Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_CPUMASK_H
3#define __LINUX_CPUMASK_H
4
5/*
6 * Cpumasks provide a bitmap suitable for representing the
7 * set of CPU's in a system, one bit position per CPU number. In general,
8 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9 */
10#include <linux/kernel.h>
11#include <linux/threads.h>
12#include <linux/bitmap.h>
13#include <linux/atomic.h>
14#include <linux/bug.h>
15
16/* Don't assign or return these: may not be this big! */
17typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
18
19/**
20 * cpumask_bits - get the bits in a cpumask
21 * @maskp: the struct cpumask *
22 *
23 * You should only assume nr_cpu_ids bits of this mask are valid. This is
24 * a macro so it's const-correct.
25 */
26#define cpumask_bits(maskp) ((maskp)->bits)
27
28/**
29 * cpumask_pr_args - printf args to output a cpumask
30 * @maskp: cpumask to be printed
31 *
32 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
33 */
34#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
35
36#if NR_CPUS == 1
37#define nr_cpu_ids 1U
38#else
39extern unsigned int nr_cpu_ids;
40#endif
41
42#ifdef CONFIG_CPUMASK_OFFSTACK
43/* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also,
44 * not all bits may be allocated. */
45#define nr_cpumask_bits nr_cpu_ids
46#else
47#define nr_cpumask_bits ((unsigned int)NR_CPUS)
48#endif
49
50/*
51 * The following particular system cpumasks and operations manage
52 * possible, present, active and online cpus.
53 *
54 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
55 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
56 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
57 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
58 *
59 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
60 *
61 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's
62 * that it is possible might ever be plugged in at anytime during the
63 * life of that system boot. The cpu_present_mask is dynamic(*),
64 * representing which CPUs are currently plugged in. And
65 * cpu_online_mask is the dynamic subset of cpu_present_mask,
66 * indicating those CPUs available for scheduling.
67 *
68 * If HOTPLUG is enabled, then cpu_possible_mask is forced to have
69 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
70 * ACPI reports present at boot.
71 *
72 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
73 * depending on what ACPI reports as currently plugged in, otherwise
74 * cpu_present_mask is just a copy of cpu_possible_mask.
75 *
76 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
77 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
78 *
79 * Subtleties:
80 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
81 * assumption that their single CPU is online. The UP
82 * cpu_{online,possible,present}_masks are placebos. Changing them
83 * will have no useful affect on the following num_*_cpus()
84 * and cpu_*() macros in the UP case. This ugliness is a UP
85 * optimization - don't waste any instructions or memory references
86 * asking if you're online or how many CPUs there are if there is
87 * only one CPU.
88 */
89
90extern struct cpumask __cpu_possible_mask;
91extern struct cpumask __cpu_online_mask;
92extern struct cpumask __cpu_present_mask;
93extern struct cpumask __cpu_active_mask;
94extern struct cpumask __cpu_dying_mask;
95#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
96#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
97#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
98#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
99#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask)
100
101extern atomic_t __num_online_cpus;
102
103extern cpumask_t cpus_booted_once_mask;
104
105static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
106{
107#ifdef CONFIG_DEBUG_PER_CPU_MAPS
108 WARN_ON_ONCE(cpu >= bits);
109#endif /* CONFIG_DEBUG_PER_CPU_MAPS */
110}
111
112/* verify cpu argument to cpumask_* operators */
113static __always_inline unsigned int cpumask_check(unsigned int cpu)
114{
115 cpu_max_bits_warn(cpu, nr_cpumask_bits);
116 return cpu;
117}
118
119#if NR_CPUS == 1
120/* Uniprocessor. Assume all masks are "1". */
121static inline unsigned int cpumask_first(const struct cpumask *srcp)
122{
123 return 0;
124}
125
126static inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
127{
128 return 0;
129}
130
131static inline unsigned int cpumask_first_and(const struct cpumask *srcp1,
