Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2021 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740static struct key *builtin_regdb_keys;
741
742static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743{
744 const u8 *end = p + buflen;
745 size_t plen;
746 key_ref_t key;
747
748 while (p < end) {
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
751 */
752 if (end - p < 4)
753 goto dodgy_cert;
754 if (p[0] != 0x30 &&
755 p[1] != 0x82)
756 goto dodgy_cert;
757 plen = (p[2] << 8) | p[3];
758 plen += 4;
759 if (plen > end - p)
760 goto dodgy_cert;
761
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
767 KEY_ALLOC_BUILT_IN |
768 KEY_ALLOC_BYPASS_RESTRICTION);
769 if (IS_ERR(key)) {
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 PTR_ERR(key));
772 } else {
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
775 key_ref_put(key);
776 }
777 p += plen;
778 }
779
780 return;
781
782dodgy_cert:
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
784}
785
786static int __init load_builtin_regdb_keys(void)
787{
788 builtin_regdb_keys =
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
796
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801#endif
802#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805#endif
806
807 return 0;
808}
809
810MODULE_FIRMWARE("regulatory.db.p7s");
811
812static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813{
814 const struct firmware *sig;
815 bool result;
816
817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
818 return false;
819
820 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 builtin_regdb_keys,
822 VERIFYING_UNSPECIFIED_SIGNATURE,
823 NULL, NULL) == 0;
824
825 release_firmware(sig);
826
827 return result;
828}
829
830static void free_regdb_keyring(void)
831{
832 key_put(builtin_regdb_keys);
833}
834#else
835static int load_builtin_regdb_keys(void)
836{
837 return 0;
838}
839
840static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841{
842 return true;
843}
844
845static void free_regdb_keyring(void)
846{
847}
848#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
850static bool valid_regdb(const u8 *data, unsigned int size)
851{
852 const struct fwdb_header *hdr = (void *)data;
853 const struct fwdb_country *country;
854
855 if (size < sizeof(*hdr))
856 return false;
857
858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 return false;
860
861 if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 return false;
863
864 if (!regdb_has_valid_signature(data, size))
865 return false;
866
867 country = &hdr->country[0];
868 while ((u8 *)(country + 1) <= data + size) {
869 if (!country->coll_ptr)
870 break;
871 if (!valid_country(data, size, country))
872 return false;
873 country++;
874 }
875
876 return true;
877}
878
879static void set_wmm_rule(const struct fwdb_header *db,
880 const struct fwdb_country *country,
881 const struct fwdb_rule *rule,
882 struct ieee80211_reg_rule *rrule)
883{
884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 struct fwdb_wmm_rule *wmm;
886 unsigned int i, wmm_ptr;
887
888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 wmm = (void *)((u8 *)db + wmm_ptr);
890
891 if (!valid_wmm(wmm)) {
892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 country->alpha2[0], country->alpha2[1]);
895 return;
896 }
897
898 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 wmm_rule->client[i].cw_min =
900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
903 wmm_rule->client[i].cot =
904 1000 * be16_to_cpu(wmm->client[i].cot);
905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 }
910
911 rrule->has_wmm = true;
