Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/swapops.h>
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
25#include <linux/jiffies.h>
26#include <linux/memblock.h>
27#include <linux/compiler.h>
28#include <linux/kernel.h>
29#include <linux/kasan.h>
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
35#include <linux/ratelimit.h>
36#include <linux/oom.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
41#include <linux/memory_hotplug.h>
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
44#include <linux/vmstat.h>
45#include <linux/mempolicy.h>
46#include <linux/memremap.h>
47#include <linux/stop_machine.h>
48#include <linux/random.h>
49#include <linux/sort.h>
50#include <linux/pfn.h>
51#include <linux/backing-dev.h>
52#include <linux/fault-inject.h>
53#include <linux/page-isolation.h>
54#include <linux/debugobjects.h>
55#include <linux/kmemleak.h>
56#include <linux/compaction.h>
57#include <trace/events/kmem.h>
58#include <trace/events/oom.h>
59#include <linux/prefetch.h>
60#include <linux/mm_inline.h>
61#include <linux/mmu_notifier.h>
62#include <linux/migrate.h>
63#include <linux/hugetlb.h>
64#include <linux/sched/rt.h>
65#include <linux/sched/mm.h>
66#include <linux/page_owner.h>
67#include <linux/page_table_check.h>
68#include <linux/kthread.h>
69#include <linux/memcontrol.h>
70#include <linux/ftrace.h>
71#include <linux/lockdep.h>
72#include <linux/nmi.h>
73#include <linux/psi.h>
74#include <linux/padata.h>
75#include <linux/khugepaged.h>
76#include <linux/buffer_head.h>
77#include <linux/delayacct.h>
78#include <asm/sections.h>
79#include <asm/tlbflush.h>
80#include <asm/div64.h>
81#include "internal.h"
82#include "shuffle.h"
83#include "page_reporting.h"
84#include "swap.h"
85
86/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87typedef int __bitwise fpi_t;
88
89/* No special request */
90#define FPI_NONE ((__force fpi_t)0)
91
92/*
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
99 */
100#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
101
102/*
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
106 *
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
110 * reporting).
111 */
112#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
113
114/*
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
122 */
123#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124
125/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126static DEFINE_MUTEX(pcp_batch_high_lock);
127#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128
129struct pagesets {
130 local_lock_t lock;
131};
132static DEFINE_PER_CPU(struct pagesets, pagesets) = {
133 .lock = INIT_LOCAL_LOCK(lock),
134};
135
136#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137DEFINE_PER_CPU(int, numa_node);
138EXPORT_PER_CPU_SYMBOL(numa_node);
139#endif
140
141DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142
143#ifdef CONFIG_HAVE_MEMORYLESS_NODES
144/*
145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148 * defined in <linux/topology.h>.
149 */
150DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
151EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152#endif
153
154/* work_structs for global per-cpu drains */
155struct pcpu_drain {
156 struct zone *zone;
157 struct work_struct work;
158};
159static DEFINE_MUTEX(pcpu_drain_mutex);
160static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161
162#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
163volatile unsigned long latent_entropy __latent_entropy;
164EXPORT_SYMBOL(latent_entropy);
165#endif
166
167/*
168 * Array of node states.
169 */
170nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 [N_POSSIBLE] = NODE_MASK_ALL,
172 [N_ONLINE] = { { [0] = 1UL } },
173#ifndef CONFIG_NUMA
174 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
175#ifdef CONFIG_HIGHMEM
176 [N_HIGH_MEMORY] = { { [0] = 1UL } },
177#endif
178 [N_MEMORY] = { { [0] = 1UL } },
179 [N_CPU] = { { [0] = 1UL } },
180#endif /* NUMA */
181};
182EXPORT_SYMBOL(node_states);
183
184atomic_long_t _totalram_pages __read_mostly;
185EXPORT_SYMBOL(_totalram_pages);
186unsigned long totalreserve_pages __read_mostly;
187unsigned long totalcma_pages __read_mostly;
188
189int percpu_pagelist_high_fraction;
190gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
191DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
192EXPORT_SYMBOL(init_on_alloc);
193
194DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
195EXPORT_SYMBOL(init_on_free);
196
197static bool _init_on_alloc_enabled_early __read_mostly
198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
199static int __init early_init_on_alloc(char *buf)
200{
201
202 return kstrtobool(buf, &_init_on_alloc_enabled_early);
203}
204early_param("init_on_alloc", early_init_on_alloc);
205
206static bool _init_on_free_enabled_early __read_mostly
207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
208static int __init early_init_on_free(char *buf)
209{
210 return kstrtobool(buf, &_init_on_free_enabled_early);
211}
212early_param("init_on_free", early_init_on_free);
213
214/*
215 * A cached value of the page's pageblock's migratetype, used when the page is
216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218 * Also the migratetype set in the page does not necessarily match the pcplist
219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220 * other index - this ensures that it will be put on the correct CMA freelist.
221 */
222static inline int get_pcppage_migratetype(struct page *page)
223{
224 return page->index;
225}
226
227static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228{
229 page->index = migratetype;
230}
231
232#ifdef CONFIG_PM_SLEEP
233/*
234 * The following functions are used by the suspend/hibernate code to temporarily
235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236 * while devices are suspended. To avoid races with the suspend/hibernate code,
237 * they should always be called with system_transition_mutex held
238 * (gfp_allowed_mask also should only be modified with system_transition_mutex
239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240 * with that modification).
241 */
242
243static gfp_t saved_gfp_mask;
244
245void pm_restore_gfp_mask(void)
246{
247 WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 if (saved_gfp_mask) {
249 gfp_allowed_mask = saved_gfp_mask;
250 saved_gfp_mask = 0;
251 }
252}
253
254void pm_restrict_gfp_mask(void)
255{
256 WARN_ON(!mutex_is_locked(&system_transition_mutex));
257 WARN_ON(saved_gfp_mask);
258 saved_gfp_mask = gfp_allowed_mask;
259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
260}
261
262bool pm_suspended_storage(void)
263{
264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
265 return false;
266 return true;
267}
268#endif /* CONFIG_PM_SLEEP */
269
270#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
271unsigned int pageblock_order __read_mostly;
272#endif
273
274static void __free_pages_ok(struct page *page, unsigned int order,
275 fpi_t fpi_flags);
276
277/*
278 * results with 256, 32 in the lowmem_reserve sysctl:
279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280 * 1G machine -> (16M dma, 784M normal, 224M high)
281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284 *
285 * TBD: should special case ZONE_DMA32 machines here - in those we normally
286 * don't need any ZONE_NORMAL reservation
287 */
288int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
289#ifdef CONFIG_ZONE_DMA
290 [ZONE_DMA] = 256,
291#endif
292#ifdef CONFIG_ZONE_DMA32
293 [ZONE_DMA32] = 256,
294#endif
295 [ZONE_NORMAL] = 32,
296#ifdef CONFIG_HIGHMEM
297 [ZONE_HIGHMEM] = 0,
298#endif
299 [ZONE_MOVABLE] = 0,
300};
301
302static char * const zone_names[MAX_NR_ZONES] = {
303#ifdef CONFIG_ZONE_DMA
304 "DMA",
305#endif
306#ifdef CONFIG_ZONE_DMA32
307 "DMA32",
308#endif
309 "Normal",
310#ifdef CONFIG_HIGHMEM
311 "HighMem",
312#endif
313 "Movable",
314#ifdef CONFIG_ZONE_DEVICE
315 "Device",
316#endif
317};
318
319const char * const migratetype_names[MIGRATE_TYPES] = {
320 "Unmovable",
321 "Movable",
322 "Reclaimable",
323 "HighAtomic",
324#ifdef CONFIG_CMA
325 "CMA",
326#endif
327#ifdef CONFIG_MEMORY_ISOLATION
328 "Isolate",
329#endif
330};
331
332compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 [NULL_COMPOUND_DTOR] = NULL,
334 [COMPOUND_PAGE_DTOR] = free_compound_page,
335#ifdef CONFIG_HUGETLB_PAGE
336 [HUGETLB_PAGE_DTOR] = free_huge_page,
337#endif
338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
340#endif
341};
342
343int min_free_kbytes = 1024;
344int user_min_free_kbytes = -1;
345int watermark_boost_factor __read_mostly = 15000;
346int watermark_scale_factor = 10;
347
348static unsigned long nr_kernel_pages __initdata;
349static unsigned long nr_all_pages __initdata;
350static unsigned long dma_reserve __initdata;
351
352static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354static unsigned long required_kernelcore __initdata;
355static unsigned long required_kernelcore_percent __initdata;
356static unsigned long required_movablecore __initdata;
357static unsigned long required_movablecore_percent __initdata;
358static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359static bool mirrored_kernelcore __meminitdata;
360
361/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362int movable_zone;
363EXPORT_SYMBOL(movable_zone);
364
365#if MAX_NUMNODES > 1
366unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367unsigned int nr_online_nodes __read_mostly = 1;
368EXPORT_SYMBOL(nr_node_ids);
369EXPORT_SYMBOL(nr_online_nodes);
370#endif
371
372int page_group_by_mobility_disabled __read_mostly;
373
374#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375/*
376 * During boot we initialize deferred pages on-demand, as needed, but once
377 * page_alloc_init_late() has finished, the deferred pages are all initialized,
378 * and we can permanently disable that path.
379 */
380static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381
382static inline bool deferred_pages_enabled(void)
383{
384 return static_branch_unlikely(&deferred_pages);
385}
386
387/* Returns true if the struct page for the pfn is uninitialised */
388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389{
390 int nid = early_pfn_to_nid(pfn);
391
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
393 return true;
394
395 return false;
396}
397
398/*
399 * Returns true when the remaining initialisation should be deferred until
400 * later in the boot cycle when it can be parallelised.
401 */
402static bool __meminit
403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404{
405 static unsigned long prev_end_pfn, nr_initialised;
406
407 /*
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
410 */
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
413 nr_initialised = 0;
414 }
415
416 /* Always populate low zones for address-constrained allocations */
417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
418 return false;
419
420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 return true;
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433}
434#else
435static inline bool deferred_pages_enabled(void)
436{
437 return false;
438}
439
440static inline bool early_page_uninitialised(unsigned long pfn)
441{
442 return false;
443}
444
445static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
446{
447 return false;
448}
449#endif
450
451/* Return a pointer to the bitmap storing bits affecting a block of pages */
452static inline unsigned long *get_pageblock_bitmap(const struct page *page,
453 unsigned long pfn)
454{
455#ifdef CONFIG_SPARSEMEM
456 return section_to_usemap(__pfn_to_section(pfn));
457#else
458 return page_zone(page)->pageblock_flags;
459#endif /* CONFIG_SPARSEMEM */
460}
461
462static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
463{
464#ifdef CONFIG_SPARSEMEM
465 pfn &= (PAGES_PER_SECTION-1);
466#else
467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
468#endif /* CONFIG_SPARSEMEM */
469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
470}
471
472static __always_inline
473unsigned long __get_pfnblock_flags_mask(const struct page *page,
474 unsigned long pfn,
475 unsigned long mask)
476{
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
479 unsigned long word;
480
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
485 /*
486 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
487 * a consistent read of the memory array, so that results, even though
488 * racy, are not corrupted.
489 */
490 word = READ_ONCE(bitmap[word_bitidx]);
491 return (word >> bitidx) & mask;
492}
493
494/**
495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
496 * @page: The page within the block of interest
497 * @pfn: The target page frame number
498 * @mask: mask of bits that the caller is interested in
499 *
500 * Return: pageblock_bits flags
501 */
502unsigned long get_pfnblock_flags_mask(const struct page *page,
503 unsigned long pfn, unsigned long mask)
504{
505 return __get_pfnblock_flags_mask(page, pfn, mask);
506}
507
508static __always_inline int get_pfnblock_migratetype(const struct page *page,
509 unsigned long pfn)
510{
511 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
512}
513
514/**
515 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
516 * @page: The page within the block of interest
517 * @flags: The flags to set
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 */
521void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
522 unsigned long pfn,
523 unsigned long mask)
524{
525 unsigned long *bitmap;
526 unsigned long bitidx, word_bitidx;
527 unsigned long old_word, word;
528
529 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
530 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
531
532 bitmap = get_pageblock_bitmap(page, pfn);
533 bitidx = pfn_to_bitidx(page, pfn);
534 word_bitidx = bitidx / BITS_PER_LONG;
535 bitidx &= (BITS_PER_LONG-1);
536
537 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
538
539 mask <<= bitidx;
540 flags <<= bitidx;
541
542 word = READ_ONCE(bitmap[word_bitidx]);
543 for (;;) {
544 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
545 if (word == old_word)
546 break;
547 word = old_word;
548 }
549}
550
551void set_pageblock_migratetype(struct page *page, int migratetype)
552{
553 if (unlikely(page_group_by_mobility_disabled &&
554 migratetype < MIGRATE_PCPTYPES))
555 migratetype = MIGRATE_UNMOVABLE;
556
557 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
558 page_to_pfn(page), MIGRATETYPE_MASK);
559}
560
561#ifdef CONFIG_DEBUG_VM
562static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
563{
564 int ret = 0;
565 unsigned seq;
566 unsigned long pfn = page_to_pfn(page);
567 unsigned long sp, start_pfn;
568
569 do {
570 seq = zone_span_seqbegin(zone);
571 start_pfn = zone->zone_start_pfn;
572 sp = zone->spanned_pages;
573 if (!zone_spans_pfn(zone, pfn))
574 ret = 1;
575 } while (zone_span_seqretry(zone, seq));
576
577 if (ret)
578 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
579 pfn, zone_to_nid(zone), zone->name,
580 start_pfn, start_pfn + sp);
581
582 return ret;
583}
584
585static int page_is_consistent(struct zone *zone, struct page *page)
586{
587 if (zone != page_zone(page))
588 return 0;
589
590 return 1;
591}
592/*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
595static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596{
597 if (page_outside_zone_boundaries(zone, page))
598 return 1;
599 if (!page_is_consistent(zone, page))
600 return 1;
601
602 return 0;
603}
604#else
605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606{
607 return 0;
608}
609#endif
610
611static void bad_page(struct page *page, const char *reason)
612{
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
627 pr_alert(
628 "BUG: Bad page state: %lu messages suppressed\n",
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 dump_page(page, reason);
640
641 print_modules();
642 dump_stack();
643out:
644 /* Leave bad fields for debug, except PageBuddy could make trouble */
645 page_mapcount_reset(page); /* remove PageBuddy */
646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
647}
648
649static inline unsigned int order_to_pindex(int migratetype, int order)
650{
651 int base = order;
652
653#ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 if (order > PAGE_ALLOC_COSTLY_ORDER) {
655 VM_BUG_ON(order != pageblock_order);
656 base = PAGE_ALLOC_COSTLY_ORDER + 1;
657 }
658#else
659 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
660#endif
661
662 return (MIGRATE_PCPTYPES * base) + migratetype;
663}
664
665static inline int pindex_to_order(unsigned int pindex)
666{
667 int order = pindex / MIGRATE_PCPTYPES;
668
669#ifdef CONFIG_TRANSPARENT_HUGEPAGE
670 if (order > PAGE_ALLOC_COSTLY_ORDER)
671 order = pageblock_order;
672#else
673 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
674#endif
675
676 return order;
677}
678
679static inline bool pcp_allowed_order(unsigned int order)
680{
681 if (order <= PAGE_ALLOC_COSTLY_ORDER)
682 return true;
683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 if (order == pageblock_order)
685 return true;
686#endif
687 return false;
688}
689
690static inline void free_the_page(struct page *page, unsigned int order)
691{
692 if (pcp_allowed_order(order)) /* Via pcp? */
693 free_unref_page(page, order);
694 else
695 __free_pages_ok(page, order, FPI_NONE);
696}
697
698/*
699 * Higher-order pages are called "compound pages". They are structured thusly:
700 *
701 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
702 *
703 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
704 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
705 *
706 * The first tail page's ->compound_dtor holds the offset in array of compound
707 * page destructors. See compound_page_dtors.
708 *
709 * The first tail page's ->compound_order holds the order of allocation.
710 * This usage means that zero-order pages may not be compound.
711 */
712
713void free_compound_page(struct page *page)
714{
715 mem_cgroup_uncharge(page_folio(page));
716 free_the_page(page, compound_order(page));
717}
718
719static void prep_compound_head(struct page *page, unsigned int order)
720{
721 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
722 set_compound_order(page, order);
723 atomic_set(compound_mapcount_ptr(page), -1);
724 atomic_set(compound_pincount_ptr(page), 0);
725}
726
727static void prep_compound_tail(struct page *head, int tail_idx)
728{
729 struct page *p = head + tail_idx;
730
731 p->mapping = TAIL_MAPPING;
732 set_compound_head(p, head);
733}
734
735void prep_compound_page(struct page *page, unsigned int order)
736{
737 int i;
738 int nr_pages = 1 << order;
739
740 __SetPageHead(page);
741 for (i = 1; i < nr_pages; i++)
742 prep_compound_tail(page, i);
743
744 prep_compound_head(page, order);
745}
746
747#ifdef CONFIG_DEBUG_PAGEALLOC
748unsigned int _debug_guardpage_minorder;
749
750bool _debug_pagealloc_enabled_early __read_mostly
751 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
752EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
753DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
754EXPORT_SYMBOL(_debug_pagealloc_enabled);
755
756DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
757
758static int __init early_debug_pagealloc(char *buf)
759{
760 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
761}
762early_param("debug_pagealloc", early_debug_pagealloc);
763
764static int __init debug_guardpage_minorder_setup(char *buf)
765{
766 unsigned long res;
767
768 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
769 pr_err("Bad debug_guardpage_minorder value\n");
770 return 0;
771 }
772 _debug_guardpage_minorder = res;
773 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
774 return 0;
775}
776early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
777
778static inline bool set_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype)
780{
781 if (!debug_guardpage_enabled())
782 return false;
783
784 if (order >= debug_guardpage_minorder())
785 return false;
786
787 __SetPageGuard(page);
788 INIT_LIST_HEAD(&page->lru);
789 set_page_private(page, order);
790 /* Guard pages are not available for any usage */
791 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
792
793 return true;
794}
795
796static inline void clear_page_guard(struct zone *zone, struct page *page,
797 unsigned int order, int migratetype)
798{
799 if (!debug_guardpage_enabled())
800 return;
801
802 __ClearPageGuard(page);
803
804 set_page_private(page, 0);
805 if (!is_migrate_isolate(migratetype))
806 __mod_zone_freepage_state(zone, (1 << order), migratetype);
807}
808#else
809static inline bool set_page_guard(struct zone *zone, struct page *page,
810 unsigned int order, int migratetype) { return false; }
811static inline void clear_page_guard(struct zone *zone, struct page *page,
812 unsigned int order, int migratetype) {}
813#endif
814
815/*
816 * Enable static keys related to various memory debugging and hardening options.
817 * Some override others, and depend on early params that are evaluated in the
818 * order of appearance. So we need to first gather the full picture of what was
819 * enabled, and then make decisions.
820 */
821void init_mem_debugging_and_hardening(void)
822{
823 bool page_poisoning_requested = false;
824
825#ifdef CONFIG_PAGE_POISONING
826 /*
827 * Page poisoning is debug page alloc for some arches. If
828 * either of those options are enabled, enable poisoning.
829 */
830 if (page_poisoning_enabled() ||
831 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
832 debug_pagealloc_enabled())) {
833 static_branch_enable(&_page_poisoning_enabled);
834 page_poisoning_requested = true;
835 }
836#endif
837
838 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
839 page_poisoning_requested) {
840 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
841 "will take precedence over init_on_alloc and init_on_free\n");
842 _init_on_alloc_enabled_early = false;
843 _init_on_free_enabled_early = false;
844 }
845
846 if (_init_on_alloc_enabled_early)
847 static_branch_enable(&init_on_alloc);
848 else
849 static_branch_disable(&init_on_alloc);
850
851 if (_init_on_free_enabled_early)
852 static_branch_enable(&init_on_free);
853 else
854 static_branch_disable(&init_on_free);
855
856#ifdef CONFIG_DEBUG_PAGEALLOC
857 if (!debug_pagealloc_enabled())
858 return;
859
860 static_branch_enable(&_debug_pagealloc_enabled);
861
862 if (!debug_guardpage_minorder())
863 return;
864
865 static_branch_enable(&_debug_guardpage_enabled);
866#endif
867}
868
869static inline void set_buddy_order(struct page *page, unsigned int order)
870{
871 set_page_private(page, order);
872 __SetPageBuddy(page);
873}
874
875#ifdef CONFIG_COMPACTION
876static inline struct capture_control *task_capc(struct zone *zone)
877{
878 struct capture_control *capc = current->capture_control;
879
880 return unlikely(capc) &&
881 !(current->flags & PF_KTHREAD) &&
882 !capc->page &&
883 capc->cc->zone == zone ? capc : NULL;
884}
885
886static inline bool
887compaction_capture(struct capture_control *capc, struct page *page,
888 int order, int migratetype)
889{
890 if (!capc || order != capc->cc->order)
891 return false;
892
893 /* Do not accidentally pollute CMA or isolated regions*/
894 if (is_migrate_cma(migratetype) ||
895 is_migrate_isolate(migratetype))
896 return false;
897
898 /*
899 * Do not let lower order allocations pollute a movable pageblock.
900 * This might let an unmovable request use a reclaimable pageblock
901 * and vice-versa but no more than normal fallback logic which can
902 * have trouble finding a high-order free page.
903 */
904 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
905 return false;
906
907 capc->page = page;
908 return true;
909}
910
911#else
912static inline struct capture_control *task_capc(struct zone *zone)
913{
914 return NULL;
915}
916
917static inline bool
918compaction_capture(struct capture_control *capc, struct page *page,
919 int order, int migratetype)
920{
921 return false;
922}
923#endif /* CONFIG_COMPACTION */
924
925/* Used for pages not on another list */
926static inline void add_to_free_list(struct page *page, struct zone *zone,
927 unsigned int order, int migratetype)
928{
929 struct free_area *area = &zone->free_area[order];
930
931 list_add(&page->lru, &area->free_list[migratetype]);
932 area->nr_free++;
933}
934
935/* Used for pages not on another list */
936static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
937 unsigned int order, int migratetype)
938{
939 struct free_area *area = &zone->free_area[order];
940
941 list_add_tail(&page->lru, &area->free_list[migratetype]);
942 area->nr_free++;
943}
944
945/*
946 * Used for pages which are on another list. Move the pages to the tail
947 * of the list - so the moved pages won't immediately be considered for
948 * allocation again (e.g., optimization for memory onlining).
949 */
950static inline void move_to_free_list(struct page *page, struct zone *zone,
951 unsigned int order, int migratetype)
952{
953 struct free_area *area = &zone->free_area[order];
954
955 list_move_tail(&page->lru, &area->free_list[migratetype]);
956}
957
958static inline void del_page_from_free_list(struct page *page, struct zone *zone,
959 unsigned int order)
960{
961 /* clear reported state and update reported page count */
962 if (page_reported(page))
963 __ClearPageReported(page);
964
965 list_del(&page->lru);
966 __ClearPageBuddy(page);
967 set_page_private(page, 0);
968 zone->free_area[order].nr_free--;
969}
970
971/*
972 * If this is not the largest possible page, check if the buddy
973 * of the next-highest order is free. If it is, it's possible
974 * that pages are being freed that will coalesce soon. In case,
975 * that is happening, add the free page to the tail of the list
976 * so it's less likely to be used soon and more likely to be merged
977 * as a higher order page
978 */
979static inline bool
980buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
981 struct page *page, unsigned int order)
982{
983 unsigned long higher_page_pfn;
984 struct page *higher_page;
985
986 if (order >= MAX_ORDER - 2)
987 return false;
988
989 higher_page_pfn = buddy_pfn & pfn;
990 higher_page = page + (higher_page_pfn - pfn);
991
992 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
993 NULL) != NULL;
994}
995
996/*
997 * Freeing function for a buddy system allocator.
998 *
999 * The concept of a buddy system is to maintain direct-mapped table
1000 * (containing bit values) for memory blocks of various "orders".
1001 * The bottom level table contains the map for the smallest allocatable
1002 * units of memory (here, pages), and each level above it describes
1003 * pairs of units from the levels below, hence, "buddies".
1004 * At a high level, all that happens here is marking the table entry
1005 * at the bottom level available, and propagating the changes upward
1006 * as necessary, plus some accounting needed to play nicely with other
1007 * parts of the VM system.
1008 * At each level, we keep a list of pages, which are heads of continuous
1009 * free pages of length of (1 << order) and marked with PageBuddy.
1010 * Page's order is recorded in page_private(page) field.
1011 * So when we are allocating or freeing one, we can derive the state of the
1012 * other. That is, if we allocate a small block, and both were
1013 * free, the remainder of the region must be split into blocks.
1014 * If a block is freed, and its buddy is also free, then this
1015 * triggers coalescing into a block of larger size.
1016 *
1017 * -- nyc
1018 */
1019
1020static inline void __free_one_page(struct page *page,
1021 unsigned long pfn,
1022 struct zone *zone, unsigned int order,
1023 int migratetype, fpi_t fpi_flags)
1024{
1025 struct capture_control *capc = task_capc(zone);
1026 unsigned long buddy_pfn;
1027 unsigned long combined_pfn;
1028 struct page *buddy;
1029 bool to_tail;
1030
1031 VM_BUG_ON(!zone_is_initialized(zone));
1032 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1033
1034 VM_BUG_ON(migratetype == -1);
1035 if (likely(!is_migrate_isolate(migratetype)))
1036 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1037
1038 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1039 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1040
1041 while (order < MAX_ORDER - 1) {
1042 if (compaction_capture(capc, page, order, migratetype)) {
1043 __mod_zone_freepage_state(zone, -(1 << order),
1044 migratetype);
1045 return;
1046 }
1047
1048 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1049 if (!buddy)
1050 goto done_merging;
1051
1052 if (unlikely(order >= pageblock_order)) {
1053 /*
1054 * We want to prevent merge between freepages on pageblock
1055 * without fallbacks and normal pageblock. Without this,
1056 * pageblock isolation could cause incorrect freepage or CMA
1057 * accounting or HIGHATOMIC accounting.
1058 */
1059 int buddy_mt = get_pageblock_migratetype(buddy);
1060
1061 if (migratetype != buddy_mt
1062 && (!migratetype_is_mergeable(migratetype) ||
1063 !migratetype_is_mergeable(buddy_mt)))
1064 goto done_merging;
1065 }
1066
1067 /*
1068 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1069 * merge with it and move up one order.
1070 */
1071 if (page_is_guard(buddy))
1072 clear_page_guard(zone, buddy, order, migratetype);
1073 else
1074 del_page_from_free_list(buddy, zone, order);
1075 combined_pfn = buddy_pfn & pfn;
1076 page = page + (combined_pfn - pfn);
1077 pfn = combined_pfn;
1078 order++;
1079 }
1080
1081done_merging:
1082 set_buddy_order(page, order);
1083
1084 if (fpi_flags & FPI_TO_TAIL)
1085 to_tail = true;
1086 else if (is_shuffle_order(order))
1087 to_tail = shuffle_pick_tail();
1088 else
1089 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1090
1091 if (to_tail)
1092 add_to_free_list_tail(page, zone, order, migratetype);
1093 else
1094 add_to_free_list(page, zone, order, migratetype);
1095
1096 /* Notify page reporting subsystem of freed page */
1097 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1098 page_reporting_notify_free(order);
1099}
1100
1101/**
1102 * split_free_page() -- split a free page at split_pfn_offset
1103 * @free_page: the original free page
1104 * @order: the order of the page
1105 * @split_pfn_offset: split offset within the page
1106 *
1107 * Return -ENOENT if the free page is changed, otherwise 0
1108 *
1109 * It is used when the free page crosses two pageblocks with different migratetypes
1110 * at split_pfn_offset within the page. The split free page will be put into
1111 * separate migratetype lists afterwards. Otherwise, the function achieves
1112 * nothing.
1113 */
1114int split_free_page(struct page *free_page,
1115 unsigned int order, unsigned long split_pfn_offset)
1116{
1117 struct zone *zone = page_zone(free_page);
1118 unsigned long free_page_pfn = page_to_pfn(free_page);
1119 unsigned long pfn;
1120 unsigned long flags;
1121 int free_page_order;
1122 int mt;
1123 int ret = 0;
1124
1125 if (split_pfn_offset == 0)
1126 return ret;
1127
1128 spin_lock_irqsave(&zone->lock, flags);
1129
1130 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1131 ret = -ENOENT;
1132 goto out;
1133 }
1134
1135 mt = get_pageblock_migratetype(free_page);
1136 if (likely(!is_migrate_isolate(mt)))
1137 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1138
1139 del_page_from_free_list(free_page, zone, order);
1140 for (pfn = free_page_pfn;
1141 pfn < free_page_pfn + (1UL << order);) {
1142 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1143
1144 free_page_order = min_t(unsigned int,
1145 pfn ? __ffs(pfn) : order,
1146 __fls(split_pfn_offset));
1147 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1148 mt, FPI_NONE);
1149 pfn += 1UL << free_page_order;
1150 split_pfn_offset -= (1UL << free_page_order);
1151 /* we have done the first part, now switch to second part */
1152 if (split_pfn_offset == 0)
1153 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1154 }
1155out:
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157 return ret;
1158}
1159/*
1160 * A bad page could be due to a number of fields. Instead of multiple branches,
1161 * try and check multiple fields with one check. The caller must do a detailed
1162 * check if necessary.
1163 */
1164static inline bool page_expected_state(struct page *page,
1165 unsigned long check_flags)
1166{
1167 if (unlikely(atomic_read(&page->_mapcount) != -1))
1168 return false;
1169
1170 if (unlikely((unsigned long)page->mapping |
1171 page_ref_count(page) |
1172#ifdef CONFIG_MEMCG
1173 page->memcg_data |
1174#endif
1175 (page->flags & check_flags)))
1176 return false;
1177
1178 return true;
1179}
1180
1181static const char *page_bad_reason(struct page *page, unsigned long flags)
1182{
1183 const char *bad_reason = NULL;
1184
1185 if (unlikely(atomic_read(&page->_mapcount) != -1))
1186 bad_reason = "nonzero mapcount";
1187 if (unlikely(page->mapping != NULL))
1188 bad_reason = "non-NULL mapping";
1189 if (unlikely(page_ref_count(page) != 0))
1190 bad_reason = "nonzero _refcount";
1191 if (unlikely(page->flags & flags)) {
1192 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1193 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1194 else
1195 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1196 }
1197#ifdef CONFIG_MEMCG
1198 if (unlikely(page->memcg_data))
1199 bad_reason = "page still charged to cgroup";
1200#endif
1201 return bad_reason;
1202}
1203
1204static void check_free_page_bad(struct page *page)
1205{
1206 bad_page(page,
1207 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1208}
1209
1210static inline int check_free_page(struct page *page)
1211{
1212 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1213 return 0;
1214
1215 /* Something has gone sideways, find it */
1216 check_free_page_bad(page);
1217 return 1;
1218}
1219
1220static int free_tail_pages_check(struct page *head_page, struct page *page)
1221{
1222 int ret = 1;
1223
1224 /*
1225 * We rely page->lru.next never has bit 0 set, unless the page
1226 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1227 */
1228 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1229
1230 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1231 ret = 0;
1232 goto out;
1233 }
1234 switch (page - head_page) {
1235 case 1:
1236 /* the first tail page: ->mapping may be compound_mapcount() */
1237 if (unlikely(compound_mapcount(page))) {
1238 bad_page(page, "nonzero compound_mapcount");
1239 goto out;
1240 }
1241 break;
1242 case 2:
1243 /*
1244 * the second tail page: ->mapping is
1245 * deferred_list.next -- ignore value.
1246 */
1247 break;
1248 default:
1249 if (page->mapping != TAIL_MAPPING) {
1250 bad_page(page, "corrupted mapping in tail page");
1251 goto out;
1252 }
1253 break;
1254 }
1255 if (unlikely(!PageTail(page))) {
1256 bad_page(page, "PageTail not set");
1257 goto out;
1258 }
1259 if (unlikely(compound_head(page) != head_page)) {
1260 bad_page(page, "compound_head not consistent");
1261 goto out;
1262 }
1263 ret = 0;
1264out:
1265 page->mapping = NULL;
1266 clear_compound_head(page);
1267 return ret;
1268}
1269
1270/*
1271 * Skip KASAN memory poisoning when either:
1272 *
1273 * 1. Deferred memory initialization has not yet completed,
1274 * see the explanation below.
1275 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1276 * see the comment next to it.
1277 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1278 * see the comment next to it.
1279 *
1280 * Poisoning pages during deferred memory init will greatly lengthen the
1281 * process and cause problem in large memory systems as the deferred pages
1282 * initialization is done with interrupt disabled.
1283 *
1284 * Assuming that there will be no reference to those newly initialized
1285 * pages before they are ever allocated, this should have no effect on
1286 * KASAN memory tracking as the poison will be properly inserted at page
1287 * allocation time. The only corner case is when pages are allocated by
1288 * on-demand allocation and then freed again before the deferred pages
1289 * initialization is done, but this is not likely to happen.
1290 */
1291static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1292{
1293 return deferred_pages_enabled() ||
1294 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1295 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1296 PageSkipKASanPoison(page);
1297}
1298
1299static void kernel_init_free_pages(struct page *page, int numpages)
1300{
1301 int i;
1302
1303 /* s390's use of memset() could override KASAN redzones. */
1304 kasan_disable_current();
1305 for (i = 0; i < numpages; i++) {
1306 u8 tag = page_kasan_tag(page + i);
1307 page_kasan_tag_reset(page + i);
1308 clear_highpage(page + i);
1309 page_kasan_tag_set(page + i, tag);
1310 }
1311 kasan_enable_current();
1312}
1313
1314static __always_inline bool free_pages_prepare(struct page *page,
1315 unsigned int order, bool check_free, fpi_t fpi_flags)
1316{
1317 int bad = 0;
1318 bool init = want_init_on_free();
1319
1320 VM_BUG_ON_PAGE(PageTail(page), page);
1321
1322 trace_mm_page_free(page, order);
1323
1324 if (unlikely(PageHWPoison(page)) && !order) {
1325 /*
1326 * Do not let hwpoison pages hit pcplists/buddy
1327 * Untie memcg state and reset page's owner
1328 */
1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 __memcg_kmem_uncharge_page(page, order);
1331 reset_page_owner(page, order);
1332 page_table_check_free(page, order);
1333 return false;
1334 }
1335
1336 /*
1337 * Check tail pages before head page information is cleared to
1338 * avoid checking PageCompound for order-0 pages.
