Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
41#include <linux/pfn_t.h>
42#include <linux/memremap.h>
43#include <linux/userfaultfd_k.h>
44#include <linux/balloon_compaction.h>
45#include <linux/page_idle.h>
46#include <linux/page_owner.h>
47#include <linux/sched/mm.h>
48#include <linux/ptrace.h>
49#include <linux/oom.h>
50#include <linux/memory.h>
51#include <linux/random.h>
52#include <linux/sched/sysctl.h>
53
54#include <asm/tlbflush.h>
55
56#include <trace/events/migrate.h>
57
58#include "internal.h"
59
60int isolate_movable_page(struct page *page, isolate_mode_t mode)
61{
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 SetPageIsolated(page);
109 unlock_page(page);
110
111 return 0;
112
113out_no_isolated:
114 unlock_page(page);
115out_putpage:
116 put_page(page);
117out:
118 return -EBUSY;
119}
120
121static void putback_movable_page(struct page *page)
122{
123 struct address_space *mapping;
124
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 ClearPageIsolated(page);
128}
129
130/*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
137 */
138void putback_movable_pages(struct list_head *l)
139{
140 struct page *page;
141 struct page *page2;
142
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
148 list_del(&page->lru);
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
167 }
168 }
169}
170
171/*
172 * Restore a potential migration pte to a working pte entry
173 */
174static bool remove_migration_pte(struct folio *folio,
175 struct vm_area_struct *vma, unsigned long addr, void *old)
176{
177 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
178
179 while (page_vma_mapped_walk(&pvmw)) {
180 rmap_t rmap_flags = RMAP_NONE;
181 pte_t pte;
182 swp_entry_t entry;
183 struct page *new;
184 unsigned long idx = 0;
185
186 /* pgoff is invalid for ksm pages, but they are never large */
187 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
188 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
189 new = folio_page(folio, idx);
190
191#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
192 /* PMD-mapped THP migration entry */
193 if (!pvmw.pte) {
194 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
195 !folio_test_pmd_mappable(folio), folio);
196 remove_migration_pmd(&pvmw, new);
197 continue;
198 }
199#endif
200
201 folio_get(folio);
202 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
203 if (pte_swp_soft_dirty(*pvmw.pte))
204 pte = pte_mksoft_dirty(pte);
205
206 /*
207 * Recheck VMA as permissions can change since migration started
208 */
209 entry = pte_to_swp_entry(*pvmw.pte);
210 if (is_writable_migration_entry(entry))
211 pte = maybe_mkwrite(pte, vma);
212 else if (pte_swp_uffd_wp(*pvmw.pte))
213 pte = pte_mkuffd_wp(pte);
214
215 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
216 rmap_flags |= RMAP_EXCLUSIVE;
217
218 if (unlikely(is_device_private_page(new))) {
219 if (pte_write(pte))
220 entry = make_writable_device_private_entry(
221 page_to_pfn(new));
222 else
223 entry = make_readable_device_private_entry(
224 page_to_pfn(new));
225 pte = swp_entry_to_pte(entry);
226 if (pte_swp_soft_dirty(*pvmw.pte))
227 pte = pte_swp_mksoft_dirty(pte);
228 if (pte_swp_uffd_wp(*pvmw.pte))
229 pte = pte_swp_mkuffd_wp(pte);
230 }
231
232#ifdef CONFIG_HUGETLB_PAGE
233 if (folio_test_hugetlb(folio)) {
234 unsigned int shift = huge_page_shift(hstate_vma(vma));
235
236 pte = pte_mkhuge(pte);
237 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238 if (folio_test_anon(folio))
239 hugepage_add_anon_rmap(new, vma, pvmw.address,
240 rmap_flags);
241 else
242 page_dup_file_rmap(new, true);
243 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244 } else
245#endif
246 {
247 if (folio_test_anon(folio))
248 page_add_anon_rmap(new, vma, pvmw.address,
249 rmap_flags);
250 else
251 page_add_file_rmap(new, vma, false);
252 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
253 }
254 if (vma->vm_flags & VM_LOCKED)
255 mlock_page_drain_local();
256
257 trace_remove_migration_pte(pvmw.address, pte_val(pte),
258 compound_order(new));
259
260 /* No need to invalidate - it was non-present before */
261 update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 }
263
264 return true;
265}
266
267/*
268 * Get rid of all migration entries and replace them by
269 * references to the indicated page.
270 */
271void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
272{
273 struct rmap_walk_control rwc = {
274 .rmap_one = remove_migration_pte,
275 .arg = src,
276 };
277
278 if (locked)
279 rmap_walk_locked(dst, &rwc);
280 else
281 rmap_walk(dst, &rwc);
282}
283
284/*
285 * Something used the pte of a page under migration. We need to
286 * get to the page and wait until migration is finished.
287 * When we return from this function the fault will be retried.
288 */
289void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 spinlock_t *ptl)
291{
292 pte_t pte;
293 swp_entry_t entry;
294
295 spin_lock(ptl);
296 pte = *ptep;
297 if (!is_swap_pte(pte))
298 goto out;
299
300 entry = pte_to_swp_entry(pte);
301 if (!is_migration_entry(entry))
302 goto out;
303
304 migration_entry_wait_on_locked(entry, ptep, ptl);
305 return;
306out:
307 pte_unmap_unlock(ptep, ptl);
308}
309
310void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
311 unsigned long address)
312{
313 spinlock_t *ptl = pte_lockptr(mm, pmd);
314 pte_t *ptep = pte_offset_map(pmd, address);
315 __migration_entry_wait(mm, ptep, ptl);
316}
317
318void migration_entry_wait_huge(struct vm_area_struct *vma,
319 struct mm_struct *mm, pte_t *pte)
320{
321 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
322 __migration_entry_wait(mm, pte, ptl);
323}
324
325#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
326void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
327{
328 spinlock_t *ptl;
329
330 ptl = pmd_lock(mm, pmd);
331 if (!is_pmd_migration_entry(*pmd))
332 goto unlock;
333 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
334 return;
335unlock:
336 spin_unlock(ptl);
337}
338#endif
339
340static int expected_page_refs(struct address_space *mapping, struct page *page)
341{
342 int expected_count = 1;
343
344 if (mapping)
345 expected_count += compound_nr(page) + page_has_private(page);
346 return expected_count;
347}
348
349/*
350 * Replace the page in the mapping.
351 *
352 * The number of remaining references must be:
353 * 1 for anonymous pages without a mapping
354 * 2 for pages with a mapping
355 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
356 */
357int folio_migrate_mapping(struct address_space *mapping,
358 struct folio *newfolio, struct folio *folio, int extra_count)
359{
360 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
361 struct zone *oldzone, *newzone;
362 int dirty;
363 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
364 long nr = folio_nr_pages(folio);
365
366 if (!mapping) {
367 /* Anonymous page without mapping */
368 if (folio_ref_count(folio) != expected_count)
369 return -EAGAIN;
370
371 /* No turning back from here */
372 newfolio->index = folio->index;
373 newfolio->mapping = folio->mapping;
374 if (folio_test_swapbacked(folio))
375 __folio_set_swapbacked(newfolio);
376
377 return MIGRATEPAGE_SUCCESS;
378 }
379
380 oldzone = folio_zone(folio);
381 newzone = folio_zone(newfolio);
382
383 xas_lock_irq(&xas);
384 if (!folio_ref_freeze(folio, expected_count)) {
385 xas_unlock_irq(&xas);
386 return -EAGAIN;
387 }
388
389 /*
390 * Now we know that no one else is looking at the folio:
391 * no turning back from here.
392 */
393 newfolio->index = folio->index;
394 newfolio->mapping = folio->mapping;
395 folio_ref_add(newfolio, nr); /* add cache reference */
396 if (folio_test_swapbacked(folio)) {
397 __folio_set_swapbacked(newfolio);
398 if (folio_test_swapcache(folio)) {
399 folio_set_swapcache(newfolio);
400 newfolio->private = folio_get_private(folio);
401 }
402 } else {
403 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
404 }
405
406 /* Move dirty while page refs frozen and newpage not yet exposed */
407 dirty = folio_test_dirty(folio);
408 if (dirty) {
409 folio_clear_dirty(folio);
410 folio_set_dirty(newfolio);
411 }
412
413 xas_store(&xas, newfolio);
414
415 /*
416 * Drop cache reference from old page by unfreezing
417 * to one less reference.
418 * We know this isn't the last reference.
419 */
420 folio_ref_unfreeze(folio, expected_count - nr);
421
422 xas_unlock(&xas);
423 /* Leave irq disabled to prevent preemption while updating stats */
424
425 /*
426 * If moved to a different zone then also account
427 * the page for that zone. Other VM counters will be
428 * taken care of when we establish references to the
429 * new page and drop references to the old page.
430 *
431 * Note that anonymous pages are accounted for
432 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
433 * are mapped to swap space.
434 */
435 if (newzone != oldzone) {
436 struct lruvec *old_lruvec, *new_lruvec;
437 struct mem_cgroup *memcg;
438
439 memcg = folio_memcg(folio);
440 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
441 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
442
443 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
444 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
445 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
446 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
447 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
448 }
449#ifdef CONFIG_SWAP
450 if (folio_test_swapcache(folio)) {
451 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
452 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
453 }
454#endif
455 if (dirty && mapping_can_writeback(mapping)) {
456 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
457 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
458 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
459 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
460 }
461 }
462 local_irq_enable();
463
464 return MIGRATEPAGE_SUCCESS;
465}
466EXPORT_SYMBOL(folio_migrate_mapping);
467
468/*
469 * The expected number of remaining references is the same as that
470 * of folio_migrate_mapping().
