Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_GFP_H
3#define __LINUX_GFP_H
4
5#include <linux/mmdebug.h>
6#include <linux/mmzone.h>
7#include <linux/stddef.h>
8#include <linux/linkage.h>
9#include <linux/topology.h>
10
11/* The typedef is in types.h but we want the documentation here */
12#if 0
13/**
14 * typedef gfp_t - Memory allocation flags.
15 *
16 * GFP flags are commonly used throughout Linux to indicate how memory
17 * should be allocated. The GFP acronym stands for get_free_pages(),
18 * the underlying memory allocation function. Not every GFP flag is
19 * supported by every function which may allocate memory. Most users
20 * will want to use a plain ``GFP_KERNEL``.
21 */
22typedef unsigned int __bitwise gfp_t;
23#endif
24
25struct vm_area_struct;
26
27/*
28 * In case of changes, please don't forget to update
29 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
30 */
31
32/* Plain integer GFP bitmasks. Do not use this directly. */
33#define ___GFP_DMA 0x01u
34#define ___GFP_HIGHMEM 0x02u
35#define ___GFP_DMA32 0x04u
36#define ___GFP_MOVABLE 0x08u
37#define ___GFP_RECLAIMABLE 0x10u
38#define ___GFP_HIGH 0x20u
39#define ___GFP_IO 0x40u
40#define ___GFP_FS 0x80u
41#define ___GFP_ZERO 0x100u
42#define ___GFP_ATOMIC 0x200u
43#define ___GFP_DIRECT_RECLAIM 0x400u
44#define ___GFP_KSWAPD_RECLAIM 0x800u
45#define ___GFP_WRITE 0x1000u
46#define ___GFP_NOWARN 0x2000u
47#define ___GFP_RETRY_MAYFAIL 0x4000u
48#define ___GFP_NOFAIL 0x8000u
49#define ___GFP_NORETRY 0x10000u
50#define ___GFP_MEMALLOC 0x20000u
51#define ___GFP_COMP 0x40000u
52#define ___GFP_NOMEMALLOC 0x80000u
53#define ___GFP_HARDWALL 0x100000u
54#define ___GFP_THISNODE 0x200000u
55#define ___GFP_ACCOUNT 0x400000u
56#define ___GFP_ZEROTAGS 0x800000u
57#ifdef CONFIG_KASAN_HW_TAGS
58#define ___GFP_SKIP_ZERO 0x1000000u
59#define ___GFP_SKIP_KASAN_UNPOISON 0x2000000u
60#define ___GFP_SKIP_KASAN_POISON 0x4000000u
61#else
62#define ___GFP_SKIP_ZERO 0
63#define ___GFP_SKIP_KASAN_UNPOISON 0
64#define ___GFP_SKIP_KASAN_POISON 0
65#endif
66#ifdef CONFIG_LOCKDEP
67#define ___GFP_NOLOCKDEP 0x8000000u
68#else
69#define ___GFP_NOLOCKDEP 0
70#endif
71/* If the above are modified, __GFP_BITS_SHIFT may need updating */
72
73/*
74 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
75 *
76 * Do not put any conditional on these. If necessary modify the definitions
77 * without the underscores and use them consistently. The definitions here may
78 * be used in bit comparisons.
79 */
80#define __GFP_DMA ((__force gfp_t)___GFP_DMA)
81#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
82#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
83#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
84#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
85
86/**
87 * DOC: Page mobility and placement hints
88 *
89 * Page mobility and placement hints
90 * ---------------------------------
91 *
92 * These flags provide hints about how mobile the page is. Pages with similar
93 * mobility are placed within the same pageblocks to minimise problems due
94 * to external fragmentation.
95 *
96 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
97 * moved by page migration during memory compaction or can be reclaimed.
98 *
99 * %__GFP_RECLAIMABLE is used for slab allocations that specify
100 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
101 *
102 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
103 * these pages will be spread between local zones to avoid all the dirty
104 * pages being in one zone (fair zone allocation policy).