1339 */
1340 if (unlikely(order)) {
1341 bool compound = PageCompound(page);
1342 int i;
1343
1344 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1345
1346 if (compound) {
1347 ClearPageDoubleMap(page);
1348 ClearPageHasHWPoisoned(page);
1349 }
1350 for (i = 1; i < (1 << order); i++) {
1351 if (compound)
1352 bad += free_tail_pages_check(page, page + i);
1353 if (unlikely(check_free_page(page + i))) {
1354 bad++;
1355 continue;
1356 }
1357 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1358 }
1359 }
1360 if (PageMappingFlags(page))
1361 page->mapping = NULL;
1362 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1363 __memcg_kmem_uncharge_page(page, order);
1364 if (check_free)
1365 bad += check_free_page(page);
1366 if (bad)
1367 return false;
1368
1369 page_cpupid_reset_last(page);
1370 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1371 reset_page_owner(page, order);
1372 page_table_check_free(page, order);
1373
1374 if (!PageHighMem(page)) {
1375 debug_check_no_locks_freed(page_address(page),
1376 PAGE_SIZE << order);
1377 debug_check_no_obj_freed(page_address(page),
1378 PAGE_SIZE << order);
1379 }
1380
1381 kernel_poison_pages(page, 1 << order);
1382
1383 /*
1384 * As memory initialization might be integrated into KASAN,
1385 * KASAN poisoning and memory initialization code must be
1386 * kept together to avoid discrepancies in behavior.
1387 *
1388 * With hardware tag-based KASAN, memory tags must be set before the
1389 * page becomes unavailable via debug_pagealloc or arch_free_page.
1390 */
1391 if (!should_skip_kasan_poison(page, fpi_flags)) {
1392 kasan_poison_pages(page, order, init);
1393
1394 /* Memory is already initialized if KASAN did it internally. */
1395 if (kasan_has_integrated_init())
1396 init = false;
1397 }
1398 if (init)
1399 kernel_init_free_pages(page, 1 << order);
1400
1401 /*
1402 * arch_free_page() can make the page's contents inaccessible. s390
1403 * does this. So nothing which can access the page's contents should
1404 * happen after this.
1405 */
1406 arch_free_page(page, order);
1407
1408 debug_pagealloc_unmap_pages(page, 1 << order);
1409
1410 return true;
1411}
1412
1413#ifdef CONFIG_DEBUG_VM
1414/*
1415 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1416 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1417 * moved from pcp lists to free lists.
1418 */
1419static bool free_pcp_prepare(struct page *page, unsigned int order)
1420{
1421 return free_pages_prepare(page, order, true, FPI_NONE);
1422}
1423
1424static bool bulkfree_pcp_prepare(struct page *page)
1425{
1426 if (debug_pagealloc_enabled_static())
1427 return check_free_page(page);
1428 else
1429 return false;
1430}
1431#else
1432/*
1433 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1434 * moving from pcp lists to free list in order to reduce overhead. With
1435 * debug_pagealloc enabled, they are checked also immediately when being freed
1436 * to the pcp lists.
1437 */
1438static bool free_pcp_prepare(struct page *page, unsigned int order)
1439{
1440 if (debug_pagealloc_enabled_static())
1441 return free_pages_prepare(page, order, true, FPI_NONE);
1442 else
1443 return free_pages_prepare(page, order, false, FPI_NONE);
1444}
1445
1446static bool bulkfree_pcp_prepare(struct page *page)
1447{
1448 return check_free_page(page);
1449}
1450#endif /* CONFIG_DEBUG_VM */
1451
1452/*
1453 * Frees a number of pages from the PCP lists
1454 * Assumes all pages on list are in same zone.
1455 * count is the number of pages to free.
1456 */
1457static void free_pcppages_bulk(struct zone *zone, int count,
1458 struct per_cpu_pages *pcp,
1459 int pindex)
1460{
1461 int min_pindex = 0;
1462 int max_pindex = NR_PCP_LISTS - 1;
1463 unsigned int order;
1464 bool isolated_pageblocks;
1465 struct page *page;
1466
1467 /*
1468 * Ensure proper count is passed which otherwise would stuck in the
1469 * below while (list_empty(list)) loop.
1470 */
1471 count = min(pcp->count, count);
1472
1473 /* Ensure requested pindex is drained first. */
1474 pindex = pindex - 1;
1475
1476 /*
1477 * local_lock_irq held so equivalent to spin_lock_irqsave for
1478 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1479 */
1480 spin_lock(&zone->lock);
1481 isolated_pageblocks = has_isolate_pageblock(zone);
1482
1483 while (count > 0) {
1484 struct list_head *list;
1485 int nr_pages;
1486
1487 /* Remove pages from lists in a round-robin fashion. */
1488 do {
1489 if (++pindex > max_pindex)
1490 pindex = min_pindex;
1491 list = &pcp->lists[pindex];
1492 if (!list_empty(list))
1493 break;
1494
1495 if (pindex == max_pindex)
1496 max_pindex--;
1497 if (pindex == min_pindex)
1498 min_pindex++;
1499 } while (1);
1500
1501 order = pindex_to_order(pindex);
1502 nr_pages = 1 << order;
1503 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1504 do {
1505 int mt;
1506
1507 page = list_last_entry(list, struct page, lru);
1508 mt = get_pcppage_migratetype(page);
1509
1510 /* must delete to avoid corrupting pcp list */
1511 list_del(&page->lru);
1512 count -= nr_pages;
1513 pcp->count -= nr_pages;
1514
1515 if (bulkfree_pcp_prepare(page))
1516 continue;
1517
1518 /* MIGRATE_ISOLATE page should not go to pcplists */
1519 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1520 /* Pageblock could have been isolated meanwhile */
1521 if (unlikely(isolated_pageblocks))
1522 mt = get_pageblock_migratetype(page);
1523
1524 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1525 trace_mm_page_pcpu_drain(page, order, mt);
1526 } while (count > 0 && !list_empty(list));
1527 }
1528
1529 spin_unlock(&zone->lock);
1530}
1531
1532static void free_one_page(struct zone *zone,
1533 struct page *page, unsigned long pfn,
1534 unsigned int order,
1535 int migratetype, fpi_t fpi_flags)
1536{
1537 unsigned long flags;
1538
1539 spin_lock_irqsave(&zone->lock, flags);
1540 if (unlikely(has_isolate_pageblock(zone) ||
1541 is_migrate_isolate(migratetype))) {
1542 migratetype = get_pfnblock_migratetype(page, pfn);
1543 }
1544 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1545 spin_unlock_irqrestore(&zone->lock, flags);
1546}
1547
1548static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1549 unsigned long zone, int nid)
1550{
1551 mm_zero_struct_page(page);
1552 set_page_links(page, zone, nid, pfn);
1553 init_page_count(page);
1554 page_mapcount_reset(page);
1555 page_cpupid_reset_last(page);
1556 page_kasan_tag_reset(page);
1557
1558 INIT_LIST_HEAD(&page->lru);
1559#ifdef WANT_PAGE_VIRTUAL
1560 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1561 if (!is_highmem_idx(zone))
1562 set_page_address(page, __va(pfn << PAGE_SHIFT));
1563#endif
1564}
1565
1566#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1567static void __meminit init_reserved_page(unsigned long pfn)
1568{
1569 pg_data_t *pgdat;
1570 int nid, zid;
1571
1572 if (!early_page_uninitialised(pfn))
1573 return;
1574
1575 nid = early_pfn_to_nid(pfn);
1576 pgdat = NODE_DATA(nid);
1577
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 struct zone *zone = &pgdat->node_zones[zid];
1580
1581 if (zone_spans_pfn(zone, pfn))
1582 break;
1583 }
1584 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1585}
1586#else
1587static inline void init_reserved_page(unsigned long pfn)
1588{
1589}
1590#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1591
1592/*
1593 * Initialised pages do not have PageReserved set. This function is
1594 * called for each range allocated by the bootmem allocator and
1595 * marks the pages PageReserved. The remaining valid pages are later
1596 * sent to the buddy page allocator.
1597 */
1598void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1599{
1600 unsigned long start_pfn = PFN_DOWN(start);
1601 unsigned long end_pfn = PFN_UP(end);
1602
1603 for (; start_pfn < end_pfn; start_pfn++) {
1604 if (pfn_valid(start_pfn)) {
1605 struct page *page = pfn_to_page(start_pfn);
1606
1607 init_reserved_page(start_pfn);
1608
1609 /* Avoid false-positive PageTail() */
1610 INIT_LIST_HEAD(&page->lru);
1611
1612 /*
1613 * no need for atomic set_bit because the struct
1614 * page is not visible yet so nobody should
1615 * access it yet.
1616 */
1617 __SetPageReserved(page);
1618 }
1619 }
1620}
1621
1622static void __free_pages_ok(struct page *page, unsigned int order,
1623 fpi_t fpi_flags)
1624{
1625 unsigned long flags;
1626 int migratetype;
1627 unsigned long pfn = page_to_pfn(page);
1628 struct zone *zone = page_zone(page);
1629
1630 if (!free_pages_prepare(page, order, true, fpi_flags))
1631 return;
1632
1633 migratetype = get_pfnblock_migratetype(page, pfn);
1634
1635 spin_lock_irqsave(&zone->lock, flags);
1636 if (unlikely(has_isolate_pageblock(zone) ||
1637 is_migrate_isolate(migratetype))) {
1638 migratetype = get_pfnblock_migratetype(page, pfn);
1639 }
1640 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1641 spin_unlock_irqrestore(&zone->lock, flags);
1642
1643 __count_vm_events(PGFREE, 1 << order);
1644}
1645
1646void __free_pages_core(struct page *page, unsigned int order)
1647{
1648 unsigned int nr_pages = 1 << order;
1649 struct page *p = page;
1650 unsigned int loop;
1651
1652 /*
1653 * When initializing the memmap, __init_single_page() sets the refcount
1654 * of all pages to 1 ("allocated"/"not free"). We have to set the
1655 * refcount of all involved pages to 0.
1656 */
1657 prefetchw(p);
1658 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1659 prefetchw(p + 1);
1660 __ClearPageReserved(p);
1661 set_page_count(p, 0);
1662 }
1663 __ClearPageReserved(p);
1664 set_page_count(p, 0);
1665
1666 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1667
1668 /*
1669 * Bypass PCP and place fresh pages right to the tail, primarily
1670 * relevant for memory onlining.
1671 */
1672 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1673}
1674
1675#ifdef CONFIG_NUMA
1676
1677/*
1678 * During memory init memblocks map pfns to nids. The search is expensive and
1679 * this caches recent lookups. The implementation of __early_pfn_to_nid
1680 * treats start/end as pfns.
1681 */
1682struct mminit_pfnnid_cache {
1683 unsigned long last_start;
1684 unsigned long last_end;
1685 int last_nid;
1686};
1687
1688static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1689
1690/*
1691 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1692 */
1693static int __meminit __early_pfn_to_nid(unsigned long pfn,
1694 struct mminit_pfnnid_cache *state)
1695{
1696 unsigned long start_pfn, end_pfn;
1697 int nid;
1698
1699 if (state->last_start <= pfn && pfn < state->last_end)
1700 return state->last_nid;
1701
1702 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1703 if (nid != NUMA_NO_NODE) {
1704 state->last_start = start_pfn;
1705 state->last_end = end_pfn;
1706 state->last_nid = nid;
1707 }
1708
1709 return nid;
1710}
1711
1712int __meminit early_pfn_to_nid(unsigned long pfn)
1713{
1714 static DEFINE_SPINLOCK(early_pfn_lock);
1715 int nid;
1716
1717 spin_lock(&early_pfn_lock);
1718 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1719 if (nid < 0)
1720 nid = first_online_node;
1721 spin_unlock(&early_pfn_lock);
1722
1723 return nid;
1724}
1725#endif /* CONFIG_NUMA */
1726
1727void __init memblock_free_pages(struct page *page, unsigned long pfn,
1728 unsigned int order)
1729{
1730 if (early_page_uninitialised(pfn))
1731 return;
1732 __free_pages_core(page, order);
1733}
1734
1735/*
1736 * Check that the whole (or subset of) a pageblock given by the interval of
1737 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1738 * with the migration of free compaction scanner.
1739 *
1740 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1741 *
1742 * It's possible on some configurations to have a setup like node0 node1 node0
1743 * i.e. it's possible that all pages within a zones range of pages do not
1744 * belong to a single zone. We assume that a border between node0 and node1
1745 * can occur within a single pageblock, but not a node0 node1 node0
1746 * interleaving within a single pageblock. It is therefore sufficient to check
1747 * the first and last page of a pageblock and avoid checking each individual
1748 * page in a pageblock.
1749 */
1750struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1751 unsigned long end_pfn, struct zone *zone)
1752{
1753 struct page *start_page;
1754 struct page *end_page;
1755
1756 /* end_pfn is one past the range we are checking */
1757 end_pfn--;
1758
1759 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1760 return NULL;
1761
1762 start_page = pfn_to_online_page(start_pfn);
1763 if (!start_page)
1764 return NULL;
1765
1766 if (page_zone(start_page) != zone)
1767 return NULL;
1768
1769 end_page = pfn_to_page(end_pfn);
1770
1771 /* This gives a shorter code than deriving page_zone(end_page) */
1772 if (page_zone_id(start_page) != page_zone_id(end_page))
1773 return NULL;
1774
1775 return start_page;
1776}
1777
1778void set_zone_contiguous(struct zone *zone)
1779{
1780 unsigned long block_start_pfn = zone->zone_start_pfn;
1781 unsigned long block_end_pfn;
1782
1783 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1784 for (; block_start_pfn < zone_end_pfn(zone);
1785 block_start_pfn = block_end_pfn,
1786 block_end_pfn += pageblock_nr_pages) {
1787
1788 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1789
1790 if (!__pageblock_pfn_to_page(block_start_pfn,
1791 block_end_pfn, zone))
1792 return;
1793 cond_resched();
1794 }
1795
1796 /* We confirm that there is no hole */
1797 zone->contiguous = true;
1798}
1799
1800void clear_zone_contiguous(struct zone *zone)
1801{
1802 zone->contiguous = false;
1803}
1804
1805#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1806static void __init deferred_free_range(unsigned long pfn,
1807 unsigned long nr_pages)
1808{
1809 struct page *page;
1810 unsigned long i;
1811
1812 if (!nr_pages)
1813 return;
1814
1815 page = pfn_to_page(pfn);
1816
1817 /* Free a large naturally-aligned chunk if possible */
1818 if (nr_pages == pageblock_nr_pages &&
1819 (pfn & (pageblock_nr_pages - 1)) == 0) {
1820 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1821 __free_pages_core(page, pageblock_order);
1822 return;
1823 }
1824
1825 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1826 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1827 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1828 __free_pages_core(page, 0);
1829 }
1830}
1831
1832/* Completion tracking for deferred_init_memmap() threads */
1833static atomic_t pgdat_init_n_undone __initdata;
1834static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1835
1836static inline void __init pgdat_init_report_one_done(void)
1837{
1838 if (atomic_dec_and_test(&pgdat_init_n_undone))
1839 complete(&pgdat_init_all_done_comp);
1840}
1841
1842/*
1843 * Returns true if page needs to be initialized or freed to buddy allocator.
1844 *
1845 * First we check if pfn is valid on architectures where it is possible to have
1846 * holes within pageblock_nr_pages. On systems where it is not possible, this
1847 * function is optimized out.
1848 *
1849 * Then, we check if a current large page is valid by only checking the validity
1850 * of the head pfn.
1851 */
1852static inline bool __init deferred_pfn_valid(unsigned long pfn)
1853{
1854 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1855 return false;
1856 return true;
1857}
1858
1859/*
1860 * Free pages to buddy allocator. Try to free aligned pages in
1861 * pageblock_nr_pages sizes.
1862 */
1863static void __init deferred_free_pages(unsigned long pfn,
1864 unsigned long end_pfn)
1865{
1866 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1867 unsigned long nr_free = 0;
1868
1869 for (; pfn < end_pfn; pfn++) {
1870 if (!deferred_pfn_valid(pfn)) {
1871 deferred_free_range(pfn - nr_free, nr_free);
1872 nr_free = 0;
1873 } else if (!(pfn & nr_pgmask)) {
1874 deferred_free_range(pfn - nr_free, nr_free);
1875 nr_free = 1;
1876 } else {
1877 nr_free++;
1878 }
1879 }
1880 /* Free the last block of pages to allocator */
1881 deferred_free_range(pfn - nr_free, nr_free);
1882}
1883
1884/*
1885 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1886 * by performing it only once every pageblock_nr_pages.
1887 * Return number of pages initialized.
1888 */
1889static unsigned long __init deferred_init_pages(struct zone *zone,
1890 unsigned long pfn,
1891 unsigned long end_pfn)
1892{
1893 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1894 int nid = zone_to_nid(zone);
1895 unsigned long nr_pages = 0;
1896 int zid = zone_idx(zone);
1897 struct page *page = NULL;
1898
1899 for (; pfn < end_pfn; pfn++) {
1900 if (!deferred_pfn_valid(pfn)) {
1901 page = NULL;
1902 continue;
1903 } else if (!page || !(pfn & nr_pgmask)) {
1904 page = pfn_to_page(pfn);
1905 } else {
1906 page++;
1907 }
1908 __init_single_page(page, pfn, zid, nid);
1909 nr_pages++;
1910 }
1911 return (nr_pages);
1912}
1913
1914/*
1915 * This function is meant to pre-load the iterator for the zone init.
1916 * Specifically it walks through the ranges until we are caught up to the
1917 * first_init_pfn value and exits there. If we never encounter the value we
1918 * return false indicating there are no valid ranges left.
1919 */
1920static bool __init
1921deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1922 unsigned long *spfn, unsigned long *epfn,
1923 unsigned long first_init_pfn)
1924{
1925 u64 j;
1926
1927 /*
1928 * Start out by walking through the ranges in this zone that have
1929 * already been initialized. We don't need to do anything with them
1930 * so we just need to flush them out of the system.
1931 */
1932 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1933 if (*epfn <= first_init_pfn)
1934 continue;
1935 if (*spfn < first_init_pfn)
1936 *spfn = first_init_pfn;
1937 *i = j;
1938 return true;
1939 }
1940
1941 return false;
1942}
1943
1944/*
1945 * Initialize and free pages. We do it in two loops: first we initialize
1946 * struct page, then free to buddy allocator, because while we are
1947 * freeing pages we can access pages that are ahead (computing buddy
1948 * page in __free_one_page()).
1949 *
1950 * In order to try and keep some memory in the cache we have the loop
1951 * broken along max page order boundaries. This way we will not cause
1952 * any issues with the buddy page computation.
1953 */
1954static unsigned long __init
1955deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1956 unsigned long *end_pfn)
1957{
1958 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1959 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1960 unsigned long nr_pages = 0;
1961 u64 j = *i;
1962
1963 /* First we loop through and initialize the page values */
1964 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1965 unsigned long t;
1966
1967 if (mo_pfn <= *start_pfn)
1968 break;
1969
1970 t = min(mo_pfn, *end_pfn);
1971 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1972
1973 if (mo_pfn < *end_pfn) {
1974 *start_pfn = mo_pfn;
1975 break;
1976 }
1977 }
1978
1979 /* Reset values and now loop through freeing pages as needed */
1980 swap(j, *i);
1981
1982 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1983 unsigned long t;
1984
1985 if (mo_pfn <= spfn)
1986 break;
1987
1988 t = min(mo_pfn, epfn);
1989 deferred_free_pages(spfn, t);
1990
1991 if (mo_pfn <= epfn)
1992 break;
1993 }
1994
1995 return nr_pages;
1996}
1997
1998static void __init
1999deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2000 void *arg)
2001{
2002 unsigned long spfn, epfn;
2003 struct zone *zone = arg;
2004 u64 i;
2005
2006 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2007
2008 /*
2009 * Initialize and free pages in MAX_ORDER sized increments so that we
2010 * can avoid introducing any issues with the buddy allocator.
2011 */
2012 while (spfn < end_pfn) {
2013 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2014 cond_resched();
2015 }
2016}
2017
2018/* An arch may override for more concurrency. */
2019__weak int __init
2020deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2021{
2022 return 1;
2023}
2024
2025/* Initialise remaining memory on a node */
2026static int __init deferred_init_memmap(void *data)
2027{
2028 pg_data_t *pgdat = data;
2029 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2030 unsigned long spfn = 0, epfn = 0;
2031 unsigned long first_init_pfn, flags;
2032 unsigned long start = jiffies;
2033 struct zone *zone;
2034 int zid, max_threads;
2035 u64 i;
2036
2037 /* Bind memory initialisation thread to a local node if possible */
2038 if (!cpumask_empty(cpumask))
2039 set_cpus_allowed_ptr(current, cpumask);
2040
2041 pgdat_resize_lock(pgdat, &flags);
2042 first_init_pfn = pgdat->first_deferred_pfn;
2043 if (first_init_pfn == ULONG_MAX) {
2044 pgdat_resize_unlock(pgdat, &flags);
2045 pgdat_init_report_one_done();
2046 return 0;
2047 }
2048
2049 /* Sanity check boundaries */
2050 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2051 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2052 pgdat->first_deferred_pfn = ULONG_MAX;
2053
2054 /*
2055 * Once we unlock here, the zone cannot be grown anymore, thus if an
2056 * interrupt thread must allocate this early in boot, zone must be
2057 * pre-grown prior to start of deferred page initialization.
2058 */
2059 pgdat_resize_unlock(pgdat, &flags);
2060
2061 /* Only the highest zone is deferred so find it */
2062 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2063 zone = pgdat->node_zones + zid;
2064 if (first_init_pfn < zone_end_pfn(zone))
2065 break;
2066 }
2067
2068 /* If the zone is empty somebody else may have cleared out the zone */
2069 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2070 first_init_pfn))
2071 goto zone_empty;
2072
2073 max_threads = deferred_page_init_max_threads(cpumask);
2074
2075 while (spfn < epfn) {
2076 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2077 struct padata_mt_job job = {
2078 .thread_fn = deferred_init_memmap_chunk,
2079 .fn_arg = zone,
2080 .start = spfn,
2081 .size = epfn_align - spfn,
2082 .align = PAGES_PER_SECTION,
2083 .min_chunk = PAGES_PER_SECTION,
2084 .max_threads = max_threads,
2085 };
2086
2087 padata_do_multithreaded(&job);
2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2089 epfn_align);
2090 }
2091zone_empty:
2092 /* Sanity check that the next zone really is unpopulated */
2093 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2094
2095 pr_info("node %d deferred pages initialised in %ums\n",
2096 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2097
2098 pgdat_init_report_one_done();
2099 return 0;
2100}
2101
2102/*
2103 * If this zone has deferred pages, try to grow it by initializing enough
2104 * deferred pages to satisfy the allocation specified by order, rounded up to
2105 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2106 * of SECTION_SIZE bytes by initializing struct pages in increments of
2107 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2108 *
2109 * Return true when zone was grown, otherwise return false. We return true even
2110 * when we grow less than requested, to let the caller decide if there are
2111 * enough pages to satisfy the allocation.
2112 *
2113 * Note: We use noinline because this function is needed only during boot, and
2114 * it is called from a __ref function _deferred_grow_zone. This way we are
2115 * making sure that it is not inlined into permanent text section.
2116 */
2117static noinline bool __init
2118deferred_grow_zone(struct zone *zone, unsigned int order)
2119{
2120 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2121 pg_data_t *pgdat = zone->zone_pgdat;
2122 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2123 unsigned long spfn, epfn, flags;
2124 unsigned long nr_pages = 0;
2125 u64 i;
2126
2127 /* Only the last zone may have deferred pages */
2128 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2129 return false;
2130
2131 pgdat_resize_lock(pgdat, &flags);
2132
2133 /*
2134 * If someone grew this zone while we were waiting for spinlock, return
2135 * true, as there might be enough pages already.
2136 */
2137 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2138 pgdat_resize_unlock(pgdat, &flags);
2139 return true;
2140 }
2141
2142 /* If the zone is empty somebody else may have cleared out the zone */
2143 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2144 first_deferred_pfn)) {
2145 pgdat->first_deferred_pfn = ULONG_MAX;
2146 pgdat_resize_unlock(pgdat, &flags);
2147 /* Retry only once. */
2148 return first_deferred_pfn != ULONG_MAX;
2149 }
2150
2151 /*
2152 * Initialize and free pages in MAX_ORDER sized increments so
2153 * that we can avoid introducing any issues with the buddy
2154 * allocator.
2155 */
2156 while (spfn < epfn) {
2157 /* update our first deferred PFN for this section */
2158 first_deferred_pfn = spfn;
2159
2160 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2161 touch_nmi_watchdog();
2162
2163 /* We should only stop along section boundaries */
2164 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2165 continue;
2166
2167 /* If our quota has been met we can stop here */
2168 if (nr_pages >= nr_pages_needed)
2169 break;
2170 }
2171
2172 pgdat->first_deferred_pfn = spfn;
2173 pgdat_resize_unlock(pgdat, &flags);
2174
2175 return nr_pages > 0;
2176}
2177
2178/*
2179 * deferred_grow_zone() is __init, but it is called from
2180 * get_page_from_freelist() during early boot until deferred_pages permanently
2181 * disables this call. This is why we have refdata wrapper to avoid warning,
2182 * and to ensure that the function body gets unloaded.
2183 */
2184static bool __ref
2185_deferred_grow_zone(struct zone *zone, unsigned int order)
2186{
2187 return deferred_grow_zone(zone, order);
2188}
2189
2190#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2191
2192void __init page_alloc_init_late(void)
2193{
2194 struct zone *zone;
2195 int nid;
2196
2197#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2198
2199 /* There will be num_node_state(N_MEMORY) threads */
2200 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2201 for_each_node_state(nid, N_MEMORY) {
2202 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2203 }
2204
2205 /* Block until all are initialised */
2206 wait_for_completion(&pgdat_init_all_done_comp);
2207
2208 /*
2209 * We initialized the rest of the deferred pages. Permanently disable
2210 * on-demand struct page initialization.
2211 */
2212 static_branch_disable(&deferred_pages);
2213
2214 /* Reinit limits that are based on free pages after the kernel is up */
2215 files_maxfiles_init();
2216#endif
2217
2218 buffer_init();
2219
2220 /* Discard memblock private memory */
2221 memblock_discard();
2222
2223 for_each_node_state(nid, N_MEMORY)
2224 shuffle_free_memory(NODE_DATA(nid));
2225
2226 for_each_populated_zone(zone)
2227 set_zone_contiguous(zone);
2228}
2229
2230#ifdef CONFIG_CMA
2231/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2232void __init init_cma_reserved_pageblock(struct page *page)
2233{
2234 unsigned i = pageblock_nr_pages;
2235 struct page *p = page;
2236
2237 do {
2238 __ClearPageReserved(p);
2239 set_page_count(p, 0);
2240 } while (++p, --i);
2241
2242 set_pageblock_migratetype(page, MIGRATE_CMA);
2243 set_page_refcounted(page);
2244 __free_pages(page, pageblock_order);
2245
2246 adjust_managed_page_count(page, pageblock_nr_pages);
2247 page_zone(page)->cma_pages += pageblock_nr_pages;
2248}
2249#endif
2250
2251/*
2252 * The order of subdivision here is critical for the IO subsystem.
2253 * Please do not alter this order without good reasons and regression
2254 * testing. Specifically, as large blocks of memory are subdivided,
2255 * the order in which smaller blocks are delivered depends on the order
2256 * they're subdivided in this function. This is the primary factor
2257 * influencing the order in which pages are delivered to the IO
2258 * subsystem according to empirical testing, and this is also justified
2259 * by considering the behavior of a buddy system containing a single
2260 * large block of memory acted on by a series of small allocations.
2261 * This behavior is a critical factor in sglist merging's success.
2262 *
2263 * -- nyc
2264 */
2265static inline void expand(struct zone *zone, struct page *page,
2266 int low, int high, int migratetype)
2267{
2268 unsigned long size = 1 << high;
2269
2270 while (high > low) {
2271 high--;
2272 size >>= 1;
2273 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2274
2275 /*
2276 * Mark as guard pages (or page), that will allow to
2277 * merge back to allocator when buddy will be freed.
2278 * Corresponding page table entries will not be touched,
2279 * pages will stay not present in virtual address space
2280 */
2281 if (set_page_guard(zone, &page[size], high, migratetype))
2282 continue;
2283
2284 add_to_free_list(&page[size], zone, high, migratetype);
2285 set_buddy_order(&page[size], high);
2286 }
2287}
2288
2289static void check_new_page_bad(struct page *page)
2290{
2291 if (unlikely(page->flags & __PG_HWPOISON)) {
2292 /* Don't complain about hwpoisoned pages */
2293 page_mapcount_reset(page); /* remove PageBuddy */
2294 return;
2295 }
2296
2297 bad_page(page,
2298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2299}
2300
2301/*
2302 * This page is about to be returned from the page allocator
2303 */
2304static inline int check_new_page(struct page *page)
2305{
2306 if (likely(page_expected_state(page,
2307 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2308 return 0;
2309
2310 check_new_page_bad(page);
2311 return 1;
2312}
2313
2314static bool check_new_pages(struct page *page, unsigned int order)
2315{
2316 int i;
2317 for (i = 0; i < (1 << order); i++) {
2318 struct page *p = page + i;
2319
2320 if (unlikely(check_new_page(p)))
2321 return true;
2322 }
2323
2324 return false;
2325}
2326
2327#ifdef CONFIG_DEBUG_VM
2328/*
2329 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2330 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2331 * also checked when pcp lists are refilled from the free lists.
2332 */
2333static inline bool check_pcp_refill(struct page *page, unsigned int order)
2334{
2335 if (debug_pagealloc_enabled_static())
2336 return check_new_pages(page, order);
2337 else
2338 return false;
2339}
2340
2341static inline bool check_new_pcp(struct page *page, unsigned int order)
2342{
2343 return check_new_pages(page, order);
2344}
2345#else
2346/*
2347 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2348 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2349 * enabled, they are also checked when being allocated from the pcp lists.
2350 */
2351static inline bool check_pcp_refill(struct page *page, unsigned int order)
2352{
2353 return check_new_pages(page, order);
2354}
2355static inline bool check_new_pcp(struct page *page, unsigned int order)
2356{
2357 if (debug_pagealloc_enabled_static())
2358 return check_new_pages(page, order);
2359 else
2360 return false;
2361}
2362#endif /* CONFIG_DEBUG_VM */
2363
2364static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2365{
2366 /* Don't skip if a software KASAN mode is enabled. */
2367 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2368 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2369 return false;
2370
2371 /* Skip, if hardware tag-based KASAN is not enabled. */
2372 if (!kasan_hw_tags_enabled())
2373 return true;
2374
2375 /*
2376 * With hardware tag-based KASAN enabled, skip if either:
2377 *
2378 * 1. Memory tags have already been cleared via tag_clear_highpage().
2379 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2380 */
2381 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2382}
2383
2384static inline bool should_skip_init(gfp_t flags)
2385{
2386 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2387 if (!kasan_hw_tags_enabled())
2388 return false;
2389
2390 /* For hardware tag-based KASAN, skip if requested. */
2391 return (flags & __GFP_SKIP_ZERO);
2392}
2393
2394inline void post_alloc_hook(struct page *page, unsigned int order,
2395 gfp_t gfp_flags)
2396{
2397 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2398 !should_skip_init(gfp_flags);
2399 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2400
2401 set_page_private(page, 0);
2402 set_page_refcounted(page);
2403
2404 arch_alloc_page(page, order);
2405 debug_pagealloc_map_pages(page, 1 << order);
2406
2407 /*
2408 * Page unpoisoning must happen before memory initialization.
2409 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410 * allocations and the page unpoisoning code will complain.
2411 */
2412 kernel_unpoison_pages(page, 1 << order);
2413
2414 /*
2415 * As memory initialization might be integrated into KASAN,
2416 * KASAN unpoisoning and memory initializion code must be
2417 * kept together to avoid discrepancies in behavior.
2418 */
2419
2420 /*
2421 * If memory tags should be zeroed (which happens only when memory
2422 * should be initialized as well).
2423 */
2424 if (init_tags) {
2425 int i;
2426
2427 /* Initialize both memory and tags. */
2428 for (i = 0; i != 1 << order; ++i)
2429 tag_clear_highpage(page + i);
2430
2431 /* Note that memory is already initialized by the loop above. */
2432 init = false;
2433 }
2434 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2435 /* Unpoison shadow memory or set memory tags. */
2436 kasan_unpoison_pages(page, order, init);
2437
2438 /* Note that memory is already initialized by KASAN. */
2439 if (kasan_has_integrated_init())
2440 init = false;
2441 }
2442 /* If memory is still not initialized, do it now. */
2443 if (init)
2444 kernel_init_free_pages(page, 1 << order);
2445 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2446 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2447 SetPageSkipKASanPoison(page);
2448
2449 set_page_owner(page, order, gfp_flags);
2450 page_table_check_alloc(page, order);
2451}
2452
2453static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2454 unsigned int alloc_flags)
2455{
2456 post_alloc_hook(page, order, gfp_flags);
2457
2458 if (order && (gfp_flags & __GFP_COMP))
2459 prep_compound_page(page, order);
2460
2461 /*
2462 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2463 * allocate the page. The expectation is that the caller is taking
2464 * steps that will free more memory. The caller should avoid the page
2465 * being used for !PFMEMALLOC purposes.
2466 */
2467 if (alloc_flags & ALLOC_NO_WATERMARKS)
2468 set_page_pfmemalloc(page);
2469 else
2470 clear_page_pfmemalloc(page);
2471}
2472
2473/*
2474 * Go through the free lists for the given migratetype and remove
2475 * the smallest available page from the freelists
2476 */
2477static __always_inline
2478struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2479 int migratetype)
2480{
2481 unsigned int current_order;
2482 struct free_area *area;
2483 struct page *page;
2484
2485 /* Find a page of the appropriate size in the preferred list */
2486 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2487 area = &(zone->free_area[current_order]);
2488 page = get_page_from_free_area(area, migratetype);
2489 if (!page)
2490 continue;
2491 del_page_from_free_list(page, zone, current_order);
2492 expand(zone, page, order, current_order, migratetype);
2493 set_pcppage_migratetype(page, migratetype);
2494 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2495 pcp_allowed_order(order) &&
2496 migratetype < MIGRATE_PCPTYPES);
2497 return page;
2498 }
2499
2500 return NULL;
2501}
2502
2503
2504/*
2505 * This array describes the order lists are fallen back to when
2506 * the free lists for the desirable migrate type are depleted
2507 *
2508 * The other migratetypes do not have fallbacks.
2509 */
2510static int fallbacks[MIGRATE_TYPES][3] = {
2511 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2512 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2513 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2514};
2515
2516#ifdef CONFIG_CMA
2517static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2518 unsigned int order)
2519{
2520 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2521}
2522#else
2523static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2524 unsigned int order) { return NULL; }
2525#endif
2526
2527/*
2528 * Move the free pages in a range to the freelist tail of the requested type.
2529 * Note that start_page and end_pages are not aligned on a pageblock
2530 * boundary. If alignment is required, use move_freepages_block()
2531 */
2532static int move_freepages(struct zone *zone,
2533 unsigned long start_pfn, unsigned long end_pfn,
2534 int migratetype, int *num_movable)
2535{
2536 struct page *page;
2537 unsigned long pfn;
2538 unsigned int order;
2539 int pages_moved = 0;
2540
2541 for (pfn = start_pfn; pfn <= end_pfn;) {
2542 page = pfn_to_page(pfn);
2543 if (!PageBuddy(page)) {
2544 /*
2545 * We assume that pages that could be isolated for
2546 * migration are movable. But we don't actually try
2547 * isolating, as that would be expensive.
