Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/coredump.h>
47#include <linux/sched/numa_balancing.h>
48#include <linux/sched/task.h>
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
54#include <linux/memremap.h>
55#include <linux/ksm.h>
56#include <linux/rmap.h>
57#include <linux/export.h>
58#include <linux/delayacct.h>
59#include <linux/init.h>
60#include <linux/pfn_t.h>
61#include <linux/writeback.h>
62#include <linux/memcontrol.h>
63#include <linux/mmu_notifier.h>
64#include <linux/swapops.h>
65#include <linux/elf.h>
66#include <linux/gfp.h>
67#include <linux/migrate.h>
68#include <linux/string.h>
69#include <linux/debugfs.h>
70#include <linux/userfaultfd_k.h>
71#include <linux/dax.h>
72#include <linux/oom.h>
73#include <linux/numa.h>
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
76#include <linux/vmalloc.h>
77
78#include <trace/events/kmem.h>
79
80#include <asm/io.h>
81#include <asm/mmu_context.h>
82#include <asm/pgalloc.h>
83#include <linux/uaccess.h>
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
86
87#include "pgalloc-track.h"
88#include "internal.h"
89#include "swap.h"
90
91#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93#endif
94
95#ifndef CONFIG_NUMA
96unsigned long max_mapnr;
97EXPORT_SYMBOL(max_mapnr);
98
99struct page *mem_map;
100EXPORT_SYMBOL(mem_map);
101#endif
102
103static vm_fault_t do_fault(struct vm_fault *vmf);
104
105/*
106 * A number of key systems in x86 including ioremap() rely on the assumption
107 * that high_memory defines the upper bound on direct map memory, then end
108 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
109 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110 * and ZONE_HIGHMEM.
111 */
112void *high_memory;
113EXPORT_SYMBOL(high_memory);
114
115/*
116 * Randomize the address space (stacks, mmaps, brk, etc.).
117 *
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
120 */
121int randomize_va_space __read_mostly =
122#ifdef CONFIG_COMPAT_BRK
123 1;
124#else
125 2;
126#endif
127
128#ifndef arch_faults_on_old_pte
129static inline bool arch_faults_on_old_pte(void)
130{
131 /*
132 * Those arches which don't have hw access flag feature need to
133 * implement their own helper. By default, "true" means pagefault
134 * will be hit on old pte.
135 */
136 return true;
137}
138#endif
139
140#ifndef arch_wants_old_prefaulted_pte
141static inline bool arch_wants_old_prefaulted_pte(void)
142{
143 /*
144 * Transitioning a PTE from 'old' to 'young' can be expensive on
145 * some architectures, even if it's performed in hardware. By
146 * default, "false" means prefaulted entries will be 'young'.
147 */
148 return false;
149}
150#endif
151
152static int __init disable_randmaps(char *s)
153{
154 randomize_va_space = 0;
155 return 1;
156}
157__setup("norandmaps", disable_randmaps);
158
159unsigned long zero_pfn __read_mostly;
160EXPORT_SYMBOL(zero_pfn);
161
162unsigned long highest_memmap_pfn __read_mostly;
163
164/*
165 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166 */
167static int __init init_zero_pfn(void)
168{
169 zero_pfn = page_to_pfn(ZERO_PAGE(0));
170 return 0;
171}
172early_initcall(init_zero_pfn);
173
174void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
175{
176 trace_rss_stat(mm, member, count);
177}
178
179#if defined(SPLIT_RSS_COUNTING)
180
181void sync_mm_rss(struct mm_struct *mm)
182{
183 int i;
184
185 for (i = 0; i < NR_MM_COUNTERS; i++) {
186 if (current->rss_stat.count[i]) {
187 add_mm_counter(mm, i, current->rss_stat.count[i]);
188 current->rss_stat.count[i] = 0;
189 }
190 }
191 current->rss_stat.events = 0;
192}
193
194static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195{
196 struct task_struct *task = current;
197
198 if (likely(task->mm == mm))
199 task->rss_stat.count[member] += val;
200 else
201 add_mm_counter(mm, member, val);
202}
203#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205
206/* sync counter once per 64 page faults */
207#define TASK_RSS_EVENTS_THRESH (64)
208static void check_sync_rss_stat(struct task_struct *task)
209{
210 if (unlikely(task != current))
211 return;
212 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
213 sync_mm_rss(task->mm);
214}
215#else /* SPLIT_RSS_COUNTING */
216
217#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219
220static void check_sync_rss_stat(struct task_struct *task)
221{
222}
223
224#endif /* SPLIT_RSS_COUNTING */
225
226/*
227 * Note: this doesn't free the actual pages themselves. That
228 * has been handled earlier when unmapping all the memory regions.
229 */
230static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231 unsigned long addr)
232{
233 pgtable_t token = pmd_pgtable(*pmd);
234 pmd_clear(pmd);
235 pte_free_tlb(tlb, token, addr);
236 mm_dec_nr_ptes(tlb->mm);
237}
238
239static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240 unsigned long addr, unsigned long end,
241 unsigned long floor, unsigned long ceiling)
242{
243 pmd_t *pmd;
244 unsigned long next;
245 unsigned long start;
246
247 start = addr;
248 pmd = pmd_offset(pud, addr);
249 do {
250 next = pmd_addr_end(addr, end);
251 if (pmd_none_or_clear_bad(pmd))
252 continue;
253 free_pte_range(tlb, pmd, addr);
254 } while (pmd++, addr = next, addr != end);
255
256 start &= PUD_MASK;
257 if (start < floor)
258 return;
259 if (ceiling) {
260 ceiling &= PUD_MASK;
261 if (!ceiling)
262 return;
263 }
264 if (end - 1 > ceiling - 1)
265 return;
266
267 pmd = pmd_offset(pud, start);
268 pud_clear(pud);
269 pmd_free_tlb(tlb, pmd, start);
270 mm_dec_nr_pmds(tlb->mm);
271}
272
273static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
274 unsigned long addr, unsigned long end,
275 unsigned long floor, unsigned long ceiling)
276{
277 pud_t *pud;
278 unsigned long next;
279 unsigned long start;
280
281 start = addr;
282 pud = pud_offset(p4d, addr);
283 do {
284 next = pud_addr_end(addr, end);
285 if (pud_none_or_clear_bad(pud))
286 continue;
287 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
288 } while (pud++, addr = next, addr != end);
289
290 start &= P4D_MASK;
291 if (start < floor)
292 return;
293 if (ceiling) {
294 ceiling &= P4D_MASK;
295 if (!ceiling)
296 return;
297 }
298 if (end - 1 > ceiling - 1)
299 return;
300
301 pud = pud_offset(p4d, start);
302 p4d_clear(p4d);
303 pud_free_tlb(tlb, pud, start);
304 mm_dec_nr_puds(tlb->mm);
305}
306
307static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
310{
311 p4d_t *p4d;
312 unsigned long next;
313 unsigned long start;
314
315 start = addr;
316 p4d = p4d_offset(pgd, addr);
317 do {
318 next = p4d_addr_end(addr, end);
319 if (p4d_none_or_clear_bad(p4d))
320 continue;
321 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322 } while (p4d++, addr = next, addr != end);
323
324 start &= PGDIR_MASK;
325 if (start < floor)
326 return;
327 if (ceiling) {
328 ceiling &= PGDIR_MASK;
329 if (!ceiling)
330 return;
331 }
332 if (end - 1 > ceiling - 1)
333 return;
334
335 p4d = p4d_offset(pgd, start);
336 pgd_clear(pgd);
337 p4d_free_tlb(tlb, p4d, start);
338}
339
340/*
341 * This function frees user-level page tables of a process.
342 */
343void free_pgd_range(struct mmu_gather *tlb,
344 unsigned long addr, unsigned long end,
345 unsigned long floor, unsigned long ceiling)
346{
347 pgd_t *pgd;
348 unsigned long next;
349
350 /*
351 * The next few lines have given us lots of grief...
352 *
353 * Why are we testing PMD* at this top level? Because often
354 * there will be no work to do at all, and we'd prefer not to
355 * go all the way down to the bottom just to discover that.
356 *
357 * Why all these "- 1"s? Because 0 represents both the bottom
358 * of the address space and the top of it (using -1 for the
359 * top wouldn't help much: the masks would do the wrong thing).
360 * The rule is that addr 0 and floor 0 refer to the bottom of
361 * the address space, but end 0 and ceiling 0 refer to the top
362 * Comparisons need to use "end - 1" and "ceiling - 1" (though
363 * that end 0 case should be mythical).
364 *
365 * Wherever addr is brought up or ceiling brought down, we must
366 * be careful to reject "the opposite 0" before it confuses the
367 * subsequent tests. But what about where end is brought down
368 * by PMD_SIZE below? no, end can't go down to 0 there.
369 *
370 * Whereas we round start (addr) and ceiling down, by different
371 * masks at different levels, in order to test whether a table
372 * now has no other vmas using it, so can be freed, we don't
373 * bother to round floor or end up - the tests don't need that.
374 */
375
376 addr &= PMD_MASK;
377 if (addr < floor) {
378 addr += PMD_SIZE;
379 if (!addr)
380 return;
381 }
382 if (ceiling) {
383 ceiling &= PMD_MASK;
384 if (!ceiling)
385 return;
386 }
387 if (end - 1 > ceiling - 1)
388 end -= PMD_SIZE;
389 if (addr > end - 1)
390 return;
391 /*
392 * We add page table cache pages with PAGE_SIZE,
393 * (see pte_free_tlb()), flush the tlb if we need
394 */
395 tlb_change_page_size(tlb, PAGE_SIZE);
396 pgd = pgd_offset(tlb->mm, addr);
397 do {
398 next = pgd_addr_end(addr, end);
399 if (pgd_none_or_clear_bad(pgd))
400 continue;
401 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
402 } while (pgd++, addr = next, addr != end);
403}
404
405void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
406 unsigned long floor, unsigned long ceiling)
407{
408 while (vma) {
409 struct vm_area_struct *next = vma->vm_next;
410 unsigned long addr = vma->vm_start;
411
412 /*
413 * Hide vma from rmap and truncate_pagecache before freeing
414 * pgtables
415 */
416 unlink_anon_vmas(vma);
417 unlink_file_vma(vma);
418
419 if (is_vm_hugetlb_page(vma)) {
420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 floor, next ? next->vm_start : ceiling);
422 } else {
423 /*
424 * Optimization: gather nearby vmas into one call down
425 */
426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 && !is_vm_hugetlb_page(next)) {
428 vma = next;
429 next = vma->vm_next;
430 unlink_anon_vmas(vma);
431 unlink_file_vma(vma);
432 }
433 free_pgd_range(tlb, addr, vma->vm_end,
434 floor, next ? next->vm_start : ceiling);
435 }
436 vma = next;
437 }
438}
439
440void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441{
442 spinlock_t *ptl = pmd_lock(mm, pmd);
443
444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
445 mm_inc_nr_ptes(mm);
446 /*
447 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 * visible before the pte is made visible to other CPUs by being
449 * put into page tables.
450 *
451 * The other side of the story is the pointer chasing in the page
452 * table walking code (when walking the page table without locking;
453 * ie. most of the time). Fortunately, these data accesses consist
454 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 * being the notable exception) will already guarantee loads are
456 * seen in-order. See the alpha page table accessors for the
457 * smp_rmb() barriers in page table walking code.
458 */
459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 pmd_populate(mm, pmd, *pte);
461 *pte = NULL;
462 }
463 spin_unlock(ptl);
464}
465
466int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467{
468 pgtable_t new = pte_alloc_one(mm);
469 if (!new)
470 return -ENOMEM;
471
472 pmd_install(mm, pmd, &new);
473 if (new)
474 pte_free(mm, new);
475 return 0;
476}
477
478int __pte_alloc_kernel(pmd_t *pmd)
479{
480 pte_t *new = pte_alloc_one_kernel(&init_mm);
481 if (!new)
482 return -ENOMEM;
483
484 spin_lock(&init_mm.page_table_lock);
485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
486 smp_wmb(); /* See comment in pmd_install() */
487 pmd_populate_kernel(&init_mm, pmd, new);
488 new = NULL;
489 }
490 spin_unlock(&init_mm.page_table_lock);
491 if (new)
492 pte_free_kernel(&init_mm, new);
493 return 0;
494}
495
496static inline void init_rss_vec(int *rss)
497{
498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499}
500
501static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502{
503 int i;
504
505 if (current->mm == mm)
506 sync_mm_rss(mm);
507 for (i = 0; i < NR_MM_COUNTERS; i++)
508 if (rss[i])
509 add_mm_counter(mm, i, rss[i]);
510}
511
512/*
513 * This function is called to print an error when a bad pte
514 * is found. For example, we might have a PFN-mapped pte in
515 * a region that doesn't allow it.
516 *
517 * The calling function must still handle the error.
518 */
519static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte, struct page *page)
521{
522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 p4d_t *p4d = p4d_offset(pgd, addr);
524 pud_t *pud = pud_offset(p4d, addr);
525 pmd_t *pmd = pmd_offset(pud, addr);
526 struct address_space *mapping;
527 pgoff_t index;
528 static unsigned long resume;
529 static unsigned long nr_shown;
530 static unsigned long nr_unshown;
531
532 /*
533 * Allow a burst of 60 reports, then keep quiet for that minute;
534 * or allow a steady drip of one report per second.
535 */
536 if (nr_shown == 60) {
537 if (time_before(jiffies, resume)) {
538 nr_unshown++;
539 return;
540 }
541 if (nr_unshown) {
542 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 index = linear_page_index(vma, addr);
553
554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
555 current->comm,
556 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 if (page)
558 dump_page(page, "bad pte");
559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 vma->vm_file,
563 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 mapping ? mapping->a_ops->read_folio : NULL);
566 dump_stack();
567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568}
569
570/*
571 * vm_normal_page -- This function gets the "struct page" associated with a pte.
572 *
573 * "Special" mappings do not wish to be associated with a "struct page" (either
574 * it doesn't exist, or it exists but they don't want to touch it). In this
575 * case, NULL is returned here. "Normal" mappings do have a struct page.
576 *
577 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578 * pte bit, in which case this function is trivial. Secondly, an architecture
579 * may not have a spare pte bit, which requires a more complicated scheme,
580 * described below.
581 *
582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583 * special mapping (even if there are underlying and valid "struct pages").
584 * COWed pages of a VM_PFNMAP are always normal.
585 *
586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589 * mapping will always honor the rule
590 *
591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592 *
593 * And for normal mappings this is false.
594 *
595 * This restricts such mappings to be a linear translation from virtual address
596 * to pfn. To get around this restriction, we allow arbitrary mappings so long
597 * as the vma is not a COW mapping; in that case, we know that all ptes are
598 * special (because none can have been COWed).
599 *
600 *
601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602 *
603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604 * page" backing, however the difference is that _all_ pages with a struct
605 * page (that is, those where pfn_valid is true) are refcounted and considered
606 * normal pages by the VM. The disadvantage is that pages are refcounted
607 * (which can be slower and simply not an option for some PFNMAP users). The
608 * advantage is that we don't have to follow the strict linearity rule of
609 * PFNMAP mappings in order to support COWable mappings.
610 *
611 */
612struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 pte_t pte)
614{
615 unsigned long pfn = pte_pfn(pte);
616
617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 if (likely(!pte_special(pte)))
619 goto check_pfn;
620 if (vma->vm_ops && vma->vm_ops->find_special_page)
621 return vma->vm_ops->find_special_page(vma, addr);
622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 return NULL;
624 if (is_zero_pfn(pfn))
625 return NULL;
626 if (pte_devmap(pte))
627 return NULL;
628
629 print_bad_pte(vma, addr, pte, NULL);
630 return NULL;
631 }
632
633 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
634
635 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
636 if (vma->vm_flags & VM_MIXEDMAP) {
637 if (!pfn_valid(pfn))
638 return NULL;
639 goto out;
640 } else {
641 unsigned long off;
642 off = (addr - vma->vm_start) >> PAGE_SHIFT;
643 if (pfn == vma->vm_pgoff + off)
644 return NULL;
645 if (!is_cow_mapping(vma->vm_flags))
646 return NULL;
647 }
648 }
649
650 if (is_zero_pfn(pfn))
651 return NULL;
652
653check_pfn:
654 if (unlikely(pfn > highest_memmap_pfn)) {
655 print_bad_pte(vma, addr, pte, NULL);
656 return NULL;
657 }
658
659 /*
660 * NOTE! We still have PageReserved() pages in the page tables.
661 * eg. VDSO mappings can cause them to exist.
662 */
663out:
664 return pfn_to_page(pfn);
665}
666
667#ifdef CONFIG_TRANSPARENT_HUGEPAGE
668struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 pmd_t pmd)
670{
671 unsigned long pfn = pmd_pfn(pmd);
672
673 /*
674 * There is no pmd_special() but there may be special pmds, e.g.
675 * in a direct-access (dax) mapping, so let's just replicate the
676 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
677 */
678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679 if (vma->vm_flags & VM_MIXEDMAP) {
680 if (!pfn_valid(pfn))
681 return NULL;
682 goto out;
683 } else {
684 unsigned long off;
685 off = (addr - vma->vm_start) >> PAGE_SHIFT;
686 if (pfn == vma->vm_pgoff + off)
687 return NULL;
688 if (!is_cow_mapping(vma->vm_flags))
689 return NULL;
690 }
691 }
692
693 if (pmd_devmap(pmd))
694 return NULL;
695 if (is_huge_zero_pmd(pmd))
696 return NULL;
697 if (unlikely(pfn > highest_memmap_pfn))
698 return NULL;
699
700 /*
701 * NOTE! We still have PageReserved() pages in the page tables.
702 * eg. VDSO mappings can cause them to exist.
703 */
704out:
705 return pfn_to_page(pfn);
706}
707#endif
708
709static void restore_exclusive_pte(struct vm_area_struct *vma,
710 struct page *page, unsigned long address,
711 pte_t *ptep)
712{
713 pte_t pte;
714 swp_entry_t entry;
715
716 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
717 if (pte_swp_soft_dirty(*ptep))
718 pte = pte_mksoft_dirty(pte);
719
720 entry = pte_to_swp_entry(*ptep);
721 if (pte_swp_uffd_wp(*ptep))
722 pte = pte_mkuffd_wp(pte);
723 else if (is_writable_device_exclusive_entry(entry))
724 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
725
726 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
727
728 /*
729 * No need to take a page reference as one was already
730 * created when the swap entry was made.
731 */
732 if (PageAnon(page))
733 page_add_anon_rmap(page, vma, address, RMAP_NONE);
734 else
735 /*
736 * Currently device exclusive access only supports anonymous
737 * memory so the entry shouldn't point to a filebacked page.
738 */
739 WARN_ON_ONCE(!PageAnon(page));
740
741 set_pte_at(vma->vm_mm, address, ptep, pte);
742
743 /*
744 * No need to invalidate - it was non-present before. However
745 * secondary CPUs may have mappings that need invalidating.
746 */
747 update_mmu_cache(vma, address, ptep);
748}
749
750/*
751 * Tries to restore an exclusive pte if the page lock can be acquired without
752 * sleeping.
753 */
754static int
755try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
756 unsigned long addr)
757{
758 swp_entry_t entry = pte_to_swp_entry(*src_pte);
759 struct page *page = pfn_swap_entry_to_page(entry);
760
761 if (trylock_page(page)) {
762 restore_exclusive_pte(vma, page, addr, src_pte);
763 unlock_page(page);
764 return 0;
765 }
766
767 return -EBUSY;
768}
769
770/*
771 * copy one vm_area from one task to the other. Assumes the page tables
772 * already present in the new task to be cleared in the whole range
773 * covered by this vma.
774 */
775
776static unsigned long
777copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
778 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
779 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
780{
781 unsigned long vm_flags = dst_vma->vm_flags;
782 pte_t pte = *src_pte;
783 struct page *page;
784 swp_entry_t entry = pte_to_swp_entry(pte);
785
786 if (likely(!non_swap_entry(entry))) {
787 if (swap_duplicate(entry) < 0)
788 return -EIO;
789
790 /* make sure dst_mm is on swapoff's mmlist. */
791 if (unlikely(list_empty(&dst_mm->mmlist))) {
792 spin_lock(&mmlist_lock);
793 if (list_empty(&dst_mm->mmlist))
794 list_add(&dst_mm->mmlist,
795 &src_mm->mmlist);
796 spin_unlock(&mmlist_lock);
797 }
798 /* Mark the swap entry as shared. */
799 if (pte_swp_exclusive(*src_pte)) {
800 pte = pte_swp_clear_exclusive(*src_pte);
801 set_pte_at(src_mm, addr, src_pte, pte);
802 }
803 rss[MM_SWAPENTS]++;
804 } else if (is_migration_entry(entry)) {
805 page = pfn_swap_entry_to_page(entry);
806
807 rss[mm_counter(page)]++;
808
809 if (!is_readable_migration_entry(entry) &&
810 is_cow_mapping(vm_flags)) {
811 /*
812 * COW mappings require pages in both parent and child
813 * to be set to read. A previously exclusive entry is
814 * now shared.
815 */
816 entry = make_readable_migration_entry(
817 swp_offset(entry));
818 pte = swp_entry_to_pte(entry);
819 if (pte_swp_soft_dirty(*src_pte))
820 pte = pte_swp_mksoft_dirty(pte);
821 if (pte_swp_uffd_wp(*src_pte))
822 pte = pte_swp_mkuffd_wp(pte);
823 set_pte_at(src_mm, addr, src_pte, pte);
824 }
825 } else if (is_device_private_entry(entry)) {
826 page = pfn_swap_entry_to_page(entry);
827
828 /*
829 * Update rss count even for unaddressable pages, as
830 * they should treated just like normal pages in this
831 * respect.
