745 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6746 compound_nr_pages(altmap, pfns_per_compound));
6747 }
6748
6749 pr_info("%s initialised %lu pages in %ums\n", __func__,
6750 nr_pages, jiffies_to_msecs(jiffies - start));
6751}
6752
6753#endif
6754static void __meminit zone_init_free_lists(struct zone *zone)
6755{
6756 unsigned int order, t;
6757 for_each_migratetype_order(order, t) {
6758 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6759 zone->free_area[order].nr_free = 0;
6760 }
6761}
6762
6763/*
6764 * Only struct pages that correspond to ranges defined by memblock.memory
6765 * are zeroed and initialized by going through __init_single_page() during
6766 * memmap_init_zone_range().
6767 *
6768 * But, there could be struct pages that correspond to holes in
6769 * memblock.memory. This can happen because of the following reasons:
6770 * - physical memory bank size is not necessarily the exact multiple of the
6771 * arbitrary section size
6772 * - early reserved memory may not be listed in memblock.memory
6773 * - memory layouts defined with memmap= kernel parameter may not align
6774 * nicely with memmap sections
6775 *
6776 * Explicitly initialize those struct pages so that:
6777 * - PG_Reserved is set
6778 * - zone and node links point to zone and node that span the page if the
6779 * hole is in the middle of a zone
6780 * - zone and node links point to adjacent zone/node if the hole falls on
6781 * the zone boundary; the pages in such holes will be prepended to the
6782 * zone/node above the hole except for the trailing pages in the last
6783 * section that will be appended to the zone/node below.
6784 */
6785static void __init init_unavailable_range(unsigned long spfn,
6786 unsigned long epfn,
6787 int zone, int node)
6788{
6789 unsigned long pfn;
6790 u64 pgcnt = 0;
6791
6792 for (pfn = spfn; pfn < epfn; pfn++) {
6793 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6794 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6795 + pageblock_nr_pages - 1;
6796 continue;
6797 }
6798 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6799 __SetPageReserved(pfn_to_page(pfn));
6800 pgcnt++;
6801 }
6802
6803 if (pgcnt)
6804 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6805 node, zone_names[zone], pgcnt);
6806}
6807
6808static void __init memmap_init_zone_range(struct zone *zone,
6809 unsigned long start_pfn,
6810 unsigned long end_pfn,
6811 unsigned long *hole_pfn)
6812{
6813 unsigned long zone_start_pfn = zone->zone_start_pfn;
6814 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6815 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6816
6817 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6818 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6819
6820 if (start_pfn >= end_pfn)
6821 return;
6822
6823 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6824 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6825
6826 if (*hole_pfn < start_pfn)
6827 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6828
6829 *hole_pfn = end_pfn;
6830}
6831
6832static void __init memmap_init(void)
6833{
6834 unsigned long start_pfn, end_pfn;
6835 unsigned long hole_pfn = 0;
6836 int i, j, zone_id = 0, nid;
6837
6838 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6839 struct pglist_data *node = NODE_DATA(nid);
6840
6841 for (j = 0; j < MAX_NR_ZONES; j++) {
6842 struct zone *zone = node->node_zones + j;
6843
6844 if (!populated_zone(zone))
6845 continue;
6846
6847 memmap_init_zone_range(zone, start_pfn, end_pfn,
6848 &hole_pfn);
6849 zone_id = j;
6850 }
6851 }
6852
6853#ifdef CONFIG_SPARSEMEM
6854 /*
6855 * Initialize the memory map for hole in the range [memory_end,
6856 * section_end].
6857 * Append the pages in this hole to the highest zone in the last
6858 * node.
6859 * The call to init_unavailable_range() is outside the ifdef to
6860 * silence the compiler warining about zone_id set but not used;
6861 * for FLATMEM it is a nop anyway
6862 */
6863 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6864 if (hole_pfn < end_pfn)
6865#endif
6866 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6867}
6868
6869void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6870 phys_addr_t min_addr, int nid, bool exact_nid)
6871{
6872 void *ptr;
6873
6874 if (exact_nid)
6875 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6876 MEMBLOCK_ALLOC_ACCESSIBLE,
6877 nid);
6878 else
6879 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6880 MEMBLOCK_ALLOC_ACCESSIBLE,
6881 nid);
6882
6883 if (ptr && size > 0)
6884 page_init_poison(ptr, size);
6885
6886 return ptr;
6887}
6888
6889static int zone_batchsize(struct zone *zone)
6890{
6891#ifdef CONFIG_MMU
6892 int batch;
6893
6894 /*
6895 * The number of pages to batch allocate is either ~0.1%
6896 * of the zone or 1MB, whichever is smaller. The batch
6897 * size is striking a balance between allocation latency
6898 * and zone lock contention.
6899 */
6900 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6901 batch /= 4; /* We effectively *= 4 below */
6902 if (batch < 1)
6903 batch = 1;
6904
6905 /*
6906 * Clamp the batch to a 2^n - 1 value. Having a power
6907 * of 2 value was found to be more likely to have
6908 * suboptimal cache aliasing properties in some cases.
6909 *
6910 * For example if 2 tasks are alternately allocating
6911 * batches of pages, one task can end up with a lot
6912 * of pages of one half of the possible page colors
6913 * and the other with pages of the other colors.
6914 */
6915 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6916
6917 return batch;
6918
6919#else
6920 /* The deferral and batching of frees should be suppressed under NOMMU
6921 * conditions.
6922 *
6923 * The problem is that NOMMU needs to be able to allocate large chunks
6924 * of contiguous memory as there's no hardware page translation to
6925 * assemble apparent contiguous memory from discontiguous pages.
6926 *
6927 * Queueing large contiguous runs of pages for batching, however,
6928 * causes the pages to actually be freed in smaller chunks. As there
6929 * can be a significant delay between the individual batches being
6930 * recycled, this leads to the once large chunks of space being
6931 * fragmented and becoming unavailable for high-order allocations.
6932 */
6933 return 0;
6934#endif
6935}
6936
6937static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6938{
6939#ifdef CONFIG_MMU
6940 int high;
6941 int nr_split_cpus;
6942 unsigned long total_pages;
6943
6944 if (!percpu_pagelist_high_fraction) {
6945 /*
6946 * By default, the high value of the pcp is based on the zone
6947 * low watermark so that if they are full then background
6948 * reclaim will not be started prematurely.
6949 */
6950 total_pages = low_wmark_pages(zone);
6951 } else {
6952 /*
6953 * If percpu_pagelist_high_fraction is configured, the high
6954 * value is based on a fraction of the managed pages in the
6955 * zone.
6956 */
6957 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6958 }
6959
6960 /*
6961 * Split the high value across all online CPUs local to the zone. Note
6962 * that early in boot that CPUs may not be online yet and that during
6963 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6964 * onlined. For memory nodes that have no CPUs, split pcp->high across
6965 * all online CPUs to mitigate the risk that reclaim is triggered
6966 * prematurely due to pages stored on pcp lists.
6967 */
6968 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6969 if (!nr_split_cpus)
6970 nr_split_cpus = num_online_cpus();
6971 high = total_pages / nr_split_cpus;
6972
6973 /*
6974 * Ensure high is at least batch*4. The multiple is based on the
6975 * historical relationship between high and batch.
6976 */
6977 high = max(high, batch << 2);
6978
6979 return high;
6980#else
6981 return 0;
6982#endif
6983}
6984
6985/*
6986 * pcp->high and pcp->batch values are related and generally batch is lower
6987 * than high. They are also related to pcp->count such that count is lower
6988 * than high, and as soon as it reaches high, the pcplist is flushed.
6989 *
6990 * However, guaranteeing these relations at all times would require e.g. write
6991 * barriers here but also careful usage of read barriers at the read side, and
6992 * thus be prone to error and bad for performance. Thus the update only prevents
6993 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6994 * can cope with those fields changing asynchronously, and fully trust only the
6995 * pcp->count field on the local CPU with interrupts disabled.
6996 *
6997 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6998 * outside of boot time (or some other assurance that no concurrent updaters
6999 * exist).
7000 */
7001static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7002 unsigned long batch)
7003{
7004 WRITE_ONCE(pcp->batch, batch);
7005 WRITE_ONCE(pcp->high, high);
7006}
7007
7008static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7009{
7010 int pindex;
7011
7012 memset(pcp, 0, sizeof(*pcp));
7013 memset(pzstats, 0, sizeof(*pzstats));
7014
7015 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7016 INIT_LIST_HEAD(&pcp->lists[pindex]);
7017
7018 /*
7019 * Set batch and high values safe for a boot pageset. A true percpu
7020 * pageset's initialization will update them subsequently. Here we don't
7021 * need to be as careful as pageset_update() as nobody can access the
7022 * pageset yet.
7023 */
7024 pcp->high = BOOT_PAGESET_HIGH;
7025 pcp->batch = BOOT_PAGESET_BATCH;
7026 pcp->free_factor = 0;
7027}
7028
7029static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7030 unsigned long batch)
7031{
7032 struct per_cpu_pages *pcp;
7033 int cpu;
7034
7035 for_each_possible_cpu(cpu) {
7036 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7037 pageset_update(pcp, high, batch);
7038 }
7039}
7040
7041/*
7042 * Calculate and set new high and batch values for all per-cpu pagesets of a
7043 * zone based on the zone's size.
7044 */
7045static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7046{
7047 int new_high, new_batch;
7048
7049 new_batch = max(1, zone_batchsize(zone));
7050 new_high = zone_highsize(zone, new_batch, cpu_online);
7051
7052 if (zone->pageset_high == new_high &&
7053 zone->pageset_batch == new_batch)
7054 return;
7055
7056 zone->pageset_high = new_high;
7057 zone->pageset_batch = new_batch;
7058
7059 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7060}
7061
7062void __meminit setup_zone_pageset(struct zone *zone)
7063{
7064 int cpu;
7065
7066 /* Size may be 0 on !SMP && !NUMA */
7067 if (sizeof(struct per_cpu_zonestat) > 0)
7068 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7069
7070 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7071 for_each_possible_cpu(cpu) {
7072 struct per_cpu_pages *pcp;
7073 struct per_cpu_zonestat *pzstats;
7074
7075 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7076 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7077 per_cpu_pages_init(pcp, pzstats);
7078 }
7079
7080 zone_set_pageset_high_and_batch(zone, 0);
7081}
7082
7083/*
7084 * Allocate per cpu pagesets and initialize them.
7085 * Before this call only boot pagesets were available.
7086 */
7087void __init setup_per_cpu_pageset(void)
7088{
7089 struct pglist_data *pgdat;
7090 struct zone *zone;
7091 int __maybe_unused cpu;
7092
7093 for_each_populated_zone(zone)
7094 setup_zone_pageset(zone);
7095
7096#ifdef CONFIG_NUMA
7097 /*
7098 * Unpopulated zones continue using the boot pagesets.
7099 * The numa stats for these pagesets need to be reset.
7100 * Otherwise, they will end up skewing the stats of
7101 * the nodes these zones are associated with.
