Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42
43#include <acpi/cppc_acpi.h>
44
45struct cppc_pcc_data {
46 struct pcc_mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78};
79
80/* Array to represent the PCC channel per subspace ID */
81static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85/*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94/* pcc mapped address + header size + offset within PCC subspace */
95#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98/* Check if a CPC register is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Check if a CPC register is in SystemMemory */
104#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
105 (cpc)->cpc_entry.reg.space_id == \
106 ACPI_ADR_SPACE_SYSTEM_MEMORY)
107
108/* Check if a CPC register is in SystemIo */
109#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
110 (cpc)->cpc_entry.reg.space_id == \
111 ACPI_ADR_SPACE_SYSTEM_IO)
112
113/* Evaluates to True if reg is a NULL register descriptor */
114#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115 (reg)->address == 0 && \
116 (reg)->bit_width == 0 && \
117 (reg)->bit_offset == 0 && \
118 (reg)->access_width == 0)
119
120/* Evaluates to True if an optional cpc field is supported */
121#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
122 !!(cpc)->cpc_entry.int_value : \
123 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
124/*
125 * Arbitrary Retries in case the remote processor is slow to respond
126 * to PCC commands. Keeping it high enough to cover emulators where
127 * the processors run painfully slow.
128 */
129#define NUM_RETRIES 500ULL
130
131#define OVER_16BTS_MASK ~0xFFFFULL
132
133#define define_one_cppc_ro(_name) \
134static struct kobj_attribute _name = \
135__ATTR(_name, 0444, show_##_name, NULL)
136
137#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139#define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct kobj_attribute *attr, char *buf) \
142 { \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
145 int ret; \
146 \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
148 if (ret) \
149 return ret; \
150 \
151 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
152 (u64)st_name.member_name); \
153 } \
154 define_one_cppc_ro(member_name)
155
156show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162
163show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165
166static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168{
169 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 int ret;
172
173 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174 if (ret)
175 return ret;
176
177 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178 fb_ctrs.reference, fb_ctrs.delivered);
179}
180define_one_cppc_ro(feedback_ctrs);
181
182static struct attribute *cppc_attrs[] = {
183 &feedback_ctrs.attr,
184 &reference_perf.attr,
185 &wraparound_time.attr,
186 &highest_perf.attr,
187 &lowest_perf.attr,
188 &lowest_nonlinear_perf.attr,
189 &nominal_perf.attr,
190 &nominal_freq.attr,
191 &lowest_freq.attr,
192 NULL
193};
194ATTRIBUTE_GROUPS(cppc);
195
196static struct kobj_type cppc_ktype = {
197 .sysfs_ops = &kobj_sysfs_ops,
198 .default_groups = cppc_groups,
199};
200
201static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
202{
203 int ret, status;
204 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
205 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
206 pcc_ss_data->pcc_comm_addr;
207
208 if (!pcc_ss_data->platform_owns_pcc)
209 return 0;
210
211 /*
212 * Poll PCC status register every 3us(delay_us) for maximum of
213 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
214 */
215 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
216 status & PCC_CMD_COMPLETE_MASK, 3,
217 pcc_ss_data->deadline_us);
218
219 if (likely(!ret)) {
220 pcc_ss_data->platform_owns_pcc = false;
221 if (chk_err_bit && (status & PCC_ERROR_MASK))
222 ret = -EIO;
223 }
224
225 if (unlikely(ret))
226 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
227 pcc_ss_id, ret);
228
229 return ret;
230}
231
232/*
233 * This function transfers the ownership of the PCC to the platform
234 * So it must be called while holding write_lock(pcc_lock)
235 */
236static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
237{
238 int ret = -EIO, i;
239 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
240 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
241 pcc_ss_data->pcc_comm_addr;
242 unsigned int time_delta;
243
244 /*
245 * For CMD_WRITE we know for a fact the caller should have checked
246 * the channel before writing to PCC space
247 */
248 if (cmd == CMD_READ) {
249 /*
250 * If there are pending cpc_writes, then we stole the channel
251 * before write completion, so first send a WRITE command to
252 * platform
253 */
254 if (pcc_ss_data->pending_pcc_write_cmd)
255 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
256
257 ret = check_pcc_chan(pcc_ss_id, false);
258 if (ret)
259 goto end;
260 } else /* CMD_WRITE */
261 pcc_ss_data->pending_pcc_write_cmd = FALSE;
262
263 /*
264 * Handle the Minimum Request Turnaround Time(MRTT)
265 * "The minimum amount of time that OSPM must wait after the completion
266 * of a command before issuing the next command, in microseconds"
267 */
268 if (pcc_ss_data->pcc_mrtt) {
269 time_delta = ktime_us_delta(ktime_get(),
270 pcc_ss_data->last_cmd_cmpl_time);
271 if (pcc_ss_data->pcc_mrtt > time_delta)
272 udelay(pcc_ss_data->pcc_mrtt - time_delta);
273 }
274
275 /*
276 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
277 * "The maximum number of periodic requests that the subspace channel can
278 * support, reported in commands per minute. 0 indicates no limitation."
