Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41};
42
43enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54};
55
56struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59};
60
61#ifdef CONFIG_MEMCG
62
63#define MEM_CGROUP_ID_SHIFT 16
64#define MEM_CGROUP_ID_MAX USHRT_MAX
65
66struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69};
70
71/*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81};
82
83struct memcg_vmstats_percpu {
84 /* Local (CPU and cgroup) page state & events */
85 long state[MEMCG_NR_STAT];
86 unsigned long events[NR_VM_EVENT_ITEMS];
87
88 /* Delta calculation for lockless upward propagation */
89 long state_prev[MEMCG_NR_STAT];
90 unsigned long events_prev[NR_VM_EVENT_ITEMS];
91
92 /* Cgroup1: threshold notifications & softlimit tree updates */
93 unsigned long nr_page_events;
94 unsigned long targets[MEM_CGROUP_NTARGETS];
95};
96
97struct memcg_vmstats {
98 /* Aggregated (CPU and subtree) page state & events */
99 long state[MEMCG_NR_STAT];
100 unsigned long events[NR_VM_EVENT_ITEMS];
101
102 /* Pending child counts during tree propagation */
103 long state_pending[MEMCG_NR_STAT];
104 unsigned long events_pending[NR_VM_EVENT_ITEMS];
105};
106
107struct mem_cgroup_reclaim_iter {
108 struct mem_cgroup *position;
109 /* scan generation, increased every round-trip */
110 unsigned int generation;
111};
112
113/*
114 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
115 * shrinkers, which have elements charged to this memcg.
116 */
117struct shrinker_info {
118 struct rcu_head rcu;
119 atomic_long_t *nr_deferred;
120 unsigned long *map;
121};
122
123struct lruvec_stats_percpu {
124 /* Local (CPU and cgroup) state */
125 long state[NR_VM_NODE_STAT_ITEMS];
126
127 /* Delta calculation for lockless upward propagation */
128 long state_prev[NR_VM_NODE_STAT_ITEMS];
129};
130
131struct lruvec_stats {
132 /* Aggregated (CPU and subtree) state */
133 long state[NR_VM_NODE_STAT_ITEMS];
134
135 /* Pending child counts during tree propagation */
136 long state_pending[NR_VM_NODE_STAT_ITEMS];
137};
138
139/*
140 * per-node information in memory controller.
141 */
142struct mem_cgroup_per_node {
143 struct lruvec lruvec;
144
145 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
146 struct lruvec_stats lruvec_stats;
147
148 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
149
150 struct mem_cgroup_reclaim_iter iter;
151
152 struct shrinker_info __rcu *shrinker_info;
153
154 struct rb_node tree_node; /* RB tree node */
155 unsigned long usage_in_excess;/* Set to the value by which */
156 /* the soft limit is exceeded*/
157 bool on_tree;
158 struct mem_cgroup *memcg; /* Back pointer, we cannot */
159 /* use container_of */
160};
161
162struct mem_cgroup_threshold {
163 struct eventfd_ctx *eventfd;
164 unsigned long threshold;
165};
166
167/* For threshold */
168struct mem_cgroup_threshold_ary {
169 /* An array index points to threshold just below or equal to usage. */
170 int current_threshold;
171 /* Size of entries[] */
172 unsigned int size;
173 /* Array of thresholds */
174 struct mem_cgroup_threshold entries[];
175};
176
177struct mem_cgroup_thresholds {
178 /* Primary thresholds array */
179 struct mem_cgroup_threshold_ary *primary;
180 /*
181 * Spare threshold array.
182 * This is needed to make mem_cgroup_unregister_event() "never fail".
183 * It must be able to store at least primary->size - 1 entries.
184 */
185 struct mem_cgroup_threshold_ary *spare;
186};
187
188#if defined(CONFIG_SMP)
189struct memcg_padding {
190 char x[0];
191} ____cacheline_internodealigned_in_smp;
192#define MEMCG_PADDING(name) struct memcg_padding name
193#else
194#define MEMCG_PADDING(name)
195#endif
196
197/*
198 * Remember four most recent foreign writebacks with dirty pages in this
199 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
200 * one in a given round, we're likely to catch it later if it keeps
201 * foreign-dirtying, so a fairly low count should be enough.
202 *
203 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
204 */
205#define MEMCG_CGWB_FRN_CNT 4
206
207struct memcg_cgwb_frn {
208 u64 bdi_id; /* bdi->id of the foreign inode */
209 int memcg_id; /* memcg->css.id of foreign inode */
210 u64 at; /* jiffies_64 at the time of dirtying */
211 struct wb_completion done; /* tracks in-flight foreign writebacks */
212};
213
214/*
215 * Bucket for arbitrarily byte-sized objects charged to a memory
216 * cgroup. The bucket can be reparented in one piece when the cgroup
217 * is destroyed, without having to round up the individual references
218 * of all live memory objects in the wild.
219 */
220struct obj_cgroup {
221 struct percpu_ref refcnt;
222 struct mem_cgroup *memcg;
223 atomic_t nr_charged_bytes;
224 union {
225 struct list_head list; /* protected by objcg_lock */
226 struct rcu_head rcu;
227 };
228};
229
230/*
231 * The memory controller data structure. The memory controller controls both
232 * page cache and RSS per cgroup. We would eventually like to provide
233 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
234 * to help the administrator determine what knobs to tune.