2548 */
2549 if (num_movable &&
2550 (PageLRU(page) || __PageMovable(page)))
2551 (*num_movable)++;
2552 pfn++;
2553 continue;
2554 }
2555
2556 /* Make sure we are not inadvertently changing nodes */
2557 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2558 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2559
2560 order = buddy_order(page);
2561 move_to_free_list(page, zone, order, migratetype);
2562 pfn += 1 << order;
2563 pages_moved += 1 << order;
2564 }
2565
2566 return pages_moved;
2567}
2568
2569int move_freepages_block(struct zone *zone, struct page *page,
2570 int migratetype, int *num_movable)
2571{
2572 unsigned long start_pfn, end_pfn, pfn;
2573
2574 if (num_movable)
2575 *num_movable = 0;
2576
2577 pfn = page_to_pfn(page);
2578 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2579 end_pfn = start_pfn + pageblock_nr_pages - 1;
2580
2581 /* Do not cross zone boundaries */
2582 if (!zone_spans_pfn(zone, start_pfn))
2583 start_pfn = pfn;
2584 if (!zone_spans_pfn(zone, end_pfn))
2585 return 0;
2586
2587 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2588 num_movable);
2589}
2590
2591static void change_pageblock_range(struct page *pageblock_page,
2592 int start_order, int migratetype)
2593{
2594 int nr_pageblocks = 1 << (start_order - pageblock_order);
2595
2596 while (nr_pageblocks--) {
2597 set_pageblock_migratetype(pageblock_page, migratetype);
2598 pageblock_page += pageblock_nr_pages;
2599 }
2600}
2601
2602/*
2603 * When we are falling back to another migratetype during allocation, try to
2604 * steal extra free pages from the same pageblocks to satisfy further
2605 * allocations, instead of polluting multiple pageblocks.
2606 *
2607 * If we are stealing a relatively large buddy page, it is likely there will
2608 * be more free pages in the pageblock, so try to steal them all. For
2609 * reclaimable and unmovable allocations, we steal regardless of page size,
2610 * as fragmentation caused by those allocations polluting movable pageblocks
2611 * is worse than movable allocations stealing from unmovable and reclaimable
2612 * pageblocks.
2613 */
2614static bool can_steal_fallback(unsigned int order, int start_mt)
2615{
2616 /*
2617 * Leaving this order check is intended, although there is
2618 * relaxed order check in next check. The reason is that
2619 * we can actually steal whole pageblock if this condition met,
2620 * but, below check doesn't guarantee it and that is just heuristic
2621 * so could be changed anytime.
2622 */
2623 if (order >= pageblock_order)
2624 return true;
2625
2626 if (order >= pageblock_order / 2 ||
2627 start_mt == MIGRATE_RECLAIMABLE ||
2628 start_mt == MIGRATE_UNMOVABLE ||
2629 page_group_by_mobility_disabled)
2630 return true;
2631
2632 return false;
2633}
2634
2635static inline bool boost_watermark(struct zone *zone)
2636{
2637 unsigned long max_boost;
2638
2639 if (!watermark_boost_factor)
2640 return false;
2641 /*
2642 * Don't bother in zones that are unlikely to produce results.
2643 * On small machines, including kdump capture kernels running
2644 * in a small area, boosting the watermark can cause an out of
2645 * memory situation immediately.
2646 */
2647 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2648 return false;
2649
2650 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2651 watermark_boost_factor, 10000);
2652
2653 /*
2654 * high watermark may be uninitialised if fragmentation occurs
2655 * very early in boot so do not boost. We do not fall
2656 * through and boost by pageblock_nr_pages as failing
2657 * allocations that early means that reclaim is not going
2658 * to help and it may even be impossible to reclaim the
2659 * boosted watermark resulting in a hang.
2660 */
2661 if (!max_boost)
2662 return false;
2663
2664 max_boost = max(pageblock_nr_pages, max_boost);
2665
2666 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2667 max_boost);
2668
2669 return true;
2670}
2671
2672/*
2673 * This function implements actual steal behaviour. If order is large enough,
2674 * we can steal whole pageblock. If not, we first move freepages in this
2675 * pageblock to our migratetype and determine how many already-allocated pages
2676 * are there in the pageblock with a compatible migratetype. If at least half
2677 * of pages are free or compatible, we can change migratetype of the pageblock
2678 * itself, so pages freed in the future will be put on the correct free list.
2679 */
2680static void steal_suitable_fallback(struct zone *zone, struct page *page,
2681 unsigned int alloc_flags, int start_type, bool whole_block)
2682{
2683 unsigned int current_order = buddy_order(page);
2684 int free_pages, movable_pages, alike_pages;
2685 int old_block_type;
2686
2687 old_block_type = get_pageblock_migratetype(page);
2688
2689 /*
2690 * This can happen due to races and we want to prevent broken
2691 * highatomic accounting.
2692 */
2693 if (is_migrate_highatomic(old_block_type))
2694 goto single_page;
2695
2696 /* Take ownership for orders >= pageblock_order */
2697 if (current_order >= pageblock_order) {
2698 change_pageblock_range(page, current_order, start_type);
2699 goto single_page;
2700 }
2701
2702 /*
2703 * Boost watermarks to increase reclaim pressure to reduce the
2704 * likelihood of future fallbacks. Wake kswapd now as the node
2705 * may be balanced overall and kswapd will not wake naturally.
2706 */
2707 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2708 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2709
2710 /* We are not allowed to try stealing from the whole block */
2711 if (!whole_block)
2712 goto single_page;
2713
2714 free_pages = move_freepages_block(zone, page, start_type,
2715 &movable_pages);
2716 /*
2717 * Determine how many pages are compatible with our allocation.
2718 * For movable allocation, it's the number of movable pages which
2719 * we just obtained. For other types it's a bit more tricky.
2720 */
2721 if (start_type == MIGRATE_MOVABLE) {
2722 alike_pages = movable_pages;
2723 } else {
2724 /*
2725 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2726 * to MOVABLE pageblock, consider all non-movable pages as
2727 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2728 * vice versa, be conservative since we can't distinguish the
2729 * exact migratetype of non-movable pages.
2730 */
2731 if (old_block_type == MIGRATE_MOVABLE)
2732 alike_pages = pageblock_nr_pages
2733 - (free_pages + movable_pages);
2734 else
2735 alike_pages = 0;
2736 }
2737
2738 /* moving whole block can fail due to zone boundary conditions */
2739 if (!free_pages)
2740 goto single_page;
2741
2742 /*
2743 * If a sufficient number of pages in the block are either free or of
2744 * comparable migratability as our allocation, claim the whole block.
2745 */
2746 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2747 page_group_by_mobility_disabled)
2748 set_pageblock_migratetype(page, start_type);
2749
2750 return;
2751
2752single_page:
2753 move_to_free_list(page, zone, current_order, start_type);
2754}
2755
2756/*
2757 * Check whether there is a suitable fallback freepage with requested order.
2758 * If only_stealable is true, this function returns fallback_mt only if
2759 * we can steal other freepages all together. This would help to reduce
2760 * fragmentation due to mixed migratetype pages in one pageblock.
2761 */
2762int find_suitable_fallback(struct free_area *area, unsigned int order,
2763 int migratetype, bool only_stealable, bool *can_steal)
2764{
2765 int i;
2766 int fallback_mt;
2767
2768 if (area->nr_free == 0)
2769 return -1;
2770
2771 *can_steal = false;
2772 for (i = 0;; i++) {
2773 fallback_mt = fallbacks[migratetype][i];
2774 if (fallback_mt == MIGRATE_TYPES)
2775 break;
2776
2777 if (free_area_empty(area, fallback_mt))
2778 continue;
2779
2780 if (can_steal_fallback(order, migratetype))
2781 *can_steal = true;
2782
2783 if (!only_stealable)
2784 return fallback_mt;
2785
2786 if (*can_steal)
2787 return fallback_mt;
2788 }
2789
2790 return -1;
2791}
2792
2793/*
2794 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2795 * there are no empty page blocks that contain a page with a suitable order
2796 */
2797static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2798 unsigned int alloc_order)
2799{
2800 int mt;
2801 unsigned long max_managed, flags;
2802
2803 /*
2804 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2805 * Check is race-prone but harmless.
2806 */
2807 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2808 if (zone->nr_reserved_highatomic >= max_managed)
2809 return;
2810
2811 spin_lock_irqsave(&zone->lock, flags);
2812
2813 /* Recheck the nr_reserved_highatomic limit under the lock */
2814 if (zone->nr_reserved_highatomic >= max_managed)
2815 goto out_unlock;
2816
2817 /* Yoink! */
2818 mt = get_pageblock_migratetype(page);
2819 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2820 if (migratetype_is_mergeable(mt)) {
2821 zone->nr_reserved_highatomic += pageblock_nr_pages;
2822 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2823 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2824 }
2825
2826out_unlock:
2827 spin_unlock_irqrestore(&zone->lock, flags);
2828}
2829
2830/*
2831 * Used when an allocation is about to fail under memory pressure. This
2832 * potentially hurts the reliability of high-order allocations when under
2833 * intense memory pressure but failed atomic allocations should be easier
2834 * to recover from than an OOM.
2835 *
2836 * If @force is true, try to unreserve a pageblock even though highatomic
2837 * pageblock is exhausted.
2838 */
2839static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2840 bool force)
2841{
2842 struct zonelist *zonelist = ac->zonelist;
2843 unsigned long flags;
2844 struct zoneref *z;
2845 struct zone *zone;
2846 struct page *page;
2847 int order;
2848 bool ret;
2849
2850 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2851 ac->nodemask) {
2852 /*
2853 * Preserve at least one pageblock unless memory pressure
2854 * is really high.
2855 */
2856 if (!force && zone->nr_reserved_highatomic <=
2857 pageblock_nr_pages)
2858 continue;
2859
2860 spin_lock_irqsave(&zone->lock, flags);
2861 for (order = 0; order < MAX_ORDER; order++) {
2862 struct free_area *area = &(zone->free_area[order]);
2863
2864 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2865 if (!page)
2866 continue;
2867
2868 /*
2869 * In page freeing path, migratetype change is racy so
2870 * we can counter several free pages in a pageblock
2871 * in this loop although we changed the pageblock type
2872 * from highatomic to ac->migratetype. So we should
2873 * adjust the count once.
2874 */
2875 if (is_migrate_highatomic_page(page)) {
2876 /*
2877 * It should never happen but changes to
2878 * locking could inadvertently allow a per-cpu
2879 * drain to add pages to MIGRATE_HIGHATOMIC
2880 * while unreserving so be safe and watch for
2881 * underflows.
2882 */
2883 zone->nr_reserved_highatomic -= min(
2884 pageblock_nr_pages,
2885 zone->nr_reserved_highatomic);
2886 }
2887
2888 /*
2889 * Convert to ac->migratetype and avoid the normal
2890 * pageblock stealing heuristics. Minimally, the caller
2891 * is doing the work and needs the pages. More
2892 * importantly, if the block was always converted to
2893 * MIGRATE_UNMOVABLE or another type then the number
2894 * of pageblocks that cannot be completely freed
2895 * may increase.
2896 */
2897 set_pageblock_migratetype(page, ac->migratetype);
2898 ret = move_freepages_block(zone, page, ac->migratetype,
2899 NULL);
2900 if (ret) {
2901 spin_unlock_irqrestore(&zone->lock, flags);
2902 return ret;
2903 }
2904 }
2905 spin_unlock_irqrestore(&zone->lock, flags);
2906 }
2907
2908 return false;
2909}
2910
2911/*
2912 * Try finding a free buddy page on the fallback list and put it on the free
2913 * list of requested migratetype, possibly along with other pages from the same
2914 * block, depending on fragmentation avoidance heuristics. Returns true if
2915 * fallback was found so that __rmqueue_smallest() can grab it.
2916 *
2917 * The use of signed ints for order and current_order is a deliberate
2918 * deviation from the rest of this file, to make the for loop
2919 * condition simpler.
2920 */
2921static __always_inline bool
2922__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2923 unsigned int alloc_flags)
2924{
2925 struct free_area *area;
2926 int current_order;
2927 int min_order = order;
2928 struct page *page;
2929 int fallback_mt;
2930 bool can_steal;
2931
2932 /*
2933 * Do not steal pages from freelists belonging to other pageblocks
2934 * i.e. orders < pageblock_order. If there are no local zones free,
2935 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2936 */
2937 if (alloc_flags & ALLOC_NOFRAGMENT)
2938 min_order = pageblock_order;
2939
2940 /*
2941 * Find the largest available free page in the other list. This roughly
2942 * approximates finding the pageblock with the most free pages, which
2943 * would be too costly to do exactly.
2944 */
2945 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2946 --current_order) {
2947 area = &(zone->free_area[current_order]);
2948 fallback_mt = find_suitable_fallback(area, current_order,
2949 start_migratetype, false, &can_steal);
2950 if (fallback_mt == -1)
2951 continue;
2952
2953 /*
2954 * We cannot steal all free pages from the pageblock and the
2955 * requested migratetype is movable. In that case it's better to
2956 * steal and split the smallest available page instead of the
2957 * largest available page, because even if the next movable
2958 * allocation falls back into a different pageblock than this
2959 * one, it won't cause permanent fragmentation.
2960 */
2961 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2962 && current_order > order)
2963 goto find_smallest;
2964
2965 goto do_steal;
2966 }
2967
2968 return false;
2969
2970find_smallest:
2971 for (current_order = order; current_order < MAX_ORDER;
2972 current_order++) {
2973 area = &(zone->free_area[current_order]);
2974 fallback_mt = find_suitable_fallback(area, current_order,
2975 start_migratetype, false, &can_steal);
2976 if (fallback_mt != -1)
2977 break;
2978 }
2979
2980 /*
2981 * This should not happen - we already found a suitable fallback
2982 * when looking for the largest page.
2983 */
2984 VM_BUG_ON(current_order == MAX_ORDER);
2985
2986do_steal:
2987 page = get_page_from_free_area(area, fallback_mt);
2988
2989 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2990 can_steal);
2991
2992 trace_mm_page_alloc_extfrag(page, order, current_order,
2993 start_migratetype, fallback_mt);
2994
2995 return true;
2996
2997}
2998
2999/*
3000 * Do the hard work of removing an element from the buddy allocator.
3001 * Call me with the zone->lock already held.
3002 */
3003static __always_inline struct page *
3004__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3005 unsigned int alloc_flags)
3006{
3007 struct page *page;
3008
3009 if (IS_ENABLED(CONFIG_CMA)) {
3010 /*
3011 * Balance movable allocations between regular and CMA areas by
3012 * allocating from CMA when over half of the zone's free memory
3013 * is in the CMA area.
3014 */
3015 if (alloc_flags & ALLOC_CMA &&
3016 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3017 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3018 page = __rmqueue_cma_fallback(zone, order);
3019 if (page)
3020 return page;
3021 }
3022 }
3023retry:
3024 page = __rmqueue_smallest(zone, order, migratetype);
3025 if (unlikely(!page)) {
3026 if (alloc_flags & ALLOC_CMA)
3027 page = __rmqueue_cma_fallback(zone, order);
3028
3029 if (!page && __rmqueue_fallback(zone, order, migratetype,
3030 alloc_flags))
3031 goto retry;
3032 }
3033 return page;
3034}
3035
3036/*
3037 * Obtain a specified number of elements from the buddy allocator, all under
3038 * a single hold of the lock, for efficiency. Add them to the supplied list.
3039 * Returns the number of new pages which were placed at *list.
3040 */
3041static int rmqueue_bulk(struct zone *zone, unsigned int order,
3042 unsigned long count, struct list_head *list,
3043 int migratetype, unsigned int alloc_flags)
3044{
3045 int i, allocated = 0;
3046
3047 /*
3048 * local_lock_irq held so equivalent to spin_lock_irqsave for
3049 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3050 */
3051 spin_lock(&zone->lock);
3052 for (i = 0; i < count; ++i) {
3053 struct page *page = __rmqueue(zone, order, migratetype,
3054 alloc_flags);
3055 if (unlikely(page == NULL))
3056 break;
3057
3058 if (unlikely(check_pcp_refill(page, order)))
3059 continue;
3060
3061 /*
3062 * Split buddy pages returned by expand() are received here in
3063 * physical page order. The page is added to the tail of
3064 * caller's list. From the callers perspective, the linked list
3065 * is ordered by page number under some conditions. This is
3066 * useful for IO devices that can forward direction from the
3067 * head, thus also in the physical page order. This is useful
3068 * for IO devices that can merge IO requests if the physical
3069 * pages are ordered properly.
3070 */
3071 list_add_tail(&page->lru, list);
3072 allocated++;
3073 if (is_migrate_cma(get_pcppage_migratetype(page)))
3074 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3075 -(1 << order));
3076 }
3077
3078 /*
3079 * i pages were removed from the buddy list even if some leak due
3080 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3081 * on i. Do not confuse with 'allocated' which is the number of
3082 * pages added to the pcp list.
3083 */
3084 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3085 spin_unlock(&zone->lock);
3086 return allocated;
3087}
3088
3089#ifdef CONFIG_NUMA
3090/*
3091 * Called from the vmstat counter updater to drain pagesets of this
3092 * currently executing processor on remote nodes after they have
3093 * expired.
3094 *
3095 * Note that this function must be called with the thread pinned to
3096 * a single processor.
3097 */
3098void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3099{
3100 unsigned long flags;
3101 int to_drain, batch;
3102
3103 local_lock_irqsave(&pagesets.lock, flags);
3104 batch = READ_ONCE(pcp->batch);
3105 to_drain = min(pcp->count, batch);
3106 if (to_drain > 0)
3107 free_pcppages_bulk(zone, to_drain, pcp, 0);
3108 local_unlock_irqrestore(&pagesets.lock, flags);
3109}
3110#endif
3111
3112/*
3113 * Drain pcplists of the indicated processor and zone.
3114 *
3115 * The processor must either be the current processor and the
3116 * thread pinned to the current processor or a processor that
3117 * is not online.
3118 */
3119static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3120{
3121 unsigned long flags;
3122 struct per_cpu_pages *pcp;
3123
3124 local_lock_irqsave(&pagesets.lock, flags);
3125
3126 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3127 if (pcp->count)
3128 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3129
3130 local_unlock_irqrestore(&pagesets.lock, flags);
3131}
3132
3133/*
3134 * Drain pcplists of all zones on the indicated processor.
3135 *
3136 * The processor must either be the current processor and the
3137 * thread pinned to the current processor or a processor that
3138 * is not online.
3139 */
3140static void drain_pages(unsigned int cpu)
3141{
3142 struct zone *zone;
3143
3144 for_each_populated_zone(zone) {
3145 drain_pages_zone(cpu, zone);
3146 }
3147}
3148
3149/*
3150 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3151 *
3152 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3153 * the single zone's pages.
3154 */
3155void drain_local_pages(struct zone *zone)
3156{
3157 int cpu = smp_processor_id();
3158
3159 if (zone)
3160 drain_pages_zone(cpu, zone);
3161 else
3162 drain_pages(cpu);
3163}
3164
3165static void drain_local_pages_wq(struct work_struct *work)
3166{
3167 struct pcpu_drain *drain;
3168
3169 drain = container_of(work, struct pcpu_drain, work);
3170
3171 /*
3172 * drain_all_pages doesn't use proper cpu hotplug protection so
3173 * we can race with cpu offline when the WQ can move this from
3174 * a cpu pinned worker to an unbound one. We can operate on a different
3175 * cpu which is alright but we also have to make sure to not move to
3176 * a different one.
3177 */
3178 migrate_disable();
3179 drain_local_pages(drain->zone);
3180 migrate_enable();
3181}
3182
3183/*
3184 * The implementation of drain_all_pages(), exposing an extra parameter to
3185 * drain on all cpus.
3186 *
3187 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3188 * not empty. The check for non-emptiness can however race with a free to
3189 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3190 * that need the guarantee that every CPU has drained can disable the
3191 * optimizing racy check.
3192 */
3193static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3194{
3195 int cpu;
3196
3197 /*
3198 * Allocate in the BSS so we won't require allocation in
3199 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3200 */
3201 static cpumask_t cpus_with_pcps;
3202
3203 /*
3204 * Make sure nobody triggers this path before mm_percpu_wq is fully
3205 * initialized.
3206 */
3207 if (WARN_ON_ONCE(!mm_percpu_wq))
3208 return;
3209
3210 /*
3211 * Do not drain if one is already in progress unless it's specific to
3212 * a zone. Such callers are primarily CMA and memory hotplug and need
3213 * the drain to be complete when the call returns.
3214 */
3215 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3216 if (!zone)
3217 return;
3218 mutex_lock(&pcpu_drain_mutex);
3219 }
3220
3221 /*
3222 * We don't care about racing with CPU hotplug event
3223 * as offline notification will cause the notified
3224 * cpu to drain that CPU pcps and on_each_cpu_mask
3225 * disables preemption as part of its processing
3226 */
3227 for_each_online_cpu(cpu) {
3228 struct per_cpu_pages *pcp;
3229 struct zone *z;
3230 bool has_pcps = false;
3231
3232 if (force_all_cpus) {
3233 /*
3234 * The pcp.count check is racy, some callers need a
3235 * guarantee that no cpu is missed.
3236 */
3237 has_pcps = true;
3238 } else if (zone) {
3239 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3240 if (pcp->count)
3241 has_pcps = true;
3242 } else {
3243 for_each_populated_zone(z) {
3244 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3245 if (pcp->count) {
3246 has_pcps = true;
3247 break;
3248 }
3249 }
3250 }
3251
3252 if (has_pcps)
3253 cpumask_set_cpu(cpu, &cpus_with_pcps);
3254 else
3255 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3256 }
3257
3258 for_each_cpu(cpu, &cpus_with_pcps) {
3259 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3260
3261 drain->zone = zone;
3262 INIT_WORK(&drain->work, drain_local_pages_wq);
3263 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3264 }
3265 for_each_cpu(cpu, &cpus_with_pcps)
3266 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3267
3268 mutex_unlock(&pcpu_drain_mutex);
3269}
3270
3271/*
3272 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3273 *
3274 * When zone parameter is non-NULL, spill just the single zone's pages.
3275 *
3276 * Note that this can be extremely slow as the draining happens in a workqueue.
3277 */
3278void drain_all_pages(struct zone *zone)
3279{
3280 __drain_all_pages(zone, false);
3281}
3282
3283#ifdef CONFIG_HIBERNATION
3284
3285/*
3286 * Touch the watchdog for every WD_PAGE_COUNT pages.
3287 */
3288#define WD_PAGE_COUNT (128*1024)
3289
3290void mark_free_pages(struct zone *zone)
3291{
3292 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3293 unsigned long flags;
3294 unsigned int order, t;
3295 struct page *page;
3296
3297 if (zone_is_empty(zone))
3298 return;
3299
3300 spin_lock_irqsave(&zone->lock, flags);
3301
3302 max_zone_pfn = zone_end_pfn(zone);
3303 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3304 if (pfn_valid(pfn)) {
3305 page = pfn_to_page(pfn);
3306
3307 if (!--page_count) {
3308 touch_nmi_watchdog();
3309 page_count = WD_PAGE_COUNT;
3310 }
3311
3312 if (page_zone(page) != zone)
3313 continue;
3314
3315 if (!swsusp_page_is_forbidden(page))
3316 swsusp_unset_page_free(page);
3317 }
3318
3319 for_each_migratetype_order(order, t) {
3320 list_for_each_entry(page,
3321 &zone->free_area[order].free_list[t], lru) {
3322 unsigned long i;
3323
3324 pfn = page_to_pfn(page);
3325 for (i = 0; i < (1UL << order); i++) {
3326 if (!--page_count) {
3327 touch_nmi_watchdog();
3328 page_count = WD_PAGE_COUNT;
3329 }
3330 swsusp_set_page_free(pfn_to_page(pfn + i));
3331 }
3332 }
3333 }
3334 spin_unlock_irqrestore(&zone->lock, flags);
3335}
3336#endif /* CONFIG_PM */
3337
3338static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3339 unsigned int order)
3340{
3341 int migratetype;
3342
3343 if (!free_pcp_prepare(page, order))
3344 return false;
3345
3346 migratetype = get_pfnblock_migratetype(page, pfn);
3347 set_pcppage_migratetype(page, migratetype);
3348 return true;
3349}
3350
3351static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3352 bool free_high)
3353{
3354 int min_nr_free, max_nr_free;
3355
3356 /* Free everything if batch freeing high-order pages. */
3357 if (unlikely(free_high))
3358 return pcp->count;
3359
3360 /* Check for PCP disabled or boot pageset */
3361 if (unlikely(high < batch))
3362 return 1;
3363
3364 /* Leave at least pcp->batch pages on the list */
3365 min_nr_free = batch;
3366 max_nr_free = high - batch;
3367
3368 /*
3369 * Double the number of pages freed each time there is subsequent
3370 * freeing of pages without any allocation.
3371 */
3372 batch <<= pcp->free_factor;
3373 if (batch < max_nr_free)
3374 pcp->free_factor++;
3375 batch = clamp(batch, min_nr_free, max_nr_free);
3376
3377 return batch;
3378}
3379
3380static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3381 bool free_high)
3382{
3383 int high = READ_ONCE(pcp->high);
3384
3385 if (unlikely(!high || free_high))
3386 return 0;
3387
3388 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3389 return high;
3390
3391 /*
3392 * If reclaim is active, limit the number of pages that can be
3393 * stored on pcp lists
3394 */
3395 return min(READ_ONCE(pcp->batch) << 2, high);
3396}
3397
3398static void free_unref_page_commit(struct page *page, int migratetype,
3399 unsigned int order)
3400{
3401 struct zone *zone = page_zone(page);
3402 struct per_cpu_pages *pcp;
3403 int high;
3404 int pindex;
3405 bool free_high;
3406
3407 __count_vm_event(PGFREE);
3408 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3409 pindex = order_to_pindex(migratetype, order);
3410 list_add(&page->lru, &pcp->lists[pindex]);
3411 pcp->count += 1 << order;
3412
3413 /*
3414 * As high-order pages other than THP's stored on PCP can contribute
3415 * to fragmentation, limit the number stored when PCP is heavily
3416 * freeing without allocation. The remainder after bulk freeing
3417 * stops will be drained from vmstat refresh context.
3418 */
3419 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3420
3421 high = nr_pcp_high(pcp, zone, free_high);
3422 if (pcp->count >= high) {
3423 int batch = READ_ONCE(pcp->batch);
3424
3425 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3426 }
3427}
3428
3429/*
3430 * Free a pcp page
3431 */
3432void free_unref_page(struct page *page, unsigned int order)
3433{
3434 unsigned long flags;
3435 unsigned long pfn = page_to_pfn(page);
3436 int migratetype;
3437
3438 if (!free_unref_page_prepare(page, pfn, order))
3439 return;
3440
3441 /*
3442 * We only track unmovable, reclaimable and movable on pcp lists.
3443 * Place ISOLATE pages on the isolated list because they are being
3444 * offlined but treat HIGHATOMIC as movable pages so we can get those
3445 * areas back if necessary. Otherwise, we may have to free
3446 * excessively into the page allocator
3447 */
3448 migratetype = get_pcppage_migratetype(page);
3449 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3450 if (unlikely(is_migrate_isolate(migratetype))) {
3451 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3452 return;
3453 }
3454 migratetype = MIGRATE_MOVABLE;
3455 }
3456
3457 local_lock_irqsave(&pagesets.lock, flags);
3458 free_unref_page_commit(page, migratetype, order);
3459 local_unlock_irqrestore(&pagesets.lock, flags);
3460}
3461
3462/*
3463 * Free a list of 0-order pages
3464 */
3465void free_unref_page_list(struct list_head *list)
3466{
3467 struct page *page, *next;
3468 unsigned long flags;
3469 int batch_count = 0;
3470 int migratetype;
3471
3472 /* Prepare pages for freeing */
3473 list_for_each_entry_safe(page, next, list, lru) {
3474 unsigned long pfn = page_to_pfn(page);
3475 if (!free_unref_page_prepare(page, pfn, 0)) {
3476 list_del(&page->lru);
3477 continue;
3478 }
3479
3480 /*
3481 * Free isolated pages directly to the allocator, see
3482 * comment in free_unref_page.
3483 */
3484 migratetype = get_pcppage_migratetype(page);
3485 if (unlikely(is_migrate_isolate(migratetype))) {
3486 list_del(&page->lru);
3487 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3488 continue;
3489 }
3490 }
3491
3492 local_lock_irqsave(&pagesets.lock, flags);
3493 list_for_each_entry_safe(page, next, list, lru) {
3494 /*
3495 * Non-isolated types over MIGRATE_PCPTYPES get added
3496 * to the MIGRATE_MOVABLE pcp list.
3497 */
3498 migratetype = get_pcppage_migratetype(page);
3499 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3500 migratetype = MIGRATE_MOVABLE;
3501
3502 trace_mm_page_free_batched(page);
3503 free_unref_page_commit(page, migratetype, 0);
3504
3505 /*
3506 * Guard against excessive IRQ disabled times when we get
3507 * a large list of pages to free.
3508 */
3509 if (++batch_count == SWAP_CLUSTER_MAX) {
3510 local_unlock_irqrestore(&pagesets.lock, flags);
3511 batch_count = 0;
3512 local_lock_irqsave(&pagesets.lock, flags);
3513 }
3514 }
3515 local_unlock_irqrestore(&pagesets.lock, flags);
3516}
3517
3518/*
3519 * split_page takes a non-compound higher-order page, and splits it into
3520 * n (1<<order) sub-pages: page[0..n]
3521 * Each sub-page must be freed individually.
3522 *
3523 * Note: this is probably too low level an operation for use in drivers.
3524 * Please consult with lkml before using this in your driver.
3525 */
3526void split_page(struct page *page, unsigned int order)
3527{
3528 int i;
3529
3530 VM_BUG_ON_PAGE(PageCompound(page), page);
3531 VM_BUG_ON_PAGE(!page_count(page), page);
3532
3533 for (i = 1; i < (1 << order); i++)
3534 set_page_refcounted(page + i);
3535 split_page_owner(page, 1 << order);
3536 split_page_memcg(page, 1 << order);
3537}
3538EXPORT_SYMBOL_GPL(split_page);
3539
3540int __isolate_free_page(struct page *page, unsigned int order)
3541{
3542 unsigned long watermark;
3543 struct zone *zone;
3544 int mt;
3545
3546 BUG_ON(!PageBuddy(page));
3547
3548 zone = page_zone(page);
3549 mt = get_pageblock_migratetype(page);
3550
3551 if (!is_migrate_isolate(mt)) {
3552 /*
3553 * Obey watermarks as if the page was being allocated. We can
3554 * emulate a high-order watermark check with a raised order-0
3555 * watermark, because we already know our high-order page
3556 * exists.
3557 */
3558 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3559 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3560 return 0;
3561
3562 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3563 }
3564
3565 /* Remove page from free list */
3566
3567 del_page_from_free_list(page, zone, order);
3568
3569 /*
3570 * Set the pageblock if the isolated page is at least half of a
3571 * pageblock
3572 */
3573 if (order >= pageblock_order - 1) {
3574 struct page *endpage = page + (1 << order) - 1;
3575 for (; page < endpage; page += pageblock_nr_pages) {
3576 int mt = get_pageblock_migratetype(page);
3577 /*
3578 * Only change normal pageblocks (i.e., they can merge
3579 * with others)
3580 */
3581 if (migratetype_is_mergeable(mt))
3582 set_pageblock_migratetype(page,
3583 MIGRATE_MOVABLE);
3584 }
3585 }
3586
3587
3588 return 1UL << order;
3589}
3590
3591/**
3592 * __putback_isolated_page - Return a now-isolated page back where we got it
3593 * @page: Page that was isolated
3594 * @order: Order of the isolated page
3595 * @mt: The page's pageblock's migratetype
3596 *
3597 * This function is meant to return a page pulled from the free lists via
3598 * __isolate_free_page back to the free lists they were pulled from.
3599 */
3600void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3601{
3602 struct zone *zone = page_zone(page);
3603
3604 /* zone lock should be held when this function is called */
3605 lockdep_assert_held(&zone->lock);
3606
3607 /* Return isolated page to tail of freelist. */
3608 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3609 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3610}
3611
3612/*
3613 * Update NUMA hit/miss statistics
3614 *
3615 * Must be called with interrupts disabled.
3616 */
3617static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3618 long nr_account)
3619{
3620#ifdef CONFIG_NUMA
3621 enum numa_stat_item local_stat = NUMA_LOCAL;
3622
3623 /* skip numa counters update if numa stats is disabled */
3624 if (!static_branch_likely(&vm_numa_stat_key))
3625 return;
3626
3627 if (zone_to_nid(z) != numa_node_id())
3628 local_stat = NUMA_OTHER;
3629
3630 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3631 __count_numa_events(z, NUMA_HIT, nr_account);
3632 else {
3633 __count_numa_events(z, NUMA_MISS, nr_account);
3634 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3635 }
3636 __count_numa_events(z, local_stat, nr_account);
3637#endif
3638}
3639
3640/* Remove page from the per-cpu list, caller must protect the list */
3641static inline
3642struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3643 int migratetype,
3644 unsigned int alloc_flags,
3645 struct per_cpu_pages *pcp,
3646 struct list_head *list)
3647{
3648 struct page *page;
3649
3650 do {
3651 if (list_empty(list)) {
3652 int batch = READ_ONCE(pcp->batch);
3653 int alloced;
3654
3655 /*
3656 * Scale batch relative to order if batch implies
3657 * free pages can be stored on the PCP. Batch can
3658 * be 1 for small zones or for boot pagesets which
3659 * should never store free pages as the pages may
3660 * belong to arbitrary zones.
3661 */
3662 if (batch > 1)
3663 batch = max(batch >> order, 2);
3664 alloced = rmqueue_bulk(zone, order,
3665 batch, list,
3666 migratetype, alloc_flags);
3667
3668 pcp->count += alloced << order;
3669 if (unlikely(list_empty(list)))
3670 return NULL;
3671 }
3672
3673 page = list_first_entry(list, struct page, lru);
3674 list_del(&page->lru);
3675 pcp->count -= 1 << order;
3676 } while (check_new_pcp(page, order));
3677
3678 return page;
3679}
3680
3681/* Lock and remove page from the per-cpu list */
3682static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3683 struct zone *zone, unsigned int order,
3684 gfp_t gfp_flags, int migratetype,
3685 unsigned int alloc_flags)
3686{
3687 struct per_cpu_pages *pcp;
3688 struct list_head *list;
3689 struct page *page;
3690 unsigned long flags;
3691
3692 local_lock_irqsave(&pagesets.lock, flags);
3693
3694 /*
3695 * On allocation, reduce the number of pages that are batch freed.
3696 * See nr_pcp_free() where free_factor is increased for subsequent
3697 * frees.