912}
913
914static int __regdb_query_wmm(const struct fwdb_header *db,
915 const struct fwdb_country *country, int freq,
916 struct ieee80211_reg_rule *rrule)
917{
918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 int i;
921
922 for (i = 0; i < coll->n_rules; i++) {
923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 continue;
929
930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 set_wmm_rule(db, country, rule, rrule);
933 return 0;
934 }
935 }
936
937 return -ENODATA;
938}
939
940int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941{
942 const struct fwdb_header *hdr = regdb;
943 const struct fwdb_country *country;
944
945 if (!regdb)
946 return -ENODATA;
947
948 if (IS_ERR(regdb))
949 return PTR_ERR(regdb);
950
951 country = &hdr->country[0];
952 while (country->coll_ptr) {
953 if (alpha2_equal(alpha2, country->alpha2))
954 return __regdb_query_wmm(regdb, country, freq, rule);
955
956 country++;
957 }
958
959 return -ENODATA;
960}
961EXPORT_SYMBOL(reg_query_regdb_wmm);
962
963static int regdb_query_country(const struct fwdb_header *db,
964 const struct fwdb_country *country)
965{
966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 struct ieee80211_regdomain *regdom;
969 unsigned int i;
970
971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 GFP_KERNEL);
973 if (!regdom)
974 return -ENOMEM;
975
976 regdom->n_reg_rules = coll->n_rules;
977 regdom->alpha2[0] = country->alpha2[0];
978 regdom->alpha2[1] = country->alpha2[1];
979 regdom->dfs_region = coll->dfs_region;
980
981 for (i = 0; i < regdom->n_reg_rules; i++) {
982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
986
987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991 rrule->power_rule.max_antenna_gain = 0;
992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994 rrule->flags = 0;
995 if (rule->flags & FWDB_FLAG_NO_OFDM)
996 rrule->flags |= NL80211_RRF_NO_OFDM;
997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 if (rule->flags & FWDB_FLAG_DFS)
1000 rrule->flags |= NL80211_RRF_DFS;
1001 if (rule->flags & FWDB_FLAG_NO_IR)
1002 rrule->flags |= NL80211_RRF_NO_IR;
1003 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006 rrule->dfs_cac_ms = 0;
1007
1008 /* handle optional data */
1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 rrule->dfs_cac_ms =
1011 1000 * be16_to_cpu(rule->cac_timeout);
1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 set_wmm_rule(db, country, rule, rrule);
1014 }
1015
1016 return reg_schedule_apply(regdom);
1017}
1018
1019static int query_regdb(const char *alpha2)
1020{
1021 const struct fwdb_header *hdr = regdb;
1022 const struct fwdb_country *country;
1023
1024 ASSERT_RTNL();
1025
1026 if (IS_ERR(regdb))
1027 return PTR_ERR(regdb);
1028
1029 country = &hdr->country[0];
1030 while (country->coll_ptr) {
1031 if (alpha2_equal(alpha2, country->alpha2))
1032 return regdb_query_country(regdb, country);
1033 country++;
1034 }
1035
1036 return -ENODATA;
1037}
1038
1039static void regdb_fw_cb(const struct firmware *fw, void *context)
1040{
1041 int set_error = 0;
1042 bool restore = true;
1043 void *db;
1044
1045 if (!fw) {
1046 pr_info("failed to load regulatory.db\n");
1047 set_error = -ENODATA;
1048 } else if (!valid_regdb(fw->data, fw->size)) {
1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 set_error = -EINVAL;
1051 }
1052
1053 rtnl_lock();
1054 if (regdb && !IS_ERR(regdb)) {
1055 /* negative case - a bug
1056 * positive case - can happen due to race in case of multiple cb's in
1057 * queue, due to usage of asynchronous callback
1058 *
1059 * Either case, just restore and free new db.