132 const struct cpumask *srcp2)
133{
134 return 0;
135}
136
137static inline unsigned int cpumask_last(const struct cpumask *srcp)
138{
139 return 0;
140}
141
142/* Valid inputs for n are -1 and 0. */
143static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
144{
145 return n+1;
146}
147
148static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
149{
150 return n+1;
151}
152
153static inline unsigned int cpumask_next_and(int n,
154 const struct cpumask *srcp,
155 const struct cpumask *andp)
156{
157 return n+1;
158}
159
160static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask,
161 int start, bool wrap)
162{
163 /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */
164 return (wrap && n == 0);
165}
166
167/* cpu must be a valid cpu, ie 0, so there's no other choice. */
168static inline unsigned int cpumask_any_but(const struct cpumask *mask,
169 unsigned int cpu)
170{
171 return 1;
172}
173
174static inline unsigned int cpumask_local_spread(unsigned int i, int node)
175{
176 return 0;
177}
178
179static inline int cpumask_any_and_distribute(const struct cpumask *src1p,
180 const struct cpumask *src2p) {
181 return cpumask_first_and(src1p, src2p);
182}
183
184static inline int cpumask_any_distribute(const struct cpumask *srcp)
185{
186 return cpumask_first(srcp);
187}
188
189#define for_each_cpu(cpu, mask) \
190 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
191#define for_each_cpu_not(cpu, mask) \
192 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
193#define for_each_cpu_wrap(cpu, mask, start) \
194 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start))
195#define for_each_cpu_and(cpu, mask1, mask2) \
196 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2)
197#else
198/**
199 * cpumask_first - get the first cpu in a cpumask
200 * @srcp: the cpumask pointer
201 *
202 * Returns >= nr_cpu_ids if no cpus set.
203 */
204static inline unsigned int cpumask_first(const struct cpumask *srcp)
205{
206 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits);
207}
208
209/**
210 * cpumask_first_zero - get the first unset cpu in a cpumask
211 * @srcp: the cpumask pointer
212 *
213 * Returns >= nr_cpu_ids if all cpus are set.
214 */
215static inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
216{
217 return find_first_zero_bit(cpumask_bits(srcp), nr_cpumask_bits);
218}
219
220/**
221 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
222 * @src1p: the first input
223 * @src2p: the second input
224 *
225 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
226 */
227static inline
228unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
229{
230 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), nr_cpumask_bits);
231}
232
233/**
234 * cpumask_last - get the last CPU in a cpumask
235 * @srcp: - the cpumask pointer
236 *
237 * Returns >= nr_cpumask_bits if no CPUs set.
238 */
239static inline unsigned int cpumask_last(const struct cpumask *srcp)
240{
241 return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits);
242}
243
244unsigned int __pure cpumask_next(int n, const struct cpumask *srcp);
245
246/**
247 * cpumask_next_zero - get the next unset cpu in a cpumask
248 * @n: the cpu prior to the place to search (ie. return will be > @n)
249 * @srcp: the cpumask pointer
250 *
251 * Returns >= nr_cpu_ids if no further cpus unset.
252 */
253static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
254{
255 /* -1 is a legal arg here. */
256 if (n != -1)
257 cpumask_check(n);
258 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
259}
260
261int __pure cpumask_next_and(int n, const struct cpumask *, const struct cpumask *);
262int __pure cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
263unsigned int cpumask_local_spread(unsigned int i, int node);
264int cpumask_any_and_distribute(const struct cpumask *src1p,
265 const struct cpumask *src2p);
266int cpumask_any_distribute(const struct cpumask *srcp);
267
268/**
269 * for_each_cpu - iterate over every cpu in a mask
270 * @cpu: the (optionally unsigned) integer iterator
271 * @mask: the cpumask pointer
272 *
273 * After the loop, cpu is >= nr_cpu_ids.
274 */
275#define for_each_cpu(cpu, mask) \
276 for ((cpu) = -1; \
277 (cpu) = cpumask_next((cpu), (mask)), \
278 (cpu) < nr_cpu_ids;)
279
280/**
281 * for_each_cpu_not - iterate over every cpu in a complemented mask
282 * @cpu: the (optionally unsigned) integer iterator
283 * @mask: the cpumask pointer
284 *
285 * After the loop, cpu is >= nr_cpu_ids.
