Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_HIGHMEM_H
3#define _LINUX_HIGHMEM_H
4
5#include <linux/fs.h>
6#include <linux/kernel.h>
7#include <linux/bug.h>
8#include <linux/cacheflush.h>
9#include <linux/mm.h>
10#include <linux/uaccess.h>
11#include <linux/hardirq.h>
12
13#include "highmem-internal.h"
14
15/**
16 * kmap - Map a page for long term usage
17 * @page: Pointer to the page to be mapped
18 *
19 * Returns: The virtual address of the mapping
20 *
21 * Can only be invoked from preemptible task context because on 32bit
22 * systems with CONFIG_HIGHMEM enabled this function might sleep.
23 *
24 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
25 * this returns the virtual address of the direct kernel mapping.
26 *
27 * The returned virtual address is globally visible and valid up to the
28 * point where it is unmapped via kunmap(). The pointer can be handed to
29 * other contexts.
30 *
31 * For highmem pages on 32bit systems this can be slow as the mapping space
32 * is limited and protected by a global lock. In case that there is no
33 * mapping slot available the function blocks until a slot is released via
34 * kunmap().
35 */
36static inline void *kmap(struct page *page);
37
38/**
39 * kunmap - Unmap the virtual address mapped by kmap()
40 * @page: Pointer to the page which was mapped by kmap()
41 *
42 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
43 * pages in the low memory area.
44 */
45static inline void kunmap(struct page *page);
46
47/**
48 * kmap_to_page - Get the page for a kmap'ed address
49 * @addr: The address to look up
50 *
51 * Returns: The page which is mapped to @addr.
52 */
53static inline struct page *kmap_to_page(void *addr);
54
55/**
56 * kmap_flush_unused - Flush all unused kmap mappings in order to
57 * remove stray mappings
58 */
59static inline void kmap_flush_unused(void);
60
61/**
62 * kmap_local_page - Map a page for temporary usage
63 * @page: Pointer to the page to be mapped
64 *
65 * Returns: The virtual address of the mapping
66 *
67 * Can be invoked from any context.
68 *
69 * Requires careful handling when nesting multiple mappings because the map
70 * management is stack based. The unmap has to be in the reverse order of
71 * the map operation:
72 *
73 * addr1 = kmap_local_page(page1);
74 * addr2 = kmap_local_page(page2);
75 * ...
76 * kunmap_local(addr2);
77 * kunmap_local(addr1);
78 *
79 * Unmapping addr1 before addr2 is invalid and causes malfunction.
80 *
81 * Contrary to kmap() mappings the mapping is only valid in the context of
82 * the caller and cannot be handed to other contexts.
83 *
84 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
85 * virtual address of the direct mapping. Only real highmem pages are
86 * temporarily mapped.
87 *
88 * While it is significantly faster than kmap() for the higmem case it
89 * comes with restrictions about the pointer validity. Only use when really
90 * necessary.
91 *
92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93 * disabling migration in order to keep the virtual address stable across
94 * preemption. No caller of kmap_local_page() can rely on this side effect.
95 */
96static inline void *kmap_local_page(struct page *page);
97
98/**
99 * kmap_local_folio - Map a page in this folio for temporary usage
100 * @folio: The folio containing the page.
101 * @offset: The byte offset within the folio which identifies the page.
102 *
103 * Requires careful handling when nesting multiple mappings because the map
104 * management is stack based. The unmap has to be in the reverse order of
105 * the map operation::
106 *
107 * addr1 = kmap_local_folio(folio1, offset1);
108 * addr2 = kmap_local_folio(folio2, offset2);
109 * ...
110 * kunmap_local(addr2);
111 * kunmap_local(addr1);
112 *
113 * Unmapping addr1 before addr2 is invalid and causes malfunction.
114 *
115 * Contrary to kmap() mappings the mapping is only valid in the context of
116 * the caller and cannot be handed to other contexts.
117 *
118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119 * virtual address of the direct mapping. Only real highmem pages are
120 * temporarily mapped.
121 *
122 * While it is significantly faster than kmap() for the higmem case it
123 * comes with restrictions about the pointer validity. Only use when really
124 * necessary.
125 *
126 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
127 * disabling migration in order to keep the virtual address stable across
128 * preemption. No caller of kmap_local_folio() can rely on this side effect.
129 *
130 * Context: Can be invoked from any context.
131 * Return: The virtual address of @offset.