832 *
833 * We will likely want to have some new rss counters
834 * for unaddressable pages, at some point. But for now
835 * keep things as they are.
836 */
837 get_page(page);
838 rss[mm_counter(page)]++;
839 /* Cannot fail as these pages cannot get pinned. */
840 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
841
842 /*
843 * We do not preserve soft-dirty information, because so
844 * far, checkpoint/restore is the only feature that
845 * requires that. And checkpoint/restore does not work
846 * when a device driver is involved (you cannot easily
847 * save and restore device driver state).
848 */
849 if (is_writable_device_private_entry(entry) &&
850 is_cow_mapping(vm_flags)) {
851 entry = make_readable_device_private_entry(
852 swp_offset(entry));
853 pte = swp_entry_to_pte(entry);
854 if (pte_swp_uffd_wp(*src_pte))
855 pte = pte_swp_mkuffd_wp(pte);
856 set_pte_at(src_mm, addr, src_pte, pte);
857 }
858 } else if (is_device_exclusive_entry(entry)) {
859 /*
860 * Make device exclusive entries present by restoring the
861 * original entry then copying as for a present pte. Device
862 * exclusive entries currently only support private writable
863 * (ie. COW) mappings.
864 */
865 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
866 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
867 return -EBUSY;
868 return -ENOENT;
869 } else if (is_pte_marker_entry(entry)) {
870 /*
871 * We're copying the pgtable should only because dst_vma has
872 * uffd-wp enabled, do sanity check.
873 */
874 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
875 set_pte_at(dst_mm, addr, dst_pte, pte);
876 return 0;
877 }
878 if (!userfaultfd_wp(dst_vma))
879 pte = pte_swp_clear_uffd_wp(pte);
880 set_pte_at(dst_mm, addr, dst_pte, pte);
881 return 0;
882}
883
884/*
885 * Copy a present and normal page.
886 *
887 * NOTE! The usual case is that this isn't required;
888 * instead, the caller can just increase the page refcount
889 * and re-use the pte the traditional way.
890 *
891 * And if we need a pre-allocated page but don't yet have
892 * one, return a negative error to let the preallocation
893 * code know so that it can do so outside the page table
894 * lock.
895 */
896static inline int
897copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
898 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
899 struct page **prealloc, struct page *page)
900{
901 struct page *new_page;
902 pte_t pte;
903
904 new_page = *prealloc;
905 if (!new_page)
906 return -EAGAIN;
907
908 /*
909 * We have a prealloc page, all good! Take it
910 * over and copy the page & arm it.
911 */
912 *prealloc = NULL;
913 copy_user_highpage(new_page, page, addr, src_vma);
914 __SetPageUptodate(new_page);
915 page_add_new_anon_rmap(new_page, dst_vma, addr);
916 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
917 rss[mm_counter(new_page)]++;
918
919 /* All done, just insert the new page copy in the child */
920 pte = mk_pte(new_page, dst_vma->vm_page_prot);
921 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
922 if (userfaultfd_pte_wp(dst_vma, *src_pte))
923 /* Uffd-wp needs to be delivered to dest pte as well */
924 pte = pte_wrprotect(pte_mkuffd_wp(pte));
925 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
926 return 0;
927}
928
929/*
930 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
931 * is required to copy this pte.
932 */
933static inline int
934copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
935 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
936 struct page **prealloc)
937{
938 struct mm_struct *src_mm = src_vma->vm_mm;
939 unsigned long vm_flags = src_vma->vm_flags;
940 pte_t pte = *src_pte;
941 struct page *page;
942
943 page = vm_normal_page(src_vma, addr, pte);
944 if (page && PageAnon(page)) {
945 /*
946 * If this page may have been pinned by the parent process,
947 * copy the page immediately for the child so that we'll always
948 * guarantee the pinned page won't be randomly replaced in the
949 * future.
950 */
951 get_page(page);
952 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
953 /* Page maybe pinned, we have to copy. */
954 put_page(page);
955 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
956 addr, rss, prealloc, page);
957 }
958 rss[mm_counter(page)]++;
959 } else if (page) {
960 get_page(page);
961 page_dup_file_rmap(page, false);
962 rss[mm_counter(page)]++;
963 }
964
965 /*
966 * If it's a COW mapping, write protect it both
967 * in the parent and the child
968 */
969 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
970 ptep_set_wrprotect(src_mm, addr, src_pte);
971 pte = pte_wrprotect(pte);
972 }
973 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
974
975 /*
976 * If it's a shared mapping, mark it clean in
977 * the child
978 */
979 if (vm_flags & VM_SHARED)
980 pte = pte_mkclean(pte);
981 pte = pte_mkold(pte);
982
983 if (!userfaultfd_wp(dst_vma))
984 pte = pte_clear_uffd_wp(pte);
985
986 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
987 return 0;
988}
989
990static inline struct page *
991page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
992 unsigned long addr)
993{
994 struct page *new_page;
995
996 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
997 if (!new_page)
998 return NULL;
999
1000 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1001 put_page(new_page);
1002 return NULL;
1003 }
1004 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1005
1006 return new_page;
1007}
1008
1009static int
1010copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1011 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1012 unsigned long end)
1013{
1014 struct mm_struct *dst_mm = dst_vma->vm_mm;
1015 struct mm_struct *src_mm = src_vma->vm_mm;
1016 pte_t *orig_src_pte, *orig_dst_pte;
1017 pte_t *src_pte, *dst_pte;
1018 spinlock_t *src_ptl, *dst_ptl;
1019 int progress, ret = 0;
1020 int rss[NR_MM_COUNTERS];
1021 swp_entry_t entry = (swp_entry_t){0};
1022 struct page *prealloc = NULL;
1023
1024again:
1025 progress = 0;
1026 init_rss_vec(rss);
1027
1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
1033 src_pte = pte_offset_map(src_pmd, addr);
1034 src_ptl = pte_lockptr(src_mm, src_pmd);
1035 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1036 orig_src_pte = src_pte;
1037 orig_dst_pte = dst_pte;
1038 arch_enter_lazy_mmu_mode();
1039
1040 do {
1041 /*
1042 * We are holding two locks at this point - either of them
1043 * could generate latencies in another task on another CPU.
1044 */
1045 if (progress >= 32) {
1046 progress = 0;
1047 if (need_resched() ||
1048 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1049 break;
1050 }
1051 if (pte_none(*src_pte)) {
1052 progress++;
1053 continue;
1054 }
1055 if (unlikely(!pte_present(*src_pte))) {
1056 ret = copy_nonpresent_pte(dst_mm, src_mm,
1057 dst_pte, src_pte,
1058 dst_vma, src_vma,
1059 addr, rss);
1060 if (ret == -EIO) {
1061 entry = pte_to_swp_entry(*src_pte);
1062 break;
1063 } else if (ret == -EBUSY) {
1064 break;
1065 } else if (!ret) {
1066 progress += 8;
1067 continue;
1068 }
1069
1070 /*
1071 * Device exclusive entry restored, continue by copying
1072 * the now present pte.
1073 */
1074 WARN_ON_ONCE(ret != -ENOENT);
1075 }
1076 /* copy_present_pte() will clear `*prealloc' if consumed */
1077 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1078 addr, rss, &prealloc);
1079 /*
1080 * If we need a pre-allocated page for this pte, drop the
1081 * locks, allocate, and try again.
1082 */
1083 if (unlikely(ret == -EAGAIN))
1084 break;
1085 if (unlikely(prealloc)) {
1086 /*
1087 * pre-alloc page cannot be reused by next time so as
1088 * to strictly follow mempolicy (e.g., alloc_page_vma()
1089 * will allocate page according to address). This
1090 * could only happen if one pinned pte changed.
1091 */
1092 put_page(prealloc);
1093 prealloc = NULL;
1094 }
1095 progress += 8;
1096 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1097
1098 arch_leave_lazy_mmu_mode();
1099 spin_unlock(src_ptl);
1100 pte_unmap(orig_src_pte);
1101 add_mm_rss_vec(dst_mm, rss);
1102 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1103 cond_resched();
1104
1105 if (ret == -EIO) {
1106 VM_WARN_ON_ONCE(!entry.val);
1107 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111 entry.val = 0;
1112 } else if (ret == -EBUSY) {
1113 goto out;
1114 } else if (ret == -EAGAIN) {
1115 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1116 if (!prealloc)
1117 return -ENOMEM;
1118 } else if (ret) {
1119 VM_WARN_ON_ONCE(1);
1120 }
1121
1122 /* We've captured and resolved the error. Reset, try again. */
1123 ret = 0;
1124
1125 if (addr != end)
1126 goto again;
1127out:
1128 if (unlikely(prealloc))
1129 put_page(prealloc);
1130 return ret;
1131}
1132
1133static inline int
1134copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1135 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1136 unsigned long end)
1137{
1138 struct mm_struct *dst_mm = dst_vma->vm_mm;
1139 struct mm_struct *src_mm = src_vma->vm_mm;
1140 pmd_t *src_pmd, *dst_pmd;
1141 unsigned long next;
1142
1143 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1144 if (!dst_pmd)
1145 return -ENOMEM;
1146 src_pmd = pmd_offset(src_pud, addr);
1147 do {
1148 next = pmd_addr_end(addr, end);
1149 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1150 || pmd_devmap(*src_pmd)) {
1151 int err;
1152 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1153 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1154 addr, dst_vma, src_vma);
1155 if (err == -ENOMEM)
1156 return -ENOMEM;
1157 if (!err)
1158 continue;
1159 /* fall through */
1160 }
1161 if (pmd_none_or_clear_bad(src_pmd))
1162 continue;
1163 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1164 addr, next))
1165 return -ENOMEM;
1166 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1167 return 0;
1168}
1169
1170static inline int
1171copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1172 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1173 unsigned long end)
1174{
1175 struct mm_struct *dst_mm = dst_vma->vm_mm;
1176 struct mm_struct *src_mm = src_vma->vm_mm;
1177 pud_t *src_pud, *dst_pud;
1178 unsigned long next;
1179
1180 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1181 if (!dst_pud)
1182 return -ENOMEM;
1183 src_pud = pud_offset(src_p4d, addr);
1184 do {
1185 next = pud_addr_end(addr, end);
1186 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1187 int err;
1188
1189 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1190 err = copy_huge_pud(dst_mm, src_mm,
1191 dst_pud, src_pud, addr, src_vma);
1192 if (err == -ENOMEM)
1193 return -ENOMEM;
1194 if (!err)
1195 continue;
1196 /* fall through */
1197 }
1198 if (pud_none_or_clear_bad(src_pud))
1199 continue;
1200 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1201 addr, next))
1202 return -ENOMEM;
1203 } while (dst_pud++, src_pud++, addr = next, addr != end);
1204 return 0;
1205}
1206
1207static inline int
1208copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1209 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1210 unsigned long end)
1211{
1212 struct mm_struct *dst_mm = dst_vma->vm_mm;
1213 p4d_t *src_p4d, *dst_p4d;
1214 unsigned long next;
1215
1216 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1217 if (!dst_p4d)
1218 return -ENOMEM;
1219 src_p4d = p4d_offset(src_pgd, addr);
1220 do {
1221 next = p4d_addr_end(addr, end);
1222 if (p4d_none_or_clear_bad(src_p4d))
1223 continue;
1224 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1225 addr, next))
1226 return -ENOMEM;
1227 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1228 return 0;
1229}
1230
1231/*
1232 * Return true if the vma needs to copy the pgtable during this fork(). Return
1233 * false when we can speed up fork() by allowing lazy page faults later until
1234 * when the child accesses the memory range.
1235 */
1236static bool
1237vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1238{
1239 /*
1240 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1241 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1242 * contains uffd-wp protection information, that's something we can't
1243 * retrieve from page cache, and skip copying will lose those info.
1244 */
1245 if (userfaultfd_wp(dst_vma))
1246 return true;
1247
1248 if (src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP))
1249 return true;
1250
1251 if (src_vma->anon_vma)
1252 return true;
1253
1254 /*
1255 * Don't copy ptes where a page fault will fill them correctly. Fork
1256 * becomes much lighter when there are big shared or private readonly
1257 * mappings. The tradeoff is that copy_page_range is more efficient
1258 * than faulting.
1259 */
1260 return false;
1261}
1262
1263int
1264copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1265{
1266 pgd_t *src_pgd, *dst_pgd;
1267 unsigned long next;
1268 unsigned long addr = src_vma->vm_start;
1269 unsigned long end = src_vma->vm_end;
1270 struct mm_struct *dst_mm = dst_vma->vm_mm;
1271 struct mm_struct *src_mm = src_vma->vm_mm;
1272 struct mmu_notifier_range range;
1273 bool is_cow;
1274 int ret;
1275
1276 if (!vma_needs_copy(dst_vma, src_vma))
1277 return 0;
1278
1279 if (is_vm_hugetlb_page(src_vma))
1280 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1281
1282 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1283 /*
1284 * We do not free on error cases below as remove_vma
1285 * gets called on error from higher level routine
1286 */
1287 ret = track_pfn_copy(src_vma);
1288 if (ret)
1289 return ret;
1290 }
1291
1292 /*
1293 * We need to invalidate the secondary MMU mappings only when
1294 * there could be a permission downgrade on the ptes of the
1295 * parent mm. And a permission downgrade will only happen if
1296 * is_cow_mapping() returns true.
1297 */
1298 is_cow = is_cow_mapping(src_vma->vm_flags);
1299
1300 if (is_cow) {
1301 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1302 0, src_vma, src_mm, addr, end);
1303 mmu_notifier_invalidate_range_start(&range);
1304 /*
1305 * Disabling preemption is not needed for the write side, as
1306 * the read side doesn't spin, but goes to the mmap_lock.
1307 *
1308 * Use the raw variant of the seqcount_t write API to avoid
1309 * lockdep complaining about preemptibility.
1310 */
1311 mmap_assert_write_locked(src_mm);
1312 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1313 }
1314
1315 ret = 0;
1316 dst_pgd = pgd_offset(dst_mm, addr);
1317 src_pgd = pgd_offset(src_mm, addr);
1318 do {
1319 next = pgd_addr_end(addr, end);
1320 if (pgd_none_or_clear_bad(src_pgd))
1321 continue;
1322 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1323 addr, next))) {
1324 ret = -ENOMEM;
1325 break;
1326 }
1327 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1328
1329 if (is_cow) {
1330 raw_write_seqcount_end(&src_mm->write_protect_seq);
1331 mmu_notifier_invalidate_range_end(&range);
1332 }
1333 return ret;
1334}
1335
1336/*
1337 * Parameter block passed down to zap_pte_range in exceptional cases.
1338 */
1339struct zap_details {
1340 struct folio *single_folio; /* Locked folio to be unmapped */
1341 bool even_cows; /* Zap COWed private pages too? */
1342 zap_flags_t zap_flags; /* Extra flags for zapping */
1343};
1344
1345/* Whether we should zap all COWed (private) pages too */
1346static inline bool should_zap_cows(struct zap_details *details)
1347{
1348 /* By default, zap all pages */
1349 if (!details)
1350 return true;
1351
1352 /* Or, we zap COWed pages only if the caller wants to */
1353 return details->even_cows;
1354}
1355
1356/* Decides whether we should zap this page with the page pointer specified */
1357static inline bool should_zap_page(struct zap_details *details, struct page *page)
1358{
1359 /* If we can make a decision without *page.. */
1360 if (should_zap_cows(details))
1361 return true;
1362
1363 /* E.g. the caller passes NULL for the case of a zero page */
1364 if (!page)
1365 return true;
1366
1367 /* Otherwise we should only zap non-anon pages */
1368 return !PageAnon(page);
1369}
1370
1371static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1372{
1373 if (!details)
1374 return false;
1375
1376 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1377}
1378
1379/*
1380 * This function makes sure that we'll replace the none pte with an uffd-wp
1381 * swap special pte marker when necessary. Must be with the pgtable lock held.
1382 */
1383static inline void
1384zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1385 unsigned long addr, pte_t *pte,
1386 struct zap_details *details, pte_t pteval)
1387{
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392}
1393
1394static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pmd_t *pmd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1398{
1399 struct mm_struct *mm = tlb->mm;
1400 int force_flush = 0;
1401 int rss[NR_MM_COUNTERS];
1402 spinlock_t *ptl;
1403 pte_t *start_pte;
1404 pte_t *pte;
1405 swp_entry_t entry;
1406
1407 tlb_change_page_size(tlb, PAGE_SIZE);
1408again:
1409 init_rss_vec(rss);
1410 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1411 pte = start_pte;
1412 flush_tlb_batched_pending(mm);
1413 arch_enter_lazy_mmu_mode();
1414 do {
1415 pte_t ptent = *pte;
1416 struct page *page;
1417
1418 if (pte_none(ptent))
1419 continue;
1420
1421 if (need_resched())
1422 break;
1423
1424 if (pte_present(ptent)) {
1425 page = vm_normal_page(vma, addr, ptent);
1426 if (unlikely(!should_zap_page(details, page)))
1427 continue;
1428 ptent = ptep_get_and_clear_full(mm, addr, pte,
1429 tlb->fullmm);
1430 tlb_remove_tlb_entry(tlb, pte, addr);
1431 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1432 ptent);
1433 if (unlikely(!page))
1434 continue;
1435
1436 if (!PageAnon(page)) {
1437 if (pte_dirty(ptent)) {
1438 force_flush = 1;
1439 set_page_dirty(page);
1440 }
1441 if (pte_young(ptent) &&
1442 likely(!(vma->vm_flags & VM_SEQ_READ)))
1443 mark_page_accessed(page);
1444 }
1445 rss[mm_counter(page)]--;
1446 page_remove_rmap(page, vma, false);
1447 if (unlikely(page_mapcount(page) < 0))
1448 print_bad_pte(vma, addr, ptent, page);
1449 if (unlikely(__tlb_remove_page(tlb, page))) {
1450 force_flush = 1;
1451 addr += PAGE_SIZE;
1452 break;
1453 }
1454 continue;
1455 }
1456
1457 entry = pte_to_swp_entry(ptent);
1458 if (is_device_private_entry(entry) ||
1459 is_device_exclusive_entry(entry)) {
1460 page = pfn_swap_entry_to_page(entry);
1461 if (unlikely(!should_zap_page(details, page)))
1462 continue;
1463 /*
1464 * Both device private/exclusive mappings should only
1465 * work with anonymous page so far, so we don't need to
1466 * consider uffd-wp bit when zap. For more information,
1467 * see zap_install_uffd_wp_if_needed().
1468 */
1469 WARN_ON_ONCE(!vma_is_anonymous(vma));
1470 rss[mm_counter(page)]--;
1471 if (is_device_private_entry(entry))
1472 page_remove_rmap(page, vma, false);
1473 put_page(page);
1474 } else if (!non_swap_entry(entry)) {
1475 /* Genuine swap entry, hence a private anon page */
1476 if (!should_zap_cows(details))
1477 continue;
1478 rss[MM_SWAPENTS]--;
1479 if (unlikely(!free_swap_and_cache(entry)))
1480 print_bad_pte(vma, addr, ptent, NULL);
1481 } else if (is_migration_entry(entry)) {
1482 page = pfn_swap_entry_to_page(entry);
1483 if (!should_zap_page(details, page))
1484 continue;
1485 rss[mm_counter(page)]--;
1486 } else if (pte_marker_entry_uffd_wp(entry)) {
1487 /* Only drop the uffd-wp marker if explicitly requested */
1488 if (!zap_drop_file_uffd_wp(details))
1489 continue;
1490 } else if (is_hwpoison_entry(entry) ||
1491 is_swapin_error_entry(entry)) {
1492 if (!should_zap_cows(details))
1493 continue;
1494 } else {
1495 /* We should have covered all the swap entry types */
1496 WARN_ON_ONCE(1);
1497 }
1498 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1499 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1500 } while (pte++, addr += PAGE_SIZE, addr != end);
1501
1502 add_mm_rss_vec(mm, rss);
1503 arch_leave_lazy_mmu_mode();
1504
1505 /* Do the actual TLB flush before dropping ptl */
1506 if (force_flush)
1507 tlb_flush_mmu_tlbonly(tlb);
1508 pte_unmap_unlock(start_pte, ptl);
1509
1510 /*
1511 * If we forced a TLB flush (either due to running out of
1512 * batch buffers or because we needed to flush dirty TLB
1513 * entries before releasing the ptl), free the batched
1514 * memory too. Restart if we didn't do everything.
1515 */
1516 if (force_flush) {
1517 force_flush = 0;
1518 tlb_flush_mmu(tlb);
1519 }
1520
1521 if (addr != end) {
1522 cond_resched();
1523 goto again;
1524 }
1525
1526 return addr;
1527}
1528
1529static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1530 struct vm_area_struct *vma, pud_t *pud,
1531 unsigned long addr, unsigned long end,
1532 struct zap_details *details)
1533{
1534 pmd_t *pmd;
1535 unsigned long next;
1536
1537 pmd = pmd_offset(pud, addr);
1538 do {
1539 next = pmd_addr_end(addr, end);
1540 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1541 if (next - addr != HPAGE_PMD_SIZE)
1542 __split_huge_pmd(vma, pmd, addr, false, NULL);
1543 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1544 goto next;
1545 /* fall through */
1546 } else if (details && details->single_folio &&
1547 folio_test_pmd_mappable(details->single_folio) &&
1548 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1549 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1550 /*
1551 * Take and drop THP pmd lock so that we cannot return
1552 * prematurely, while zap_huge_pmd() has cleared *pmd,
1553 * but not yet decremented compound_mapcount().