7102 */
7103 for_each_possible_cpu(cpu) {
7104 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7105 memset(pzstats->vm_numa_event, 0,
7106 sizeof(pzstats->vm_numa_event));
7107 }
7108#endif
7109
7110 for_each_online_pgdat(pgdat)
7111 pgdat->per_cpu_nodestats =
7112 alloc_percpu(struct per_cpu_nodestat);
7113}
7114
7115static __meminit void zone_pcp_init(struct zone *zone)
7116{
7117 /*
7118 * per cpu subsystem is not up at this point. The following code
7119 * relies on the ability of the linker to provide the
7120 * offset of a (static) per cpu variable into the per cpu area.
7121 */
7122 zone->per_cpu_pageset = &boot_pageset;
7123 zone->per_cpu_zonestats = &boot_zonestats;
7124 zone->pageset_high = BOOT_PAGESET_HIGH;
7125 zone->pageset_batch = BOOT_PAGESET_BATCH;
7126
7127 if (populated_zone(zone))
7128 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7129 zone->present_pages, zone_batchsize(zone));
7130}
7131
7132void __meminit init_currently_empty_zone(struct zone *zone,
7133 unsigned long zone_start_pfn,
7134 unsigned long size)
7135{
7136 struct pglist_data *pgdat = zone->zone_pgdat;
7137 int zone_idx = zone_idx(zone) + 1;
7138
7139 if (zone_idx > pgdat->nr_zones)
7140 pgdat->nr_zones = zone_idx;
7141
7142 zone->zone_start_pfn = zone_start_pfn;
7143
7144 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7145 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7146 pgdat->node_id,
7147 (unsigned long)zone_idx(zone),
7148 zone_start_pfn, (zone_start_pfn + size));
7149
7150 zone_init_free_lists(zone);
7151 zone->initialized = 1;
7152}
7153
7154/**
7155 * get_pfn_range_for_nid - Return the start and end page frames for a node
7156 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7157 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7158 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7159 *
7160 * It returns the start and end page frame of a node based on information
7161 * provided by memblock_set_node(). If called for a node
7162 * with no available memory, a warning is printed and the start and end
7163 * PFNs will be 0.
7164 */
7165void __init get_pfn_range_for_nid(unsigned int nid,
7166 unsigned long *start_pfn, unsigned long *end_pfn)
7167{
7168 unsigned long this_start_pfn, this_end_pfn;
7169 int i;
7170
7171 *start_pfn = -1UL;
7172 *end_pfn = 0;
7173
7174 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7175 *start_pfn = min(*start_pfn, this_start_pfn);
7176 *end_pfn = max(*end_pfn, this_end_pfn);
7177 }
7178
7179 if (*start_pfn == -1UL)
7180 *start_pfn = 0;
7181}
7182
7183/*
7184 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7185 * assumption is made that zones within a node are ordered in monotonic
7186 * increasing memory addresses so that the "highest" populated zone is used
7187 */
7188static void __init find_usable_zone_for_movable(void)
7189{
7190 int zone_index;
7191 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7192 if (zone_index == ZONE_MOVABLE)
7193 continue;
7194
7195 if (arch_zone_highest_possible_pfn[zone_index] >
7196 arch_zone_lowest_possible_pfn[zone_index])
7197 break;
7198 }
7199
7200 VM_BUG_ON(zone_index == -1);
7201 movable_zone = zone_index;
7202}
7203
7204/*
7205 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7206 * because it is sized independent of architecture. Unlike the other zones,
7207 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7208 * in each node depending on the size of each node and how evenly kernelcore
7209 * is distributed. This helper function adjusts the zone ranges
7210 * provided by the architecture for a given node by using the end of the
7211 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7212 * zones within a node are in order of monotonic increases memory addresses
7213 */
7214static void __init adjust_zone_range_for_zone_movable(int nid,
7215 unsigned long zone_type,
7216 unsigned long node_start_pfn,
7217 unsigned long node_end_pfn,
7218 unsigned long *zone_start_pfn,
7219 unsigned long *zone_end_pfn)
7220{
7221 /* Only adjust if ZONE_MOVABLE is on this node */
7222 if (zone_movable_pfn[nid]) {
7223 /* Size ZONE_MOVABLE */
7224 if (zone_type == ZONE_MOVABLE) {
7225 *zone_start_pfn = zone_movable_pfn[nid];
7226 *zone_end_pfn = min(node_end_pfn,
7227 arch_zone_highest_possible_pfn[movable_zone]);
7228
7229 /* Adjust for ZONE_MOVABLE starting within this range */
7230 } else if (!mirrored_kernelcore &&
7231 *zone_start_pfn < zone_movable_pfn[nid] &&
7232 *zone_end_pfn > zone_movable_pfn[nid]) {
7233 *zone_end_pfn = zone_movable_pfn[nid];
7234
7235 /* Check if this whole range is within ZONE_MOVABLE */
7236 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7237 *zone_start_pfn = *zone_end_pfn;
7238 }
7239}
7240
7241/*
7242 * Return the number of pages a zone spans in a node, including holes
7243 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7244 */
7245static unsigned long __init zone_spanned_pages_in_node(int nid,
7246 unsigned long zone_type,
7247 unsigned long node_start_pfn,
7248 unsigned long node_end_pfn,
7249 unsigned long *zone_start_pfn,
7250 unsigned long *zone_end_pfn)
7251{
7252 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7253 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7254 /* When hotadd a new node from cpu_up(), the node should be empty */
7255 if (!node_start_pfn && !node_end_pfn)
7256 return 0;
7257
7258 /* Get the start and end of the zone */
7259 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7260 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7261 adjust_zone_range_for_zone_movable(nid, zone_type,
7262 node_start_pfn, node_end_pfn,
7263 zone_start_pfn, zone_end_pfn);
7264
7265 /* Check that this node has pages within the zone's required range */
7266 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7267 return 0;
7268
7269 /* Move the zone boundaries inside the node if necessary */
7270 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7271 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7272
7273 /* Return the spanned pages */
7274 return *zone_end_pfn - *zone_start_pfn;
7275}
7276
7277/*
7278 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7279 * then all holes in the requested range will be accounted for.
7280 */
7281unsigned long __init __absent_pages_in_range(int nid,
7282 unsigned long range_start_pfn,
7283 unsigned long range_end_pfn)
7284{
7285 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7286 unsigned long start_pfn, end_pfn;
7287 int i;
7288
7289 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7290 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7291 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7292 nr_absent -= end_pfn - start_pfn;
7293 }
7294 return nr_absent;
7295}
7296
7297/**
7298 * absent_pages_in_range - Return number of page frames in holes within a range
7299 * @start_pfn: The start PFN to start searching for holes
7300 * @end_pfn: The end PFN to stop searching for holes
7301 *
7302 * Return: the number of pages frames in memory holes within a range.
7303 */
7304unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7305 unsigned long end_pfn)
7306{
7307 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7308}
7309
7310/* Return the number of page frames in holes in a zone on a node */
7311static unsigned long __init zone_absent_pages_in_node(int nid,
7312 unsigned long zone_type,
7313 unsigned long node_start_pfn,
7314 unsigned long node_end_pfn)
7315{
7316 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7317 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7318 unsigned long zone_start_pfn, zone_end_pfn;
7319 unsigned long nr_absent;
7320
7321 /* When hotadd a new node from cpu_up(), the node should be empty */
7322 if (!node_start_pfn && !node_end_pfn)
7323 return 0;
7324
7325 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7326 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7327
7328 adjust_zone_range_for_zone_movable(nid, zone_type,
7329 node_start_pfn, node_end_pfn,
7330 &zone_start_pfn, &zone_end_pfn);
7331 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7332
7333 /*
7334 * ZONE_MOVABLE handling.
7335 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7336 * and vice versa.
7337 */
7338 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7339 unsigned long start_pfn, end_pfn;
7340 struct memblock_region *r;
7341
7342 for_each_mem_region(r) {
7343 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7344 zone_start_pfn, zone_end_pfn);
7345 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7346 zone_start_pfn, zone_end_pfn);
7347
7348 if (zone_type == ZONE_MOVABLE &&
7349 memblock_is_mirror(r))
7350 nr_absent += end_pfn - start_pfn;
7351
7352 if (zone_type == ZONE_NORMAL &&
7353 !memblock_is_mirror(r))
7354 nr_absent += end_pfn - start_pfn;
7355 }
7356 }
7357
7358 return nr_absent;
7359}
7360
7361static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7362 unsigned long node_start_pfn,
7363 unsigned long node_end_pfn)
7364{
7365 unsigned long realtotalpages = 0, totalpages = 0;
7366 enum zone_type i;
7367
7368 for (i = 0; i < MAX_NR_ZONES; i++) {
7369 struct zone *zone = pgdat->node_zones + i;
7370 unsigned long zone_start_pfn, zone_end_pfn;
7371 unsigned long spanned, absent;
7372 unsigned long size, real_size;
7373
7374 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7375 node_start_pfn,
7376 node_end_pfn,
7377 &zone_start_pfn,
7378 &zone_end_pfn);
7379 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7380 node_start_pfn,
7381 node_end_pfn);
7382
7383 size = spanned;
7384 real_size = size - absent;
7385
7386 if (size)
7387 zone->zone_start_pfn = zone_start_pfn;
7388 else
7389 zone->zone_start_pfn = 0;
7390 zone->spanned_pages = size;
7391 zone->present_pages = real_size;
7392#if defined(CONFIG_MEMORY_HOTPLUG)
7393 zone->present_early_pages = real_size;
7394#endif
7395
7396 totalpages += size;
7397 realtotalpages += real_size;
7398 }
7399
7400 pgdat->node_spanned_pages = totalpages;
7401 pgdat->node_present_pages = realtotalpages;
7402 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7403}
7404
7405#ifndef CONFIG_SPARSEMEM
7406/*
7407 * Calculate the size of the zone->blockflags rounded to an unsigned long
7408 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7409 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7410 * round what is now in bits to nearest long in bits, then return it in
7411 * bytes.
7412 */
7413static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7414{
7415 unsigned long usemapsize;
7416
7417 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7418 usemapsize = roundup(zonesize, pageblock_nr_pages);
7419 usemapsize = usemapsize >> pageblock_order;
7420 usemapsize *= NR_PAGEBLOCK_BITS;
7421 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7422
7423 return usemapsize / 8;
7424}
7425
7426static void __ref setup_usemap(struct zone *zone)
7427{
7428 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7429 zone->spanned_pages);
7430 zone->pageblock_flags = NULL;
7431 if (usemapsize) {
7432 zone->pageblock_flags =
7433 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7434 zone_to_nid(zone));
7435 if (!zone->pageblock_flags)
7436 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7437 usemapsize, zone->name, zone_to_nid(zone));
7438 }
7439}
7440#else
7441static inline void setup_usemap(struct zone *zone) {}
7442#endif /* CONFIG_SPARSEMEM */
7443
7444#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7445
7446/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7447void __init set_pageblock_order(void)
7448{
7449 unsigned int order = MAX_ORDER - 1;
7450
7451 /* Check that pageblock_nr_pages has not already been setup */
7452 if (pageblock_order)
7453 return;
7454
7455 /* Don't let pageblocks exceed the maximum allocation granularity. */
7456 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7457 order = HUGETLB_PAGE_ORDER;
7458
7459 /*
7460 * Assume the largest contiguous order of interest is a huge page.