132 */
133static inline void *kmap_local_folio(struct folio *folio, size_t offset);
134
135/**
136 * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
137 * @page: Pointer to the page to be mapped
138 *
139 * Returns: The virtual address of the mapping
140 *
141 * In fact a wrapper around kmap_local_page() which also disables pagefaults
142 * and, depending on PREEMPT_RT configuration, also CPU migration and
143 * preemption. Therefore users should not count on the latter two side effects.
144 *
145 * Mappings should always be released by kunmap_atomic().
146 *
147 * Do not use in new code. Use kmap_local_page() instead.
148 *
149 * It is used in atomic context when code wants to access the contents of a
150 * page that might be allocated from high memory (see __GFP_HIGHMEM), for
151 * example a page in the pagecache. The API has two functions, and they
152 * can be used in a manner similar to the following::
153 *
154 * // Find the page of interest.
155 * struct page *page = find_get_page(mapping, offset);
156 *
157 * // Gain access to the contents of that page.
158 * void *vaddr = kmap_atomic(page);
159 *
160 * // Do something to the contents of that page.
161 * memset(vaddr, 0, PAGE_SIZE);
162 *
163 * // Unmap that page.
164 * kunmap_atomic(vaddr);
165 *
166 * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
167 * call, not the argument.
168 *
169 * If you need to map two pages because you want to copy from one page to
170 * another you need to keep the kmap_atomic calls strictly nested, like:
171 *
172 * vaddr1 = kmap_atomic(page1);
173 * vaddr2 = kmap_atomic(page2);
174 *
175 * memcpy(vaddr1, vaddr2, PAGE_SIZE);
176 *
177 * kunmap_atomic(vaddr2);
178 * kunmap_atomic(vaddr1);
179 */
180static inline void *kmap_atomic(struct page *page);
181
182/* Highmem related interfaces for management code */
183static inline unsigned int nr_free_highpages(void);
184static inline unsigned long totalhigh_pages(void);
185
186#ifndef ARCH_HAS_FLUSH_ANON_PAGE
187static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
188{
189}
190#endif
191
192#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
193static inline void flush_kernel_vmap_range(void *vaddr, int size)
194{
195}
196static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
197{
198}
199#endif
200
201/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
202#ifndef clear_user_highpage
203static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
204{
205 void *addr = kmap_local_page(page);
206 clear_user_page(addr, vaddr, page);
207 kunmap_local(addr);
208}
209#endif
210
211#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
212/**
213 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
214 * @vma: The VMA the page is to be allocated for
215 * @vaddr: The virtual address the page will be inserted into
216 *
217 * Returns: The allocated and zeroed HIGHMEM page
218 *
219 * This function will allocate a page for a VMA that the caller knows will
220 * be able to migrate in the future using move_pages() or reclaimed
221 *
222 * An architecture may override this function by defining
223 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
224 * implementation.
225 */
226static inline struct page *
227alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
228 unsigned long vaddr)
229{
230 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
231
232 if (page)
233 clear_user_highpage(page, vaddr);
234
235 return page;
236}
237#endif
238
239static inline void clear_highpage(struct page *page)
240{
241 void *kaddr = kmap_local_page(page);
242 clear_page(kaddr);
243 kunmap_local(kaddr);
244}
245
246#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
247
248static inline void tag_clear_highpage(struct page *page)
249{
250}
251
252#endif
253
254/*
255 * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
256 * If we pass in a head page, we can zero up to the size of the compound page.