471 */
472int migrate_huge_page_move_mapping(struct address_space *mapping,
473 struct page *newpage, struct page *page)
474{
475 XA_STATE(xas, &mapping->i_pages, page_index(page));
476 int expected_count;
477
478 xas_lock_irq(&xas);
479 expected_count = 2 + page_has_private(page);
480 if (!page_ref_freeze(page, expected_count)) {
481 xas_unlock_irq(&xas);
482 return -EAGAIN;
483 }
484
485 newpage->index = page->index;
486 newpage->mapping = page->mapping;
487
488 get_page(newpage);
489
490 xas_store(&xas, newpage);
491
492 page_ref_unfreeze(page, expected_count - 1);
493
494 xas_unlock_irq(&xas);
495
496 return MIGRATEPAGE_SUCCESS;
497}
498
499/*
500 * Copy the flags and some other ancillary information
501 */
502void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
503{
504 int cpupid;
505
506 if (folio_test_error(folio))
507 folio_set_error(newfolio);
508 if (folio_test_referenced(folio))
509 folio_set_referenced(newfolio);
510 if (folio_test_uptodate(folio))
511 folio_mark_uptodate(newfolio);
512 if (folio_test_clear_active(folio)) {
513 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
514 folio_set_active(newfolio);
515 } else if (folio_test_clear_unevictable(folio))
516 folio_set_unevictable(newfolio);
517 if (folio_test_workingset(folio))
518 folio_set_workingset(newfolio);
519 if (folio_test_checked(folio))
520 folio_set_checked(newfolio);
521 /*
522 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
523 * migration entries. We can still have PG_anon_exclusive set on an
524 * effectively unmapped and unreferenced first sub-pages of an
525 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
526 */
527 if (folio_test_mappedtodisk(folio))
528 folio_set_mappedtodisk(newfolio);
529
530 /* Move dirty on pages not done by folio_migrate_mapping() */
531 if (folio_test_dirty(folio))
532 folio_set_dirty(newfolio);
533
534 if (folio_test_young(folio))
535 folio_set_young(newfolio);
536 if (folio_test_idle(folio))
537 folio_set_idle(newfolio);
538
539 /*
540 * Copy NUMA information to the new page, to prevent over-eager
541 * future migrations of this same page.
542 */
543 cpupid = page_cpupid_xchg_last(&folio->page, -1);
544 page_cpupid_xchg_last(&newfolio->page, cpupid);
545
546 folio_migrate_ksm(newfolio, folio);
547 /*
548 * Please do not reorder this without considering how mm/ksm.c's
549 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
550 */
551 if (folio_test_swapcache(folio))
552 folio_clear_swapcache(folio);
553 folio_clear_private(folio);
554
555 /* page->private contains hugetlb specific flags */
556 if (!folio_test_hugetlb(folio))
557 folio->private = NULL;
558
559 /*
560 * If any waiters have accumulated on the new page then
561 * wake them up.
562 */
563 if (folio_test_writeback(newfolio))
564 folio_end_writeback(newfolio);
565
566 /*
567 * PG_readahead shares the same bit with PG_reclaim. The above
568 * end_page_writeback() may clear PG_readahead mistakenly, so set the
569 * bit after that.
570 */
571 if (folio_test_readahead(folio))
572 folio_set_readahead(newfolio);
573
574 folio_copy_owner(newfolio, folio);
575
576 if (!folio_test_hugetlb(folio))
577 mem_cgroup_migrate(folio, newfolio);
578}
579EXPORT_SYMBOL(folio_migrate_flags);
580
581void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
582{
583 folio_copy(newfolio, folio);
584 folio_migrate_flags(newfolio, folio);
585}
586EXPORT_SYMBOL(folio_migrate_copy);
587
588/************************************************************
589 * Migration functions
590 ***********************************************************/
591
592/*
593 * Common logic to directly migrate a single LRU page suitable for
594 * pages that do not use PagePrivate/PagePrivate2.
595 *
596 * Pages are locked upon entry and exit.
597 */
598int migrate_page(struct address_space *mapping,
599 struct page *newpage, struct page *page,
600 enum migrate_mode mode)
601{
602 struct folio *newfolio = page_folio(newpage);
603 struct folio *folio = page_folio(page);
604 int rc;
605
606 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */
607
608 rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
609
610 if (rc != MIGRATEPAGE_SUCCESS)
611 return rc;
612
613 if (mode != MIGRATE_SYNC_NO_COPY)
614 folio_migrate_copy(newfolio, folio);
615 else
616 folio_migrate_flags(newfolio, folio);
617 return MIGRATEPAGE_SUCCESS;
618}
619EXPORT_SYMBOL(migrate_page);
620
621#ifdef CONFIG_BLOCK
622/* Returns true if all buffers are successfully locked */
623static bool buffer_migrate_lock_buffers(struct buffer_head *head,
624 enum migrate_mode mode)
625{
626 struct buffer_head *bh = head;
627
628 /* Simple case, sync compaction */
629 if (mode != MIGRATE_ASYNC) {
630 do {
631 lock_buffer(bh);
632 bh = bh->b_this_page;
633
634 } while (bh != head);
635
636 return true;
637 }
638
639 /* async case, we cannot block on lock_buffer so use trylock_buffer */
640 do {
641 if (!trylock_buffer(bh)) {
642 /*
643 * We failed to lock the buffer and cannot stall in
644 * async migration. Release the taken locks
645 */
646 struct buffer_head *failed_bh = bh;
647 bh = head;
648 while (bh != failed_bh) {
649 unlock_buffer(bh);
650 bh = bh->b_this_page;
651 }
652 return false;
653 }
654
655 bh = bh->b_this_page;
656 } while (bh != head);
657 return true;
658}
659
660static int __buffer_migrate_page(struct address_space *mapping,
661 struct page *newpage, struct page *page, enum migrate_mode mode,
662 bool check_refs)
663{
664 struct buffer_head *bh, *head;
665 int rc;
666 int expected_count;
667
668 if (!page_has_buffers(page))
669 return migrate_page(mapping, newpage, page, mode);
670
671 /* Check whether page does not have extra refs before we do more work */
672 expected_count = expected_page_refs(mapping, page);
673 if (page_count(page) != expected_count)
674 return -EAGAIN;
675
676 head = page_buffers(page);
677 if (!buffer_migrate_lock_buffers(head, mode))
678 return -EAGAIN;
679
680 if (check_refs) {
681 bool busy;
682 bool invalidated = false;
683
684recheck_buffers:
685 busy = false;
686 spin_lock(&mapping->private_lock);
687 bh = head;
688 do {
689 if (atomic_read(&bh->b_count)) {
690 busy = true;
691 break;
692 }
693 bh = bh->b_this_page;
694 } while (bh != head);
695 if (busy) {
696 if (invalidated) {
697 rc = -EAGAIN;
698 goto unlock_buffers;
699 }
700 spin_unlock(&mapping->private_lock);
701 invalidate_bh_lrus();
702 invalidated = true;
703 goto recheck_buffers;
704 }
705 }
706
707 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
708 if (rc != MIGRATEPAGE_SUCCESS)
709 goto unlock_buffers;
710
711 attach_page_private(newpage, detach_page_private(page));
712
713 bh = head;
714 do {
715 set_bh_page(bh, newpage, bh_offset(bh));
716 bh = bh->b_this_page;
717
718 } while (bh != head);
719
720 if (mode != MIGRATE_SYNC_NO_COPY)
721 migrate_page_copy(newpage, page);
722 else
723 migrate_page_states(newpage, page);
724
725 rc = MIGRATEPAGE_SUCCESS;
726unlock_buffers:
727 if (check_refs)
728 spin_unlock(&mapping->private_lock);
729 bh = head;
730 do {
731 unlock_buffer(bh);
732 bh = bh->b_this_page;
733
734 } while (bh != head);
735
736 return rc;
737}
738
739/*
740 * Migration function for pages with buffers. This function can only be used
741 * if the underlying filesystem guarantees that no other references to "page"
742 * exist. For example attached buffer heads are accessed only under page lock.
743 */
744int buffer_migrate_page(struct address_space *mapping,
745 struct page *newpage, struct page *page, enum migrate_mode mode)
746{
747 return __buffer_migrate_page(mapping, newpage, page, mode, false);
748}
749EXPORT_SYMBOL(buffer_migrate_page);
750
751/*
752 * Same as above except that this variant is more careful and checks that there
753 * are also no buffer head references. This function is the right one for
754 * mappings where buffer heads are directly looked up and referenced (such as
755 * block device mappings).