7461 * This value may be variable depending on boot parameters on IA64 and
7462 * powerpc.
7463 */
7464 pageblock_order = order;
7465}
7466#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7467
7468/*
7469 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7470 * is unused as pageblock_order is set at compile-time. See
7471 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7472 * the kernel config
7473 */
7474void __init set_pageblock_order(void)
7475{
7476}
7477
7478#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7479
7480static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7481 unsigned long present_pages)
7482{
7483 unsigned long pages = spanned_pages;
7484
7485 /*
7486 * Provide a more accurate estimation if there are holes within
7487 * the zone and SPARSEMEM is in use. If there are holes within the
7488 * zone, each populated memory region may cost us one or two extra
7489 * memmap pages due to alignment because memmap pages for each
7490 * populated regions may not be naturally aligned on page boundary.
7491 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7492 */
7493 if (spanned_pages > present_pages + (present_pages >> 4) &&
7494 IS_ENABLED(CONFIG_SPARSEMEM))
7495 pages = present_pages;
7496
7497 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7498}
7499
7500#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7501static void pgdat_init_split_queue(struct pglist_data *pgdat)
7502{
7503 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7504
7505 spin_lock_init(&ds_queue->split_queue_lock);
7506 INIT_LIST_HEAD(&ds_queue->split_queue);
7507 ds_queue->split_queue_len = 0;
7508}
7509#else
7510static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7511#endif
7512
7513#ifdef CONFIG_COMPACTION
7514static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7515{
7516 init_waitqueue_head(&pgdat->kcompactd_wait);
7517}
7518#else
7519static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7520#endif
7521
7522static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7523{
7524 int i;
7525
7526 pgdat_resize_init(pgdat);
7527
7528 pgdat_init_split_queue(pgdat);
7529 pgdat_init_kcompactd(pgdat);
7530
7531 init_waitqueue_head(&pgdat->kswapd_wait);
7532 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7533
7534 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7535 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7536
7537 pgdat_page_ext_init(pgdat);
7538 lruvec_init(&pgdat->__lruvec);
7539}
7540
7541static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7542 unsigned long remaining_pages)
7543{
7544 atomic_long_set(&zone->managed_pages, remaining_pages);
7545 zone_set_nid(zone, nid);
7546 zone->name = zone_names[idx];
7547 zone->zone_pgdat = NODE_DATA(nid);
7548 spin_lock_init(&zone->lock);
7549 zone_seqlock_init(zone);
7550 zone_pcp_init(zone);
7551}
7552
7553/*
7554 * Set up the zone data structures
7555 * - init pgdat internals
7556 * - init all zones belonging to this node
7557 *
7558 * NOTE: this function is only called during memory hotplug
7559 */
7560#ifdef CONFIG_MEMORY_HOTPLUG
7561void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7562{
7563 int nid = pgdat->node_id;
7564 enum zone_type z;
7565 int cpu;
7566
7567 pgdat_init_internals(pgdat);
7568
7569 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7570 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7571
7572 /*
7573 * Reset the nr_zones, order and highest_zoneidx before reuse.
7574 * Note that kswapd will init kswapd_highest_zoneidx properly
7575 * when it starts in the near future.
7576 */
7577 pgdat->nr_zones = 0;
7578 pgdat->kswapd_order = 0;
7579 pgdat->kswapd_highest_zoneidx = 0;
7580 pgdat->node_start_pfn = 0;
7581 for_each_online_cpu(cpu) {
7582 struct per_cpu_nodestat *p;
7583
7584 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7585 memset(p, 0, sizeof(*p));
7586 }
7587
7588 for (z = 0; z < MAX_NR_ZONES; z++)
7589 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7590}
7591#endif
7592
7593/*
7594 * Set up the zone data structures:
7595 * - mark all pages reserved
7596 * - mark all memory queues empty
7597 * - clear the memory bitmaps
7598 *
7599 * NOTE: pgdat should get zeroed by caller.
7600 * NOTE: this function is only called during early init.
7601 */
7602static void __init free_area_init_core(struct pglist_data *pgdat)
7603{
7604 enum zone_type j;
7605 int nid = pgdat->node_id;
7606
7607 pgdat_init_internals(pgdat);
7608 pgdat->per_cpu_nodestats = &boot_nodestats;
7609
7610 for (j = 0; j < MAX_NR_ZONES; j++) {
7611 struct zone *zone = pgdat->node_zones + j;
7612 unsigned long size, freesize, memmap_pages;
7613
7614 size = zone->spanned_pages;
7615 freesize = zone->present_pages;
7616
7617 /*
7618 * Adjust freesize so that it accounts for how much memory
7619 * is used by this zone for memmap. This affects the watermark
7620 * and per-cpu initialisations
7621 */
7622 memmap_pages = calc_memmap_size(size, freesize);
7623 if (!is_highmem_idx(j)) {
7624 if (freesize >= memmap_pages) {
7625 freesize -= memmap_pages;
7626 if (memmap_pages)
7627 pr_debug(" %s zone: %lu pages used for memmap\n",
7628 zone_names[j], memmap_pages);
7629 } else
7630 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7631 zone_names[j], memmap_pages, freesize);
7632 }
7633
7634 /* Account for reserved pages */
7635 if (j == 0 && freesize > dma_reserve) {
7636 freesize -= dma_reserve;
7637 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7638 }
7639
7640 if (!is_highmem_idx(j))
7641 nr_kernel_pages += freesize;
7642 /* Charge for highmem memmap if there are enough kernel pages */
7643 else if (nr_kernel_pages > memmap_pages * 2)
7644 nr_kernel_pages -= memmap_pages;
7645 nr_all_pages += freesize;
7646
7647 /*
7648 * Set an approximate value for lowmem here, it will be adjusted
7649 * when the bootmem allocator frees pages into the buddy system.
7650 * And all highmem pages will be managed by the buddy system.
7651 */
7652 zone_init_internals(zone, j, nid, freesize);
7653
7654 if (!size)
7655 continue;
7656
7657 set_pageblock_order();
7658 setup_usemap(zone);
7659 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7660 }
7661}
7662
7663#ifdef CONFIG_FLATMEM
7664static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7665{
7666 unsigned long __maybe_unused start = 0;
7667 unsigned long __maybe_unused offset = 0;
7668
7669 /* Skip empty nodes */
7670 if (!pgdat->node_spanned_pages)
7671 return;
7672
7673 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7674 offset = pgdat->node_start_pfn - start;
7675 /* ia64 gets its own node_mem_map, before this, without bootmem */
7676 if (!pgdat->node_mem_map) {
7677 unsigned long size, end;
7678 struct page *map;
7679
7680 /*
7681 * The zone's endpoints aren't required to be MAX_ORDER
7682 * aligned but the node_mem_map endpoints must be in order
7683 * for the buddy allocator to function correctly.
7684 */
7685 end = pgdat_end_pfn(pgdat);
7686 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7687 size = (end - start) * sizeof(struct page);
7688 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7689 pgdat->node_id, false);
7690 if (!map)
7691 panic("Failed to allocate %ld bytes for node %d memory map\n",
7692 size, pgdat->node_id);
7693 pgdat->node_mem_map = map + offset;
7694 }
7695 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7696 __func__, pgdat->node_id, (unsigned long)pgdat,
7697 (unsigned long)pgdat->node_mem_map);
7698#ifndef CONFIG_NUMA
7699 /*
7700 * With no DISCONTIG, the global mem_map is just set as node 0's
7701 */
7702 if (pgdat == NODE_DATA(0)) {
7703 mem_map = NODE_DATA(0)->node_mem_map;
7704 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7705 mem_map -= offset;
7706 }
7707#endif
7708}
7709#else
7710static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7711#endif /* CONFIG_FLATMEM */
7712
7713#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7714static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7715{
7716 pgdat->first_deferred_pfn = ULONG_MAX;
7717}
7718#else
7719static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7720#endif
7721
7722static void __init free_area_init_node(int nid)
7723{
7724 pg_data_t *pgdat = NODE_DATA(nid);
7725 unsigned long start_pfn = 0;
7726 unsigned long end_pfn = 0;
7727
7728 /* pg_data_t should be reset to zero when it's allocated */
7729 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7730
7731 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7732
7733 pgdat->node_id = nid;
7734 pgdat->node_start_pfn = start_pfn;
7735 pgdat->per_cpu_nodestats = NULL;
7736
7737 if (start_pfn != end_pfn) {
7738 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7739 (u64)start_pfn << PAGE_SHIFT,
7740 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7741 } else {
7742 pr_info("Initmem setup node %d as memoryless\n", nid);
7743 }
7744
7745 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7746
7747 alloc_node_mem_map(pgdat);
7748 pgdat_set_deferred_range(pgdat);
7749
7750 free_area_init_core(pgdat);
7751}
7752
7753static void __init free_area_init_memoryless_node(int nid)
7754{
7755 free_area_init_node(nid);
7756}
7757
7758#if MAX_NUMNODES > 1
7759/*
7760 * Figure out the number of possible node ids.
7761 */
7762void __init setup_nr_node_ids(void)
7763{
7764 unsigned int highest;
7765
7766 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7767 nr_node_ids = highest + 1;
7768}
7769#endif
7770
7771/**
7772 * node_map_pfn_alignment - determine the maximum internode alignment
7773 *
7774 * This function should be called after node map is populated and sorted.
7775 * It calculates the maximum power of two alignment which can distinguish
7776 * all the nodes.
7777 *
7778 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7779 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7780 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7781 * shifted, 1GiB is enough and this function will indicate so.
7782 *
7783 * This is used to test whether pfn -> nid mapping of the chosen memory
7784 * model has fine enough granularity to avoid incorrect mapping for the
7785 * populated node map.
7786 *
7787 * Return: the determined alignment in pfn's. 0 if there is no alignment
7788 * requirement (single node).
7789 */
7790unsigned long __init node_map_pfn_alignment(void)
7791{
7792 unsigned long accl_mask = 0, last_end = 0;
7793 unsigned long start, end, mask;
7794 int last_nid = NUMA_NO_NODE;
7795 int i, nid;
7796
7797 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7798 if (!start || last_nid < 0 || last_nid == nid) {
7799 last_nid = nid;
7800 last_end = end;
7801 continue;
7802 }
7803
7804 /*
7805 * Start with a mask granular enough to pin-point to the
7806 * start pfn and tick off bits one-by-one until it becomes
7807 * too coarse to separate the current node from the last.