3698 */
3699 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3700 pcp->free_factor >>= 1;
3701 list = &pcp->lists[order_to_pindex(migratetype, order)];
3702 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3703 local_unlock_irqrestore(&pagesets.lock, flags);
3704 if (page) {
3705 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3706 zone_statistics(preferred_zone, zone, 1);
3707 }
3708 return page;
3709}
3710
3711/*
3712 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3713 */
3714static inline
3715struct page *rmqueue(struct zone *preferred_zone,
3716 struct zone *zone, unsigned int order,
3717 gfp_t gfp_flags, unsigned int alloc_flags,
3718 int migratetype)
3719{
3720 unsigned long flags;
3721 struct page *page;
3722
3723 if (likely(pcp_allowed_order(order))) {
3724 /*
3725 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3726 * we need to skip it when CMA area isn't allowed.
3727 */
3728 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3729 migratetype != MIGRATE_MOVABLE) {
3730 page = rmqueue_pcplist(preferred_zone, zone, order,
3731 gfp_flags, migratetype, alloc_flags);
3732 goto out;
3733 }
3734 }
3735
3736 /*
3737 * We most definitely don't want callers attempting to
3738 * allocate greater than order-1 page units with __GFP_NOFAIL.
3739 */
3740 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3741
3742 do {
3743 page = NULL;
3744 spin_lock_irqsave(&zone->lock, flags);
3745 /*
3746 * order-0 request can reach here when the pcplist is skipped
3747 * due to non-CMA allocation context. HIGHATOMIC area is
3748 * reserved for high-order atomic allocation, so order-0
3749 * request should skip it.
3750 */
3751 if (order > 0 && alloc_flags & ALLOC_HARDER)
3752 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3753 if (!page) {
3754 page = __rmqueue(zone, order, migratetype, alloc_flags);
3755 if (!page)
3756 goto failed;
3757 }
3758 __mod_zone_freepage_state(zone, -(1 << order),
3759 get_pcppage_migratetype(page));
3760 spin_unlock_irqrestore(&zone->lock, flags);
3761 } while (check_new_pages(page, order));
3762
3763 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3764 zone_statistics(preferred_zone, zone, 1);
3765
3766out:
3767 /* Separate test+clear to avoid unnecessary atomics */
3768 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3769 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3770 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3771 }
3772
3773 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3774 return page;
3775
3776failed:
3777 spin_unlock_irqrestore(&zone->lock, flags);
3778 return NULL;
3779}
3780
3781#ifdef CONFIG_FAIL_PAGE_ALLOC
3782
3783static struct {
3784 struct fault_attr attr;
3785
3786 bool ignore_gfp_highmem;
3787 bool ignore_gfp_reclaim;
3788 u32 min_order;
3789} fail_page_alloc = {
3790 .attr = FAULT_ATTR_INITIALIZER,
3791 .ignore_gfp_reclaim = true,
3792 .ignore_gfp_highmem = true,
3793 .min_order = 1,
3794};
3795
3796static int __init setup_fail_page_alloc(char *str)
3797{
3798 return setup_fault_attr(&fail_page_alloc.attr, str);
3799}
3800__setup("fail_page_alloc=", setup_fail_page_alloc);
3801
3802static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3803{
3804 if (order < fail_page_alloc.min_order)
3805 return false;
3806 if (gfp_mask & __GFP_NOFAIL)
3807 return false;
3808 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3809 return false;
3810 if (fail_page_alloc.ignore_gfp_reclaim &&
3811 (gfp_mask & __GFP_DIRECT_RECLAIM))
3812 return false;
3813
3814 if (gfp_mask & __GFP_NOWARN)
3815 fail_page_alloc.attr.no_warn = true;
3816
3817 return should_fail(&fail_page_alloc.attr, 1 << order);
3818}
3819
3820#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3821
3822static int __init fail_page_alloc_debugfs(void)
3823{
3824 umode_t mode = S_IFREG | 0600;
3825 struct dentry *dir;
3826
3827 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3828 &fail_page_alloc.attr);
3829
3830 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3831 &fail_page_alloc.ignore_gfp_reclaim);
3832 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3833 &fail_page_alloc.ignore_gfp_highmem);
3834 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3835
3836 return 0;
3837}
3838
3839late_initcall(fail_page_alloc_debugfs);
3840
3841#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3842
3843#else /* CONFIG_FAIL_PAGE_ALLOC */
3844
3845static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3846{
3847 return false;
3848}
3849
3850#endif /* CONFIG_FAIL_PAGE_ALLOC */
3851
3852noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3853{
3854 return __should_fail_alloc_page(gfp_mask, order);
3855}
3856ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3857
3858static inline long __zone_watermark_unusable_free(struct zone *z,
3859 unsigned int order, unsigned int alloc_flags)
3860{
3861 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3862 long unusable_free = (1 << order) - 1;
3863
3864 /*
3865 * If the caller does not have rights to ALLOC_HARDER then subtract
3866 * the high-atomic reserves. This will over-estimate the size of the
3867 * atomic reserve but it avoids a search.
3868 */
3869 if (likely(!alloc_harder))
3870 unusable_free += z->nr_reserved_highatomic;
3871
3872#ifdef CONFIG_CMA
3873 /* If allocation can't use CMA areas don't use free CMA pages */
3874 if (!(alloc_flags & ALLOC_CMA))
3875 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3876#endif
3877
3878 return unusable_free;
3879}
3880
3881/*
3882 * Return true if free base pages are above 'mark'. For high-order checks it
3883 * will return true of the order-0 watermark is reached and there is at least
3884 * one free page of a suitable size. Checking now avoids taking the zone lock
3885 * to check in the allocation paths if no pages are free.
3886 */
3887bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3888 int highest_zoneidx, unsigned int alloc_flags,
3889 long free_pages)
3890{
3891 long min = mark;
3892 int o;
3893 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3894
3895 /* free_pages may go negative - that's OK */
3896 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3897
3898 if (alloc_flags & ALLOC_HIGH)
3899 min -= min / 2;
3900
3901 if (unlikely(alloc_harder)) {
3902 /*
3903 * OOM victims can try even harder than normal ALLOC_HARDER
3904 * users on the grounds that it's definitely going to be in
3905 * the exit path shortly and free memory. Any allocation it
3906 * makes during the free path will be small and short-lived.
3907 */
3908 if (alloc_flags & ALLOC_OOM)
3909 min -= min / 2;
3910 else
3911 min -= min / 4;
3912 }
3913
3914 /*
3915 * Check watermarks for an order-0 allocation request. If these
3916 * are not met, then a high-order request also cannot go ahead
3917 * even if a suitable page happened to be free.
3918 */
3919 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3920 return false;
3921
3922 /* If this is an order-0 request then the watermark is fine */
3923 if (!order)
3924 return true;
3925
3926 /* For a high-order request, check at least one suitable page is free */
3927 for (o = order; o < MAX_ORDER; o++) {
3928 struct free_area *area = &z->free_area[o];
3929 int mt;
3930
3931 if (!area->nr_free)
3932 continue;
3933
3934 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3935 if (!free_area_empty(area, mt))
3936 return true;
3937 }
3938
3939#ifdef CONFIG_CMA
3940 if ((alloc_flags & ALLOC_CMA) &&
3941 !free_area_empty(area, MIGRATE_CMA)) {
3942 return true;
3943 }
3944#endif
3945 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3946 return true;
3947 }
3948 return false;
3949}
3950
3951bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3952 int highest_zoneidx, unsigned int alloc_flags)
3953{
3954 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3955 zone_page_state(z, NR_FREE_PAGES));
3956}
3957
3958static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3959 unsigned long mark, int highest_zoneidx,
3960 unsigned int alloc_flags, gfp_t gfp_mask)
3961{
3962 long free_pages;
3963
3964 free_pages = zone_page_state(z, NR_FREE_PAGES);
3965
3966 /*
3967 * Fast check for order-0 only. If this fails then the reserves
3968 * need to be calculated.
3969 */
3970 if (!order) {
3971 long fast_free;
3972
3973 fast_free = free_pages;
3974 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3975 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3976 return true;
3977 }
3978
3979 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3980 free_pages))
3981 return true;
3982 /*
3983 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3984 * when checking the min watermark. The min watermark is the
3985 * point where boosting is ignored so that kswapd is woken up
3986 * when below the low watermark.
3987 */
3988 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3989 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3990 mark = z->_watermark[WMARK_MIN];
3991 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3992 alloc_flags, free_pages);
3993 }
3994
3995 return false;
3996}
3997
3998bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3999 unsigned long mark, int highest_zoneidx)
4000{
4001 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4002
4003 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4004 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4005
4006 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4007 free_pages);
4008}
4009
4010#ifdef CONFIG_NUMA
4011int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4012
4013static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4014{
4015 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4016 node_reclaim_distance;
4017}
4018#else /* CONFIG_NUMA */
4019static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4020{
4021 return true;
4022}
4023#endif /* CONFIG_NUMA */
4024
4025/*
4026 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4027 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4028 * premature use of a lower zone may cause lowmem pressure problems that
4029 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4030 * probably too small. It only makes sense to spread allocations to avoid
4031 * fragmentation between the Normal and DMA32 zones.
4032 */
4033static inline unsigned int
4034alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4035{
4036 unsigned int alloc_flags;
4037
4038 /*
4039 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4040 * to save a branch.
4041 */
4042 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4043
4044#ifdef CONFIG_ZONE_DMA32
4045 if (!zone)
4046 return alloc_flags;
4047
4048 if (zone_idx(zone) != ZONE_NORMAL)
4049 return alloc_flags;
4050
4051 /*
4052 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4053 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4054 * on UMA that if Normal is populated then so is DMA32.
4055 */
4056 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4057 if (nr_online_nodes > 1 && !populated_zone(--zone))
4058 return alloc_flags;
4059
4060 alloc_flags |= ALLOC_NOFRAGMENT;
4061#endif /* CONFIG_ZONE_DMA32 */
4062 return alloc_flags;
4063}
4064
4065/* Must be called after current_gfp_context() which can change gfp_mask */
4066static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4067 unsigned int alloc_flags)
4068{
4069#ifdef CONFIG_CMA
4070 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4071 alloc_flags |= ALLOC_CMA;
4072#endif
4073 return alloc_flags;
4074}
4075
4076/*
4077 * get_page_from_freelist goes through the zonelist trying to allocate
4078 * a page.
4079 */
4080static struct page *
4081get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4082 const struct alloc_context *ac)
4083{
4084 struct zoneref *z;
4085 struct zone *zone;
4086 struct pglist_data *last_pgdat = NULL;
4087 bool last_pgdat_dirty_ok = false;
4088 bool no_fallback;
4089
4090retry:
4091 /*
4092 * Scan zonelist, looking for a zone with enough free.
4093 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4094 */
4095 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4096 z = ac->preferred_zoneref;
4097 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4098 ac->nodemask) {
4099 struct page *page;
4100 unsigned long mark;
4101
4102 if (cpusets_enabled() &&
4103 (alloc_flags & ALLOC_CPUSET) &&
4104 !__cpuset_zone_allowed(zone, gfp_mask))
4105 continue;
4106 /*
4107 * When allocating a page cache page for writing, we
4108 * want to get it from a node that is within its dirty
4109 * limit, such that no single node holds more than its
4110 * proportional share of globally allowed dirty pages.
4111 * The dirty limits take into account the node's
4112 * lowmem reserves and high watermark so that kswapd
4113 * should be able to balance it without having to
4114 * write pages from its LRU list.
4115 *
4116 * XXX: For now, allow allocations to potentially
4117 * exceed the per-node dirty limit in the slowpath
4118 * (spread_dirty_pages unset) before going into reclaim,
4119 * which is important when on a NUMA setup the allowed
4120 * nodes are together not big enough to reach the
4121 * global limit. The proper fix for these situations
4122 * will require awareness of nodes in the
4123 * dirty-throttling and the flusher threads.
4124 */
4125 if (ac->spread_dirty_pages) {
4126 if (last_pgdat != zone->zone_pgdat) {
4127 last_pgdat = zone->zone_pgdat;
4128 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4129 }
4130
4131 if (!last_pgdat_dirty_ok)
4132 continue;
4133 }
4134
4135 if (no_fallback && nr_online_nodes > 1 &&
4136 zone != ac->preferred_zoneref->zone) {
4137 int local_nid;
4138
4139 /*
4140 * If moving to a remote node, retry but allow
4141 * fragmenting fallbacks. Locality is more important
4142 * than fragmentation avoidance.
4143 */
4144 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4145 if (zone_to_nid(zone) != local_nid) {
4146 alloc_flags &= ~ALLOC_NOFRAGMENT;
4147 goto retry;
4148 }
4149 }
4150
4151 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4152 if (!zone_watermark_fast(zone, order, mark,
4153 ac->highest_zoneidx, alloc_flags,
4154 gfp_mask)) {
4155 int ret;
4156
4157#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4158 /*
4159 * Watermark failed for this zone, but see if we can
4160 * grow this zone if it contains deferred pages.
4161 */
4162 if (static_branch_unlikely(&deferred_pages)) {
4163 if (_deferred_grow_zone(zone, order))
4164 goto try_this_zone;
4165 }
4166#endif
4167 /* Checked here to keep the fast path fast */
4168 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4169 if (alloc_flags & ALLOC_NO_WATERMARKS)
4170 goto try_this_zone;
4171
4172 if (!node_reclaim_enabled() ||
4173 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4174 continue;
4175
4176 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4177 switch (ret) {
4178 case NODE_RECLAIM_NOSCAN:
4179 /* did not scan */
4180 continue;
4181 case NODE_RECLAIM_FULL:
4182 /* scanned but unreclaimable */
4183 continue;
4184 default:
4185 /* did we reclaim enough */
4186 if (zone_watermark_ok(zone, order, mark,
4187 ac->highest_zoneidx, alloc_flags))
4188 goto try_this_zone;
4189
4190 continue;
4191 }
4192 }
4193
4194try_this_zone:
4195 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4196 gfp_mask, alloc_flags, ac->migratetype);
4197 if (page) {
4198 prep_new_page(page, order, gfp_mask, alloc_flags);
4199
4200 /*
4201 * If this is a high-order atomic allocation then check
4202 * if the pageblock should be reserved for the future
4203 */
4204 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4205 reserve_highatomic_pageblock(page, zone, order);
4206
4207 return page;
4208 } else {
4209#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4210 /* Try again if zone has deferred pages */
4211 if (static_branch_unlikely(&deferred_pages)) {
4212 if (_deferred_grow_zone(zone, order))
4213 goto try_this_zone;
4214 }
4215#endif
4216 }
4217 }
4218
4219 /*
4220 * It's possible on a UMA machine to get through all zones that are
4221 * fragmented. If avoiding fragmentation, reset and try again.
4222 */
4223 if (no_fallback) {
4224 alloc_flags &= ~ALLOC_NOFRAGMENT;
4225 goto retry;
4226 }
4227
4228 return NULL;
4229}
4230
4231static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4232{
4233 unsigned int filter = SHOW_MEM_FILTER_NODES;
4234
4235 /*
4236 * This documents exceptions given to allocations in certain
4237 * contexts that are allowed to allocate outside current's set
4238 * of allowed nodes.
4239 */
4240 if (!(gfp_mask & __GFP_NOMEMALLOC))
4241 if (tsk_is_oom_victim(current) ||
4242 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4243 filter &= ~SHOW_MEM_FILTER_NODES;
4244 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4245 filter &= ~SHOW_MEM_FILTER_NODES;
4246
4247 show_mem(filter, nodemask);
4248}
4249
4250void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4251{
4252 struct va_format vaf;
4253 va_list args;
4254 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4255
4256 if ((gfp_mask & __GFP_NOWARN) ||
4257 !__ratelimit(&nopage_rs) ||
4258 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4259 return;
4260
4261 va_start(args, fmt);
4262 vaf.fmt = fmt;
4263 vaf.va = &args;
4264 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4265 current->comm, &vaf, gfp_mask, &gfp_mask,
4266 nodemask_pr_args(nodemask));
4267 va_end(args);
4268
4269 cpuset_print_current_mems_allowed();
4270 pr_cont("\n");
4271 dump_stack();
4272 warn_alloc_show_mem(gfp_mask, nodemask);
4273}
4274
4275static inline struct page *
4276__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4277 unsigned int alloc_flags,
4278 const struct alloc_context *ac)
4279{
4280 struct page *page;
4281
4282 page = get_page_from_freelist(gfp_mask, order,
4283 alloc_flags|ALLOC_CPUSET, ac);
4284 /*
4285 * fallback to ignore cpuset restriction if our nodes
4286 * are depleted
4287 */
4288 if (!page)
4289 page = get_page_from_freelist(gfp_mask, order,
4290 alloc_flags, ac);
4291
4292 return page;
4293}
4294
4295static inline struct page *
4296__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4297 const struct alloc_context *ac, unsigned long *did_some_progress)
4298{
4299 struct oom_control oc = {
4300 .zonelist = ac->zonelist,
4301 .nodemask = ac->nodemask,
4302 .memcg = NULL,
4303 .gfp_mask = gfp_mask,
4304 .order = order,
4305 };
4306 struct page *page;
4307
4308 *did_some_progress = 0;
4309
4310 /*
4311 * Acquire the oom lock. If that fails, somebody else is
4312 * making progress for us.
4313 */
4314 if (!mutex_trylock(&oom_lock)) {
4315 *did_some_progress = 1;
4316 schedule_timeout_uninterruptible(1);
4317 return NULL;
4318 }
4319
4320 /*
4321 * Go through the zonelist yet one more time, keep very high watermark
4322 * here, this is only to catch a parallel oom killing, we must fail if
4323 * we're still under heavy pressure. But make sure that this reclaim
4324 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4325 * allocation which will never fail due to oom_lock already held.
4326 */
4327 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4328 ~__GFP_DIRECT_RECLAIM, order,
4329 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4330 if (page)
4331 goto out;
4332
4333 /* Coredumps can quickly deplete all memory reserves */
4334 if (current->flags & PF_DUMPCORE)
4335 goto out;
4336 /* The OOM killer will not help higher order allocs */
4337 if (order > PAGE_ALLOC_COSTLY_ORDER)
4338 goto out;
4339 /*
4340 * We have already exhausted all our reclaim opportunities without any
4341 * success so it is time to admit defeat. We will skip the OOM killer
4342 * because it is very likely that the caller has a more reasonable
4343 * fallback than shooting a random task.
4344 *
4345 * The OOM killer may not free memory on a specific node.
4346 */
4347 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4348 goto out;
4349 /* The OOM killer does not needlessly kill tasks for lowmem */
4350 if (ac->highest_zoneidx < ZONE_NORMAL)
4351 goto out;
4352 if (pm_suspended_storage())
4353 goto out;
4354 /*
4355 * XXX: GFP_NOFS allocations should rather fail than rely on
4356 * other request to make a forward progress.
4357 * We are in an unfortunate situation where out_of_memory cannot
4358 * do much for this context but let's try it to at least get
4359 * access to memory reserved if the current task is killed (see
4360 * out_of_memory). Once filesystems are ready to handle allocation
4361 * failures more gracefully we should just bail out here.
4362 */
4363
4364 /* Exhausted what can be done so it's blame time */
4365 if (out_of_memory(&oc) ||
4366 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4367 *did_some_progress = 1;
4368
4369 /*
4370 * Help non-failing allocations by giving them access to memory
4371 * reserves
4372 */
4373 if (gfp_mask & __GFP_NOFAIL)
4374 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4375 ALLOC_NO_WATERMARKS, ac);
4376 }
4377out:
4378 mutex_unlock(&oom_lock);
4379 return page;
4380}
4381
4382/*
4383 * Maximum number of compaction retries with a progress before OOM
4384 * killer is consider as the only way to move forward.
4385 */
4386#define MAX_COMPACT_RETRIES 16
4387
4388#ifdef CONFIG_COMPACTION
4389/* Try memory compaction for high-order allocations before reclaim */
4390static struct page *
4391__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4392 unsigned int alloc_flags, const struct alloc_context *ac,
4393 enum compact_priority prio, enum compact_result *compact_result)
4394{
4395 struct page *page = NULL;
4396 unsigned long pflags;
4397 unsigned int noreclaim_flag;
4398
4399 if (!order)
4400 return NULL;
4401
4402 psi_memstall_enter(&pflags);
4403 delayacct_compact_start();
4404 noreclaim_flag = memalloc_noreclaim_save();
4405
4406 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4407 prio, &page);
4408
4409 memalloc_noreclaim_restore(noreclaim_flag);
4410 psi_memstall_leave(&pflags);
4411 delayacct_compact_end();
4412
4413 if (*compact_result == COMPACT_SKIPPED)
4414 return NULL;
4415 /*
4416 * At least in one zone compaction wasn't deferred or skipped, so let's
4417 * count a compaction stall
4418 */
4419 count_vm_event(COMPACTSTALL);
4420
4421 /* Prep a captured page if available */
4422 if (page)
4423 prep_new_page(page, order, gfp_mask, alloc_flags);
4424
4425 /* Try get a page from the freelist if available */
4426 if (!page)
4427 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4428
4429 if (page) {
4430 struct zone *zone = page_zone(page);
4431
4432 zone->compact_blockskip_flush = false;
4433 compaction_defer_reset(zone, order, true);
4434 count_vm_event(COMPACTSUCCESS);
4435 return page;
4436 }
4437
4438 /*
4439 * It's bad if compaction run occurs and fails. The most likely reason
4440 * is that pages exist, but not enough to satisfy watermarks.
4441 */
4442 count_vm_event(COMPACTFAIL);
4443
4444 cond_resched();
4445
4446 return NULL;
4447}
4448
4449static inline bool
4450should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4451 enum compact_result compact_result,
4452 enum compact_priority *compact_priority,
4453 int *compaction_retries)
4454{
4455 int max_retries = MAX_COMPACT_RETRIES;
4456 int min_priority;
4457 bool ret = false;
4458 int retries = *compaction_retries;
4459 enum compact_priority priority = *compact_priority;
4460
4461 if (!order)
4462 return false;
4463
4464 if (fatal_signal_pending(current))
4465 return false;
4466
4467 if (compaction_made_progress(compact_result))
4468 (*compaction_retries)++;
4469
4470 /*
4471 * compaction considers all the zone as desperately out of memory
4472 * so it doesn't really make much sense to retry except when the
4473 * failure could be caused by insufficient priority
4474 */
4475 if (compaction_failed(compact_result))
4476 goto check_priority;
4477
4478 /*
4479 * compaction was skipped because there are not enough order-0 pages
4480 * to work with, so we retry only if it looks like reclaim can help.
4481 */
4482 if (compaction_needs_reclaim(compact_result)) {
4483 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4484 goto out;
4485 }
4486
4487 /*
4488 * make sure the compaction wasn't deferred or didn't bail out early
4489 * due to locks contention before we declare that we should give up.
4490 * But the next retry should use a higher priority if allowed, so
4491 * we don't just keep bailing out endlessly.
4492 */
4493 if (compaction_withdrawn(compact_result)) {
4494 goto check_priority;
4495 }
4496
4497 /*
4498 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4499 * costly ones because they are de facto nofail and invoke OOM
4500 * killer to move on while costly can fail and users are ready
4501 * to cope with that. 1/4 retries is rather arbitrary but we
4502 * would need much more detailed feedback from compaction to
4503 * make a better decision.
4504 */
4505 if (order > PAGE_ALLOC_COSTLY_ORDER)
4506 max_retries /= 4;
4507 if (*compaction_retries <= max_retries) {
4508 ret = true;
4509 goto out;
4510 }
4511
4512 /*
4513 * Make sure there are attempts at the highest priority if we exhausted
4514 * all retries or failed at the lower priorities.
4515 */
4516check_priority:
4517 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4518 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4519
4520 if (*compact_priority > min_priority) {
4521 (*compact_priority)--;
4522 *compaction_retries = 0;
4523 ret = true;
4524 }
4525out:
4526 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4527 return ret;
4528}
4529#else
4530static inline struct page *
4531__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4532 unsigned int alloc_flags, const struct alloc_context *ac,
4533 enum compact_priority prio, enum compact_result *compact_result)
4534{
4535 *compact_result = COMPACT_SKIPPED;
4536 return NULL;
4537}
4538
4539static inline bool
4540should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4541 enum compact_result compact_result,
4542 enum compact_priority *compact_priority,
4543 int *compaction_retries)
4544{
4545 struct zone *zone;
4546 struct zoneref *z;
4547
4548 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4549 return false;
4550
4551 /*
4552 * There are setups with compaction disabled which would prefer to loop
4553 * inside the allocator rather than hit the oom killer prematurely.
4554 * Let's give them a good hope and keep retrying while the order-0
4555 * watermarks are OK.
4556 */
4557 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4558 ac->highest_zoneidx, ac->nodemask) {
4559 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4560 ac->highest_zoneidx, alloc_flags))
4561 return true;
4562 }
4563 return false;
4564}
4565#endif /* CONFIG_COMPACTION */
4566
4567#ifdef CONFIG_LOCKDEP
4568static struct lockdep_map __fs_reclaim_map =
4569 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4570
4571static bool __need_reclaim(gfp_t gfp_mask)
4572{
4573 /* no reclaim without waiting on it */
4574 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4575 return false;
4576
4577 /* this guy won't enter reclaim */
4578 if (current->flags & PF_MEMALLOC)
4579 return false;
4580
4581 if (gfp_mask & __GFP_NOLOCKDEP)
4582 return false;
4583
4584 return true;
4585}
4586
4587void __fs_reclaim_acquire(unsigned long ip)
4588{
4589 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4590}
4591
4592void __fs_reclaim_release(unsigned long ip)
4593{
4594 lock_release(&__fs_reclaim_map, ip);
4595}
4596
4597void fs_reclaim_acquire(gfp_t gfp_mask)
4598{
4599 gfp_mask = current_gfp_context(gfp_mask);
4600
4601 if (__need_reclaim(gfp_mask)) {
4602 if (gfp_mask & __GFP_FS)
4603 __fs_reclaim_acquire(_RET_IP_);
4604
4605#ifdef CONFIG_MMU_NOTIFIER
4606 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4607 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4608#endif
4609
4610 }
4611}
4612EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4613
4614void fs_reclaim_release(gfp_t gfp_mask)
4615{
4616 gfp_mask = current_gfp_context(gfp_mask);
4617
4618 if (__need_reclaim(gfp_mask)) {
4619 if (gfp_mask & __GFP_FS)
4620 __fs_reclaim_release(_RET_IP_);
4621 }
4622}
4623EXPORT_SYMBOL_GPL(fs_reclaim_release);
4624#endif
4625
4626/* Perform direct synchronous page reclaim */
4627static unsigned long
4628__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4629 const struct alloc_context *ac)
4630{
4631 unsigned int noreclaim_flag;
4632 unsigned long progress;
4633
4634 cond_resched();
4635
4636 /* We now go into synchronous reclaim */
4637 cpuset_memory_pressure_bump();
4638 fs_reclaim_acquire(gfp_mask);
4639 noreclaim_flag = memalloc_noreclaim_save();
4640
4641 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4642 ac->nodemask);
4643
4644 memalloc_noreclaim_restore(noreclaim_flag);
4645 fs_reclaim_release(gfp_mask);
4646
4647 cond_resched();
4648
4649 return progress;
4650}
4651
4652/* The really slow allocator path where we enter direct reclaim */
4653static inline struct page *
4654__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4655 unsigned int alloc_flags, const struct alloc_context *ac,
4656 unsigned long *did_some_progress)
4657{
4658 struct page *page = NULL;
4659 unsigned long pflags;
4660 bool drained = false;
4661
4662 psi_memstall_enter(&pflags);
4663 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4664 if (unlikely(!(*did_some_progress)))
4665 goto out;
4666
4667retry:
4668 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4669
4670 /*
4671 * If an allocation failed after direct reclaim, it could be because
4672 * pages are pinned on the per-cpu lists or in high alloc reserves.
4673 * Shrink them and try again
4674 */
4675 if (!page && !drained) {
4676 unreserve_highatomic_pageblock(ac, false);
4677 drain_all_pages(NULL);
4678 drained = true;
4679 goto retry;
4680 }
4681out:
4682 psi_memstall_leave(&pflags);
4683
4684 return page;
4685}
4686
4687static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4688 const struct alloc_context *ac)
4689{
4690 struct zoneref *z;
4691 struct zone *zone;
4692 pg_data_t *last_pgdat = NULL;
4693 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4694
4695 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4696 ac->nodemask) {
4697 if (!managed_zone(zone))
4698 continue;
4699 if (last_pgdat != zone->zone_pgdat) {
4700 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4701 last_pgdat = zone->zone_pgdat;
4702 }
4703 }
4704}
4705
4706static inline unsigned int
4707gfp_to_alloc_flags(gfp_t gfp_mask)
4708{
4709 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4710
4711 /*
4712 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4713 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4714 * to save two branches.
4715 */
4716 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4717 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4718
4719 /*
4720 * The caller may dip into page reserves a bit more if the caller
4721 * cannot run direct reclaim, or if the caller has realtime scheduling
4722 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4723 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4724 */
4725 alloc_flags |= (__force int)
4726 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4727
4728 if (gfp_mask & __GFP_ATOMIC) {
4729 /*
4730 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4731 * if it can't schedule.
4732 */
4733 if (!(gfp_mask & __GFP_NOMEMALLOC))
4734 alloc_flags |= ALLOC_HARDER;
4735 /*
4736 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4737 * comment for __cpuset_node_allowed().
4738 */
4739 alloc_flags &= ~ALLOC_CPUSET;
4740 } else if (unlikely(rt_task(current)) && in_task())
4741 alloc_flags |= ALLOC_HARDER;
4742
4743 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4744
4745 return alloc_flags;
4746}
4747
4748static bool oom_reserves_allowed(struct task_struct *tsk)
4749{
4750 if (!tsk_is_oom_victim(tsk))
4751 return false;
4752
4753 /*
4754 * !MMU doesn't have oom reaper so give access to memory reserves
4755 * only to the thread with TIF_MEMDIE set
4756 */
4757 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4758 return false;
4759
4760 return true;
4761}
4762
4763/*
4764 * Distinguish requests which really need access to full memory
4765 * reserves from oom victims which can live with a portion of it
4766 */
4767static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4768{
4769 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4770 return 0;
4771 if (gfp_mask & __GFP_MEMALLOC)
4772 return ALLOC_NO_WATERMARKS;
4773 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4774 return ALLOC_NO_WATERMARKS;
4775 if (!in_interrupt()) {
4776 if (current->flags & PF_MEMALLOC)
4777 return ALLOC_NO_WATERMARKS;
4778 else if (oom_reserves_allowed(current))
4779 return ALLOC_OOM;
4780 }
4781
4782 return 0;
4783}
4784
4785bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4786{
4787 return !!__gfp_pfmemalloc_flags(gfp_mask);
4788}
4789
4790/*
4791 * Checks whether it makes sense to retry the reclaim to make a forward progress
4792 * for the given allocation request.
4793 *
4794 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4795 * without success, or when we couldn't even meet the watermark if we
4796 * reclaimed all remaining pages on the LRU lists.
4797 *
4798 * Returns true if a retry is viable or false to enter the oom path.
4799 */
4800static inline bool
4801should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4802 struct alloc_context *ac, int alloc_flags,
4803 bool did_some_progress, int *no_progress_loops)
4804{
4805 struct zone *zone;
4806 struct zoneref *z;
4807 bool ret = false;
4808
4809 /*
4810 * Costly allocations might have made a progress but this doesn't mean
4811 * their order will become available due to high fragmentation so
4812 * always increment the no progress counter for them
4813 */
4814 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4815 *no_progress_loops = 0;
4816 else
4817 (*no_progress_loops)++;
4818
4819 /*
4820 * Make sure we converge to OOM if we cannot make any progress
4821 * several times in the row.
4822 */
4823 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4824 /* Before OOM, exhaust highatomic_reserve */
4825 return unreserve_highatomic_pageblock(ac, true);
4826 }
4827
4828 /*
4829 * Keep reclaiming pages while there is a chance this will lead
4830 * somewhere. If none of the target zones can satisfy our allocation
4831 * request even if all reclaimable pages are considered then we are
4832 * screwed and have to go OOM.
4833 */
4834 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4835 ac->highest_zoneidx, ac->nodemask) {
4836 unsigned long available;
4837 unsigned long reclaimable;
4838 unsigned long min_wmark = min_wmark_pages(zone);
4839 bool wmark;
4840
4841 available = reclaimable = zone_reclaimable_pages(zone);
4842 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4843
4844 /*
4845 * Would the allocation succeed if we reclaimed all
4846 * reclaimable pages?
4847 */
4848 wmark = __zone_watermark_ok(zone, order, min_wmark,
4849 ac->highest_zoneidx, alloc_flags, available);
4850 trace_reclaim_retry_zone(z, order, reclaimable,
4851 available, min_wmark, *no_progress_loops, wmark);
4852 if (wmark) {
4853 ret = true;
4854 break;
4855 }
4856 }
4857
4858 /*
4859 * Memory allocation/reclaim might be called from a WQ context and the
4860 * current implementation of the WQ concurrency control doesn't
4861 * recognize that a particular WQ is congested if the worker thread is
4862 * looping without ever sleeping. Therefore we have to do a short sleep
4863 * here rather than calling cond_resched().
4864 */
4865 if (current->flags & PF_WQ_WORKER)
4866 schedule_timeout_uninterruptible(1);
4867 else
4868 cond_resched();
4869 return ret;
4870}
4871
4872static inline bool
4873check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4874{
4875 /*
4876 * It's possible that cpuset's mems_allowed and the nodemask from
4877 * mempolicy don't intersect. This should be normally dealt with by
4878 * policy_nodemask(), but it's possible to race with cpuset update in
4879 * such a way the check therein was true, and then it became false
4880 * before we got our cpuset_mems_cookie here.
4881 * This assumes that for all allocations, ac->nodemask can come only
4882 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4883 * when it does not intersect with the cpuset restrictions) or the
4884 * caller can deal with a violated nodemask.
4885 */
4886 if (cpusets_enabled() && ac->nodemask &&
4887 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4888 ac->nodemask = NULL;
4889 return true;
4890 }
4891
4892 /*
4893 * When updating a task's mems_allowed or mempolicy nodemask, it is
4894 * possible to race with parallel threads in such a way that our
4895 * allocation can fail while the mask is being updated. If we are about
4896 * to fail, check if the cpuset changed during allocation and if so,
4897 * retry.
4898 */
4899 if (read_mems_allowed_retry(cpuset_mems_cookie))
4900 return true;
4901
4902 return false;
4903}
4904
4905static inline struct page *
4906__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4907 struct alloc_context *ac)
4908{
4909 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4910 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4911 struct page *page = NULL;
4912 unsigned int alloc_flags;
4913 unsigned long did_some_progress;
4914 enum compact_priority compact_priority;
4915 enum compact_result compact_result;
4916 int compaction_retries;
4917 int no_progress_loops;
4918 unsigned int cpuset_mems_cookie;
4919 int reserve_flags;
4920
4921 /*
4922 * We also sanity check to catch abuse of atomic reserves being used by
4923 * callers that are not in atomic context.