279 *
280 * This parameter should be ideally zero or large enough so that it can
281 * handle maximum number of requests that all the cores in the system can
282 * collectively generate. If it is not, we will follow the spec and just
283 * not send the request to the platform after hitting the MPAR limit in
284 * any 60s window
285 */
286 if (pcc_ss_data->pcc_mpar) {
287 if (pcc_ss_data->mpar_count == 0) {
288 time_delta = ktime_ms_delta(ktime_get(),
289 pcc_ss_data->last_mpar_reset);
290 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
291 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
292 pcc_ss_id);
293 ret = -EIO;
294 goto end;
295 }
296 pcc_ss_data->last_mpar_reset = ktime_get();
297 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
298 }
299 pcc_ss_data->mpar_count--;
300 }
301
302 /* Write to the shared comm region. */
303 writew_relaxed(cmd, &generic_comm_base->command);
304
305 /* Flip CMD COMPLETE bit */
306 writew_relaxed(0, &generic_comm_base->status);
307
308 pcc_ss_data->platform_owns_pcc = true;
309
310 /* Ring doorbell */
311 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
312 if (ret < 0) {
313 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
314 pcc_ss_id, cmd, ret);
315 goto end;
316 }
317
318 /* wait for completion and check for PCC error bit */
319 ret = check_pcc_chan(pcc_ss_id, true);
320
321 if (pcc_ss_data->pcc_mrtt)
322 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
323
324 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
325 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
326 else
327 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
328
329end:
330 if (cmd == CMD_WRITE) {
331 if (unlikely(ret)) {
332 for_each_possible_cpu(i) {
333 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
334
335 if (!desc)
336 continue;
337
338 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
339 desc->write_cmd_status = ret;
340 }
341 }
342 pcc_ss_data->pcc_write_cnt++;
343 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
344 }
345
346 return ret;
347}
348
349static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
350{
351 if (ret < 0)
352 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
353 *(u16 *)msg, ret);
354 else
355 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
356 *(u16 *)msg, ret);
357}
358
359static struct mbox_client cppc_mbox_cl = {
360 .tx_done = cppc_chan_tx_done,
361 .knows_txdone = true,
362};
363
364static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
365{
366 int result = -EFAULT;
367 acpi_status status = AE_OK;
368 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
370 struct acpi_buffer state = {0, NULL};
371 union acpi_object *psd = NULL;
372 struct acpi_psd_package *pdomain;
373
374 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
375 &buffer, ACPI_TYPE_PACKAGE);
376 if (status == AE_NOT_FOUND) /* _PSD is optional */
377 return 0;
378 if (ACPI_FAILURE(status))
379 return -ENODEV;
380
381 psd = buffer.pointer;
382 if (!psd || psd->package.count != 1) {
383 pr_debug("Invalid _PSD data\n");
384 goto end;
385 }
386
387 pdomain = &(cpc_ptr->domain_info);
388
389 state.length = sizeof(struct acpi_psd_package);
390 state.pointer = pdomain;
391
392 status = acpi_extract_package(&(psd->package.elements[0]),
393 &format, &state);
394 if (ACPI_FAILURE(status)) {
395 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
396 goto end;
397 }
398
399 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
400 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
401 goto end;
402 }
403
404 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
405 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
406 goto end;
407 }
408
409 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
410 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
411 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
412 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
413 goto end;
414 }
415
416 result = 0;
417end:
418 kfree(buffer.pointer);
419 return result;
420}
421
422bool acpi_cpc_valid(void)
423{
424 struct cpc_desc *cpc_ptr;
425 int cpu;
426
427 for_each_present_cpu(cpu) {
428 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
429 if (!cpc_ptr)
430 return false;
431 }
432
433 return true;
434}
435EXPORT_SYMBOL_GPL(acpi_cpc_valid);
436
437bool cppc_allow_fast_switch(void)
438{
439 struct cpc_register_resource *desired_reg;
440 struct cpc_desc *cpc_ptr;
441 int cpu;
442
443 for_each_possible_cpu(cpu) {
444 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
445 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
446 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
447 !CPC_IN_SYSTEM_IO(desired_reg))
448 return false;
449 }
450
451 return true;
452}
453EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
454
455/**
456 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
457 * @cpu: Find all CPUs that share a domain with cpu.
458 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
459 *
460 * Return: 0 for success or negative value for err.
461 */
462int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
463{
464 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
465 struct acpi_psd_package *match_pdomain;
466 struct acpi_psd_package *pdomain;
467 int count_target, i;
468
469 /*
470 * Now that we have _PSD data from all CPUs, let's setup P-state
471 * domain info.