257 */
258#ifdef CONFIG_HIGHMEM
259void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
260 unsigned start2, unsigned end2);
261#else
262static inline void zero_user_segments(struct page *page,
263 unsigned start1, unsigned end1,
264 unsigned start2, unsigned end2)
265{
266 void *kaddr = kmap_local_page(page);
267 unsigned int i;
268
269 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
270
271 if (end1 > start1)
272 memset(kaddr + start1, 0, end1 - start1);
273
274 if (end2 > start2)
275 memset(kaddr + start2, 0, end2 - start2);
276
277 kunmap_local(kaddr);
278 for (i = 0; i < compound_nr(page); i++)
279 flush_dcache_page(page + i);
280}
281#endif
282
283static inline void zero_user_segment(struct page *page,
284 unsigned start, unsigned end)
285{
286 zero_user_segments(page, start, end, 0, 0);
287}
288
289static inline void zero_user(struct page *page,
290 unsigned start, unsigned size)
291{
292 zero_user_segments(page, start, start + size, 0, 0);
293}
294
295#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
296
297static inline void copy_user_highpage(struct page *to, struct page *from,
298 unsigned long vaddr, struct vm_area_struct *vma)
299{
300 char *vfrom, *vto;
301
302 vfrom = kmap_local_page(from);
303 vto = kmap_local_page(to);
304 copy_user_page(vto, vfrom, vaddr, to);
305 kunmap_local(vto);
306 kunmap_local(vfrom);
307}
308
309#endif
310
311#ifndef __HAVE_ARCH_COPY_HIGHPAGE
312
313static inline void copy_highpage(struct page *to, struct page *from)
314{
315 char *vfrom, *vto;
316
317 vfrom = kmap_local_page(from);
318 vto = kmap_local_page(to);
319 copy_page(vto, vfrom);
320 kunmap_local(vto);
321 kunmap_local(vfrom);
322}
323
324#endif
325
326static inline void memcpy_page(struct page *dst_page, size_t dst_off,
327 struct page *src_page, size_t src_off,
328 size_t len)
329{
330 char *dst = kmap_local_page(dst_page);
331 char *src = kmap_local_page(src_page);
332
333 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
334 memcpy(dst + dst_off, src + src_off, len);
335 kunmap_local(src);
336 kunmap_local(dst);
337}
338
339static inline void memmove_page(struct page *dst_page, size_t dst_off,
340 struct page *src_page, size_t src_off,
341 size_t len)
342{
343 char *dst = kmap_local_page(dst_page);
344 char *src = kmap_local_page(src_page);
345
346 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
347 memmove(dst + dst_off, src + src_off, len);
348 kunmap_local(src);
349 kunmap_local(dst);
350}
351
352static inline void memset_page(struct page *page, size_t offset, int val,
353 size_t len)
354{
355 char *addr = kmap_local_page(page);
356
357 VM_BUG_ON(offset + len > PAGE_SIZE);
358 memset(addr + offset, val, len);
359 kunmap_local(addr);
360}
361
362static inline void memcpy_from_page(char *to, struct page *page,
363 size_t offset, size_t len)
364{
365 char *from = kmap_local_page(page);
366
367 VM_BUG_ON(offset + len > PAGE_SIZE);
368 memcpy(to, from + offset, len);
369 kunmap_local(from);
370}
371
372static inline void memcpy_to_page(struct page *page, size_t offset,
373 const char *from, size_t len)
374{
375 char *to = kmap_local_page(page);
376
377 VM_BUG_ON(offset + len > PAGE_SIZE);
378 memcpy(to + offset, from, len);
379 flush_dcache_page(page);
380 kunmap_local(to);
381}
382
383static inline void memzero_page(struct page *page, size_t offset, size_t len)
384{
385 char *addr = kmap_local_page(page);
386
387 VM_BUG_ON(offset + len > PAGE_SIZE);
388 memset(addr + offset, 0, len);
389 flush_dcache_page(page);
390 kunmap_local(addr);
391}
392
393/**
394 * folio_zero_segments() - Zero two byte ranges in a folio.
395 * @folio: The folio to write to.
396 * @start1: The first byte to zero.
397 * @xend1: One more than the last byte in the first range.
398 * @start2: The first byte to zero in the second range.
399 * @xend2: One more than the last byte in the second range.
400 */
401static inline void folio_zero_segments(struct folio *folio,
402 size_t start1, size_t xend1, size_t start2, size_t xend2)
403{
404 zero_user_segments(&folio->page, start1, xend1, start2, xend2);
405}
406
407/**
408 * folio_zero_segment() - Zero a byte range in a folio.
409 * @folio: The folio to write to.
410 * @start: The first byte to zero.
411 * @xend: One more than the last byte to zero.
412 */
413static inline void folio_zero_segment(struct folio *folio,
414 size_t start, size_t xend)
415{
416 zero_user_segments(&folio->page, start, xend, 0, 0);
417}
418
419/**
420 * folio_zero_range() - Zero a byte range in a folio.
421 * @folio: The folio to write to.
422 * @start: The first byte to zero.
423 * @length: The number of bytes to zero.
424 */
425static inline void folio_zero_range(struct folio *folio,
426 size_t start, size_t length)
427{
428 zero_user_segments(&folio->page, start, start + length, 0, 0);
429}
430
431#endif /* _LINUX_HIGHMEM_H */