1554 */
1555 spin_unlock(ptl);
1556 }
1557
1558 /*
1559 * Here there can be other concurrent MADV_DONTNEED or
1560 * trans huge page faults running, and if the pmd is
1561 * none or trans huge it can change under us. This is
1562 * because MADV_DONTNEED holds the mmap_lock in read
1563 * mode.
1564 */
1565 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1566 goto next;
1567 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1568next:
1569 cond_resched();
1570 } while (pmd++, addr = next, addr != end);
1571
1572 return addr;
1573}
1574
1575static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1576 struct vm_area_struct *vma, p4d_t *p4d,
1577 unsigned long addr, unsigned long end,
1578 struct zap_details *details)
1579{
1580 pud_t *pud;
1581 unsigned long next;
1582
1583 pud = pud_offset(p4d, addr);
1584 do {
1585 next = pud_addr_end(addr, end);
1586 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1587 if (next - addr != HPAGE_PUD_SIZE) {
1588 mmap_assert_locked(tlb->mm);
1589 split_huge_pud(vma, pud, addr);
1590 } else if (zap_huge_pud(tlb, vma, pud, addr))
1591 goto next;
1592 /* fall through */
1593 }
1594 if (pud_none_or_clear_bad(pud))
1595 continue;
1596 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1597next:
1598 cond_resched();
1599 } while (pud++, addr = next, addr != end);
1600
1601 return addr;
1602}
1603
1604static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1605 struct vm_area_struct *vma, pgd_t *pgd,
1606 unsigned long addr, unsigned long end,
1607 struct zap_details *details)
1608{
1609 p4d_t *p4d;
1610 unsigned long next;
1611
1612 p4d = p4d_offset(pgd, addr);
1613 do {
1614 next = p4d_addr_end(addr, end);
1615 if (p4d_none_or_clear_bad(p4d))
1616 continue;
1617 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1618 } while (p4d++, addr = next, addr != end);
1619
1620 return addr;
1621}
1622
1623void unmap_page_range(struct mmu_gather *tlb,
1624 struct vm_area_struct *vma,
1625 unsigned long addr, unsigned long end,
1626 struct zap_details *details)
1627{
1628 pgd_t *pgd;
1629 unsigned long next;
1630
1631 BUG_ON(addr >= end);
1632 tlb_start_vma(tlb, vma);
1633 pgd = pgd_offset(vma->vm_mm, addr);
1634 do {
1635 next = pgd_addr_end(addr, end);
1636 if (pgd_none_or_clear_bad(pgd))
1637 continue;
1638 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1639 } while (pgd++, addr = next, addr != end);
1640 tlb_end_vma(tlb, vma);
1641}
1642
1643
1644static void unmap_single_vma(struct mmu_gather *tlb,
1645 struct vm_area_struct *vma, unsigned long start_addr,
1646 unsigned long end_addr,
1647 struct zap_details *details)
1648{
1649 unsigned long start = max(vma->vm_start, start_addr);
1650 unsigned long end;
1651
1652 if (start >= vma->vm_end)
1653 return;
1654 end = min(vma->vm_end, end_addr);
1655 if (end <= vma->vm_start)
1656 return;
1657
1658 if (vma->vm_file)
1659 uprobe_munmap(vma, start, end);
1660
1661 if (unlikely(vma->vm_flags & VM_PFNMAP))
1662 untrack_pfn(vma, 0, 0);
1663
1664 if (start != end) {
1665 if (unlikely(is_vm_hugetlb_page(vma))) {
1666 /*
1667 * It is undesirable to test vma->vm_file as it
1668 * should be non-null for valid hugetlb area.
1669 * However, vm_file will be NULL in the error
1670 * cleanup path of mmap_region. When
1671 * hugetlbfs ->mmap method fails,
1672 * mmap_region() nullifies vma->vm_file
1673 * before calling this function to clean up.
1674 * Since no pte has actually been setup, it is
1675 * safe to do nothing in this case.
1676 */
1677 if (vma->vm_file) {
1678 zap_flags_t zap_flags = details ?
1679 details->zap_flags : 0;
1680 i_mmap_lock_write(vma->vm_file->f_mapping);
1681 __unmap_hugepage_range_final(tlb, vma, start, end,
1682 NULL, zap_flags);
1683 i_mmap_unlock_write(vma->vm_file->f_mapping);
1684 }
1685 } else
1686 unmap_page_range(tlb, vma, start, end, details);
1687 }
1688}
1689
1690/**
1691 * unmap_vmas - unmap a range of memory covered by a list of vma's
1692 * @tlb: address of the caller's struct mmu_gather
1693 * @vma: the starting vma
1694 * @start_addr: virtual address at which to start unmapping
1695 * @end_addr: virtual address at which to end unmapping
1696 *
1697 * Unmap all pages in the vma list.
1698 *
1699 * Only addresses between `start' and `end' will be unmapped.
1700 *
1701 * The VMA list must be sorted in ascending virtual address order.
1702 *
1703 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1704 * range after unmap_vmas() returns. So the only responsibility here is to
1705 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1706 * drops the lock and schedules.
1707 */
1708void unmap_vmas(struct mmu_gather *tlb,
1709 struct vm_area_struct *vma, unsigned long start_addr,
1710 unsigned long end_addr)
1711{
1712 struct mmu_notifier_range range;
1713 struct zap_details details = {
1714 .zap_flags = ZAP_FLAG_DROP_MARKER,
1715 /* Careful - we need to zap private pages too! */
1716 .even_cows = true,
1717 };
1718
1719 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1720 start_addr, end_addr);
1721 mmu_notifier_invalidate_range_start(&range);
1722 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1723 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1724 mmu_notifier_invalidate_range_end(&range);
1725}
1726
1727/**
1728 * zap_page_range - remove user pages in a given range
1729 * @vma: vm_area_struct holding the applicable pages
1730 * @start: starting address of pages to zap
1731 * @size: number of bytes to zap
1732 *
1733 * Caller must protect the VMA list
1734 */
1735void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1736 unsigned long size)
1737{
1738 struct mmu_notifier_range range;
1739 struct mmu_gather tlb;
1740
1741 lru_add_drain();
1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1743 start, start + size);
1744 tlb_gather_mmu(&tlb, vma->vm_mm);
1745 update_hiwater_rss(vma->vm_mm);
1746 mmu_notifier_invalidate_range_start(&range);
1747 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1748 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1749 mmu_notifier_invalidate_range_end(&range);
1750 tlb_finish_mmu(&tlb);
1751}
1752
1753/**
1754 * zap_page_range_single - remove user pages in a given range
1755 * @vma: vm_area_struct holding the applicable pages
1756 * @address: starting address of pages to zap
1757 * @size: number of bytes to zap
1758 * @details: details of shared cache invalidation
1759 *
1760 * The range must fit into one VMA.
1761 */
1762static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1763 unsigned long size, struct zap_details *details)
1764{
1765 struct mmu_notifier_range range;
1766 struct mmu_gather tlb;
1767
1768 lru_add_drain();
1769 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1770 address, address + size);
1771 tlb_gather_mmu(&tlb, vma->vm_mm);
1772 update_hiwater_rss(vma->vm_mm);
1773 mmu_notifier_invalidate_range_start(&range);
1774 unmap_single_vma(&tlb, vma, address, range.end, details);
1775 mmu_notifier_invalidate_range_end(&range);
1776 tlb_finish_mmu(&tlb);
1777}
1778
1779/**
1780 * zap_vma_ptes - remove ptes mapping the vma
1781 * @vma: vm_area_struct holding ptes to be zapped
1782 * @address: starting address of pages to zap
1783 * @size: number of bytes to zap
1784 *
1785 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1786 *
1787 * The entire address range must be fully contained within the vma.
1788 *
1789 */
1790void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1791 unsigned long size)
1792{
1793 if (!range_in_vma(vma, address, address + size) ||
1794 !(vma->vm_flags & VM_PFNMAP))
1795 return;
1796
1797 zap_page_range_single(vma, address, size, NULL);
1798}
1799EXPORT_SYMBOL_GPL(zap_vma_ptes);
1800
1801static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1802{
1803 pgd_t *pgd;
1804 p4d_t *p4d;
1805 pud_t *pud;
1806 pmd_t *pmd;
1807
1808 pgd = pgd_offset(mm, addr);
1809 p4d = p4d_alloc(mm, pgd, addr);
1810 if (!p4d)
1811 return NULL;
1812 pud = pud_alloc(mm, p4d, addr);
1813 if (!pud)
1814 return NULL;
1815 pmd = pmd_alloc(mm, pud, addr);
1816 if (!pmd)
1817 return NULL;
1818
1819 VM_BUG_ON(pmd_trans_huge(*pmd));
1820 return pmd;
1821}
1822
1823pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1824 spinlock_t **ptl)
1825{
1826 pmd_t *pmd = walk_to_pmd(mm, addr);
1827
1828 if (!pmd)
1829 return NULL;
1830 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1831}
1832
1833static int validate_page_before_insert(struct page *page)
1834{
1835 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1836 return -EINVAL;
1837 flush_dcache_page(page);
1838 return 0;
1839}
1840
1841static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1842 unsigned long addr, struct page *page, pgprot_t prot)
1843{
1844 if (!pte_none(*pte))
1845 return -EBUSY;
1846 /* Ok, finally just insert the thing.. */
1847 get_page(page);
1848 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1849 page_add_file_rmap(page, vma, false);
1850 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1851 return 0;
1852}
1853
1854/*
1855 * This is the old fallback for page remapping.
1856 *
1857 * For historical reasons, it only allows reserved pages. Only
1858 * old drivers should use this, and they needed to mark their
1859 * pages reserved for the old functions anyway.
1860 */
1861static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1862 struct page *page, pgprot_t prot)
1863{
1864 int retval;
1865 pte_t *pte;
1866 spinlock_t *ptl;
1867
1868 retval = validate_page_before_insert(page);
1869 if (retval)
1870 goto out;
1871 retval = -ENOMEM;
1872 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1873 if (!pte)
1874 goto out;
1875 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1876 pte_unmap_unlock(pte, ptl);
1877out:
1878 return retval;
1879}
1880
1881#ifdef pte_index
1882static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1883 unsigned long addr, struct page *page, pgprot_t prot)
1884{
1885 int err;
1886
1887 if (!page_count(page))
1888 return -EINVAL;
1889 err = validate_page_before_insert(page);
1890 if (err)
1891 return err;
1892 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1893}
1894
1895/* insert_pages() amortizes the cost of spinlock operations
1896 * when inserting pages in a loop. Arch *must* define pte_index.
1897 */
1898static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1899 struct page **pages, unsigned long *num, pgprot_t prot)
1900{
1901 pmd_t *pmd = NULL;
1902 pte_t *start_pte, *pte;
1903 spinlock_t *pte_lock;
1904 struct mm_struct *const mm = vma->vm_mm;
1905 unsigned long curr_page_idx = 0;
1906 unsigned long remaining_pages_total = *num;
1907 unsigned long pages_to_write_in_pmd;
1908 int ret;
1909more:
1910 ret = -EFAULT;
1911 pmd = walk_to_pmd(mm, addr);
1912 if (!pmd)
1913 goto out;
1914
1915 pages_to_write_in_pmd = min_t(unsigned long,
1916 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1917
1918 /* Allocate the PTE if necessary; takes PMD lock once only. */
1919 ret = -ENOMEM;
1920 if (pte_alloc(mm, pmd))
1921 goto out;
1922
1923 while (pages_to_write_in_pmd) {
1924 int pte_idx = 0;
1925 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1926
1927 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1928 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1929 int err = insert_page_in_batch_locked(vma, pte,
1930 addr, pages[curr_page_idx], prot);
1931 if (unlikely(err)) {
1932 pte_unmap_unlock(start_pte, pte_lock);
1933 ret = err;
1934 remaining_pages_total -= pte_idx;
1935 goto out;
1936 }
1937 addr += PAGE_SIZE;
1938 ++curr_page_idx;
1939 }
1940 pte_unmap_unlock(start_pte, pte_lock);
1941 pages_to_write_in_pmd -= batch_size;
1942 remaining_pages_total -= batch_size;
1943 }
1944 if (remaining_pages_total)
1945 goto more;
1946 ret = 0;
1947out:
1948 *num = remaining_pages_total;
1949 return ret;
1950}
1951#endif /* ifdef pte_index */
1952
1953/**
1954 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1955 * @vma: user vma to map to
1956 * @addr: target start user address of these pages
1957 * @pages: source kernel pages
1958 * @num: in: number of pages to map. out: number of pages that were *not*
1959 * mapped. (0 means all pages were successfully mapped).
1960 *
1961 * Preferred over vm_insert_page() when inserting multiple pages.
1962 *
1963 * In case of error, we may have mapped a subset of the provided
1964 * pages. It is the caller's responsibility to account for this case.
1965 *
1966 * The same restrictions apply as in vm_insert_page().
1967 */
1968int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1969 struct page **pages, unsigned long *num)
1970{
1971#ifdef pte_index
1972 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1973
1974 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1975 return -EFAULT;
1976 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1977 BUG_ON(mmap_read_trylock(vma->vm_mm));
1978 BUG_ON(vma->vm_flags & VM_PFNMAP);
1979 vma->vm_flags |= VM_MIXEDMAP;
1980 }
1981 /* Defer page refcount checking till we're about to map that page. */
1982 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1983#else
1984 unsigned long idx = 0, pgcount = *num;
1985 int err = -EINVAL;
1986
1987 for (; idx < pgcount; ++idx) {
1988 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1989 if (err)
1990 break;
1991 }
1992 *num = pgcount - idx;
1993 return err;
1994#endif /* ifdef pte_index */
1995}
1996EXPORT_SYMBOL(vm_insert_pages);
1997
1998/**
1999 * vm_insert_page - insert single page into user vma
2000 * @vma: user vma to map to
2001 * @addr: target user address of this page
2002 * @page: source kernel page
2003 *
2004 * This allows drivers to insert individual pages they've allocated
2005 * into a user vma.
2006 *
2007 * The page has to be a nice clean _individual_ kernel allocation.
2008 * If you allocate a compound page, you need to have marked it as
2009 * such (__GFP_COMP), or manually just split the page up yourself
2010 * (see split_page()).
2011 *
2012 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2013 * took an arbitrary page protection parameter. This doesn't allow
2014 * that. Your vma protection will have to be set up correctly, which
2015 * means that if you want a shared writable mapping, you'd better
2016 * ask for a shared writable mapping!
2017 *
2018 * The page does not need to be reserved.
2019 *
2020 * Usually this function is called from f_op->mmap() handler
2021 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2022 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2023 * function from other places, for example from page-fault handler.
2024 *
2025 * Return: %0 on success, negative error code otherwise.
2026 */
2027int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2028 struct page *page)
2029{
2030 if (addr < vma->vm_start || addr >= vma->vm_end)
2031 return -EFAULT;
2032 if (!page_count(page))
2033 return -EINVAL;
2034 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2035 BUG_ON(mmap_read_trylock(vma->vm_mm));
2036 BUG_ON(vma->vm_flags & VM_PFNMAP);
2037 vma->vm_flags |= VM_MIXEDMAP;
2038 }
2039 return insert_page(vma, addr, page, vma->vm_page_prot);
2040}
2041EXPORT_SYMBOL(vm_insert_page);
2042
2043/*
2044 * __vm_map_pages - maps range of kernel pages into user vma
2045 * @vma: user vma to map to
2046 * @pages: pointer to array of source kernel pages
2047 * @num: number of pages in page array
2048 * @offset: user's requested vm_pgoff
2049 *
2050 * This allows drivers to map range of kernel pages into a user vma.
2051 *
2052 * Return: 0 on success and error code otherwise.
2053 */
2054static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2055 unsigned long num, unsigned long offset)
2056{
2057 unsigned long count = vma_pages(vma);
2058 unsigned long uaddr = vma->vm_start;
2059 int ret, i;
2060
2061 /* Fail if the user requested offset is beyond the end of the object */
2062 if (offset >= num)
2063 return -ENXIO;
2064
2065 /* Fail if the user requested size exceeds available object size */
2066 if (count > num - offset)
2067 return -ENXIO;
2068
2069 for (i = 0; i < count; i++) {
2070 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2071 if (ret < 0)
2072 return ret;
2073 uaddr += PAGE_SIZE;
2074 }
2075
2076 return 0;
2077}
2078
2079/**
2080 * vm_map_pages - maps range of kernel pages starts with non zero offset
2081 * @vma: user vma to map to
2082 * @pages: pointer to array of source kernel pages
2083 * @num: number of pages in page array
2084 *
2085 * Maps an object consisting of @num pages, catering for the user's
2086 * requested vm_pgoff
2087 *
2088 * If we fail to insert any page into the vma, the function will return
2089 * immediately leaving any previously inserted pages present. Callers
2090 * from the mmap handler may immediately return the error as their caller
2091 * will destroy the vma, removing any successfully inserted pages. Other
2092 * callers should make their own arrangements for calling unmap_region().
2093 *
2094 * Context: Process context. Called by mmap handlers.
2095 * Return: 0 on success and error code otherwise.
2096 */
2097int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2098 unsigned long num)
2099{
2100 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2101}
2102EXPORT_SYMBOL(vm_map_pages);
2103
2104/**
2105 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2106 * @vma: user vma to map to
2107 * @pages: pointer to array of source kernel pages
2108 * @num: number of pages in page array
2109 *
2110 * Similar to vm_map_pages(), except that it explicitly sets the offset
2111 * to 0. This function is intended for the drivers that did not consider
2112 * vm_pgoff.
2113 *
2114 * Context: Process context. Called by mmap handlers.
2115 * Return: 0 on success and error code otherwise.
2116 */
2117int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2118 unsigned long num)
2119{
2120 return __vm_map_pages(vma, pages, num, 0);
2121}
2122EXPORT_SYMBOL(vm_map_pages_zero);
2123
2124static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2125 pfn_t pfn, pgprot_t prot, bool mkwrite)
2126{
2127 struct mm_struct *mm = vma->vm_mm;
2128 pte_t *pte, entry;
2129 spinlock_t *ptl;
2130
2131 pte = get_locked_pte(mm, addr, &ptl);
2132 if (!pte)
2133 return VM_FAULT_OOM;
2134 if (!pte_none(*pte)) {
2135 if (mkwrite) {
2136 /*
2137 * For read faults on private mappings the PFN passed
2138 * in may not match the PFN we have mapped if the
2139 * mapped PFN is a writeable COW page. In the mkwrite
2140 * case we are creating a writable PTE for a shared
2141 * mapping and we expect the PFNs to match. If they
2142 * don't match, we are likely racing with block
2143 * allocation and mapping invalidation so just skip the
2144 * update.
2145 */
2146 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2147 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2148 goto out_unlock;
2149 }
2150 entry = pte_mkyoung(*pte);
2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2153 update_mmu_cache(vma, addr, pte);
2154 }
2155 goto out_unlock;
2156 }
2157
2158 /* Ok, finally just insert the thing.. */
2159 if (pfn_t_devmap(pfn))
2160 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2161 else
2162 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2163
2164 if (mkwrite) {
2165 entry = pte_mkyoung(entry);
2166 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 }
2168
2169 set_pte_at(mm, addr, pte, entry);
2170 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2171
2172out_unlock:
2173 pte_unmap_unlock(pte, ptl);
2174 return VM_FAULT_NOPAGE;
2175}
2176
2177/**
2178 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2179 * @vma: user vma to map to
2180 * @addr: target user address of this page
2181 * @pfn: source kernel pfn
2182 * @pgprot: pgprot flags for the inserted page
2183 *
2184 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2185 * to override pgprot on a per-page basis.
2186 *
2187 * This only makes sense for IO mappings, and it makes no sense for
2188 * COW mappings. In general, using multiple vmas is preferable;
2189 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2190 * impractical.
2191 *
2192 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2193 * a value of @pgprot different from that of @vma->vm_page_prot.
2194 *
2195 * Context: Process context. May allocate using %GFP_KERNEL.
2196 * Return: vm_fault_t value.
2197 */
2198vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2199 unsigned long pfn, pgprot_t pgprot)
2200{
2201 /*
2202 * Technically, architectures with pte_special can avoid all these
2203 * restrictions (same for remap_pfn_range). However we would like
2204 * consistency in testing and feature parity among all, so we should
2205 * try to keep these invariants in place for everybody.
2206 */
2207 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2208 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2209 (VM_PFNMAP|VM_MIXEDMAP));
2210 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2211 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2212
2213 if (addr < vma->vm_start || addr >= vma->vm_end)
2214 return VM_FAULT_SIGBUS;
2215
2216 if (!pfn_modify_allowed(pfn, pgprot))
2217 return VM_FAULT_SIGBUS;
2218
2219 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2220
2221 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2222 false);
2223}
2224EXPORT_SYMBOL(vmf_insert_pfn_prot);
2225
2226/**
2227 * vmf_insert_pfn - insert single pfn into user vma
2228 * @vma: user vma to map to
2229 * @addr: target user address of this page
2230 * @pfn: source kernel pfn
2231 *
2232 * Similar to vm_insert_page, this allows drivers to insert individual pages
2233 * they've allocated into a user vma. Same comments apply.
2234 *
2235 * This function should only be called from a vm_ops->fault handler, and
2236 * in that case the handler should return the result of this function.