7808 */
7809 mask = ~((1 << __ffs(start)) - 1);
7810 while (mask && last_end <= (start & (mask << 1)))
7811 mask <<= 1;
7812
7813 /* accumulate all internode masks */
7814 accl_mask |= mask;
7815 }
7816
7817 /* convert mask to number of pages */
7818 return ~accl_mask + 1;
7819}
7820
7821/**
7822 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7823 *
7824 * Return: the minimum PFN based on information provided via
7825 * memblock_set_node().
7826 */
7827unsigned long __init find_min_pfn_with_active_regions(void)
7828{
7829 return PHYS_PFN(memblock_start_of_DRAM());
7830}
7831
7832/*
7833 * early_calculate_totalpages()
7834 * Sum pages in active regions for movable zone.
7835 * Populate N_MEMORY for calculating usable_nodes.
7836 */
7837static unsigned long __init early_calculate_totalpages(void)
7838{
7839 unsigned long totalpages = 0;
7840 unsigned long start_pfn, end_pfn;
7841 int i, nid;
7842
7843 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7844 unsigned long pages = end_pfn - start_pfn;
7845
7846 totalpages += pages;
7847 if (pages)
7848 node_set_state(nid, N_MEMORY);
7849 }
7850 return totalpages;
7851}
7852
7853/*
7854 * Find the PFN the Movable zone begins in each node. Kernel memory
7855 * is spread evenly between nodes as long as the nodes have enough
7856 * memory. When they don't, some nodes will have more kernelcore than
7857 * others
7858 */
7859static void __init find_zone_movable_pfns_for_nodes(void)
7860{
7861 int i, nid;
7862 unsigned long usable_startpfn;
7863 unsigned long kernelcore_node, kernelcore_remaining;
7864 /* save the state before borrow the nodemask */
7865 nodemask_t saved_node_state = node_states[N_MEMORY];
7866 unsigned long totalpages = early_calculate_totalpages();
7867 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7868 struct memblock_region *r;
7869
7870 /* Need to find movable_zone earlier when movable_node is specified. */
7871 find_usable_zone_for_movable();
7872
7873 /*
7874 * If movable_node is specified, ignore kernelcore and movablecore
7875 * options.
7876 */
7877 if (movable_node_is_enabled()) {
7878 for_each_mem_region(r) {
7879 if (!memblock_is_hotpluggable(r))
7880 continue;
7881
7882 nid = memblock_get_region_node(r);
7883
7884 usable_startpfn = PFN_DOWN(r->base);
7885 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7886 min(usable_startpfn, zone_movable_pfn[nid]) :
7887 usable_startpfn;
7888 }
7889
7890 goto out2;
7891 }
7892
7893 /*
7894 * If kernelcore=mirror is specified, ignore movablecore option
7895 */
7896 if (mirrored_kernelcore) {
7897 bool mem_below_4gb_not_mirrored = false;
7898
7899 for_each_mem_region(r) {
7900 if (memblock_is_mirror(r))
7901 continue;
7902
7903 nid = memblock_get_region_node(r);
7904
7905 usable_startpfn = memblock_region_memory_base_pfn(r);
7906
7907 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7908 mem_below_4gb_not_mirrored = true;
7909 continue;
7910 }
7911
7912 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7913 min(usable_startpfn, zone_movable_pfn[nid]) :
7914 usable_startpfn;
7915 }
7916
7917 if (mem_below_4gb_not_mirrored)
7918 pr_warn("This configuration results in unmirrored kernel memory.\n");
7919
7920 goto out2;
7921 }
7922
7923 /*
7924 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7925 * amount of necessary memory.
7926 */
7927 if (required_kernelcore_percent)
7928 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7929 10000UL;
7930 if (required_movablecore_percent)
7931 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7932 10000UL;
7933
7934 /*
7935 * If movablecore= was specified, calculate what size of
7936 * kernelcore that corresponds so that memory usable for
7937 * any allocation type is evenly spread. If both kernelcore
7938 * and movablecore are specified, then the value of kernelcore
7939 * will be used for required_kernelcore if it's greater than
7940 * what movablecore would have allowed.
7941 */
7942 if (required_movablecore) {
7943 unsigned long corepages;
7944
7945 /*
7946 * Round-up so that ZONE_MOVABLE is at least as large as what
7947 * was requested by the user
7948 */
7949 required_movablecore =
7950 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7951 required_movablecore = min(totalpages, required_movablecore);
7952 corepages = totalpages - required_movablecore;
7953
7954 required_kernelcore = max(required_kernelcore, corepages);
7955 }
7956
7957 /*
7958 * If kernelcore was not specified or kernelcore size is larger
7959 * than totalpages, there is no ZONE_MOVABLE.
7960 */
7961 if (!required_kernelcore || required_kernelcore >= totalpages)
7962 goto out;
7963
7964 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7965 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7966
7967restart:
7968 /* Spread kernelcore memory as evenly as possible throughout nodes */
7969 kernelcore_node = required_kernelcore / usable_nodes;
7970 for_each_node_state(nid, N_MEMORY) {
7971 unsigned long start_pfn, end_pfn;
7972
7973 /*
7974 * Recalculate kernelcore_node if the division per node
7975 * now exceeds what is necessary to satisfy the requested
7976 * amount of memory for the kernel
7977 */
7978 if (required_kernelcore < kernelcore_node)
7979 kernelcore_node = required_kernelcore / usable_nodes;
7980
7981 /*
7982 * As the map is walked, we track how much memory is usable
7983 * by the kernel using kernelcore_remaining. When it is
7984 * 0, the rest of the node is usable by ZONE_MOVABLE
7985 */
7986 kernelcore_remaining = kernelcore_node;
7987
7988 /* Go through each range of PFNs within this node */
7989 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7990 unsigned long size_pages;
7991
7992 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7993 if (start_pfn >= end_pfn)
7994 continue;
7995
7996 /* Account for what is only usable for kernelcore */
7997 if (start_pfn < usable_startpfn) {
7998 unsigned long kernel_pages;
7999 kernel_pages = min(end_pfn, usable_startpfn)
8000 - start_pfn;
8001
8002 kernelcore_remaining -= min(kernel_pages,
8003 kernelcore_remaining);
8004 required_kernelcore -= min(kernel_pages,
8005 required_kernelcore);
8006
8007 /* Continue if range is now fully accounted */
8008 if (end_pfn <= usable_startpfn) {
8009
8010 /*
8011 * Push zone_movable_pfn to the end so
8012 * that if we have to rebalance
8013 * kernelcore across nodes, we will
8014 * not double account here
8015 */
8016 zone_movable_pfn[nid] = end_pfn;
8017 continue;
8018 }
8019 start_pfn = usable_startpfn;
8020 }
8021
8022 /*
8023 * The usable PFN range for ZONE_MOVABLE is from
8024 * start_pfn->end_pfn. Calculate size_pages as the
8025 * number of pages used as kernelcore
8026 */
8027 size_pages = end_pfn - start_pfn;
8028 if (size_pages > kernelcore_remaining)
8029 size_pages = kernelcore_remaining;
8030 zone_movable_pfn[nid] = start_pfn + size_pages;
8031
8032 /*
8033 * Some kernelcore has been met, update counts and
8034 * break if the kernelcore for this node has been
8035 * satisfied
8036 */
8037 required_kernelcore -= min(required_kernelcore,
8038 size_pages);
8039 kernelcore_remaining -= size_pages;
8040 if (!kernelcore_remaining)
8041 break;
8042 }
8043 }
8044
8045 /*
8046 * If there is still required_kernelcore, we do another pass with one
8047 * less node in the count. This will push zone_movable_pfn[nid] further
8048 * along on the nodes that still have memory until kernelcore is
8049 * satisfied
8050 */
8051 usable_nodes--;
8052 if (usable_nodes && required_kernelcore > usable_nodes)
8053 goto restart;
8054
8055out2:
8056 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8057 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8058 unsigned long start_pfn, end_pfn;
8059
8060 zone_movable_pfn[nid] =
8061 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8062
8063 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8064 if (zone_movable_pfn[nid] >= end_pfn)
8065 zone_movable_pfn[nid] = 0;
8066 }
8067
8068out:
8069 /* restore the node_state */
8070 node_states[N_MEMORY] = saved_node_state;
8071}
8072
8073/* Any regular or high memory on that node ? */
8074static void check_for_memory(pg_data_t *pgdat, int nid)
8075{
8076 enum zone_type zone_type;
8077
8078 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8079 struct zone *zone = &pgdat->node_zones[zone_type];
8080 if (populated_zone(zone)) {
8081 if (IS_ENABLED(CONFIG_HIGHMEM))
8082 node_set_state(nid, N_HIGH_MEMORY);
8083 if (zone_type <= ZONE_NORMAL)
8084 node_set_state(nid, N_NORMAL_MEMORY);
8085 break;
8086 }
8087 }
8088}
8089
8090/*
8091 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8092 * such cases we allow max_zone_pfn sorted in the descending order
8093 */
8094bool __weak arch_has_descending_max_zone_pfns(void)
8095{
8096 return false;
8097}
8098
8099/**
8100 * free_area_init - Initialise all pg_data_t and zone data
8101 * @max_zone_pfn: an array of max PFNs for each zone
8102 *
8103 * This will call free_area_init_node() for each active node in the system.
8104 * Using the page ranges provided by memblock_set_node(), the size of each
8105 * zone in each node and their holes is calculated. If the maximum PFN
8106 * between two adjacent zones match, it is assumed that the zone is empty.
8107 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8108 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8109 * starts where the previous one ended. For example, ZONE_DMA32 starts
8110 * at arch_max_dma_pfn.
8111 */
8112void __init free_area_init(unsigned long *max_zone_pfn)
8113{
8114 unsigned long start_pfn, end_pfn;
8115 int i, nid, zone;
8116 bool descending;
8117
8118 /* Record where the zone boundaries are */
8119 memset(arch_zone_lowest_possible_pfn, 0,
8120 sizeof(arch_zone_lowest_possible_pfn));
8121 memset(arch_zone_highest_possible_pfn, 0,
8122 sizeof(arch_zone_highest_possible_pfn));
8123
8124 start_pfn = find_min_pfn_with_active_regions();
8125 descending = arch_has_descending_max_zone_pfns();
8126
8127 for (i = 0; i < MAX_NR_ZONES; i++) {
8128 if (descending)
8129 zone = MAX_NR_ZONES - i - 1;
8130 else
8131 zone = i;
8132
8133 if (zone == ZONE_MOVABLE)
8134 continue;
8135
8136 end_pfn = max(max_zone_pfn[zone], start_pfn);
8137 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8138 arch_zone_highest_possible_pfn[zone] = end_pfn;
8139
8140 start_pfn = end_pfn;
8141 }
8142
8143 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8144 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8145 find_zone_movable_pfns_for_nodes();
8146
8147 /* Print out the zone ranges */
8148 pr_info("Zone ranges:\n");
8149 for (i = 0; i < MAX_NR_ZONES; i++) {
8150 if (i == ZONE_MOVABLE)
8151 continue;
8152 pr_info(" %-8s ", zone_names[i]);
8153 if (arch_zone_lowest_possible_pfn[i] ==
8154 arch_zone_highest_possible_pfn[i])
8155 pr_cont("empty\n");
8156 else
8157 pr_cont("[mem %#018Lx-%#018Lx]\n",
8158 (u64)arch_zone_lowest_possible_pfn[i]
8159 << PAGE_SHIFT,
8160 ((u64)arch_zone_highest_possible_pfn[i]
8161 << PAGE_SHIFT) - 1);
8162 }
8163
8164 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8165 pr_info("Movable zone start for each node\n");
8166 for (i = 0; i < MAX_NUMNODES; i++) {
8167 if (zone_movable_pfn[i])
8168 pr_info(" Node %d: %#018Lx\n", i,
8169 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8170 }
8171
8172 /*
8173 * Print out the early node map, and initialize the
8174 * subsection-map relative to active online memory ranges to
8175 * enable future "sub-section" extensions of the memory map.