472 */
473 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
474 if (!cpc_ptr)
475 return -EFAULT;
476
477 pdomain = &(cpc_ptr->domain_info);
478 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
479 if (pdomain->num_processors <= 1)
480 return 0;
481
482 /* Validate the Domain info */
483 count_target = pdomain->num_processors;
484 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
485 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
486 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
487 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
488 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
489 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
490
491 for_each_possible_cpu(i) {
492 if (i == cpu)
493 continue;
494
495 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
496 if (!match_cpc_ptr)
497 goto err_fault;
498
499 match_pdomain = &(match_cpc_ptr->domain_info);
500 if (match_pdomain->domain != pdomain->domain)
501 continue;
502
503 /* Here i and cpu are in the same domain */
504 if (match_pdomain->num_processors != count_target)
505 goto err_fault;
506
507 if (pdomain->coord_type != match_pdomain->coord_type)
508 goto err_fault;
509
510 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
511 }
512
513 return 0;
514
515err_fault:
516 /* Assume no coordination on any error parsing domain info */
517 cpumask_clear(cpu_data->shared_cpu_map);
518 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
519 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
520
521 return -EFAULT;
522}
523EXPORT_SYMBOL_GPL(acpi_get_psd_map);
524
525static int register_pcc_channel(int pcc_ss_idx)
526{
527 struct pcc_mbox_chan *pcc_chan;
528 u64 usecs_lat;
529
530 if (pcc_ss_idx >= 0) {
531 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
532
533 if (IS_ERR(pcc_chan)) {
534 pr_err("Failed to find PCC channel for subspace %d\n",
535 pcc_ss_idx);
536 return -ENODEV;
537 }
538
539 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
540 /*
541 * cppc_ss->latency is just a Nominal value. In reality
542 * the remote processor could be much slower to reply.
543 * So add an arbitrary amount of wait on top of Nominal.
544 */
545 usecs_lat = NUM_RETRIES * pcc_chan->latency;
546 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
547 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
548 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
549 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
550
551 pcc_data[pcc_ss_idx]->pcc_comm_addr =
552 acpi_os_ioremap(pcc_chan->shmem_base_addr,
553 pcc_chan->shmem_size);
554 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
555 pr_err("Failed to ioremap PCC comm region mem for %d\n",
556 pcc_ss_idx);
557 return -ENOMEM;
558 }
559
560 /* Set flag so that we don't come here for each CPU. */
561 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
562 }
563
564 return 0;
565}
566
567/**
568 * cpc_ffh_supported() - check if FFH reading supported
569 *
570 * Check if the architecture has support for functional fixed hardware
571 * read/write capability.
572 *
573 * Return: true for supported, false for not supported
574 */
575bool __weak cpc_ffh_supported(void)
576{
577 return false;
578}
579
580/**
581 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
582 *
583 * Check if the architectural support for CPPC is present even
584 * if the _OSC hasn't prescribed it
585 *
586 * Return: true for supported, false for not supported
587 */
588bool __weak cpc_supported_by_cpu(void)
589{
590 return false;
591}
592
593/**
594 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
595 *
596 * Check and allocate the cppc_pcc_data memory.
597 * In some processor configurations it is possible that same subspace
598 * is shared between multiple CPUs. This is seen especially in CPUs
599 * with hardware multi-threading support.
600 *
601 * Return: 0 for success, errno for failure
602 */
603static int pcc_data_alloc(int pcc_ss_id)
604{
605 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
606 return -EINVAL;
607
608 if (pcc_data[pcc_ss_id]) {
609 pcc_data[pcc_ss_id]->refcount++;
610 } else {
611 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
612 GFP_KERNEL);
613 if (!pcc_data[pcc_ss_id])
614 return -ENOMEM;
615 pcc_data[pcc_ss_id]->refcount++;
616 }
617
618 return 0;
619}
620
621/* Check if CPPC revision + num_ent combination is supported */
622static bool is_cppc_supported(int revision, int num_ent)
623{
624 int expected_num_ent;
625
626 switch (revision) {
627 case CPPC_V2_REV:
628 expected_num_ent = CPPC_V2_NUM_ENT;
629 break;
630 case CPPC_V3_REV:
631 expected_num_ent = CPPC_V3_NUM_ENT;
632 break;
633 default:
634 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
635 revision);
636 return false;
637 }
638
639 if (expected_num_ent != num_ent) {
640 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
641 num_ent, expected_num_ent, revision);
642 return false;
643 }
644
645 return true;
646}
647
648/*
649 * An example CPC table looks like the following.
650 *
651 * Name (_CPC, Package() {
652 * 17, // NumEntries
653 * 1, // Revision
654 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
655 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
656 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
657 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
658 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
659 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
660 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
661 * ...
662 * ...
663 * ...
664 * }
665 * Each Register() encodes how to access that specific register.
666 * e.g. a sample PCC entry has the following encoding:
667 *
668 * Register (
669 * PCC, // AddressSpaceKeyword
670 * 8, // RegisterBitWidth
671 * 8, // RegisterBitOffset
672 * 0x30, // RegisterAddress
673 * 9, // AccessSize (subspace ID)
674 * )
675 */
676
677#ifndef arch_init_invariance_cppc
678static inline void arch_init_invariance_cppc(void) { }
679#endif
680
681/**
682 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
683 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
684 *
685 * Return: 0 for success or negative value for err.