2237 *
2238 * vma cannot be a COW mapping.
2239 *
2240 * As this is called only for pages that do not currently exist, we
2241 * do not need to flush old virtual caches or the TLB.
2242 *
2243 * Context: Process context. May allocate using %GFP_KERNEL.
2244 * Return: vm_fault_t value.
2245 */
2246vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2247 unsigned long pfn)
2248{
2249 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2250}
2251EXPORT_SYMBOL(vmf_insert_pfn);
2252
2253static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2254{
2255 /* these checks mirror the abort conditions in vm_normal_page */
2256 if (vma->vm_flags & VM_MIXEDMAP)
2257 return true;
2258 if (pfn_t_devmap(pfn))
2259 return true;
2260 if (pfn_t_special(pfn))
2261 return true;
2262 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2263 return true;
2264 return false;
2265}
2266
2267static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2268 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2269 bool mkwrite)
2270{
2271 int err;
2272
2273 BUG_ON(!vm_mixed_ok(vma, pfn));
2274
2275 if (addr < vma->vm_start || addr >= vma->vm_end)
2276 return VM_FAULT_SIGBUS;
2277
2278 track_pfn_insert(vma, &pgprot, pfn);
2279
2280 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2281 return VM_FAULT_SIGBUS;
2282
2283 /*
2284 * If we don't have pte special, then we have to use the pfn_valid()
2285 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2286 * refcount the page if pfn_valid is true (hence insert_page rather
2287 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2288 * without pte special, it would there be refcounted as a normal page.
2289 */
2290 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2291 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2292 struct page *page;
2293
2294 /*
2295 * At this point we are committed to insert_page()
2296 * regardless of whether the caller specified flags that
2297 * result in pfn_t_has_page() == false.
2298 */
2299 page = pfn_to_page(pfn_t_to_pfn(pfn));
2300 err = insert_page(vma, addr, page, pgprot);
2301 } else {
2302 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2303 }
2304
2305 if (err == -ENOMEM)
2306 return VM_FAULT_OOM;
2307 if (err < 0 && err != -EBUSY)
2308 return VM_FAULT_SIGBUS;
2309
2310 return VM_FAULT_NOPAGE;
2311}
2312
2313/**
2314 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2315 * @vma: user vma to map to
2316 * @addr: target user address of this page
2317 * @pfn: source kernel pfn
2318 * @pgprot: pgprot flags for the inserted page
2319 *
2320 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2321 * to override pgprot on a per-page basis.
2322 *
2323 * Typically this function should be used by drivers to set caching- and
2324 * encryption bits different than those of @vma->vm_page_prot, because
2325 * the caching- or encryption mode may not be known at mmap() time.
2326 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2327 * to set caching and encryption bits for those vmas (except for COW pages).
2328 * This is ensured by core vm only modifying these page table entries using
2329 * functions that don't touch caching- or encryption bits, using pte_modify()
2330 * if needed. (See for example mprotect()).
2331 * Also when new page-table entries are created, this is only done using the
2332 * fault() callback, and never using the value of vma->vm_page_prot,
2333 * except for page-table entries that point to anonymous pages as the result
2334 * of COW.
2335 *
2336 * Context: Process context. May allocate using %GFP_KERNEL.
2337 * Return: vm_fault_t value.
2338 */
2339vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2340 pfn_t pfn, pgprot_t pgprot)
2341{
2342 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2343}
2344EXPORT_SYMBOL(vmf_insert_mixed_prot);
2345
2346vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2347 pfn_t pfn)
2348{
2349 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2350}
2351EXPORT_SYMBOL(vmf_insert_mixed);
2352
2353/*
2354 * If the insertion of PTE failed because someone else already added a
2355 * different entry in the mean time, we treat that as success as we assume
2356 * the same entry was actually inserted.
2357 */
2358vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2359 unsigned long addr, pfn_t pfn)
2360{
2361 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2362}
2363EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2364
2365/*
2366 * maps a range of physical memory into the requested pages. the old
2367 * mappings are removed. any references to nonexistent pages results
2368 * in null mappings (currently treated as "copy-on-access")
2369 */
2370static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2371 unsigned long addr, unsigned long end,
2372 unsigned long pfn, pgprot_t prot)
2373{
2374 pte_t *pte, *mapped_pte;
2375 spinlock_t *ptl;
2376 int err = 0;
2377
2378 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2379 if (!pte)
2380 return -ENOMEM;
2381 arch_enter_lazy_mmu_mode();
2382 do {
2383 BUG_ON(!pte_none(*pte));
2384 if (!pfn_modify_allowed(pfn, prot)) {
2385 err = -EACCES;
2386 break;
2387 }
2388 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2389 pfn++;
2390 } while (pte++, addr += PAGE_SIZE, addr != end);
2391 arch_leave_lazy_mmu_mode();
2392 pte_unmap_unlock(mapped_pte, ptl);
2393 return err;
2394}
2395
2396static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2397 unsigned long addr, unsigned long end,
2398 unsigned long pfn, pgprot_t prot)
2399{
2400 pmd_t *pmd;
2401 unsigned long next;
2402 int err;
2403
2404 pfn -= addr >> PAGE_SHIFT;
2405 pmd = pmd_alloc(mm, pud, addr);
2406 if (!pmd)
2407 return -ENOMEM;
2408 VM_BUG_ON(pmd_trans_huge(*pmd));
2409 do {
2410 next = pmd_addr_end(addr, end);
2411 err = remap_pte_range(mm, pmd, addr, next,
2412 pfn + (addr >> PAGE_SHIFT), prot);
2413 if (err)
2414 return err;
2415 } while (pmd++, addr = next, addr != end);
2416 return 0;
2417}
2418
2419static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2420 unsigned long addr, unsigned long end,
2421 unsigned long pfn, pgprot_t prot)
2422{
2423 pud_t *pud;
2424 unsigned long next;
2425 int err;
2426
2427 pfn -= addr >> PAGE_SHIFT;
2428 pud = pud_alloc(mm, p4d, addr);
2429 if (!pud)
2430 return -ENOMEM;
2431 do {
2432 next = pud_addr_end(addr, end);
2433 err = remap_pmd_range(mm, pud, addr, next,
2434 pfn + (addr >> PAGE_SHIFT), prot);
2435 if (err)
2436 return err;
2437 } while (pud++, addr = next, addr != end);
2438 return 0;
2439}
2440
2441static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2442 unsigned long addr, unsigned long end,
2443 unsigned long pfn, pgprot_t prot)
2444{
2445 p4d_t *p4d;
2446 unsigned long next;
2447 int err;
2448
2449 pfn -= addr >> PAGE_SHIFT;
2450 p4d = p4d_alloc(mm, pgd, addr);
2451 if (!p4d)
2452 return -ENOMEM;
2453 do {
2454 next = p4d_addr_end(addr, end);
2455 err = remap_pud_range(mm, p4d, addr, next,
2456 pfn + (addr >> PAGE_SHIFT), prot);
2457 if (err)
2458 return err;
2459 } while (p4d++, addr = next, addr != end);
2460 return 0;
2461}
2462
2463/*
2464 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2465 * must have pre-validated the caching bits of the pgprot_t.
2466 */
2467int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2468 unsigned long pfn, unsigned long size, pgprot_t prot)
2469{
2470 pgd_t *pgd;
2471 unsigned long next;
2472 unsigned long end = addr + PAGE_ALIGN(size);
2473 struct mm_struct *mm = vma->vm_mm;
2474 int err;
2475
2476 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2477 return -EINVAL;
2478
2479 /*
2480 * Physically remapped pages are special. Tell the
2481 * rest of the world about it:
2482 * VM_IO tells people not to look at these pages
2483 * (accesses can have side effects).
2484 * VM_PFNMAP tells the core MM that the base pages are just
2485 * raw PFN mappings, and do not have a "struct page" associated
2486 * with them.
2487 * VM_DONTEXPAND
2488 * Disable vma merging and expanding with mremap().
2489 * VM_DONTDUMP
2490 * Omit vma from core dump, even when VM_IO turned off.
2491 *
2492 * There's a horrible special case to handle copy-on-write
2493 * behaviour that some programs depend on. We mark the "original"
2494 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2495 * See vm_normal_page() for details.
2496 */
2497 if (is_cow_mapping(vma->vm_flags)) {
2498 if (addr != vma->vm_start || end != vma->vm_end)
2499 return -EINVAL;
2500 vma->vm_pgoff = pfn;
2501 }
2502
2503 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2504
2505 BUG_ON(addr >= end);
2506 pfn -= addr >> PAGE_SHIFT;
2507 pgd = pgd_offset(mm, addr);
2508 flush_cache_range(vma, addr, end);
2509 do {
2510 next = pgd_addr_end(addr, end);
2511 err = remap_p4d_range(mm, pgd, addr, next,
2512 pfn + (addr >> PAGE_SHIFT), prot);
2513 if (err)
2514 return err;
2515 } while (pgd++, addr = next, addr != end);
2516
2517 return 0;
2518}
2519
2520/**
2521 * remap_pfn_range - remap kernel memory to userspace
2522 * @vma: user vma to map to
2523 * @addr: target page aligned user address to start at
2524 * @pfn: page frame number of kernel physical memory address
2525 * @size: size of mapping area
2526 * @prot: page protection flags for this mapping
2527 *
2528 * Note: this is only safe if the mm semaphore is held when called.
2529 *
2530 * Return: %0 on success, negative error code otherwise.
2531 */
2532int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2533 unsigned long pfn, unsigned long size, pgprot_t prot)
2534{
2535 int err;
2536
2537 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2538 if (err)
2539 return -EINVAL;
2540
2541 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2542 if (err)
2543 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2544 return err;
2545}
2546EXPORT_SYMBOL(remap_pfn_range);
2547
2548/**
2549 * vm_iomap_memory - remap memory to userspace
2550 * @vma: user vma to map to
2551 * @start: start of the physical memory to be mapped
2552 * @len: size of area
2553 *
2554 * This is a simplified io_remap_pfn_range() for common driver use. The
2555 * driver just needs to give us the physical memory range to be mapped,
2556 * we'll figure out the rest from the vma information.
2557 *
2558 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2559 * whatever write-combining details or similar.
2560 *
2561 * Return: %0 on success, negative error code otherwise.
2562 */
2563int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2564{
2565 unsigned long vm_len, pfn, pages;
2566
2567 /* Check that the physical memory area passed in looks valid */
2568 if (start + len < start)
2569 return -EINVAL;
2570 /*
2571 * You *really* shouldn't map things that aren't page-aligned,
2572 * but we've historically allowed it because IO memory might
2573 * just have smaller alignment.
2574 */
2575 len += start & ~PAGE_MASK;
2576 pfn = start >> PAGE_SHIFT;
2577 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2578 if (pfn + pages < pfn)
2579 return -EINVAL;
2580
2581 /* We start the mapping 'vm_pgoff' pages into the area */
2582 if (vma->vm_pgoff > pages)
2583 return -EINVAL;
2584 pfn += vma->vm_pgoff;
2585 pages -= vma->vm_pgoff;
2586
2587 /* Can we fit all of the mapping? */
2588 vm_len = vma->vm_end - vma->vm_start;
2589 if (vm_len >> PAGE_SHIFT > pages)
2590 return -EINVAL;
2591
2592 /* Ok, let it rip */
2593 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2594}
2595EXPORT_SYMBOL(vm_iomap_memory);
2596
2597static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2598 unsigned long addr, unsigned long end,
2599 pte_fn_t fn, void *data, bool create,
2600 pgtbl_mod_mask *mask)
2601{
2602 pte_t *pte, *mapped_pte;
2603 int err = 0;
2604 spinlock_t *ptl;
2605
2606 if (create) {
2607 mapped_pte = pte = (mm == &init_mm) ?
2608 pte_alloc_kernel_track(pmd, addr, mask) :
2609 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2610 if (!pte)
2611 return -ENOMEM;
2612 } else {
2613 mapped_pte = pte = (mm == &init_mm) ?
2614 pte_offset_kernel(pmd, addr) :
2615 pte_offset_map_lock(mm, pmd, addr, &ptl);
2616 }
2617
2618 BUG_ON(pmd_huge(*pmd));
2619
2620 arch_enter_lazy_mmu_mode();
2621
2622 if (fn) {
2623 do {
2624 if (create || !pte_none(*pte)) {
2625 err = fn(pte++, addr, data);
2626 if (err)
2627 break;
2628 }
2629 } while (addr += PAGE_SIZE, addr != end);
2630 }
2631 *mask |= PGTBL_PTE_MODIFIED;
2632
2633 arch_leave_lazy_mmu_mode();
2634
2635 if (mm != &init_mm)
2636 pte_unmap_unlock(mapped_pte, ptl);
2637 return err;
2638}
2639
2640static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2641 unsigned long addr, unsigned long end,
2642 pte_fn_t fn, void *data, bool create,
2643 pgtbl_mod_mask *mask)
2644{
2645 pmd_t *pmd;
2646 unsigned long next;
2647 int err = 0;
2648
2649 BUG_ON(pud_huge(*pud));
2650
2651 if (create) {
2652 pmd = pmd_alloc_track(mm, pud, addr, mask);
2653 if (!pmd)
2654 return -ENOMEM;
2655 } else {
2656 pmd = pmd_offset(pud, addr);
2657 }
2658 do {
2659 next = pmd_addr_end(addr, end);
2660 if (pmd_none(*pmd) && !create)
2661 continue;
2662 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2663 return -EINVAL;
2664 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2665 if (!create)
2666 continue;
2667 pmd_clear_bad(pmd);
2668 }
2669 err = apply_to_pte_range(mm, pmd, addr, next,
2670 fn, data, create, mask);
2671 if (err)
2672 break;
2673 } while (pmd++, addr = next, addr != end);
2674
2675 return err;
2676}
2677
2678static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2679 unsigned long addr, unsigned long end,
2680 pte_fn_t fn, void *data, bool create,
2681 pgtbl_mod_mask *mask)
2682{
2683 pud_t *pud;
2684 unsigned long next;
2685 int err = 0;
2686
2687 if (create) {
2688 pud = pud_alloc_track(mm, p4d, addr, mask);
2689 if (!pud)
2690 return -ENOMEM;
2691 } else {
2692 pud = pud_offset(p4d, addr);
2693 }
2694 do {
2695 next = pud_addr_end(addr, end);
2696 if (pud_none(*pud) && !create)
2697 continue;
2698 if (WARN_ON_ONCE(pud_leaf(*pud)))
2699 return -EINVAL;
2700 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2701 if (!create)
2702 continue;
2703 pud_clear_bad(pud);
2704 }
2705 err = apply_to_pmd_range(mm, pud, addr, next,
2706 fn, data, create, mask);
2707 if (err)
2708 break;
2709 } while (pud++, addr = next, addr != end);
2710
2711 return err;
2712}
2713
2714static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2715 unsigned long addr, unsigned long end,
2716 pte_fn_t fn, void *data, bool create,
2717 pgtbl_mod_mask *mask)
2718{
2719 p4d_t *p4d;
2720 unsigned long next;
2721 int err = 0;
2722
2723 if (create) {
2724 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2725 if (!p4d)
2726 return -ENOMEM;
2727 } else {
2728 p4d = p4d_offset(pgd, addr);
2729 }
2730 do {
2731 next = p4d_addr_end(addr, end);
2732 if (p4d_none(*p4d) && !create)
2733 continue;
2734 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2735 return -EINVAL;
2736 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2737 if (!create)
2738 continue;
2739 p4d_clear_bad(p4d);
2740 }
2741 err = apply_to_pud_range(mm, p4d, addr, next,
2742 fn, data, create, mask);
2743 if (err)
2744 break;
2745 } while (p4d++, addr = next, addr != end);
2746
2747 return err;
2748}
2749
2750static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751 unsigned long size, pte_fn_t fn,
2752 void *data, bool create)
2753{
2754 pgd_t *pgd;
2755 unsigned long start = addr, next;
2756 unsigned long end = addr + size;
2757 pgtbl_mod_mask mask = 0;
2758 int err = 0;
2759
2760 if (WARN_ON(addr >= end))
2761 return -EINVAL;
2762
2763 pgd = pgd_offset(mm, addr);
2764 do {
2765 next = pgd_addr_end(addr, end);
2766 if (pgd_none(*pgd) && !create)
2767 continue;
2768 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2769 return -EINVAL;
2770 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2771 if (!create)
2772 continue;
2773 pgd_clear_bad(pgd);
2774 }
2775 err = apply_to_p4d_range(mm, pgd, addr, next,
2776 fn, data, create, &mask);
2777 if (err)
2778 break;
2779 } while (pgd++, addr = next, addr != end);
2780
2781 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2782 arch_sync_kernel_mappings(start, start + size);
2783
2784 return err;
2785}
2786
2787/*
2788 * Scan a region of virtual memory, filling in page tables as necessary
2789 * and calling a provided function on each leaf page table.
2790 */
2791int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2792 unsigned long size, pte_fn_t fn, void *data)
2793{
2794 return __apply_to_page_range(mm, addr, size, fn, data, true);
2795}
2796EXPORT_SYMBOL_GPL(apply_to_page_range);
2797
2798/*
2799 * Scan a region of virtual memory, calling a provided function on
2800 * each leaf page table where it exists.
2801 *
2802 * Unlike apply_to_page_range, this does _not_ fill in page tables
2803 * where they are absent.
2804 */
2805int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2806 unsigned long size, pte_fn_t fn, void *data)
2807{
2808 return __apply_to_page_range(mm, addr, size, fn, data, false);
2809}
2810EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2811
2812/*
2813 * handle_pte_fault chooses page fault handler according to an entry which was
2814 * read non-atomically. Before making any commitment, on those architectures
2815 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2816 * parts, do_swap_page must check under lock before unmapping the pte and
2817 * proceeding (but do_wp_page is only called after already making such a check;
2818 * and do_anonymous_page can safely check later on).
2819 */
2820static inline int pte_unmap_same(struct vm_fault *vmf)
2821{
2822 int same = 1;
2823#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2824 if (sizeof(pte_t) > sizeof(unsigned long)) {
2825 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2826 spin_lock(ptl);
2827 same = pte_same(*vmf->pte, vmf->orig_pte);
2828 spin_unlock(ptl);
2829 }
2830#endif
2831 pte_unmap(vmf->pte);
2832 vmf->pte = NULL;
2833 return same;
2834}
2835
2836static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2837 struct vm_fault *vmf)
2838{
2839 bool ret;
2840 void *kaddr;
2841 void __user *uaddr;
2842 bool locked = false;
2843 struct vm_area_struct *vma = vmf->vma;
2844 struct mm_struct *mm = vma->vm_mm;
2845 unsigned long addr = vmf->address;
2846
2847 if (likely(src)) {
2848 copy_user_highpage(dst, src, addr, vma);
2849 return true;
2850 }
2851
2852 /*
2853 * If the source page was a PFN mapping, we don't have
2854 * a "struct page" for it. We do a best-effort copy by
2855 * just copying from the original user address. If that
2856 * fails, we just zero-fill it. Live with it.
2857 */
2858 kaddr = kmap_atomic(dst);
2859 uaddr = (void __user *)(addr & PAGE_MASK);
2860
2861 /*
2862 * On architectures with software "accessed" bits, we would
2863 * take a double page fault, so mark it accessed here.
2864 */
2865 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2866 pte_t entry;
2867
2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2869 locked = true;
2870 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2871 /*
2872 * Other thread has already handled the fault
2873 * and update local tlb only
2874 */
2875 update_mmu_tlb(vma, addr, vmf->pte);
2876 ret = false;
2877 goto pte_unlock;
2878 }
2879
2880 entry = pte_mkyoung(vmf->orig_pte);
2881 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2882 update_mmu_cache(vma, addr, vmf->pte);
2883 }
2884
2885 /*
2886 * This really shouldn't fail, because the page is there
2887 * in the page tables. But it might just be unreadable,
2888 * in which case we just give up and fill the result with
2889 * zeroes.
2890 */
2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2892 if (locked)
2893 goto warn;
2894
2895 /* Re-validate under PTL if the page is still mapped */
2896 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2897 locked = true;
2898 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2899 /* The PTE changed under us, update local tlb */
2900 update_mmu_tlb(vma, addr, vmf->pte);
2901 ret = false;
2902 goto pte_unlock;
2903 }
2904
2905 /*
2906 * The same page can be mapped back since last copy attempt.
2907 * Try to copy again under PTL.
2908 */
2909 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2910 /*
2911 * Give a warn in case there can be some obscure
2912 * use-case
2913 */
2914warn:
2915 WARN_ON_ONCE(1);
2916 clear_page(kaddr);
2917 }
2918 }
2919
2920 ret = true;
2921
2922pte_unlock:
2923 if (locked)
2924 pte_unmap_unlock(vmf->pte, vmf->ptl);
2925 kunmap_atomic(kaddr);
2926 flush_dcache_page(dst);
2927
2928 return ret;
2929}
2930
2931static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2932{
2933 struct file *vm_file = vma->vm_file;
2934
2935 if (vm_file)
2936 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2937
2938 /*
2939 * Special mappings (e.g. VDSO) do not have any file so fake
2940 * a default GFP_KERNEL for them.
2941 */
2942 return GFP_KERNEL;
2943}
2944
2945/*
2946 * Notify the address space that the page is about to become writable so that
2947 * it can prohibit this or wait for the page to get into an appropriate state.
2948 *
2949 * We do this without the lock held, so that it can sleep if it needs to.