4924 */
4925 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4926 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4927 gfp_mask &= ~__GFP_ATOMIC;
4928
4929retry_cpuset:
4930 compaction_retries = 0;
4931 no_progress_loops = 0;
4932 compact_priority = DEF_COMPACT_PRIORITY;
4933 cpuset_mems_cookie = read_mems_allowed_begin();
4934
4935 /*
4936 * The fast path uses conservative alloc_flags to succeed only until
4937 * kswapd needs to be woken up, and to avoid the cost of setting up
4938 * alloc_flags precisely. So we do that now.
4939 */
4940 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4941
4942 /*
4943 * We need to recalculate the starting point for the zonelist iterator
4944 * because we might have used different nodemask in the fast path, or
4945 * there was a cpuset modification and we are retrying - otherwise we
4946 * could end up iterating over non-eligible zones endlessly.
4947 */
4948 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4949 ac->highest_zoneidx, ac->nodemask);
4950 if (!ac->preferred_zoneref->zone)
4951 goto nopage;
4952
4953 /*
4954 * Check for insane configurations where the cpuset doesn't contain
4955 * any suitable zone to satisfy the request - e.g. non-movable
4956 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4957 */
4958 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4959 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4960 ac->highest_zoneidx,
4961 &cpuset_current_mems_allowed);
4962 if (!z->zone)
4963 goto nopage;
4964 }
4965
4966 if (alloc_flags & ALLOC_KSWAPD)
4967 wake_all_kswapds(order, gfp_mask, ac);
4968
4969 /*
4970 * The adjusted alloc_flags might result in immediate success, so try
4971 * that first
4972 */
4973 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4974 if (page)
4975 goto got_pg;
4976
4977 /*
4978 * For costly allocations, try direct compaction first, as it's likely
4979 * that we have enough base pages and don't need to reclaim. For non-
4980 * movable high-order allocations, do that as well, as compaction will
4981 * try prevent permanent fragmentation by migrating from blocks of the
4982 * same migratetype.
4983 * Don't try this for allocations that are allowed to ignore
4984 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4985 */
4986 if (can_direct_reclaim &&
4987 (costly_order ||
4988 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4989 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4990 page = __alloc_pages_direct_compact(gfp_mask, order,
4991 alloc_flags, ac,
4992 INIT_COMPACT_PRIORITY,
4993 &compact_result);
4994 if (page)
4995 goto got_pg;
4996
4997 /*
4998 * Checks for costly allocations with __GFP_NORETRY, which
4999 * includes some THP page fault allocations
5000 */
5001 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5002 /*
5003 * If allocating entire pageblock(s) and compaction
5004 * failed because all zones are below low watermarks
5005 * or is prohibited because it recently failed at this
5006 * order, fail immediately unless the allocator has
5007 * requested compaction and reclaim retry.
5008 *
5009 * Reclaim is
5010 * - potentially very expensive because zones are far
5011 * below their low watermarks or this is part of very
5012 * bursty high order allocations,
5013 * - not guaranteed to help because isolate_freepages()
5014 * may not iterate over freed pages as part of its
5015 * linear scan, and
5016 * - unlikely to make entire pageblocks free on its
5017 * own.
5018 */
5019 if (compact_result == COMPACT_SKIPPED ||
5020 compact_result == COMPACT_DEFERRED)
5021 goto nopage;
5022
5023 /*
5024 * Looks like reclaim/compaction is worth trying, but
5025 * sync compaction could be very expensive, so keep
5026 * using async compaction.
5027 */
5028 compact_priority = INIT_COMPACT_PRIORITY;
5029 }
5030 }
5031
5032retry:
5033 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5034 if (alloc_flags & ALLOC_KSWAPD)
5035 wake_all_kswapds(order, gfp_mask, ac);
5036
5037 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5038 if (reserve_flags)
5039 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5040
5041 /*
5042 * Reset the nodemask and zonelist iterators if memory policies can be
5043 * ignored. These allocations are high priority and system rather than
5044 * user oriented.
5045 */
5046 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5047 ac->nodemask = NULL;
5048 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5049 ac->highest_zoneidx, ac->nodemask);
5050 }
5051
5052 /* Attempt with potentially adjusted zonelist and alloc_flags */
5053 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5054 if (page)
5055 goto got_pg;
5056
5057 /* Caller is not willing to reclaim, we can't balance anything */
5058 if (!can_direct_reclaim)
5059 goto nopage;
5060
5061 /* Avoid recursion of direct reclaim */
5062 if (current->flags & PF_MEMALLOC)
5063 goto nopage;
5064
5065 /* Try direct reclaim and then allocating */
5066 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5067 &did_some_progress);
5068 if (page)
5069 goto got_pg;
5070
5071 /* Try direct compaction and then allocating */
5072 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5073 compact_priority, &compact_result);
5074 if (page)
5075 goto got_pg;
5076
5077 /* Do not loop if specifically requested */
5078 if (gfp_mask & __GFP_NORETRY)
5079 goto nopage;
5080
5081 /*
5082 * Do not retry costly high order allocations unless they are
5083 * __GFP_RETRY_MAYFAIL
5084 */
5085 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5086 goto nopage;
5087
5088 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5089 did_some_progress > 0, &no_progress_loops))
5090 goto retry;
5091
5092 /*
5093 * It doesn't make any sense to retry for the compaction if the order-0
5094 * reclaim is not able to make any progress because the current
5095 * implementation of the compaction depends on the sufficient amount
5096 * of free memory (see __compaction_suitable)
5097 */
5098 if (did_some_progress > 0 &&
5099 should_compact_retry(ac, order, alloc_flags,
5100 compact_result, &compact_priority,
5101 &compaction_retries))
5102 goto retry;
5103
5104
5105 /* Deal with possible cpuset update races before we start OOM killing */
5106 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5107 goto retry_cpuset;
5108
5109 /* Reclaim has failed us, start killing things */
5110 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5111 if (page)
5112 goto got_pg;
5113
5114 /* Avoid allocations with no watermarks from looping endlessly */
5115 if (tsk_is_oom_victim(current) &&
5116 (alloc_flags & ALLOC_OOM ||
5117 (gfp_mask & __GFP_NOMEMALLOC)))
5118 goto nopage;
5119
5120 /* Retry as long as the OOM killer is making progress */
5121 if (did_some_progress) {
5122 no_progress_loops = 0;
5123 goto retry;
5124 }
5125
5126nopage:
5127 /* Deal with possible cpuset update races before we fail */
5128 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5129 goto retry_cpuset;
5130
5131 /*
5132 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5133 * we always retry
5134 */
5135 if (gfp_mask & __GFP_NOFAIL) {
5136 /*
5137 * All existing users of the __GFP_NOFAIL are blockable, so warn
5138 * of any new users that actually require GFP_NOWAIT
5139 */
5140 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5141 goto fail;
5142
5143 /*
5144 * PF_MEMALLOC request from this context is rather bizarre
5145 * because we cannot reclaim anything and only can loop waiting
5146 * for somebody to do a work for us
5147 */
5148 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5149
5150 /*
5151 * non failing costly orders are a hard requirement which we
5152 * are not prepared for much so let's warn about these users
5153 * so that we can identify them and convert them to something
5154 * else.
5155 */
5156 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5157
5158 /*
5159 * Help non-failing allocations by giving them access to memory
5160 * reserves but do not use ALLOC_NO_WATERMARKS because this
5161 * could deplete whole memory reserves which would just make
5162 * the situation worse
5163 */
5164 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5165 if (page)
5166 goto got_pg;
5167
5168 cond_resched();
5169 goto retry;
5170 }
5171fail:
5172 warn_alloc(gfp_mask, ac->nodemask,
5173 "page allocation failure: order:%u", order);
5174got_pg:
5175 return page;
5176}
5177
5178static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5179 int preferred_nid, nodemask_t *nodemask,
5180 struct alloc_context *ac, gfp_t *alloc_gfp,
5181 unsigned int *alloc_flags)
5182{
5183 ac->highest_zoneidx = gfp_zone(gfp_mask);
5184 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5185 ac->nodemask = nodemask;
5186 ac->migratetype = gfp_migratetype(gfp_mask);
5187
5188 if (cpusets_enabled()) {
5189 *alloc_gfp |= __GFP_HARDWALL;
5190 /*
5191 * When we are in the interrupt context, it is irrelevant
5192 * to the current task context. It means that any node ok.
5193 */
5194 if (in_task() && !ac->nodemask)
5195 ac->nodemask = &cpuset_current_mems_allowed;
5196 else
5197 *alloc_flags |= ALLOC_CPUSET;
5198 }
5199
5200 fs_reclaim_acquire(gfp_mask);
5201 fs_reclaim_release(gfp_mask);
5202
5203 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5204
5205 if (should_fail_alloc_page(gfp_mask, order))
5206 return false;
5207
5208 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5209
5210 /* Dirty zone balancing only done in the fast path */
5211 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5212
5213 /*
5214 * The preferred zone is used for statistics but crucially it is
5215 * also used as the starting point for the zonelist iterator. It
5216 * may get reset for allocations that ignore memory policies.
5217 */
5218 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5219 ac->highest_zoneidx, ac->nodemask);
5220
5221 return true;
5222}
5223
5224/*
5225 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5226 * @gfp: GFP flags for the allocation
5227 * @preferred_nid: The preferred NUMA node ID to allocate from
5228 * @nodemask: Set of nodes to allocate from, may be NULL
5229 * @nr_pages: The number of pages desired on the list or array
5230 * @page_list: Optional list to store the allocated pages
5231 * @page_array: Optional array to store the pages
5232 *
5233 * This is a batched version of the page allocator that attempts to
5234 * allocate nr_pages quickly. Pages are added to page_list if page_list
5235 * is not NULL, otherwise it is assumed that the page_array is valid.
5236 *
5237 * For lists, nr_pages is the number of pages that should be allocated.
5238 *
5239 * For arrays, only NULL elements are populated with pages and nr_pages
5240 * is the maximum number of pages that will be stored in the array.
5241 *
5242 * Returns the number of pages on the list or array.
5243 */
5244unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5245 nodemask_t *nodemask, int nr_pages,
5246 struct list_head *page_list,
5247 struct page **page_array)
5248{
5249 struct page *page;
5250 unsigned long flags;
5251 struct zone *zone;
5252 struct zoneref *z;
5253 struct per_cpu_pages *pcp;
5254 struct list_head *pcp_list;
5255 struct alloc_context ac;
5256 gfp_t alloc_gfp;
5257 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5258 int nr_populated = 0, nr_account = 0;
5259
5260 /*
5261 * Skip populated array elements to determine if any pages need
5262 * to be allocated before disabling IRQs.
5263 */
5264 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5265 nr_populated++;
5266
5267 /* No pages requested? */
5268 if (unlikely(nr_pages <= 0))
5269 goto out;
5270
5271 /* Already populated array? */
5272 if (unlikely(page_array && nr_pages - nr_populated == 0))
5273 goto out;
5274
5275 /* Bulk allocator does not support memcg accounting. */
5276 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5277 goto failed;
5278
5279 /* Use the single page allocator for one page. */
5280 if (nr_pages - nr_populated == 1)
5281 goto failed;
5282
5283#ifdef CONFIG_PAGE_OWNER
5284 /*
5285 * PAGE_OWNER may recurse into the allocator to allocate space to
5286 * save the stack with pagesets.lock held. Releasing/reacquiring
5287 * removes much of the performance benefit of bulk allocation so
5288 * force the caller to allocate one page at a time as it'll have
5289 * similar performance to added complexity to the bulk allocator.
5290 */
5291 if (static_branch_unlikely(&page_owner_inited))
5292 goto failed;
5293#endif
5294
5295 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5296 gfp &= gfp_allowed_mask;
5297 alloc_gfp = gfp;
5298 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5299 goto out;
5300 gfp = alloc_gfp;
5301
5302 /* Find an allowed local zone that meets the low watermark. */
5303 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5304 unsigned long mark;
5305
5306 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5307 !__cpuset_zone_allowed(zone, gfp)) {
5308 continue;
5309 }
5310
5311 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5312 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5313 goto failed;
5314 }
5315
5316 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5317 if (zone_watermark_fast(zone, 0, mark,
5318 zonelist_zone_idx(ac.preferred_zoneref),
5319 alloc_flags, gfp)) {
5320 break;
5321 }
5322 }
5323
5324 /*
5325 * If there are no allowed local zones that meets the watermarks then
5326 * try to allocate a single page and reclaim if necessary.
5327 */
5328 if (unlikely(!zone))
5329 goto failed;
5330
5331 /* Attempt the batch allocation */
5332 local_lock_irqsave(&pagesets.lock, flags);
5333 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5334 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5335
5336 while (nr_populated < nr_pages) {
5337
5338 /* Skip existing pages */
5339 if (page_array && page_array[nr_populated]) {
5340 nr_populated++;
5341 continue;
5342 }
5343
5344 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5345 pcp, pcp_list);
5346 if (unlikely(!page)) {
5347 /* Try and allocate at least one page */
5348 if (!nr_account)
5349 goto failed_irq;
5350 break;
5351 }
5352 nr_account++;
5353
5354 prep_new_page(page, 0, gfp, 0);
5355 if (page_list)
5356 list_add(&page->lru, page_list);
5357 else
5358 page_array[nr_populated] = page;
5359 nr_populated++;
5360 }
5361
5362 local_unlock_irqrestore(&pagesets.lock, flags);
5363
5364 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5365 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5366
5367out:
5368 return nr_populated;
5369
5370failed_irq:
5371 local_unlock_irqrestore(&pagesets.lock, flags);
5372
5373failed:
5374 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5375 if (page) {
5376 if (page_list)
5377 list_add(&page->lru, page_list);
5378 else
5379 page_array[nr_populated] = page;
5380 nr_populated++;
5381 }
5382
5383 goto out;
5384}
5385EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5386
5387/*
5388 * This is the 'heart' of the zoned buddy allocator.
5389 */
5390struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5391 nodemask_t *nodemask)
5392{
5393 struct page *page;
5394 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5395 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5396 struct alloc_context ac = { };
5397
5398 /*
5399 * There are several places where we assume that the order value is sane
5400 * so bail out early if the request is out of bound.
5401 */
5402 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5403 return NULL;
5404
5405 gfp &= gfp_allowed_mask;
5406 /*
5407 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5408 * resp. GFP_NOIO which has to be inherited for all allocation requests
5409 * from a particular context which has been marked by
5410 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5411 * movable zones are not used during allocation.
5412 */
5413 gfp = current_gfp_context(gfp);
5414 alloc_gfp = gfp;
5415 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5416 &alloc_gfp, &alloc_flags))
5417 return NULL;
5418
5419 /*
5420 * Forbid the first pass from falling back to types that fragment
5421 * memory until all local zones are considered.
5422 */
5423 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5424
5425 /* First allocation attempt */
5426 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5427 if (likely(page))
5428 goto out;
5429
5430 alloc_gfp = gfp;
5431 ac.spread_dirty_pages = false;
5432
5433 /*
5434 * Restore the original nodemask if it was potentially replaced with
5435 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5436 */
5437 ac.nodemask = nodemask;
5438
5439 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5440
5441out:
5442 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5443 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5444 __free_pages(page, order);
5445 page = NULL;
5446 }
5447
5448 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5449
5450 return page;
5451}
5452EXPORT_SYMBOL(__alloc_pages);
5453
5454struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5455 nodemask_t *nodemask)
5456{
5457 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5458 preferred_nid, nodemask);
5459
5460 if (page && order > 1)
5461 prep_transhuge_page(page);
5462 return (struct folio *)page;
5463}
5464EXPORT_SYMBOL(__folio_alloc);
5465
5466/*
5467 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5468 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5469 * you need to access high mem.
5470 */
5471unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5472{
5473 struct page *page;
5474
5475 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5476 if (!page)
5477 return 0;
5478 return (unsigned long) page_address(page);
5479}
5480EXPORT_SYMBOL(__get_free_pages);
5481
5482unsigned long get_zeroed_page(gfp_t gfp_mask)
5483{
5484 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5485}
5486EXPORT_SYMBOL(get_zeroed_page);
5487
5488/**
5489 * __free_pages - Free pages allocated with alloc_pages().
5490 * @page: The page pointer returned from alloc_pages().
5491 * @order: The order of the allocation.
5492 *
5493 * This function can free multi-page allocations that are not compound
5494 * pages. It does not check that the @order passed in matches that of
5495 * the allocation, so it is easy to leak memory. Freeing more memory
5496 * than was allocated will probably emit a warning.
5497 *
5498 * If the last reference to this page is speculative, it will be released
5499 * by put_page() which only frees the first page of a non-compound
5500 * allocation. To prevent the remaining pages from being leaked, we free
5501 * the subsequent pages here. If you want to use the page's reference
5502 * count to decide when to free the allocation, you should allocate a
5503 * compound page, and use put_page() instead of __free_pages().
5504 *
5505 * Context: May be called in interrupt context or while holding a normal
5506 * spinlock, but not in NMI context or while holding a raw spinlock.
5507 */
5508void __free_pages(struct page *page, unsigned int order)
5509{
5510 if (put_page_testzero(page))
5511 free_the_page(page, order);
5512 else if (!PageHead(page))
5513 while (order-- > 0)
5514 free_the_page(page + (1 << order), order);
5515}
5516EXPORT_SYMBOL(__free_pages);
5517
5518void free_pages(unsigned long addr, unsigned int order)
5519{
5520 if (addr != 0) {
5521 VM_BUG_ON(!virt_addr_valid((void *)addr));
5522 __free_pages(virt_to_page((void *)addr), order);
5523 }
5524}
5525
5526EXPORT_SYMBOL(free_pages);
5527
5528/*
5529 * Page Fragment:
5530 * An arbitrary-length arbitrary-offset area of memory which resides
5531 * within a 0 or higher order page. Multiple fragments within that page
5532 * are individually refcounted, in the page's reference counter.
5533 *
5534 * The page_frag functions below provide a simple allocation framework for
5535 * page fragments. This is used by the network stack and network device
5536 * drivers to provide a backing region of memory for use as either an
5537 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5538 */
5539static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5540 gfp_t gfp_mask)
5541{
5542 struct page *page = NULL;
5543 gfp_t gfp = gfp_mask;
5544
5545#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5546 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5547 __GFP_NOMEMALLOC;
5548 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5549 PAGE_FRAG_CACHE_MAX_ORDER);
5550 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5551#endif
5552 if (unlikely(!page))
5553 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5554
5555 nc->va = page ? page_address(page) : NULL;
5556
5557 return page;
5558}
5559
5560void __page_frag_cache_drain(struct page *page, unsigned int count)
5561{
5562 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5563
5564 if (page_ref_sub_and_test(page, count))
5565 free_the_page(page, compound_order(page));
5566}
5567EXPORT_SYMBOL(__page_frag_cache_drain);
5568
5569void *page_frag_alloc_align(struct page_frag_cache *nc,
5570 unsigned int fragsz, gfp_t gfp_mask,
5571 unsigned int align_mask)
5572{
5573 unsigned int size = PAGE_SIZE;
5574 struct page *page;
5575 int offset;
5576
5577 if (unlikely(!nc->va)) {
5578refill:
5579 page = __page_frag_cache_refill(nc, gfp_mask);
5580 if (!page)
5581 return NULL;
5582
5583#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5584 /* if size can vary use size else just use PAGE_SIZE */
5585 size = nc->size;
5586#endif
5587 /* Even if we own the page, we do not use atomic_set().
5588 * This would break get_page_unless_zero() users.
5589 */
5590 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5591
5592 /* reset page count bias and offset to start of new frag */
5593 nc->pfmemalloc = page_is_pfmemalloc(page);
5594 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5595 nc->offset = size;
5596 }
5597
5598 offset = nc->offset - fragsz;
5599 if (unlikely(offset < 0)) {
5600 page = virt_to_page(nc->va);
5601
5602 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5603 goto refill;
5604
5605 if (unlikely(nc->pfmemalloc)) {
5606 free_the_page(page, compound_order(page));
5607 goto refill;
5608 }
5609
5610#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5611 /* if size can vary use size else just use PAGE_SIZE */
5612 size = nc->size;
5613#endif
5614 /* OK, page count is 0, we can safely set it */
5615 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5616
5617 /* reset page count bias and offset to start of new frag */
5618 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5619 offset = size - fragsz;
5620 }
5621
5622 nc->pagecnt_bias--;
5623 offset &= align_mask;
5624 nc->offset = offset;
5625
5626 return nc->va + offset;
5627}
5628EXPORT_SYMBOL(page_frag_alloc_align);
5629
5630/*
5631 * Frees a page fragment allocated out of either a compound or order 0 page.
5632 */
5633void page_frag_free(void *addr)
5634{
5635 struct page *page = virt_to_head_page(addr);
5636
5637 if (unlikely(put_page_testzero(page)))
5638 free_the_page(page, compound_order(page));
5639}
5640EXPORT_SYMBOL(page_frag_free);
5641
5642static void *make_alloc_exact(unsigned long addr, unsigned int order,
5643 size_t size)
5644{
5645 if (addr) {
5646 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5647 unsigned long used = addr + PAGE_ALIGN(size);
5648
5649 split_page(virt_to_page((void *)addr), order);
5650 while (used < alloc_end) {
5651 free_page(used);
5652 used += PAGE_SIZE;
5653 }
5654 }
5655 return (void *)addr;
5656}
5657
5658/**
5659 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5660 * @size: the number of bytes to allocate
5661 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5662 *
5663 * This function is similar to alloc_pages(), except that it allocates the
5664 * minimum number of pages to satisfy the request. alloc_pages() can only
5665 * allocate memory in power-of-two pages.
5666 *
5667 * This function is also limited by MAX_ORDER.
5668 *
5669 * Memory allocated by this function must be released by free_pages_exact().
5670 *
5671 * Return: pointer to the allocated area or %NULL in case of error.
5672 */
5673void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5674{
5675 unsigned int order = get_order(size);
5676 unsigned long addr;
5677
5678 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5679 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5680
5681 addr = __get_free_pages(gfp_mask, order);
5682 return make_alloc_exact(addr, order, size);
5683}
5684EXPORT_SYMBOL(alloc_pages_exact);
5685
5686/**
5687 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5688 * pages on a node.
5689 * @nid: the preferred node ID where memory should be allocated
5690 * @size: the number of bytes to allocate
5691 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5692 *
5693 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5694 * back.
5695 *
5696 * Return: pointer to the allocated area or %NULL in case of error.
5697 */
5698void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5699{
5700 unsigned int order = get_order(size);
5701 struct page *p;
5702
5703 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5704 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5705
5706 p = alloc_pages_node(nid, gfp_mask, order);
5707 if (!p)
5708 return NULL;
5709 return make_alloc_exact((unsigned long)page_address(p), order, size);
5710}
5711
5712/**
5713 * free_pages_exact - release memory allocated via alloc_pages_exact()
5714 * @virt: the value returned by alloc_pages_exact.
5715 * @size: size of allocation, same value as passed to alloc_pages_exact().
5716 *
5717 * Release the memory allocated by a previous call to alloc_pages_exact.
5718 */
5719void free_pages_exact(void *virt, size_t size)
5720{
5721 unsigned long addr = (unsigned long)virt;
5722 unsigned long end = addr + PAGE_ALIGN(size);
5723
5724 while (addr < end) {
5725 free_page(addr);
5726 addr += PAGE_SIZE;
5727 }
5728}
5729EXPORT_SYMBOL(free_pages_exact);
5730
5731/**
5732 * nr_free_zone_pages - count number of pages beyond high watermark
5733 * @offset: The zone index of the highest zone
5734 *
5735 * nr_free_zone_pages() counts the number of pages which are beyond the
5736 * high watermark within all zones at or below a given zone index. For each
5737 * zone, the number of pages is calculated as:
5738 *
5739 * nr_free_zone_pages = managed_pages - high_pages
5740 *
5741 * Return: number of pages beyond high watermark.
5742 */
5743static unsigned long nr_free_zone_pages(int offset)
5744{
5745 struct zoneref *z;
5746 struct zone *zone;
5747
5748 /* Just pick one node, since fallback list is circular */
5749 unsigned long sum = 0;
5750
5751 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5752
5753 for_each_zone_zonelist(zone, z, zonelist, offset) {
5754 unsigned long size = zone_managed_pages(zone);
5755 unsigned long high = high_wmark_pages(zone);
5756 if (size > high)
5757 sum += size - high;
5758 }
5759
5760 return sum;
5761}
5762
5763/**
5764 * nr_free_buffer_pages - count number of pages beyond high watermark
5765 *
5766 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5767 * watermark within ZONE_DMA and ZONE_NORMAL.
5768 *
5769 * Return: number of pages beyond high watermark within ZONE_DMA and
5770 * ZONE_NORMAL.
5771 */
5772unsigned long nr_free_buffer_pages(void)
5773{
5774 return nr_free_zone_pages(gfp_zone(GFP_USER));
5775}
5776EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5777
5778static inline void show_node(struct zone *zone)
5779{
5780 if (IS_ENABLED(CONFIG_NUMA))
5781 printk("Node %d ", zone_to_nid(zone));
5782}
5783
5784long si_mem_available(void)
5785{
5786 long available;
5787 unsigned long pagecache;
5788 unsigned long wmark_low = 0;
5789 unsigned long pages[NR_LRU_LISTS];
5790 unsigned long reclaimable;
5791 struct zone *zone;
5792 int lru;
5793
5794 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5795 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5796
5797 for_each_zone(zone)
5798 wmark_low += low_wmark_pages(zone);
5799
5800 /*
5801 * Estimate the amount of memory available for userspace allocations,
5802 * without causing swapping.
5803 */
5804 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5805
5806 /*
5807 * Not all the page cache can be freed, otherwise the system will
5808 * start swapping. Assume at least half of the page cache, or the
5809 * low watermark worth of cache, needs to stay.
5810 */
5811 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5812 pagecache -= min(pagecache / 2, wmark_low);
5813 available += pagecache;
5814
5815 /*
5816 * Part of the reclaimable slab and other kernel memory consists of
5817 * items that are in use, and cannot be freed. Cap this estimate at the
5818 * low watermark.
5819 */
5820 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5821 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5822 available += reclaimable - min(reclaimable / 2, wmark_low);
5823
5824 if (available < 0)
5825 available = 0;
5826 return available;
5827}
5828EXPORT_SYMBOL_GPL(si_mem_available);
5829
5830void si_meminfo(struct sysinfo *val)
5831{
5832 val->totalram = totalram_pages();
5833 val->sharedram = global_node_page_state(NR_SHMEM);
5834 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5835 val->bufferram = nr_blockdev_pages();
5836 val->totalhigh = totalhigh_pages();
5837 val->freehigh = nr_free_highpages();
5838 val->mem_unit = PAGE_SIZE;
5839}
5840
5841EXPORT_SYMBOL(si_meminfo);
5842
5843#ifdef CONFIG_NUMA
5844void si_meminfo_node(struct sysinfo *val, int nid)
5845{
5846 int zone_type; /* needs to be signed */
5847 unsigned long managed_pages = 0;
5848 unsigned long managed_highpages = 0;
5849 unsigned long free_highpages = 0;
5850 pg_data_t *pgdat = NODE_DATA(nid);
5851
5852 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5853 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5854 val->totalram = managed_pages;
5855 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5856 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5857#ifdef CONFIG_HIGHMEM
5858 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5859 struct zone *zone = &pgdat->node_zones[zone_type];
5860
5861 if (is_highmem(zone)) {
5862 managed_highpages += zone_managed_pages(zone);
5863 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5864 }
5865 }
5866 val->totalhigh = managed_highpages;
5867 val->freehigh = free_highpages;
5868#else
5869 val->totalhigh = managed_highpages;
5870 val->freehigh = free_highpages;
5871#endif
5872 val->mem_unit = PAGE_SIZE;
5873}
5874#endif
5875
5876/*
5877 * Determine whether the node should be displayed or not, depending on whether
5878 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5879 */
5880static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5881{
5882 if (!(flags & SHOW_MEM_FILTER_NODES))
5883 return false;
5884
5885 /*
5886 * no node mask - aka implicit memory numa policy. Do not bother with
5887 * the synchronization - read_mems_allowed_begin - because we do not
5888 * have to be precise here.
5889 */
5890 if (!nodemask)
5891 nodemask = &cpuset_current_mems_allowed;
5892
5893 return !node_isset(nid, *nodemask);
5894}
5895
5896#define K(x) ((x) << (PAGE_SHIFT-10))
5897
5898static void show_migration_types(unsigned char type)
5899{
5900 static const char types[MIGRATE_TYPES] = {
5901 [MIGRATE_UNMOVABLE] = 'U',
5902 [MIGRATE_MOVABLE] = 'M',
5903 [MIGRATE_RECLAIMABLE] = 'E',
5904 [MIGRATE_HIGHATOMIC] = 'H',
5905#ifdef CONFIG_CMA
5906 [MIGRATE_CMA] = 'C',
5907#endif
5908#ifdef CONFIG_MEMORY_ISOLATION
5909 [MIGRATE_ISOLATE] = 'I',
5910#endif
5911 };
5912 char tmp[MIGRATE_TYPES + 1];
5913 char *p = tmp;
5914 int i;
5915
5916 for (i = 0; i < MIGRATE_TYPES; i++) {
5917 if (type & (1 << i))
5918 *p++ = types[i];
5919 }
5920
5921 *p = '\0';
5922 printk(KERN_CONT "(%s) ", tmp);
5923}
5924
5925/*
5926 * Show free area list (used inside shift_scroll-lock stuff)
5927 * We also calculate the percentage fragmentation. We do this by counting the
5928 * memory on each free list with the exception of the first item on the list.
5929 *
5930 * Bits in @filter:
5931 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5932 * cpuset.
5933 */
5934void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5935{
5936 unsigned long free_pcp = 0;
5937 int cpu;
5938 struct zone *zone;
5939 pg_data_t *pgdat;
5940
5941 for_each_populated_zone(zone) {
5942 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5943 continue;
5944
5945 for_each_online_cpu(cpu)
5946 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5947 }
5948
5949 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5950 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5951 " unevictable:%lu dirty:%lu writeback:%lu\n"
5952 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5953 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5954 " kernel_misc_reclaimable:%lu\n"
5955 " free:%lu free_pcp:%lu free_cma:%lu\n",
5956 global_node_page_state(NR_ACTIVE_ANON),
5957 global_node_page_state(NR_INACTIVE_ANON),
5958 global_node_page_state(NR_ISOLATED_ANON),
5959 global_node_page_state(NR_ACTIVE_FILE),
5960 global_node_page_state(NR_INACTIVE_FILE),
5961 global_node_page_state(NR_ISOLATED_FILE),
5962 global_node_page_state(NR_UNEVICTABLE),
5963 global_node_page_state(NR_FILE_DIRTY),
5964 global_node_page_state(NR_WRITEBACK),
5965 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5966 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5967 global_node_page_state(NR_FILE_MAPPED),
5968 global_node_page_state(NR_SHMEM),
5969 global_node_page_state(NR_PAGETABLE),
5970 global_zone_page_state(NR_BOUNCE),
5971 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5972 global_zone_page_state(NR_FREE_PAGES),
5973 free_pcp,
5974 global_zone_page_state(NR_FREE_CMA_PAGES));
5975
5976 for_each_online_pgdat(pgdat) {
5977 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5978 continue;
5979
5980 printk("Node %d"
5981 " active_anon:%lukB"
5982 " inactive_anon:%lukB"
5983 " active_file:%lukB"
5984 " inactive_file:%lukB"
5985 " unevictable:%lukB"
5986 " isolated(anon):%lukB"
5987 " isolated(file):%lukB"
5988 " mapped:%lukB"
5989 " dirty:%lukB"
5990 " writeback:%lukB"
5991 " shmem:%lukB"
5992#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5993 " shmem_thp: %lukB"
5994 " shmem_pmdmapped: %lukB"
5995 " anon_thp: %lukB"
5996#endif
5997 " writeback_tmp:%lukB"
5998 " kernel_stack:%lukB"
5999#ifdef CONFIG_SHADOW_CALL_STACK
6000 " shadow_call_stack:%lukB"
6001#endif
6002 " pagetables:%lukB"
6003 " all_unreclaimable? %s"
6004 "\n",
6005 pgdat->node_id,
6006 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6007 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6008 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6009 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6010 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6011 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6012 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6013 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6014 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6015 K(node_page_state(pgdat, NR_WRITEBACK)),
6016 K(node_page_state(pgdat, NR_SHMEM)),
6017#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6018 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6019 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6020 K(node_page_state(pgdat, NR_ANON_THPS)),
6021#endif
6022 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6023 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6024#ifdef CONFIG_SHADOW_CALL_STACK
6025 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6026#endif
6027 K(node_page_state(pgdat, NR_PAGETABLE)),
6028 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6029 "yes" : "no");
6030 }
6031
6032 for_each_populated_zone(zone) {
6033 int i;
6034
6035 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6036 continue;
6037
6038 free_pcp = 0;
6039 for_each_online_cpu(cpu)
6040 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6041
6042 show_node(zone);
6043 printk(KERN_CONT
6044 "%s"
6045 " free:%lukB"
6046 " boost:%lukB"
6047 " min:%lukB"
6048 " low:%lukB"
6049 " high:%lukB"
6050 " reserved_highatomic:%luKB"
6051 " active_anon:%lukB"
6052 " inactive_anon:%lukB"
6053 " active_file:%lukB"
6054 " inactive_file:%lukB"
6055 " unevictable:%lukB"
6056 " writepending:%lukB"
6057 " present:%lukB"
6058 " managed:%lukB"
6059 " mlocked:%lukB"
6060 " bounce:%lukB"
6061 " free_pcp:%lukB"
6062 " local_pcp:%ukB"
6063 " free_cma:%lukB"
6064 "\n",
6065 zone->name,
6066 K(zone_page_state(zone, NR_FREE_PAGES)),
6067 K(zone->watermark_boost),
6068 K(min_wmark_pages(zone)),
6069 K(low_wmark_pages(zone)),
6070 K(high_wmark_pages(zone)),
6071 K(zone->nr_reserved_highatomic),
6072 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6073 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6074 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6075 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6076 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6077 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6078 K(zone->present_pages),
6079 K(zone_managed_pages(zone)),
6080 K(zone_page_state(zone, NR_MLOCK)),
6081 K(zone_page_state(zone, NR_BOUNCE)),
6082 K(free_pcp),
6083 K(this_cpu_read(zone->per_cpu_pageset->count)),
6084 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6085 printk("lowmem_reserve[]:");
6086 for (i = 0; i < MAX_NR_ZONES; i++)
6087 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6088 printk(KERN_CONT "\n");
6089 }
6090
6091 for_each_populated_zone(zone) {
6092 unsigned int order;
6093 unsigned long nr[MAX_ORDER], flags, total = 0;
6094 unsigned char types[MAX_ORDER];
6095
6096 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6097 continue;
6098 show_node(zone);
6099 printk(KERN_CONT "%s: ", zone->name);
6100
6101 spin_lock_irqsave(&zone->lock, flags);
6102 for (order = 0; order < MAX_ORDER; order++) {
6103 struct free_area *area = &zone->free_area[order];
6104 int type;
6105
6106 nr[order] = area->nr_free;
6107 total += nr[order] << order;
6108
6109 types[order] = 0;
6110 for (type = 0; type < MIGRATE_TYPES; type++) {
6111 if (!free_area_empty(area, type))
6112 types[order] |= 1 << type;
6113 }
6114 }
6115 spin_unlock_irqrestore(&zone->lock, flags);
6116 for (order = 0; order < MAX_ORDER; order++) {
6117 printk(KERN_CONT "%lu*%lukB ",
6118 nr[order], K(1UL) << order);
6119 if (nr[order])
6120 show_migration_types(types[order]);
6121 }
6122 printk(KERN_CONT "= %lukB\n", K(total));
6123 }
6124
6125 hugetlb_show_meminfo();
6126
6127 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6128
6129 show_swap_cache_info();
6130}
6131
6132static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6133{
6134 zoneref->zone = zone;
6135 zoneref->zone_idx = zone_idx(zone);
6136}
6137
6138/*
6139 * Builds allocation fallback zone lists.