686 */
687int acpi_cppc_processor_probe(struct acpi_processor *pr)
688{
689 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
690 union acpi_object *out_obj, *cpc_obj;
691 struct cpc_desc *cpc_ptr;
692 struct cpc_reg *gas_t;
693 struct device *cpu_dev;
694 acpi_handle handle = pr->handle;
695 unsigned int num_ent, i, cpc_rev;
696 int pcc_subspace_id = -1;
697 acpi_status status;
698 int ret = -ENODATA;
699
700 if (!osc_sb_cppc2_support_acked) {
701 pr_debug("CPPC v2 _OSC not acked\n");
702 if (!cpc_supported_by_cpu())
703 return -ENODEV;
704 }
705
706 /* Parse the ACPI _CPC table for this CPU. */
707 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
708 ACPI_TYPE_PACKAGE);
709 if (ACPI_FAILURE(status)) {
710 ret = -ENODEV;
711 goto out_buf_free;
712 }
713
714 out_obj = (union acpi_object *) output.pointer;
715
716 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
717 if (!cpc_ptr) {
718 ret = -ENOMEM;
719 goto out_buf_free;
720 }
721
722 /* First entry is NumEntries. */
723 cpc_obj = &out_obj->package.elements[0];
724 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
725 num_ent = cpc_obj->integer.value;
726 if (num_ent <= 1) {
727 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
728 num_ent, pr->id);
729 goto out_free;
730 }
731 } else {
732 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
733 cpc_obj->type, pr->id);
734 goto out_free;
735 }
736 cpc_ptr->num_entries = num_ent;
737
738 /* Second entry should be revision. */
739 cpc_obj = &out_obj->package.elements[1];
740 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
741 cpc_rev = cpc_obj->integer.value;
742 } else {
743 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
744 cpc_obj->type, pr->id);
745 goto out_free;
746 }
747 cpc_ptr->version = cpc_rev;
748
749 if (!is_cppc_supported(cpc_rev, num_ent))
750 goto out_free;
751
752 /* Iterate through remaining entries in _CPC */
753 for (i = 2; i < num_ent; i++) {
754 cpc_obj = &out_obj->package.elements[i];
755
756 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
757 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
758 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
759 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
760 gas_t = (struct cpc_reg *)
761 cpc_obj->buffer.pointer;
762
763 /*
764 * The PCC Subspace index is encoded inside
765 * the CPC table entries. The same PCC index
766 * will be used for all the PCC entries,
767 * so extract it only once.
768 */
769 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
770 if (pcc_subspace_id < 0) {
771 pcc_subspace_id = gas_t->access_width;
772 if (pcc_data_alloc(pcc_subspace_id))
773 goto out_free;
774 } else if (pcc_subspace_id != gas_t->access_width) {
775 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
776 pr->id);
777 goto out_free;
778 }
779 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
780 if (gas_t->address) {
781 void __iomem *addr;
782
783 if (!osc_cpc_flexible_adr_space_confirmed) {
784 pr_debug("Flexible address space capability not supported\n");
785 if (!cpc_supported_by_cpu())
786 goto out_free;
787 }
788
789 addr = ioremap(gas_t->address, gas_t->bit_width/8);
790 if (!addr)
791 goto out_free;
792 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
793 }
794 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
795 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
796 /*
797 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
798 * SystemIO doesn't implement 64-bit
799 * registers.
800 */
801 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
802 gas_t->access_width);
803 goto out_free;
804 }
805 if (gas_t->address & OVER_16BTS_MASK) {
806 /* SystemIO registers use 16-bit integer addresses */
807 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
808 gas_t->address);
809 goto out_free;
810 }
811 if (!osc_cpc_flexible_adr_space_confirmed) {
812 pr_debug("Flexible address space capability not supported\n");
813 if (!cpc_supported_by_cpu())
814 goto out_free;
815 }
816 } else {
817 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
818 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
819 pr_debug("Unsupported register type (%d) in _CPC\n",
820 gas_t->space_id);
821 goto out_free;
822 }
823 }
824
825 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
826 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
827 } else {
828 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
829 i, pr->id);
830 goto out_free;
831 }
832 }
833 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
834
835 /*
836 * Initialize the remaining cpc_regs as unsupported.