2950 */
2951static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2952{
2953 vm_fault_t ret;
2954 struct page *page = vmf->page;
2955 unsigned int old_flags = vmf->flags;
2956
2957 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2958
2959 if (vmf->vma->vm_file &&
2960 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2961 return VM_FAULT_SIGBUS;
2962
2963 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2964 /* Restore original flags so that caller is not surprised */
2965 vmf->flags = old_flags;
2966 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2967 return ret;
2968 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2969 lock_page(page);
2970 if (!page->mapping) {
2971 unlock_page(page);
2972 return 0; /* retry */
2973 }
2974 ret |= VM_FAULT_LOCKED;
2975 } else
2976 VM_BUG_ON_PAGE(!PageLocked(page), page);
2977 return ret;
2978}
2979
2980/*
2981 * Handle dirtying of a page in shared file mapping on a write fault.
2982 *
2983 * The function expects the page to be locked and unlocks it.
2984 */
2985static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2986{
2987 struct vm_area_struct *vma = vmf->vma;
2988 struct address_space *mapping;
2989 struct page *page = vmf->page;
2990 bool dirtied;
2991 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2992
2993 dirtied = set_page_dirty(page);
2994 VM_BUG_ON_PAGE(PageAnon(page), page);
2995 /*
2996 * Take a local copy of the address_space - page.mapping may be zeroed
2997 * by truncate after unlock_page(). The address_space itself remains
2998 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2999 * release semantics to prevent the compiler from undoing this copying.
3000 */
3001 mapping = page_rmapping(page);
3002 unlock_page(page);
3003
3004 if (!page_mkwrite)
3005 file_update_time(vma->vm_file);
3006
3007 /*
3008 * Throttle page dirtying rate down to writeback speed.
3009 *
3010 * mapping may be NULL here because some device drivers do not
3011 * set page.mapping but still dirty their pages
3012 *
3013 * Drop the mmap_lock before waiting on IO, if we can. The file
3014 * is pinning the mapping, as per above.
3015 */
3016 if ((dirtied || page_mkwrite) && mapping) {
3017 struct file *fpin;
3018
3019 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3020 balance_dirty_pages_ratelimited(mapping);
3021 if (fpin) {
3022 fput(fpin);
3023 return VM_FAULT_RETRY;
3024 }
3025 }
3026
3027 return 0;
3028}
3029
3030/*
3031 * Handle write page faults for pages that can be reused in the current vma
3032 *
3033 * This can happen either due to the mapping being with the VM_SHARED flag,
3034 * or due to us being the last reference standing to the page. In either
3035 * case, all we need to do here is to mark the page as writable and update
3036 * any related book-keeping.
3037 */
3038static inline void wp_page_reuse(struct vm_fault *vmf)
3039 __releases(vmf->ptl)
3040{
3041 struct vm_area_struct *vma = vmf->vma;
3042 struct page *page = vmf->page;
3043 pte_t entry;
3044
3045 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3046 VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page));
3047
3048 /*
3049 * Clear the pages cpupid information as the existing
3050 * information potentially belongs to a now completely
3051 * unrelated process.
3052 */
3053 if (page)
3054 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3055
3056 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3057 entry = pte_mkyoung(vmf->orig_pte);
3058 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3059 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3060 update_mmu_cache(vma, vmf->address, vmf->pte);
3061 pte_unmap_unlock(vmf->pte, vmf->ptl);
3062 count_vm_event(PGREUSE);
3063}
3064
3065/*
3066 * Handle the case of a page which we actually need to copy to a new page,
3067 * either due to COW or unsharing.
3068 *
3069 * Called with mmap_lock locked and the old page referenced, but
3070 * without the ptl held.
3071 *
3072 * High level logic flow:
3073 *
3074 * - Allocate a page, copy the content of the old page to the new one.
3075 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3076 * - Take the PTL. If the pte changed, bail out and release the allocated page
3077 * - If the pte is still the way we remember it, update the page table and all
3078 * relevant references. This includes dropping the reference the page-table
3079 * held to the old page, as well as updating the rmap.
3080 * - In any case, unlock the PTL and drop the reference we took to the old page.
3081 */
3082static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3083{
3084 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3085 struct vm_area_struct *vma = vmf->vma;
3086 struct mm_struct *mm = vma->vm_mm;
3087 struct page *old_page = vmf->page;
3088 struct page *new_page = NULL;
3089 pte_t entry;
3090 int page_copied = 0;
3091 struct mmu_notifier_range range;
3092
3093 delayacct_wpcopy_start();
3094
3095 if (unlikely(anon_vma_prepare(vma)))
3096 goto oom;
3097
3098 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3099 new_page = alloc_zeroed_user_highpage_movable(vma,
3100 vmf->address);
3101 if (!new_page)
3102 goto oom;
3103 } else {
3104 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3105 vmf->address);
3106 if (!new_page)
3107 goto oom;
3108
3109 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3110 /*
3111 * COW failed, if the fault was solved by other,
3112 * it's fine. If not, userspace would re-fault on
3113 * the same address and we will handle the fault
3114 * from the second attempt.
3115 */
3116 put_page(new_page);
3117 if (old_page)
3118 put_page(old_page);
3119
3120 delayacct_wpcopy_end();
3121 return 0;
3122 }
3123 }
3124
3125 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3126 goto oom_free_new;
3127 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3128
3129 __SetPageUptodate(new_page);
3130
3131 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3132 vmf->address & PAGE_MASK,
3133 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3134 mmu_notifier_invalidate_range_start(&range);
3135
3136 /*
3137 * Re-check the pte - we dropped the lock
3138 */
3139 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3140 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3141 if (old_page) {
3142 if (!PageAnon(old_page)) {
3143 dec_mm_counter_fast(mm,
3144 mm_counter_file(old_page));
3145 inc_mm_counter_fast(mm, MM_ANONPAGES);
3146 }
3147 } else {
3148 inc_mm_counter_fast(mm, MM_ANONPAGES);
3149 }
3150 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3151 entry = mk_pte(new_page, vma->vm_page_prot);
3152 entry = pte_sw_mkyoung(entry);
3153 if (unlikely(unshare)) {
3154 if (pte_soft_dirty(vmf->orig_pte))
3155 entry = pte_mksoft_dirty(entry);
3156 if (pte_uffd_wp(vmf->orig_pte))
3157 entry = pte_mkuffd_wp(entry);
3158 } else {
3159 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3160 }
3161
3162 /*
3163 * Clear the pte entry and flush it first, before updating the
3164 * pte with the new entry, to keep TLBs on different CPUs in
3165 * sync. This code used to set the new PTE then flush TLBs, but
3166 * that left a window where the new PTE could be loaded into
3167 * some TLBs while the old PTE remains in others.
3168 */
3169 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3170 page_add_new_anon_rmap(new_page, vma, vmf->address);
3171 lru_cache_add_inactive_or_unevictable(new_page, vma);
3172 /*
3173 * We call the notify macro here because, when using secondary
3174 * mmu page tables (such as kvm shadow page tables), we want the
3175 * new page to be mapped directly into the secondary page table.
3176 */
3177 BUG_ON(unshare && pte_write(entry));
3178 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3179 update_mmu_cache(vma, vmf->address, vmf->pte);
3180 if (old_page) {
3181 /*
3182 * Only after switching the pte to the new page may
3183 * we remove the mapcount here. Otherwise another
3184 * process may come and find the rmap count decremented
3185 * before the pte is switched to the new page, and
3186 * "reuse" the old page writing into it while our pte
3187 * here still points into it and can be read by other
3188 * threads.
3189 *
3190 * The critical issue is to order this
3191 * page_remove_rmap with the ptp_clear_flush above.
3192 * Those stores are ordered by (if nothing else,)
3193 * the barrier present in the atomic_add_negative
3194 * in page_remove_rmap.
3195 *
3196 * Then the TLB flush in ptep_clear_flush ensures that
3197 * no process can access the old page before the
3198 * decremented mapcount is visible. And the old page
3199 * cannot be reused until after the decremented
3200 * mapcount is visible. So transitively, TLBs to
3201 * old page will be flushed before it can be reused.
3202 */
3203 page_remove_rmap(old_page, vma, false);
3204 }
3205
3206 /* Free the old page.. */
3207 new_page = old_page;
3208 page_copied = 1;
3209 } else {
3210 update_mmu_tlb(vma, vmf->address, vmf->pte);
3211 }
3212
3213 if (new_page)
3214 put_page(new_page);
3215
3216 pte_unmap_unlock(vmf->pte, vmf->ptl);
3217 /*
3218 * No need to double call mmu_notifier->invalidate_range() callback as
3219 * the above ptep_clear_flush_notify() did already call it.
3220 */
3221 mmu_notifier_invalidate_range_only_end(&range);
3222 if (old_page) {
3223 if (page_copied)
3224 free_swap_cache(old_page);
3225 put_page(old_page);
3226 }
3227
3228 delayacct_wpcopy_end();
3229 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3230oom_free_new:
3231 put_page(new_page);
3232oom:
3233 if (old_page)
3234 put_page(old_page);
3235
3236 delayacct_wpcopy_end();
3237 return VM_FAULT_OOM;
3238}
3239
3240/**
3241 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3242 * writeable once the page is prepared
3243 *
3244 * @vmf: structure describing the fault
3245 *
3246 * This function handles all that is needed to finish a write page fault in a
3247 * shared mapping due to PTE being read-only once the mapped page is prepared.
3248 * It handles locking of PTE and modifying it.
3249 *
3250 * The function expects the page to be locked or other protection against
3251 * concurrent faults / writeback (such as DAX radix tree locks).
3252 *
3253 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3254 * we acquired PTE lock.
3255 */
3256vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3257{
3258 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3259 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3260 &vmf->ptl);
3261 /*
3262 * We might have raced with another page fault while we released the
3263 * pte_offset_map_lock.
3264 */
3265 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3266 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3267 pte_unmap_unlock(vmf->pte, vmf->ptl);
3268 return VM_FAULT_NOPAGE;
3269 }
3270 wp_page_reuse(vmf);
3271 return 0;
3272}
3273
3274/*
3275 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3276 * mapping
3277 */
3278static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3279{
3280 struct vm_area_struct *vma = vmf->vma;
3281
3282 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3283 vm_fault_t ret;
3284
3285 pte_unmap_unlock(vmf->pte, vmf->ptl);
3286 vmf->flags |= FAULT_FLAG_MKWRITE;
3287 ret = vma->vm_ops->pfn_mkwrite(vmf);
3288 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3289 return ret;
3290 return finish_mkwrite_fault(vmf);
3291 }
3292 wp_page_reuse(vmf);
3293 return VM_FAULT_WRITE;
3294}
3295
3296static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3297 __releases(vmf->ptl)
3298{
3299 struct vm_area_struct *vma = vmf->vma;
3300 vm_fault_t ret = VM_FAULT_WRITE;
3301
3302 get_page(vmf->page);
3303
3304 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3305 vm_fault_t tmp;
3306
3307 pte_unmap_unlock(vmf->pte, vmf->ptl);
3308 tmp = do_page_mkwrite(vmf);
3309 if (unlikely(!tmp || (tmp &
3310 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3311 put_page(vmf->page);
3312 return tmp;
3313 }
3314 tmp = finish_mkwrite_fault(vmf);
3315 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3316 unlock_page(vmf->page);
3317 put_page(vmf->page);
3318 return tmp;
3319 }
3320 } else {
3321 wp_page_reuse(vmf);
3322 lock_page(vmf->page);
3323 }
3324 ret |= fault_dirty_shared_page(vmf);
3325 put_page(vmf->page);
3326
3327 return ret;
3328}
3329
3330/*
3331 * This routine handles present pages, when
3332 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3333 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3334 * (FAULT_FLAG_UNSHARE)
3335 *
3336 * It is done by copying the page to a new address and decrementing the
3337 * shared-page counter for the old page.
3338 *
3339 * Note that this routine assumes that the protection checks have been
3340 * done by the caller (the low-level page fault routine in most cases).
3341 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3342 * done any necessary COW.
3343 *
3344 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3345 * though the page will change only once the write actually happens. This
3346 * avoids a few races, and potentially makes it more efficient.
3347 *
3348 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3349 * but allow concurrent faults), with pte both mapped and locked.
3350 * We return with mmap_lock still held, but pte unmapped and unlocked.
3351 */
3352static vm_fault_t do_wp_page(struct vm_fault *vmf)
3353 __releases(vmf->ptl)
3354{
3355 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3356 struct vm_area_struct *vma = vmf->vma;
3357
3358 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3359 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3360
3361 if (likely(!unshare)) {
3362 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3363 pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 return handle_userfault(vmf, VM_UFFD_WP);
3365 }
3366
3367 /*
3368 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3369 * is flushed in this case before copying.
3370 */
3371 if (unlikely(userfaultfd_wp(vmf->vma) &&
3372 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3373 flush_tlb_page(vmf->vma, vmf->address);
3374 }
3375
3376 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3377 if (!vmf->page) {
3378 if (unlikely(unshare)) {
3379 /* No anonymous page -> nothing to do. */
3380 pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 return 0;
3382 }
3383
3384 /*
3385 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3386 * VM_PFNMAP VMA.
3387 *
3388 * We should not cow pages in a shared writeable mapping.
3389 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3390 */
3391 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3392 (VM_WRITE|VM_SHARED))
3393 return wp_pfn_shared(vmf);
3394
3395 pte_unmap_unlock(vmf->pte, vmf->ptl);
3396 return wp_page_copy(vmf);
3397 }
3398
3399 /*
3400 * Take out anonymous pages first, anonymous shared vmas are
3401 * not dirty accountable.
3402 */
3403 if (PageAnon(vmf->page)) {
3404 struct page *page = vmf->page;
3405
3406 /*
3407 * If the page is exclusive to this process we must reuse the
3408 * page without further checks.
3409 */
3410 if (PageAnonExclusive(page))
3411 goto reuse;
3412
3413 /*
3414 * We have to verify under page lock: these early checks are
3415 * just an optimization to avoid locking the page and freeing
3416 * the swapcache if there is little hope that we can reuse.
3417 *
3418 * PageKsm() doesn't necessarily raise the page refcount.
3419 */
3420 if (PageKsm(page) || page_count(page) > 3)
3421 goto copy;
3422 if (!PageLRU(page))
3423 /*
3424 * Note: We cannot easily detect+handle references from
3425 * remote LRU pagevecs or references to PageLRU() pages.
3426 */
3427 lru_add_drain();
3428 if (page_count(page) > 1 + PageSwapCache(page))
3429 goto copy;
3430 if (!trylock_page(page))
3431 goto copy;
3432 if (PageSwapCache(page))
3433 try_to_free_swap(page);
3434 if (PageKsm(page) || page_count(page) != 1) {
3435 unlock_page(page);
3436 goto copy;
3437 }
3438 /*
3439 * Ok, we've got the only page reference from our mapping
3440 * and the page is locked, it's dark out, and we're wearing
3441 * sunglasses. Hit it.
3442 */
3443 page_move_anon_rmap(page, vma);
3444 unlock_page(page);
3445reuse:
3446 if (unlikely(unshare)) {
3447 pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 return 0;
3449 }
3450 wp_page_reuse(vmf);
3451 return VM_FAULT_WRITE;
3452 } else if (unshare) {
3453 /* No anonymous page -> nothing to do. */
3454 pte_unmap_unlock(vmf->pte, vmf->ptl);
3455 return 0;
3456 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3457 (VM_WRITE|VM_SHARED))) {
3458 return wp_page_shared(vmf);
3459 }
3460copy:
3461 /*
3462 * Ok, we need to copy. Oh, well..
3463 */
3464 get_page(vmf->page);
3465
3466 pte_unmap_unlock(vmf->pte, vmf->ptl);
3467#ifdef CONFIG_KSM
3468 if (PageKsm(vmf->page))
3469 count_vm_event(COW_KSM);
3470#endif
3471 return wp_page_copy(vmf);
3472}
3473
3474static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3475 unsigned long start_addr, unsigned long end_addr,
3476 struct zap_details *details)
3477{
3478 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3479}
3480
3481static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3482 pgoff_t first_index,
3483 pgoff_t last_index,
3484 struct zap_details *details)
3485{
3486 struct vm_area_struct *vma;
3487 pgoff_t vba, vea, zba, zea;
3488
3489 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3490 vba = vma->vm_pgoff;
3491 vea = vba + vma_pages(vma) - 1;
3492 zba = max(first_index, vba);
3493 zea = min(last_index, vea);
3494
3495 unmap_mapping_range_vma(vma,
3496 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3497 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3498 details);
3499 }
3500}
3501
3502/**
3503 * unmap_mapping_folio() - Unmap single folio from processes.
3504 * @folio: The locked folio to be unmapped.
3505 *
3506 * Unmap this folio from any userspace process which still has it mmaped.
3507 * Typically, for efficiency, the range of nearby pages has already been
3508 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3509 * truncation or invalidation holds the lock on a folio, it may find that
3510 * the page has been remapped again: and then uses unmap_mapping_folio()
3511 * to unmap it finally.
3512 */
3513void unmap_mapping_folio(struct folio *folio)
3514{
3515 struct address_space *mapping = folio->mapping;
3516 struct zap_details details = { };
3517 pgoff_t first_index;
3518 pgoff_t last_index;
3519
3520 VM_BUG_ON(!folio_test_locked(folio));
3521
3522 first_index = folio->index;
3523 last_index = folio->index + folio_nr_pages(folio) - 1;
3524
3525 details.even_cows = false;
3526 details.single_folio = folio;
3527 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3528
3529 i_mmap_lock_read(mapping);
3530 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3531 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3532 last_index, &details);
3533 i_mmap_unlock_read(mapping);
3534}
3535
3536/**
3537 * unmap_mapping_pages() - Unmap pages from processes.
3538 * @mapping: The address space containing pages to be unmapped.
3539 * @start: Index of first page to be unmapped.
3540 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3541 * @even_cows: Whether to unmap even private COWed pages.
3542 *
3543 * Unmap the pages in this address space from any userspace process which
3544 * has them mmaped. Generally, you want to remove COWed pages as well when
3545 * a file is being truncated, but not when invalidating pages from the page
3546 * cache.
3547 */
3548void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3549 pgoff_t nr, bool even_cows)
3550{
3551 struct zap_details details = { };
3552 pgoff_t first_index = start;
3553 pgoff_t last_index = start + nr - 1;
3554
3555 details.even_cows = even_cows;
3556 if (last_index < first_index)
3557 last_index = ULONG_MAX;
3558
3559 i_mmap_lock_read(mapping);
3560 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3561 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3562 last_index, &details);
3563 i_mmap_unlock_read(mapping);
3564}
3565EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3566
3567/**
3568 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3569 * address_space corresponding to the specified byte range in the underlying
3570 * file.
3571 *
3572 * @mapping: the address space containing mmaps to be unmapped.
3573 * @holebegin: byte in first page to unmap, relative to the start of
3574 * the underlying file. This will be rounded down to a PAGE_SIZE
3575 * boundary. Note that this is different from truncate_pagecache(), which
3576 * must keep the partial page. In contrast, we must get rid of
3577 * partial pages.
3578 * @holelen: size of prospective hole in bytes. This will be rounded
3579 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3580 * end of the file.
3581 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3582 * but 0 when invalidating pagecache, don't throw away private data.
3583 */
3584void unmap_mapping_range(struct address_space *mapping,
3585 loff_t const holebegin, loff_t const holelen, int even_cows)
3586{
3587 pgoff_t hba = holebegin >> PAGE_SHIFT;
3588 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3589
3590 /* Check for overflow. */
3591 if (sizeof(holelen) > sizeof(hlen)) {
3592 long long holeend =
3593 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3594 if (holeend & ~(long long)ULONG_MAX)
3595 hlen = ULONG_MAX - hba + 1;
3596 }
3597
3598 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3599}
3600EXPORT_SYMBOL(unmap_mapping_range);
3601
3602/*
3603 * Restore a potential device exclusive pte to a working pte entry
3604 */
3605static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3606{
3607 struct page *page = vmf->page;
3608 struct vm_area_struct *vma = vmf->vma;
3609 struct mmu_notifier_range range;
3610
3611 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3612 return VM_FAULT_RETRY;
3613 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3614 vma->vm_mm, vmf->address & PAGE_MASK,
3615 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3616 mmu_notifier_invalidate_range_start(&range);
3617
3618 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3619 &vmf->ptl);
3620 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3621 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3622
3623 pte_unmap_unlock(vmf->pte, vmf->ptl);
3624 unlock_page(page);
3625
3626 mmu_notifier_invalidate_range_end(&range);
3627 return 0;
3628}
3629
3630static inline bool should_try_to_free_swap(struct page *page,
3631 struct vm_area_struct *vma,
3632 unsigned int fault_flags)
3633{
3634 if (!PageSwapCache(page))
3635 return false;
3636 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3637 PageMlocked(page))
3638 return true;
3639 /*
3640 * If we want to map a page that's in the swapcache writable, we
3641 * have to detect via the refcount if we're really the exclusive
3642 * user. Try freeing the swapcache to get rid of the swapcache
3643 * reference only in case it's likely that we'll be the exlusive user.
3644 */
3645 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3646 page_count(page) == 2;
3647}
3648
3649static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3650{
3651 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3652 vmf->address, &vmf->ptl);
3653 /*
3654 * Be careful so that we will only recover a special uffd-wp pte into a
3655 * none pte. Otherwise it means the pte could have changed, so retry.
3656 */
3657 if (is_pte_marker(*vmf->pte))
3658 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3659 pte_unmap_unlock(vmf->pte, vmf->ptl);
3660 return 0;
3661}
3662
3663/*
3664 * This is actually a page-missing access, but with uffd-wp special pte
3665 * installed. It means this pte was wr-protected before being unmapped.