235 */
236struct mem_cgroup {
237 struct cgroup_subsys_state css;
238
239 /* Private memcg ID. Used to ID objects that outlive the cgroup */
240 struct mem_cgroup_id id;
241
242 /* Accounted resources */
243 struct page_counter memory; /* Both v1 & v2 */
244
245 union {
246 struct page_counter swap; /* v2 only */
247 struct page_counter memsw; /* v1 only */
248 };
249
250 /* Legacy consumer-oriented counters */
251 struct page_counter kmem; /* v1 only */
252 struct page_counter tcpmem; /* v1 only */
253
254 /* Range enforcement for interrupt charges */
255 struct work_struct high_work;
256
257#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
258 unsigned long zswap_max;
259#endif
260
261 unsigned long soft_limit;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 /*
267 * Should the OOM killer kill all belonging tasks, had it kill one?
268 */
269 bool oom_group;
270
271 /* protected by memcg_oom_lock */
272 bool oom_lock;
273 int under_oom;
274
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
278
279 /* memory.events and memory.events.local */
280 struct cgroup_file events_file;
281 struct cgroup_file events_local_file;
282
283 /* handle for "memory.swap.events" */
284 struct cgroup_file swap_events_file;
285
286 /* protect arrays of thresholds */
287 struct mutex thresholds_lock;
288
289 /* thresholds for memory usage. RCU-protected */
290 struct mem_cgroup_thresholds thresholds;
291
292 /* thresholds for mem+swap usage. RCU-protected */
293 struct mem_cgroup_thresholds memsw_thresholds;
294
295 /* For oom notifier event fd */
296 struct list_head oom_notify;
297
298 /*
299 * Should we move charges of a task when a task is moved into this
300 * mem_cgroup ? And what type of charges should we move ?
301 */
302 unsigned long move_charge_at_immigrate;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
305 unsigned long move_lock_flags;
306
307 MEMCG_PADDING(_pad1_);
308
309 /* memory.stat */
310 struct memcg_vmstats vmstats;
311
312 /* memory.events */
313 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
314 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
315
316 unsigned long socket_pressure;
317
318 /* Legacy tcp memory accounting */
319 bool tcpmem_active;
320 int tcpmem_pressure;
321
322#ifdef CONFIG_MEMCG_KMEM
323 int kmemcg_id;
324 struct obj_cgroup __rcu *objcg;
325 /* list of inherited objcgs, protected by objcg_lock */
326 struct list_head objcg_list;
327#endif
328
329 MEMCG_PADDING(_pad2_);
330
331 /*
332 * set > 0 if pages under this cgroup are moving to other cgroup.
333 */
334 atomic_t moving_account;
335 struct task_struct *move_lock_task;
336
337 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
338
339#ifdef CONFIG_CGROUP_WRITEBACK
340 struct list_head cgwb_list;
341 struct wb_domain cgwb_domain;
342 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
343#endif
344
345 /* List of events which userspace want to receive */
346 struct list_head event_list;
347 spinlock_t event_list_lock;
348
349#ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 struct deferred_split deferred_split_queue;
351#endif
352
353 struct mem_cgroup_per_node *nodeinfo[];
354};
355
356/*
357 * size of first charge trial. "32" comes from vmscan.c's magic value.
358 * TODO: maybe necessary to use big numbers in big irons.
359 */
360#define MEMCG_CHARGE_BATCH 32U
361
362extern struct mem_cgroup *root_mem_cgroup;
363
364enum page_memcg_data_flags {
365 /* page->memcg_data is a pointer to an objcgs vector */
366 MEMCG_DATA_OBJCGS = (1UL << 0),
367 /* page has been accounted as a non-slab kernel page */
368 MEMCG_DATA_KMEM = (1UL << 1),
369 /* the next bit after the last actual flag */
370 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
371};
372
373#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
374
375static inline bool folio_memcg_kmem(struct folio *folio);
376
377/*
378 * After the initialization objcg->memcg is always pointing at
379 * a valid memcg, but can be atomically swapped to the parent memcg.
380 *
381 * The caller must ensure that the returned memcg won't be released:
382 * e.g. acquire the rcu_read_lock or css_set_lock.
383 */
384static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
385{
386 return READ_ONCE(objcg->memcg);
387}
388
389/*
390 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
391 * @folio: Pointer to the folio.
392 *
393 * Returns a pointer to the memory cgroup associated with the folio,
394 * or NULL. This function assumes that the folio is known to have a
395 * proper memory cgroup pointer. It's not safe to call this function
396 * against some type of folios, e.g. slab folios or ex-slab folios or
397 * kmem folios.
398 */
399static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
400{
401 unsigned long memcg_data = folio->memcg_data;
402
403 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
404 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
405 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
406
407 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
408}
409
410/*
411 * __folio_objcg - get the object cgroup associated with a kmem folio.
412 * @folio: Pointer to the folio.
413 *
414 * Returns a pointer to the object cgroup associated with the folio,
415 * or NULL. This function assumes that the folio is known to have a
416 * proper object cgroup pointer. It's not safe to call this function
417 * against some type of folios, e.g. slab folios or ex-slab folios or
418 * LRU folios.
419 */
420static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
421{
422 unsigned long memcg_data = folio->memcg_data;
423
424 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
425 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
426 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
427
428 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
429}
430
431/*
432 * folio_memcg - Get the memory cgroup associated with a folio.
433 * @folio: Pointer to the folio.
434 *
435 * Returns a pointer to the memory cgroup associated with the folio,
436 * or NULL. This function assumes that the folio is known to have a
437 * proper memory cgroup pointer. It's not safe to call this function
438 * against some type of folios, e.g. slab folios or ex-slab folios.