286 */
287#define for_each_cpu_not(cpu, mask) \
288 for ((cpu) = -1; \
289 (cpu) = cpumask_next_zero((cpu), (mask)), \
290 (cpu) < nr_cpu_ids;)
291
292extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
293
294/**
295 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
296 * @cpu: the (optionally unsigned) integer iterator
297 * @mask: the cpumask pointer
298 * @start: the start location
299 *
300 * The implementation does not assume any bit in @mask is set (including @start).
301 *
302 * After the loop, cpu is >= nr_cpu_ids.
303 */
304#define for_each_cpu_wrap(cpu, mask, start) \
305 for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \
306 (cpu) < nr_cpumask_bits; \
307 (cpu) = cpumask_next_wrap((cpu), (mask), (start), true))
308
309/**
310 * for_each_cpu_and - iterate over every cpu in both masks
311 * @cpu: the (optionally unsigned) integer iterator
312 * @mask1: the first cpumask pointer
313 * @mask2: the second cpumask pointer
314 *
315 * This saves a temporary CPU mask in many places. It is equivalent to:
316 * struct cpumask tmp;
317 * cpumask_and(&tmp, &mask1, &mask2);
318 * for_each_cpu(cpu, &tmp)
319 * ...
320 *
321 * After the loop, cpu is >= nr_cpu_ids.
322 */
323#define for_each_cpu_and(cpu, mask1, mask2) \
324 for ((cpu) = -1; \
325 (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \
326 (cpu) < nr_cpu_ids;)
327#endif /* SMP */
328
329#define CPU_BITS_NONE \
330{ \
331 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
332}
333
334#define CPU_BITS_CPU0 \
335{ \
336 [0] = 1UL \
337}
338
339/**
340 * cpumask_set_cpu - set a cpu in a cpumask
341 * @cpu: cpu number (< nr_cpu_ids)
342 * @dstp: the cpumask pointer
343 */
344static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
345{
346 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
347}
348
349static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
350{
351 __set_bit(cpumask_check(cpu), cpumask_bits(dstp));
352}
353
354
355/**
356 * cpumask_clear_cpu - clear a cpu in a cpumask
357 * @cpu: cpu number (< nr_cpu_ids)
358 * @dstp: the cpumask pointer
359 */
360static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
361{
362 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
363}
364
365static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
366{
367 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
368}
369
370/**
371 * cpumask_test_cpu - test for a cpu in a cpumask
372 * @cpu: cpu number (< nr_cpu_ids)
373 * @cpumask: the cpumask pointer
374 *
375 * Returns 1 if @cpu is set in @cpumask, else returns 0
376 */
377static __always_inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
378{
379 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
380}
381
382/**
383 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
384 * @cpu: cpu number (< nr_cpu_ids)
385 * @cpumask: the cpumask pointer
386 *
387 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
388 *
389 * test_and_set_bit wrapper for cpumasks.
390 */
391static __always_inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
392{
393 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
394}
395
396/**
397 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
398 * @cpu: cpu number (< nr_cpu_ids)
399 * @cpumask: the cpumask pointer
400 *
401 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
402 *
403 * test_and_clear_bit wrapper for cpumasks.