6140 *
6141 * Add all populated zones of a node to the zonelist.
6142 */
6143static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6144{
6145 struct zone *zone;
6146 enum zone_type zone_type = MAX_NR_ZONES;
6147 int nr_zones = 0;
6148
6149 do {
6150 zone_type--;
6151 zone = pgdat->node_zones + zone_type;
6152 if (populated_zone(zone)) {
6153 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6154 check_highest_zone(zone_type);
6155 }
6156 } while (zone_type);
6157
6158 return nr_zones;
6159}
6160
6161#ifdef CONFIG_NUMA
6162
6163static int __parse_numa_zonelist_order(char *s)
6164{
6165 /*
6166 * We used to support different zonelists modes but they turned
6167 * out to be just not useful. Let's keep the warning in place
6168 * if somebody still use the cmd line parameter so that we do
6169 * not fail it silently
6170 */
6171 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6172 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6173 return -EINVAL;
6174 }
6175 return 0;
6176}
6177
6178char numa_zonelist_order[] = "Node";
6179
6180/*
6181 * sysctl handler for numa_zonelist_order
6182 */
6183int numa_zonelist_order_handler(struct ctl_table *table, int write,
6184 void *buffer, size_t *length, loff_t *ppos)
6185{
6186 if (write)
6187 return __parse_numa_zonelist_order(buffer);
6188 return proc_dostring(table, write, buffer, length, ppos);
6189}
6190
6191
6192static int node_load[MAX_NUMNODES];
6193
6194/**
6195 * find_next_best_node - find the next node that should appear in a given node's fallback list
6196 * @node: node whose fallback list we're appending
6197 * @used_node_mask: nodemask_t of already used nodes
6198 *
6199 * We use a number of factors to determine which is the next node that should
6200 * appear on a given node's fallback list. The node should not have appeared
6201 * already in @node's fallback list, and it should be the next closest node
6202 * according to the distance array (which contains arbitrary distance values
6203 * from each node to each node in the system), and should also prefer nodes
6204 * with no CPUs, since presumably they'll have very little allocation pressure
6205 * on them otherwise.
6206 *
6207 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6208 */
6209int find_next_best_node(int node, nodemask_t *used_node_mask)
6210{
6211 int n, val;
6212 int min_val = INT_MAX;
6213 int best_node = NUMA_NO_NODE;
6214
6215 /* Use the local node if we haven't already */
6216 if (!node_isset(node, *used_node_mask)) {
6217 node_set(node, *used_node_mask);
6218 return node;
6219 }
6220
6221 for_each_node_state(n, N_MEMORY) {
6222
6223 /* Don't want a node to appear more than once */
6224 if (node_isset(n, *used_node_mask))
6225 continue;
6226
6227 /* Use the distance array to find the distance */
6228 val = node_distance(node, n);
6229
6230 /* Penalize nodes under us ("prefer the next node") */
6231 val += (n < node);
6232
6233 /* Give preference to headless and unused nodes */
6234 if (!cpumask_empty(cpumask_of_node(n)))
6235 val += PENALTY_FOR_NODE_WITH_CPUS;
6236
6237 /* Slight preference for less loaded node */
6238 val *= MAX_NUMNODES;
6239 val += node_load[n];
6240
6241 if (val < min_val) {
6242 min_val = val;
6243 best_node = n;
6244 }
6245 }
6246
6247 if (best_node >= 0)
6248 node_set(best_node, *used_node_mask);
6249
6250 return best_node;
6251}
6252
6253
6254/*
6255 * Build zonelists ordered by node and zones within node.
6256 * This results in maximum locality--normal zone overflows into local
6257 * DMA zone, if any--but risks exhausting DMA zone.
6258 */
6259static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6260 unsigned nr_nodes)
6261{
6262 struct zoneref *zonerefs;
6263 int i;
6264
6265 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6266
6267 for (i = 0; i < nr_nodes; i++) {
6268 int nr_zones;
6269
6270 pg_data_t *node = NODE_DATA(node_order[i]);
6271
6272 nr_zones = build_zonerefs_node(node, zonerefs);
6273 zonerefs += nr_zones;
6274 }
6275 zonerefs->zone = NULL;
6276 zonerefs->zone_idx = 0;
6277}
6278
6279/*
6280 * Build gfp_thisnode zonelists
6281 */
6282static void build_thisnode_zonelists(pg_data_t *pgdat)
6283{
6284 struct zoneref *zonerefs;
6285 int nr_zones;
6286
6287 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6288 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6289 zonerefs += nr_zones;
6290 zonerefs->zone = NULL;
6291 zonerefs->zone_idx = 0;
6292}
6293
6294/*
6295 * Build zonelists ordered by zone and nodes within zones.
6296 * This results in conserving DMA zone[s] until all Normal memory is
6297 * exhausted, but results in overflowing to remote node while memory
6298 * may still exist in local DMA zone.
6299 */
6300
6301static void build_zonelists(pg_data_t *pgdat)
6302{
6303 static int node_order[MAX_NUMNODES];
6304 int node, nr_nodes = 0;
6305 nodemask_t used_mask = NODE_MASK_NONE;
6306 int local_node, prev_node;
6307
6308 /* NUMA-aware ordering of nodes */
6309 local_node = pgdat->node_id;
6310 prev_node = local_node;
6311
6312 memset(node_order, 0, sizeof(node_order));
6313 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6314 /*
6315 * We don't want to pressure a particular node.
6316 * So adding penalty to the first node in same
6317 * distance group to make it round-robin.
6318 */
6319 if (node_distance(local_node, node) !=
6320 node_distance(local_node, prev_node))
6321 node_load[node] += 1;
6322
6323 node_order[nr_nodes++] = node;
6324 prev_node = node;
6325 }
6326
6327 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6328 build_thisnode_zonelists(pgdat);
6329 pr_info("Fallback order for Node %d: ", local_node);
6330 for (node = 0; node < nr_nodes; node++)
6331 pr_cont("%d ", node_order[node]);
6332 pr_cont("\n");
6333}
6334
6335#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6336/*
6337 * Return node id of node used for "local" allocations.
6338 * I.e., first node id of first zone in arg node's generic zonelist.
6339 * Used for initializing percpu 'numa_mem', which is used primarily
6340 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6341 */
6342int local_memory_node(int node)
6343{
6344 struct zoneref *z;
6345
6346 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6347 gfp_zone(GFP_KERNEL),
6348 NULL);
6349 return zone_to_nid(z->zone);
6350}
6351#endif
6352
6353static void setup_min_unmapped_ratio(void);
6354static void setup_min_slab_ratio(void);
6355#else /* CONFIG_NUMA */
6356
6357static void build_zonelists(pg_data_t *pgdat)
6358{
6359 int node, local_node;
6360 struct zoneref *zonerefs;
6361 int nr_zones;
6362
6363 local_node = pgdat->node_id;
6364
6365 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6366 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6367 zonerefs += nr_zones;
6368
6369 /*
6370 * Now we build the zonelist so that it contains the zones
6371 * of all the other nodes.
6372 * We don't want to pressure a particular node, so when
6373 * building the zones for node N, we make sure that the
6374 * zones coming right after the local ones are those from
6375 * node N+1 (modulo N)
6376 */
6377 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6378 if (!node_online(node))
6379 continue;
6380 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6381 zonerefs += nr_zones;
6382 }
6383 for (node = 0; node < local_node; node++) {
6384 if (!node_online(node))
6385 continue;
6386 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6387 zonerefs += nr_zones;
6388 }
6389
6390 zonerefs->zone = NULL;
6391 zonerefs->zone_idx = 0;
6392}
6393
6394#endif /* CONFIG_NUMA */
6395
6396/*
6397 * Boot pageset table. One per cpu which is going to be used for all
6398 * zones and all nodes. The parameters will be set in such a way
6399 * that an item put on a list will immediately be handed over to
6400 * the buddy list. This is safe since pageset manipulation is done
6401 * with interrupts disabled.
6402 *
6403 * The boot_pagesets must be kept even after bootup is complete for
6404 * unused processors and/or zones. They do play a role for bootstrapping
6405 * hotplugged processors.
6406 *
6407 * zoneinfo_show() and maybe other functions do
6408 * not check if the processor is online before following the pageset pointer.
6409 * Other parts of the kernel may not check if the zone is available.
6410 */
6411static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6412/* These effectively disable the pcplists in the boot pageset completely */
6413#define BOOT_PAGESET_HIGH 0
6414#define BOOT_PAGESET_BATCH 1
6415static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6416static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6417DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6418
6419static void __build_all_zonelists(void *data)
6420{
6421 int nid;
6422 int __maybe_unused cpu;
6423 pg_data_t *self = data;
6424 static DEFINE_SPINLOCK(lock);
6425
6426 spin_lock(&lock);
6427
6428#ifdef CONFIG_NUMA
6429 memset(node_load, 0, sizeof(node_load));
6430#endif
6431
6432 /*
6433 * This node is hotadded and no memory is yet present. So just
6434 * building zonelists is fine - no need to touch other nodes.
6435 */
6436 if (self && !node_online(self->node_id)) {
6437 build_zonelists(self);
6438 } else {
6439 /*
6440 * All possible nodes have pgdat preallocated
6441 * in free_area_init
6442 */
6443 for_each_node(nid) {
6444 pg_data_t *pgdat = NODE_DATA(nid);
6445
6446 build_zonelists(pgdat);
6447 }
6448
6449#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6450 /*
6451 * We now know the "local memory node" for each node--
6452 * i.e., the node of the first zone in the generic zonelist.
6453 * Set up numa_mem percpu variable for on-line cpus. During
6454 * boot, only the boot cpu should be on-line; we'll init the
6455 * secondary cpus' numa_mem as they come on-line. During
6456 * node/memory hotplug, we'll fixup all on-line cpus.
6457 */
6458 for_each_online_cpu(cpu)
6459 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6460#endif
6461 }
6462
6463 spin_unlock(&lock);
6464}
6465
6466static noinline void __init
6467build_all_zonelists_init(void)
6468{
6469 int cpu;
6470
6471 __build_all_zonelists(NULL);
6472
6473 /*
6474 * Initialize the boot_pagesets that are going to be used
6475 * for bootstrapping processors. The real pagesets for
6476 * each zone will be allocated later when the per cpu
6477 * allocator is available.
6478 *
6479 * boot_pagesets are used also for bootstrapping offline
6480 * cpus if the system is already booted because the pagesets
6481 * are needed to initialize allocators on a specific cpu too.
6482 * F.e. the percpu allocator needs the page allocator which
6483 * needs the percpu allocator in order to allocate its pagesets
6484 * (a chicken-egg dilemma).
6485 */
6486 for_each_possible_cpu(cpu)
6487 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6488
6489 mminit_verify_zonelist();
6490 cpuset_init_current_mems_allowed();
6491}
6492
6493/*
6494 * unless system_state == SYSTEM_BOOTING.
6495 *
6496 * __ref due to call of __init annotated helper build_all_zonelists_init
6497 * [protected by SYSTEM_BOOTING].
6498 */
6499void __ref build_all_zonelists(pg_data_t *pgdat)
6500{
6501 unsigned long vm_total_pages;
6502
6503 if (system_state == SYSTEM_BOOTING) {
6504 build_all_zonelists_init();
6505 } else {
6506 __build_all_zonelists(pgdat);
6507 /* cpuset refresh routine should be here */
6508 }
6509 /* Get the number of free pages beyond high watermark in all zones. */
6510 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6511 /*
6512 * Disable grouping by mobility if the number of pages in the
6513 * system is too low to allow the mechanism to work. It would be
6514 * more accurate, but expensive to check per-zone. This check is
6515 * made on memory-hotadd so a system can start with mobility
6516 * disabled and enable it later
6517 */
6518 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6519 page_group_by_mobility_disabled = 1;
6520 else
6521 page_group_by_mobility_disabled = 0;
6522
6523 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6524 nr_online_nodes,
6525 page_group_by_mobility_disabled ? "off" : "on",
6526 vm_total_pages);
6527#ifdef CONFIG_NUMA
6528 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6529#endif
6530}
6531
6532/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6533static bool __meminit
6534overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6535{
6536 static struct memblock_region *r;
6537
6538 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6539 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6540 for_each_mem_region(r) {
6541 if (*pfn < memblock_region_memory_end_pfn(r))
6542 break;
6543 }
6544 }
6545 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6546 memblock_is_mirror(r)) {
6547 *pfn = memblock_region_memory_end_pfn(r);
6548 return true;
6549 }
6550 }
6551 return false;
6552}
6553
6554/*
6555 * Initially all pages are reserved - free ones are freed
6556 * up by memblock_free_all() once the early boot process is
6557 * done. Non-atomic initialization, single-pass.
6558 *
6559 * All aligned pageblocks are initialized to the specified migratetype
6560 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6561 * zone stats (e.g., nr_isolate_pageblock) are touched.
6562 */
6563void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6564 unsigned long start_pfn, unsigned long zone_end_pfn,
6565 enum meminit_context context,
6566 struct vmem_altmap *altmap, int migratetype)
6567{
6568 unsigned long pfn, end_pfn = start_pfn + size;
6569 struct page *page;
6570
6571 if (highest_memmap_pfn < end_pfn - 1)
6572 highest_memmap_pfn = end_pfn - 1;
6573
6574#ifdef CONFIG_ZONE_DEVICE
6575 /*
6576 * Honor reservation requested by the driver for this ZONE_DEVICE
6577 * memory. We limit the total number of pages to initialize to just
6578 * those that might contain the memory mapping. We will defer the
6579 * ZONE_DEVICE page initialization until after we have released
6580 * the hotplug lock.
6581 */
6582 if (zone == ZONE_DEVICE) {
6583 if (!altmap)
6584 return;
6585
6586 if (start_pfn == altmap->base_pfn)
6587 start_pfn += altmap->reserve;
6588 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6589 }
6590#endif
6591
6592 for (pfn = start_pfn; pfn < end_pfn; ) {
6593 /*
6594 * There can be holes in boot-time mem_map[]s handed to this
6595 * function. They do not exist on hotplugged memory.
6596 */
6597 if (context == MEMINIT_EARLY) {
6598 if (overlap_memmap_init(zone, &pfn))
6599 continue;
6600 if (defer_init(nid, pfn, zone_end_pfn))
6601 break;
6602 }
6603
6604 page = pfn_to_page(pfn);
6605 __init_single_page(page, pfn, zone, nid);
6606 if (context == MEMINIT_HOTPLUG)
6607 __SetPageReserved(page);
6608
6609 /*
6610 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6611 * such that unmovable allocations won't be scattered all
6612 * over the place during system boot.
6613 */
6614 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6615 set_pageblock_migratetype(page, migratetype);
6616 cond_resched();
6617 }
6618 pfn++;
6619 }
6620}
6621
6622#ifdef CONFIG_ZONE_DEVICE
6623static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6624 unsigned long zone_idx, int nid,
6625 struct dev_pagemap *pgmap)
6626{
6627
6628 __init_single_page(page, pfn, zone_idx, nid);
6629
6630 /*
6631 * Mark page reserved as it will need to wait for onlining
6632 * phase for it to be fully associated with a zone.
6633 *
6634 * We can use the non-atomic __set_bit operation for setting
6635 * the flag as we are still initializing the pages.
6636 */
6637 __SetPageReserved(page);
6638
6639 /*
6640 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6641 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6642 * ever freed or placed on a driver-private list.
6643 */
6644 page->pgmap = pgmap;
6645 page->zone_device_data = NULL;
6646
6647 /*
6648 * Mark the block movable so that blocks are reserved for
6649 * movable at startup. This will force kernel allocations
6650 * to reserve their blocks rather than leaking throughout
6651 * the address space during boot when many long-lived
6652 * kernel allocations are made.
6653 *
6654 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6655 * because this is done early in section_activate()
6656 */
6657 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6658 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6659 cond_resched();
6660 }
6661}
6662
6663/*
6664 * With compound page geometry and when struct pages are stored in ram most
6665 * tail pages are reused. Consequently, the amount of unique struct pages to
6666 * initialize is a lot smaller that the total amount of struct pages being
6667 * mapped. This is a paired / mild layering violation with explicit knowledge
6668 * of how the sparse_vmemmap internals handle compound pages in the lack
6669 * of an altmap. See vmemmap_populate_compound_pages().
6670 */
6671static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6672 unsigned long nr_pages)
6673{
6674 return is_power_of_2(sizeof(struct page)) &&
6675 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6676}
6677
6678static void __ref memmap_init_compound(struct page *head,
6679 unsigned long head_pfn,
6680 unsigned long zone_idx, int nid,
6681 struct dev_pagemap *pgmap,
6682 unsigned long nr_pages)
6683{
6684 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6685 unsigned int order = pgmap->vmemmap_shift;
6686
6687 __SetPageHead(head);
6688 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6689 struct page *page = pfn_to_page(pfn);
6690
6691 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6692 prep_compound_tail(head, pfn - head_pfn);
6693 set_page_count(page, 0);
6694
6695 /*
6696 * The first tail page stores compound_mapcount_ptr() and
6697 * compound_order() and the second tail page stores
6698 * compound_pincount_ptr(). Call prep_compound_head() after
6699 * the first and second tail pages have been initialized to
6700 * not have the data overwritten.
6701 */
6702 if (pfn == head_pfn + 2)
6703 prep_compound_head(head, order);
6704 }
6705}
6706
6707void __ref memmap_init_zone_device(struct zone *zone,
6708 unsigned long start_pfn,
6709 unsigned long nr_pages,
6710 struct dev_pagemap *pgmap)
6711{
6712 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6713 struct pglist_data *pgdat = zone->zone_pgdat;
6714 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6715 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6716 unsigned long zone_idx = zone_idx(zone);
6717 unsigned long start = jiffies;
6718 int nid = pgdat->node_id;
6719
6720 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6721 return;
6722
6723 /*
6724 * The call to memmap_init should have already taken care
6725 * of the pages reserved for the memmap, so we can just jump to
6726 * the end of that region and start processing the device pages.
6727 */
6728 if (altmap) {
6729 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6730 nr_pages = end_pfn - start_pfn;
6731 }
6732
6733 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6734 struct page *page = pfn_to_page(pfn);
6735
6736 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6737
6738 if (pfns_per_compound == 1)
6739 continue;
6740
6741 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6742 compound_nr_pages(altmap, pfns_per_compound));
6743 }
6744
6745 pr_info("%s initialised %lu pages in %ums\n", __func__,
6746 nr_pages, jiffies_to_msecs(jiffies - start));
6747}
6748
6749#endif
6750static void __meminit zone_init_free_lists(struct zone *zone)
6751{
6752 unsigned int order, t;
6753 for_each_migratetype_order(order, t) {
6754 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6755 zone->free_area[order].nr_free = 0;
6756 }
6757}
6758
6759/*
6760 * Only struct pages that correspond to ranges defined by memblock.memory
6761 * are zeroed and initialized by going through __init_single_page() during
6762 * memmap_init_zone_range().
6763 *
6764 * But, there could be struct pages that correspond to holes in
6765 * memblock.memory. This can happen because of the following reasons:
6766 * - physical memory bank size is not necessarily the exact multiple of the
6767 * arbitrary section size
6768 * - early reserved memory may not be listed in memblock.memory
6769 * - memory layouts defined with memmap= kernel parameter may not align
6770 * nicely with memmap sections
6771 *
6772 * Explicitly initialize those struct pages so that:
6773 * - PG_Reserved is set
6774 * - zone and node links point to zone and node that span the page if the
6775 * hole is in the middle of a zone
6776 * - zone and node links point to adjacent zone/node if the hole falls on
6777 * the zone boundary; the pages in such holes will be prepended to the
6778 * zone/node above the hole except for the trailing pages in the last
6779 * section that will be appended to the zone/node below.
6780 */
6781static void __init init_unavailable_range(unsigned long spfn,
6782 unsigned long epfn,
6783 int zone, int node)
6784{
6785 unsigned long pfn;
6786 u64 pgcnt = 0;
6787
6788 for (pfn = spfn; pfn < epfn; pfn++) {
6789 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6790 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6791 + pageblock_nr_pages - 1;
6792 continue;
6793 }
6794 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6795 __SetPageReserved(pfn_to_page(pfn));
6796 pgcnt++;
6797 }
6798
6799 if (pgcnt)
6800 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6801 node, zone_names[zone], pgcnt);
6802}
6803
6804static void __init memmap_init_zone_range(struct zone *zone,
6805 unsigned long start_pfn,
6806 unsigned long end_pfn,
6807 unsigned long *hole_pfn)
6808{
6809 unsigned long zone_start_pfn = zone->zone_start_pfn;
6810 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6811 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6812
6813 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6814 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6815
6816 if (start_pfn >= end_pfn)
6817 return;
6818
6819 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6820 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6821
6822 if (*hole_pfn < start_pfn)
6823 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6824
6825 *hole_pfn = end_pfn;
6826}
6827
6828static void __init memmap_init(void)
6829{
6830 unsigned long start_pfn, end_pfn;
6831 unsigned long hole_pfn = 0;
6832 int i, j, zone_id = 0, nid;
6833
6834 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6835 struct pglist_data *node = NODE_DATA(nid);
6836
6837 for (j = 0; j < MAX_NR_ZONES; j++) {
6838 struct zone *zone = node->node_zones + j;
6839
6840 if (!populated_zone(zone))
6841 continue;
6842
6843 memmap_init_zone_range(zone, start_pfn, end_pfn,
6844 &hole_pfn);
6845 zone_id = j;
6846 }
6847 }
6848
6849#ifdef CONFIG_SPARSEMEM
6850 /*
6851 * Initialize the memory map for hole in the range [memory_end,
6852 * section_end].
6853 * Append the pages in this hole to the highest zone in the last
6854 * node.
6855 * The call to init_unavailable_range() is outside the ifdef to
6856 * silence the compiler warining about zone_id set but not used;
6857 * for FLATMEM it is a nop anyway
6858 */
6859 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6860 if (hole_pfn < end_pfn)
6861#endif
6862 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6863}
6864
6865void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6866 phys_addr_t min_addr, int nid, bool exact_nid)
6867{
6868 void *ptr;
6869
6870 if (exact_nid)
6871 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6872 MEMBLOCK_ALLOC_ACCESSIBLE,
6873 nid);
6874 else
6875 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6876 MEMBLOCK_ALLOC_ACCESSIBLE,
6877 nid);
6878
6879 if (ptr && size > 0)
6880 page_init_poison(ptr, size);
6881
6882 return ptr;
6883}
6884
6885static int zone_batchsize(struct zone *zone)
6886{
6887#ifdef CONFIG_MMU
6888 int batch;
6889
6890 /*
6891 * The number of pages to batch allocate is either ~0.1%
6892 * of the zone or 1MB, whichever is smaller. The batch
6893 * size is striking a balance between allocation latency
6894 * and zone lock contention.
6895 */
6896 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6897 batch /= 4; /* We effectively *= 4 below */
6898 if (batch < 1)
6899 batch = 1;
6900
6901 /*
6902 * Clamp the batch to a 2^n - 1 value. Having a power
6903 * of 2 value was found to be more likely to have
6904 * suboptimal cache aliasing properties in some cases.
6905 *
6906 * For example if 2 tasks are alternately allocating
6907 * batches of pages, one task can end up with a lot
6908 * of pages of one half of the possible page colors
6909 * and the other with pages of the other colors.
6910 */
6911 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6912
6913 return batch;
6914
6915#else
6916 /* The deferral and batching of frees should be suppressed under NOMMU
6917 * conditions.
6918 *
6919 * The problem is that NOMMU needs to be able to allocate large chunks
6920 * of contiguous memory as there's no hardware page translation to
6921 * assemble apparent contiguous memory from discontiguous pages.
6922 *
6923 * Queueing large contiguous runs of pages for batching, however,
6924 * causes the pages to actually be freed in smaller chunks. As there
6925 * can be a significant delay between the individual batches being
6926 * recycled, this leads to the once large chunks of space being
6927 * fragmented and becoming unavailable for high-order allocations.
6928 */
6929 return 0;
6930#endif
6931}
6932
6933static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6934{
6935#ifdef CONFIG_MMU
6936 int high;
6937 int nr_split_cpus;
6938 unsigned long total_pages;
6939
6940 if (!percpu_pagelist_high_fraction) {
6941 /*
6942 * By default, the high value of the pcp is based on the zone
6943 * low watermark so that if they are full then background
6944 * reclaim will not be started prematurely.
6945 */
6946 total_pages = low_wmark_pages(zone);
6947 } else {
6948 /*
6949 * If percpu_pagelist_high_fraction is configured, the high
6950 * value is based on a fraction of the managed pages in the
6951 * zone.
6952 */
6953 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6954 }
6955
6956 /*
6957 * Split the high value across all online CPUs local to the zone. Note
6958 * that early in boot that CPUs may not be online yet and that during
6959 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6960 * onlined. For memory nodes that have no CPUs, split pcp->high across
6961 * all online CPUs to mitigate the risk that reclaim is triggered
6962 * prematurely due to pages stored on pcp lists.
6963 */
6964 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6965 if (!nr_split_cpus)
6966 nr_split_cpus = num_online_cpus();
6967 high = total_pages / nr_split_cpus;
6968
6969 /*
6970 * Ensure high is at least batch*4. The multiple is based on the
6971 * historical relationship between high and batch.
6972 */
6973 high = max(high, batch << 2);
6974
6975 return high;
6976#else
6977 return 0;
6978#endif
6979}
6980
6981/*
6982 * pcp->high and pcp->batch values are related and generally batch is lower
6983 * than high. They are also related to pcp->count such that count is lower
6984 * than high, and as soon as it reaches high, the pcplist is flushed.
6985 *
6986 * However, guaranteeing these relations at all times would require e.g. write
6987 * barriers here but also careful usage of read barriers at the read side, and
6988 * thus be prone to error and bad for performance. Thus the update only prevents
6989 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6990 * can cope with those fields changing asynchronously, and fully trust only the
6991 * pcp->count field on the local CPU with interrupts disabled.
6992 *
6993 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6994 * outside of boot time (or some other assurance that no concurrent updaters
6995 * exist).
6996 */
6997static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6998 unsigned long batch)
6999{
7000 WRITE_ONCE(pcp->batch, batch);
7001 WRITE_ONCE(pcp->high, high);
7002}
7003
7004static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7005{
7006 int pindex;
7007
7008 memset(pcp, 0, sizeof(*pcp));
7009 memset(pzstats, 0, sizeof(*pzstats));
7010
7011 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7012 INIT_LIST_HEAD(&pcp->lists[pindex]);
7013
7014 /*
7015 * Set batch and high values safe for a boot pageset. A true percpu
7016 * pageset's initialization will update them subsequently. Here we don't
7017 * need to be as careful as pageset_update() as nobody can access the
7018 * pageset yet.
7019 */
7020 pcp->high = BOOT_PAGESET_HIGH;
7021 pcp->batch = BOOT_PAGESET_BATCH;
7022 pcp->free_factor = 0;
7023}
7024
7025static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7026 unsigned long batch)
7027{
7028 struct per_cpu_pages *pcp;
7029 int cpu;
7030
7031 for_each_possible_cpu(cpu) {
7032 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7033 pageset_update(pcp, high, batch);
7034 }
7035}
7036
7037/*
7038 * Calculate and set new high and batch values for all per-cpu pagesets of a
7039 * zone based on the zone's size.
7040 */
7041static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7042{
7043 int new_high, new_batch;
7044
7045 new_batch = max(1, zone_batchsize(zone));
7046 new_high = zone_highsize(zone, new_batch, cpu_online);
7047
7048 if (zone->pageset_high == new_high &&
7049 zone->pageset_batch == new_batch)
7050 return;
7051
7052 zone->pageset_high = new_high;
7053 zone->pageset_batch = new_batch;
7054
7055 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7056}
7057
7058void __meminit setup_zone_pageset(struct zone *zone)
7059{
7060 int cpu;
7061
7062 /* Size may be 0 on !SMP && !NUMA */
7063 if (sizeof(struct per_cpu_zonestat) > 0)
7064 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7065
7066 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7067 for_each_possible_cpu(cpu) {
7068 struct per_cpu_pages *pcp;
7069 struct per_cpu_zonestat *pzstats;
7070
7071 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7072 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7073 per_cpu_pages_init(pcp, pzstats);
7074 }
7075
7076 zone_set_pageset_high_and_batch(zone, 0);
7077}
7078
7079/*
7080 * Allocate per cpu pagesets and initialize them.
7081 * Before this call only boot pagesets were available.
7082 */
7083void __init setup_per_cpu_pageset(void)
7084{
7085 struct pglist_data *pgdat;
7086 struct zone *zone;
7087 int __maybe_unused cpu;
7088
7089 for_each_populated_zone(zone)
7090 setup_zone_pageset(zone);
7091
7092#ifdef CONFIG_NUMA
7093 /*
7094 * Unpopulated zones continue using the boot pagesets.
7095 * The numa stats for these pagesets need to be reset.
7096 * Otherwise, they will end up skewing the stats of
7097 * the nodes these zones are associated with.
7098 */
7099 for_each_possible_cpu(cpu) {
7100 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7101 memset(pzstats->vm_numa_event, 0,
7102 sizeof(pzstats->vm_numa_event));
7103 }
7104#endif
7105
7106 for_each_online_pgdat(pgdat)
7107 pgdat->per_cpu_nodestats =
7108 alloc_percpu(struct per_cpu_nodestat);
7109}
7110
7111static __meminit void zone_pcp_init(struct zone *zone)
7112{
7113 /*
7114 * per cpu subsystem is not up at this point. The following code
7115 * relies on the ability of the linker to provide the
7116 * offset of a (static) per cpu variable into the per cpu area.
7117 */
7118 zone->per_cpu_pageset = &boot_pageset;
7119 zone->per_cpu_zonestats = &boot_zonestats;
7120 zone->pageset_high = BOOT_PAGESET_HIGH;
7121 zone->pageset_batch = BOOT_PAGESET_BATCH;
7122
7123 if (populated_zone(zone))
7124 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7125 zone->present_pages, zone_batchsize(zone));
7126}
7127
7128void __meminit init_currently_empty_zone(struct zone *zone,
7129 unsigned long zone_start_pfn,
7130 unsigned long size)
7131{
7132 struct pglist_data *pgdat = zone->zone_pgdat;
7133 int zone_idx = zone_idx(zone) + 1;
7134
7135 if (zone_idx > pgdat->nr_zones)
7136 pgdat->nr_zones = zone_idx;
7137
7138 zone->zone_start_pfn = zone_start_pfn;
7139
7140 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7141 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7142 pgdat->node_id,
7143 (unsigned long)zone_idx(zone),
7144 zone_start_pfn, (zone_start_pfn + size));
7145
7146 zone_init_free_lists(zone);
7147 zone->initialized = 1;
7148}
7149
7150/**
7151 * get_pfn_range_for_nid - Return the start and end page frames for a node
7152 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7153 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7154 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7155 *
7156 * It returns the start and end page frame of a node based on information
7157 * provided by memblock_set_node(). If called for a node
7158 * with no available memory, a warning is printed and the start and end
7159 * PFNs will be 0.
7160 */
7161void __init get_pfn_range_for_nid(unsigned int nid,
7162 unsigned long *start_pfn, unsigned long *end_pfn)
7163{
7164 unsigned long this_start_pfn, this_end_pfn;
7165 int i;
7166
7167 *start_pfn = -1UL;
7168 *end_pfn = 0;
7169
7170 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7171 *start_pfn = min(*start_pfn, this_start_pfn);
7172 *end_pfn = max(*end_pfn, this_end_pfn);
7173 }
7174
7175 if (*start_pfn == -1UL)
7176 *start_pfn = 0;
7177}
7178
7179/*
7180 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7181 * assumption is made that zones within a node are ordered in monotonic
7182 * increasing memory addresses so that the "highest" populated zone is used
7183 */
7184static void __init find_usable_zone_for_movable(void)
7185{
7186 int zone_index;
7187 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7188 if (zone_index == ZONE_MOVABLE)
7189 continue;
7190
7191 if (arch_zone_highest_possible_pfn[zone_index] >
7192 arch_zone_lowest_possible_pfn[zone_index])
7193 break;
7194 }
7195
7196 VM_BUG_ON(zone_index == -1);
7197 movable_zone = zone_index;
7198}
7199
7200/*
7201 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7202 * because it is sized independent of architecture. Unlike the other zones,
7203 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7204 * in each node depending on the size of each node and how evenly kernelcore
7205 * is distributed. This helper function adjusts the zone ranges
7206 * provided by the architecture for a given node by using the end of the
7207 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7208 * zones within a node are in order of monotonic increases memory addresses
7209 */
7210static void __init adjust_zone_range_for_zone_movable(int nid,
7211 unsigned long zone_type,
7212 unsigned long node_start_pfn,
7213 unsigned long node_end_pfn,
7214 unsigned long *zone_start_pfn,
7215 unsigned long *zone_end_pfn)
7216{
7217 /* Only adjust if ZONE_MOVABLE is on this node */
7218 if (zone_movable_pfn[nid]) {
7219 /* Size ZONE_MOVABLE */
7220 if (zone_type == ZONE_MOVABLE) {
7221 *zone_start_pfn = zone_movable_pfn[nid];
7222 *zone_end_pfn = min(node_end_pfn,
7223 arch_zone_highest_possible_pfn[movable_zone]);
7224
7225 /* Adjust for ZONE_MOVABLE starting within this range */
7226 } else if (!mirrored_kernelcore &&
7227 *zone_start_pfn < zone_movable_pfn[nid] &&
7228 *zone_end_pfn > zone_movable_pfn[nid]) {
7229 *zone_end_pfn = zone_movable_pfn[nid];
7230
7231 /* Check if this whole range is within ZONE_MOVABLE */
7232 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7233 *zone_start_pfn = *zone_end_pfn;
7234 }
7235}
7236
7237/*
7238 * Return the number of pages a zone spans in a node, including holes
7239 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7240 */
7241static unsigned long __init zone_spanned_pages_in_node(int nid,
7242 unsigned long zone_type,
7243 unsigned long node_start_pfn,
7244 unsigned long node_end_pfn,
7245 unsigned long *zone_start_pfn,
7246 unsigned long *zone_end_pfn)
7247{
7248 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7249 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7250 /* When hotadd a new node from cpu_up(), the node should be empty */
7251 if (!node_start_pfn && !node_end_pfn)
7252 return 0;
7253
7254 /* Get the start and end of the zone */
7255 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7256 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7257 adjust_zone_range_for_zone_movable(nid, zone_type,
7258 node_start_pfn, node_end_pfn,
7259 zone_start_pfn, zone_end_pfn);
7260
7261 /* Check that this node has pages within the zone's required range */
7262 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7263 return 0;
7264
7265 /* Move the zone boundaries inside the node if necessary */
7266 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7267 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7268
7269 /* Return the spanned pages */
7270 return *zone_end_pfn - *zone_start_pfn;
7271}
7272
7273/*
7274 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7275 * then all holes in the requested range will be accounted for.