439 *
440 * For a non-kmem folio any of the following ensures folio and memcg binding
441 * stability:
442 *
443 * - the folio lock
444 * - LRU isolation
445 * - lock_page_memcg()
446 * - exclusive reference
447 *
448 * For a kmem folio a caller should hold an rcu read lock to protect memcg
449 * associated with a kmem folio from being released.
450 */
451static inline struct mem_cgroup *folio_memcg(struct folio *folio)
452{
453 if (folio_memcg_kmem(folio))
454 return obj_cgroup_memcg(__folio_objcg(folio));
455 return __folio_memcg(folio);
456}
457
458static inline struct mem_cgroup *page_memcg(struct page *page)
459{
460 return folio_memcg(page_folio(page));
461}
462
463/**
464 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
465 * @folio: Pointer to the folio.
466 *
467 * This function assumes that the folio is known to have a
468 * proper memory cgroup pointer. It's not safe to call this function
469 * against some type of folios, e.g. slab folios or ex-slab folios.
470 *
471 * Return: A pointer to the memory cgroup associated with the folio,
472 * or NULL.
473 */
474static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
475{
476 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
477
478 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
479 WARN_ON_ONCE(!rcu_read_lock_held());
480
481 if (memcg_data & MEMCG_DATA_KMEM) {
482 struct obj_cgroup *objcg;
483
484 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
485 return obj_cgroup_memcg(objcg);
486 }
487
488 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
489}
490
491/*
492 * page_memcg_check - get the memory cgroup associated with a page
493 * @page: a pointer to the page struct
494 *
495 * Returns a pointer to the memory cgroup associated with the page,
496 * or NULL. This function unlike page_memcg() can take any page
497 * as an argument. It has to be used in cases when it's not known if a page
498 * has an associated memory cgroup pointer or an object cgroups vector or
499 * an object cgroup.
500 *
501 * For a non-kmem page any of the following ensures page and memcg binding
502 * stability:
503 *
504 * - the page lock
505 * - LRU isolation
506 * - lock_page_memcg()
507 * - exclusive reference
508 *
509 * For a kmem page a caller should hold an rcu read lock to protect memcg
510 * associated with a kmem page from being released.
511 */
512static inline struct mem_cgroup *page_memcg_check(struct page *page)
513{
514 /*
515 * Because page->memcg_data might be changed asynchronously
516 * for slab pages, READ_ONCE() should be used here.
517 */
518 unsigned long memcg_data = READ_ONCE(page->memcg_data);
519
520 if (memcg_data & MEMCG_DATA_OBJCGS)
521 return NULL;
522
523 if (memcg_data & MEMCG_DATA_KMEM) {
524 struct obj_cgroup *objcg;
525
526 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
527 return obj_cgroup_memcg(objcg);
528 }
529
530 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
531}
532
533static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
534{
535 struct mem_cgroup *memcg;
536
537 rcu_read_lock();
538retry:
539 memcg = obj_cgroup_memcg(objcg);
540 if (unlikely(!css_tryget(&memcg->css)))
541 goto retry;
542 rcu_read_unlock();
543
544 return memcg;
545}
546
547#ifdef CONFIG_MEMCG_KMEM
548/*
549 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
550 * @folio: Pointer to the folio.
551 *
552 * Checks if the folio has MemcgKmem flag set. The caller must ensure
553 * that the folio has an associated memory cgroup. It's not safe to call
554 * this function against some types of folios, e.g. slab folios.
555 */
556static inline bool folio_memcg_kmem(struct folio *folio)
557{
558 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
559 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
560 return folio->memcg_data & MEMCG_DATA_KMEM;
561}
562
563
564#else
565static inline bool folio_memcg_kmem(struct folio *folio)
566{
567 return false;
568}
569
570#endif
571
572static inline bool PageMemcgKmem(struct page *page)
573{
574 return folio_memcg_kmem(page_folio(page));
575}
576
577static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
578{
579 return (memcg == root_mem_cgroup);
580}
581
582static inline bool mem_cgroup_disabled(void)
583{
584 return !cgroup_subsys_enabled(memory_cgrp_subsys);
585}
586
587static inline void mem_cgroup_protection(struct mem_cgroup *root,
588 struct mem_cgroup *memcg,
589 unsigned long *min,
590 unsigned long *low)
591{
592 *min = *low = 0;
593
594 if (mem_cgroup_disabled())
595 return;
596
597 /*
598 * There is no reclaim protection applied to a targeted reclaim.
599 * We are special casing this specific case here because
600 * mem_cgroup_protected calculation is not robust enough to keep
601 * the protection invariant for calculated effective values for
602 * parallel reclaimers with different reclaim target. This is
603 * especially a problem for tail memcgs (as they have pages on LRU)
604 * which would want to have effective values 0 for targeted reclaim
605 * but a different value for external reclaim.
606 *
607 * Example
608 * Let's have global and A's reclaim in parallel:
609 * |
610 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
611 * |\
612 * | C (low = 1G, usage = 2.5G)
613 * B (low = 1G, usage = 0.5G)
614 *
615 * For the global reclaim
616 * A.elow = A.low
617 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
618 * C.elow = min(C.usage, C.low)
619 *
620 * With the effective values resetting we have A reclaim
621 * A.elow = 0
622 * B.elow = B.low
623 * C.elow = C.low
624 *
625 * If the global reclaim races with A's reclaim then
626 * B.elow = C.elow = 0 because children_low_usage > A.elow)
627 * is possible and reclaiming B would be violating the protection.