1060 */
1061 } else if (set_error) {
1062 regdb = ERR_PTR(set_error);
1063 } else if (fw) {
1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 if (db) {
1066 regdb = db;
1067 restore = context && query_regdb(context);
1068 } else {
1069 restore = true;
1070 }
1071 }
1072
1073 if (restore)
1074 restore_regulatory_settings(true, false);
1075
1076 rtnl_unlock();
1077
1078 kfree(context);
1079
1080 release_firmware(fw);
1081}
1082
1083MODULE_FIRMWARE("regulatory.db");
1084
1085static int query_regdb_file(const char *alpha2)
1086{
1087 ASSERT_RTNL();
1088
1089 if (regdb)
1090 return query_regdb(alpha2);
1091
1092 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1093 if (!alpha2)
1094 return -ENOMEM;
1095
1096 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1097 ®_pdev->dev, GFP_KERNEL,
1098 (void *)alpha2, regdb_fw_cb);
1099}
1100
1101int reg_reload_regdb(void)
1102{
1103 const struct firmware *fw;
1104 void *db;
1105 int err;
1106 const struct ieee80211_regdomain *current_regdomain;
1107 struct regulatory_request *request;
1108
1109 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1110 if (err)
1111 return err;
1112
1113 if (!valid_regdb(fw->data, fw->size)) {
1114 err = -ENODATA;
1115 goto out;
1116 }
1117
1118 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1119 if (!db) {
1120 err = -ENOMEM;
1121 goto out;
1122 }
1123
1124 rtnl_lock();
1125 if (!IS_ERR_OR_NULL(regdb))
1126 kfree(regdb);
1127 regdb = db;
1128
1129 /* reset regulatory domain */
1130 current_regdomain = get_cfg80211_regdom();
1131
1132 request = kzalloc(sizeof(*request), GFP_KERNEL);
1133 if (!request) {
1134 err = -ENOMEM;
1135 goto out_unlock;
1136 }
1137
1138 request->wiphy_idx = WIPHY_IDX_INVALID;
1139 request->alpha2[0] = current_regdomain->alpha2[0];
1140 request->alpha2[1] = current_regdomain->alpha2[1];
1141 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1142 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1143
1144 reg_process_hint(request);
1145
1146out_unlock:
1147 rtnl_unlock();
1148 out:
1149 release_firmware(fw);
1150 return err;
1151}
1152
1153static bool reg_query_database(struct regulatory_request *request)
1154{
1155 if (query_regdb_file(request->alpha2) == 0)
1156 return true;
1157
1158 if (call_crda(request->alpha2) == 0)
1159 return true;
1160
1161 return false;
1162}
1163
1164bool reg_is_valid_request(const char *alpha2)
1165{
1166 struct regulatory_request *lr = get_last_request();
1167
1168 if (!lr || lr->processed)
1169 return false;
1170
1171 return alpha2_equal(lr->alpha2, alpha2);
1172}
1173
1174static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1175{
1176 struct regulatory_request *lr = get_last_request();
1177
1178 /*
1179 * Follow the driver's regulatory domain, if present, unless a country
1180 * IE has been processed or a user wants to help complaince further
1181 */
1182 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1183 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1184 wiphy->regd)
1185 return get_wiphy_regdom(wiphy);
1186
1187 return get_cfg80211_regdom();
1188}
1189
1190static unsigned int
1191reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1192 const struct ieee80211_reg_rule *rule)
1193{
1194 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1195 const struct ieee80211_freq_range *freq_range_tmp;
1196 const struct ieee80211_reg_rule *tmp;
1197 u32 start_freq, end_freq, idx, no;
1198
1199 for (idx = 0; idx < rd->n_reg_rules; idx++)
1200 if (rule == &rd->reg_rules[idx])
1201 break;
1202
1203 if (idx == rd->n_reg_rules)
1204 return 0;
1205
1206 /* get start_freq */
1207 no = idx;
1208
1209 while (no) {
1210 tmp = &rd->reg_rules[--no];
1211 freq_range_tmp = &tmp->freq_range;
1212
1213 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1214 break;
1215
1216 freq_range = freq_range_tmp;
1217 }
1218
1219 start_freq = freq_range->start_freq_khz;
1220
1221 /* get end_freq */
1222 freq_range = &rule->freq_range;
1223 no = idx;
1224
1225 while (no < rd->n_reg_rules - 1) {
1226 tmp = &rd->reg_rules[++no];
1227 freq_range_tmp = &tmp->freq_range;
1228
1229 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1230 break;
1231
1232 freq_range = freq_range_tmp;
1233 }
1234
1235 end_freq = freq_range->end_freq_khz;
1236
1237 return end_freq - start_freq;
1238}
1239
1240unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1241 const struct ieee80211_reg_rule *rule)
1242{
1243 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1244
1245 if (rule->flags & NL80211_RRF_NO_320MHZ)
1246 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1247 if (rule->flags & NL80211_RRF_NO_160MHZ)
1248 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249 if (rule->flags & NL80211_RRF_NO_80MHZ)
1250 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251
1252 /*
1253 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254 * are not allowed.