105 *
106 * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
107 *
108 * %__GFP_THISNODE forces the allocation to be satisfied from the requested
109 * node with no fallbacks or placement policy enforcements.
110 *
111 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
112 */
113#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
114#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
115#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
116#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
117#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
118
119/**
120 * DOC: Watermark modifiers
121 *
122 * Watermark modifiers -- controls access to emergency reserves
123 * ------------------------------------------------------------
124 *
125 * %__GFP_HIGH indicates that the caller is high-priority and that granting
126 * the request is necessary before the system can make forward progress.
127 * For example, creating an IO context to clean pages.
128 *
129 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
130 * high priority. Users are typically interrupt handlers. This may be
131 * used in conjunction with %__GFP_HIGH
132 *
133 * %__GFP_MEMALLOC allows access to all memory. This should only be used when
134 * the caller guarantees the allocation will allow more memory to be freed
135 * very shortly e.g. process exiting or swapping. Users either should
136 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
137 * Users of this flag have to be extremely careful to not deplete the reserve
138 * completely and implement a throttling mechanism which controls the
139 * consumption of the reserve based on the amount of freed memory.
140 * Usage of a pre-allocated pool (e.g. mempool) should be always considered
141 * before using this flag.
142 *
143 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
144 * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
145 */
146#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
147#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
148#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
149#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
150
151/**
152 * DOC: Reclaim modifiers
153 *
154 * Reclaim modifiers
155 * -----------------
156 * Please note that all the following flags are only applicable to sleepable
157 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
158 *
159 * %__GFP_IO can start physical IO.
160 *
161 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
162 * allocator recursing into the filesystem which might already be holding
163 * locks.
164 *
165 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
166 * This flag can be cleared to avoid unnecessary delays when a fallback
167 * option is available.
168 *
169 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
170 * the low watermark is reached and have it reclaim pages until the high
171 * watermark is reached. A caller may wish to clear this flag when fallback
172 * options are available and the reclaim is likely to disrupt the system. The
173 * canonical example is THP allocation where a fallback is cheap but
174 * reclaim/compaction may cause indirect stalls.
175 *
176 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
177 *
178 * The default allocator behavior depends on the request size. We have a concept
179 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
180 * !costly allocations are too essential to fail so they are implicitly
181 * non-failing by default (with some exceptions like OOM victims might fail so
182 * the caller still has to check for failures) while costly requests try to be
183 * not disruptive and back off even without invoking the OOM killer.
184 * The following three modifiers might be used to override some of these
185 * implicit rules
186 *
187 * %__GFP_NORETRY: The VM implementation will try only very lightweight
188 * memory direct reclaim to get some memory under memory pressure (thus
189 * it can sleep). It will avoid disruptive actions like OOM killer. The
190 * caller must handle the failure which is quite likely to happen under
191 * heavy memory pressure. The flag is suitable when failure can easily be
192 * handled at small cost, such as reduced throughput
193 *
194 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
195 * procedures that have previously failed if there is some indication
196 * that progress has been made else where. It can wait for other
197 * tasks to attempt high level approaches to freeing memory such as
198 * compaction (which removes fragmentation) and page-out.
199 * There is still a definite limit to the number of retries, but it is
200 * a larger limit than with %__GFP_NORETRY.
201 * Allocations with this flag may fail, but only when there is
202 * genuinely little unused memory. While these allocations do not
203 * directly trigger the OOM killer, their failure indicates that
204 * the system is likely to need to use the OOM killer soon. The
205 * caller must handle failure, but can reasonably do so by failing
206 * a higher-level request, or completing it only in a much less
207 * efficient manner.
208 * If the allocation does fail, and the caller is in a position to
209 * free some non-essential memory, doing so could benefit the system
210 * as a whole.
211 *
212 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
213 * cannot handle allocation failures. The allocation could block
214 * indefinitely but will never return with failure. Testing for
215 * failure is pointless.