628 *
629 */
630 if (root == memcg)
631 return;
632
633 *min = READ_ONCE(memcg->memory.emin);
634 *low = READ_ONCE(memcg->memory.elow);
635}
636
637void mem_cgroup_calculate_protection(struct mem_cgroup *root,
638 struct mem_cgroup *memcg);
639
640static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
641{
642 /*
643 * The root memcg doesn't account charges, and doesn't support
644 * protection.
645 */
646 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
647
648}
649
650static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
651{
652 if (!mem_cgroup_supports_protection(memcg))
653 return false;
654
655 return READ_ONCE(memcg->memory.elow) >=
656 page_counter_read(&memcg->memory);
657}
658
659static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
660{
661 if (!mem_cgroup_supports_protection(memcg))
662 return false;
663
664 return READ_ONCE(memcg->memory.emin) >=
665 page_counter_read(&memcg->memory);
666}
667
668int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
669
670/**
671 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
672 * @folio: Folio to charge.
673 * @mm: mm context of the allocating task.
674 * @gfp: Reclaim mode.
675 *
676 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
677 * pages according to @gfp if necessary. If @mm is NULL, try to
678 * charge to the active memcg.
679 *
680 * Do not use this for folios allocated for swapin.
681 *
682 * Return: 0 on success. Otherwise, an error code is returned.
683 */
684static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
685 gfp_t gfp)
686{
687 if (mem_cgroup_disabled())
688 return 0;
689 return __mem_cgroup_charge(folio, mm, gfp);
690}
691
692int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
693 gfp_t gfp, swp_entry_t entry);
694void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
695
696void __mem_cgroup_uncharge(struct folio *folio);
697
698/**
699 * mem_cgroup_uncharge - Uncharge a folio.
700 * @folio: Folio to uncharge.
701 *
702 * Uncharge a folio previously charged with mem_cgroup_charge().
703 */
704static inline void mem_cgroup_uncharge(struct folio *folio)
705{
706 if (mem_cgroup_disabled())
707 return;
708 __mem_cgroup_uncharge(folio);
709}
710
711void __mem_cgroup_uncharge_list(struct list_head *page_list);
712static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
713{
714 if (mem_cgroup_disabled())
715 return;
716 __mem_cgroup_uncharge_list(page_list);
717}
718
719void mem_cgroup_migrate(struct folio *old, struct folio *new);
720
721/**
722 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
723 * @memcg: memcg of the wanted lruvec
724 * @pgdat: pglist_data
725 *
726 * Returns the lru list vector holding pages for a given @memcg &
727 * @pgdat combination. This can be the node lruvec, if the memory
728 * controller is disabled.
729 */
730static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
731 struct pglist_data *pgdat)
732{
733 struct mem_cgroup_per_node *mz;
734 struct lruvec *lruvec;
735
736 if (mem_cgroup_disabled()) {
737 lruvec = &pgdat->__lruvec;
738 goto out;
739 }
740
741 if (!memcg)
742 memcg = root_mem_cgroup;
743
744 mz = memcg->nodeinfo[pgdat->node_id];
745 lruvec = &mz->lruvec;
746out:
747 /*
748 * Since a node can be onlined after the mem_cgroup was created,
749 * we have to be prepared to initialize lruvec->pgdat here;
750 * and if offlined then reonlined, we need to reinitialize it.
751 */
752 if (unlikely(lruvec->pgdat != pgdat))
753 lruvec->pgdat = pgdat;
754 return lruvec;
755}
756
757/**
758 * folio_lruvec - return lruvec for isolating/putting an LRU folio
759 * @folio: Pointer to the folio.
760 *
761 * This function relies on folio->mem_cgroup being stable.
762 */
763static inline struct lruvec *folio_lruvec(struct folio *folio)
764{
765 struct mem_cgroup *memcg = folio_memcg(folio);
766
767 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
768 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
769}
770
771struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
772
773struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
774
775struct lruvec *folio_lruvec_lock(struct folio *folio);
776struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
777struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
778 unsigned long *flags);
779
780#ifdef CONFIG_DEBUG_VM
781void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
782#else
783static inline
784void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
785{
786}
787#endif
788
789static inline
790struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
791 return css ? container_of(css, struct mem_cgroup, css) : NULL;
792}
793
794static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
795{
796 return percpu_ref_tryget(&objcg->refcnt);
797}
798
799static inline void obj_cgroup_get(struct obj_cgroup *objcg)
800{
801 percpu_ref_get(&objcg->refcnt);
802}
803
804static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
805 unsigned long nr)
806{
807 percpu_ref_get_many(&objcg->refcnt, nr);
808}
809
810static inline void obj_cgroup_put(struct obj_cgroup *objcg)
811{
812 percpu_ref_put(&objcg->refcnt);
813}
814
815static inline void mem_cgroup_put(struct mem_cgroup *memcg)
816{
817 if (memcg)
818 css_put(&memcg->css);
819}
820
821#define mem_cgroup_from_counter(counter, member) \
822 container_of(counter, struct mem_cgroup, member)
823
824struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
825 struct mem_cgroup *,
826 struct mem_cgroup_reclaim_cookie *);
827void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
828int mem_cgroup_scan_tasks(struct mem_cgroup *,
829 int (*)(struct task_struct *, void *), void *);
830
831static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
832{
833 if (mem_cgroup_disabled())
834 return 0;
835
836 return memcg->id.id;
837}
838struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
839
840static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
841{
842 return mem_cgroup_from_css(seq_css(m));
843}
844
845static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
846{
847 struct mem_cgroup_per_node *mz;
848
849 if (mem_cgroup_disabled())
850 return NULL;
851
852 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
853 return mz->memcg;
854}
855
856/**
857 * parent_mem_cgroup - find the accounting parent of a memcg
858 * @memcg: memcg whose parent to find
859 *
860 * Returns the parent memcg, or NULL if this is the root or the memory
861 * controller is in legacy no-hierarchy mode.