837 * Example: In case FW exposes CPPC v2, the below loop will initialize
838 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
839 */
840 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
841 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
842 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
843 }
844
845
846 /* Store CPU Logical ID */
847 cpc_ptr->cpu_id = pr->id;
848
849 /* Parse PSD data for this CPU */
850 ret = acpi_get_psd(cpc_ptr, handle);
851 if (ret)
852 goto out_free;
853
854 /* Register PCC channel once for all PCC subspace ID. */
855 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
856 ret = register_pcc_channel(pcc_subspace_id);
857 if (ret)
858 goto out_free;
859
860 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
861 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
862 }
863
864 /* Everything looks okay */
865 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
866
867 /* Add per logical CPU nodes for reading its feedback counters. */
868 cpu_dev = get_cpu_device(pr->id);
869 if (!cpu_dev) {
870 ret = -EINVAL;
871 goto out_free;
872 }
873
874 /* Plug PSD data into this CPU's CPC descriptor. */
875 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
876
877 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
878 "acpi_cppc");
879 if (ret) {
880 per_cpu(cpc_desc_ptr, pr->id) = NULL;
881 kobject_put(&cpc_ptr->kobj);
882 goto out_free;
883 }
884
885 arch_init_invariance_cppc();
886
887 kfree(output.pointer);
888 return 0;
889
890out_free:
891 /* Free all the mapped sys mem areas for this CPU */
892 for (i = 2; i < cpc_ptr->num_entries; i++) {
893 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
894
895 if (addr)
896 iounmap(addr);
897 }
898 kfree(cpc_ptr);
899
900out_buf_free:
901 kfree(output.pointer);
902 return ret;
903}
904EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
905
906/**
907 * acpi_cppc_processor_exit - Cleanup CPC structs.
908 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
909 *
910 * Return: Void
911 */
912void acpi_cppc_processor_exit(struct acpi_processor *pr)
913{
914 struct cpc_desc *cpc_ptr;
915 unsigned int i;
916 void __iomem *addr;
917 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
918
919 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
920 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
921 pcc_data[pcc_ss_id]->refcount--;
922 if (!pcc_data[pcc_ss_id]->refcount) {
923 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
924 kfree(pcc_data[pcc_ss_id]);
925 pcc_data[pcc_ss_id] = NULL;
926 }
927 }
928 }
929
930 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
931 if (!cpc_ptr)
932 return;
933
934 /* Free all the mapped sys mem areas for this CPU */
935 for (i = 2; i < cpc_ptr->num_entries; i++) {
936 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
937 if (addr)
938 iounmap(addr);
939 }
940
941 kobject_put(&cpc_ptr->kobj);
942 kfree(cpc_ptr);
943}
944EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
945
946/**
947 * cpc_read_ffh() - Read FFH register
948 * @cpunum: CPU number to read
949 * @reg: cppc register information
950 * @val: place holder for return value
951 *
952 * Read bit_width bits from a specified address and bit_offset
953 *
954 * Return: 0 for success and error code
955 */
956int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
957{
958 return -ENOTSUPP;
959}
960
961/**
962 * cpc_write_ffh() - Write FFH register
963 * @cpunum: CPU number to write
964 * @reg: cppc register information
965 * @val: value to write
966 *
967 * Write value of bit_width bits to a specified address and bit_offset
968 *
969 * Return: 0 for success and error code
970 */
971int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
972{
973 return -ENOTSUPP;
974}
975
976/*
977 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
978 * as fast as possible. We have already mapped the PCC subspace during init, so
979 * we can directly write to it.
980 */
981
982static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
983{
984 void __iomem *vaddr = NULL;
985 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
986 struct cpc_reg *reg = ®_res->cpc_entry.reg;
987
988 if (reg_res->type == ACPI_TYPE_INTEGER) {
989 *val = reg_res->cpc_entry.int_value;
990 return 0;
991 }
992
993 *val = 0;
994
995 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
996 u32 width = 8 << (reg->access_width - 1);
997 u32 val_u32;
998 acpi_status status;
999
1000 status = acpi_os_read_port((acpi_io_address)reg->address,
1001 &val_u32, width);
1002 if (ACPI_FAILURE(status)) {
1003 pr_debug("Error: Failed to read SystemIO port %llx\n",
1004 reg->address);
1005 return -EFAULT;
1006 }
1007
1008 *val = val_u32;
1009 return 0;
1010 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1011 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1012 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1013 vaddr = reg_res->sys_mem_vaddr;
1014 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1015 return cpc_read_ffh(cpu, reg, val);
1016 else
1017 return acpi_os_read_memory((acpi_physical_address)reg->address,
1018 val, reg->bit_width);
1019
1020 switch (reg->bit_width) {
1021 case 8:
1022 *val = readb_relaxed(vaddr);
1023 break;
1024 case 16:
1025 *val = readw_relaxed(vaddr);
1026 break;
1027 case 32:
1028 *val = readl_relaxed(vaddr);
1029 break;
1030 case 64:
1031 *val = readq_relaxed(vaddr);
1032 break;
1033 default:
1034 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1035 reg->bit_width, pcc_ss_id);
1036 return -EFAULT;
1037 }
1038
1039 return 0;
1040}
1041
1042static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1043{
1044 int ret_val = 0;
1045 void __iomem *vaddr = NULL;
1046 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1047 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1048
1049 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1050 u32 width = 8 << (reg->access_width - 1);
1051 acpi_status status;
1052
1053 status = acpi_os_write_port((acpi_io_address)reg->address,