404 */
405static __always_inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
406{
407 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
408}
409
410/**
411 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
412 * @dstp: the cpumask pointer
413 */
414static inline void cpumask_setall(struct cpumask *dstp)
415{
416 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
417}
418
419/**
420 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
421 * @dstp: the cpumask pointer
422 */
423static inline void cpumask_clear(struct cpumask *dstp)
424{
425 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits);
426}
427
428/**
429 * cpumask_and - *dstp = *src1p & *src2p
430 * @dstp: the cpumask result
431 * @src1p: the first input
432 * @src2p: the second input
433 *
434 * If *@dstp is empty, returns 0, else returns 1
435 */
436static inline int cpumask_and(struct cpumask *dstp,
437 const struct cpumask *src1p,
438 const struct cpumask *src2p)
439{
440 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
441 cpumask_bits(src2p), nr_cpumask_bits);
442}
443
444/**
445 * cpumask_or - *dstp = *src1p | *src2p
446 * @dstp: the cpumask result
447 * @src1p: the first input
448 * @src2p: the second input
449 */
450static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
451 const struct cpumask *src2p)
452{
453 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
454 cpumask_bits(src2p), nr_cpumask_bits);
455}
456
457/**
458 * cpumask_xor - *dstp = *src1p ^ *src2p
459 * @dstp: the cpumask result
460 * @src1p: the first input
461 * @src2p: the second input
462 */
463static inline void cpumask_xor(struct cpumask *dstp,
464 const struct cpumask *src1p,
465 const struct cpumask *src2p)
466{
467 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
468 cpumask_bits(src2p), nr_cpumask_bits);
469}
470
471/**
472 * cpumask_andnot - *dstp = *src1p & ~*src2p
473 * @dstp: the cpumask result
474 * @src1p: the first input
475 * @src2p: the second input
476 *
477 * If *@dstp is empty, returns 0, else returns 1
478 */
479static inline int cpumask_andnot(struct cpumask *dstp,
480 const struct cpumask *src1p,
481 const struct cpumask *src2p)
482{
483 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
484 cpumask_bits(src2p), nr_cpumask_bits);
485}
486
487/**
488 * cpumask_complement - *dstp = ~*srcp
489 * @dstp: the cpumask result
490 * @srcp: the input to invert
491 */
492static inline void cpumask_complement(struct cpumask *dstp,
493 const struct cpumask *srcp)
494{
495 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp),
496 nr_cpumask_bits);
497}
498
499/**
500 * cpumask_equal - *src1p == *src2p
501 * @src1p: the first input
502 * @src2p: the second input
503 */
504static inline bool cpumask_equal(const struct cpumask *src1p,
505 const struct cpumask *src2p)
506{
507 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
508 nr_cpumask_bits);
509}
510
511/**
512 * cpumask_or_equal - *src1p | *src2p == *src3p
513 * @src1p: the first input
514 * @src2p: the second input
515 * @src3p: the third input
516 */
517static inline bool cpumask_or_equal(const struct cpumask *src1p,
518 const struct cpumask *src2p,
519 const struct cpumask *src3p)
520{
521 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
522 cpumask_bits(src3p), nr_cpumask_bits);
523}
524
525/**
526 * cpumask_intersects - (*src1p & *src2p) != 0
527 * @src1p: the first input
528 * @src2p: the second input
529 */
530static inline bool cpumask_intersects(const struct cpumask *src1p,
531 const struct cpumask *src2p)
532{
533 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
534 nr_cpumask_bits);
535}
536
537/**
538 * cpumask_subset - (*src1p & ~*src2p) == 0
539 * @src1p: the first input
540 * @src2p: the second input
541 *
542 * Returns 1 if *@src1p is a subset of *@src2p, else returns 0
543 */
544static inline int cpumask_subset(const struct cpumask *src1p,
545 const struct cpumask *src2p)
546{
547 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
548 nr_cpumask_bits);
549}
550
551/**
552 * cpumask_empty - *srcp == 0
553 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
554 */
555static inline bool cpumask_empty(const struct cpumask *srcp)
556{
557 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits);
558}
559
560/**
561 * cpumask_full - *srcp == 0xFFFFFFFF...
562 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
563 */
564static inline bool cpumask_full(const struct cpumask *srcp)
565{
566 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
567}
568
569/**
570 * cpumask_weight - Count of bits in *srcp
571 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
572 */
573static inline unsigned int cpumask_weight(const struct cpumask *srcp)
574{
575 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits);
576}
577
578/**
579 * cpumask_shift_right - *dstp = *srcp >> n
580 * @dstp: the cpumask result
581 * @srcp: the input to shift
582 * @n: the number of bits to shift by
583 */
584static inline void cpumask_shift_right(struct cpumask *dstp,
585 const struct cpumask *srcp, int n)
586{
587 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
588 nr_cpumask_bits);
589}
590
591/**
592 * cpumask_shift_left - *dstp = *srcp << n
593 * @dstp: the cpumask result
594 * @srcp: the input to shift
595 * @n: the number of bits to shift by
596 */
597static inline void cpumask_shift_left(struct cpumask *dstp,
598 const struct cpumask *srcp, int n)
599{
600 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
601 nr_cpumask_bits);
602}
603
604/**
605 * cpumask_copy - *dstp = *srcp
606 * @dstp: the result
607 * @srcp: the input cpumask
608 */
609static inline void cpumask_copy(struct cpumask *dstp,
610 const struct cpumask *srcp)
611{
612 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits);
613}
614
615/**
616 * cpumask_any - pick a "random" cpu from *srcp
617 * @srcp: the input cpumask
618 *
619 * Returns >= nr_cpu_ids if no cpus set.