862 */
863static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
864{
865 return mem_cgroup_from_css(memcg->css.parent);
866}
867
868static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
869 struct mem_cgroup *root)
870{
871 if (root == memcg)
872 return true;
873 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
874}
875
876static inline bool mm_match_cgroup(struct mm_struct *mm,
877 struct mem_cgroup *memcg)
878{
879 struct mem_cgroup *task_memcg;
880 bool match = false;
881
882 rcu_read_lock();
883 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
884 if (task_memcg)
885 match = mem_cgroup_is_descendant(task_memcg, memcg);
886 rcu_read_unlock();
887 return match;
888}
889
890struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
891ino_t page_cgroup_ino(struct page *page);
892
893static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
894{
895 if (mem_cgroup_disabled())
896 return true;
897 return !!(memcg->css.flags & CSS_ONLINE);
898}
899
900void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
901 int zid, int nr_pages);
902
903static inline
904unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
905 enum lru_list lru, int zone_idx)
906{
907 struct mem_cgroup_per_node *mz;
908
909 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
910 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
911}
912
913void mem_cgroup_handle_over_high(void);
914
915unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
916
917unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
918
919void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
920 struct task_struct *p);
921
922void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
923
924static inline void mem_cgroup_enter_user_fault(void)
925{
926 WARN_ON(current->in_user_fault);
927 current->in_user_fault = 1;
928}
929
930static inline void mem_cgroup_exit_user_fault(void)
931{
932 WARN_ON(!current->in_user_fault);
933 current->in_user_fault = 0;
934}
935
936static inline bool task_in_memcg_oom(struct task_struct *p)
937{
938 return p->memcg_in_oom;
939}
940
941bool mem_cgroup_oom_synchronize(bool wait);
942struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
943 struct mem_cgroup *oom_domain);
944void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
945
946void folio_memcg_lock(struct folio *folio);
947void folio_memcg_unlock(struct folio *folio);
948void lock_page_memcg(struct page *page);
949void unlock_page_memcg(struct page *page);
950
951void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
952
953/* idx can be of type enum memcg_stat_item or node_stat_item */
954static inline void mod_memcg_state(struct mem_cgroup *memcg,
955 int idx, int val)
956{
957 unsigned long flags;
958
959 local_irq_save(flags);
960 __mod_memcg_state(memcg, idx, val);
961 local_irq_restore(flags);
962}
963
964static inline void mod_memcg_page_state(struct page *page,
965 int idx, int val)
966{
967 struct mem_cgroup *memcg;
968
969 if (mem_cgroup_disabled())
970 return;
971
972 rcu_read_lock();
973 memcg = page_memcg(page);
974 if (memcg)
975 mod_memcg_state(memcg, idx, val);
976 rcu_read_unlock();
977}
978
979static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
980{
981 return READ_ONCE(memcg->vmstats.state[idx]);
982}
983
984static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
985 enum node_stat_item idx)
986{
987 struct mem_cgroup_per_node *pn;
988
989 if (mem_cgroup_disabled())
990 return node_page_state(lruvec_pgdat(lruvec), idx);
991
992 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
993 return READ_ONCE(pn->lruvec_stats.state[idx]);
994}
995
996static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
997 enum node_stat_item idx)
998{
999 struct mem_cgroup_per_node *pn;
1000 long x = 0;
1001 int cpu;
1002
1003 if (mem_cgroup_disabled())
1004 return node_page_state(lruvec_pgdat(lruvec), idx);
1005
1006 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1007 for_each_possible_cpu(cpu)
1008 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1009#ifdef CONFIG_SMP
1010 if (x < 0)
1011 x = 0;
1012#endif
1013 return x;
1014}
1015
1016void mem_cgroup_flush_stats(void);
1017void mem_cgroup_flush_stats_delayed(void);
1018
1019void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1020 int val);
1021void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1022
1023static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1024 int val)
1025{
1026 unsigned long flags;
1027
1028 local_irq_save(flags);
1029 __mod_lruvec_kmem_state(p, idx, val);
1030 local_irq_restore(flags);
1031}
1032
1033static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1034 enum node_stat_item idx, int val)
1035{
1036 unsigned long flags;
1037
1038 local_irq_save(flags);
1039 __mod_memcg_lruvec_state(lruvec, idx, val);
1040 local_irq_restore(flags);
1041}
1042
1043void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1044 unsigned long count);
1045
1046static inline void count_memcg_events(struct mem_cgroup *memcg,
1047 enum vm_event_item idx,
1048 unsigned long count)
1049{
1050 unsigned long flags;
1051
1052 local_irq_save(flags);
1053 __count_memcg_events(memcg, idx, count);
1054 local_irq_restore(flags);
1055}
1056
1057static inline void count_memcg_page_event(struct page *page,
1058 enum vm_event_item idx)
1059{
1060 struct mem_cgroup *memcg = page_memcg(page);
1061
1062 if (memcg)
1063 count_memcg_events(memcg, idx, 1);
1064}
1065
1066static inline void count_memcg_folio_events(struct folio *folio,
1067 enum vm_event_item idx, unsigned long nr)
1068{
1069 struct mem_cgroup *memcg = folio_memcg(folio);
1070
1071 if (memcg)
1072 count_memcg_events(memcg, idx, nr);
1073}
1074
1075static inline void count_memcg_event_mm(struct mm_struct *mm,
1076 enum vm_event_item idx)
1077{
1078 struct mem_cgroup *memcg;
1079
1080 if (mem_cgroup_disabled())
1081 return;
1082
1083 rcu_read_lock();
1084 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1085 if (likely(memcg))
1086 count_memcg_events(memcg, idx, 1);
1087 rcu_read_unlock();