756 */
757int buffer_migrate_page_norefs(struct address_space *mapping,
758 struct page *newpage, struct page *page, enum migrate_mode mode)
759{
760 return __buffer_migrate_page(mapping, newpage, page, mode, true);
761}
762#endif
763
764/*
765 * Writeback a page to clean the dirty state
766 */
767static int writeout(struct address_space *mapping, struct page *page)
768{
769 struct folio *folio = page_folio(page);
770 struct writeback_control wbc = {
771 .sync_mode = WB_SYNC_NONE,
772 .nr_to_write = 1,
773 .range_start = 0,
774 .range_end = LLONG_MAX,
775 .for_reclaim = 1
776 };
777 int rc;
778
779 if (!mapping->a_ops->writepage)
780 /* No write method for the address space */
781 return -EINVAL;
782
783 if (!clear_page_dirty_for_io(page))
784 /* Someone else already triggered a write */
785 return -EAGAIN;
786
787 /*
788 * A dirty page may imply that the underlying filesystem has
789 * the page on some queue. So the page must be clean for
790 * migration. Writeout may mean we loose the lock and the
791 * page state is no longer what we checked for earlier.
792 * At this point we know that the migration attempt cannot
793 * be successful.
794 */
795 remove_migration_ptes(folio, folio, false);
796
797 rc = mapping->a_ops->writepage(page, &wbc);
798
799 if (rc != AOP_WRITEPAGE_ACTIVATE)
800 /* unlocked. Relock */
801 lock_page(page);
802
803 return (rc < 0) ? -EIO : -EAGAIN;
804}
805
806/*
807 * Default handling if a filesystem does not provide a migration function.
808 */
809static int fallback_migrate_page(struct address_space *mapping,
810 struct page *newpage, struct page *page, enum migrate_mode mode)
811{
812 if (PageDirty(page)) {
813 /* Only writeback pages in full synchronous migration */
814 switch (mode) {
815 case MIGRATE_SYNC:
816 case MIGRATE_SYNC_NO_COPY:
817 break;
818 default:
819 return -EBUSY;
820 }
821 return writeout(mapping, page);
822 }
823
824 /*
825 * Buffers may be managed in a filesystem specific way.
826 * We must have no buffers or drop them.
827 */
828 if (page_has_private(page) &&
829 !try_to_release_page(page, GFP_KERNEL))
830 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
831
832 return migrate_page(mapping, newpage, page, mode);
833}
834
835/*
836 * Move a page to a newly allocated page
837 * The page is locked and all ptes have been successfully removed.
838 *
839 * The new page will have replaced the old page if this function
840 * is successful.
841 *
842 * Return value:
843 * < 0 - error code
844 * MIGRATEPAGE_SUCCESS - success
845 */
846static int move_to_new_folio(struct folio *dst, struct folio *src,
847 enum migrate_mode mode)
848{
849 struct address_space *mapping;
850 int rc = -EAGAIN;
851 bool is_lru = !__PageMovable(&src->page);
852
853 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
854 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
855
856 mapping = folio_mapping(src);
857
858 if (likely(is_lru)) {
859 if (!mapping)
860 rc = migrate_page(mapping, &dst->page, &src->page, mode);
861 else if (mapping->a_ops->migratepage)
862 /*
863 * Most pages have a mapping and most filesystems
864 * provide a migratepage callback. Anonymous pages
865 * are part of swap space which also has its own
866 * migratepage callback. This is the most common path
867 * for page migration.
868 */
869 rc = mapping->a_ops->migratepage(mapping, &dst->page,
870 &src->page, mode);
871 else
872 rc = fallback_migrate_page(mapping, &dst->page,
873 &src->page, mode);
874 } else {
875 /*
876 * In case of non-lru page, it could be released after
877 * isolation step. In that case, we shouldn't try migration.
878 */
879 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
880 if (!folio_test_movable(src)) {
881 rc = MIGRATEPAGE_SUCCESS;
882 folio_clear_isolated(src);
883 goto out;
884 }
885
886 rc = mapping->a_ops->migratepage(mapping, &dst->page,
887 &src->page, mode);
888 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
889 !folio_test_isolated(src));
890 }
891
892 /*
893 * When successful, old pagecache src->mapping must be cleared before
894 * src is freed; but stats require that PageAnon be left as PageAnon.
895 */
896 if (rc == MIGRATEPAGE_SUCCESS) {
897 if (__PageMovable(&src->page)) {
898 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
899
900 /*
901 * We clear PG_movable under page_lock so any compactor
902 * cannot try to migrate this page.
903 */
904 folio_clear_isolated(src);
905 }
906
907 /*
908 * Anonymous and movable src->mapping will be cleared by
909 * free_pages_prepare so don't reset it here for keeping
910 * the type to work PageAnon, for example.
911 */
912 if (!folio_mapping_flags(src))
913 src->mapping = NULL;
914
915 if (likely(!folio_is_zone_device(dst)))
916 flush_dcache_folio(dst);
917 }
918out:
919 return rc;
920}
921
922static int __unmap_and_move(struct page *page, struct page *newpage,
923 int force, enum migrate_mode mode)
924{
925 struct folio *folio = page_folio(page);
926 struct folio *dst = page_folio(newpage);
927 int rc = -EAGAIN;
928 bool page_was_mapped = false;
929 struct anon_vma *anon_vma = NULL;
930 bool is_lru = !__PageMovable(page);
931
932 if (!trylock_page(page)) {
933 if (!force || mode == MIGRATE_ASYNC)
934 goto out;
935
936 /*
937 * It's not safe for direct compaction to call lock_page.
938 * For example, during page readahead pages are added locked
939 * to the LRU. Later, when the IO completes the pages are
940 * marked uptodate and unlocked. However, the queueing
941 * could be merging multiple pages for one bio (e.g.
942 * mpage_readahead). If an allocation happens for the
943 * second or third page, the process can end up locking
944 * the same page twice and deadlocking. Rather than
945 * trying to be clever about what pages can be locked,
946 * avoid the use of lock_page for direct compaction
947 * altogether.
948 */
949 if (current->flags & PF_MEMALLOC)
950 goto out;
951
952 lock_page(page);
953 }
954
955 if (PageWriteback(page)) {
956 /*
957 * Only in the case of a full synchronous migration is it
958 * necessary to wait for PageWriteback. In the async case,
959 * the retry loop is too short and in the sync-light case,
960 * the overhead of stalling is too much
961 */
962 switch (mode) {
963 case MIGRATE_SYNC:
964 case MIGRATE_SYNC_NO_COPY:
965 break;
966 default:
967 rc = -EBUSY;
968 goto out_unlock;
969 }
970 if (!force)
971 goto out_unlock;
972 wait_on_page_writeback(page);
973 }
974
975 /*
976 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
977 * we cannot notice that anon_vma is freed while we migrates a page.
978 * This get_anon_vma() delays freeing anon_vma pointer until the end
979 * of migration. File cache pages are no problem because of page_lock()
980 * File Caches may use write_page() or lock_page() in migration, then,
981 * just care Anon page here.
982 *
983 * Only page_get_anon_vma() understands the subtleties of
984 * getting a hold on an anon_vma from outside one of its mms.
985 * But if we cannot get anon_vma, then we won't need it anyway,
986 * because that implies that the anon page is no longer mapped
987 * (and cannot be remapped so long as we hold the page lock).
988 */
989 if (PageAnon(page) && !PageKsm(page))
990 anon_vma = page_get_anon_vma(page);
991
992 /*
993 * Block others from accessing the new page when we get around to
994 * establishing additional references. We are usually the only one
995 * holding a reference to newpage at this point. We used to have a BUG
996 * here if trylock_page(newpage) fails, but would like to allow for
997 * cases where there might be a race with the previous use of newpage.
998 * This is much like races on refcount of oldpage: just don't BUG().
999 */
1000 if (unlikely(!trylock_page(newpage)))
1001 goto out_unlock;
1002
1003 if (unlikely(!is_lru)) {
1004 rc = move_to_new_folio(dst, folio, mode);
1005 goto out_unlock_both;
1006 }
1007
1008 /*
1009 * Corner case handling:
1010 * 1. When a new swap-cache page is read into, it is added to the LRU
1011 * and treated as swapcache but it has no rmap yet.
1012 * Calling try_to_unmap() against a page->mapping==NULL page will
1013 * trigger a BUG. So handle it here.
1014 * 2. An orphaned page (see truncate_cleanup_page) might have
1015 * fs-private metadata. The page can be picked up due to memory
1016 * offlining. Everywhere else except page reclaim, the page is
1017 * invisible to the vm, so the page can not be migrated. So try to
1018 * free the metadata, so the page can be freed.
1019 */
1020 if (!page->mapping) {
1021 VM_BUG_ON_PAGE(PageAnon(page), page);
1022 if (page_has_private(page)) {
1023 try_to_free_buffers(folio);
1024 goto out_unlock_both;
1025 }
1026 } else if (page_mapped(page)) {
1027 /* Establish migration ptes */
1028 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1029 page);
1030 try_to_migrate(folio, 0);
1031 page_was_mapped = true;
1032 }
1033
1034 if (!page_mapped(page))
1035 rc = move_to_new_folio(dst, folio, mode);
1036
1037 /*
1038 * When successful, push newpage to LRU immediately: so that if it
1039 * turns out to be an mlocked page, remove_migration_ptes() will
1040 * automatically build up the correct newpage->mlock_count for it.
1041 *
1042 * We would like to do something similar for the old page, when
1043 * unsuccessful, and other cases when a page has been temporarily
1044 * isolated from the unevictable LRU: but this case is the easiest.