8176 */
8177 pr_info("Early memory node ranges\n");
8178 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8179 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8180 (u64)start_pfn << PAGE_SHIFT,
8181 ((u64)end_pfn << PAGE_SHIFT) - 1);
8182 subsection_map_init(start_pfn, end_pfn - start_pfn);
8183 }
8184
8185 /* Initialise every node */
8186 mminit_verify_pageflags_layout();
8187 setup_nr_node_ids();
8188 for_each_node(nid) {
8189 pg_data_t *pgdat;
8190
8191 if (!node_online(nid)) {
8192 pr_info("Initializing node %d as memoryless\n", nid);
8193
8194 /* Allocator not initialized yet */
8195 pgdat = arch_alloc_nodedata(nid);
8196 if (!pgdat) {
8197 pr_err("Cannot allocate %zuB for node %d.\n",
8198 sizeof(*pgdat), nid);
8199 continue;
8200 }
8201 arch_refresh_nodedata(nid, pgdat);
8202 free_area_init_memoryless_node(nid);
8203
8204 /*
8205 * We do not want to confuse userspace by sysfs
8206 * files/directories for node without any memory
8207 * attached to it, so this node is not marked as
8208 * N_MEMORY and not marked online so that no sysfs
8209 * hierarchy will be created via register_one_node for
8210 * it. The pgdat will get fully initialized by
8211 * hotadd_init_pgdat() when memory is hotplugged into
8212 * this node.
8213 */
8214 continue;
8215 }
8216
8217 pgdat = NODE_DATA(nid);
8218 free_area_init_node(nid);
8219
8220 /* Any memory on that node */
8221 if (pgdat->node_present_pages)
8222 node_set_state(nid, N_MEMORY);
8223 check_for_memory(pgdat, nid);
8224 }
8225
8226 memmap_init();
8227}
8228
8229static int __init cmdline_parse_core(char *p, unsigned long *core,
8230 unsigned long *percent)
8231{
8232 unsigned long long coremem;
8233 char *endptr;
8234
8235 if (!p)
8236 return -EINVAL;
8237
8238 /* Value may be a percentage of total memory, otherwise bytes */
8239 coremem = simple_strtoull(p, &endptr, 0);
8240 if (*endptr == '%') {
8241 /* Paranoid check for percent values greater than 100 */
8242 WARN_ON(coremem > 100);
8243
8244 *percent = coremem;
8245 } else {
8246 coremem = memparse(p, &p);
8247 /* Paranoid check that UL is enough for the coremem value */
8248 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8249
8250 *core = coremem >> PAGE_SHIFT;
8251 *percent = 0UL;
8252 }
8253 return 0;
8254}
8255
8256/*
8257 * kernelcore=size sets the amount of memory for use for allocations that
8258 * cannot be reclaimed or migrated.
8259 */
8260static int __init cmdline_parse_kernelcore(char *p)
8261{
8262 /* parse kernelcore=mirror */
8263 if (parse_option_str(p, "mirror")) {
8264 mirrored_kernelcore = true;
8265 return 0;
8266 }
8267
8268 return cmdline_parse_core(p, &required_kernelcore,
8269 &required_kernelcore_percent);
8270}
8271
8272/*
8273 * movablecore=size sets the amount of memory for use for allocations that
8274 * can be reclaimed or migrated.
8275 */
8276static int __init cmdline_parse_movablecore(char *p)
8277{
8278 return cmdline_parse_core(p, &required_movablecore,
8279 &required_movablecore_percent);
8280}
8281
8282early_param("kernelcore", cmdline_parse_kernelcore);
8283early_param("movablecore", cmdline_parse_movablecore);
8284
8285void adjust_managed_page_count(struct page *page, long count)
8286{
8287 atomic_long_add(count, &page_zone(page)->managed_pages);
8288 totalram_pages_add(count);
8289#ifdef CONFIG_HIGHMEM
8290 if (PageHighMem(page))
8291 totalhigh_pages_add(count);
8292#endif
8293}
8294EXPORT_SYMBOL(adjust_managed_page_count);
8295
8296unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8297{
8298 void *pos;
8299 unsigned long pages = 0;
8300
8301 start = (void *)PAGE_ALIGN((unsigned long)start);
8302 end = (void *)((unsigned long)end & PAGE_MASK);
8303 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8304 struct page *page = virt_to_page(pos);
8305 void *direct_map_addr;
8306
8307 /*
8308 * 'direct_map_addr' might be different from 'pos'
8309 * because some architectures' virt_to_page()
8310 * work with aliases. Getting the direct map
8311 * address ensures that we get a _writeable_
8312 * alias for the memset().
8313 */
8314 direct_map_addr = page_address(page);
8315 /*
8316 * Perform a kasan-unchecked memset() since this memory
8317 * has not been initialized.
8318 */
8319 direct_map_addr = kasan_reset_tag(direct_map_addr);
8320 if ((unsigned int)poison <= 0xFF)
8321 memset(direct_map_addr, poison, PAGE_SIZE);
8322
8323 free_reserved_page(page);
8324 }
8325
8326 if (pages && s)
8327 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8328
8329 return pages;
8330}
8331
8332void __init mem_init_print_info(void)
8333{
8334 unsigned long physpages, codesize, datasize, rosize, bss_size;
8335 unsigned long init_code_size, init_data_size;
8336
8337 physpages = get_num_physpages();
8338 codesize = _etext - _stext;
8339 datasize = _edata - _sdata;
8340 rosize = __end_rodata - __start_rodata;
8341 bss_size = __bss_stop - __bss_start;
8342 init_data_size = __init_end - __init_begin;
8343 init_code_size = _einittext - _sinittext;
8344
8345 /*
8346 * Detect special cases and adjust section sizes accordingly:
8347 * 1) .init.* may be embedded into .data sections
8348 * 2) .init.text.* may be out of [__init_begin, __init_end],
8349 * please refer to arch/tile/kernel/vmlinux.lds.S.
8350 * 3) .rodata.* may be embedded into .text or .data sections.
8351 */
8352#define adj_init_size(start, end, size, pos, adj) \
8353 do { \
8354 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8355 size -= adj; \
8356 } while (0)
8357
8358 adj_init_size(__init_begin, __init_end, init_data_size,
8359 _sinittext, init_code_size);
8360 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8361 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8362 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8363 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8364
8365#undef adj_init_size
8366
8367 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8368#ifdef CONFIG_HIGHMEM
8369 ", %luK highmem"
8370#endif
8371 ")\n",
8372 K(nr_free_pages()), K(physpages),
8373 codesize >> 10, datasize >> 10, rosize >> 10,
8374 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8375 K(physpages - totalram_pages() - totalcma_pages),
8376 K(totalcma_pages)
8377#ifdef CONFIG_HIGHMEM
8378 , K(totalhigh_pages())
8379#endif
8380 );
8381}
8382
8383/**
8384 * set_dma_reserve - set the specified number of pages reserved in the first zone
8385 * @new_dma_reserve: The number of pages to mark reserved
8386 *
8387 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8388 * In the DMA zone, a significant percentage may be consumed by kernel image
8389 * and other unfreeable allocations which can skew the watermarks badly. This
8390 * function may optionally be used to account for unfreeable pages in the
8391 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8392 * smaller per-cpu batchsize.
8393 */
8394void __init set_dma_reserve(unsigned long new_dma_reserve)
8395{
8396 dma_reserve = new_dma_reserve;
8397}
8398
8399static int page_alloc_cpu_dead(unsigned int cpu)
8400{
8401 struct zone *zone;
8402
8403 lru_add_drain_cpu(cpu);
8404 mlock_page_drain_remote(cpu);
8405 drain_pages(cpu);
8406
8407 /*
8408 * Spill the event counters of the dead processor
8409 * into the current processors event counters.
8410 * This artificially elevates the count of the current
8411 * processor.
8412 */
8413 vm_events_fold_cpu(cpu);
8414
8415 /*
8416 * Zero the differential counters of the dead processor
8417 * so that the vm statistics are consistent.
8418 *
8419 * This is only okay since the processor is dead and cannot
8420 * race with what we are doing.
8421 */
8422 cpu_vm_stats_fold(cpu);
8423
8424 for_each_populated_zone(zone)
8425 zone_pcp_update(zone, 0);
8426
8427 return 0;
8428}
8429
8430static int page_alloc_cpu_online(unsigned int cpu)
8431{
8432 struct zone *zone;
8433
8434 for_each_populated_zone(zone)
8435 zone_pcp_update(zone, 1);
8436 return 0;
8437}
8438
8439#ifdef CONFIG_NUMA
8440int hashdist = HASHDIST_DEFAULT;
8441
8442static int __init set_hashdist(char *str)
8443{
8444 if (!str)
8445 return 0;
8446 hashdist = simple_strtoul(str, &str, 0);
8447 return 1;
8448}
8449__setup("hashdist=", set_hashdist);
8450#endif
8451
8452void __init page_alloc_init(void)
8453{
8454 int ret;
8455
8456#ifdef CONFIG_NUMA
8457 if (num_node_state(N_MEMORY) == 1)
8458 hashdist = 0;
8459#endif
8460
8461 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8462 "mm/page_alloc:pcp",
8463 page_alloc_cpu_online,
8464 page_alloc_cpu_dead);
8465 WARN_ON(ret < 0);
8466}
8467
8468/*
8469 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8470 * or min_free_kbytes changes.