1088}
1089
1090static inline void memcg_memory_event(struct mem_cgroup *memcg,
1091 enum memcg_memory_event event)
1092{
1093 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1094 event == MEMCG_SWAP_FAIL;
1095
1096 atomic_long_inc(&memcg->memory_events_local[event]);
1097 if (!swap_event)
1098 cgroup_file_notify(&memcg->events_local_file);
1099
1100 do {
1101 atomic_long_inc(&memcg->memory_events[event]);
1102 if (swap_event)
1103 cgroup_file_notify(&memcg->swap_events_file);
1104 else
1105 cgroup_file_notify(&memcg->events_file);
1106
1107 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1108 break;
1109 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1110 break;
1111 } while ((memcg = parent_mem_cgroup(memcg)) &&
1112 !mem_cgroup_is_root(memcg));
1113}
1114
1115static inline void memcg_memory_event_mm(struct mm_struct *mm,
1116 enum memcg_memory_event event)
1117{
1118 struct mem_cgroup *memcg;
1119
1120 if (mem_cgroup_disabled())
1121 return;
1122
1123 rcu_read_lock();
1124 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1125 if (likely(memcg))
1126 memcg_memory_event(memcg, event);
1127 rcu_read_unlock();
1128}
1129
1130void split_page_memcg(struct page *head, unsigned int nr);
1131
1132unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1133 gfp_t gfp_mask,
1134 unsigned long *total_scanned);
1135
1136#else /* CONFIG_MEMCG */
1137
1138#define MEM_CGROUP_ID_SHIFT 0
1139#define MEM_CGROUP_ID_MAX 0
1140
1141static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1142{
1143 return NULL;
1144}
1145
1146static inline struct mem_cgroup *page_memcg(struct page *page)
1147{
1148 return NULL;
1149}
1150
1151static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1152{
1153 WARN_ON_ONCE(!rcu_read_lock_held());
1154 return NULL;
1155}
1156
1157static inline struct mem_cgroup *page_memcg_check(struct page *page)
1158{
1159 return NULL;
1160}
1161
1162static inline bool folio_memcg_kmem(struct folio *folio)
1163{
1164 return false;
1165}
1166
1167static inline bool PageMemcgKmem(struct page *page)
1168{
1169 return false;
1170}
1171
1172static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1173{
1174 return true;
1175}
1176
1177static inline bool mem_cgroup_disabled(void)
1178{
1179 return true;
1180}
1181
1182static inline void memcg_memory_event(struct mem_cgroup *memcg,
1183 enum memcg_memory_event event)
1184{
1185}
1186
1187static inline void memcg_memory_event_mm(struct mm_struct *mm,
1188 enum memcg_memory_event event)
1189{
1190}
1191
1192static inline void mem_cgroup_protection(struct mem_cgroup *root,
1193 struct mem_cgroup *memcg,
1194 unsigned long *min,
1195 unsigned long *low)
1196{
1197 *min = *low = 0;
1198}
1199
1200static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1201 struct mem_cgroup *memcg)
1202{
1203}
1204
1205static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1206{
1207 return false;
1208}
1209
1210static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1211{
1212 return false;
1213}
1214
1215static inline int mem_cgroup_charge(struct folio *folio,
1216 struct mm_struct *mm, gfp_t gfp)
1217{
1218 return 0;
1219}
1220
1221static inline int mem_cgroup_swapin_charge_page(struct page *page,
1222 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1223{
1224 return 0;
1225}
1226
1227static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1228{
1229}
1230
1231static inline void mem_cgroup_uncharge(struct folio *folio)
1232{
1233}
1234
1235static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1236{
1237}
1238
1239static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1240{
1241}
1242
1243static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1244 struct pglist_data *pgdat)
1245{
1246 return &pgdat->__lruvec;
1247}
1248
1249static inline struct lruvec *folio_lruvec(struct folio *folio)
1250{
1251 struct pglist_data *pgdat = folio_pgdat(folio);
1252 return &pgdat->__lruvec;
1253}
1254
1255static inline
1256void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1257{
1258}
1259
1260static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1261{
1262 return NULL;
1263}
1264
1265static inline bool mm_match_cgroup(struct mm_struct *mm,
1266 struct mem_cgroup *memcg)
1267{
1268 return true;
1269}
1270
1271static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1272{
1273 return NULL;
1274}
1275
1276static inline
1277struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1278{
1279 return NULL;
1280}
1281
1282static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1283{
1284}
1285
1286static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1287{
1288}
1289
1290static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1291{
1292 struct pglist_data *pgdat = folio_pgdat(folio);
1293
1294 spin_lock(&pgdat->__lruvec.lru_lock);
1295 return &pgdat->__lruvec;
1296}
1297
1298static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1299{
1300 struct pglist_data *pgdat = folio_pgdat(folio);
1301
1302 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1303 return &pgdat->__lruvec;
1304}
1305
1306static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1307 unsigned long *flagsp)
1308{
1309 struct pglist_data *pgdat = folio_pgdat(folio);
1310
1311 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1312 return &pgdat->__lruvec;
1313}
1314
1315static inline struct mem_cgroup *
1316mem_cgroup_iter(struct mem_cgroup *root,
1317 struct mem_cgroup *prev,
1318 struct mem_cgroup_reclaim_cookie *reclaim)
1319{
1320 return NULL;
1321}
1322
1323static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1324 struct mem_cgroup *prev)
1325{
1326}
1327
1328static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1329 int (*fn)(struct task_struct *, void *), void *arg)
1330{
1331 return 0;
1332}
1333
1334static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1335{
1336 return 0;
1337}
1338
1339static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1340{
1341 WARN_ON_ONCE(id);
1342 /* XXX: This should always return root_mem_cgroup */