1045 */
1046 if (rc == MIGRATEPAGE_SUCCESS) {
1047 lru_cache_add(newpage);
1048 if (page_was_mapped)
1049 lru_add_drain();
1050 }
1051
1052 if (page_was_mapped)
1053 remove_migration_ptes(folio,
1054 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1055
1056out_unlock_both:
1057 unlock_page(newpage);
1058out_unlock:
1059 /* Drop an anon_vma reference if we took one */
1060 if (anon_vma)
1061 put_anon_vma(anon_vma);
1062 unlock_page(page);
1063out:
1064 /*
1065 * If migration is successful, decrease refcount of the newpage,
1066 * which will not free the page because new page owner increased
1067 * refcounter.
1068 */
1069 if (rc == MIGRATEPAGE_SUCCESS)
1070 put_page(newpage);
1071
1072 return rc;
1073}
1074
1075/*
1076 * Obtain the lock on page, remove all ptes and migrate the page
1077 * to the newly allocated page in newpage.
1078 */
1079static int unmap_and_move(new_page_t get_new_page,
1080 free_page_t put_new_page,
1081 unsigned long private, struct page *page,
1082 int force, enum migrate_mode mode,
1083 enum migrate_reason reason,
1084 struct list_head *ret)
1085{
1086 int rc = MIGRATEPAGE_SUCCESS;
1087 struct page *newpage = NULL;
1088
1089 if (!thp_migration_supported() && PageTransHuge(page))
1090 return -ENOSYS;
1091
1092 if (page_count(page) == 1) {
1093 /* page was freed from under us. So we are done. */
1094 ClearPageActive(page);
1095 ClearPageUnevictable(page);
1096 if (unlikely(__PageMovable(page))) {
1097 lock_page(page);
1098 if (!PageMovable(page))
1099 ClearPageIsolated(page);
1100 unlock_page(page);
1101 }
1102 goto out;
1103 }
1104
1105 newpage = get_new_page(page, private);
1106 if (!newpage)
1107 return -ENOMEM;
1108
1109 newpage->private = 0;
1110 rc = __unmap_and_move(page, newpage, force, mode);
1111 if (rc == MIGRATEPAGE_SUCCESS)
1112 set_page_owner_migrate_reason(newpage, reason);
1113
1114out:
1115 if (rc != -EAGAIN) {
1116 /*
1117 * A page that has been migrated has all references
1118 * removed and will be freed. A page that has not been
1119 * migrated will have kept its references and be restored.
1120 */
1121 list_del(&page->lru);
1122 }
1123
1124 /*
1125 * If migration is successful, releases reference grabbed during
1126 * isolation. Otherwise, restore the page to right list unless
1127 * we want to retry.
1128 */
1129 if (rc == MIGRATEPAGE_SUCCESS) {
1130 /*
1131 * Compaction can migrate also non-LRU pages which are
1132 * not accounted to NR_ISOLATED_*. They can be recognized
1133 * as __PageMovable
1134 */
1135 if (likely(!__PageMovable(page)))
1136 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1137 page_is_file_lru(page), -thp_nr_pages(page));
1138
1139 if (reason != MR_MEMORY_FAILURE)
1140 /*
1141 * We release the page in page_handle_poison.
1142 */
1143 put_page(page);
1144 } else {
1145 if (rc != -EAGAIN)
1146 list_add_tail(&page->lru, ret);
1147
1148 if (put_new_page)
1149 put_new_page(newpage, private);
1150 else
1151 put_page(newpage);
1152 }
1153
1154 return rc;
1155}
1156
1157/*
1158 * Counterpart of unmap_and_move_page() for hugepage migration.
1159 *
1160 * This function doesn't wait the completion of hugepage I/O
1161 * because there is no race between I/O and migration for hugepage.
1162 * Note that currently hugepage I/O occurs only in direct I/O
1163 * where no lock is held and PG_writeback is irrelevant,
1164 * and writeback status of all subpages are counted in the reference
1165 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1166 * under direct I/O, the reference of the head page is 512 and a bit more.)
1167 * This means that when we try to migrate hugepage whose subpages are
1168 * doing direct I/O, some references remain after try_to_unmap() and
1169 * hugepage migration fails without data corruption.
1170 *
1171 * There is also no race when direct I/O is issued on the page under migration,
1172 * because then pte is replaced with migration swap entry and direct I/O code
1173 * will wait in the page fault for migration to complete.
1174 */
1175static int unmap_and_move_huge_page(new_page_t get_new_page,
1176 free_page_t put_new_page, unsigned long private,
1177 struct page *hpage, int force,
1178 enum migrate_mode mode, int reason,
1179 struct list_head *ret)
1180{
1181 struct folio *dst, *src = page_folio(hpage);
1182 int rc = -EAGAIN;
1183 int page_was_mapped = 0;
1184 struct page *new_hpage;
1185 struct anon_vma *anon_vma = NULL;
1186 struct address_space *mapping = NULL;
1187
1188 /*
1189 * Migratability of hugepages depends on architectures and their size.
1190 * This check is necessary because some callers of hugepage migration
1191 * like soft offline and memory hotremove don't walk through page
1192 * tables or check whether the hugepage is pmd-based or not before
1193 * kicking migration.
1194 */
1195 if (!hugepage_migration_supported(page_hstate(hpage))) {
1196 list_move_tail(&hpage->lru, ret);
1197 return -ENOSYS;
1198 }
1199
1200 if (page_count(hpage) == 1) {
1201 /* page was freed from under us. So we are done. */
1202 putback_active_hugepage(hpage);
1203 return MIGRATEPAGE_SUCCESS;
1204 }
1205
1206 new_hpage = get_new_page(hpage, private);
1207 if (!new_hpage)
1208 return -ENOMEM;
1209 dst = page_folio(new_hpage);
1210
1211 if (!trylock_page(hpage)) {
1212 if (!force)
1213 goto out;
1214 switch (mode) {
1215 case MIGRATE_SYNC:
1216 case MIGRATE_SYNC_NO_COPY:
1217 break;
1218 default:
1219 goto out;
1220 }
1221 lock_page(hpage);
1222 }
1223
1224 /*
1225 * Check for pages which are in the process of being freed. Without
1226 * page_mapping() set, hugetlbfs specific move page routine will not
1227 * be called and we could leak usage counts for subpools.
1228 */
1229 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1230 rc = -EBUSY;
1231 goto out_unlock;
1232 }
1233
1234 if (PageAnon(hpage))
1235 anon_vma = page_get_anon_vma(hpage);
1236
1237 if (unlikely(!trylock_page(new_hpage)))
1238 goto put_anon;
1239
1240 if (page_mapped(hpage)) {
1241 enum ttu_flags ttu = 0;
1242
1243 if (!PageAnon(hpage)) {
1244 /*
1245 * In shared mappings, try_to_unmap could potentially
1246 * call huge_pmd_unshare. Because of this, take
1247 * semaphore in write mode here and set TTU_RMAP_LOCKED
1248 * to let lower levels know we have taken the lock.
1249 */
1250 mapping = hugetlb_page_mapping_lock_write(hpage);
1251 if (unlikely(!mapping))
1252 goto unlock_put_anon;
1253
1254 ttu = TTU_RMAP_LOCKED;
1255 }
1256
1257 try_to_migrate(src, ttu);
1258 page_was_mapped = 1;
1259
1260 if (ttu & TTU_RMAP_LOCKED)
1261 i_mmap_unlock_write(mapping);
1262 }
1263
1264 if (!page_mapped(hpage))
1265 rc = move_to_new_folio(dst, src, mode);
1266
1267 if (page_was_mapped)
1268 remove_migration_ptes(src,
1269 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1270
1271unlock_put_anon:
1272 unlock_page(new_hpage);
1273
1274put_anon:
1275 if (anon_vma)
1276 put_anon_vma(anon_vma);
1277
1278 if (rc == MIGRATEPAGE_SUCCESS) {
1279 move_hugetlb_state(hpage, new_hpage, reason);
1280 put_new_page = NULL;
1281 }
1282
1283out_unlock:
1284 unlock_page(hpage);
1285out:
1286 if (rc == MIGRATEPAGE_SUCCESS)
1287 putback_active_hugepage(hpage);
1288 else if (rc != -EAGAIN)
1289 list_move_tail(&hpage->lru, ret);
1290
1291 /*
1292 * If migration was not successful and there's a freeing callback, use
1293 * it. Otherwise, put_page() will drop the reference grabbed during
1294 * isolation.
1295 */
1296 if (put_new_page)
1297 put_new_page(new_hpage, private);
1298 else
1299 putback_active_hugepage(new_hpage);
1300
1301 return rc;
1302}
1303
1304static inline int try_split_thp(struct page *page, struct page **page2,
1305 struct list_head *from)
1306{
1307 int rc = 0;
1308
1309 lock_page(page);
1310 rc = split_huge_page_to_list(page, from);
1311 unlock_page(page);
1312 if (!rc)
1313 list_safe_reset_next(page, *page2, lru);
1314
1315 return rc;
1316}
1317
1318/*
1319 * migrate_pages - migrate the pages specified in a list, to the free pages
1320 * supplied as the target for the page migration
1321 *
1322 * @from: The list of pages to be migrated.