620 */
621#define cpumask_any(srcp) cpumask_first(srcp)
622
623/**
624 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
625 * @mask1: the first input cpumask
626 * @mask2: the second input cpumask
627 *
628 * Returns >= nr_cpu_ids if no cpus set.
629 */
630#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
631
632/**
633 * cpumask_of - the cpumask containing just a given cpu
634 * @cpu: the cpu (<= nr_cpu_ids)
635 */
636#define cpumask_of(cpu) (get_cpu_mask(cpu))
637
638/**
639 * cpumask_parse_user - extract a cpumask from a user string
640 * @buf: the buffer to extract from
641 * @len: the length of the buffer
642 * @dstp: the cpumask to set.
643 *
644 * Returns -errno, or 0 for success.
645 */
646static inline int cpumask_parse_user(const char __user *buf, int len,
647 struct cpumask *dstp)
648{
649 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
650}
651
652/**
653 * cpumask_parselist_user - extract a cpumask from a user string
654 * @buf: the buffer to extract from
655 * @len: the length of the buffer
656 * @dstp: the cpumask to set.
657 *
658 * Returns -errno, or 0 for success.
659 */
660static inline int cpumask_parselist_user(const char __user *buf, int len,
661 struct cpumask *dstp)
662{
663 return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
664 nr_cpumask_bits);
665}
666
667/**
668 * cpumask_parse - extract a cpumask from a string
669 * @buf: the buffer to extract from
670 * @dstp: the cpumask to set.
671 *
672 * Returns -errno, or 0 for success.
673 */
674static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
675{
676 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
677}
678
679/**
680 * cpulist_parse - extract a cpumask from a user string of ranges
681 * @buf: the buffer to extract from
682 * @dstp: the cpumask to set.
683 *
684 * Returns -errno, or 0 for success.
685 */
686static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
687{
688 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
689}
690
691/**
692 * cpumask_size - size to allocate for a 'struct cpumask' in bytes
693 */
694static inline unsigned int cpumask_size(void)
695{
696 return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long);
697}
698
699/*
700 * cpumask_var_t: struct cpumask for stack usage.
701 *
702 * Oh, the wicked games we play! In order to make kernel coding a
703 * little more difficult, we typedef cpumask_var_t to an array or a
704 * pointer: doing &mask on an array is a noop, so it still works.
705 *
706 * ie.
707 * cpumask_var_t tmpmask;
708 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
709 * return -ENOMEM;
710 *
711 * ... use 'tmpmask' like a normal struct cpumask * ...
712 *
713 * free_cpumask_var(tmpmask);
714 *
715 *
716 * However, one notable exception is there. alloc_cpumask_var() allocates
717 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
718 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
719 *
720 * cpumask_var_t tmpmask;
721 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
722 * return -ENOMEM;
723 *
724 * var = *tmpmask;
725 *
726 * This code makes NR_CPUS length memcopy and brings to a memory corruption.
727 * cpumask_copy() provide safe copy functionality.
728 *
729 * Note that there is another evil here: If you define a cpumask_var_t
730 * as a percpu variable then the way to obtain the address of the cpumask
731 * structure differently influences what this_cpu_* operation needs to be
732 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use
733 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the
734 * other type of cpumask_var_t implementation is configured.
735 *
736 * Please also note that __cpumask_var_read_mostly can be used to declare
737 * a cpumask_var_t variable itself (not its content) as read mostly.