8471 */
8472static void calculate_totalreserve_pages(void)
8473{
8474 struct pglist_data *pgdat;
8475 unsigned long reserve_pages = 0;
8476 enum zone_type i, j;
8477
8478 for_each_online_pgdat(pgdat) {
8479
8480 pgdat->totalreserve_pages = 0;
8481
8482 for (i = 0; i < MAX_NR_ZONES; i++) {
8483 struct zone *zone = pgdat->node_zones + i;
8484 long max = 0;
8485 unsigned long managed_pages = zone_managed_pages(zone);
8486
8487 /* Find valid and maximum lowmem_reserve in the zone */
8488 for (j = i; j < MAX_NR_ZONES; j++) {
8489 if (zone->lowmem_reserve[j] > max)
8490 max = zone->lowmem_reserve[j];
8491 }
8492
8493 /* we treat the high watermark as reserved pages. */
8494 max += high_wmark_pages(zone);
8495
8496 if (max > managed_pages)
8497 max = managed_pages;
8498
8499 pgdat->totalreserve_pages += max;
8500
8501 reserve_pages += max;
8502 }
8503 }
8504 totalreserve_pages = reserve_pages;
8505}
8506
8507/*
8508 * setup_per_zone_lowmem_reserve - called whenever
8509 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8510 * has a correct pages reserved value, so an adequate number of
8511 * pages are left in the zone after a successful __alloc_pages().
8512 */
8513static void setup_per_zone_lowmem_reserve(void)
8514{
8515 struct pglist_data *pgdat;
8516 enum zone_type i, j;
8517
8518 for_each_online_pgdat(pgdat) {
8519 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8520 struct zone *zone = &pgdat->node_zones[i];
8521 int ratio = sysctl_lowmem_reserve_ratio[i];
8522 bool clear = !ratio || !zone_managed_pages(zone);
8523 unsigned long managed_pages = 0;
8524
8525 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8526 struct zone *upper_zone = &pgdat->node_zones[j];
8527
8528 managed_pages += zone_managed_pages(upper_zone);
8529
8530 if (clear)
8531 zone->lowmem_reserve[j] = 0;
8532 else
8533 zone->lowmem_reserve[j] = managed_pages / ratio;
8534 }
8535 }
8536 }
8537
8538 /* update totalreserve_pages */
8539 calculate_totalreserve_pages();
8540}
8541
8542static void __setup_per_zone_wmarks(void)
8543{
8544 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8545 unsigned long lowmem_pages = 0;
8546 struct zone *zone;
8547 unsigned long flags;
8548
8549 /* Calculate total number of !ZONE_HIGHMEM pages */
8550 for_each_zone(zone) {
8551 if (!is_highmem(zone))
8552 lowmem_pages += zone_managed_pages(zone);
8553 }
8554
8555 for_each_zone(zone) {
8556 u64 tmp;
8557
8558 spin_lock_irqsave(&zone->lock, flags);
8559 tmp = (u64)pages_min * zone_managed_pages(zone);
8560 do_div(tmp, lowmem_pages);
8561 if (is_highmem(zone)) {
8562 /*
8563 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8564 * need highmem pages, so cap pages_min to a small
8565 * value here.
8566 *
8567 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8568 * deltas control async page reclaim, and so should
8569 * not be capped for highmem.
8570 */
8571 unsigned long min_pages;
8572
8573 min_pages = zone_managed_pages(zone) / 1024;
8574 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8575 zone->_watermark[WMARK_MIN] = min_pages;
8576 } else {
8577 /*
8578 * If it's a lowmem zone, reserve a number of pages
8579 * proportionate to the zone's size.
8580 */
8581 zone->_watermark[WMARK_MIN] = tmp;
8582 }
8583
8584 /*
8585 * Set the kswapd watermarks distance according to the
8586 * scale factor in proportion to available memory, but
8587 * ensure a minimum size on small systems.
8588 */
8589 tmp = max_t(u64, tmp >> 2,
8590 mult_frac(zone_managed_pages(zone),
8591 watermark_scale_factor, 10000));
8592
8593 zone->watermark_boost = 0;
8594 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8595 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8596 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8597
8598 spin_unlock_irqrestore(&zone->lock, flags);
8599 }
8600
8601 /* update totalreserve_pages */
8602 calculate_totalreserve_pages();
8603}
8604
8605/**
8606 * setup_per_zone_wmarks - called when min_free_kbytes changes
8607 * or when memory is hot-{added|removed}
8608 *
8609 * Ensures that the watermark[min,low,high] values for each zone are set
8610 * correctly with respect to min_free_kbytes.
8611 */
8612void setup_per_zone_wmarks(void)
8613{
8614 struct zone *zone;
8615 static DEFINE_SPINLOCK(lock);
8616
8617 spin_lock(&lock);
8618 __setup_per_zone_wmarks();
8619 spin_unlock(&lock);
8620
8621 /*
8622 * The watermark size have changed so update the pcpu batch
8623 * and high limits or the limits may be inappropriate.
8624 */
8625 for_each_zone(zone)
8626 zone_pcp_update(zone, 0);
8627}
8628
8629/*
8630 * Initialise min_free_kbytes.
8631 *
8632 * For small machines we want it small (128k min). For large machines
8633 * we want it large (256MB max). But it is not linear, because network
8634 * bandwidth does not increase linearly with machine size. We use
8635 *
8636 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8637 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8638 *
8639 * which yields
8640 *
8641 * 16MB: 512k
8642 * 32MB: 724k
8643 * 64MB: 1024k
8644 * 128MB: 1448k
8645 * 256MB: 2048k
8646 * 512MB: 2896k
8647 * 1024MB: 4096k
8648 * 2048MB: 5792k
8649 * 4096MB: 8192k
8650 * 8192MB: 11584k
8651 * 16384MB: 16384k
8652 */
8653void calculate_min_free_kbytes(void)
8654{
8655 unsigned long lowmem_kbytes;
8656 int new_min_free_kbytes;
8657
8658 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8659 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8660
8661 if (new_min_free_kbytes > user_min_free_kbytes)
8662 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8663 else
8664 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8665 new_min_free_kbytes, user_min_free_kbytes);
8666
8667}
8668
8669int __meminit init_per_zone_wmark_min(void)
8670{
8671 calculate_min_free_kbytes();
8672 setup_per_zone_wmarks();
8673 refresh_zone_stat_thresholds();
8674 setup_per_zone_lowmem_reserve();
8675
8676#ifdef CONFIG_NUMA
8677 setup_min_unmapped_ratio();
8678 setup_min_slab_ratio();
8679#endif
8680
8681 khugepaged_min_free_kbytes_update();
8682
8683 return 0;
8684}
8685postcore_initcall(init_per_zone_wmark_min)
8686
8687/*
8688 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8689 * that we can call two helper functions whenever min_free_kbytes
8690 * changes.
8691 */
8692int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8693 void *buffer, size_t *length, loff_t *ppos)
8694{
8695 int rc;
8696
8697 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8698 if (rc)
8699 return rc;
8700
8701 if (write) {
8702 user_min_free_kbytes = min_free_kbytes;
8703 setup_per_zone_wmarks();
8704 }
8705 return 0;
8706}
8707
8708int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8709 void *buffer, size_t *length, loff_t *ppos)
8710{
8711 int rc;
8712
8713 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8714 if (rc)
8715 return rc;
8716
8717 if (write)
8718 setup_per_zone_wmarks();
8719
8720 return 0;
8721}
8722
8723#ifdef CONFIG_NUMA
8724static void setup_min_unmapped_ratio(void)
8725{
8726 pg_data_t *pgdat;
8727 struct zone *zone;
8728
8729 for_each_online_pgdat(pgdat)
8730 pgdat->min_unmapped_pages = 0;
8731
8732 for_each_zone(zone)
8733 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8734 sysctl_min_unmapped_ratio) / 100;
8735}
8736
8737
8738int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8739 void *buffer, size_t *length, loff_t *ppos)
8740{
8741 int rc;
8742
8743 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8744 if (rc)
8745 return rc;
8746
8747 setup_min_unmapped_ratio();
8748
8749 return 0;
8750}
8751
8752static void setup_min_slab_ratio(void)
8753{
8754 pg_data_t *pgdat;
8755 struct zone *zone;
8756
8757 for_each_online_pgdat(pgdat)
8758 pgdat->min_slab_pages = 0;
8759
8760 for_each_zone(zone)
8761 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8762 sysctl_min_slab_ratio) / 100;
8763}
8764
8765int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8766 void *buffer, size_t *length, loff_t *ppos)
8767{
8768 int rc;
8769
8770 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8771 if (rc)
8772 return rc;
8773
8774 setup_min_slab_ratio();
8775
8776 return 0;
8777}
8778#endif
8779
8780/*
8781 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8782 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8783 * whenever sysctl_lowmem_reserve_ratio changes.
8784 *
8785 * The reserve ratio obviously has absolutely no relation with the
8786 * minimum watermarks. The lowmem reserve ratio can only make sense
8787 * if in function of the boot time zone sizes.
8788 */
8789int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8790 void *buffer, size_t *length, loff_t *ppos)
8791{
8792 int i;
8793
8794 proc_dointvec_minmax(table, write, buffer, length, ppos);
8795
8796 for (i = 0; i < MAX_NR_ZONES; i++) {
8797 if (sysctl_lowmem_reserve_ratio[i] < 1)
8798 sysctl_lowmem_reserve_ratio[i] = 0;
8799 }
8800
8801 setup_per_zone_lowmem_reserve();
8802 return 0;
8803}
8804
8805/*
8806 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8807 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8808 * pagelist can have before it gets flushed back to buddy allocator.
8809 */
8810int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8811 int write, void *buffer, size_t *length, loff_t *ppos)
8812{
8813 struct zone *zone;
8814 int old_percpu_pagelist_high_fraction;
8815 int ret;
8816
8817 mutex_lock(&pcp_batch_high_lock);
8818 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8819
8820 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8821 if (!write || ret < 0)
8822 goto out;
8823
8824 /* Sanity checking to avoid pcp imbalance */
8825 if (percpu_pagelist_high_fraction &&
8826 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8827 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8828 ret = -EINVAL;
8829 goto out;
8830 }
8831
8832 /* No change? */
8833 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8834 goto out;
8835
8836 for_each_populated_zone(zone)
8837 zone_set_pageset_high_and_batch(zone, 0);
8838out:
8839 mutex_unlock(&pcp_batch_high_lock);
8840 return ret;
8841}
8842
8843#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8844/*
8845 * Returns the number of pages that arch has reserved but
8846 * is not known to alloc_large_system_hash().
8847 */
8848static unsigned long __init arch_reserved_kernel_pages(void)
8849{
8850 return 0;
8851}
8852#endif
8853
8854/*
8855 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8856 * machines. As memory size is increased the scale is also increased but at
8857 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8858 * quadruples the scale is increased by one, which means the size of hash table
8859 * only doubles, instead of quadrupling as well.
8860 * Because 32-bit systems cannot have large physical memory, where this scaling
8861 * makes sense, it is disabled on such platforms.