1323 * @get_new_page: The function used to allocate free pages to be used
1324 * as the target of the page migration.
1325 * @put_new_page: The function used to free target pages if migration
1326 * fails, or NULL if no special handling is necessary.
1327 * @private: Private data to be passed on to get_new_page()
1328 * @mode: The migration mode that specifies the constraints for
1329 * page migration, if any.
1330 * @reason: The reason for page migration.
1331 * @ret_succeeded: Set to the number of normal pages migrated successfully if
1332 * the caller passes a non-NULL pointer.
1333 *
1334 * The function returns after 10 attempts or if no pages are movable any more
1335 * because the list has become empty or no retryable pages exist any more.
1336 * It is caller's responsibility to call putback_movable_pages() to return pages
1337 * to the LRU or free list only if ret != 0.
1338 *
1339 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1340 * an error code. The number of THP splits will be considered as the number of
1341 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1342 */
1343int migrate_pages(struct list_head *from, new_page_t get_new_page,
1344 free_page_t put_new_page, unsigned long private,
1345 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1346{
1347 int retry = 1;
1348 int thp_retry = 1;
1349 int nr_failed = 0;
1350 int nr_failed_pages = 0;
1351 int nr_succeeded = 0;
1352 int nr_thp_succeeded = 0;
1353 int nr_thp_failed = 0;
1354 int nr_thp_split = 0;
1355 int pass = 0;
1356 bool is_thp = false;
1357 struct page *page;
1358 struct page *page2;
1359 int rc, nr_subpages;
1360 LIST_HEAD(ret_pages);
1361 LIST_HEAD(thp_split_pages);
1362 bool nosplit = (reason == MR_NUMA_MISPLACED);
1363 bool no_subpage_counting = false;
1364
1365 trace_mm_migrate_pages_start(mode, reason);
1366
1367thp_subpage_migration:
1368 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1369 retry = 0;
1370 thp_retry = 0;
1371
1372 list_for_each_entry_safe(page, page2, from, lru) {
1373retry:
1374 /*
1375 * THP statistics is based on the source huge page.
1376 * Capture required information that might get lost
1377 * during migration.
1378 */
1379 is_thp = PageTransHuge(page) && !PageHuge(page);
1380 nr_subpages = compound_nr(page);
1381 cond_resched();
1382
1383 if (PageHuge(page))
1384 rc = unmap_and_move_huge_page(get_new_page,
1385 put_new_page, private, page,
1386 pass > 2, mode, reason,
1387 &ret_pages);
1388 else
1389 rc = unmap_and_move(get_new_page, put_new_page,
1390 private, page, pass > 2, mode,
1391 reason, &ret_pages);
1392 /*
1393 * The rules are:
1394 * Success: non hugetlb page will be freed, hugetlb
1395 * page will be put back
1396 * -EAGAIN: stay on the from list
1397 * -ENOMEM: stay on the from list
1398 * Other errno: put on ret_pages list then splice to
1399 * from list
1400 */
1401 switch(rc) {
1402 /*
1403 * THP migration might be unsupported or the
1404 * allocation could've failed so we should
1405 * retry on the same page with the THP split
1406 * to base pages.
1407 *
1408 * Head page is retried immediately and tail
1409 * pages are added to the tail of the list so
1410 * we encounter them after the rest of the list
1411 * is processed.
1412 */
1413 case -ENOSYS:
1414 /* THP migration is unsupported */
1415 if (is_thp) {
1416 nr_thp_failed++;
1417 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1418 nr_thp_split++;
1419 goto retry;
1420 }
1421 /* Hugetlb migration is unsupported */
1422 } else if (!no_subpage_counting) {
1423 nr_failed++;
1424 }
1425
1426 nr_failed_pages += nr_subpages;
1427 break;
1428 case -ENOMEM:
1429 /*
1430 * When memory is low, don't bother to try to migrate
1431 * other pages, just exit.
1432 * THP NUMA faulting doesn't split THP to retry.
1433 */
1434 if (is_thp && !nosplit) {
1435 nr_thp_failed++;
1436 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1437 nr_thp_split++;
1438 goto retry;
1439 }
1440 } else if (!no_subpage_counting) {
1441 nr_failed++;
1442 }
1443
1444 nr_failed_pages += nr_subpages;
1445 /*
1446 * There might be some subpages of fail-to-migrate THPs
1447 * left in thp_split_pages list. Move them back to migration
1448 * list so that they could be put back to the right list by
1449 * the caller otherwise the page refcnt will be leaked.
1450 */
1451 list_splice_init(&thp_split_pages, from);
1452 nr_thp_failed += thp_retry;
1453 goto out;
1454 case -EAGAIN:
1455 if (is_thp)
1456 thp_retry++;
1457 else
1458 retry++;
1459 break;
1460 case MIGRATEPAGE_SUCCESS:
1461 nr_succeeded += nr_subpages;
1462 if (is_thp)
1463 nr_thp_succeeded++;
1464 break;
1465 default:
1466 /*
1467 * Permanent failure (-EBUSY, etc.):
1468 * unlike -EAGAIN case, the failed page is
1469 * removed from migration page list and not
1470 * retried in the next outer loop.
1471 */
1472 if (is_thp)
1473 nr_thp_failed++;
1474 else if (!no_subpage_counting)
1475 nr_failed++;
1476
1477 nr_failed_pages += nr_subpages;
1478 break;
1479 }
1480 }
1481 }
1482 nr_failed += retry;
1483 nr_thp_failed += thp_retry;
1484 /*
1485 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1486 * counting in this round, since all subpages of a THP is counted
1487 * as 1 failure in the first round.
1488 */
1489 if (!list_empty(&thp_split_pages)) {
1490 /*
1491 * Move non-migrated pages (after 10 retries) to ret_pages
1492 * to avoid migrating them again.
1493 */
1494 list_splice_init(from, &ret_pages);
1495 list_splice_init(&thp_split_pages, from);
1496 no_subpage_counting = true;
1497 retry = 1;
1498 goto thp_subpage_migration;
1499 }
1500
1501 rc = nr_failed + nr_thp_failed;
1502out:
1503 /*
1504 * Put the permanent failure page back to migration list, they
1505 * will be put back to the right list by the caller.
1506 */
1507 list_splice(&ret_pages, from);
1508
1509 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1510 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1511 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1512 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1513 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1514 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1515 nr_thp_failed, nr_thp_split, mode, reason);
1516
1517 if (ret_succeeded)
1518 *ret_succeeded = nr_succeeded;
1519
1520 return rc;
1521}
1522
1523struct page *alloc_migration_target(struct page *page, unsigned long private)
1524{
1525 struct folio *folio = page_folio(page);
1526 struct migration_target_control *mtc;
1527 gfp_t gfp_mask;
1528 unsigned int order = 0;
1529 struct folio *new_folio = NULL;
1530 int nid;
1531 int zidx;
1532
1533 mtc = (struct migration_target_control *)private;
1534 gfp_mask = mtc->gfp_mask;
1535 nid = mtc->nid;
1536 if (nid == NUMA_NO_NODE)
1537 nid = folio_nid(folio);
1538
1539 if (folio_test_hugetlb(folio)) {
1540 struct hstate *h = page_hstate(&folio->page);
1541
1542 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1543 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1544 }
1545
1546 if (folio_test_large(folio)) {
1547 /*
1548 * clear __GFP_RECLAIM to make the migration callback
1549 * consistent with regular THP allocations.
1550 */
1551 gfp_mask &= ~__GFP_RECLAIM;
1552 gfp_mask |= GFP_TRANSHUGE;
1553 order = folio_order(folio);
1554 }
1555 zidx = zone_idx(folio_zone(folio));
1556 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1557 gfp_mask |= __GFP_HIGHMEM;
1558
1559 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1560
1561 return &new_folio->page;
1562}
1563
1564#ifdef CONFIG_NUMA
1565
1566static int store_status(int __user *status, int start, int value, int nr)
1567{
1568 while (nr-- > 0) {
1569 if (put_user(value, status + start))
1570 return -EFAULT;
1571 start++;
1572 }
1573
1574 return 0;
1575}
1576
1577static int do_move_pages_to_node(struct mm_struct *mm,
1578 struct list_head *pagelist, int node)
1579{
1580 int err;
1581 struct migration_target_control mtc = {
1582 .nid = node,
1583 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1584 };
1585
1586 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1587 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1588 if (err)
1589 putback_movable_pages(pagelist);
1590 return err;
1591}
1592
1593/*
1594 * Resolves the given address to a struct page, isolates it from the LRU and
1595 * puts it to the given pagelist.