1255 */
1256 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257 rule->flags & NL80211_RRF_NO_HT40PLUS)
1258 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259
1260 return bw;
1261}
1262
1263/* Sanity check on a regulatory rule */
1264static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265{
1266 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267 u32 freq_diff;
1268
1269 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270 return false;
1271
1272 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273 return false;
1274
1275 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276
1277 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278 freq_range->max_bandwidth_khz > freq_diff)
1279 return false;
1280
1281 return true;
1282}
1283
1284static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285{
1286 const struct ieee80211_reg_rule *reg_rule = NULL;
1287 unsigned int i;
1288
1289 if (!rd->n_reg_rules)
1290 return false;
1291
1292 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293 return false;
1294
1295 for (i = 0; i < rd->n_reg_rules; i++) {
1296 reg_rule = &rd->reg_rules[i];
1297 if (!is_valid_reg_rule(reg_rule))
1298 return false;
1299 }
1300
1301 return true;
1302}
1303
1304/**
1305 * freq_in_rule_band - tells us if a frequency is in a frequency band
1306 * @freq_range: frequency rule we want to query
1307 * @freq_khz: frequency we are inquiring about
1308 *
1309 * This lets us know if a specific frequency rule is or is not relevant to
1310 * a specific frequency's band. Bands are device specific and artificial
1311 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312 * however it is safe for now to assume that a frequency rule should not be
1313 * part of a frequency's band if the start freq or end freq are off by more
1314 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1315 * 60 GHz band.
1316 * This resolution can be lowered and should be considered as we add
1317 * regulatory rule support for other "bands".
1318 **/
1319static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320 u32 freq_khz)
1321{
1322#define ONE_GHZ_IN_KHZ 1000000
1323 /*
1324 * From 802.11ad: directional multi-gigabit (DMG):
1325 * Pertaining to operation in a frequency band containing a channel
1326 * with the Channel starting frequency above 45 GHz.
1327 */
1328 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331 return true;
1332 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333 return true;
1334 return false;
1335#undef ONE_GHZ_IN_KHZ
1336}
1337
1338/*
1339 * Later on we can perhaps use the more restrictive DFS
1340 * region but we don't have information for that yet so
1341 * for now simply disallow conflicts.
1342 */
1343static enum nl80211_dfs_regions
1344reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345 const enum nl80211_dfs_regions dfs_region2)
1346{
1347 if (dfs_region1 != dfs_region2)
1348 return NL80211_DFS_UNSET;
1349 return dfs_region1;
1350}
1351
1352static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1353 const struct ieee80211_wmm_ac *wmm_ac2,
1354 struct ieee80211_wmm_ac *intersect)
1355{
1356 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1357 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1358 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1359 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1360}
1361
1362/*
1363 * Helper for regdom_intersect(), this does the real
1364 * mathematical intersection fun
1365 */
1366static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1367 const struct ieee80211_regdomain *rd2,
1368 const struct ieee80211_reg_rule *rule1,
1369 const struct ieee80211_reg_rule *rule2,
1370 struct ieee80211_reg_rule *intersected_rule)
1371{
1372 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1373 struct ieee80211_freq_range *freq_range;
1374 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1375 struct ieee80211_power_rule *power_rule;
1376 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1377 struct ieee80211_wmm_rule *wmm_rule;
1378 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1379
1380 freq_range1 = &rule1->freq_range;
1381 freq_range2 = &rule2->freq_range;
1382 freq_range = &intersected_rule->freq_range;
1383
1384 power_rule1 = &rule1->power_rule;
1385 power_rule2 = &rule2->power_rule;
1386 power_rule = &intersected_rule->power_rule;
1387
1388 wmm_rule1 = &rule1->wmm_rule;
1389 wmm_rule2 = &rule2->wmm_rule;
1390 wmm_rule = &intersected_rule->wmm_rule;
1391
1392 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1393 freq_range2->start_freq_khz);
1394 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1395 freq_range2->end_freq_khz);
1396
1397 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1398 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1399
1400 if (rule1->flags & NL80211_RRF_AUTO_BW)
1401 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1402 if (rule2->flags & NL80211_RRF_AUTO_BW)
1403 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1404
1405 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1406
1407 intersected_rule->flags = rule1->flags | rule2->flags;
1408
1409 /*
1410 * In case NL80211_RRF_AUTO_BW requested for both rules
1411 * set AUTO_BW in intersected rule also. Next we will
1412 * calculate BW correctly in handle_channel function.