3666 */
3667static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3668{
3669 /*
3670 * Just in case there're leftover special ptes even after the region
3671 * got unregistered - we can simply clear them. We can also do that
3672 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3673 * ranges, but it should be more efficient to be done lazily here.
3674 */
3675 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3676 return pte_marker_clear(vmf);
3677
3678 /* do_fault() can handle pte markers too like none pte */
3679 return do_fault(vmf);
3680}
3681
3682static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3683{
3684 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3685 unsigned long marker = pte_marker_get(entry);
3686
3687 /*
3688 * PTE markers should always be with file-backed memories, and the
3689 * marker should never be empty. If anything weird happened, the best
3690 * thing to do is to kill the process along with its mm.
3691 */
3692 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3693 return VM_FAULT_SIGBUS;
3694
3695 if (pte_marker_entry_uffd_wp(entry))
3696 return pte_marker_handle_uffd_wp(vmf);
3697
3698 /* This is an unknown pte marker */
3699 return VM_FAULT_SIGBUS;
3700}
3701
3702/*
3703 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3704 * but allow concurrent faults), and pte mapped but not yet locked.
3705 * We return with pte unmapped and unlocked.
3706 *
3707 * We return with the mmap_lock locked or unlocked in the same cases
3708 * as does filemap_fault().
3709 */
3710vm_fault_t do_swap_page(struct vm_fault *vmf)
3711{
3712 struct vm_area_struct *vma = vmf->vma;
3713 struct page *page = NULL, *swapcache;
3714 struct swap_info_struct *si = NULL;
3715 rmap_t rmap_flags = RMAP_NONE;
3716 bool exclusive = false;
3717 swp_entry_t entry;
3718 pte_t pte;
3719 int locked;
3720 vm_fault_t ret = 0;
3721 void *shadow = NULL;
3722
3723 if (!pte_unmap_same(vmf))
3724 goto out;
3725
3726 entry = pte_to_swp_entry(vmf->orig_pte);
3727 if (unlikely(non_swap_entry(entry))) {
3728 if (is_migration_entry(entry)) {
3729 migration_entry_wait(vma->vm_mm, vmf->pmd,
3730 vmf->address);
3731 } else if (is_device_exclusive_entry(entry)) {
3732 vmf->page = pfn_swap_entry_to_page(entry);
3733 ret = remove_device_exclusive_entry(vmf);
3734 } else if (is_device_private_entry(entry)) {
3735 vmf->page = pfn_swap_entry_to_page(entry);
3736 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3737 } else if (is_hwpoison_entry(entry)) {
3738 ret = VM_FAULT_HWPOISON;
3739 } else if (is_swapin_error_entry(entry)) {
3740 ret = VM_FAULT_SIGBUS;
3741 } else if (is_pte_marker_entry(entry)) {
3742 ret = handle_pte_marker(vmf);
3743 } else {
3744 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3745 ret = VM_FAULT_SIGBUS;
3746 }
3747 goto out;
3748 }
3749
3750 /* Prevent swapoff from happening to us. */
3751 si = get_swap_device(entry);
3752 if (unlikely(!si))
3753 goto out;
3754
3755 page = lookup_swap_cache(entry, vma, vmf->address);
3756 swapcache = page;
3757
3758 if (!page) {
3759 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3760 __swap_count(entry) == 1) {
3761 /* skip swapcache */
3762 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3763 vmf->address);
3764 if (page) {
3765 __SetPageLocked(page);
3766 __SetPageSwapBacked(page);
3767
3768 if (mem_cgroup_swapin_charge_page(page,
3769 vma->vm_mm, GFP_KERNEL, entry)) {
3770 ret = VM_FAULT_OOM;
3771 goto out_page;
3772 }
3773 mem_cgroup_swapin_uncharge_swap(entry);
3774
3775 shadow = get_shadow_from_swap_cache(entry);
3776 if (shadow)
3777 workingset_refault(page_folio(page),
3778 shadow);
3779
3780 lru_cache_add(page);
3781
3782 /* To provide entry to swap_readpage() */
3783 set_page_private(page, entry.val);
3784 swap_readpage(page, true, NULL);
3785 set_page_private(page, 0);
3786 }
3787 } else {
3788 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3789 vmf);
3790 swapcache = page;
3791 }
3792
3793 if (!page) {
3794 /*
3795 * Back out if somebody else faulted in this pte
3796 * while we released the pte lock.
3797 */
3798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3799 vmf->address, &vmf->ptl);
3800 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3801 ret = VM_FAULT_OOM;
3802 goto unlock;
3803 }
3804
3805 /* Had to read the page from swap area: Major fault */
3806 ret = VM_FAULT_MAJOR;
3807 count_vm_event(PGMAJFAULT);
3808 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3809 } else if (PageHWPoison(page)) {
3810 /*
3811 * hwpoisoned dirty swapcache pages are kept for killing
3812 * owner processes (which may be unknown at hwpoison time)
3813 */
3814 ret = VM_FAULT_HWPOISON;
3815 goto out_release;
3816 }
3817
3818 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3819
3820 if (!locked) {
3821 ret |= VM_FAULT_RETRY;
3822 goto out_release;
3823 }
3824
3825 if (swapcache) {
3826 /*
3827 * Make sure try_to_free_swap or swapoff did not release the
3828 * swapcache from under us. The page pin, and pte_same test
3829 * below, are not enough to exclude that. Even if it is still
3830 * swapcache, we need to check that the page's swap has not
3831 * changed.
3832 */
3833 if (unlikely(!PageSwapCache(page) ||
3834 page_private(page) != entry.val))
3835 goto out_page;
3836
3837 /*
3838 * KSM sometimes has to copy on read faults, for example, if
3839 * page->index of !PageKSM() pages would be nonlinear inside the
3840 * anon VMA -- PageKSM() is lost on actual swapout.
3841 */
3842 page = ksm_might_need_to_copy(page, vma, vmf->address);
3843 if (unlikely(!page)) {
3844 ret = VM_FAULT_OOM;
3845 page = swapcache;
3846 goto out_page;
3847 }
3848
3849 /*
3850 * If we want to map a page that's in the swapcache writable, we
3851 * have to detect via the refcount if we're really the exclusive
3852 * owner. Try removing the extra reference from the local LRU
3853 * pagevecs if required.
3854 */
3855 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3856 !PageKsm(page) && !PageLRU(page))
3857 lru_add_drain();
3858 }
3859
3860 cgroup_throttle_swaprate(page, GFP_KERNEL);
3861
3862 /*
3863 * Back out if somebody else already faulted in this pte.
3864 */
3865 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3866 &vmf->ptl);
3867 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3868 goto out_nomap;
3869
3870 if (unlikely(!PageUptodate(page))) {
3871 ret = VM_FAULT_SIGBUS;
3872 goto out_nomap;
3873 }
3874
3875 /*
3876 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3877 * must never point at an anonymous page in the swapcache that is
3878 * PG_anon_exclusive. Sanity check that this holds and especially, that
3879 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3880 * check after taking the PT lock and making sure that nobody
3881 * concurrently faulted in this page and set PG_anon_exclusive.
3882 */
3883 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3884 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3885
3886 /*
3887 * Check under PT lock (to protect against concurrent fork() sharing
3888 * the swap entry concurrently) for certainly exclusive pages.
3889 */
3890 if (!PageKsm(page)) {
3891 /*
3892 * Note that pte_swp_exclusive() == false for architectures
3893 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3894 */
3895 exclusive = pte_swp_exclusive(vmf->orig_pte);
3896 if (page != swapcache) {
3897 /*
3898 * We have a fresh page that is not exposed to the
3899 * swapcache -> certainly exclusive.
3900 */
3901 exclusive = true;
3902 } else if (exclusive && PageWriteback(page) &&
3903 data_race(si->flags & SWP_STABLE_WRITES)) {
3904 /*
3905 * This is tricky: not all swap backends support
3906 * concurrent page modifications while under writeback.
3907 *
3908 * So if we stumble over such a page in the swapcache
3909 * we must not set the page exclusive, otherwise we can
3910 * map it writable without further checks and modify it
3911 * while still under writeback.
3912 *
3913 * For these problematic swap backends, simply drop the
3914 * exclusive marker: this is perfectly fine as we start
3915 * writeback only if we fully unmapped the page and
3916 * there are no unexpected references on the page after
3917 * unmapping succeeded. After fully unmapped, no
3918 * further GUP references (FOLL_GET and FOLL_PIN) can
3919 * appear, so dropping the exclusive marker and mapping
3920 * it only R/O is fine.
3921 */
3922 exclusive = false;
3923 }
3924 }
3925
3926 /*
3927 * Remove the swap entry and conditionally try to free up the swapcache.
3928 * We're already holding a reference on the page but haven't mapped it
3929 * yet.
3930 */
3931 swap_free(entry);
3932 if (should_try_to_free_swap(page, vma, vmf->flags))
3933 try_to_free_swap(page);
3934
3935 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3936 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3937 pte = mk_pte(page, vma->vm_page_prot);
3938
3939 /*
3940 * Same logic as in do_wp_page(); however, optimize for pages that are
3941 * certainly not shared either because we just allocated them without
3942 * exposing them to the swapcache or because the swap entry indicates
3943 * exclusivity.
3944 */
3945 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3946 if (vmf->flags & FAULT_FLAG_WRITE) {
3947 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3948 vmf->flags &= ~FAULT_FLAG_WRITE;
3949 ret |= VM_FAULT_WRITE;
3950 }
3951 rmap_flags |= RMAP_EXCLUSIVE;
3952 }
3953 flush_icache_page(vma, page);
3954 if (pte_swp_soft_dirty(vmf->orig_pte))
3955 pte = pte_mksoft_dirty(pte);
3956 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3957 pte = pte_mkuffd_wp(pte);
3958 pte = pte_wrprotect(pte);
3959 }
3960 vmf->orig_pte = pte;
3961
3962 /* ksm created a completely new copy */
3963 if (unlikely(page != swapcache && swapcache)) {
3964 page_add_new_anon_rmap(page, vma, vmf->address);
3965 lru_cache_add_inactive_or_unevictable(page, vma);
3966 } else {
3967 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3968 }
3969
3970 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3971 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3972 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3973
3974 unlock_page(page);
3975 if (page != swapcache && swapcache) {
3976 /*
3977 * Hold the lock to avoid the swap entry to be reused
3978 * until we take the PT lock for the pte_same() check
3979 * (to avoid false positives from pte_same). For
3980 * further safety release the lock after the swap_free
3981 * so that the swap count won't change under a
3982 * parallel locked swapcache.
3983 */
3984 unlock_page(swapcache);
3985 put_page(swapcache);
3986 }
3987
3988 if (vmf->flags & FAULT_FLAG_WRITE) {
3989 ret |= do_wp_page(vmf);
3990 if (ret & VM_FAULT_ERROR)
3991 ret &= VM_FAULT_ERROR;
3992 goto out;
3993 }
3994
3995 /* No need to invalidate - it was non-present before */
3996 update_mmu_cache(vma, vmf->address, vmf->pte);
3997unlock:
3998 pte_unmap_unlock(vmf->pte, vmf->ptl);
3999out:
4000 if (si)
4001 put_swap_device(si);
4002 return ret;
4003out_nomap:
4004 pte_unmap_unlock(vmf->pte, vmf->ptl);
4005out_page:
4006 unlock_page(page);
4007out_release:
4008 put_page(page);
4009 if (page != swapcache && swapcache) {
4010 unlock_page(swapcache);
4011 put_page(swapcache);
4012 }
4013 if (si)
4014 put_swap_device(si);
4015 return ret;
4016}
4017
4018/*
4019 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4020 * but allow concurrent faults), and pte mapped but not yet locked.
4021 * We return with mmap_lock still held, but pte unmapped and unlocked.
4022 */
4023static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4024{
4025 struct vm_area_struct *vma = vmf->vma;
4026 struct page *page;
4027 vm_fault_t ret = 0;
4028 pte_t entry;
4029
4030 /* File mapping without ->vm_ops ? */
4031 if (vma->vm_flags & VM_SHARED)
4032 return VM_FAULT_SIGBUS;
4033
4034 /*
4035 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4036 * pte_offset_map() on pmds where a huge pmd might be created
4037 * from a different thread.
4038 *
4039 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4040 * parallel threads are excluded by other means.
4041 *
4042 * Here we only have mmap_read_lock(mm).
4043 */
4044 if (pte_alloc(vma->vm_mm, vmf->pmd))
4045 return VM_FAULT_OOM;
4046
4047 /* See comment in handle_pte_fault() */
4048 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4049 return 0;
4050
4051 /* Use the zero-page for reads */
4052 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4053 !mm_forbids_zeropage(vma->vm_mm)) {
4054 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4055 vma->vm_page_prot));
4056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4057 vmf->address, &vmf->ptl);
4058 if (!pte_none(*vmf->pte)) {
4059 update_mmu_tlb(vma, vmf->address, vmf->pte);
4060 goto unlock;
4061 }
4062 ret = check_stable_address_space(vma->vm_mm);
4063 if (ret)
4064 goto unlock;
4065 /* Deliver the page fault to userland, check inside PT lock */
4066 if (userfaultfd_missing(vma)) {
4067 pte_unmap_unlock(vmf->pte, vmf->ptl);
4068 return handle_userfault(vmf, VM_UFFD_MISSING);
4069 }
4070 goto setpte;
4071 }
4072
4073 /* Allocate our own private page. */
4074 if (unlikely(anon_vma_prepare(vma)))
4075 goto oom;
4076 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4077 if (!page)
4078 goto oom;
4079
4080 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4081 goto oom_free_page;
4082 cgroup_throttle_swaprate(page, GFP_KERNEL);
4083
4084 /*
4085 * The memory barrier inside __SetPageUptodate makes sure that
4086 * preceding stores to the page contents become visible before
4087 * the set_pte_at() write.
4088 */
4089 __SetPageUptodate(page);
4090
4091 entry = mk_pte(page, vma->vm_page_prot);
4092 entry = pte_sw_mkyoung(entry);
4093 if (vma->vm_flags & VM_WRITE)
4094 entry = pte_mkwrite(pte_mkdirty(entry));
4095
4096 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4097 &vmf->ptl);
4098 if (!pte_none(*vmf->pte)) {
4099 update_mmu_cache(vma, vmf->address, vmf->pte);
4100 goto release;
4101 }
4102
4103 ret = check_stable_address_space(vma->vm_mm);
4104 if (ret)
4105 goto release;
4106
4107 /* Deliver the page fault to userland, check inside PT lock */
4108 if (userfaultfd_missing(vma)) {
4109 pte_unmap_unlock(vmf->pte, vmf->ptl);
4110 put_page(page);
4111 return handle_userfault(vmf, VM_UFFD_MISSING);
4112 }
4113
4114 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4115 page_add_new_anon_rmap(page, vma, vmf->address);
4116 lru_cache_add_inactive_or_unevictable(page, vma);
4117setpte:
4118 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4119
4120 /* No need to invalidate - it was non-present before */
4121 update_mmu_cache(vma, vmf->address, vmf->pte);
4122unlock:
4123 pte_unmap_unlock(vmf->pte, vmf->ptl);
4124 return ret;
4125release:
4126 put_page(page);
4127 goto unlock;
4128oom_free_page:
4129 put_page(page);
4130oom:
4131 return VM_FAULT_OOM;
4132}
4133
4134/*
4135 * The mmap_lock must have been held on entry, and may have been
4136 * released depending on flags and vma->vm_ops->fault() return value.
4137 * See filemap_fault() and __lock_page_retry().
4138 */
4139static vm_fault_t __do_fault(struct vm_fault *vmf)
4140{
4141 struct vm_area_struct *vma = vmf->vma;
4142 vm_fault_t ret;
4143
4144 /*
4145 * Preallocate pte before we take page_lock because this might lead to
4146 * deadlocks for memcg reclaim which waits for pages under writeback:
4147 * lock_page(A)
4148 * SetPageWriteback(A)
4149 * unlock_page(A)
4150 * lock_page(B)
4151 * lock_page(B)
4152 * pte_alloc_one
4153 * shrink_page_list
4154 * wait_on_page_writeback(A)
4155 * SetPageWriteback(B)
4156 * unlock_page(B)
4157 * # flush A, B to clear the writeback
4158 */
4159 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4160 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4161 if (!vmf->prealloc_pte)
4162 return VM_FAULT_OOM;
4163 }
4164
4165 ret = vma->vm_ops->fault(vmf);
4166 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4167 VM_FAULT_DONE_COW)))
4168 return ret;
4169
4170 if (unlikely(PageHWPoison(vmf->page))) {
4171 struct page *page = vmf->page;
4172 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4173 if (ret & VM_FAULT_LOCKED) {
4174 if (page_mapped(page))
4175 unmap_mapping_pages(page_mapping(page),
4176 page->index, 1, false);
4177 /* Retry if a clean page was removed from the cache. */
4178 if (invalidate_inode_page(page))
4179 poisonret = VM_FAULT_NOPAGE;
4180 unlock_page(page);
4181 }
4182 put_page(page);
4183 vmf->page = NULL;
4184 return poisonret;
4185 }
4186
4187 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4188 lock_page(vmf->page);
4189 else
4190 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4191
4192 return ret;
4193}
4194
4195#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4196static void deposit_prealloc_pte(struct vm_fault *vmf)
4197{
4198 struct vm_area_struct *vma = vmf->vma;
4199
4200 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4201 /*
4202 * We are going to consume the prealloc table,
4203 * count that as nr_ptes.
4204 */
4205 mm_inc_nr_ptes(vma->vm_mm);
4206 vmf->prealloc_pte = NULL;
4207}
4208
4209vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4210{
4211 struct vm_area_struct *vma = vmf->vma;
4212 bool write = vmf->flags & FAULT_FLAG_WRITE;
4213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4214 pmd_t entry;
4215 int i;
4216 vm_fault_t ret = VM_FAULT_FALLBACK;
4217
4218 if (!transhuge_vma_suitable(vma, haddr))
4219 return ret;
4220
4221 page = compound_head(page);
4222 if (compound_order(page) != HPAGE_PMD_ORDER)
4223 return ret;
4224
4225 /*
4226 * Just backoff if any subpage of a THP is corrupted otherwise
4227 * the corrupted page may mapped by PMD silently to escape the
4228 * check. This kind of THP just can be PTE mapped. Access to
4229 * the corrupted subpage should trigger SIGBUS as expected.
4230 */
4231 if (unlikely(PageHasHWPoisoned(page)))
4232 return ret;
4233
4234 /*
4235 * Archs like ppc64 need additional space to store information
4236 * related to pte entry. Use the preallocated table for that.
4237 */
4238 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4239 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4240 if (!vmf->prealloc_pte)
4241 return VM_FAULT_OOM;
4242 }
4243
4244 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4245 if (unlikely(!pmd_none(*vmf->pmd)))
4246 goto out;
4247
4248 for (i = 0; i < HPAGE_PMD_NR; i++)
4249 flush_icache_page(vma, page + i);
4250
4251 entry = mk_huge_pmd(page, vma->vm_page_prot);
4252 if (write)
4253 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4254
4255 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4256 page_add_file_rmap(page, vma, true);
4257
4258 /*
4259 * deposit and withdraw with pmd lock held
4260 */
4261 if (arch_needs_pgtable_deposit())
4262 deposit_prealloc_pte(vmf);
4263
4264 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4265
4266 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4267
4268 /* fault is handled */
4269 ret = 0;
4270 count_vm_event(THP_FILE_MAPPED);
4271out:
4272 spin_unlock(vmf->ptl);
4273 return ret;
4274}
4275#else
4276vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4277{
4278 return VM_FAULT_FALLBACK;
4279}
4280#endif
4281
4282void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4283{
4284 struct vm_area_struct *vma = vmf->vma;
4285 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4286 bool write = vmf->flags & FAULT_FLAG_WRITE;
4287 bool prefault = vmf->address != addr;
4288 pte_t entry;
4289
4290 flush_icache_page(vma, page);
4291 entry = mk_pte(page, vma->vm_page_prot);
4292
4293 if (prefault && arch_wants_old_prefaulted_pte())
4294 entry = pte_mkold(entry);
4295 else
4296 entry = pte_sw_mkyoung(entry);
4297
4298 if (write)
4299 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4300 if (unlikely(uffd_wp))
4301 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4302 /* copy-on-write page */
4303 if (write && !(vma->vm_flags & VM_SHARED)) {
4304 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4305 page_add_new_anon_rmap(page, vma, addr);
4306 lru_cache_add_inactive_or_unevictable(page, vma);
4307 } else {
4308 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4309 page_add_file_rmap(page, vma, false);
4310 }
4311 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4312}
4313
4314static bool vmf_pte_changed(struct vm_fault *vmf)
4315{
4316 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4317 return !pte_same(*vmf->pte, vmf->orig_pte);
4318
4319 return !pte_none(*vmf->pte);
4320}
4321
4322/**
4323 * finish_fault - finish page fault once we have prepared the page to fault
4324 *
4325 * @vmf: structure describing the fault
4326 *
4327 * This function handles all that is needed to finish a page fault once the
4328 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4329 * given page, adds reverse page mapping, handles memcg charges and LRU
4330 * addition.
4331 *
4332 * The function expects the page to be locked and on success it consumes a
4333 * reference of a page being mapped (for the PTE which maps it).
4334 *
4335 * Return: %0 on success, %VM_FAULT_ code in case of error.