1596 * Returns:
1597 * errno - if the page cannot be found/isolated
1598 * 0 - when it doesn't have to be migrated because it is already on the
1599 * target node
1600 * 1 - when it has been queued
1601 */
1602static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1603 int node, struct list_head *pagelist, bool migrate_all)
1604{
1605 struct vm_area_struct *vma;
1606 struct page *page;
1607 int err;
1608
1609 mmap_read_lock(mm);
1610 err = -EFAULT;
1611 vma = vma_lookup(mm, addr);
1612 if (!vma || !vma_migratable(vma))
1613 goto out;
1614
1615 /* FOLL_DUMP to ignore special (like zero) pages */
1616 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1617
1618 err = PTR_ERR(page);
1619 if (IS_ERR(page))
1620 goto out;
1621
1622 err = -ENOENT;
1623 if (!page)
1624 goto out;
1625
1626 err = 0;
1627 if (page_to_nid(page) == node)
1628 goto out_putpage;
1629
1630 err = -EACCES;
1631 if (page_mapcount(page) > 1 && !migrate_all)
1632 goto out_putpage;
1633
1634 if (PageHuge(page)) {
1635 if (PageHead(page)) {
1636 isolate_huge_page(page, pagelist);
1637 err = 1;
1638 }
1639 } else {
1640 struct page *head;
1641
1642 head = compound_head(page);
1643 err = isolate_lru_page(head);
1644 if (err)
1645 goto out_putpage;
1646
1647 err = 1;
1648 list_add_tail(&head->lru, pagelist);
1649 mod_node_page_state(page_pgdat(head),
1650 NR_ISOLATED_ANON + page_is_file_lru(head),
1651 thp_nr_pages(head));
1652 }
1653out_putpage:
1654 /*
1655 * Either remove the duplicate refcount from
1656 * isolate_lru_page() or drop the page ref if it was
1657 * not isolated.
1658 */
1659 put_page(page);
1660out:
1661 mmap_read_unlock(mm);
1662 return err;
1663}
1664
1665static int move_pages_and_store_status(struct mm_struct *mm, int node,
1666 struct list_head *pagelist, int __user *status,
1667 int start, int i, unsigned long nr_pages)
1668{
1669 int err;
1670
1671 if (list_empty(pagelist))
1672 return 0;
1673
1674 err = do_move_pages_to_node(mm, pagelist, node);
1675 if (err) {
1676 /*
1677 * Positive err means the number of failed
1678 * pages to migrate. Since we are going to
1679 * abort and return the number of non-migrated
1680 * pages, so need to include the rest of the
1681 * nr_pages that have not been attempted as
1682 * well.
1683 */
1684 if (err > 0)
1685 err += nr_pages - i - 1;
1686 return err;
1687 }
1688 return store_status(status, start, node, i - start);
1689}
1690
1691/*
1692 * Migrate an array of page address onto an array of nodes and fill
1693 * the corresponding array of status.
1694 */
1695static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1696 unsigned long nr_pages,
1697 const void __user * __user *pages,
1698 const int __user *nodes,
1699 int __user *status, int flags)
1700{
1701 int current_node = NUMA_NO_NODE;
1702 LIST_HEAD(pagelist);
1703 int start, i;
1704 int err = 0, err1;
1705
1706 lru_cache_disable();
1707
1708 for (i = start = 0; i < nr_pages; i++) {
1709 const void __user *p;
1710 unsigned long addr;
1711 int node;
1712
1713 err = -EFAULT;
1714 if (get_user(p, pages + i))
1715 goto out_flush;
1716 if (get_user(node, nodes + i))
1717 goto out_flush;
1718 addr = (unsigned long)untagged_addr(p);
1719
1720 err = -ENODEV;
1721 if (node < 0 || node >= MAX_NUMNODES)
1722 goto out_flush;
1723 if (!node_state(node, N_MEMORY))
1724 goto out_flush;
1725
1726 err = -EACCES;
1727 if (!node_isset(node, task_nodes))
1728 goto out_flush;
1729
1730 if (current_node == NUMA_NO_NODE) {
1731 current_node = node;
1732 start = i;
1733 } else if (node != current_node) {
1734 err = move_pages_and_store_status(mm, current_node,
1735 &pagelist, status, start, i, nr_pages);
1736 if (err)
1737 goto out;
1738 start = i;
1739 current_node = node;
1740 }
1741
1742 /*
1743 * Errors in the page lookup or isolation are not fatal and we simply
1744 * report them via status
1745 */
1746 err = add_page_for_migration(mm, addr, current_node,
1747 &pagelist, flags & MPOL_MF_MOVE_ALL);
1748
1749 if (err > 0) {
1750 /* The page is successfully queued for migration */
1751 continue;
1752 }
1753
1754 /*
1755 * The move_pages() man page does not have an -EEXIST choice, so
1756 * use -EFAULT instead.
1757 */
1758 if (err == -EEXIST)
1759 err = -EFAULT;
1760
1761 /*
1762 * If the page is already on the target node (!err), store the
1763 * node, otherwise, store the err.
1764 */
1765 err = store_status(status, i, err ? : current_node, 1);
1766 if (err)
1767 goto out_flush;
1768
1769 err = move_pages_and_store_status(mm, current_node, &pagelist,
1770 status, start, i, nr_pages);
1771 if (err)
1772 goto out;
1773 current_node = NUMA_NO_NODE;
1774 }
1775out_flush:
1776 /* Make sure we do not overwrite the existing error */
1777 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1778 status, start, i, nr_pages);
1779 if (err >= 0)
1780 err = err1;
1781out:
1782 lru_cache_enable();
1783 return err;
1784}
1785
1786/*
1787 * Determine the nodes of an array of pages and store it in an array of status.
1788 */
1789static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1790 const void __user **pages, int *status)
1791{
1792 unsigned long i;
1793
1794 mmap_read_lock(mm);
1795
1796 for (i = 0; i < nr_pages; i++) {
1797 unsigned long addr = (unsigned long)(*pages);
1798 struct vm_area_struct *vma;
1799 struct page *page;
1800 int err = -EFAULT;
1801
1802 vma = vma_lookup(mm, addr);
1803 if (!vma)
1804 goto set_status;
1805
1806 /* FOLL_DUMP to ignore special (like zero) pages */
1807 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1808
1809 err = PTR_ERR(page);
1810 if (IS_ERR(page))
1811 goto set_status;
1812
1813 if (page) {
1814 err = page_to_nid(page);
1815 put_page(page);
1816 } else {
1817 err = -ENOENT;
1818 }
1819set_status:
1820 *status = err;
1821
1822 pages++;
1823 status++;
1824 }
1825
1826 mmap_read_unlock(mm);
1827}
1828
1829static int get_compat_pages_array(const void __user *chunk_pages[],
1830 const void __user * __user *pages,
1831 unsigned long chunk_nr)
1832{
1833 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1834 compat_uptr_t p;
1835 int i;
1836
1837 for (i = 0; i < chunk_nr; i++) {
1838 if (get_user(p, pages32 + i))
1839 return -EFAULT;
1840 chunk_pages[i] = compat_ptr(p);
1841 }
1842
1843 return 0;
1844}
1845
1846/*
1847 * Determine the nodes of a user array of pages and store it in
1848 * a user array of status.
1849 */
1850static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1851 const void __user * __user *pages,
1852 int __user *status)
1853{
1854#define DO_PAGES_STAT_CHUNK_NR 16UL
1855 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1856 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1857
1858 while (nr_pages) {
1859 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1860
1861 if (in_compat_syscall()) {
1862 if (get_compat_pages_array(chunk_pages, pages,
1863 chunk_nr))
1864 break;
1865 } else {
1866 if (copy_from_user(chunk_pages, pages,
1867 chunk_nr * sizeof(*chunk_pages)))
1868 break;
1869 }
1870
1871 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1872
1873 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1874 break;
1875
1876 pages += chunk_nr;
1877 status += chunk_nr;
1878 nr_pages -= chunk_nr;
1879 }
1880 return nr_pages ? -EFAULT : 0;
1881}
1882
1883static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1884{
1885 struct task_struct *task;
1886 struct mm_struct *mm;
1887
1888 /*
1889 * There is no need to check if current process has the right to modify
1890 * the specified process when they are same.
1891 */
1892 if (!pid) {
1893 mmget(current->mm);
1894 *mem_nodes = cpuset_mems_allowed(current);
1895 return current->mm;
1896 }
1897
1898 /* Find the mm_struct */
1899 rcu_read_lock();
1900 task = find_task_by_vpid(pid);
1901 if (!task) {
1902 rcu_read_unlock();
1903 return ERR_PTR(-ESRCH);
1904 }
1905 get_task_struct(task);
1906
1907 /*
1908 * Check if this process has the right to modify the specified
1909 * process. Use the regular "ptrace_may_access()" checks.
1910 */
1911 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1912 rcu_read_unlock();
1913 mm = ERR_PTR(-EPERM);
1914 goto out;
1915 }
1916 rcu_read_unlock();
1917
1918 mm = ERR_PTR(security_task_movememory(task));
1919 if (IS_ERR(mm))
1920 goto out;
1921 *mem_nodes = cpuset_mems_allowed(task);
1922 mm = get_task_mm(task);
1923out:
1924 put_task_struct(task);
1925 if (!mm)
1926 mm = ERR_PTR(-EINVAL);
1927 return mm;
1928}
1929
1930/*
1931 * Move a list of pages in the address space of the currently executing
1932 * process.