216 * New users should be evaluated carefully (and the flag should be
217 * used only when there is no reasonable failure policy) but it is
218 * definitely preferable to use the flag rather than opencode endless
219 * loop around allocator.
220 * Using this flag for costly allocations is _highly_ discouraged.
221 */
222#define __GFP_IO ((__force gfp_t)___GFP_IO)
223#define __GFP_FS ((__force gfp_t)___GFP_FS)
224#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
225#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
226#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
227#define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL)
228#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
229#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
230
231/**
232 * DOC: Action modifiers
233 *
234 * Action modifiers
235 * ----------------
236 *
237 * %__GFP_NOWARN suppresses allocation failure reports.
238 *
239 * %__GFP_COMP address compound page metadata.
240 *
241 * %__GFP_ZERO returns a zeroed page on success.
242 *
243 * %__GFP_ZEROTAGS zeroes memory tags at allocation time if the memory itself
244 * is being zeroed (either via __GFP_ZERO or via init_on_alloc, provided that
245 * __GFP_SKIP_ZERO is not set). This flag is intended for optimization: setting
246 * memory tags at the same time as zeroing memory has minimal additional
247 * performace impact.
248 *
249 * %__GFP_SKIP_KASAN_UNPOISON makes KASAN skip unpoisoning on page allocation.
250 * Only effective in HW_TAGS mode.
251 *
252 * %__GFP_SKIP_KASAN_POISON makes KASAN skip poisoning on page deallocation.
253 * Typically, used for userspace pages. Only effective in HW_TAGS mode.
254 */
255#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
256#define __GFP_COMP ((__force gfp_t)___GFP_COMP)
257#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
258#define __GFP_ZEROTAGS ((__force gfp_t)___GFP_ZEROTAGS)
259#define __GFP_SKIP_ZERO ((__force gfp_t)___GFP_SKIP_ZERO)
260#define __GFP_SKIP_KASAN_UNPOISON ((__force gfp_t)___GFP_SKIP_KASAN_UNPOISON)
261#define __GFP_SKIP_KASAN_POISON ((__force gfp_t)___GFP_SKIP_KASAN_POISON)
262
263/* Disable lockdep for GFP context tracking */
264#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
265
266/* Room for N __GFP_FOO bits */
267#define __GFP_BITS_SHIFT (27 + IS_ENABLED(CONFIG_LOCKDEP))
268#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
269
270/**
271 * DOC: Useful GFP flag combinations
272 *
273 * Useful GFP flag combinations
274 * ----------------------------
275 *
276 * Useful GFP flag combinations that are commonly used. It is recommended
277 * that subsystems start with one of these combinations and then set/clear
278 * %__GFP_FOO flags as necessary.
279 *
280 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
281 * watermark is applied to allow access to "atomic reserves".
282 * The current implementation doesn't support NMI and few other strict
283 * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
284 *
285 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
286 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
287 *
288 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
289 * accounted to kmemcg.
290 *
291 * %GFP_NOWAIT is for kernel allocations that should not stall for direct
292 * reclaim, start physical IO or use any filesystem callback.
293 *
294 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
295 * that do not require the starting of any physical IO.
296 * Please try to avoid using this flag directly and instead use
297 * memalloc_noio_{save,restore} to mark the whole scope which cannot
298 * perform any IO with a short explanation why. All allocation requests
299 * will inherit GFP_NOIO implicitly.
300 *
301 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
302 * Please try to avoid using this flag directly and instead use
303 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
304 * recurse into the FS layer with a short explanation why. All allocation
305 * requests will inherit GFP_NOFS implicitly.
306 *
307 * %GFP_USER is for userspace allocations that also need to be directly
308 * accessibly by the kernel or hardware. It is typically used by hardware
309 * for buffers that are mapped to userspace (e.g. graphics) that hardware
310 * still must DMA to. cpuset limits are enforced for these allocations.
311 *
312 * %GFP_DMA exists for historical reasons and should be avoided where possible.