1054 (u32)val, width);
1055 if (ACPI_FAILURE(status)) {
1056 pr_debug("Error: Failed to write SystemIO port %llx\n",
1057 reg->address);
1058 return -EFAULT;
1059 }
1060
1061 return 0;
1062 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1063 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1064 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1065 vaddr = reg_res->sys_mem_vaddr;
1066 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1067 return cpc_write_ffh(cpu, reg, val);
1068 else
1069 return acpi_os_write_memory((acpi_physical_address)reg->address,
1070 val, reg->bit_width);
1071
1072 switch (reg->bit_width) {
1073 case 8:
1074 writeb_relaxed(val, vaddr);
1075 break;
1076 case 16:
1077 writew_relaxed(val, vaddr);
1078 break;
1079 case 32:
1080 writel_relaxed(val, vaddr);
1081 break;
1082 case 64:
1083 writeq_relaxed(val, vaddr);
1084 break;
1085 default:
1086 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1087 reg->bit_width, pcc_ss_id);
1088 ret_val = -EFAULT;
1089 break;
1090 }
1091
1092 return ret_val;
1093}
1094
1095static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1096{
1097 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1098 struct cpc_register_resource *reg;
1099
1100 if (!cpc_desc) {
1101 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1102 return -ENODEV;
1103 }
1104
1105 reg = &cpc_desc->cpc_regs[reg_idx];
1106
1107 if (CPC_IN_PCC(reg)) {
1108 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1109 struct cppc_pcc_data *pcc_ss_data = NULL;
1110 int ret = 0;
1111
1112 if (pcc_ss_id < 0)
1113 return -EIO;
1114
1115 pcc_ss_data = pcc_data[pcc_ss_id];
1116
1117 down_write(&pcc_ss_data->pcc_lock);
1118
1119 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1120 cpc_read(cpunum, reg, perf);
1121 else
1122 ret = -EIO;
1123
1124 up_write(&pcc_ss_data->pcc_lock);
1125
1126 return ret;
1127 }
1128
1129 cpc_read(cpunum, reg, perf);
1130
1131 return 0;
1132}
1133
1134/**
1135 * cppc_get_desired_perf - Get the desired performance register value.
1136 * @cpunum: CPU from which to get desired performance.
1137 * @desired_perf: Return address.
1138 *
1139 * Return: 0 for success, -EIO otherwise.
1140 */
1141int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1142{
1143 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1144}
1145EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1146
1147/**
1148 * cppc_get_nominal_perf - Get the nominal performance register value.
1149 * @cpunum: CPU from which to get nominal performance.
1150 * @nominal_perf: Return address.
1151 *
1152 * Return: 0 for success, -EIO otherwise.
1153 */
1154int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1155{
1156 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1157}
1158
1159/**
1160 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1161 * @cpunum: CPU from which to get capabilities info.
1162 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1163 *
1164 * Return: 0 for success with perf_caps populated else -ERRNO.
1165 */
1166int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1167{
1168 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1169 struct cpc_register_resource *highest_reg, *lowest_reg,
1170 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1171 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1172 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1173 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1174 struct cppc_pcc_data *pcc_ss_data = NULL;
1175 int ret = 0, regs_in_pcc = 0;
1176
1177 if (!cpc_desc) {
1178 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1179 return -ENODEV;
1180 }
1181
1182 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1183 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1184 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1185 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1186 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1187 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1188 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1189
1190 /* Are any of the regs PCC ?*/
1191 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1192 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1193 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1194 if (pcc_ss_id < 0) {
1195 pr_debug("Invalid pcc_ss_id\n");
1196 return -ENODEV;
1197 }
1198 pcc_ss_data = pcc_data[pcc_ss_id];
1199 regs_in_pcc = 1;
1200 down_write(&pcc_ss_data->pcc_lock);
1201 /* Ring doorbell once to update PCC subspace */
1202 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1203 ret = -EIO;
1204 goto out_err;
1205 }
1206 }
1207
1208 cpc_read(cpunum, highest_reg, &high);
1209 perf_caps->highest_perf = high;
1210
1211 cpc_read(cpunum, lowest_reg, &low);
1212 perf_caps->lowest_perf = low;
1213
1214 cpc_read(cpunum, nominal_reg, &nom);
1215 perf_caps->nominal_perf = nom;
1216
1217 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1218 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1219 perf_caps->guaranteed_perf = 0;
1220 } else {
1221 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1222 perf_caps->guaranteed_perf = guaranteed;
1223 }
1224
1225 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1226 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1227
1228 if (!high || !low || !nom || !min_nonlinear)
1229 ret = -EFAULT;
1230
1231 /* Read optional lowest and nominal frequencies if present */
1232 if (CPC_SUPPORTED(low_freq_reg))
1233 cpc_read(cpunum, low_freq_reg, &low_f);
1234
1235 if (CPC_SUPPORTED(nom_freq_reg))
1236 cpc_read(cpunum, nom_freq_reg, &nom_f);
1237
1238 perf_caps->lowest_freq = low_f;
1239 perf_caps->nominal_freq = nom_f;
1240
1241
1242out_err:
1243 if (regs_in_pcc)
1244 up_write(&pcc_ss_data->pcc_lock);
1245 return ret;
1246}
1247EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1248
1249/**
1250 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1251 * @cpunum: CPU from which to read counters.