738 */
739#ifdef CONFIG_CPUMASK_OFFSTACK
740typedef struct cpumask *cpumask_var_t;
741
742#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
743#define __cpumask_var_read_mostly __read_mostly
744
745bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
746bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
747bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
748bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
749void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
750void free_cpumask_var(cpumask_var_t mask);
751void free_bootmem_cpumask_var(cpumask_var_t mask);
752
753static inline bool cpumask_available(cpumask_var_t mask)
754{
755 return mask != NULL;
756}
757
758#else
759typedef struct cpumask cpumask_var_t[1];
760
761#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
762#define __cpumask_var_read_mostly
763
764static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
765{
766 return true;
767}
768
769static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
770 int node)
771{
772 return true;
773}
774
775static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
776{
777 cpumask_clear(*mask);
778 return true;
779}
780
781static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
782 int node)
783{
784 cpumask_clear(*mask);
785 return true;
786}
787
788static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
789{
790}
791
792static inline void free_cpumask_var(cpumask_var_t mask)
793{
794}
795
796static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
797{
798}
799
800static inline bool cpumask_available(cpumask_var_t mask)
801{
802 return true;
803}
804#endif /* CONFIG_CPUMASK_OFFSTACK */
805
806/* It's common to want to use cpu_all_mask in struct member initializers,
807 * so it has to refer to an address rather than a pointer. */
808extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
809#define cpu_all_mask to_cpumask(cpu_all_bits)
810
811/* First bits of cpu_bit_bitmap are in fact unset. */
812#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
813
814#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
815#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
816#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
817
818/* Wrappers for arch boot code to manipulate normally-constant masks */
819void init_cpu_present(const struct cpumask *src);
820void init_cpu_possible(const struct cpumask *src);
821void init_cpu_online(const struct cpumask *src);
822
823static inline void reset_cpu_possible_mask(void)
824{
825 bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
826}
827
828static inline void
829set_cpu_possible(unsigned int cpu, bool possible)
830{
831 if (possible)
832 cpumask_set_cpu(cpu, &__cpu_possible_mask);
833 else
834 cpumask_clear_cpu(cpu, &__cpu_possible_mask);
835}
836
837static inline void
838set_cpu_present(unsigned int cpu, bool present)
839{
840 if (present)
841 cpumask_set_cpu(cpu, &__cpu_present_mask);
842 else
843 cpumask_clear_cpu(cpu, &__cpu_present_mask);
844}
845
846void set_cpu_online(unsigned int cpu, bool online);
847
848static inline void
849set_cpu_active(unsigned int cpu, bool active)
850{
851 if (active)
852 cpumask_set_cpu(cpu, &__cpu_active_mask);
853 else
854 cpumask_clear_cpu(cpu, &__cpu_active_mask);
855}
856
857static inline void
858set_cpu_dying(unsigned int cpu, bool dying)
859{
860 if (dying)
861 cpumask_set_cpu(cpu, &__cpu_dying_mask);
862 else
863 cpumask_clear_cpu(cpu, &__cpu_dying_mask);
864}
865
866/**
867 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
868 * @bitmap: the bitmap
869 *
870 * There are a few places where cpumask_var_t isn't appropriate and
871 * static cpumasks must be used (eg. very early boot), yet we don't
872 * expose the definition of 'struct cpumask'.
873 *
874 * This does the conversion, and can be used as a constant initializer.
875 */
876#define to_cpumask(bitmap) \
877 ((struct cpumask *)(1 ? (bitmap) \
878 : (void *)sizeof(__check_is_bitmap(bitmap))))
879
880static inline int __check_is_bitmap(const unsigned long *bitmap)
881{
882 return 1;
883}
884
885/*
886 * Special-case data structure for "single bit set only" constant CPU masks.
887 *
888 * We pre-generate all the 64 (or 32) possible bit positions, with enough
889 * padding to the left and the right, and return the constant pointer
890 * appropriately offset.
891 */
892extern const unsigned long
893 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
894
895static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
896{
897 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
898 p -= cpu / BITS_PER_LONG;
899 return to_cpumask(p);
900}
901
902#if NR_CPUS > 1
903/**
904 * num_online_cpus() - Read the number of online CPUs
905 *
906 * Despite the fact that __num_online_cpus is of type atomic_t, this
907 * interface gives only a momentary snapshot and is not protected against
908 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
909 * region.