1343 return NULL;
1344}
1345
1346static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1347{
1348 return NULL;
1349}
1350
1351static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1352{
1353 return NULL;
1354}
1355
1356static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1357{
1358 return true;
1359}
1360
1361static inline
1362unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1363 enum lru_list lru, int zone_idx)
1364{
1365 return 0;
1366}
1367
1368static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1369{
1370 return 0;
1371}
1372
1373static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1374{
1375 return 0;
1376}
1377
1378static inline void
1379mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1380{
1381}
1382
1383static inline void
1384mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1385{
1386}
1387
1388static inline void lock_page_memcg(struct page *page)
1389{
1390}
1391
1392static inline void unlock_page_memcg(struct page *page)
1393{
1394}
1395
1396static inline void folio_memcg_lock(struct folio *folio)
1397{
1398}
1399
1400static inline void folio_memcg_unlock(struct folio *folio)
1401{
1402}
1403
1404static inline void mem_cgroup_handle_over_high(void)
1405{
1406}
1407
1408static inline void mem_cgroup_enter_user_fault(void)
1409{
1410}
1411
1412static inline void mem_cgroup_exit_user_fault(void)
1413{
1414}
1415
1416static inline bool task_in_memcg_oom(struct task_struct *p)
1417{
1418 return false;
1419}
1420
1421static inline bool mem_cgroup_oom_synchronize(bool wait)
1422{
1423 return false;
1424}
1425
1426static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1427 struct task_struct *victim, struct mem_cgroup *oom_domain)
1428{
1429 return NULL;
1430}
1431
1432static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1433{
1434}
1435
1436static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1437 int idx,
1438 int nr)
1439{
1440}
1441
1442static inline void mod_memcg_state(struct mem_cgroup *memcg,
1443 int idx,
1444 int nr)
1445{
1446}
1447
1448static inline void mod_memcg_page_state(struct page *page,
1449 int idx, int val)
1450{
1451}
1452
1453static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1454{
1455 return 0;
1456}
1457
1458static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1459 enum node_stat_item idx)
1460{
1461 return node_page_state(lruvec_pgdat(lruvec), idx);
1462}
1463
1464static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1465 enum node_stat_item idx)
1466{
1467 return node_page_state(lruvec_pgdat(lruvec), idx);
1468}
1469
1470static inline void mem_cgroup_flush_stats(void)
1471{
1472}
1473
1474static inline void mem_cgroup_flush_stats_delayed(void)
1475{
1476}
1477
1478static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1479 enum node_stat_item idx, int val)
1480{
1481}
1482
1483static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1484 int val)
1485{
1486 struct page *page = virt_to_head_page(p);
1487
1488 __mod_node_page_state(page_pgdat(page), idx, val);
1489}
1490
1491static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1492 int val)
1493{
1494 struct page *page = virt_to_head_page(p);
1495
1496 mod_node_page_state(page_pgdat(page), idx, val);
1497}
1498
1499static inline void count_memcg_events(struct mem_cgroup *memcg,
1500 enum vm_event_item idx,
1501 unsigned long count)
1502{
1503}
1504
1505static inline void __count_memcg_events(struct mem_cgroup *memcg,
1506 enum vm_event_item idx,
1507 unsigned long count)
1508{
1509}
1510
1511static inline void count_memcg_page_event(struct page *page,
1512 int idx)
1513{
1514}
1515
1516static inline void count_memcg_folio_events(struct folio *folio,
1517 enum vm_event_item idx, unsigned long nr)
1518{
1519}
1520
1521static inline
1522void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1523{
1524}
1525
1526static inline void split_page_memcg(struct page *head, unsigned int nr)
1527{
1528}
1529
1530static inline
1531unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1532 gfp_t gfp_mask,
1533 unsigned long *total_scanned)
1534{
1535 return 0;
1536}
1537#endif /* CONFIG_MEMCG */
1538
1539static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1540{
1541 __mod_lruvec_kmem_state(p, idx, 1);
1542}
1543
1544static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1545{
1546 __mod_lruvec_kmem_state(p, idx, -1);
1547}
1548
1549static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1550{
1551 struct mem_cgroup *memcg;
1552
1553 memcg = lruvec_memcg(lruvec);
1554 if (!memcg)
1555 return NULL;
1556 memcg = parent_mem_cgroup(memcg);
1557 if (!memcg)
1558 return NULL;
1559 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1560}
1561
1562static inline void unlock_page_lruvec(struct lruvec *lruvec)
1563{
1564 spin_unlock(&lruvec->lru_lock);
1565}
1566
1567static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1568{
1569 spin_unlock_irq(&lruvec->lru_lock);
1570}
1571
1572static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1573 unsigned long flags)
1574{
1575 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1576}
1577
1578/* Test requires a stable page->memcg binding, see page_memcg() */
1579static inline bool folio_matches_lruvec(struct folio *folio,
1580 struct lruvec *lruvec)
1581{
1582 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1583 lruvec_memcg(lruvec) == folio_memcg(folio);
1584}
1585
1586/* Don't lock again iff page's lruvec locked */
1587static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1588 struct lruvec *locked_lruvec)
1589{
1590 if (locked_lruvec) {
1591 if (folio_matches_lruvec(folio, locked_lruvec))
1592 return locked_lruvec;
1593
1594 unlock_page_lruvec_irq(locked_lruvec);
1595 }
1596
1597 return folio_lruvec_lock_irq(folio);
1598}
1599
1600/* Don't lock again iff page's lruvec locked */
1601static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1602 struct lruvec *locked_lruvec, unsigned long *flags)
1603{
1604 if (locked_lruvec) {
1605 if (folio_matches_lruvec(folio, locked_lruvec))