7276 */
7277unsigned long __init __absent_pages_in_range(int nid,
7278 unsigned long range_start_pfn,
7279 unsigned long range_end_pfn)
7280{
7281 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7282 unsigned long start_pfn, end_pfn;
7283 int i;
7284
7285 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7286 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7287 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7288 nr_absent -= end_pfn - start_pfn;
7289 }
7290 return nr_absent;
7291}
7292
7293/**
7294 * absent_pages_in_range - Return number of page frames in holes within a range
7295 * @start_pfn: The start PFN to start searching for holes
7296 * @end_pfn: The end PFN to stop searching for holes
7297 *
7298 * Return: the number of pages frames in memory holes within a range.
7299 */
7300unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7301 unsigned long end_pfn)
7302{
7303 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7304}
7305
7306/* Return the number of page frames in holes in a zone on a node */
7307static unsigned long __init zone_absent_pages_in_node(int nid,
7308 unsigned long zone_type,
7309 unsigned long node_start_pfn,
7310 unsigned long node_end_pfn)
7311{
7312 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7313 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7314 unsigned long zone_start_pfn, zone_end_pfn;
7315 unsigned long nr_absent;
7316
7317 /* When hotadd a new node from cpu_up(), the node should be empty */
7318 if (!node_start_pfn && !node_end_pfn)
7319 return 0;
7320
7321 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7322 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7323
7324 adjust_zone_range_for_zone_movable(nid, zone_type,
7325 node_start_pfn, node_end_pfn,
7326 &zone_start_pfn, &zone_end_pfn);
7327 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7328
7329 /*
7330 * ZONE_MOVABLE handling.
7331 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7332 * and vice versa.
7333 */
7334 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7335 unsigned long start_pfn, end_pfn;
7336 struct memblock_region *r;
7337
7338 for_each_mem_region(r) {
7339 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7340 zone_start_pfn, zone_end_pfn);
7341 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7342 zone_start_pfn, zone_end_pfn);
7343
7344 if (zone_type == ZONE_MOVABLE &&
7345 memblock_is_mirror(r))
7346 nr_absent += end_pfn - start_pfn;
7347
7348 if (zone_type == ZONE_NORMAL &&
7349 !memblock_is_mirror(r))
7350 nr_absent += end_pfn - start_pfn;
7351 }
7352 }
7353
7354 return nr_absent;
7355}
7356
7357static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7358 unsigned long node_start_pfn,
7359 unsigned long node_end_pfn)
7360{
7361 unsigned long realtotalpages = 0, totalpages = 0;
7362 enum zone_type i;
7363
7364 for (i = 0; i < MAX_NR_ZONES; i++) {
7365 struct zone *zone = pgdat->node_zones + i;
7366 unsigned long zone_start_pfn, zone_end_pfn;
7367 unsigned long spanned, absent;
7368 unsigned long size, real_size;
7369
7370 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7371 node_start_pfn,
7372 node_end_pfn,
7373 &zone_start_pfn,
7374 &zone_end_pfn);
7375 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7376 node_start_pfn,
7377 node_end_pfn);
7378
7379 size = spanned;
7380 real_size = size - absent;
7381
7382 if (size)
7383 zone->zone_start_pfn = zone_start_pfn;
7384 else
7385 zone->zone_start_pfn = 0;
7386 zone->spanned_pages = size;
7387 zone->present_pages = real_size;
7388#if defined(CONFIG_MEMORY_HOTPLUG)
7389 zone->present_early_pages = real_size;
7390#endif
7391
7392 totalpages += size;
7393 realtotalpages += real_size;
7394 }
7395
7396 pgdat->node_spanned_pages = totalpages;
7397 pgdat->node_present_pages = realtotalpages;
7398 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7399}
7400
7401#ifndef CONFIG_SPARSEMEM
7402/*
7403 * Calculate the size of the zone->blockflags rounded to an unsigned long
7404 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7405 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7406 * round what is now in bits to nearest long in bits, then return it in
7407 * bytes.
7408 */
7409static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7410{
7411 unsigned long usemapsize;
7412
7413 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7414 usemapsize = roundup(zonesize, pageblock_nr_pages);
7415 usemapsize = usemapsize >> pageblock_order;
7416 usemapsize *= NR_PAGEBLOCK_BITS;
7417 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7418
7419 return usemapsize / 8;
7420}
7421
7422static void __ref setup_usemap(struct zone *zone)
7423{
7424 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7425 zone->spanned_pages);
7426 zone->pageblock_flags = NULL;
7427 if (usemapsize) {
7428 zone->pageblock_flags =
7429 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7430 zone_to_nid(zone));
7431 if (!zone->pageblock_flags)
7432 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7433 usemapsize, zone->name, zone_to_nid(zone));
7434 }
7435}
7436#else
7437static inline void setup_usemap(struct zone *zone) {}
7438#endif /* CONFIG_SPARSEMEM */
7439
7440#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7441
7442/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7443void __init set_pageblock_order(void)
7444{
7445 unsigned int order = MAX_ORDER - 1;
7446
7447 /* Check that pageblock_nr_pages has not already been setup */
7448 if (pageblock_order)
7449 return;
7450
7451 /* Don't let pageblocks exceed the maximum allocation granularity. */
7452 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7453 order = HUGETLB_PAGE_ORDER;
7454
7455 /*
7456 * Assume the largest contiguous order of interest is a huge page.
7457 * This value may be variable depending on boot parameters on IA64 and
7458 * powerpc.
7459 */
7460 pageblock_order = order;
7461}
7462#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7463
7464/*
7465 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7466 * is unused as pageblock_order is set at compile-time. See
7467 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7468 * the kernel config
7469 */
7470void __init set_pageblock_order(void)
7471{
7472}
7473
7474#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7475
7476static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7477 unsigned long present_pages)
7478{
7479 unsigned long pages = spanned_pages;
7480
7481 /*
7482 * Provide a more accurate estimation if there are holes within
7483 * the zone and SPARSEMEM is in use. If there are holes within the
7484 * zone, each populated memory region may cost us one or two extra
7485 * memmap pages due to alignment because memmap pages for each
7486 * populated regions may not be naturally aligned on page boundary.
7487 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7488 */
7489 if (spanned_pages > present_pages + (present_pages >> 4) &&
7490 IS_ENABLED(CONFIG_SPARSEMEM))
7491 pages = present_pages;
7492
7493 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7494}
7495
7496#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7497static void pgdat_init_split_queue(struct pglist_data *pgdat)
7498{
7499 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7500
7501 spin_lock_init(&ds_queue->split_queue_lock);
7502 INIT_LIST_HEAD(&ds_queue->split_queue);
7503 ds_queue->split_queue_len = 0;
7504}
7505#else
7506static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7507#endif
7508
7509#ifdef CONFIG_COMPACTION
7510static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7511{
7512 init_waitqueue_head(&pgdat->kcompactd_wait);
7513}
7514#else
7515static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7516#endif
7517
7518static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7519{
7520 int i;
7521
7522 pgdat_resize_init(pgdat);
7523
7524 pgdat_init_split_queue(pgdat);
7525 pgdat_init_kcompactd(pgdat);
7526
7527 init_waitqueue_head(&pgdat->kswapd_wait);
7528 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7529
7530 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7531 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7532
7533 pgdat_page_ext_init(pgdat);
7534 lruvec_init(&pgdat->__lruvec);
7535}
7536
7537static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7538 unsigned long remaining_pages)
7539{
7540 atomic_long_set(&zone->managed_pages, remaining_pages);
7541 zone_set_nid(zone, nid);
7542 zone->name = zone_names[idx];
7543 zone->zone_pgdat = NODE_DATA(nid);
7544 spin_lock_init(&zone->lock);
7545 zone_seqlock_init(zone);
7546 zone_pcp_init(zone);
7547}
7548
7549/*
7550 * Set up the zone data structures
7551 * - init pgdat internals
7552 * - init all zones belonging to this node
7553 *
7554 * NOTE: this function is only called during memory hotplug
7555 */
7556#ifdef CONFIG_MEMORY_HOTPLUG
7557void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7558{
7559 int nid = pgdat->node_id;
7560 enum zone_type z;
7561 int cpu;
7562
7563 pgdat_init_internals(pgdat);
7564
7565 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7566 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7567
7568 /*
7569 * Reset the nr_zones, order and highest_zoneidx before reuse.
7570 * Note that kswapd will init kswapd_highest_zoneidx properly
7571 * when it starts in the near future.
7572 */
7573 pgdat->nr_zones = 0;
7574 pgdat->kswapd_order = 0;
7575 pgdat->kswapd_highest_zoneidx = 0;
7576 pgdat->node_start_pfn = 0;
7577 for_each_online_cpu(cpu) {
7578 struct per_cpu_nodestat *p;
7579
7580 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7581 memset(p, 0, sizeof(*p));
7582 }
7583
7584 for (z = 0; z < MAX_NR_ZONES; z++)
7585 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7586}
7587#endif
7588
7589/*
7590 * Set up the zone data structures:
7591 * - mark all pages reserved
7592 * - mark all memory queues empty
7593 * - clear the memory bitmaps
7594 *
7595 * NOTE: pgdat should get zeroed by caller.
7596 * NOTE: this function is only called during early init.
7597 */
7598static void __init free_area_init_core(struct pglist_data *pgdat)
7599{
7600 enum zone_type j;
7601 int nid = pgdat->node_id;
7602
7603 pgdat_init_internals(pgdat);
7604 pgdat->per_cpu_nodestats = &boot_nodestats;
7605
7606 for (j = 0; j < MAX_NR_ZONES; j++) {
7607 struct zone *zone = pgdat->node_zones + j;
7608 unsigned long size, freesize, memmap_pages;
7609
7610 size = zone->spanned_pages;
7611 freesize = zone->present_pages;
7612
7613 /*
7614 * Adjust freesize so that it accounts for how much memory
7615 * is used by this zone for memmap. This affects the watermark
7616 * and per-cpu initialisations
7617 */
7618 memmap_pages = calc_memmap_size(size, freesize);
7619 if (!is_highmem_idx(j)) {
7620 if (freesize >= memmap_pages) {
7621 freesize -= memmap_pages;
7622 if (memmap_pages)
7623 pr_debug(" %s zone: %lu pages used for memmap\n",
7624 zone_names[j], memmap_pages);
7625 } else
7626 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7627 zone_names[j], memmap_pages, freesize);
7628 }
7629
7630 /* Account for reserved pages */
7631 if (j == 0 && freesize > dma_reserve) {
7632 freesize -= dma_reserve;
7633 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7634 }
7635
7636 if (!is_highmem_idx(j))
7637 nr_kernel_pages += freesize;
7638 /* Charge for highmem memmap if there are enough kernel pages */
7639 else if (nr_kernel_pages > memmap_pages * 2)
7640 nr_kernel_pages -= memmap_pages;
7641 nr_all_pages += freesize;
7642
7643 /*
7644 * Set an approximate value for lowmem here, it will be adjusted
7645 * when the bootmem allocator frees pages into the buddy system.
7646 * And all highmem pages will be managed by the buddy system.
7647 */
7648 zone_init_internals(zone, j, nid, freesize);
7649
7650 if (!size)
7651 continue;
7652
7653 set_pageblock_order();
7654 setup_usemap(zone);
7655 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7656 }
7657}
7658
7659#ifdef CONFIG_FLATMEM
7660static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7661{
7662 unsigned long __maybe_unused start = 0;
7663 unsigned long __maybe_unused offset = 0;
7664
7665 /* Skip empty nodes */
7666 if (!pgdat->node_spanned_pages)
7667 return;
7668
7669 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7670 offset = pgdat->node_start_pfn - start;
7671 /* ia64 gets its own node_mem_map, before this, without bootmem */
7672 if (!pgdat->node_mem_map) {
7673 unsigned long size, end;
7674 struct page *map;
7675
7676 /*
7677 * The zone's endpoints aren't required to be MAX_ORDER
7678 * aligned but the node_mem_map endpoints must be in order
7679 * for the buddy allocator to function correctly.
7680 */
7681 end = pgdat_end_pfn(pgdat);
7682 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7683 size = (end - start) * sizeof(struct page);
7684 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7685 pgdat->node_id, false);
7686 if (!map)
7687 panic("Failed to allocate %ld bytes for node %d memory map\n",
7688 size, pgdat->node_id);
7689 pgdat->node_mem_map = map + offset;
7690 }
7691 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7692 __func__, pgdat->node_id, (unsigned long)pgdat,
7693 (unsigned long)pgdat->node_mem_map);
7694#ifndef CONFIG_NUMA
7695 /*
7696 * With no DISCONTIG, the global mem_map is just set as node 0's
7697 */
7698 if (pgdat == NODE_DATA(0)) {
7699 mem_map = NODE_DATA(0)->node_mem_map;
7700 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7701 mem_map -= offset;
7702 }
7703#endif
7704}
7705#else
7706static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7707#endif /* CONFIG_FLATMEM */
7708
7709#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7710static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7711{
7712 pgdat->first_deferred_pfn = ULONG_MAX;
7713}
7714#else
7715static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7716#endif
7717
7718static void __init free_area_init_node(int nid)
7719{
7720 pg_data_t *pgdat = NODE_DATA(nid);
7721 unsigned long start_pfn = 0;
7722 unsigned long end_pfn = 0;
7723
7724 /* pg_data_t should be reset to zero when it's allocated */
7725 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7726
7727 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7728
7729 pgdat->node_id = nid;
7730 pgdat->node_start_pfn = start_pfn;
7731 pgdat->per_cpu_nodestats = NULL;
7732
7733 if (start_pfn != end_pfn) {
7734 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7735 (u64)start_pfn << PAGE_SHIFT,
7736 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7737 } else {
7738 pr_info("Initmem setup node %d as memoryless\n", nid);
7739 }
7740
7741 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7742
7743 alloc_node_mem_map(pgdat);
7744 pgdat_set_deferred_range(pgdat);
7745
7746 free_area_init_core(pgdat);
7747}
7748
7749static void __init free_area_init_memoryless_node(int nid)
7750{
7751 free_area_init_node(nid);
7752}
7753
7754#if MAX_NUMNODES > 1
7755/*
7756 * Figure out the number of possible node ids.
7757 */
7758void __init setup_nr_node_ids(void)
7759{
7760 unsigned int highest;
7761
7762 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7763 nr_node_ids = highest + 1;
7764}
7765#endif
7766
7767/**
7768 * node_map_pfn_alignment - determine the maximum internode alignment
7769 *
7770 * This function should be called after node map is populated and sorted.
7771 * It calculates the maximum power of two alignment which can distinguish
7772 * all the nodes.
7773 *
7774 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7775 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7776 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7777 * shifted, 1GiB is enough and this function will indicate so.
7778 *
7779 * This is used to test whether pfn -> nid mapping of the chosen memory
7780 * model has fine enough granularity to avoid incorrect mapping for the
7781 * populated node map.
7782 *
7783 * Return: the determined alignment in pfn's. 0 if there is no alignment
7784 * requirement (single node).
7785 */
7786unsigned long __init node_map_pfn_alignment(void)
7787{
7788 unsigned long accl_mask = 0, last_end = 0;
7789 unsigned long start, end, mask;
7790 int last_nid = NUMA_NO_NODE;
7791 int i, nid;
7792
7793 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7794 if (!start || last_nid < 0 || last_nid == nid) {
7795 last_nid = nid;
7796 last_end = end;
7797 continue;
7798 }
7799
7800 /*
7801 * Start with a mask granular enough to pin-point to the
7802 * start pfn and tick off bits one-by-one until it becomes
7803 * too coarse to separate the current node from the last.
7804 */
7805 mask = ~((1 << __ffs(start)) - 1);
7806 while (mask && last_end <= (start & (mask << 1)))
7807 mask <<= 1;
7808
7809 /* accumulate all internode masks */
7810 accl_mask |= mask;
7811 }
7812
7813 /* convert mask to number of pages */
7814 return ~accl_mask + 1;
7815}
7816
7817/**
7818 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7819 *
7820 * Return: the minimum PFN based on information provided via
7821 * memblock_set_node().
7822 */
7823unsigned long __init find_min_pfn_with_active_regions(void)
7824{
7825 return PHYS_PFN(memblock_start_of_DRAM());
7826}
7827
7828/*
7829 * early_calculate_totalpages()
7830 * Sum pages in active regions for movable zone.
7831 * Populate N_MEMORY for calculating usable_nodes.
7832 */
7833static unsigned long __init early_calculate_totalpages(void)
7834{
7835 unsigned long totalpages = 0;
7836 unsigned long start_pfn, end_pfn;
7837 int i, nid;
7838
7839 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7840 unsigned long pages = end_pfn - start_pfn;
7841
7842 totalpages += pages;
7843 if (pages)
7844 node_set_state(nid, N_MEMORY);
7845 }
7846 return totalpages;
7847}
7848
7849/*
7850 * Find the PFN the Movable zone begins in each node. Kernel memory
7851 * is spread evenly between nodes as long as the nodes have enough
7852 * memory. When they don't, some nodes will have more kernelcore than
7853 * others
7854 */
7855static void __init find_zone_movable_pfns_for_nodes(void)
7856{
7857 int i, nid;
7858 unsigned long usable_startpfn;
7859 unsigned long kernelcore_node, kernelcore_remaining;
7860 /* save the state before borrow the nodemask */
7861 nodemask_t saved_node_state = node_states[N_MEMORY];
7862 unsigned long totalpages = early_calculate_totalpages();
7863 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7864 struct memblock_region *r;
7865
7866 /* Need to find movable_zone earlier when movable_node is specified. */
7867 find_usable_zone_for_movable();
7868
7869 /*
7870 * If movable_node is specified, ignore kernelcore and movablecore
7871 * options.
7872 */
7873 if (movable_node_is_enabled()) {
7874 for_each_mem_region(r) {
7875 if (!memblock_is_hotpluggable(r))
7876 continue;
7877
7878 nid = memblock_get_region_node(r);
7879
7880 usable_startpfn = PFN_DOWN(r->base);
7881 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7882 min(usable_startpfn, zone_movable_pfn[nid]) :
7883 usable_startpfn;
7884 }
7885
7886 goto out2;
7887 }
7888
7889 /*
7890 * If kernelcore=mirror is specified, ignore movablecore option
7891 */
7892 if (mirrored_kernelcore) {
7893 bool mem_below_4gb_not_mirrored = false;
7894
7895 for_each_mem_region(r) {
7896 if (memblock_is_mirror(r))
7897 continue;
7898
7899 nid = memblock_get_region_node(r);
7900
7901 usable_startpfn = memblock_region_memory_base_pfn(r);
7902
7903 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7904 mem_below_4gb_not_mirrored = true;
7905 continue;
7906 }
7907
7908 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7909 min(usable_startpfn, zone_movable_pfn[nid]) :
7910 usable_startpfn;
7911 }
7912
7913 if (mem_below_4gb_not_mirrored)
7914 pr_warn("This configuration results in unmirrored kernel memory.\n");
7915
7916 goto out2;
7917 }
7918
7919 /*
7920 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7921 * amount of necessary memory.
7922 */
7923 if (required_kernelcore_percent)
7924 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7925 10000UL;
7926 if (required_movablecore_percent)
7927 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7928 10000UL;
7929
7930 /*
7931 * If movablecore= was specified, calculate what size of
7932 * kernelcore that corresponds so that memory usable for
7933 * any allocation type is evenly spread. If both kernelcore
7934 * and movablecore are specified, then the value of kernelcore
7935 * will be used for required_kernelcore if it's greater than
7936 * what movablecore would have allowed.
7937 */
7938 if (required_movablecore) {
7939 unsigned long corepages;
7940
7941 /*
7942 * Round-up so that ZONE_MOVABLE is at least as large as what
7943 * was requested by the user
7944 */
7945 required_movablecore =
7946 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7947 required_movablecore = min(totalpages, required_movablecore);
7948 corepages = totalpages - required_movablecore;
7949
7950 required_kernelcore = max(required_kernelcore, corepages);
7951 }
7952
7953 /*
7954 * If kernelcore was not specified or kernelcore size is larger
7955 * than totalpages, there is no ZONE_MOVABLE.
7956 */
7957 if (!required_kernelcore || required_kernelcore >= totalpages)
7958 goto out;
7959
7960 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7961 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7962
7963restart:
7964 /* Spread kernelcore memory as evenly as possible throughout nodes */
7965 kernelcore_node = required_kernelcore / usable_nodes;
7966 for_each_node_state(nid, N_MEMORY) {
7967 unsigned long start_pfn, end_pfn;
7968
7969 /*
7970 * Recalculate kernelcore_node if the division per node
7971 * now exceeds what is necessary to satisfy the requested
7972 * amount of memory for the kernel
7973 */
7974 if (required_kernelcore < kernelcore_node)
7975 kernelcore_node = required_kernelcore / usable_nodes;
7976
7977 /*
7978 * As the map is walked, we track how much memory is usable
7979 * by the kernel using kernelcore_remaining. When it is
7980 * 0, the rest of the node is usable by ZONE_MOVABLE
7981 */
7982 kernelcore_remaining = kernelcore_node;
7983
7984 /* Go through each range of PFNs within this node */
7985 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7986 unsigned long size_pages;
7987
7988 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7989 if (start_pfn >= end_pfn)
7990 continue;
7991
7992 /* Account for what is only usable for kernelcore */
7993 if (start_pfn < usable_startpfn) {
7994 unsigned long kernel_pages;
7995 kernel_pages = min(end_pfn, usable_startpfn)
7996 - start_pfn;
7997
7998 kernelcore_remaining -= min(kernel_pages,
7999 kernelcore_remaining);
8000 required_kernelcore -= min(kernel_pages,
8001 required_kernelcore);
8002
8003 /* Continue if range is now fully accounted */
8004 if (end_pfn <= usable_startpfn) {
8005
8006 /*
8007 * Push zone_movable_pfn to the end so
8008 * that if we have to rebalance
8009 * kernelcore across nodes, we will
8010 * not double account here
8011 */
8012 zone_movable_pfn[nid] = end_pfn;
8013 continue;
8014 }
8015 start_pfn = usable_startpfn;
8016 }
8017
8018 /*
8019 * The usable PFN range for ZONE_MOVABLE is from
8020 * start_pfn->end_pfn. Calculate size_pages as the
8021 * number of pages used as kernelcore
8022 */
8023 size_pages = end_pfn - start_pfn;
8024 if (size_pages > kernelcore_remaining)
8025 size_pages = kernelcore_remaining;
8026 zone_movable_pfn[nid] = start_pfn + size_pages;
8027
8028 /*
8029 * Some kernelcore has been met, update counts and
8030 * break if the kernelcore for this node has been
8031 * satisfied
8032 */
8033 required_kernelcore -= min(required_kernelcore,
8034 size_pages);
8035 kernelcore_remaining -= size_pages;
8036 if (!kernelcore_remaining)
8037 break;
8038 }
8039 }
8040
8041 /*
8042 * If there is still required_kernelcore, we do another pass with one
8043 * less node in the count. This will push zone_movable_pfn[nid] further
8044 * along on the nodes that still have memory until kernelcore is
8045 * satisfied
8046 */
8047 usable_nodes--;
8048 if (usable_nodes && required_kernelcore > usable_nodes)
8049 goto restart;
8050
8051out2:
8052 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8053 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8054 unsigned long start_pfn, end_pfn;
8055
8056 zone_movable_pfn[nid] =
8057 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8058
8059 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8060 if (zone_movable_pfn[nid] >= end_pfn)
8061 zone_movable_pfn[nid] = 0;
8062 }
8063
8064out:
8065 /* restore the node_state */
8066 node_states[N_MEMORY] = saved_node_state;
8067}
8068
8069/* Any regular or high memory on that node ? */
8070static void check_for_memory(pg_data_t *pgdat, int nid)
8071{
8072 enum zone_type zone_type;
8073
8074 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8075 struct zone *zone = &pgdat->node_zones[zone_type];
8076 if (populated_zone(zone)) {
8077 if (IS_ENABLED(CONFIG_HIGHMEM))
8078 node_set_state(nid, N_HIGH_MEMORY);
8079 if (zone_type <= ZONE_NORMAL)
8080 node_set_state(nid, N_NORMAL_MEMORY);
8081 break;
8082 }
8083 }
8084}
8085
8086/*
8087 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8088 * such cases we allow max_zone_pfn sorted in the descending order
8089 */
8090bool __weak arch_has_descending_max_zone_pfns(void)
8091{
8092 return false;
8093}
8094
8095/**
8096 * free_area_init - Initialise all pg_data_t and zone data
8097 * @max_zone_pfn: an array of max PFNs for each zone
8098 *
8099 * This will call free_area_init_node() for each active node in the system.
8100 * Using the page ranges provided by memblock_set_node(), the size of each
8101 * zone in each node and their holes is calculated. If the maximum PFN
8102 * between two adjacent zones match, it is assumed that the zone is empty.
8103 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8104 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8105 * starts where the previous one ended. For example, ZONE_DMA32 starts
8106 * at arch_max_dma_pfn.
8107 */
8108void __init free_area_init(unsigned long *max_zone_pfn)
8109{
8110 unsigned long start_pfn, end_pfn;
8111 int i, nid, zone;
8112 bool descending;
8113
8114 /* Record where the zone boundaries are */
8115 memset(arch_zone_lowest_possible_pfn, 0,
8116 sizeof(arch_zone_lowest_possible_pfn));
8117 memset(arch_zone_highest_possible_pfn, 0,
8118 sizeof(arch_zone_highest_possible_pfn));
8119
8120 start_pfn = find_min_pfn_with_active_regions();
8121 descending = arch_has_descending_max_zone_pfns();
8122
8123 for (i = 0; i < MAX_NR_ZONES; i++) {
8124 if (descending)
8125 zone = MAX_NR_ZONES - i - 1;
8126 else
8127 zone = i;
8128
8129 if (zone == ZONE_MOVABLE)
8130 continue;
8131
8132 end_pfn = max(max_zone_pfn[zone], start_pfn);
8133 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8134 arch_zone_highest_possible_pfn[zone] = end_pfn;
8135
8136 start_pfn = end_pfn;
8137 }
8138
8139 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8140 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8141 find_zone_movable_pfns_for_nodes();
8142
8143 /* Print out the zone ranges */
8144 pr_info("Zone ranges:\n");
8145 for (i = 0; i < MAX_NR_ZONES; i++) {
8146 if (i == ZONE_MOVABLE)
8147 continue;
8148 pr_info(" %-8s ", zone_names[i]);
8149 if (arch_zone_lowest_possible_pfn[i] ==
8150 arch_zone_highest_possible_pfn[i])
8151 pr_cont("empty\n");
8152 else
8153 pr_cont("[mem %#018Lx-%#018Lx]\n",
8154 (u64)arch_zone_lowest_possible_pfn[i]
8155 << PAGE_SHIFT,
8156 ((u64)arch_zone_highest_possible_pfn[i]
8157 << PAGE_SHIFT) - 1);
8158 }
8159
8160 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8161 pr_info("Movable zone start for each node\n");
8162 for (i = 0; i < MAX_NUMNODES; i++) {
8163 if (zone_movable_pfn[i])
8164 pr_info(" Node %d: %#018Lx\n", i,
8165 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8166 }
8167
8168 /*
8169 * Print out the early node map, and initialize the
8170 * subsection-map relative to active online memory ranges to
8171 * enable future "sub-section" extensions of the memory map.
8172 */
8173 pr_info("Early memory node ranges\n");
8174 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8175 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8176 (u64)start_pfn << PAGE_SHIFT,
8177 ((u64)end_pfn << PAGE_SHIFT) - 1);
8178 subsection_map_init(start_pfn, end_pfn - start_pfn);
8179 }
8180
8181 /* Initialise every node */
8182 mminit_verify_pageflags_layout();
8183 setup_nr_node_ids();
8184 for_each_node(nid) {
8185 pg_data_t *pgdat;
8186
8187 if (!node_online(nid)) {
8188 pr_info("Initializing node %d as memoryless\n", nid);
8189
8190 /* Allocator not initialized yet */
8191 pgdat = arch_alloc_nodedata(nid);
8192 if (!pgdat) {
8193 pr_err("Cannot allocate %zuB for node %d.\n",
8194 sizeof(*pgdat), nid);
8195 continue;
8196 }
8197 arch_refresh_nodedata(nid, pgdat);
8198 free_area_init_memoryless_node(nid);
8199
8200 /*
8201 * We do not want to confuse userspace by sysfs
8202 * files/directories for node without any memory
8203 * attached to it, so this node is not marked as
8204 * N_MEMORY and not marked online so that no sysfs
8205 * hierarchy will be created via register_one_node for
8206 * it. The pgdat will get fully initialized by
8207 * hotadd_init_pgdat() when memory is hotplugged into
8208 * this node.
8209 */
8210 continue;
8211 }
8212
8213 pgdat = NODE_DATA(nid);
8214 free_area_init_node(nid);
8215
8216 /* Any memory on that node */
8217 if (pgdat->node_present_pages)
8218 node_set_state(nid, N_MEMORY);
8219 check_for_memory(pgdat, nid);
8220 }
8221
8222 memmap_init();
8223}
8224
8225static int __init cmdline_parse_core(char *p, unsigned long *core,
8226 unsigned long *percent)
8227{
8228 unsigned long long coremem;
8229 char *endptr;
8230
8231 if (!p)
8232 return -EINVAL;
8233
8234 /* Value may be a percentage of total memory, otherwise bytes */
8235 coremem = simple_strtoull(p, &endptr, 0);
8236 if (*endptr == '%') {
8237 /* Paranoid check for percent values greater than 100 */
8238 WARN_ON(coremem > 100);
8239
8240 *percent = coremem;
8241 } else {
8242 coremem = memparse(p, &p);
8243 /* Paranoid check that UL is enough for the coremem value */
8244 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8245
8246 *core = coremem >> PAGE_SHIFT;
8247 *percent = 0UL;
8248 }
8249 return 0;
8250}
8251
8252/*
8253 * kernelcore=size sets the amount of memory for use for allocations that
8254 * cannot be reclaimed or migrated.
8255 */
8256static int __init cmdline_parse_kernelcore(char *p)
8257{
8258 /* parse kernelcore=mirror */
8259 if (parse_option_str(p, "mirror")) {
8260 mirrored_kernelcore = true;
8261 return 0;
8262 }
8263
8264 return cmdline_parse_core(p, &required_kernelcore,
8265 &required_kernelcore_percent);
8266}
8267
8268/*
8269 * movablecore=size sets the amount of memory for use for allocations that
8270 * can be reclaimed or migrated.
8271 */
8272static int __init cmdline_parse_movablecore(char *p)
8273{
8274 return cmdline_parse_core(p, &required_movablecore,
8275 &required_movablecore_percent);
8276}
8277
8278early_param("kernelcore", cmdline_parse_kernelcore);
8279early_param("movablecore", cmdline_parse_movablecore);
8280
8281void adjust_managed_page_count(struct page *page, long count)
8282{
8283 atomic_long_add(count, &page_zone(page)->managed_pages);
8284 totalram_pages_add(count);
8285#ifdef CONFIG_HIGHMEM
8286 if (PageHighMem(page))
8287 totalhigh_pages_add(count);
8288#endif
8289}
8290EXPORT_SYMBOL(adjust_managed_page_count);
8291
8292unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8293{
8294 void *pos;
8295 unsigned long pages = 0;
8296
8297 start = (void *)PAGE_ALIGN((unsigned long)start);
8298 end = (void *)((unsigned long)end & PAGE_MASK);
8299 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8300 struct page *page = virt_to_page(pos);
8301 void *direct_map_addr;
8302
8303 /*
8304 * 'direct_map_addr' might be different from 'pos'
8305 * because some architectures' virt_to_page()
8306 * work with aliases. Getting the direct map
8307 * address ensures that we get a _writeable_
8308 * alias for the memset().
8309 */
8310 direct_map_addr = page_address(page);
8311 /*
8312 * Perform a kasan-unchecked memset() since this memory
8313 * has not been initialized.
8314 */
8315 direct_map_addr = kasan_reset_tag(direct_map_addr);
8316 if ((unsigned int)poison <= 0xFF)
8317 memset(direct_map_addr, poison, PAGE_SIZE);
8318
8319 free_reserved_page(page);
8320 }
8321
8322 if (pages && s)
8323 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8324
8325 return pages;
8326}
8327
8328void __init mem_init_print_info(void)
8329{
8330 unsigned long physpages, codesize, datasize, rosize, bss_size;
8331 unsigned long init_code_size, init_data_size;
8332
8333 physpages = get_num_physpages();
8334 codesize = _etext - _stext;
8335 datasize = _edata - _sdata;
8336 rosize = __end_rodata - __start_rodata;
8337 bss_size = __bss_stop - __bss_start;
8338 init_data_size = __init_end - __init_begin;
8339 init_code_size = _einittext - _sinittext;
8340
8341 /*
8342 * Detect special cases and adjust section sizes accordingly:
8343 * 1) .init.* may be embedded into .data sections
8344 * 2) .init.text.* may be out of [__init_begin, __init_end],
8345 * please refer to arch/tile/kernel/vmlinux.lds.S.
8346 * 3) .rodata.* may be embedded into .text or .data sections.
8347 */
8348#define adj_init_size(start, end, size, pos, adj) \
8349 do { \
8350 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8351 size -= adj; \
8352 } while (0)
8353
8354 adj_init_size(__init_begin, __init_end, init_data_size,
8355 _sinittext, init_code_size);
8356 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8357 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8358 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8359 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8360
8361#undef adj_init_size
8362
8363 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8364#ifdef CONFIG_HIGHMEM
8365 ", %luK highmem"
8366#endif
8367 ")\n",
8368 K(nr_free_pages()), K(physpages),
8369 codesize >> 10, datasize >> 10, rosize >> 10,
8370 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8371 K(physpages - totalram_pages() - totalcma_pages),
8372 K(totalcma_pages)
8373#ifdef CONFIG_HIGHMEM
8374 , K(totalhigh_pages())
8375#endif
8376 );
8377}
8378
8379/**
8380 * set_dma_reserve - set the specified number of pages reserved in the first zone
8381 * @new_dma_reserve: The number of pages to mark reserved
8382 *
8383 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8384 * In the DMA zone, a significant percentage may be consumed by kernel image
8385 * and other unfreeable allocations which can skew the watermarks badly. This
8386 * function may optionally be used to account for unfreeable pages in the
8387 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8388 * smaller per-cpu batchsize.