4336 */
4337vm_fault_t finish_fault(struct vm_fault *vmf)
4338{
4339 struct vm_area_struct *vma = vmf->vma;
4340 struct page *page;
4341 vm_fault_t ret;
4342
4343 /* Did we COW the page? */
4344 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4345 page = vmf->cow_page;
4346 else
4347 page = vmf->page;
4348
4349 /*
4350 * check even for read faults because we might have lost our CoWed
4351 * page
4352 */
4353 if (!(vma->vm_flags & VM_SHARED)) {
4354 ret = check_stable_address_space(vma->vm_mm);
4355 if (ret)
4356 return ret;
4357 }
4358
4359 if (pmd_none(*vmf->pmd)) {
4360 if (PageTransCompound(page)) {
4361 ret = do_set_pmd(vmf, page);
4362 if (ret != VM_FAULT_FALLBACK)
4363 return ret;
4364 }
4365
4366 if (vmf->prealloc_pte)
4367 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4368 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4369 return VM_FAULT_OOM;
4370 }
4371
4372 /* See comment in handle_pte_fault() */
4373 if (pmd_devmap_trans_unstable(vmf->pmd))
4374 return 0;
4375
4376 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4377 vmf->address, &vmf->ptl);
4378 ret = 0;
4379 /* Re-check under ptl */
4380 if (likely(!vmf_pte_changed(vmf)))
4381 do_set_pte(vmf, page, vmf->address);
4382 else
4383 ret = VM_FAULT_NOPAGE;
4384
4385 update_mmu_tlb(vma, vmf->address, vmf->pte);
4386 pte_unmap_unlock(vmf->pte, vmf->ptl);
4387 return ret;
4388}
4389
4390static unsigned long fault_around_bytes __read_mostly =
4391 rounddown_pow_of_two(65536);
4392
4393#ifdef CONFIG_DEBUG_FS
4394static int fault_around_bytes_get(void *data, u64 *val)
4395{
4396 *val = fault_around_bytes;
4397 return 0;
4398}
4399
4400/*
4401 * fault_around_bytes must be rounded down to the nearest page order as it's
4402 * what do_fault_around() expects to see.
4403 */
4404static int fault_around_bytes_set(void *data, u64 val)
4405{
4406 if (val / PAGE_SIZE > PTRS_PER_PTE)
4407 return -EINVAL;
4408 if (val > PAGE_SIZE)
4409 fault_around_bytes = rounddown_pow_of_two(val);
4410 else
4411 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4412 return 0;
4413}
4414DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4415 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4416
4417static int __init fault_around_debugfs(void)
4418{
4419 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4420 &fault_around_bytes_fops);
4421 return 0;
4422}
4423late_initcall(fault_around_debugfs);
4424#endif
4425
4426/*
4427 * do_fault_around() tries to map few pages around the fault address. The hope
4428 * is that the pages will be needed soon and this will lower the number of
4429 * faults to handle.
4430 *
4431 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4432 * not ready to be mapped: not up-to-date, locked, etc.
4433 *
4434 * This function is called with the page table lock taken. In the split ptlock
4435 * case the page table lock only protects only those entries which belong to
4436 * the page table corresponding to the fault address.
4437 *
4438 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4439 * only once.
4440 *
4441 * fault_around_bytes defines how many bytes we'll try to map.
4442 * do_fault_around() expects it to be set to a power of two less than or equal
4443 * to PTRS_PER_PTE.
4444 *
4445 * The virtual address of the area that we map is naturally aligned to
4446 * fault_around_bytes rounded down to the machine page size
4447 * (and therefore to page order). This way it's easier to guarantee
4448 * that we don't cross page table boundaries.
4449 */
4450static vm_fault_t do_fault_around(struct vm_fault *vmf)
4451{
4452 unsigned long address = vmf->address, nr_pages, mask;
4453 pgoff_t start_pgoff = vmf->pgoff;
4454 pgoff_t end_pgoff;
4455 int off;
4456
4457 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4458 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4459
4460 address = max(address & mask, vmf->vma->vm_start);
4461 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4462 start_pgoff -= off;
4463
4464 /*
4465 * end_pgoff is either the end of the page table, the end of
4466 * the vma or nr_pages from start_pgoff, depending what is nearest.
4467 */
4468 end_pgoff = start_pgoff -
4469 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4470 PTRS_PER_PTE - 1;
4471 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4472 start_pgoff + nr_pages - 1);
4473
4474 if (pmd_none(*vmf->pmd)) {
4475 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4476 if (!vmf->prealloc_pte)
4477 return VM_FAULT_OOM;
4478 }
4479
4480 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4481}
4482
4483/* Return true if we should do read fault-around, false otherwise */
4484static inline bool should_fault_around(struct vm_fault *vmf)
4485{
4486 /* No ->map_pages? No way to fault around... */
4487 if (!vmf->vma->vm_ops->map_pages)
4488 return false;
4489
4490 if (uffd_disable_fault_around(vmf->vma))
4491 return false;
4492
4493 return fault_around_bytes >> PAGE_SHIFT > 1;
4494}
4495
4496static vm_fault_t do_read_fault(struct vm_fault *vmf)
4497{
4498 vm_fault_t ret = 0;
4499
4500 /*
4501 * Let's call ->map_pages() first and use ->fault() as fallback
4502 * if page by the offset is not ready to be mapped (cold cache or
4503 * something).
4504 */
4505 if (should_fault_around(vmf)) {
4506 ret = do_fault_around(vmf);
4507 if (ret)
4508 return ret;
4509 }
4510
4511 ret = __do_fault(vmf);
4512 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4513 return ret;
4514
4515 ret |= finish_fault(vmf);
4516 unlock_page(vmf->page);
4517 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4518 put_page(vmf->page);
4519 return ret;
4520}
4521
4522static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4523{
4524 struct vm_area_struct *vma = vmf->vma;
4525 vm_fault_t ret;
4526
4527 if (unlikely(anon_vma_prepare(vma)))
4528 return VM_FAULT_OOM;
4529
4530 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4531 if (!vmf->cow_page)
4532 return VM_FAULT_OOM;
4533
4534 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4535 GFP_KERNEL)) {
4536 put_page(vmf->cow_page);
4537 return VM_FAULT_OOM;
4538 }
4539 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4540
4541 ret = __do_fault(vmf);
4542 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4543 goto uncharge_out;
4544 if (ret & VM_FAULT_DONE_COW)
4545 return ret;
4546
4547 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4548 __SetPageUptodate(vmf->cow_page);
4549
4550 ret |= finish_fault(vmf);
4551 unlock_page(vmf->page);
4552 put_page(vmf->page);
4553 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4554 goto uncharge_out;
4555 return ret;
4556uncharge_out:
4557 put_page(vmf->cow_page);
4558 return ret;
4559}
4560
4561static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4562{
4563 struct vm_area_struct *vma = vmf->vma;
4564 vm_fault_t ret, tmp;
4565
4566 ret = __do_fault(vmf);
4567 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4568 return ret;
4569
4570 /*
4571 * Check if the backing address space wants to know that the page is
4572 * about to become writable
4573 */
4574 if (vma->vm_ops->page_mkwrite) {
4575 unlock_page(vmf->page);
4576 tmp = do_page_mkwrite(vmf);
4577 if (unlikely(!tmp ||
4578 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4579 put_page(vmf->page);
4580 return tmp;
4581 }
4582 }
4583
4584 ret |= finish_fault(vmf);
4585 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4586 VM_FAULT_RETRY))) {
4587 unlock_page(vmf->page);
4588 put_page(vmf->page);
4589 return ret;
4590 }
4591
4592 ret |= fault_dirty_shared_page(vmf);
4593 return ret;
4594}
4595
4596/*
4597 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4598 * but allow concurrent faults).
4599 * The mmap_lock may have been released depending on flags and our
4600 * return value. See filemap_fault() and __folio_lock_or_retry().
4601 * If mmap_lock is released, vma may become invalid (for example
4602 * by other thread calling munmap()).
4603 */
4604static vm_fault_t do_fault(struct vm_fault *vmf)
4605{
4606 struct vm_area_struct *vma = vmf->vma;
4607 struct mm_struct *vm_mm = vma->vm_mm;
4608 vm_fault_t ret;
4609
4610 /*
4611 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4612 */
4613 if (!vma->vm_ops->fault) {
4614 /*
4615 * If we find a migration pmd entry or a none pmd entry, which
4616 * should never happen, return SIGBUS
4617 */
4618 if (unlikely(!pmd_present(*vmf->pmd)))
4619 ret = VM_FAULT_SIGBUS;
4620 else {
4621 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4622 vmf->pmd,
4623 vmf->address,
4624 &vmf->ptl);
4625 /*
4626 * Make sure this is not a temporary clearing of pte
4627 * by holding ptl and checking again. A R/M/W update
4628 * of pte involves: take ptl, clearing the pte so that
4629 * we don't have concurrent modification by hardware
4630 * followed by an update.
4631 */
4632 if (unlikely(pte_none(*vmf->pte)))
4633 ret = VM_FAULT_SIGBUS;
4634 else
4635 ret = VM_FAULT_NOPAGE;
4636
4637 pte_unmap_unlock(vmf->pte, vmf->ptl);
4638 }
4639 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4640 ret = do_read_fault(vmf);
4641 else if (!(vma->vm_flags & VM_SHARED))
4642 ret = do_cow_fault(vmf);
4643 else
4644 ret = do_shared_fault(vmf);
4645
4646 /* preallocated pagetable is unused: free it */
4647 if (vmf->prealloc_pte) {
4648 pte_free(vm_mm, vmf->prealloc_pte);
4649 vmf->prealloc_pte = NULL;
4650 }
4651 return ret;
4652}
4653
4654int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4655 unsigned long addr, int page_nid, int *flags)
4656{
4657 get_page(page);
4658
4659 count_vm_numa_event(NUMA_HINT_FAULTS);
4660 if (page_nid == numa_node_id()) {
4661 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4662 *flags |= TNF_FAULT_LOCAL;
4663 }
4664
4665 return mpol_misplaced(page, vma, addr);
4666}
4667
4668static vm_fault_t do_numa_page(struct vm_fault *vmf)
4669{
4670 struct vm_area_struct *vma = vmf->vma;
4671 struct page *page = NULL;
4672 int page_nid = NUMA_NO_NODE;
4673 int last_cpupid;
4674 int target_nid;
4675 pte_t pte, old_pte;
4676 bool was_writable = pte_savedwrite(vmf->orig_pte);
4677 int flags = 0;
4678
4679 /*
4680 * The "pte" at this point cannot be used safely without
4681 * validation through pte_unmap_same(). It's of NUMA type but
4682 * the pfn may be screwed if the read is non atomic.
4683 */
4684 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4685 spin_lock(vmf->ptl);
4686 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4687 pte_unmap_unlock(vmf->pte, vmf->ptl);
4688 goto out;
4689 }
4690
4691 /* Get the normal PTE */
4692 old_pte = ptep_get(vmf->pte);
4693 pte = pte_modify(old_pte, vma->vm_page_prot);
4694
4695 page = vm_normal_page(vma, vmf->address, pte);
4696 if (!page)
4697 goto out_map;
4698
4699 /* TODO: handle PTE-mapped THP */
4700 if (PageCompound(page))
4701 goto out_map;
4702
4703 /*
4704 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4705 * much anyway since they can be in shared cache state. This misses
4706 * the case where a mapping is writable but the process never writes
4707 * to it but pte_write gets cleared during protection updates and
4708 * pte_dirty has unpredictable behaviour between PTE scan updates,
4709 * background writeback, dirty balancing and application behaviour.
4710 */
4711 if (!was_writable)
4712 flags |= TNF_NO_GROUP;
4713
4714 /*
4715 * Flag if the page is shared between multiple address spaces. This
4716 * is later used when determining whether to group tasks together
4717 */
4718 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4719 flags |= TNF_SHARED;
4720
4721 last_cpupid = page_cpupid_last(page);
4722 page_nid = page_to_nid(page);
4723 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4724 &flags);
4725 if (target_nid == NUMA_NO_NODE) {
4726 put_page(page);
4727 goto out_map;
4728 }
4729 pte_unmap_unlock(vmf->pte, vmf->ptl);
4730
4731 /* Migrate to the requested node */
4732 if (migrate_misplaced_page(page, vma, target_nid)) {
4733 page_nid = target_nid;
4734 flags |= TNF_MIGRATED;
4735 } else {
4736 flags |= TNF_MIGRATE_FAIL;
4737 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4738 spin_lock(vmf->ptl);
4739 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4740 pte_unmap_unlock(vmf->pte, vmf->ptl);
4741 goto out;
4742 }
4743 goto out_map;
4744 }
4745
4746out:
4747 if (page_nid != NUMA_NO_NODE)
4748 task_numa_fault(last_cpupid, page_nid, 1, flags);
4749 return 0;
4750out_map:
4751 /*
4752 * Make it present again, depending on how arch implements
4753 * non-accessible ptes, some can allow access by kernel mode.
4754 */
4755 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4756 pte = pte_modify(old_pte, vma->vm_page_prot);
4757 pte = pte_mkyoung(pte);
4758 if (was_writable)
4759 pte = pte_mkwrite(pte);
4760 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4761 update_mmu_cache(vma, vmf->address, vmf->pte);
4762 pte_unmap_unlock(vmf->pte, vmf->ptl);
4763 goto out;
4764}
4765
4766static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4767{
4768 if (vma_is_anonymous(vmf->vma))
4769 return do_huge_pmd_anonymous_page(vmf);
4770 if (vmf->vma->vm_ops->huge_fault)
4771 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4772 return VM_FAULT_FALLBACK;
4773}
4774
4775/* `inline' is required to avoid gcc 4.1.2 build error */
4776static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4777{
4778 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4779
4780 if (vma_is_anonymous(vmf->vma)) {
4781 if (likely(!unshare) &&
4782 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4783 return handle_userfault(vmf, VM_UFFD_WP);
4784 return do_huge_pmd_wp_page(vmf);
4785 }
4786 if (vmf->vma->vm_ops->huge_fault) {
4787 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4788
4789 if (!(ret & VM_FAULT_FALLBACK))
4790 return ret;
4791 }
4792
4793 /* COW or write-notify handled on pte level: split pmd. */
4794 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4795
4796 return VM_FAULT_FALLBACK;
4797}
4798
4799static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4800{
4801#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4802 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4803 /* No support for anonymous transparent PUD pages yet */
4804 if (vma_is_anonymous(vmf->vma))
4805 return VM_FAULT_FALLBACK;
4806 if (vmf->vma->vm_ops->huge_fault)
4807 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4808#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4809 return VM_FAULT_FALLBACK;
4810}
4811
4812static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4813{
4814#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4815 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4816 /* No support for anonymous transparent PUD pages yet */
4817 if (vma_is_anonymous(vmf->vma))
4818 goto split;
4819 if (vmf->vma->vm_ops->huge_fault) {
4820 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4821
4822 if (!(ret & VM_FAULT_FALLBACK))
4823 return ret;
4824 }
4825split:
4826 /* COW or write-notify not handled on PUD level: split pud.*/
4827 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4828#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4829 return VM_FAULT_FALLBACK;
4830}
4831
4832/*
4833 * These routines also need to handle stuff like marking pages dirty
4834 * and/or accessed for architectures that don't do it in hardware (most
4835 * RISC architectures). The early dirtying is also good on the i386.
4836 *
4837 * There is also a hook called "update_mmu_cache()" that architectures
4838 * with external mmu caches can use to update those (ie the Sparc or
4839 * PowerPC hashed page tables that act as extended TLBs).
4840 *
4841 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4842 * concurrent faults).
4843 *
4844 * The mmap_lock may have been released depending on flags and our return value.
4845 * See filemap_fault() and __folio_lock_or_retry().
4846 */
4847static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4848{
4849 pte_t entry;
4850
4851 if (unlikely(pmd_none(*vmf->pmd))) {
4852 /*
4853 * Leave __pte_alloc() until later: because vm_ops->fault may
4854 * want to allocate huge page, and if we expose page table
4855 * for an instant, it will be difficult to retract from
4856 * concurrent faults and from rmap lookups.
4857 */
4858 vmf->pte = NULL;
4859 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4860 } else {
4861 /*
4862 * If a huge pmd materialized under us just retry later. Use
4863 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4864 * of pmd_trans_huge() to ensure the pmd didn't become
4865 * pmd_trans_huge under us and then back to pmd_none, as a
4866 * result of MADV_DONTNEED running immediately after a huge pmd
4867 * fault in a different thread of this mm, in turn leading to a
4868 * misleading pmd_trans_huge() retval. All we have to ensure is
4869 * that it is a regular pmd that we can walk with
4870 * pte_offset_map() and we can do that through an atomic read
4871 * in C, which is what pmd_trans_unstable() provides.
4872 */
4873 if (pmd_devmap_trans_unstable(vmf->pmd))
4874 return 0;
4875 /*
4876 * A regular pmd is established and it can't morph into a huge
4877 * pmd from under us anymore at this point because we hold the
4878 * mmap_lock read mode and khugepaged takes it in write mode.
4879 * So now it's safe to run pte_offset_map().
4880 */
4881 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4882 vmf->orig_pte = *vmf->pte;
4883 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4884
4885 /*
4886 * some architectures can have larger ptes than wordsize,
4887 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4888 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4889 * accesses. The code below just needs a consistent view
4890 * for the ifs and we later double check anyway with the
4891 * ptl lock held. So here a barrier will do.
4892 */
4893 barrier();
4894 if (pte_none(vmf->orig_pte)) {
4895 pte_unmap(vmf->pte);
4896 vmf->pte = NULL;
4897 }
4898 }
4899
4900 if (!vmf->pte) {
4901 if (vma_is_anonymous(vmf->vma))
4902 return do_anonymous_page(vmf);
4903 else
4904 return do_fault(vmf);
4905 }
4906
4907 if (!pte_present(vmf->orig_pte))
4908 return do_swap_page(vmf);
4909
4910 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4911 return do_numa_page(vmf);
4912
4913 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4914 spin_lock(vmf->ptl);
4915 entry = vmf->orig_pte;
4916 if (unlikely(!pte_same(*vmf->pte, entry))) {
4917 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4918 goto unlock;
4919 }
4920 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4921 if (!pte_write(entry))
4922 return do_wp_page(vmf);
4923 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4924 entry = pte_mkdirty(entry);
4925 }
4926 entry = pte_mkyoung(entry);
4927 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4928 vmf->flags & FAULT_FLAG_WRITE)) {
4929 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4930 } else {
4931 /* Skip spurious TLB flush for retried page fault */
4932 if (vmf->flags & FAULT_FLAG_TRIED)
4933 goto unlock;
4934 /*
4935 * This is needed only for protection faults but the arch code
4936 * is not yet telling us if this is a protection fault or not.
4937 * This still avoids useless tlb flushes for .text page faults
4938 * with threads.
4939 */
4940 if (vmf->flags & FAULT_FLAG_WRITE)
4941 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4942 }
4943unlock:
4944 pte_unmap_unlock(vmf->pte, vmf->ptl);
4945 return 0;
4946}
4947
4948/*
4949 * By the time we get here, we already hold the mm semaphore
4950 *
4951 * The mmap_lock may have been released depending on flags and our
4952 * return value. See filemap_fault() and __folio_lock_or_retry().
4953 */
4954static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4955 unsigned long address, unsigned int flags)
4956{
4957 struct vm_fault vmf = {
4958 .vma = vma,
4959 .address = address & PAGE_MASK,
4960 .real_address = address,
4961 .flags = flags,
4962 .pgoff = linear_page_index(vma, address),
4963 .gfp_mask = __get_fault_gfp_mask(vma),
4964 };
4965 struct mm_struct *mm = vma->vm_mm;
4966 pgd_t *pgd;
4967 p4d_t *p4d;
4968 vm_fault_t ret;
4969
4970 pgd = pgd_offset(mm, address);
4971 p4d = p4d_alloc(mm, pgd, address);
4972 if (!p4d)
4973 return VM_FAULT_OOM;
4974
4975 vmf.pud = pud_alloc(mm, p4d, address);
4976 if (!vmf.pud)
4977 return VM_FAULT_OOM;
4978retry_pud:
4979 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4980 ret = create_huge_pud(&vmf);
4981 if (!(ret & VM_FAULT_FALLBACK))
4982 return ret;
4983 } else {
4984 pud_t orig_pud = *vmf.pud;
4985
4986 barrier();
4987 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4988
4989 /*
4990 * TODO once we support anonymous PUDs: NUMA case and
4991 * FAULT_FLAG_UNSHARE handling.
4992 */
4993 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
4994 ret = wp_huge_pud(&vmf, orig_pud);
4995 if (!(ret & VM_FAULT_FALLBACK))
4996 return ret;
4997 } else {
4998 huge_pud_set_accessed(&vmf, orig_pud);
4999 return 0;
5000 }
5001 }
5002 }
5003
5004 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5005 if (!vmf.pmd)
5006 return VM_FAULT_OOM;
5007
5008 /* Huge pud page fault raced with pmd_alloc? */
5009 if (pud_trans_unstable(vmf.pud))
5010 goto retry_pud;
5011
5012 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
5013 ret = create_huge_pmd(&vmf);
5014 if (!(ret & VM_FAULT_FALLBACK))
5015 return ret;
5016 } else {
5017 vmf.orig_pmd = *vmf.pmd;
5018
5019 barrier();
5020 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5021 VM_BUG_ON(thp_migration_supported() &&
5022 !is_pmd_migration_entry(vmf.orig_pmd));
5023 if (is_pmd_migration_entry(vmf.orig_pmd))
5024 pmd_migration_entry_wait(mm, vmf.pmd);
5025 return 0;
5026 }
5027 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5028 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5029 return do_huge_pmd_numa_page(&vmf);
5030
5031 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5032 !pmd_write(vmf.orig_pmd)) {
5033 ret = wp_huge_pmd(&vmf);
5034 if (!(ret & VM_FAULT_FALLBACK))
5035 return ret;
5036 } else {
5037 huge_pmd_set_accessed(&vmf);
5038 return 0;
5039 }
5040 }
5041 }
5042
5043 return handle_pte_fault(&vmf);
5044}
5045
5046/**
5047 * mm_account_fault - Do page fault accounting
5048 *
5049 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5050 * of perf event counters, but we'll still do the per-task accounting to
5051 * the task who triggered this page fault.