1413 * In other case remove AUTO_BW flag while we calculate
1414 * maximum bandwidth correctly and auto calculation is
1415 * not required.
1416 */
1417 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1418 (rule2->flags & NL80211_RRF_AUTO_BW))
1419 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1420 else
1421 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1422
1423 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1424 if (freq_range->max_bandwidth_khz > freq_diff)
1425 freq_range->max_bandwidth_khz = freq_diff;
1426
1427 power_rule->max_eirp = min(power_rule1->max_eirp,
1428 power_rule2->max_eirp);
1429 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1430 power_rule2->max_antenna_gain);
1431
1432 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1433 rule2->dfs_cac_ms);
1434
1435 if (rule1->has_wmm && rule2->has_wmm) {
1436 u8 ac;
1437
1438 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1439 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1440 &wmm_rule2->client[ac],
1441 &wmm_rule->client[ac]);
1442 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1443 &wmm_rule2->ap[ac],
1444 &wmm_rule->ap[ac]);
1445 }
1446
1447 intersected_rule->has_wmm = true;
1448 } else if (rule1->has_wmm) {
1449 *wmm_rule = *wmm_rule1;
1450 intersected_rule->has_wmm = true;
1451 } else if (rule2->has_wmm) {
1452 *wmm_rule = *wmm_rule2;
1453 intersected_rule->has_wmm = true;
1454 } else {
1455 intersected_rule->has_wmm = false;
1456 }
1457
1458 if (!is_valid_reg_rule(intersected_rule))
1459 return -EINVAL;
1460
1461 return 0;
1462}
1463
1464/* check whether old rule contains new rule */
1465static bool rule_contains(struct ieee80211_reg_rule *r1,
1466 struct ieee80211_reg_rule *r2)
1467{
1468 /* for simplicity, currently consider only same flags */
1469 if (r1->flags != r2->flags)
1470 return false;
1471
1472 /* verify r1 is more restrictive */
1473 if ((r1->power_rule.max_antenna_gain >
1474 r2->power_rule.max_antenna_gain) ||
1475 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1476 return false;
1477
1478 /* make sure r2's range is contained within r1 */
1479 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1480 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1481 return false;
1482
1483 /* and finally verify that r1.max_bw >= r2.max_bw */
1484 if (r1->freq_range.max_bandwidth_khz <
1485 r2->freq_range.max_bandwidth_khz)
1486 return false;
1487
1488 return true;
1489}
1490
1491/* add or extend current rules. do nothing if rule is already contained */
1492static void add_rule(struct ieee80211_reg_rule *rule,
1493 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1494{
1495 struct ieee80211_reg_rule *tmp_rule;
1496 int i;
1497
1498 for (i = 0; i < *n_rules; i++) {
1499 tmp_rule = ®_rules[i];
1500 /* rule is already contained - do nothing */
1501 if (rule_contains(tmp_rule, rule))
1502 return;
1503
1504 /* extend rule if possible */
1505 if (rule_contains(rule, tmp_rule)) {
1506 memcpy(tmp_rule, rule, sizeof(*rule));
1507 return;
1508 }
1509 }
1510
1511 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1512 (*n_rules)++;
1513}
1514
1515/**
1516 * regdom_intersect - do the intersection between two regulatory domains
1517 * @rd1: first regulatory domain
1518 * @rd2: second regulatory domain
1519 *
1520 * Use this function to get the intersection between two regulatory domains.