1933 */
1934static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1935 const void __user * __user *pages,
1936 const int __user *nodes,
1937 int __user *status, int flags)
1938{
1939 struct mm_struct *mm;
1940 int err;
1941 nodemask_t task_nodes;
1942
1943 /* Check flags */
1944 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1945 return -EINVAL;
1946
1947 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1948 return -EPERM;
1949
1950 mm = find_mm_struct(pid, &task_nodes);
1951 if (IS_ERR(mm))
1952 return PTR_ERR(mm);
1953
1954 if (nodes)
1955 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1956 nodes, status, flags);
1957 else
1958 err = do_pages_stat(mm, nr_pages, pages, status);
1959
1960 mmput(mm);
1961 return err;
1962}
1963
1964SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1965 const void __user * __user *, pages,
1966 const int __user *, nodes,
1967 int __user *, status, int, flags)
1968{
1969 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1970}
1971
1972#ifdef CONFIG_NUMA_BALANCING
1973/*
1974 * Returns true if this is a safe migration target node for misplaced NUMA
1975 * pages. Currently it only checks the watermarks which is crude.
1976 */
1977static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1978 unsigned long nr_migrate_pages)
1979{
1980 int z;
1981
1982 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1983 struct zone *zone = pgdat->node_zones + z;
1984
1985 if (!managed_zone(zone))
1986 continue;
1987
1988 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1989 if (!zone_watermark_ok(zone, 0,
1990 high_wmark_pages(zone) +
1991 nr_migrate_pages,
1992 ZONE_MOVABLE, 0))
1993 continue;
1994 return true;
1995 }
1996 return false;
1997}
1998
1999static struct page *alloc_misplaced_dst_page(struct page *page,
2000 unsigned long data)
2001{
2002 int nid = (int) data;
2003 int order = compound_order(page);
2004 gfp_t gfp = __GFP_THISNODE;
2005 struct folio *new;
2006
2007 if (order > 0)
2008 gfp |= GFP_TRANSHUGE_LIGHT;
2009 else {
2010 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2011 __GFP_NOWARN;
2012 gfp &= ~__GFP_RECLAIM;
2013 }
2014 new = __folio_alloc_node(gfp, order, nid);
2015
2016 return &new->page;
2017}
2018
2019static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2020{
2021 int nr_pages = thp_nr_pages(page);
2022 int order = compound_order(page);
2023
2024 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2025
2026 /* Do not migrate THP mapped by multiple processes */
2027 if (PageTransHuge(page) && total_mapcount(page) > 1)
2028 return 0;
2029
2030 /* Avoid migrating to a node that is nearly full */
2031 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2032 int z;
2033
2034 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2035 return 0;
2036 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2037 if (managed_zone(pgdat->node_zones + z))
2038 break;
2039 }
2040 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2041 return 0;
2042 }
2043
2044 if (isolate_lru_page(page))
2045 return 0;
2046
2047 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2048 nr_pages);
2049
2050 /*
2051 * Isolating the page has taken another reference, so the
2052 * caller's reference can be safely dropped without the page
2053 * disappearing underneath us during migration.
2054 */
2055 put_page(page);
2056 return 1;
2057}
2058
2059/*
2060 * Attempt to migrate a misplaced page to the specified destination
2061 * node. Caller is expected to have an elevated reference count on
2062 * the page that will be dropped by this function before returning.
2063 */
2064int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2065 int node)
2066{
2067 pg_data_t *pgdat = NODE_DATA(node);
2068 int isolated;
2069 int nr_remaining;
2070 unsigned int nr_succeeded;
2071 LIST_HEAD(migratepages);
2072 int nr_pages = thp_nr_pages(page);
2073
2074 /*
2075 * Don't migrate file pages that are mapped in multiple processes
2076 * with execute permissions as they are probably shared libraries.
2077 */
2078 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2079 (vma->vm_flags & VM_EXEC))
2080 goto out;
2081
2082 /*
2083 * Also do not migrate dirty pages as not all filesystems can move
2084 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2085 */
2086 if (page_is_file_lru(page) && PageDirty(page))
2087 goto out;
2088
2089 isolated = numamigrate_isolate_page(pgdat, page);
2090 if (!isolated)
2091 goto out;
2092
2093 list_add(&page->lru, &migratepages);
2094 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2095 NULL, node, MIGRATE_ASYNC,
2096 MR_NUMA_MISPLACED, &nr_succeeded);
2097 if (nr_remaining) {
2098 if (!list_empty(&migratepages)) {
2099 list_del(&page->lru);
2100 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2101 page_is_file_lru(page), -nr_pages);
2102 putback_lru_page(page);
2103 }
2104 isolated = 0;
2105 }
2106 if (nr_succeeded) {
2107 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2108 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2109 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2110 nr_succeeded);
2111 }
2112 BUG_ON(!list_empty(&migratepages));
2113 return isolated;
2114
2115out:
2116 put_page(page);
2117 return 0;
2118}
2119#endif /* CONFIG_NUMA_BALANCING */
2120
2121/*
2122 * node_demotion[] example:
2123 *
2124 * Consider a system with two sockets. Each socket has
2125 * three classes of memory attached: fast, medium and slow.
2126 * Each memory class is placed in its own NUMA node. The
2127 * CPUs are placed in the node with the "fast" memory. The
2128 * 6 NUMA nodes (0-5) might be split among the sockets like
2129 * this:
2130 *
2131 * Socket A: 0, 1, 2
2132 * Socket B: 3, 4, 5
2133 *
2134 * When Node 0 fills up, its memory should be migrated to
2135 * Node 1. When Node 1 fills up, it should be migrated to
2136 * Node 2. The migration path start on the nodes with the
2137 * processors (since allocations default to this node) and
2138 * fast memory, progress through medium and end with the
2139 * slow memory:
2140 *
2141 * 0 -> 1 -> 2 -> stop
2142 * 3 -> 4 -> 5 -> stop
2143 *
2144 * This is represented in the node_demotion[] like this:
2145 *
2146 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2147 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2148 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2149 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2150 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2151 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2152 *
2153 * Moreover some systems may have multiple slow memory nodes.
2154 * Suppose a system has one socket with 3 memory nodes, node 0
2155 * is fast memory type, and node 1/2 both are slow memory
2156 * type, and the distance between fast memory node and slow
2157 * memory node is same. So the migration path should be:
2158 *
2159 * 0 -> 1/2 -> stop
2160 *
2161 * This is represented in the node_demotion[] like this:
2162 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2163 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2164 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2165 */
2166
2167/*
2168 * Writes to this array occur without locking. Cycles are
2169 * not allowed: Node X demotes to Y which demotes to X...
2170 *
2171 * If multiple reads are performed, a single rcu_read_lock()
2172 * must be held over all reads to ensure that no cycles are
2173 * observed.
2174 */
2175#define DEFAULT_DEMOTION_TARGET_NODES 15
2176
2177#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2178#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
2179#else
2180#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
2181#endif
2182
2183struct demotion_nodes {
2184 unsigned short nr;
2185 short nodes[DEMOTION_TARGET_NODES];
2186};
2187
2188static struct demotion_nodes *node_demotion __read_mostly;
2189
2190/**
2191 * next_demotion_node() - Get the next node in the demotion path
2192 * @node: The starting node to lookup the next node
2193 *
2194 * Return: node id for next memory node in the demotion path hierarchy
2195 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
2196 * @node online or guarantee that it *continues* to be the next demotion
2197 * target.
2198 */
2199int next_demotion_node(int node)
2200{
2201 struct demotion_nodes *nd;
2202 unsigned short target_nr, index;
2203 int target;
2204
2205 if (!node_demotion)
2206 return NUMA_NO_NODE;
2207
2208 nd = &node_demotion[node];
2209
2210 /*
2211 * node_demotion[] is updated without excluding this
2212 * function from running. RCU doesn't provide any
2213 * compiler barriers, so the READ_ONCE() is required
2214 * to avoid compiler reordering or read merging.
2215 *
2216 * Make sure to use RCU over entire code blocks if
2217 * node_demotion[] reads need to be consistent.
2218 */
2219 rcu_read_lock();
2220 target_nr = READ_ONCE(nd->nr);
2221
2222 switch (target_nr) {
2223 case 0:
2224 target = NUMA_NO_NODE;
2225 goto out;
2226 case 1:
2227 index = 0;
2228 break;
2229 default:
2230 /*
2231 * If there are multiple target nodes, just select one
2232 * target node randomly.
2233 *
2234 * In addition, we can also use round-robin to select
2235 * target node, but we should introduce another variable
2236 * for node_demotion[] to record last selected target node,
2237 * that may cause cache ping-pong due to the changing of
2238 * last target node. Or introducing per-cpu data to avoid
2239 * caching issue, which seems more complicated. So selecting
2240 * target node randomly seems better until now.
2241 */
2242 index = get_random_int() % target_nr;
2243 break;
2244 }
2245
2246 target = READ_ONCE(nd->nodes[index]);
2247
2248out:
2249 rcu_read_unlock();
2250 return target;
2251}
2252
2253/* Disable reclaim-based migration. */
2254static void __disable_all_migrate_targets(void)
2255{
2256 int node, i;
2257
2258 if (!node_demotion)
2259 return;
2260
2261 for_each_online_node(node) {
2262 node_demotion[node].nr = 0;
2263 for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2264 node_demotion[node].nodes[i] = NUMA_NO_NODE;
2265 }
2266}
2267
2268static void disable_all_migrate_targets(void)
2269{
2270 __disable_all_migrate_targets();
2271
2272 /*
2273 * Ensure that the "disable" is visible across the system.
2274 * Readers will see either a combination of before+disable
2275 * state or disable+after. They will never see before and
2276 * after state together.