910 */
911static inline unsigned int num_online_cpus(void)
912{
913 return atomic_read(&__num_online_cpus);
914}
915#define num_possible_cpus() cpumask_weight(cpu_possible_mask)
916#define num_present_cpus() cpumask_weight(cpu_present_mask)
917#define num_active_cpus() cpumask_weight(cpu_active_mask)
918
919static inline bool cpu_online(unsigned int cpu)
920{
921 return cpumask_test_cpu(cpu, cpu_online_mask);
922}
923
924static inline bool cpu_possible(unsigned int cpu)
925{
926 return cpumask_test_cpu(cpu, cpu_possible_mask);
927}
928
929static inline bool cpu_present(unsigned int cpu)
930{
931 return cpumask_test_cpu(cpu, cpu_present_mask);
932}
933
934static inline bool cpu_active(unsigned int cpu)
935{
936 return cpumask_test_cpu(cpu, cpu_active_mask);
937}
938
939static inline bool cpu_dying(unsigned int cpu)
940{
941 return cpumask_test_cpu(cpu, cpu_dying_mask);
942}
943
944#else
945
946#define num_online_cpus() 1U
947#define num_possible_cpus() 1U
948#define num_present_cpus() 1U
949#define num_active_cpus() 1U
950
951static inline bool cpu_online(unsigned int cpu)
952{
953 return cpu == 0;
954}
955
956static inline bool cpu_possible(unsigned int cpu)
957{
958 return cpu == 0;
959}
960
961static inline bool cpu_present(unsigned int cpu)
962{
963 return cpu == 0;
964}
965
966static inline bool cpu_active(unsigned int cpu)
967{
968 return cpu == 0;
969}
970
971static inline bool cpu_dying(unsigned int cpu)
972{
973 return false;
974}
975
976#endif /* NR_CPUS > 1 */
977
978#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
979
980#if NR_CPUS <= BITS_PER_LONG
981#define CPU_BITS_ALL \
982{ \
983 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
984}
985
986#else /* NR_CPUS > BITS_PER_LONG */
987
988#define CPU_BITS_ALL \
989{ \
990 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
991 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
992}
993#endif /* NR_CPUS > BITS_PER_LONG */
994
995/**
996 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
997 * as comma-separated list of cpus or hex values of cpumask
998 * @list: indicates whether the cpumap must be list
999 * @mask: the cpumask to copy
1000 * @buf: the buffer to copy into
1001 *
1002 * Returns the length of the (null-terminated) @buf string, zero if
1003 * nothing is copied.
1004 */
1005static inline ssize_t
1006cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
1007{
1008 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
1009 nr_cpu_ids);
1010}
1011
1012/**
1013 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as
1014 * hex values of cpumask
1015 *
1016 * @buf: the buffer to copy into
1017 * @mask: the cpumask to copy
1018 * @off: in the string from which we are copying, we copy to @buf
1019 * @count: the maximum number of bytes to print
1020 *
1021 * The function prints the cpumask into the buffer as hex values of
1022 * cpumask; Typically used by bin_attribute to export cpumask bitmask
1023 * ABI.
1024 *
1025 * Returns the length of how many bytes have been copied, excluding
1026 * terminating '\0'.
1027 */
1028static inline ssize_t
1029cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
1030 loff_t off, size_t count)
1031{
1032 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
1033 nr_cpu_ids, off, count) - 1;
1034}
1035
1036/**
1037 * cpumap_print_list_to_buf - copies the cpumask into the buffer as
1038 * comma-separated list of cpus
1039 *
1040 * Everything is same with the above cpumap_print_bitmask_to_buf()
1041 * except the print format.
1042 */
1043static inline ssize_t
1044cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
1045 loff_t off, size_t count)
1046{
1047 return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
1048 nr_cpu_ids, off, count) - 1;
1049}
1050
1051#if NR_CPUS <= BITS_PER_LONG
1052#define CPU_MASK_ALL \
1053(cpumask_t) { { \
1054 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1055} }
1056#else
1057#define CPU_MASK_ALL \
1058(cpumask_t) { { \
1059 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1060 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1061} }
1062#endif /* NR_CPUS > BITS_PER_LONG */
1063
1064#define CPU_MASK_NONE \
1065(cpumask_t) { { \
1066 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
1067} }
1068
1069#define CPU_MASK_CPU0 \
1070(cpumask_t) { { \
1071 [0] = 1UL \
1072} }
1073
1074#endif /* __LINUX_CPUMASK_H */