8389 */
8390void __init set_dma_reserve(unsigned long new_dma_reserve)
8391{
8392 dma_reserve = new_dma_reserve;
8393}
8394
8395static int page_alloc_cpu_dead(unsigned int cpu)
8396{
8397 struct zone *zone;
8398
8399 lru_add_drain_cpu(cpu);
8400 mlock_page_drain_remote(cpu);
8401 drain_pages(cpu);
8402
8403 /*
8404 * Spill the event counters of the dead processor
8405 * into the current processors event counters.
8406 * This artificially elevates the count of the current
8407 * processor.
8408 */
8409 vm_events_fold_cpu(cpu);
8410
8411 /*
8412 * Zero the differential counters of the dead processor
8413 * so that the vm statistics are consistent.
8414 *
8415 * This is only okay since the processor is dead and cannot
8416 * race with what we are doing.
8417 */
8418 cpu_vm_stats_fold(cpu);
8419
8420 for_each_populated_zone(zone)
8421 zone_pcp_update(zone, 0);
8422
8423 return 0;
8424}
8425
8426static int page_alloc_cpu_online(unsigned int cpu)
8427{
8428 struct zone *zone;
8429
8430 for_each_populated_zone(zone)
8431 zone_pcp_update(zone, 1);
8432 return 0;
8433}
8434
8435#ifdef CONFIG_NUMA
8436int hashdist = HASHDIST_DEFAULT;
8437
8438static int __init set_hashdist(char *str)
8439{
8440 if (!str)
8441 return 0;
8442 hashdist = simple_strtoul(str, &str, 0);
8443 return 1;
8444}
8445__setup("hashdist=", set_hashdist);
8446#endif
8447
8448void __init page_alloc_init(void)
8449{
8450 int ret;
8451
8452#ifdef CONFIG_NUMA
8453 if (num_node_state(N_MEMORY) == 1)
8454 hashdist = 0;
8455#endif
8456
8457 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8458 "mm/page_alloc:pcp",
8459 page_alloc_cpu_online,
8460 page_alloc_cpu_dead);
8461 WARN_ON(ret < 0);
8462}
8463
8464/*
8465 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8466 * or min_free_kbytes changes.
8467 */
8468static void calculate_totalreserve_pages(void)
8469{
8470 struct pglist_data *pgdat;
8471 unsigned long reserve_pages = 0;
8472 enum zone_type i, j;
8473
8474 for_each_online_pgdat(pgdat) {
8475
8476 pgdat->totalreserve_pages = 0;
8477
8478 for (i = 0; i < MAX_NR_ZONES; i++) {
8479 struct zone *zone = pgdat->node_zones + i;
8480 long max = 0;
8481 unsigned long managed_pages = zone_managed_pages(zone);
8482
8483 /* Find valid and maximum lowmem_reserve in the zone */
8484 for (j = i; j < MAX_NR_ZONES; j++) {
8485 if (zone->lowmem_reserve[j] > max)
8486 max = zone->lowmem_reserve[j];
8487 }
8488
8489 /* we treat the high watermark as reserved pages. */
8490 max += high_wmark_pages(zone);
8491
8492 if (max > managed_pages)
8493 max = managed_pages;
8494
8495 pgdat->totalreserve_pages += max;
8496
8497 reserve_pages += max;
8498 }
8499 }
8500 totalreserve_pages = reserve_pages;
8501}
8502
8503/*
8504 * setup_per_zone_lowmem_reserve - called whenever
8505 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8506 * has a correct pages reserved value, so an adequate number of
8507 * pages are left in the zone after a successful __alloc_pages().
8508 */
8509static void setup_per_zone_lowmem_reserve(void)
8510{
8511 struct pglist_data *pgdat;
8512 enum zone_type i, j;
8513
8514 for_each_online_pgdat(pgdat) {
8515 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8516 struct zone *zone = &pgdat->node_zones[i];
8517 int ratio = sysctl_lowmem_reserve_ratio[i];
8518 bool clear = !ratio || !zone_managed_pages(zone);
8519 unsigned long managed_pages = 0;
8520
8521 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8522 struct zone *upper_zone = &pgdat->node_zones[j];
8523
8524 managed_pages += zone_managed_pages(upper_zone);
8525
8526 if (clear)
8527 zone->lowmem_reserve[j] = 0;
8528 else
8529 zone->lowmem_reserve[j] = managed_pages / ratio;
8530 }
8531 }
8532 }
8533
8534 /* update totalreserve_pages */
8535 calculate_totalreserve_pages();
8536}
8537
8538static void __setup_per_zone_wmarks(void)
8539{
8540 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8541 unsigned long lowmem_pages = 0;
8542 struct zone *zone;
8543 unsigned long flags;
8544
8545 /* Calculate total number of !ZONE_HIGHMEM pages */
8546 for_each_zone(zone) {
8547 if (!is_highmem(zone))
8548 lowmem_pages += zone_managed_pages(zone);
8549 }
8550
8551 for_each_zone(zone) {
8552 u64 tmp;
8553
8554 spin_lock_irqsave(&zone->lock, flags);
8555 tmp = (u64)pages_min * zone_managed_pages(zone);
8556 do_div(tmp, lowmem_pages);
8557 if (is_highmem(zone)) {
8558 /*
8559 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8560 * need highmem pages, so cap pages_min to a small
8561 * value here.
8562 *
8563 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8564 * deltas control async page reclaim, and so should
8565 * not be capped for highmem.
8566 */
8567 unsigned long min_pages;
8568
8569 min_pages = zone_managed_pages(zone) / 1024;
8570 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8571 zone->_watermark[WMARK_MIN] = min_pages;
8572 } else {
8573 /*
8574 * If it's a lowmem zone, reserve a number of pages
8575 * proportionate to the zone's size.
8576 */
8577 zone->_watermark[WMARK_MIN] = tmp;
8578 }
8579
8580 /*
8581 * Set the kswapd watermarks distance according to the
8582 * scale factor in proportion to available memory, but
8583 * ensure a minimum size on small systems.
8584 */
8585 tmp = max_t(u64, tmp >> 2,
8586 mult_frac(zone_managed_pages(zone),
8587 watermark_scale_factor, 10000));
8588
8589 zone->watermark_boost = 0;
8590 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8591 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8592 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8593
8594 spin_unlock_irqrestore(&zone->lock, flags);
8595 }
8596
8597 /* update totalreserve_pages */
8598 calculate_totalreserve_pages();
8599}
8600
8601/**
8602 * setup_per_zone_wmarks - called when min_free_kbytes changes
8603 * or when memory is hot-{added|removed}
8604 *
8605 * Ensures that the watermark[min,low,high] values for each zone are set
8606 * correctly with respect to min_free_kbytes.
8607 */
8608void setup_per_zone_wmarks(void)
8609{
8610 struct zone *zone;
8611 static DEFINE_SPINLOCK(lock);
8612
8613 spin_lock(&lock);
8614 __setup_per_zone_wmarks();
8615 spin_unlock(&lock);
8616
8617 /*
8618 * The watermark size have changed so update the pcpu batch
8619 * and high limits or the limits may be inappropriate.
8620 */
8621 for_each_zone(zone)
8622 zone_pcp_update(zone, 0);
8623}
8624
8625/*
8626 * Initialise min_free_kbytes.
8627 *
8628 * For small machines we want it small (128k min). For large machines
8629 * we want it large (256MB max). But it is not linear, because network
8630 * bandwidth does not increase linearly with machine size. We use
8631 *
8632 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8633 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8634 *
8635 * which yields
8636 *
8637 * 16MB: 512k
8638 * 32MB: 724k
8639 * 64MB: 1024k
8640 * 128MB: 1448k
8641 * 256MB: 2048k
8642 * 512MB: 2896k
8643 * 1024MB: 4096k
8644 * 2048MB: 5792k
8645 * 4096MB: 8192k
8646 * 8192MB: 11584k
8647 * 16384MB: 16384k
8648 */
8649void calculate_min_free_kbytes(void)
8650{
8651 unsigned long lowmem_kbytes;
8652 int new_min_free_kbytes;
8653
8654 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8655 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8656
8657 if (new_min_free_kbytes > user_min_free_kbytes)
8658 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8659 else
8660 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8661 new_min_free_kbytes, user_min_free_kbytes);
8662
8663}
8664
8665int __meminit init_per_zone_wmark_min(void)
8666{
8667 calculate_min_free_kbytes();
8668 setup_per_zone_wmarks();
8669 refresh_zone_stat_thresholds();
8670 setup_per_zone_lowmem_reserve();
8671
8672#ifdef CONFIG_NUMA
8673 setup_min_unmapped_ratio();
8674 setup_min_slab_ratio();
8675#endif
8676
8677 khugepaged_min_free_kbytes_update();
8678
8679 return 0;
8680}
8681postcore_initcall(init_per_zone_wmark_min)
8682
8683/*
8684 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8685 * that we can call two helper functions whenever min_free_kbytes
8686 * changes.
8687 */
8688int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8689 void *buffer, size_t *length, loff_t *ppos)
8690{
8691 int rc;
8692
8693 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8694 if (rc)
8695 return rc;
8696
8697 if (write) {
8698 user_min_free_kbytes = min_free_kbytes;
8699 setup_per_zone_wmarks();
8700 }
8701 return 0;
8702}
8703
8704int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8705 void *buffer, size_t *length, loff_t *ppos)
8706{
8707 int rc;
8708
8709 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8710 if (rc)
8711 return rc;
8712
8713 if (write)
8714 setup_per_zone_wmarks();
8715
8716 return 0;
8717}
8718
8719#ifdef CONFIG_NUMA
8720static void setup_min_unmapped_ratio(void)
8721{
8722 pg_data_t *pgdat;
8723 struct zone *zone;
8724
8725 for_each_online_pgdat(pgdat)
8726 pgdat->min_unmapped_pages = 0;
8727
8728 for_each_zone(zone)
8729 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8730 sysctl_min_unmapped_ratio) / 100;
8731}
8732
8733
8734int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8735 void *buffer, size_t *length, loff_t *ppos)
8736{
8737 int rc;
8738
8739 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8740 if (rc)
8741 return rc;
8742
8743 setup_min_unmapped_ratio();
8744
8745 return 0;
8746}
8747
8748static void setup_min_slab_ratio(void)
8749{
8750 pg_data_t *pgdat;
8751 struct zone *zone;
8752
8753 for_each_online_pgdat(pgdat)
8754 pgdat->min_slab_pages = 0;
8755
8756 for_each_zone(zone)
8757 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8758 sysctl_min_slab_ratio) / 100;
8759}
8760
8761int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8762 void *buffer, size_t *length, loff_t *ppos)
8763{
8764 int rc;
8765
8766 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8767 if (rc)
8768 return rc;
8769
8770 setup_min_slab_ratio();
8771
8772 return 0;
8773}
8774#endif
8775
8776/*
8777 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8778 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8779 * whenever sysctl_lowmem_reserve_ratio changes.
8780 *
8781 * The reserve ratio obviously has absolutely no relation with the
8782 * minimum watermarks. The lowmem reserve ratio can only make sense
8783 * if in function of the boot time zone sizes.
8784 */
8785int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8786 void *buffer, size_t *length, loff_t *ppos)
8787{
8788 int i;
8789
8790 proc_dointvec_minmax(table, write, buffer, length, ppos);
8791
8792 for (i = 0; i < MAX_NR_ZONES; i++) {
8793 if (sysctl_lowmem_reserve_ratio[i] < 1)
8794 sysctl_lowmem_reserve_ratio[i] = 0;
8795 }
8796
8797 setup_per_zone_lowmem_reserve();
8798 return 0;
8799}
8800
8801/*
8802 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8803 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8804 * pagelist can have before it gets flushed back to buddy allocator.
8805 */
8806int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8807 int write, void *buffer, size_t *length, loff_t *ppos)
8808{
8809 struct zone *zone;
8810 int old_percpu_pagelist_high_fraction;
8811 int ret;
8812
8813 mutex_lock(&pcp_batch_high_lock);
8814 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8815
8816 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8817 if (!write || ret < 0)
8818 goto out;
8819
8820 /* Sanity checking to avoid pcp imbalance */
8821 if (percpu_pagelist_high_fraction &&
8822 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8823 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8824 ret = -EINVAL;
8825 goto out;
8826 }
8827
8828 /* No change? */
8829 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8830 goto out;
8831
8832 for_each_populated_zone(zone)
8833 zone_set_pageset_high_and_batch(zone, 0);
8834out:
8835 mutex_unlock(&pcp_batch_high_lock);
8836 return ret;
8837}
8838
8839#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8840/*
8841 * Returns the number of pages that arch has reserved but
8842 * is not known to alloc_large_system_hash().
8843 */
8844static unsigned long __init arch_reserved_kernel_pages(void)
8845{
8846 return 0;
8847}
8848#endif
8849
8850/*
8851 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8852 * machines. As memory size is increased the scale is also increased but at
8853 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8854 * quadruples the scale is increased by one, which means the size of hash table
8855 * only doubles, instead of quadrupling as well.
8856 * Because 32-bit systems cannot have large physical memory, where this scaling
8857 * makes sense, it is disabled on such platforms.
8858 */
8859#if __BITS_PER_LONG > 32
8860#define ADAPT_SCALE_BASE (64ul << 30)
8861#define ADAPT_SCALE_SHIFT 2
8862#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8863#endif
8864
8865/*
8866 * allocate a large system hash table from bootmem
8867 * - it is assumed that the hash table must contain an exact power-of-2
8868 * quantity of entries
8869 * - limit is the number of hash buckets, not the total allocation size
8870 */
8871void *__init alloc_large_system_hash(const char *tablename,
8872 unsigned long bucketsize,
8873 unsigned long numentries,
8874 int scale,
8875 int flags,
8876 unsigned int *_hash_shift,
8877 unsigned int *_hash_mask,
8878 unsigned long low_limit,
8879 unsigned long high_limit)
8880{
8881 unsigned long long max = high_limit;
8882 unsigned long log2qty, size;
8883 void *table = NULL;
8884 gfp_t gfp_flags;
8885 bool virt;
8886 bool huge;
8887
8888 /* allow the kernel cmdline to have a say */
8889 if (!numentries) {
8890 /* round applicable memory size up to nearest megabyte */
8891 numentries = nr_kernel_pages;
8892 numentries -= arch_reserved_kernel_pages();
8893
8894 /* It isn't necessary when PAGE_SIZE >= 1MB */
8895 if (PAGE_SHIFT < 20)
8896 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8897
8898#if __BITS_PER_LONG > 32
8899 if (!high_limit) {
8900 unsigned long adapt;
8901
8902 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8903 adapt <<= ADAPT_SCALE_SHIFT)
8904 scale++;
8905 }
8906#endif
8907
8908 /* limit to 1 bucket per 2^scale bytes of low memory */
8909 if (scale > PAGE_SHIFT)
8910 numentries >>= (scale - PAGE_SHIFT);
8911 else
8912 numentries <<= (PAGE_SHIFT - scale);
8913
8914 /* Make sure we've got at least a 0-order allocation.. */
8915 if (unlikely(flags & HASH_SMALL)) {
8916 /* Makes no sense without HASH_EARLY */
8917 WARN_ON(!(flags & HASH_EARLY));
8918 if (!(numentries >> *_hash_shift)) {
8919 numentries = 1UL << *_hash_shift;
8920 BUG_ON(!numentries);
8921 }
8922 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8923 numentries = PAGE_SIZE / bucketsize;
8924 }
8925 numentries = roundup_pow_of_two(numentries);
8926
8927 /* limit allocation size to 1/16 total memory by default */
8928 if (max == 0) {
8929 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8930 do_div(max, bucketsize);
8931 }
8932 max = min(max, 0x80000000ULL);
8933
8934 if (numentries < low_limit)
8935 numentries = low_limit;
8936 if (numentries > max)
8937 numentries = max;
8938
8939 log2qty = ilog2(numentries);
8940
8941 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8942 do {
8943 virt = false;
8944 size = bucketsize << log2qty;
8945 if (flags & HASH_EARLY) {
8946 if (flags & HASH_ZERO)
8947 table = memblock_alloc(size, SMP_CACHE_BYTES);
8948 else
8949 table = memblock_alloc_raw(size,
8950 SMP_CACHE_BYTES);
8951 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8952 table = vmalloc_huge(size, gfp_flags);
8953 virt = true;
8954 if (table)
8955 huge = is_vm_area_hugepages(table);
8956 } else {
8957 /*
8958 * If bucketsize is not a power-of-two, we may free
8959 * some pages at the end of hash table which
8960 * alloc_pages_exact() automatically does
8961 */
8962 table = alloc_pages_exact(size, gfp_flags);
8963 kmemleak_alloc(table, size, 1, gfp_flags);
8964 }
8965 } while (!table && size > PAGE_SIZE && --log2qty);
8966
8967 if (!table)
8968 panic("Failed to allocate %s hash table\n", tablename);
8969
8970 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8971 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8972 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8973
8974 if (_hash_shift)
8975 *_hash_shift = log2qty;
8976 if (_hash_mask)
8977 *_hash_mask = (1 << log2qty) - 1;
8978
8979 return table;
8980}
8981
8982#ifdef CONFIG_CONTIG_ALLOC
8983#if defined(CONFIG_DYNAMIC_DEBUG) || \
8984 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8985/* Usage: See admin-guide/dynamic-debug-howto.rst */
8986static void alloc_contig_dump_pages(struct list_head *page_list)
8987{
8988 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8989
8990 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8991 struct page *page;
8992
8993 dump_stack();
8994 list_for_each_entry(page, page_list, lru)
8995 dump_page(page, "migration failure");
8996 }
8997}
8998#else
8999static inline void alloc_contig_dump_pages(struct list_head *page_list)
9000{
9001}
9002#endif
9003
9004/* [start, end) must belong to a single zone. */
9005int __alloc_contig_migrate_range(struct compact_control *cc,
9006 unsigned long start, unsigned long end)
9007{
9008 /* This function is based on compact_zone() from compaction.c. */
9009 unsigned int nr_reclaimed;
9010 unsigned long pfn = start;
9011 unsigned int tries = 0;
9012 int ret = 0;
9013 struct migration_target_control mtc = {
9014 .nid = zone_to_nid(cc->zone),
9015 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9016 };
9017
9018 lru_cache_disable();
9019
9020 while (pfn < end || !list_empty(&cc->migratepages)) {
9021 if (fatal_signal_pending(current)) {
9022 ret = -EINTR;
9023 break;
9024 }
9025
9026 if (list_empty(&cc->migratepages)) {
9027 cc->nr_migratepages = 0;
9028 ret = isolate_migratepages_range(cc, pfn, end);
9029 if (ret && ret != -EAGAIN)
9030 break;
9031 pfn = cc->migrate_pfn;
9032 tries = 0;
9033 } else if (++tries == 5) {
9034 ret = -EBUSY;
9035 break;
9036 }
9037
9038 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9039 &cc->migratepages);
9040 cc->nr_migratepages -= nr_reclaimed;
9041
9042 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9043 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9044
9045 /*
9046 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9047 * to retry again over this error, so do the same here.
9048 */
9049 if (ret == -ENOMEM)
9050 break;
9051 }
9052
9053 lru_cache_enable();
9054 if (ret < 0) {
9055 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9056 alloc_contig_dump_pages(&cc->migratepages);
9057 putback_movable_pages(&cc->migratepages);
9058 return ret;
9059 }
9060 return 0;
9061}
9062
9063/**
9064 * alloc_contig_range() -- tries to allocate given range of pages
9065 * @start: start PFN to allocate
9066 * @end: one-past-the-last PFN to allocate
9067 * @migratetype: migratetype of the underlying pageblocks (either
9068 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9069 * in range must have the same migratetype and it must
9070 * be either of the two.
9071 * @gfp_mask: GFP mask to use during compaction
9072 *
9073 * The PFN range does not have to be pageblock aligned. The PFN range must
9074 * belong to a single zone.
9075 *
9076 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9077 * pageblocks in the range. Once isolated, the pageblocks should not
9078 * be modified by others.
9079 *
9080 * Return: zero on success or negative error code. On success all
9081 * pages which PFN is in [start, end) are allocated for the caller and
9082 * need to be freed with free_contig_range().
9083 */
9084int alloc_contig_range(unsigned long start, unsigned long end,
9085 unsigned migratetype, gfp_t gfp_mask)
9086{
9087 unsigned long outer_start, outer_end;
9088 int order;
9089 int ret = 0;
9090
9091 struct compact_control cc = {
9092 .nr_migratepages = 0,
9093 .order = -1,
9094 .zone = page_zone(pfn_to_page(start)),
9095 .mode = MIGRATE_SYNC,
9096 .ignore_skip_hint = true,
9097 .no_set_skip_hint = true,
9098 .gfp_mask = current_gfp_context(gfp_mask),
9099 .alloc_contig = true,
9100 };
9101 INIT_LIST_HEAD(&cc.migratepages);
9102
9103 /*
9104 * What we do here is we mark all pageblocks in range as
9105 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9106 * have different sizes, and due to the way page allocator
9107 * work, start_isolate_page_range() has special handlings for this.
9108 *
9109 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9110 * migrate the pages from an unaligned range (ie. pages that
9111 * we are interested in). This will put all the pages in
9112 * range back to page allocator as MIGRATE_ISOLATE.
9113 *
9114 * When this is done, we take the pages in range from page
9115 * allocator removing them from the buddy system. This way
9116 * page allocator will never consider using them.
9117 *
9118 * This lets us mark the pageblocks back as
9119 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9120 * aligned range but not in the unaligned, original range are
9121 * put back to page allocator so that buddy can use them.
9122 */
9123
9124 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9125 if (ret)
9126 goto done;
9127
9128 drain_all_pages(cc.zone);
9129
9130 /*
9131 * In case of -EBUSY, we'd like to know which page causes problem.
9132 * So, just fall through. test_pages_isolated() has a tracepoint
9133 * which will report the busy page.
9134 *
9135 * It is possible that busy pages could become available before
9136 * the call to test_pages_isolated, and the range will actually be
9137 * allocated. So, if we fall through be sure to clear ret so that
9138 * -EBUSY is not accidentally used or returned to caller.
9139 */
9140 ret = __alloc_contig_migrate_range(&cc, start, end);
9141 if (ret && ret != -EBUSY)
9142 goto done;
9143 ret = 0;
9144
9145 /*
9146 * Pages from [start, end) are within a pageblock_nr_pages
9147 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9148 * more, all pages in [start, end) are free in page allocator.
9149 * What we are going to do is to allocate all pages from
9150 * [start, end) (that is remove them from page allocator).
9151 *
9152 * The only problem is that pages at the beginning and at the
9153 * end of interesting range may be not aligned with pages that
9154 * page allocator holds, ie. they can be part of higher order
9155 * pages. Because of this, we reserve the bigger range and
9156 * once this is done free the pages we are not interested in.
9157 *
9158 * We don't have to hold zone->lock here because the pages are
9159 * isolated thus they won't get removed from buddy.
9160 */
9161
9162 order = 0;
9163 outer_start = start;
9164 while (!PageBuddy(pfn_to_page(outer_start))) {
9165 if (++order >= MAX_ORDER) {
9166 outer_start = start;
9167 break;
9168 }
9169 outer_start &= ~0UL << order;
9170 }
9171
9172 if (outer_start != start) {
9173 order = buddy_order(pfn_to_page(outer_start));
9174
9175 /*
9176 * outer_start page could be small order buddy page and
9177 * it doesn't include start page. Adjust outer_start
9178 * in this case to report failed page properly
9179 * on tracepoint in test_pages_isolated()
9180 */
9181 if (outer_start + (1UL << order) <= start)
9182 outer_start = start;
9183 }
9184
9185 /* Make sure the range is really isolated. */
9186 if (test_pages_isolated(outer_start, end, 0)) {
9187 ret = -EBUSY;
9188 goto done;
9189 }
9190
9191 /* Grab isolated pages from freelists. */
9192 outer_end = isolate_freepages_range(&cc, outer_start, end);
9193 if (!outer_end) {
9194 ret = -EBUSY;
9195 goto done;
9196 }
9197
9198 /* Free head and tail (if any) */
9199 if (start != outer_start)
9200 free_contig_range(outer_start, start - outer_start);
9201 if (end != outer_end)
9202 free_contig_range(end, outer_end - end);
9203
9204done:
9205 undo_isolate_page_range(start, end, migratetype);
9206 return ret;
9207}
9208EXPORT_SYMBOL(alloc_contig_range);
9209
9210static int __alloc_contig_pages(unsigned long start_pfn,
9211 unsigned long nr_pages, gfp_t gfp_mask)
9212{
9213 unsigned long end_pfn = start_pfn + nr_pages;
9214
9215 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9216 gfp_mask);
9217}
9218
9219static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9220 unsigned long nr_pages)
9221{
9222 unsigned long i, end_pfn = start_pfn + nr_pages;
9223 struct page *page;
9224
9225 for (i = start_pfn; i < end_pfn; i++) {
9226 page = pfn_to_online_page(i);
9227 if (!page)
9228 return false;
9229
9230 if (page_zone(page) != z)
9231 return false;
9232
9233 if (PageReserved(page))
9234 return false;
9235 }
9236 return true;
9237}
9238
9239static bool zone_spans_last_pfn(const struct zone *zone,
9240 unsigned long start_pfn, unsigned long nr_pages)
9241{
9242 unsigned long last_pfn = start_pfn + nr_pages - 1;
9243
9244 return zone_spans_pfn(zone, last_pfn);
9245}
9246
9247/**
9248 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9249 * @nr_pages: Number of contiguous pages to allocate
9250 * @gfp_mask: GFP mask to limit search and used during compaction
9251 * @nid: Target node
9252 * @nodemask: Mask for other possible nodes
9253 *
9254 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9255 * on an applicable zonelist to find a contiguous pfn range which can then be
9256 * tried for allocation with alloc_contig_range(). This routine is intended
9257 * for allocation requests which can not be fulfilled with the buddy allocator.
9258 *
9259 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9260 * power of two, then allocated range is also guaranteed to be aligned to same
9261 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9262 *
9263 * Allocated pages can be freed with free_contig_range() or by manually calling
9264 * __free_page() on each allocated page.
9265 *
9266 * Return: pointer to contiguous pages on success, or NULL if not successful.
9267 */
9268struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9269 int nid, nodemask_t *nodemask)
9270{
9271 unsigned long ret, pfn, flags;
9272 struct zonelist *zonelist;
9273 struct zone *zone;
9274 struct zoneref *z;
9275
9276 zonelist = node_zonelist(nid, gfp_mask);
9277 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9278 gfp_zone(gfp_mask), nodemask) {
9279 spin_lock_irqsave(&zone->lock, flags);
9280
9281 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9282 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9283 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9284 /*
9285 * We release the zone lock here because
9286 * alloc_contig_range() will also lock the zone
9287 * at some point. If there's an allocation
9288 * spinning on this lock, it may win the race
9289 * and cause alloc_contig_range() to fail...
9290 */
9291 spin_unlock_irqrestore(&zone->lock, flags);
9292 ret = __alloc_contig_pages(pfn, nr_pages,
9293 gfp_mask);
9294 if (!ret)
9295 return pfn_to_page(pfn);
9296 spin_lock_irqsave(&zone->lock, flags);
9297 }
9298 pfn += nr_pages;
9299 }
9300 spin_unlock_irqrestore(&zone->lock, flags);
9301 }
9302 return NULL;
9303}
9304#endif /* CONFIG_CONTIG_ALLOC */
9305
9306void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9307{
9308 unsigned long count = 0;
9309
9310 for (; nr_pages--; pfn++) {
9311 struct page *page = pfn_to_page(pfn);
9312
9313 count += page_count(page) != 1;
9314 __free_page(page);
9315 }
9316 WARN(count != 0, "%lu pages are still in use!\n", count);
9317}
9318EXPORT_SYMBOL(free_contig_range);
9319
9320/*
9321 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9322 * page high values need to be recalculated.
9323 */
9324void zone_pcp_update(struct zone *zone, int cpu_online)
9325{
9326 mutex_lock(&pcp_batch_high_lock);
9327 zone_set_pageset_high_and_batch(zone, cpu_online);
9328 mutex_unlock(&pcp_batch_high_lock);
9329}
9330
9331/*
9332 * Effectively disable pcplists for the zone by setting the high limit to 0
9333 * and draining all cpus. A concurrent page freeing on another CPU that's about
9334 * to put the page on pcplist will either finish before the drain and the page
9335 * will be drained, or observe the new high limit and skip the pcplist.
9336 *
9337 * Must be paired with a call to zone_pcp_enable().
9338 */
9339void zone_pcp_disable(struct zone *zone)
9340{
9341 mutex_lock(&pcp_batch_high_lock);
9342 __zone_set_pageset_high_and_batch(zone, 0, 1);
9343 __drain_all_pages(zone, true);
9344}
9345
9346void zone_pcp_enable(struct zone *zone)
9347{
9348 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9349 mutex_unlock(&pcp_batch_high_lock);
9350}
9351
9352void zone_pcp_reset(struct zone *zone)
9353{
9354 int cpu;
9355 struct per_cpu_zonestat *pzstats;
9356
9357 if (zone->per_cpu_pageset != &boot_pageset) {
9358 for_each_online_cpu(cpu) {
9359 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9360 drain_zonestat(zone, pzstats);
9361 }
9362 free_percpu(zone->per_cpu_pageset);
9363 free_percpu(zone->per_cpu_zonestats);
9364 zone->per_cpu_pageset = &boot_pageset;
9365 zone->per_cpu_zonestats = &boot_zonestats;
9366 }
9367}
9368
9369#ifdef CONFIG_MEMORY_HOTREMOVE
9370/*
9371 * All pages in the range must be in a single zone, must not contain holes,
9372 * must span full sections, and must be isolated before calling this function.
9373 */
9374void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9375{
9376 unsigned long pfn = start_pfn;
9377 struct page *page;
9378 struct zone *zone;
9379 unsigned int order;
9380 unsigned long flags;
9381
9382 offline_mem_sections(pfn, end_pfn);
9383 zone = page_zone(pfn_to_page(pfn));
9384 spin_lock_irqsave(&zone->lock, flags);
9385 while (pfn < end_pfn) {
9386 page = pfn_to_page(pfn);
9387 /*
9388 * The HWPoisoned page may be not in buddy system, and
9389 * page_count() is not 0.
9390 */
9391 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9392 pfn++;
9393 continue;
9394 }
9395 /*
9396 * At this point all remaining PageOffline() pages have a
9397 * reference count of 0 and can simply be skipped.
9398 */
9399 if (PageOffline(page)) {
9400 BUG_ON(page_count(page));
9401 BUG_ON(PageBuddy(page));
9402 pfn++;
9403 continue;
9404 }
9405
9406 BUG_ON(page_count(page));
9407 BUG_ON(!PageBuddy(page));
9408 order = buddy_order(page);
9409 del_page_from_free_list(page, zone, order);
9410 pfn += (1 << order);
9411 }
9412 spin_unlock_irqrestore(&zone->lock, flags);
9413}
9414#endif
9415
9416/*
9417 * This function returns a stable result only if called under zone lock.
9418 */
9419bool is_free_buddy_page(struct page *page)
9420{
9421 unsigned long pfn = page_to_pfn(page);
9422 unsigned int order;
9423
9424 for (order = 0; order < MAX_ORDER; order++) {
9425 struct page *page_head = page - (pfn & ((1 << order) - 1));
9426
9427 if (PageBuddy(page_head) &&
9428 buddy_order_unsafe(page_head) >= order)
9429 break;
9430 }
9431
9432 return order < MAX_ORDER;
9433}
9434EXPORT_SYMBOL(is_free_buddy_page);
9435
9436#ifdef CONFIG_MEMORY_FAILURE
9437/*
9438 * Break down a higher-order page in sub-pages, and keep our target out of
9439 * buddy allocator.
9440 */
9441static void break_down_buddy_pages(struct zone *zone, struct page *page,
9442 struct page *target, int low, int high,
9443 int migratetype)
9444{
9445 unsigned long size = 1 << high;
9446 struct page *current_buddy, *next_page;
9447
9448 while (high > low) {
9449 high--;
9450 size >>= 1;
9451
9452 if (target >= &page[size]) {
9453 next_page = page + size;
9454 current_buddy = page;
9455 } else {
9456 next_page = page;
9457 current_buddy = page + size;
9458 }
9459
9460 if (set_page_guard(zone, current_buddy, high, migratetype))
9461 continue;
9462
9463 if (current_buddy != target) {
9464 add_to_free_list(current_buddy, zone, high, migratetype);
9465 set_buddy_order(current_buddy, high);
9466 page = next_page;
9467 }
9468 }
9469}
9470
9471/*
9472 * Take a page that will be marked as poisoned off the buddy allocator.
9473 */
9474bool take_page_off_buddy(struct page *page)
9475{
9476 struct zone *zone = page_zone(page);
9477 unsigned long pfn = page_to_pfn(page);
9478 unsigned long flags;
9479 unsigned int order;
9480 bool ret = false;
9481
9482 spin_lock_irqsave(&zone->lock, flags);
9483 for (order = 0; order < MAX_ORDER; order++) {
9484 struct page *page_head = page - (pfn & ((1 << order) - 1));
9485 int page_order = buddy_order(page_head);
9486
9487 if (PageBuddy(page_head) && page_order >= order) {
9488 unsigned long pfn_head = page_to_pfn(page_head);
9489 int migratetype = get_pfnblock_migratetype(page_head,
9490 pfn_head);
9491
9492 del_page_from_free_list(page_head, zone, page_order);
9493 break_down_buddy_pages(zone, page_head, page, 0,
9494 page_order, migratetype);
9495 SetPageHWPoisonTakenOff(page);
9496 if (!is_migrate_isolate(migratetype))
9497 __mod_zone_freepage_state(zone, -1, migratetype);
9498 ret = true;
9499 break;
9500 }
9501 if (page_count(page_head) > 0)
9502 break;
9503 }
9504 spin_unlock_irqrestore(&zone->lock, flags);
9505 return ret;
9506}
9507
9508/*
9509 * Cancel takeoff done by take_page_off_buddy().
9510 */
9511bool put_page_back_buddy(struct page *page)
9512{
9513 struct zone *zone = page_zone(page);
9514 unsigned long pfn = page_to_pfn(page);
9515 unsigned long flags;
9516 int migratetype = get_pfnblock_migratetype(page, pfn);
9517 bool ret = false;
9518
9519 spin_lock_irqsave(&zone->lock, flags);
9520 if (put_page_testzero(page)) {
9521 ClearPageHWPoisonTakenOff(page);
9522 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9523 if (TestClearPageHWPoison(page)) {
9524 ret = true;
9525 }
9526 }
9527 spin_unlock_irqrestore(&zone->lock, flags);
9528
9529 return ret;
9530}
9531#endif
9532
9533#ifdef CONFIG_ZONE_DMA
9534bool has_managed_dma(void)
9535{
9536 struct pglist_data *pgdat;
9537
9538 for_each_online_pgdat(pgdat) {
9539 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9540
9541 if (managed_zone(zone))
9542 return true;
9543 }
9544 return false;
9545}
9546#endif /* CONFIG_ZONE_DMA */