2277 *
2278 * The before+after state together might have cycles and
2279 * could cause readers to do things like loop until this
2280 * function finishes. This ensures they can only see a
2281 * single "bad" read and would, for instance, only loop
2282 * once.
2283 */
2284 synchronize_rcu();
2285}
2286
2287/*
2288 * Find an automatic demotion target for 'node'.
2289 * Failing here is OK. It might just indicate
2290 * being at the end of a chain.
2291 */
2292static int establish_migrate_target(int node, nodemask_t *used,
2293 int best_distance)
2294{
2295 int migration_target, index, val;
2296 struct demotion_nodes *nd;
2297
2298 if (!node_demotion)
2299 return NUMA_NO_NODE;
2300
2301 nd = &node_demotion[node];
2302
2303 migration_target = find_next_best_node(node, used);
2304 if (migration_target == NUMA_NO_NODE)
2305 return NUMA_NO_NODE;
2306
2307 /*
2308 * If the node has been set a migration target node before,
2309 * which means it's the best distance between them. Still
2310 * check if this node can be demoted to other target nodes
2311 * if they have a same best distance.
2312 */
2313 if (best_distance != -1) {
2314 val = node_distance(node, migration_target);
2315 if (val > best_distance)
2316 goto out_clear;
2317 }
2318
2319 index = nd->nr;
2320 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2321 "Exceeds maximum demotion target nodes\n"))
2322 goto out_clear;
2323
2324 nd->nodes[index] = migration_target;
2325 nd->nr++;
2326
2327 return migration_target;
2328out_clear:
2329 node_clear(migration_target, *used);
2330 return NUMA_NO_NODE;
2331}
2332
2333/*
2334 * When memory fills up on a node, memory contents can be
2335 * automatically migrated to another node instead of
2336 * discarded at reclaim.
2337 *
2338 * Establish a "migration path" which will start at nodes
2339 * with CPUs and will follow the priorities used to build the
2340 * page allocator zonelists.
2341 *
2342 * The difference here is that cycles must be avoided. If
2343 * node0 migrates to node1, then neither node1, nor anything
2344 * node1 migrates to can migrate to node0. Also one node can
2345 * be migrated to multiple nodes if the target nodes all have
2346 * a same best-distance against the source node.
2347 *
2348 * This function can run simultaneously with readers of
2349 * node_demotion[]. However, it can not run simultaneously
2350 * with itself. Exclusion is provided by memory hotplug events
2351 * being single-threaded.
2352 */
2353static void __set_migration_target_nodes(void)
2354{
2355 nodemask_t next_pass;
2356 nodemask_t this_pass;
2357 nodemask_t used_targets = NODE_MASK_NONE;
2358 int node, best_distance;
2359
2360 /*
2361 * Avoid any oddities like cycles that could occur
2362 * from changes in the topology. This will leave
2363 * a momentary gap when migration is disabled.
2364 */
2365 disable_all_migrate_targets();
2366
2367 /*
2368 * Allocations go close to CPUs, first. Assume that
2369 * the migration path starts at the nodes with CPUs.
2370 */
2371 next_pass = node_states[N_CPU];
2372again:
2373 this_pass = next_pass;
2374 next_pass = NODE_MASK_NONE;
2375 /*
2376 * To avoid cycles in the migration "graph", ensure
2377 * that migration sources are not future targets by
2378 * setting them in 'used_targets'. Do this only
2379 * once per pass so that multiple source nodes can
2380 * share a target node.
2381 *
2382 * 'used_targets' will become unavailable in future
2383 * passes. This limits some opportunities for
2384 * multiple source nodes to share a destination.
2385 */
2386 nodes_or(used_targets, used_targets, this_pass);
2387
2388 for_each_node_mask(node, this_pass) {
2389 best_distance = -1;
2390
2391 /*
2392 * Try to set up the migration path for the node, and the target
2393 * migration nodes can be multiple, so doing a loop to find all
2394 * the target nodes if they all have a best node distance.
2395 */
2396 do {
2397 int target_node =
2398 establish_migrate_target(node, &used_targets,
2399 best_distance);
2400
2401 if (target_node == NUMA_NO_NODE)
2402 break;
2403
2404 if (best_distance == -1)
2405 best_distance = node_distance(node, target_node);
2406
2407 /*
2408 * Visit targets from this pass in the next pass.
2409 * Eventually, every node will have been part of
2410 * a pass, and will become set in 'used_targets'.
2411 */
2412 node_set(target_node, next_pass);
2413 } while (1);
2414 }
2415 /*
2416 * 'next_pass' contains nodes which became migration
2417 * targets in this pass. Make additional passes until
2418 * no more migrations targets are available.
2419 */
2420 if (!nodes_empty(next_pass))
2421 goto again;
2422}
2423
2424/*
2425 * For callers that do not hold get_online_mems() already.
2426 */
2427void set_migration_target_nodes(void)
2428{
2429 get_online_mems();
2430 __set_migration_target_nodes();
2431 put_online_mems();
2432}
2433
2434/*
2435 * This leaves migrate-on-reclaim transiently disabled between
2436 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
2437 * whether reclaim-based migration is enabled or not, which
2438 * ensures that the user can turn reclaim-based migration at
2439 * any time without needing to recalculate migration targets.
2440 *
2441 * These callbacks already hold get_online_mems(). That is why
2442 * __set_migration_target_nodes() can be used as opposed to
2443 * set_migration_target_nodes().
2444 */
2445#ifdef CONFIG_MEMORY_HOTPLUG
2446static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2447 unsigned long action, void *_arg)
2448{
2449 struct memory_notify *arg = _arg;
2450
2451 /*
2452 * Only update the node migration order when a node is
2453 * changing status, like online->offline. This avoids
2454 * the overhead of synchronize_rcu() in most cases.
2455 */
2456 if (arg->status_change_nid < 0)
2457 return notifier_from_errno(0);
2458
2459 switch (action) {
2460 case MEM_GOING_OFFLINE:
2461 /*
2462 * Make sure there are not transient states where
2463 * an offline node is a migration target. This
2464 * will leave migration disabled until the offline
2465 * completes and the MEM_OFFLINE case below runs.
2466 */
2467 disable_all_migrate_targets();
2468 break;
2469 case MEM_OFFLINE:
2470 case MEM_ONLINE:
2471 /*
2472 * Recalculate the target nodes once the node
2473 * reaches its final state (online or offline).
2474 */
2475 __set_migration_target_nodes();
2476 break;
2477 case MEM_CANCEL_OFFLINE:
2478 /*
2479 * MEM_GOING_OFFLINE disabled all the migration
2480 * targets. Reenable them.
2481 */
2482 __set_migration_target_nodes();
2483 break;
2484 case MEM_GOING_ONLINE:
2485 case MEM_CANCEL_ONLINE:
2486 break;
2487 }
2488
2489 return notifier_from_errno(0);
2490}
2491#endif
2492
2493void __init migrate_on_reclaim_init(void)
2494{
2495 node_demotion = kcalloc(nr_node_ids,
2496 sizeof(struct demotion_nodes),
2497 GFP_KERNEL);
2498 WARN_ON(!node_demotion);
2499#ifdef CONFIG_MEMORY_HOTPLUG
2500 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2501#endif
2502 /*
2503 * At this point, all numa nodes with memory/CPus have their state
2504 * properly set, so we can build the demotion order now.
2505 * Let us hold the cpu_hotplug lock just, as we could possibily have
2506 * CPU hotplug events during boot.
2507 */
2508 cpus_read_lock();
2509 set_migration_target_nodes();
2510 cpus_read_unlock();
2511}
2512
2513bool numa_demotion_enabled = false;
2514
2515#ifdef CONFIG_SYSFS
2516static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2517 struct kobj_attribute *attr, char *buf)
2518{
2519 return sysfs_emit(buf, "%s\n",
2520 numa_demotion_enabled ? "true" : "false");
2521}
2522
2523static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2524 struct kobj_attribute *attr,
2525 const char *buf, size_t count)
2526{
2527 ssize_t ret;
2528
2529 ret = kstrtobool(buf, &numa_demotion_enabled);
2530 if (ret)
2531 return ret;
2532
2533 return count;
2534}
2535
2536static struct kobj_attribute numa_demotion_enabled_attr =
2537 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2538 numa_demotion_enabled_store);
2539
2540static struct attribute *numa_attrs[] = {
2541 &numa_demotion_enabled_attr.attr,
2542 NULL,
2543};
2544
2545static const struct attribute_group numa_attr_group = {
2546 .attrs = numa_attrs,
2547};
2548
2549static int __init numa_init_sysfs(void)
2550{
2551 int err;
2552 struct kobject *numa_kobj;
2553
2554 numa_kobj = kobject_create_and_add("numa", mm_kobj);
2555 if (!numa_kobj) {
2556 pr_err("failed to create numa kobject\n");
2557 return -ENOMEM;
2558 }
2559 err = sysfs_create_group(numa_kobj, &numa_attr_group);
2560 if (err) {
2561 pr_err("failed to register numa group\n");
2562 goto delete_obj;
2563 }
2564 return 0;
2565
2566delete_obj:
2567 kobject_put(numa_kobj);
2568 return err;
2569}
2570subsys_initcall(numa_init_sysfs);
2571#endif /* CONFIG_SYSFS */
2572#endif /* CONFIG_NUMA */