8862 */
8863#if __BITS_PER_LONG > 32
8864#define ADAPT_SCALE_BASE (64ul << 30)
8865#define ADAPT_SCALE_SHIFT 2
8866#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8867#endif
8868
8869/*
8870 * allocate a large system hash table from bootmem
8871 * - it is assumed that the hash table must contain an exact power-of-2
8872 * quantity of entries
8873 * - limit is the number of hash buckets, not the total allocation size
8874 */
8875void *__init alloc_large_system_hash(const char *tablename,
8876 unsigned long bucketsize,
8877 unsigned long numentries,
8878 int scale,
8879 int flags,
8880 unsigned int *_hash_shift,
8881 unsigned int *_hash_mask,
8882 unsigned long low_limit,
8883 unsigned long high_limit)
8884{
8885 unsigned long long max = high_limit;
8886 unsigned long log2qty, size;
8887 void *table = NULL;
8888 gfp_t gfp_flags;
8889 bool virt;
8890 bool huge;
8891
8892 /* allow the kernel cmdline to have a say */
8893 if (!numentries) {
8894 /* round applicable memory size up to nearest megabyte */
8895 numentries = nr_kernel_pages;
8896 numentries -= arch_reserved_kernel_pages();
8897
8898 /* It isn't necessary when PAGE_SIZE >= 1MB */
8899 if (PAGE_SHIFT < 20)
8900 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8901
8902#if __BITS_PER_LONG > 32
8903 if (!high_limit) {
8904 unsigned long adapt;
8905
8906 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8907 adapt <<= ADAPT_SCALE_SHIFT)
8908 scale++;
8909 }
8910#endif
8911
8912 /* limit to 1 bucket per 2^scale bytes of low memory */
8913 if (scale > PAGE_SHIFT)
8914 numentries >>= (scale - PAGE_SHIFT);
8915 else
8916 numentries <<= (PAGE_SHIFT - scale);
8917
8918 /* Make sure we've got at least a 0-order allocation.. */
8919 if (unlikely(flags & HASH_SMALL)) {
8920 /* Makes no sense without HASH_EARLY */
8921 WARN_ON(!(flags & HASH_EARLY));
8922 if (!(numentries >> *_hash_shift)) {
8923 numentries = 1UL << *_hash_shift;
8924 BUG_ON(!numentries);
8925 }
8926 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8927 numentries = PAGE_SIZE / bucketsize;
8928 }
8929 numentries = roundup_pow_of_two(numentries);
8930
8931 /* limit allocation size to 1/16 total memory by default */
8932 if (max == 0) {
8933 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8934 do_div(max, bucketsize);
8935 }
8936 max = min(max, 0x80000000ULL);
8937
8938 if (numentries < low_limit)
8939 numentries = low_limit;
8940 if (numentries > max)
8941 numentries = max;
8942
8943 log2qty = ilog2(numentries);
8944
8945 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8946 do {
8947 virt = false;
8948 size = bucketsize << log2qty;
8949 if (flags & HASH_EARLY) {
8950 if (flags & HASH_ZERO)
8951 table = memblock_alloc(size, SMP_CACHE_BYTES);
8952 else
8953 table = memblock_alloc_raw(size,
8954 SMP_CACHE_BYTES);
8955 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8956 table = vmalloc_huge(size, gfp_flags);
8957 virt = true;
8958 if (table)
8959 huge = is_vm_area_hugepages(table);
8960 } else {
8961 /*
8962 * If bucketsize is not a power-of-two, we may free
8963 * some pages at the end of hash table which
8964 * alloc_pages_exact() automatically does
8965 */
8966 table = alloc_pages_exact(size, gfp_flags);
8967 kmemleak_alloc(table, size, 1, gfp_flags);
8968 }
8969 } while (!table && size > PAGE_SIZE && --log2qty);
8970
8971 if (!table)
8972 panic("Failed to allocate %s hash table\n", tablename);
8973
8974 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8975 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8976 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8977
8978 if (_hash_shift)
8979 *_hash_shift = log2qty;
8980 if (_hash_mask)
8981 *_hash_mask = (1 << log2qty) - 1;
8982
8983 return table;
8984}
8985
8986#ifdef CONFIG_CONTIG_ALLOC
8987#if defined(CONFIG_DYNAMIC_DEBUG) || \
8988 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8989/* Usage: See admin-guide/dynamic-debug-howto.rst */
8990static void alloc_contig_dump_pages(struct list_head *page_list)
8991{
8992 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8993
8994 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8995 struct page *page;
8996
8997 dump_stack();
8998 list_for_each_entry(page, page_list, lru)
8999 dump_page(page, "migration failure");
9000 }
9001}
9002#else
9003static inline void alloc_contig_dump_pages(struct list_head *page_list)
9004{
9005}
9006#endif
9007
9008/* [start, end) must belong to a single zone. */
9009int __alloc_contig_migrate_range(struct compact_control *cc,
9010 unsigned long start, unsigned long end)
9011{
9012 /* This function is based on compact_zone() from compaction.c. */
9013 unsigned int nr_reclaimed;
9014 unsigned long pfn = start;
9015 unsigned int tries = 0;
9016 int ret = 0;
9017 struct migration_target_control mtc = {
9018 .nid = zone_to_nid(cc->zone),
9019 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9020 };
9021
9022 lru_cache_disable();
9023
9024 while (pfn < end || !list_empty(&cc->migratepages)) {
9025 if (fatal_signal_pending(current)) {
9026 ret = -EINTR;
9027 break;
9028 }
9029
9030 if (list_empty(&cc->migratepages)) {
9031 cc->nr_migratepages = 0;
9032 ret = isolate_migratepages_range(cc, pfn, end);
9033 if (ret && ret != -EAGAIN)
9034 break;
9035 pfn = cc->migrate_pfn;
9036 tries = 0;
9037 } else if (++tries == 5) {
9038 ret = -EBUSY;
9039 break;
9040 }
9041
9042 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9043 &cc->migratepages);
9044 cc->nr_migratepages -= nr_reclaimed;
9045
9046 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9047 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9048
9049 /*
9050 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9051 * to retry again over this error, so do the same here.
9052 */
9053 if (ret == -ENOMEM)
9054 break;
9055 }
9056
9057 lru_cache_enable();
9058 if (ret < 0) {
9059 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9060 alloc_contig_dump_pages(&cc->migratepages);
9061 putback_movable_pages(&cc->migratepages);
9062 return ret;
9063 }
9064 return 0;
9065}
9066
9067/**
9068 * alloc_contig_range() -- tries to allocate given range of pages
9069 * @start: start PFN to allocate
9070 * @end: one-past-the-last PFN to allocate
9071 * @migratetype: migratetype of the underlying pageblocks (either
9072 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9073 * in range must have the same migratetype and it must
9074 * be either of the two.
9075 * @gfp_mask: GFP mask to use during compaction
9076 *
9077 * The PFN range does not have to be pageblock aligned. The PFN range must
9078 * belong to a single zone.
9079 *
9080 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9081 * pageblocks in the range. Once isolated, the pageblocks should not
9082 * be modified by others.
9083 *
9084 * Return: zero on success or negative error code. On success all
9085 * pages which PFN is in [start, end) are allocated for the caller and
9086 * need to be freed with free_contig_range().
9087 */
9088int alloc_contig_range(unsigned long start, unsigned long end,
9089 unsigned migratetype, gfp_t gfp_mask)
9090{
9091 unsigned long outer_start, outer_end;
9092 int order;
9093 int ret = 0;
9094
9095 struct compact_control cc = {
9096 .nr_migratepages = 0,
9097 .order = -1,
9098 .zone = page_zone(pfn_to_page(start)),
9099 .mode = MIGRATE_SYNC,
9100 .ignore_skip_hint = true,
9101 .no_set_skip_hint = true,
9102 .gfp_mask = current_gfp_context(gfp_mask),
9103 .alloc_contig = true,
9104 };
9105 INIT_LIST_HEAD(&cc.migratepages);
9106
9107 /*
9108 * What we do here is we mark all pageblocks in range as
9109 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9110 * have different sizes, and due to the way page allocator
9111 * work, start_isolate_page_range() has special handlings for this.
9112 *
9113 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9114 * migrate the pages from an unaligned range (ie. pages that
9115 * we are interested in). This will put all the pages in
9116 * range back to page allocator as MIGRATE_ISOLATE.
9117 *
9118 * When this is done, we take the pages in range from page
9119 * allocator removing them from the buddy system. This way
9120 * page allocator will never consider using them.
9121 *
9122 * This lets us mark the pageblocks back as
9123 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9124 * aligned range but not in the unaligned, original range are
9125 * put back to page allocator so that buddy can use them.
9126 */
9127
9128 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9129 if (ret)
9130 goto done;
9131
9132 drain_all_pages(cc.zone);
9133
9134 /*
9135 * In case of -EBUSY, we'd like to know which page causes problem.
9136 * So, just fall through. test_pages_isolated() has a tracepoint
9137 * which will report the busy page.
9138 *
9139 * It is possible that busy pages could become available before
9140 * the call to test_pages_isolated, and the range will actually be
9141 * allocated. So, if we fall through be sure to clear ret so that
9142 * -EBUSY is not accidentally used or returned to caller.
9143 */
9144 ret = __alloc_contig_migrate_range(&cc, start, end);
9145 if (ret && ret != -EBUSY)
9146 goto done;
9147 ret = 0;
9148
9149 /*
9150 * Pages from [start, end) are within a pageblock_nr_pages
9151 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9152 * more, all pages in [start, end) are free in page allocator.
9153 * What we are going to do is to allocate all pages from
9154 * [start, end) (that is remove them from page allocator).
9155 *
9156 * The only problem is that pages at the beginning and at the
9157 * end of interesting range may be not aligned with pages that
9158 * page allocator holds, ie. they can be part of higher order
9159 * pages. Because of this, we reserve the bigger range and
9160 * once this is done free the pages we are not interested in.
9161 *
9162 * We don't have to hold zone->lock here because the pages are
9163 * isolated thus they won't get removed from buddy.