1521 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1522 * as no one single alpha2 can represent this regulatory domain.
1523 *
1524 * Returns a pointer to the regulatory domain structure which will hold the
1525 * resulting intersection of rules between rd1 and rd2. We will
1526 * kzalloc() this structure for you.
1527 */
1528static struct ieee80211_regdomain *
1529regdom_intersect(const struct ieee80211_regdomain *rd1,
1530 const struct ieee80211_regdomain *rd2)
1531{
1532 int r;
1533 unsigned int x, y;
1534 unsigned int num_rules = 0;
1535 const struct ieee80211_reg_rule *rule1, *rule2;
1536 struct ieee80211_reg_rule intersected_rule;
1537 struct ieee80211_regdomain *rd;
1538
1539 if (!rd1 || !rd2)
1540 return NULL;
1541
1542 /*
1543 * First we get a count of the rules we'll need, then we actually
1544 * build them. This is to so we can malloc() and free() a
1545 * regdomain once. The reason we use reg_rules_intersect() here
1546 * is it will return -EINVAL if the rule computed makes no sense.
1547 * All rules that do check out OK are valid.
1548 */
1549
1550 for (x = 0; x < rd1->n_reg_rules; x++) {
1551 rule1 = &rd1->reg_rules[x];
1552 for (y = 0; y < rd2->n_reg_rules; y++) {
1553 rule2 = &rd2->reg_rules[y];
1554 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1555 &intersected_rule))
1556 num_rules++;
1557 }
1558 }
1559
1560 if (!num_rules)
1561 return NULL;
1562
1563 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1564 if (!rd)
1565 return NULL;
1566
1567 for (x = 0; x < rd1->n_reg_rules; x++) {
1568 rule1 = &rd1->reg_rules[x];
1569 for (y = 0; y < rd2->n_reg_rules; y++) {
1570 rule2 = &rd2->reg_rules[y];
1571 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1572 &intersected_rule);
1573 /*
1574 * No need to memset here the intersected rule here as
1575 * we're not using the stack anymore
1576 */
1577 if (r)
1578 continue;
1579
1580 add_rule(&intersected_rule, rd->reg_rules,
1581 &rd->n_reg_rules);
1582 }
1583 }
1584
1585 rd->alpha2[0] = '9';
1586 rd->alpha2[1] = '8';
1587 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588 rd2->dfs_region);
1589
1590 return rd;
1591}
1592
1593/*
1594 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1595 * want to just have the channel structure use these
1596 */
1597static u32 map_regdom_flags(u32 rd_flags)
1598{
1599 u32 channel_flags = 0;
1600 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1601 channel_flags |= IEEE80211_CHAN_NO_IR;
1602 if (rd_flags & NL80211_RRF_DFS)
1603 channel_flags |= IEEE80211_CHAN_RADAR;
1604 if (rd_flags & NL80211_RRF_NO_OFDM)
1605 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1606 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1607 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1608 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1609 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1610 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1611 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1612 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1613 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1614 if (rd_flags & NL80211_RRF_NO_80MHZ)
1615 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1616 if (rd_flags & NL80211_RRF_NO_160MHZ)
1617 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1618 if (rd_flags & NL80211_RRF_NO_HE)
1619 channel_flags |= IEEE80211_CHAN_NO_HE;
1620 if (rd_flags & NL80211_RRF_NO_320MHZ)
1621 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1622 return channel_flags;
1623}
1624
1625static const struct ieee80211_reg_rule *
1626freq_reg_info_regd(u32 center_freq,
1627 const struct ieee80211_regdomain *regd, u32 bw)
1628{
1629 int i;
1630 bool band_rule_found = false;
1631 bool bw_fits = false;
1632
1633 if (!regd)
1634 return ERR_PTR(-EINVAL);
1635