5052 * @address: the faulted address.
5053 * @flags: the fault flags.
5054 * @ret: the fault retcode.
5055 *
5056 * This will take care of most of the page fault accounting. Meanwhile, it
5057 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5058 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5059 * still be in per-arch page fault handlers at the entry of page fault.
5060 */
5061static inline void mm_account_fault(struct pt_regs *regs,
5062 unsigned long address, unsigned int flags,
5063 vm_fault_t ret)
5064{
5065 bool major;
5066
5067 /*
5068 * We don't do accounting for some specific faults:
5069 *
5070 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5071 * includes arch_vma_access_permitted() failing before reaching here.
5072 * So this is not a "this many hardware page faults" counter. We
5073 * should use the hw profiling for that.
5074 *
5075 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5076 * once they're completed.
5077 */
5078 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5079 return;
5080
5081 /*
5082 * We define the fault as a major fault when the final successful fault
5083 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5084 * handle it immediately previously).
5085 */
5086 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5087
5088 if (major)
5089 current->maj_flt++;
5090 else
5091 current->min_flt++;
5092
5093 /*
5094 * If the fault is done for GUP, regs will be NULL. We only do the
5095 * accounting for the per thread fault counters who triggered the
5096 * fault, and we skip the perf event updates.
5097 */
5098 if (!regs)
5099 return;
5100
5101 if (major)
5102 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5103 else
5104 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5105}
5106
5107/*
5108 * By the time we get here, we already hold the mm semaphore
5109 *
5110 * The mmap_lock may have been released depending on flags and our
5111 * return value. See filemap_fault() and __folio_lock_or_retry().
5112 */
5113vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5114 unsigned int flags, struct pt_regs *regs)
5115{
5116 vm_fault_t ret;
5117
5118 __set_current_state(TASK_RUNNING);
5119
5120 count_vm_event(PGFAULT);
5121 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5122
5123 /* do counter updates before entering really critical section. */
5124 check_sync_rss_stat(current);
5125
5126 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5127 flags & FAULT_FLAG_INSTRUCTION,
5128 flags & FAULT_FLAG_REMOTE))
5129 return VM_FAULT_SIGSEGV;
5130
5131 /*
5132 * Enable the memcg OOM handling for faults triggered in user
5133 * space. Kernel faults are handled more gracefully.
5134 */
5135 if (flags & FAULT_FLAG_USER)
5136 mem_cgroup_enter_user_fault();
5137
5138 if (unlikely(is_vm_hugetlb_page(vma)))
5139 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5140 else
5141 ret = __handle_mm_fault(vma, address, flags);
5142
5143 if (flags & FAULT_FLAG_USER) {
5144 mem_cgroup_exit_user_fault();
5145 /*
5146 * The task may have entered a memcg OOM situation but
5147 * if the allocation error was handled gracefully (no
5148 * VM_FAULT_OOM), there is no need to kill anything.
5149 * Just clean up the OOM state peacefully.
5150 */
5151 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5152 mem_cgroup_oom_synchronize(false);
5153 }
5154
5155 mm_account_fault(regs, address, flags, ret);
5156
5157 return ret;
5158}
5159EXPORT_SYMBOL_GPL(handle_mm_fault);
5160
5161#ifndef __PAGETABLE_P4D_FOLDED
5162/*
5163 * Allocate p4d page table.
5164 * We've already handled the fast-path in-line.
5165 */
5166int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5167{
5168 p4d_t *new = p4d_alloc_one(mm, address);
5169 if (!new)
5170 return -ENOMEM;
5171
5172 spin_lock(&mm->page_table_lock);
5173 if (pgd_present(*pgd)) { /* Another has populated it */
5174 p4d_free(mm, new);
5175 } else {
5176 smp_wmb(); /* See comment in pmd_install() */
5177 pgd_populate(mm, pgd, new);
5178 }
5179 spin_unlock(&mm->page_table_lock);
5180 return 0;
5181}
5182#endif /* __PAGETABLE_P4D_FOLDED */
5183
5184#ifndef __PAGETABLE_PUD_FOLDED
5185/*
5186 * Allocate page upper directory.
5187 * We've already handled the fast-path in-line.
5188 */
5189int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5190{
5191 pud_t *new = pud_alloc_one(mm, address);
5192 if (!new)
5193 return -ENOMEM;
5194
5195 spin_lock(&mm->page_table_lock);
5196 if (!p4d_present(*p4d)) {
5197 mm_inc_nr_puds(mm);
5198 smp_wmb(); /* See comment in pmd_install() */
5199 p4d_populate(mm, p4d, new);
5200 } else /* Another has populated it */
5201 pud_free(mm, new);
5202 spin_unlock(&mm->page_table_lock);
5203 return 0;
5204}
5205#endif /* __PAGETABLE_PUD_FOLDED */
5206
5207#ifndef __PAGETABLE_PMD_FOLDED
5208/*
5209 * Allocate page middle directory.
5210 * We've already handled the fast-path in-line.
5211 */
5212int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5213{
5214 spinlock_t *ptl;
5215 pmd_t *new = pmd_alloc_one(mm, address);
5216 if (!new)
5217 return -ENOMEM;
5218
5219 ptl = pud_lock(mm, pud);
5220 if (!pud_present(*pud)) {
5221 mm_inc_nr_pmds(mm);
5222 smp_wmb(); /* See comment in pmd_install() */
5223 pud_populate(mm, pud, new);
5224 } else { /* Another has populated it */
5225 pmd_free(mm, new);
5226 }
5227 spin_unlock(ptl);
5228 return 0;
5229}
5230#endif /* __PAGETABLE_PMD_FOLDED */
5231
5232/**
5233 * follow_pte - look up PTE at a user virtual address
5234 * @mm: the mm_struct of the target address space
5235 * @address: user virtual address
5236 * @ptepp: location to store found PTE
5237 * @ptlp: location to store the lock for the PTE
5238 *
5239 * On a successful return, the pointer to the PTE is stored in @ptepp;
5240 * the corresponding lock is taken and its location is stored in @ptlp.
5241 * The contents of the PTE are only stable until @ptlp is released;
5242 * any further use, if any, must be protected against invalidation
5243 * with MMU notifiers.
5244 *
5245 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5246 * should be taken for read.
5247 *
5248 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5249 * it is not a good general-purpose API.
5250 *
5251 * Return: zero on success, -ve otherwise.
5252 */
5253int follow_pte(struct mm_struct *mm, unsigned long address,
5254 pte_t **ptepp, spinlock_t **ptlp)
5255{
5256 pgd_t *pgd;
5257 p4d_t *p4d;
5258 pud_t *pud;
5259 pmd_t *pmd;
5260 pte_t *ptep;
5261
5262 pgd = pgd_offset(mm, address);
5263 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5264 goto out;
5265
5266 p4d = p4d_offset(pgd, address);
5267 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5268 goto out;
5269
5270 pud = pud_offset(p4d, address);
5271 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5272 goto out;
5273
5274 pmd = pmd_offset(pud, address);
5275 VM_BUG_ON(pmd_trans_huge(*pmd));
5276
5277 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5278 goto out;
5279
5280 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5281 if (!pte_present(*ptep))
5282 goto unlock;
5283 *ptepp = ptep;
5284 return 0;
5285unlock:
5286 pte_unmap_unlock(ptep, *ptlp);
5287out:
5288 return -EINVAL;
5289}
5290EXPORT_SYMBOL_GPL(follow_pte);
5291
5292/**
5293 * follow_pfn - look up PFN at a user virtual address
5294 * @vma: memory mapping
5295 * @address: user virtual address
5296 * @pfn: location to store found PFN
5297 *
5298 * Only IO mappings and raw PFN mappings are allowed.
5299 *
5300 * This function does not allow the caller to read the permissions
5301 * of the PTE. Do not use it.
5302 *
5303 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5304 */
5305int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5306 unsigned long *pfn)
5307{
5308 int ret = -EINVAL;
5309 spinlock_t *ptl;
5310 pte_t *ptep;
5311
5312 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5313 return ret;
5314
5315 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5316 if (ret)
5317 return ret;
5318 *pfn = pte_pfn(*ptep);
5319 pte_unmap_unlock(ptep, ptl);
5320 return 0;
5321}
5322EXPORT_SYMBOL(follow_pfn);
5323
5324#ifdef CONFIG_HAVE_IOREMAP_PROT
5325int follow_phys(struct vm_area_struct *vma,
5326 unsigned long address, unsigned int flags,
5327 unsigned long *prot, resource_size_t *phys)
5328{
5329 int ret = -EINVAL;
5330 pte_t *ptep, pte;
5331 spinlock_t *ptl;
5332
5333 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5334 goto out;
5335
5336 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5337 goto out;
5338 pte = *ptep;
5339
5340 if ((flags & FOLL_WRITE) && !pte_write(pte))
5341 goto unlock;
5342
5343 *prot = pgprot_val(pte_pgprot(pte));
5344 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5345
5346 ret = 0;
5347unlock:
5348 pte_unmap_unlock(ptep, ptl);
5349out:
5350 return ret;
5351}
5352
5353/**
5354 * generic_access_phys - generic implementation for iomem mmap access
5355 * @vma: the vma to access
5356 * @addr: userspace address, not relative offset within @vma
5357 * @buf: buffer to read/write
5358 * @len: length of transfer
5359 * @write: set to FOLL_WRITE when writing, otherwise reading
5360 *
5361 * This is a generic implementation for &vm_operations_struct.access for an
5362 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5363 * not page based.
5364 */
5365int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5366 void *buf, int len, int write)
5367{
5368 resource_size_t phys_addr;
5369 unsigned long prot = 0;
5370 void __iomem *maddr;
5371 pte_t *ptep, pte;
5372 spinlock_t *ptl;
5373 int offset = offset_in_page(addr);
5374 int ret = -EINVAL;
5375
5376 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5377 return -EINVAL;
5378
5379retry:
5380 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5381 return -EINVAL;
5382 pte = *ptep;
5383 pte_unmap_unlock(ptep, ptl);
5384
5385 prot = pgprot_val(pte_pgprot(pte));
5386 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5387
5388 if ((write & FOLL_WRITE) && !pte_write(pte))
5389 return -EINVAL;
5390
5391 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5392 if (!maddr)
5393 return -ENOMEM;
5394
5395 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5396 goto out_unmap;
5397
5398 if (!pte_same(pte, *ptep)) {
5399 pte_unmap_unlock(ptep, ptl);
5400 iounmap(maddr);
5401
5402 goto retry;
5403 }
5404
5405 if (write)
5406 memcpy_toio(maddr + offset, buf, len);
5407 else
5408 memcpy_fromio(buf, maddr + offset, len);
5409 ret = len;
5410 pte_unmap_unlock(ptep, ptl);
5411out_unmap:
5412 iounmap(maddr);
5413
5414 return ret;
5415}
5416EXPORT_SYMBOL_GPL(generic_access_phys);
5417#endif
5418
5419/*
5420 * Access another process' address space as given in mm.
5421 */
5422int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5423 int len, unsigned int gup_flags)
5424{
5425 struct vm_area_struct *vma;
5426 void *old_buf = buf;
5427 int write = gup_flags & FOLL_WRITE;
5428
5429 if (mmap_read_lock_killable(mm))
5430 return 0;
5431
5432 /* ignore errors, just check how much was successfully transferred */
5433 while (len) {
5434 int bytes, ret, offset;
5435 void *maddr;
5436 struct page *page = NULL;
5437
5438 ret = get_user_pages_remote(mm, addr, 1,
5439 gup_flags, &page, &vma, NULL);
5440 if (ret <= 0) {
5441#ifndef CONFIG_HAVE_IOREMAP_PROT
5442 break;
5443#else
5444 /*
5445 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5446 * we can access using slightly different code.
5447 */
5448 vma = vma_lookup(mm, addr);
5449 if (!vma)
5450 break;
5451 if (vma->vm_ops && vma->vm_ops->access)
5452 ret = vma->vm_ops->access(vma, addr, buf,
5453 len, write);
5454 if (ret <= 0)
5455 break;
5456 bytes = ret;
5457#endif
5458 } else {
5459 bytes = len;
5460 offset = addr & (PAGE_SIZE-1);
5461 if (bytes > PAGE_SIZE-offset)
5462 bytes = PAGE_SIZE-offset;
5463
5464 maddr = kmap(page);
5465 if (write) {
5466 copy_to_user_page(vma, page, addr,
5467 maddr + offset, buf, bytes);
5468 set_page_dirty_lock(page);
5469 } else {
5470 copy_from_user_page(vma, page, addr,
5471 buf, maddr + offset, bytes);
5472 }
5473 kunmap(page);
5474 put_page(page);
5475 }
5476 len -= bytes;
5477 buf += bytes;
5478 addr += bytes;
5479 }
5480 mmap_read_unlock(mm);
5481
5482 return buf - old_buf;
5483}
5484
5485/**
5486 * access_remote_vm - access another process' address space
5487 * @mm: the mm_struct of the target address space
5488 * @addr: start address to access
5489 * @buf: source or destination buffer
5490 * @len: number of bytes to transfer
5491 * @gup_flags: flags modifying lookup behaviour
5492 *
5493 * The caller must hold a reference on @mm.
5494 *
5495 * Return: number of bytes copied from source to destination.
5496 */
5497int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5498 void *buf, int len, unsigned int gup_flags)
5499{
5500 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5501}
5502
5503/*
5504 * Access another process' address space.
5505 * Source/target buffer must be kernel space,
5506 * Do not walk the page table directly, use get_user_pages
5507 */
5508int access_process_vm(struct task_struct *tsk, unsigned long addr,
5509 void *buf, int len, unsigned int gup_flags)
5510{
5511 struct mm_struct *mm;
5512 int ret;
5513
5514 mm = get_task_mm(tsk);
5515 if (!mm)
5516 return 0;
5517
5518 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5519
5520 mmput(mm);
5521
5522 return ret;
5523}
5524EXPORT_SYMBOL_GPL(access_process_vm);
5525
5526/*
5527 * Print the name of a VMA.
5528 */
5529void print_vma_addr(char *prefix, unsigned long ip)
5530{
5531 struct mm_struct *mm = current->mm;
5532 struct vm_area_struct *vma;
5533
5534 /*
5535 * we might be running from an atomic context so we cannot sleep
5536 */
5537 if (!mmap_read_trylock(mm))
5538 return;
5539
5540 vma = find_vma(mm, ip);
5541 if (vma && vma->vm_file) {
5542 struct file *f = vma->vm_file;
5543 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5544 if (buf) {
5545 char *p;
5546
5547 p = file_path(f, buf, PAGE_SIZE);
5548 if (IS_ERR(p))
5549 p = "?";
5550 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5551 vma->vm_start,
5552 vma->vm_end - vma->vm_start);
5553 free_page((unsigned long)buf);
5554 }
5555 }
5556 mmap_read_unlock(mm);
5557}
5558
5559#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5560void __might_fault(const char *file, int line)
5561{
5562 if (pagefault_disabled())
5563 return;
5564 __might_sleep(file, line);
5565#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5566 if (current->mm)
5567 might_lock_read(¤t->mm->mmap_lock);
5568#endif
5569}
5570EXPORT_SYMBOL(__might_fault);
5571#endif
5572
5573#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5574/*
5575 * Process all subpages of the specified huge page with the specified
5576 * operation. The target subpage will be processed last to keep its
5577 * cache lines hot.
5578 */
5579static inline void process_huge_page(
5580 unsigned long addr_hint, unsigned int pages_per_huge_page,
5581 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5582 void *arg)
5583{
5584 int i, n, base, l;
5585 unsigned long addr = addr_hint &
5586 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5587
5588 /* Process target subpage last to keep its cache lines hot */
5589 might_sleep();
5590 n = (addr_hint - addr) / PAGE_SIZE;
5591 if (2 * n <= pages_per_huge_page) {
5592 /* If target subpage in first half of huge page */
5593 base = 0;
5594 l = n;
5595 /* Process subpages at the end of huge page */
5596 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5597 cond_resched();
5598 process_subpage(addr + i * PAGE_SIZE, i, arg);
5599 }
5600 } else {
5601 /* If target subpage in second half of huge page */
5602 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5603 l = pages_per_huge_page - n;
5604 /* Process subpages at the begin of huge page */
5605 for (i = 0; i < base; i++) {
5606 cond_resched();
5607 process_subpage(addr + i * PAGE_SIZE, i, arg);
5608 }
5609 }
5610 /*
5611 * Process remaining subpages in left-right-left-right pattern
5612 * towards the target subpage
5613 */
5614 for (i = 0; i < l; i++) {
5615 int left_idx = base + i;
5616 int right_idx = base + 2 * l - 1 - i;
5617
5618 cond_resched();
5619 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5620 cond_resched();
5621 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5622 }
5623}
5624
5625static void clear_gigantic_page(struct page *page,
5626 unsigned long addr,
5627 unsigned int pages_per_huge_page)
5628{
5629 int i;
5630 struct page *p = page;
5631
5632 might_sleep();
5633 for (i = 0; i < pages_per_huge_page;
5634 i++, p = mem_map_next(p, page, i)) {
5635 cond_resched();
5636 clear_user_highpage(p, addr + i * PAGE_SIZE);
5637 }
5638}
5639
5640static void clear_subpage(unsigned long addr, int idx, void *arg)
5641{
5642 struct page *page = arg;
5643
5644 clear_user_highpage(page + idx, addr);
5645}
5646
5647void clear_huge_page(struct page *page,
5648 unsigned long addr_hint, unsigned int pages_per_huge_page)
5649{
5650 unsigned long addr = addr_hint &
5651 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5652
5653 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5654 clear_gigantic_page(page, addr, pages_per_huge_page);
5655 return;
5656 }
5657
5658 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5659}
5660
5661static void copy_user_gigantic_page(struct page *dst, struct page *src,
5662 unsigned long addr,
5663 struct vm_area_struct *vma,
5664 unsigned int pages_per_huge_page)
5665{
5666 int i;
5667 struct page *dst_base = dst;
5668 struct page *src_base = src;
5669
5670 for (i = 0; i < pages_per_huge_page; ) {
5671 cond_resched();
5672 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5673
5674 i++;
5675 dst = mem_map_next(dst, dst_base, i);
5676 src = mem_map_next(src, src_base, i);
5677 }
5678}
5679
5680struct copy_subpage_arg {
5681 struct page *dst;
5682 struct page *src;
5683 struct vm_area_struct *vma;
5684};
5685
5686static void copy_subpage(unsigned long addr, int idx, void *arg)
5687{
5688 struct copy_subpage_arg *copy_arg = arg;
5689
5690 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5691 addr, copy_arg->vma);
5692}
5693
5694void copy_user_huge_page(struct page *dst, struct page *src,
5695 unsigned long addr_hint, struct vm_area_struct *vma,
5696 unsigned int pages_per_huge_page)
5697{
5698 unsigned long addr = addr_hint &
5699 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5700 struct copy_subpage_arg arg = {
5701 .dst = dst,
5702 .src = src,
5703 .vma = vma,
5704 };
5705
5706 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5707 copy_user_gigantic_page(dst, src, addr, vma,
5708 pages_per_huge_page);
5709 return;
5710 }
5711
5712 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5713}
5714
5715long copy_huge_page_from_user(struct page *dst_page,
5716 const void __user *usr_src,
5717 unsigned int pages_per_huge_page,
5718 bool allow_pagefault)
5719{
5720 void *page_kaddr;
5721 unsigned long i, rc = 0;
5722 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5723 struct page *subpage = dst_page;
5724
5725 for (i = 0; i < pages_per_huge_page;
5726 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5727 if (allow_pagefault)
5728 page_kaddr = kmap(subpage);
5729 else
5730 page_kaddr = kmap_atomic(subpage);
5731 rc = copy_from_user(page_kaddr,
5732 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5733 if (allow_pagefault)
5734 kunmap(subpage);
5735 else
5736 kunmap_atomic(page_kaddr);
5737
5738 ret_val -= (PAGE_SIZE - rc);
5739 if (rc)
5740 break;
5741
5742 flush_dcache_page(subpage);
5743
5744 cond_resched();
5745 }
5746 return ret_val;
5747}
5748#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5749
5750#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5751
5752static struct kmem_cache *page_ptl_cachep;
5753
5754void __init ptlock_cache_init(void)
5755{
5756 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5757 SLAB_PANIC, NULL);
5758}
5759
5760bool ptlock_alloc(struct page *page)
5761{
5762 spinlock_t *ptl;
5763
5764 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5765 if (!ptl)
5766 return false;
5767 page->ptl = ptl;
5768 return true;
5769}
5770
5771void ptlock_free(struct page *page)
5772{
5773 kmem_cache_free(page_ptl_cachep, page->ptl);
5774}
5775#endif