9164 */
9165
9166 order = 0;
9167 outer_start = start;
9168 while (!PageBuddy(pfn_to_page(outer_start))) {
9169 if (++order >= MAX_ORDER) {
9170 outer_start = start;
9171 break;
9172 }
9173 outer_start &= ~0UL << order;
9174 }
9175
9176 if (outer_start != start) {
9177 order = buddy_order(pfn_to_page(outer_start));
9178
9179 /*
9180 * outer_start page could be small order buddy page and
9181 * it doesn't include start page. Adjust outer_start
9182 * in this case to report failed page properly
9183 * on tracepoint in test_pages_isolated()
9184 */
9185 if (outer_start + (1UL << order) <= start)
9186 outer_start = start;
9187 }
9188
9189 /* Make sure the range is really isolated. */
9190 if (test_pages_isolated(outer_start, end, 0)) {
9191 ret = -EBUSY;
9192 goto done;
9193 }
9194
9195 /* Grab isolated pages from freelists. */
9196 outer_end = isolate_freepages_range(&cc, outer_start, end);
9197 if (!outer_end) {
9198 ret = -EBUSY;
9199 goto done;
9200 }
9201
9202 /* Free head and tail (if any) */
9203 if (start != outer_start)
9204 free_contig_range(outer_start, start - outer_start);
9205 if (end != outer_end)
9206 free_contig_range(end, outer_end - end);
9207
9208done:
9209 undo_isolate_page_range(start, end, migratetype);
9210 return ret;
9211}
9212EXPORT_SYMBOL(alloc_contig_range);
9213
9214static int __alloc_contig_pages(unsigned long start_pfn,
9215 unsigned long nr_pages, gfp_t gfp_mask)
9216{
9217 unsigned long end_pfn = start_pfn + nr_pages;
9218
9219 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9220 gfp_mask);
9221}
9222
9223static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9224 unsigned long nr_pages)
9225{
9226 unsigned long i, end_pfn = start_pfn + nr_pages;
9227 struct page *page;
9228
9229 for (i = start_pfn; i < end_pfn; i++) {
9230 page = pfn_to_online_page(i);
9231 if (!page)
9232 return false;
9233
9234 if (page_zone(page) != z)
9235 return false;
9236
9237 if (PageReserved(page))
9238 return false;
9239 }
9240 return true;
9241}
9242
9243static bool zone_spans_last_pfn(const struct zone *zone,
9244 unsigned long start_pfn, unsigned long nr_pages)
9245{
9246 unsigned long last_pfn = start_pfn + nr_pages - 1;
9247
9248 return zone_spans_pfn(zone, last_pfn);
9249}
9250
9251/**
9252 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9253 * @nr_pages: Number of contiguous pages to allocate
9254 * @gfp_mask: GFP mask to limit search and used during compaction
9255 * @nid: Target node
9256 * @nodemask: Mask for other possible nodes
9257 *
9258 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9259 * on an applicable zonelist to find a contiguous pfn range which can then be
9260 * tried for allocation with alloc_contig_range(). This routine is intended
9261 * for allocation requests which can not be fulfilled with the buddy allocator.
9262 *
9263 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9264 * power of two, then allocated range is also guaranteed to be aligned to same
9265 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9266 *
9267 * Allocated pages can be freed with free_contig_range() or by manually calling
9268 * __free_page() on each allocated page.
9269 *
9270 * Return: pointer to contiguous pages on success, or NULL if not successful.
9271 */
9272struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9273 int nid, nodemask_t *nodemask)
9274{
9275 unsigned long ret, pfn, flags;
9276 struct zonelist *zonelist;
9277 struct zone *zone;
9278 struct zoneref *z;
9279
9280 zonelist = node_zonelist(nid, gfp_mask);
9281 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9282 gfp_zone(gfp_mask), nodemask) {
9283 spin_lock_irqsave(&zone->lock, flags);
9284
9285 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9286 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9287 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9288 /*
9289 * We release the zone lock here because
9290 * alloc_contig_range() will also lock the zone
9291 * at some point. If there's an allocation
9292 * spinning on this lock, it may win the race
9293 * and cause alloc_contig_range() to fail...
9294 */
9295 spin_unlock_irqrestore(&zone->lock, flags);
9296 ret = __alloc_contig_pages(pfn, nr_pages,
9297 gfp_mask);
9298 if (!ret)
9299 return pfn_to_page(pfn);
9300 spin_lock_irqsave(&zone->lock, flags);
9301 }
9302 pfn += nr_pages;
9303 }
9304 spin_unlock_irqrestore(&zone->lock, flags);
9305 }
9306 return NULL;
9307}
9308#endif /* CONFIG_CONTIG_ALLOC */
9309
9310void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9311{
9312 unsigned long count = 0;
9313
9314 for (; nr_pages--; pfn++) {
9315 struct page *page = pfn_to_page(pfn);
9316
9317 count += page_count(page) != 1;
9318 __free_page(page);
9319 }
9320 WARN(count != 0, "%lu pages are still in use!\n", count);
9321}
9322EXPORT_SYMBOL(free_contig_range);
9323
9324/*
9325 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9326 * page high values need to be recalculated.
9327 */
9328void zone_pcp_update(struct zone *zone, int cpu_online)
9329{
9330 mutex_lock(&pcp_batch_high_lock);
9331 zone_set_pageset_high_and_batch(zone, cpu_online);
9332 mutex_unlock(&pcp_batch_high_lock);
9333}
9334
9335/*
9336 * Effectively disable pcplists for the zone by setting the high limit to 0
9337 * and draining all cpus. A concurrent page freeing on another CPU that's about
9338 * to put the page on pcplist will either finish before the drain and the page
9339 * will be drained, or observe the new high limit and skip the pcplist.
9340 *
9341 * Must be paired with a call to zone_pcp_enable().
9342 */
9343void zone_pcp_disable(struct zone *zone)
9344{
9345 mutex_lock(&pcp_batch_high_lock);
9346 __zone_set_pageset_high_and_batch(zone, 0, 1);
9347 __drain_all_pages(zone, true);
9348}
9349
9350void zone_pcp_enable(struct zone *zone)
9351{
9352 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9353 mutex_unlock(&pcp_batch_high_lock);
9354}
9355
9356void zone_pcp_reset(struct zone *zone)
9357{
9358 int cpu;
9359 struct per_cpu_zonestat *pzstats;
9360
9361 if (zone->per_cpu_pageset != &boot_pageset) {
9362 for_each_online_cpu(cpu) {
9363 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9364 drain_zonestat(zone, pzstats);
9365 }
9366 free_percpu(zone->per_cpu_pageset);
9367 free_percpu(zone->per_cpu_zonestats);
9368 zone->per_cpu_pageset = &boot_pageset;
9369 zone->per_cpu_zonestats = &boot_zonestats;
9370 }
9371}
9372
9373#ifdef CONFIG_MEMORY_HOTREMOVE
9374/*
9375 * All pages in the range must be in a single zone, must not contain holes,
9376 * must span full sections, and must be isolated before calling this function.
9377 */
9378void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9379{
9380 unsigned long pfn = start_pfn;
9381 struct page *page;
9382 struct zone *zone;
9383 unsigned int order;
9384 unsigned long flags;
9385
9386 offline_mem_sections(pfn, end_pfn);
9387 zone = page_zone(pfn_to_page(pfn));
9388 spin_lock_irqsave(&zone->lock, flags);
9389 while (pfn < end_pfn) {
9390 page = pfn_to_page(pfn);
9391 /*
9392 * The HWPoisoned page may be not in buddy system, and
9393 * page_count() is not 0.
9394 */
9395 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9396 pfn++;
9397 continue;
9398 }
9399 /*
9400 * At this point all remaining PageOffline() pages have a
9401 * reference count of 0 and can simply be skipped.
9402 */
9403 if (PageOffline(page)) {
9404 BUG_ON(page_count(page));
9405 BUG_ON(PageBuddy(page));
9406 pfn++;
9407 continue;
9408 }
9409
9410 BUG_ON(page_count(page));
9411 BUG_ON(!PageBuddy(page));
9412 order = buddy_order(page);
9413 del_page_from_free_list(page, zone, order);
9414 pfn += (1 << order);
9415 }
9416 spin_unlock_irqrestore(&zone->lock, flags);
9417}
9418#endif
9419
9420/*
9421 * This function returns a stable result only if called under zone lock.
9422 */
9423bool is_free_buddy_page(struct page *page)
9424{
9425 unsigned long pfn = page_to_pfn(page);
9426 unsigned int order;
9427
9428 for (order = 0; order < MAX_ORDER; order++) {
9429 struct page *page_head = page - (pfn & ((1 << order) - 1));
9430
9431 if (PageBuddy(page_head) &&
9432 buddy_order_unsafe(page_head) >= order)
9433 break;
9434 }
9435
9436 return order < MAX_ORDER;
9437}
9438EXPORT_SYMBOL(is_free_buddy_page);
9439
9440#ifdef CONFIG_MEMORY_FAILURE
9441/*
9442 * Break down a higher-order page in sub-pages, and keep our target out of
9443 * buddy allocator.
9444 */
9445static void break_down_buddy_pages(struct zone *zone, struct page *page,
9446 struct page *target, int low, int high,
9447 int migratetype)
9448{
9449 unsigned long size = 1 << high;
9450 struct page *current_buddy, *next_page;
9451
9452 while (high > low) {
9453 high--;
9454 size >>= 1;
9455
9456 if (target >= &page[size]) {
9457 next_page = page + size;
9458 current_buddy = page;
9459 } else {
9460 next_page = page;
9461 current_buddy = page + size;
9462 }
9463
9464 if (set_page_guard(zone, current_buddy, high, migratetype))
9465 continue;
9466
9467 if (current_buddy != target) {
9468 add_to_free_list(current_buddy, zone, high, migratetype);
9469 set_buddy_order(current_buddy, high);
9470 page = next_page;
9471 }
9472 }
9473}
9474
9475/*
9476 * Take a page that will be marked as poisoned off the buddy allocator.
9477 */
9478bool take_page_off_buddy(struct page *page)
9479{
9480 struct zone *zone = page_zone(page);
9481 unsigned long pfn = page_to_pfn(page);
9482 unsigned long flags;
9483 unsigned int order;
9484 bool ret = false;
9485
9486 spin_lock_irqsave(&zone->lock, flags);
9487 for (order = 0; order < MAX_ORDER; order++) {
9488 struct page *page_head = page - (pfn & ((1 << order) - 1));
9489 int page_order = buddy_order(page_head);
9490
9491 if (PageBuddy(page_head) && page_order >= order) {
9492 unsigned long pfn_head = page_to_pfn(page_head);
9493 int migratetype = get_pfnblock_migratetype(page_head,
9494 pfn_head);
9495
9496 del_page_from_free_list(page_head, zone, page_order);
9497 break_down_buddy_pages(zone, page_head, page, 0,
9498 page_order, migratetype);
9499 SetPageHWPoisonTakenOff(page);
9500 if (!is_migrate_isolate(migratetype))
9501 __mod_zone_freepage_state(zone, -1, migratetype);
9502 ret = true;
9503 break;
9504 }
9505 if (page_count(page_head) > 0)
9506 break;
9507 }
9508 spin_unlock_irqrestore(&zone->lock, flags);
9509 return ret;
9510}
9511
9512/*
9513 * Cancel takeoff done by take_page_off_buddy().
9514 */
9515bool put_page_back_buddy(struct page *page)
9516{
9517 struct zone *zone = page_zone(page);
9518 unsigned long pfn = page_to_pfn(page);
9519 unsigned long flags;
9520 int migratetype = get_pfnblock_migratetype(page, pfn);
9521 bool ret = false;
9522
9523 spin_lock_irqsave(&zone->lock, flags);
9524 if (put_page_testzero(page)) {
9525 ClearPageHWPoisonTakenOff(page);
9526 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9527 if (TestClearPageHWPoison(page)) {
9528 ret = true;
9529 }
9530 }
9531 spin_unlock_irqrestore(&zone->lock, flags);
9532
9533 return ret;
9534}
9535#endif
9536
9537#ifdef CONFIG_ZONE_DMA
9538bool has_managed_dma(void)
9539{
9540 struct pglist_data *pgdat;
9541
9542 for_each_online_pgdat(pgdat) {
9543 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9544
9545 if (managed_zone(zone))
9546 return true;
9547 }
9548 return false;
9549}
9550#endif /* CONFIG_ZONE_DMA */