1636 for (i = 0; i < regd->n_reg_rules; i++) {
1637 const struct ieee80211_reg_rule *rr;
1638 const struct ieee80211_freq_range *fr = NULL;
1639
1640 rr = ®d->reg_rules[i];
1641 fr = &rr->freq_range;
1642
1643 /*
1644 * We only need to know if one frequency rule was
1645 * in center_freq's band, that's enough, so let's
1646 * not overwrite it once found
1647 */
1648 if (!band_rule_found)
1649 band_rule_found = freq_in_rule_band(fr, center_freq);
1650
1651 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1652
1653 if (band_rule_found && bw_fits)
1654 return rr;
1655 }
1656
1657 if (!band_rule_found)
1658 return ERR_PTR(-ERANGE);
1659
1660 return ERR_PTR(-EINVAL);
1661}
1662
1663static const struct ieee80211_reg_rule *
1664__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1665{
1666 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1667 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1668 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1669 int i = ARRAY_SIZE(bws) - 1;
1670 u32 bw;
1671
1672 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1673 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1674 if (!IS_ERR(reg_rule))
1675 return reg_rule;
1676 }
1677
1678 return reg_rule;
1679}
1680
1681const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1682 u32 center_freq)
1683{
1684 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1685
1686 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1687}
1688EXPORT_SYMBOL(freq_reg_info);
1689
1690const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1691{
1692 switch (initiator) {
1693 case NL80211_REGDOM_SET_BY_CORE:
1694 return "core";
1695 case NL80211_REGDOM_SET_BY_USER:
1696 return "user";
1697 case NL80211_REGDOM_SET_BY_DRIVER:
1698 return "driver";
1699 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1700 return "country element";
1701 default:
1702 WARN_ON(1);
1703 return "bug";
1704 }
1705}
1706EXPORT_SYMBOL(reg_initiator_name);
1707
1708static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1709 const struct ieee80211_reg_rule *reg_rule,
1710 const struct ieee80211_channel *chan)
1711{
1712 const struct ieee80211_freq_range *freq_range = NULL;
1713 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1714 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1715
1716 freq_range = ®_rule->freq_range;
1717
1718 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1719 center_freq_khz = ieee80211_channel_to_khz(chan);
1720 /* Check if auto calculation requested */
1721 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723
1724 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1725 if (!cfg80211_does_bw_fit_range(freq_range,
1726 center_freq_khz,
1727 MHZ_TO_KHZ(10)))
1728 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1729 if (!cfg80211_does_bw_fit_range(freq_range,
1730 center_freq_khz,
1731 MHZ_TO_KHZ(20)))
1732 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1733
1734 if (is_s1g) {
1735 /* S1G is strict about non overlapping channels. We can
1736 * calculate which bandwidth is allowed per channel by finding
1737 * the largest bandwidth which cleanly divides the freq_range.
1738 */
1739 int edge_offset;
1740 int ch_bw = max_bandwidth_khz;
1741
1742 while (ch_bw) {
1743 edge_offset = (center_freq_khz - ch_bw / 2) -
1744 freq_range->start_freq_khz;
1745 if (edge_offset % ch_bw == 0) {
1746 switch (KHZ_TO_MHZ(ch_bw)) {
1747 case 1:
1748 bw_flags |= IEEE80211_CHAN_1MHZ;
1749 break;
1750 case 2:
1751 bw_flags |= IEEE80211_CHAN_2MHZ;
1752 break;
1753 case 4:
1754 bw_flags |= IEEE80211_CHAN_4MHZ;
1755 break;
1756 case 8:
1757 bw_flags |= IEEE80211_CHAN_8MHZ;
1758 break;
1759 case 16:
1760 bw_flags |= IEEE80211_CHAN_16MHZ;
1761 break;
1762 default:
1763 /* If we got here, no bandwidths fit on
1764 * this frequency, ie. band edge.