1252 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1253 *
1254 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1255 */
1256int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1257{
1258 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1259 struct cpc_register_resource *delivered_reg, *reference_reg,
1260 *ref_perf_reg, *ctr_wrap_reg;
1261 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1262 struct cppc_pcc_data *pcc_ss_data = NULL;
1263 u64 delivered, reference, ref_perf, ctr_wrap_time;
1264 int ret = 0, regs_in_pcc = 0;
1265
1266 if (!cpc_desc) {
1267 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1268 return -ENODEV;
1269 }
1270
1271 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1272 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1273 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1274 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1275
1276 /*
1277 * If reference perf register is not supported then we should
1278 * use the nominal perf value
1279 */
1280 if (!CPC_SUPPORTED(ref_perf_reg))
1281 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1282
1283 /* Are any of the regs PCC ?*/
1284 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1285 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1286 if (pcc_ss_id < 0) {
1287 pr_debug("Invalid pcc_ss_id\n");
1288 return -ENODEV;
1289 }
1290 pcc_ss_data = pcc_data[pcc_ss_id];
1291 down_write(&pcc_ss_data->pcc_lock);
1292 regs_in_pcc = 1;
1293 /* Ring doorbell once to update PCC subspace */
1294 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1295 ret = -EIO;
1296 goto out_err;
1297 }
1298 }
1299
1300 cpc_read(cpunum, delivered_reg, &delivered);
1301 cpc_read(cpunum, reference_reg, &reference);
1302 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1303
1304 /*
1305 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1306 * performance counters are assumed to never wrap during the lifetime of
1307 * platform
1308 */
1309 ctr_wrap_time = (u64)(~((u64)0));
1310 if (CPC_SUPPORTED(ctr_wrap_reg))
1311 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1312
1313 if (!delivered || !reference || !ref_perf) {
1314 ret = -EFAULT;
1315 goto out_err;
1316 }
1317
1318 perf_fb_ctrs->delivered = delivered;
1319 perf_fb_ctrs->reference = reference;
1320 perf_fb_ctrs->reference_perf = ref_perf;
1321 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1322out_err:
1323 if (regs_in_pcc)
1324 up_write(&pcc_ss_data->pcc_lock);
1325 return ret;
1326}
1327EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1328
1329/**
1330 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1331 * Continuous Performance Control package EnableRegister field.
1332 * @cpu: CPU for which to enable CPPC register.
1333 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1334 *
1335 * Return: 0 for success, -ERRNO or -EIO otherwise.
1336 */
1337int cppc_set_enable(int cpu, bool enable)
1338{
1339 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1340 struct cpc_register_resource *enable_reg;
1341 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1342 struct cppc_pcc_data *pcc_ss_data = NULL;
1343 int ret = -EINVAL;
1344
1345 if (!cpc_desc) {
1346 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1347 return -EINVAL;
1348 }
1349
1350 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1351
1352 if (CPC_IN_PCC(enable_reg)) {
1353
1354 if (pcc_ss_id < 0)
1355 return -EIO;
1356
1357 ret = cpc_write(cpu, enable_reg, enable);
1358 if (ret)
1359 return ret;
1360
1361 pcc_ss_data = pcc_data[pcc_ss_id];
1362
1363 down_write(&pcc_ss_data->pcc_lock);
1364 /* after writing CPC, transfer the ownership of PCC to platfrom */
1365 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1366 up_write(&pcc_ss_data->pcc_lock);
1367 return ret;
1368 }
1369
1370 return cpc_write(cpu, enable_reg, enable);
1371}
1372EXPORT_SYMBOL_GPL(cppc_set_enable);
1373
1374/**
1375 * cppc_set_perf - Set a CPU's performance controls.
1376 * @cpu: CPU for which to set performance controls.
1377 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1378 *
1379 * Return: 0 for success, -ERRNO otherwise.
1380 */
1381int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1382{
1383 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1384 struct cpc_register_resource *desired_reg;
1385 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1386 struct cppc_pcc_data *pcc_ss_data = NULL;
1387 int ret = 0;
1388
1389 if (!cpc_desc) {
1390 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1391 return -ENODEV;
1392 }
1393
1394 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1395
1396 /*
1397 * This is Phase-I where we want to write to CPC registers
1398 * -> We want all CPUs to be able to execute this phase in parallel
1399 *
1400 * Since read_lock can be acquired by multiple CPUs simultaneously we
1401 * achieve that goal here
1402 */
1403 if (CPC_IN_PCC(desired_reg)) {
1404 if (pcc_ss_id < 0) {
1405 pr_debug("Invalid pcc_ss_id\n");
1406 return -ENODEV;
1407 }
1408 pcc_ss_data = pcc_data[pcc_ss_id];
1409 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1410 if (pcc_ss_data->platform_owns_pcc) {
1411 ret = check_pcc_chan(pcc_ss_id, false);
1412 if (ret) {
1413 up_read(&pcc_ss_data->pcc_lock);
1414 return ret;
1415 }
1416 }
1417 /*
1418 * Update the pending_write to make sure a PCC CMD_READ will not
1419 * arrive and steal the channel during the switch to write lock
1420 */
1421 pcc_ss_data->pending_pcc_write_cmd = true;
1422 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1423 cpc_desc->write_cmd_status = 0;
1424 }
1425
1426 /*
1427 * Skip writing MIN/MAX until Linux knows how to come up with
1428 * useful values.