313 * The flags indicates that the caller requires that the lowest zone be
314 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
315 * it would require careful auditing as some users really require it and
316 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
317 * lowest zone as a type of emergency reserve.
318 *
319 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
320 * address. Note that kmalloc(..., GFP_DMA32) does not return DMA32 memory
321 * because the DMA32 kmalloc cache array is not implemented.
322 * (Reason: there is no such user in kernel).
323 *
324 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
325 * do not need to be directly accessible by the kernel but that cannot
326 * move once in use. An example may be a hardware allocation that maps
327 * data directly into userspace but has no addressing limitations.
328 *
329 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
330 * need direct access to but can use kmap() when access is required. They
331 * are expected to be movable via page reclaim or page migration. Typically,
332 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
333 *
334 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
335 * are compound allocations that will generally fail quickly if memory is not
336 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
337 * version does not attempt reclaim/compaction at all and is by default used
338 * in page fault path, while the non-light is used by khugepaged.
339 */
340#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
341#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
342#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
343#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
344#define GFP_NOIO (__GFP_RECLAIM)
345#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
346#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
347#define GFP_DMA __GFP_DMA
348#define GFP_DMA32 __GFP_DMA32
349#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
350#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE | \
351 __GFP_SKIP_KASAN_POISON)
352#define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
353 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
354#define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
355
356/* Convert GFP flags to their corresponding migrate type */
357#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
358#define GFP_MOVABLE_SHIFT 3
359
360static inline int gfp_migratetype(const gfp_t gfp_flags)
361{
362 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
363 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
364 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
365
366 if (unlikely(page_group_by_mobility_disabled))
367 return MIGRATE_UNMOVABLE;
368
369 /* Group based on mobility */
370 return (__force unsigned long)(gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
371}
372#undef GFP_MOVABLE_MASK
373#undef GFP_MOVABLE_SHIFT
374
375static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
376{
377 return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
378}
379
380/**
381 * gfpflags_normal_context - is gfp_flags a normal sleepable context?
382 * @gfp_flags: gfp_flags to test
383 *
384 * Test whether @gfp_flags indicates that the allocation is from the
385 * %current context and allowed to sleep.
386 *
387 * An allocation being allowed to block doesn't mean it owns the %current
388 * context. When direct reclaim path tries to allocate memory, the
389 * allocation context is nested inside whatever %current was doing at the
390 * time of the original allocation. The nested allocation may be allowed
391 * to block but modifying anything %current owns can corrupt the outer
392 * context's expectations.
393 *
394 * %true result from this function indicates that the allocation context
395 * can sleep and use anything that's associated with %current.
396 */
397static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
398{
399 return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
400 __GFP_DIRECT_RECLAIM;
401}
402
403#ifdef CONFIG_HIGHMEM
404#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
405#else
406#define OPT_ZONE_HIGHMEM ZONE_NORMAL
407#endif
408
409#ifdef CONFIG_ZONE_DMA
410#define OPT_ZONE_DMA ZONE_DMA
411#else
412#define OPT_ZONE_DMA ZONE_NORMAL
413#endif
414
415#ifdef CONFIG_ZONE_DMA32
416#define OPT_ZONE_DMA32 ZONE_DMA32
417#else
418#define OPT_ZONE_DMA32 ZONE_NORMAL
419#endif
420
421/*
422 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
423 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
424 * bits long and there are 16 of them to cover all possible combinations of
425 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
426 *
427 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
428 * But GFP_MOVABLE is not only a zone specifier but also an allocation
429 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
430 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
431 *
432 * bit result
433 * =================
434 * 0x0 => NORMAL
435 * 0x1 => DMA or NORMAL
436 * 0x2 => HIGHMEM or NORMAL
437 * 0x3 => BAD (DMA+HIGHMEM)
438 * 0x4 => DMA32 or NORMAL
439 * 0x5 => BAD (DMA+DMA32)
440 * 0x6 => BAD (HIGHMEM+DMA32)
441 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
442 * 0x8 => NORMAL (MOVABLE+0)
443 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
444 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
445 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
446 * 0xc => DMA32 or NORMAL (MOVABLE+DMA32)
447 * 0xd => BAD (MOVABLE+DMA32+DMA)
448 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
449 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
450 *
451 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
452 */
453
454#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
455/* ZONE_DEVICE is not a valid GFP zone specifier */
456#define GFP_ZONES_SHIFT 2
457#else
458#define GFP_ZONES_SHIFT ZONES_SHIFT
459#endif
460
461#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
462#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
463#endif
464
465#define GFP_ZONE_TABLE ( \
466 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
467 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
468 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
469 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
470 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
471 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
472 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
473 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
474)
475
476/*
477 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
478 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
479 * entry starting with bit 0. Bit is set if the combination is not
480 * allowed.