1606 return locked_lruvec;
1607
1608 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1609 }
1610
1611 return folio_lruvec_lock_irqsave(folio, flags);
1612}
1613
1614#ifdef CONFIG_CGROUP_WRITEBACK
1615
1616struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1617void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1618 unsigned long *pheadroom, unsigned long *pdirty,
1619 unsigned long *pwriteback);
1620
1621void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1622 struct bdi_writeback *wb);
1623
1624static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1625 struct bdi_writeback *wb)
1626{
1627 if (mem_cgroup_disabled())
1628 return;
1629
1630 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1631 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1632}
1633
1634void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1635
1636#else /* CONFIG_CGROUP_WRITEBACK */
1637
1638static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1639{
1640 return NULL;
1641}
1642
1643static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1644 unsigned long *pfilepages,
1645 unsigned long *pheadroom,
1646 unsigned long *pdirty,
1647 unsigned long *pwriteback)
1648{
1649}
1650
1651static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1652 struct bdi_writeback *wb)
1653{
1654}
1655
1656static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1657{
1658}
1659
1660#endif /* CONFIG_CGROUP_WRITEBACK */
1661
1662struct sock;
1663bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1664 gfp_t gfp_mask);
1665void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1666#ifdef CONFIG_MEMCG
1667extern struct static_key_false memcg_sockets_enabled_key;
1668#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1669void mem_cgroup_sk_alloc(struct sock *sk);
1670void mem_cgroup_sk_free(struct sock *sk);
1671static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1672{
1673 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1674 return true;
1675 do {
1676 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1677 return true;
1678 } while ((memcg = parent_mem_cgroup(memcg)));
1679 return false;
1680}
1681
1682int alloc_shrinker_info(struct mem_cgroup *memcg);
1683void free_shrinker_info(struct mem_cgroup *memcg);
1684void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1685void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1686#else
1687#define mem_cgroup_sockets_enabled 0
1688static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1689static inline void mem_cgroup_sk_free(struct sock *sk) { };
1690static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1691{
1692 return false;
1693}
1694
1695static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1696 int nid, int shrinker_id)
1697{
1698}
1699#endif
1700
1701#ifdef CONFIG_MEMCG_KMEM
1702bool mem_cgroup_kmem_disabled(void);
1703int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1704void __memcg_kmem_uncharge_page(struct page *page, int order);
1705
1706struct obj_cgroup *get_obj_cgroup_from_current(void);
1707struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1708
1709int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1710void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1711
1712extern struct static_key_false memcg_kmem_enabled_key;
1713
1714static inline bool memcg_kmem_enabled(void)
1715{
1716 return static_branch_likely(&memcg_kmem_enabled_key);
1717}
1718
1719static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1720 int order)
1721{
1722 if (memcg_kmem_enabled())
1723 return __memcg_kmem_charge_page(page, gfp, order);
1724 return 0;
1725}
1726
1727static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1728{
1729 if (memcg_kmem_enabled())
1730 __memcg_kmem_uncharge_page(page, order);
1731}
1732
1733/*
1734 * A helper for accessing memcg's kmem_id, used for getting
1735 * corresponding LRU lists.
1736 */
1737static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1738{
1739 return memcg ? memcg->kmemcg_id : -1;
1740}
1741
1742struct mem_cgroup *mem_cgroup_from_obj(void *p);
1743
1744static inline void count_objcg_event(struct obj_cgroup *objcg,
1745 enum vm_event_item idx)
1746{
1747 struct mem_cgroup *memcg;
1748
1749 if (mem_cgroup_kmem_disabled())
1750 return;
1751
1752 rcu_read_lock();
1753 memcg = obj_cgroup_memcg(objcg);
1754 count_memcg_events(memcg, idx, 1);
1755 rcu_read_unlock();
1756}
1757
1758#else
1759static inline bool mem_cgroup_kmem_disabled(void)
1760{
1761 return true;
1762}
1763
1764static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1765 int order)
1766{
1767 return 0;
1768}
1769
1770static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1771{
1772}
1773
1774static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1775 int order)
1776{
1777 return 0;
1778}
1779
1780static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1781{
1782}
1783
1784static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1785{
1786 return NULL;
1787}
1788
1789static inline bool memcg_kmem_enabled(void)
1790{
1791 return false;
1792}
1793
1794static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1795{
1796 return -1;
1797}
1798
1799static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1800{
1801 return NULL;
1802}
1803
1804static inline void count_objcg_event(struct obj_cgroup *objcg,
1805 enum vm_event_item idx)
1806{
1807}
1808
1809#endif /* CONFIG_MEMCG_KMEM */
1810
1811#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1812bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1813void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1814void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1815#else
1816static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1817{
1818 return true;
1819}
1820static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1821 size_t size)
1822{
1823}
1824static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1825 size_t size)
1826{
1827}
1828#endif
1829
1830#endif /* _LINUX_MEMCONTROL_H */