1429 */
1430 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1431
1432 if (CPC_IN_PCC(desired_reg))
1433 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1434 /*
1435 * This is Phase-II where we transfer the ownership of PCC to Platform
1436 *
1437 * Short Summary: Basically if we think of a group of cppc_set_perf
1438 * requests that happened in short overlapping interval. The last CPU to
1439 * come out of Phase-I will enter Phase-II and ring the doorbell.
1440 *
1441 * We have the following requirements for Phase-II:
1442 * 1. We want to execute Phase-II only when there are no CPUs
1443 * currently executing in Phase-I
1444 * 2. Once we start Phase-II we want to avoid all other CPUs from
1445 * entering Phase-I.
1446 * 3. We want only one CPU among all those who went through Phase-I
1447 * to run phase-II
1448 *
1449 * If write_trylock fails to get the lock and doesn't transfer the
1450 * PCC ownership to the platform, then one of the following will be TRUE
1451 * 1. There is at-least one CPU in Phase-I which will later execute
1452 * write_trylock, so the CPUs in Phase-I will be responsible for
1453 * executing the Phase-II.
1454 * 2. Some other CPU has beaten this CPU to successfully execute the
1455 * write_trylock and has already acquired the write_lock. We know for a
1456 * fact it (other CPU acquiring the write_lock) couldn't have happened
1457 * before this CPU's Phase-I as we held the read_lock.
1458 * 3. Some other CPU executing pcc CMD_READ has stolen the
1459 * down_write, in which case, send_pcc_cmd will check for pending
1460 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1461 * So this CPU can be certain that its request will be delivered
1462 * So in all cases, this CPU knows that its request will be delivered
1463 * by another CPU and can return
1464 *
1465 * After getting the down_write we still need to check for
1466 * pending_pcc_write_cmd to take care of the following scenario
1467 * The thread running this code could be scheduled out between
1468 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1469 * could have delivered the request to Platform by triggering the
1470 * doorbell and transferred the ownership of PCC to platform. So this
1471 * avoids triggering an unnecessary doorbell and more importantly before
1472 * triggering the doorbell it makes sure that the PCC channel ownership
1473 * is still with OSPM.
1474 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1475 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1476 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1477 * case during a CMD_READ and if there are pending writes it delivers
1478 * the write command before servicing the read command
1479 */
1480 if (CPC_IN_PCC(desired_reg)) {
1481 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1482 /* Update only if there are pending write commands */
1483 if (pcc_ss_data->pending_pcc_write_cmd)
1484 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1485 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1486 } else
1487 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1488 wait_event(pcc_ss_data->pcc_write_wait_q,
1489 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1490
1491 /* send_pcc_cmd updates the status in case of failure */
1492 ret = cpc_desc->write_cmd_status;
1493 }
1494 return ret;
1495}
1496EXPORT_SYMBOL_GPL(cppc_set_perf);
1497
1498/**
1499 * cppc_get_transition_latency - returns frequency transition latency in ns
1500 *
1501 * ACPI CPPC does not explicitly specify how a platform can specify the
1502 * transition latency for performance change requests. The closest we have
1503 * is the timing information from the PCCT tables which provides the info
1504 * on the number and frequency of PCC commands the platform can handle.
1505 *
1506 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1507 * then assume there is no latency.
1508 */
1509unsigned int cppc_get_transition_latency(int cpu_num)
1510{
1511 /*
1512 * Expected transition latency is based on the PCCT timing values
1513 * Below are definition from ACPI spec:
1514 * pcc_nominal- Expected latency to process a command, in microseconds
1515 * pcc_mpar - The maximum number of periodic requests that the subspace
1516 * channel can support, reported in commands per minute. 0
1517 * indicates no limitation.
1518 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1519 * completion of a command before issuing the next command,
1520 * in microseconds.
1521 */
1522 unsigned int latency_ns = 0;
1523 struct cpc_desc *cpc_desc;
1524 struct cpc_register_resource *desired_reg;
1525 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1526 struct cppc_pcc_data *pcc_ss_data;
1527
1528 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1529 if (!cpc_desc)
1530 return CPUFREQ_ETERNAL;
1531
1532 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1533 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1534 return 0;
1535 else if (!CPC_IN_PCC(desired_reg))
1536 return CPUFREQ_ETERNAL;
1537
1538 if (pcc_ss_id < 0)
1539 return CPUFREQ_ETERNAL;
1540
1541 pcc_ss_data = pcc_data[pcc_ss_id];
1542 if (pcc_ss_data->pcc_mpar)
1543 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1544
1545 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1546 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1547
1548 return latency_ns;
1549}
1550EXPORT_SYMBOL_GPL(cppc_get_transition_latency);