481 */
482#define GFP_ZONE_BAD ( \
483 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
484 | 1 << (___GFP_DMA | ___GFP_DMA32) \
485 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
486 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
487 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
488 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
489 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
490 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
491)
492
493static inline enum zone_type gfp_zone(gfp_t flags)
494{
495 enum zone_type z;
496 int bit = (__force int) (flags & GFP_ZONEMASK);
497
498 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
499 ((1 << GFP_ZONES_SHIFT) - 1);
500 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
501 return z;
502}
503
504/*
505 * There is only one page-allocator function, and two main namespaces to
506 * it. The alloc_page*() variants return 'struct page *' and as such
507 * can allocate highmem pages, the *get*page*() variants return
508 * virtual kernel addresses to the allocated page(s).
509 */
510
511static inline int gfp_zonelist(gfp_t flags)
512{
513#ifdef CONFIG_NUMA
514 if (unlikely(flags & __GFP_THISNODE))
515 return ZONELIST_NOFALLBACK;
516#endif
517 return ZONELIST_FALLBACK;
518}
519
520/*
521 * We get the zone list from the current node and the gfp_mask.
522 * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
523 * There are two zonelists per node, one for all zones with memory and
524 * one containing just zones from the node the zonelist belongs to.
525 *
526 * For the case of non-NUMA systems the NODE_DATA() gets optimized to
527 * &contig_page_data at compile-time.
528 */
529static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
530{
531 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
532}
533
534#ifndef HAVE_ARCH_FREE_PAGE
535static inline void arch_free_page(struct page *page, int order) { }
536#endif
537#ifndef HAVE_ARCH_ALLOC_PAGE
538static inline void arch_alloc_page(struct page *page, int order) { }
539#endif
540
541struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
542 nodemask_t *nodemask);
543struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
544 nodemask_t *nodemask);
545
546unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
547 nodemask_t *nodemask, int nr_pages,
548 struct list_head *page_list,
549 struct page **page_array);
550
551unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
552 unsigned long nr_pages,
553 struct page **page_array);
554
555/* Bulk allocate order-0 pages */
556static inline unsigned long
557alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list)
558{
559 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL);
560}
561
562static inline unsigned long
563alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array)
564{
565 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array);
566}
567
568static inline unsigned long
569alloc_pages_bulk_array_node(gfp_t gfp, int nid, unsigned long nr_pages, struct page **page_array)
570{
571 if (nid == NUMA_NO_NODE)
572 nid = numa_mem_id();
573
574 return __alloc_pages_bulk(gfp, nid, NULL, nr_pages, NULL, page_array);
575}
576
577/*
578 * Allocate pages, preferring the node given as nid. The node must be valid and
579 * online. For more general interface, see alloc_pages_node().
580 */
581static inline struct page *
582__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
583{
584 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
585 VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
586
587 return __alloc_pages(gfp_mask, order, nid, NULL);
588}
589
590static inline
591struct folio *__folio_alloc_node(gfp_t gfp, unsigned int order, int nid)
592{
593 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
594 VM_WARN_ON((gfp & __GFP_THISNODE) && !node_online(nid));
595
596 return __folio_alloc(gfp, order, nid, NULL);
597}
598
599/*
600 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
601 * prefer the current CPU's closest node. Otherwise node must be valid and
602 * online.
603 */
604static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
605 unsigned int order)
606{
607 if (nid == NUMA_NO_NODE)
608 nid = numa_mem_id();
609
610 return __alloc_pages_node(nid, gfp_mask, order);
611}
612
613#ifdef CONFIG_NUMA
614struct page *alloc_pages(gfp_t gfp, unsigned int order);
615struct folio *folio_alloc(gfp_t gfp, unsigned order);
616struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
617 unsigned long addr, bool hugepage);
618#else
619static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
620{
621 return alloc_pages_node(numa_node_id(), gfp_mask, order);
622}
623static inline struct folio *folio_alloc(gfp_t gfp, unsigned int order)
624{
625 return __folio_alloc_node(gfp, order, numa_node_id());
626}
627#define vma_alloc_folio(gfp, order, vma, addr, hugepage) \
628 folio_alloc(gfp, order)
629#endif
630#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
631static inline struct page *alloc_page_vma(gfp_t gfp,
632 struct vm_area_struct *vma, unsigned long addr)
633{
634 struct folio *folio = vma_alloc_folio(gfp, 0, vma, addr, false);
635
636 return &folio->page;
637}
638
639extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
640extern unsigned long get_zeroed_page(gfp_t gfp_mask);
641
642void *alloc_pages_exact(size_t size, gfp_t gfp_mask) __alloc_size(1);
643void free_pages_exact(void *virt, size_t size);
644__meminit void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) __alloc_size(2);
645
646#define __get_free_page(gfp_mask) \
647 __get_free_pages((gfp_mask), 0)
648
649#define __get_dma_pages(gfp_mask, order) \
650 __get_free_pages((gfp_mask) | GFP_DMA, (order))
651
652extern void __free_pages(struct page *page, unsigned int order);
653extern void free_pages(unsigned long addr, unsigned int order);
654
655struct page_frag_cache;
656extern void __page_frag_cache_drain(struct page *page, unsigned int count);
657extern void *page_frag_alloc_align(struct page_frag_cache *nc,
658 unsigned int fragsz, gfp_t gfp_mask,
659 unsigned int align_mask);
660
661static inline void *page_frag_alloc(struct page_frag_cache *nc,
662 unsigned int fragsz, gfp_t gfp_mask)
663{
664 return page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u);
665}
666
667extern void page_frag_free(void *addr);
668
669#define __free_page(page) __free_pages((page), 0)
670#define free_page(addr) free_pages((addr), 0)
671
672void page_alloc_init(void);
673void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
674void drain_all_pages(struct zone *zone);
675void drain_local_pages(struct zone *zone);
676
677void page_alloc_init_late(void);
678
679/*
680 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
681 * GFP flags are used before interrupts are enabled. Once interrupts are
682 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
683 * hibernation, it is used by PM to avoid I/O during memory allocation while
684 * devices are suspended.
685 */
686extern gfp_t gfp_allowed_mask;
687
688/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
689bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
690
691extern void pm_restrict_gfp_mask(void);
692extern void pm_restore_gfp_mask(void);
693
694extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
695
696#ifdef CONFIG_PM_SLEEP
697extern bool pm_suspended_storage(void);
698#else
699static inline bool pm_suspended_storage(void)
700{
701 return false;
702}
703#endif /* CONFIG_PM_SLEEP */
704
705#ifdef CONFIG_CONTIG_ALLOC
706/* The below functions must be run on a range from a single zone. */
707extern int alloc_contig_range(unsigned long start, unsigned long end,
708 unsigned migratetype, gfp_t gfp_mask);
709extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
710 int nid, nodemask_t *nodemask);
711#endif
712void free_contig_range(unsigned long pfn, unsigned long nr_pages);
713
714#ifdef CONFIG_CMA
715/* CMA stuff */
716extern void init_cma_reserved_pageblock(struct page *page);
717#endif
718
719#endif /* __LINUX_GFP_H */