1765 */
1766 bw_flags |= IEEE80211_CHAN_DISABLED;
1767 break;
1768 }
1769 break;
1770 }
1771 ch_bw /= 2;
1772 }
1773 } else {
1774 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1775 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1776 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1777 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1778 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1779 bw_flags |= IEEE80211_CHAN_NO_HT40;
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1781 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1782 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1783 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1784 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1785 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1786 }
1787 return bw_flags;
1788}
1789
1790static void handle_channel_single_rule(struct wiphy *wiphy,
1791 enum nl80211_reg_initiator initiator,
1792 struct ieee80211_channel *chan,
1793 u32 flags,
1794 struct regulatory_request *lr,
1795 struct wiphy *request_wiphy,
1796 const struct ieee80211_reg_rule *reg_rule)
1797{
1798 u32 bw_flags = 0;
1799 const struct ieee80211_power_rule *power_rule = NULL;
1800 const struct ieee80211_regdomain *regd;
1801
1802 regd = reg_get_regdomain(wiphy);
1803
1804 power_rule = ®_rule->power_rule;
1805 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1806
1807 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1808 request_wiphy && request_wiphy == wiphy &&
1809 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1810 /*
1811 * This guarantees the driver's requested regulatory domain
1812 * will always be used as a base for further regulatory
1813 * settings
1814 */
1815 chan->flags = chan->orig_flags =
1816 map_regdom_flags(reg_rule->flags) | bw_flags;
1817 chan->max_antenna_gain = chan->orig_mag =
1818 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1819 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1820 (int) MBM_TO_DBM(power_rule->max_eirp);
1821
1822 if (chan->flags & IEEE80211_CHAN_RADAR) {
1823 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1824 if (reg_rule->dfs_cac_ms)
1825 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1826 }
1827
1828 return;
1829 }
1830
1831 chan->dfs_state = NL80211_DFS_USABLE;
1832 chan->dfs_state_entered = jiffies;
1833
1834 chan->beacon_found = false;
1835 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1836 chan->max_antenna_gain =
1837 min_t(int, chan->orig_mag,
1838 MBI_TO_DBI(power_rule->max_antenna_gain));
1839 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1840
1841 if (chan->flags & IEEE80211_CHAN_RADAR) {
1842 if (reg_rule->dfs_cac_ms)
1843 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1844 else
1845 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1846 }
1847
1848 if (chan->orig_mpwr) {
1849 /*
1850 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1851 * will always follow the passed country IE power settings.
1852 */
1853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1854 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1855 chan->max_power = chan->max_reg_power;
1856 else
1857 chan->max_power = min(chan->orig_mpwr,
1858 chan->max_reg_power);
1859 } else
1860 chan->max_power = chan->max_reg_power;
1861}
1862
1863static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1864 enum nl80211_reg_initiator initiator,
1865 struct ieee80211_channel *chan,
1866 u32 flags,
1867 struct regulatory_request *lr,
1868 struct wiphy *request_wiphy,
1869 const struct ieee80211_reg_rule *rrule1,
1870 const struct ieee80211_reg_rule *rrule2,
1871 struct ieee80211_freq_range *comb_range)
1872{
1873 u32 bw_flags1 = 0;
1874 u32 bw_flags2 = 0;
1875 const struct ieee80211_power_rule *power_rule1 = NULL;
1876 const struct ieee80211_power_rule *power_rule2 = NULL;
1877 const struct ieee80211_regdomain *regd;
1878
1879 regd = reg_get_regdomain(wiphy);
1880
1881 power_rule1 = &rrule1->power_rule;
1882 power_rule2 = &rrule2->power_rule;
1883 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1884 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1885
1886 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1887 request_wiphy && request_wiphy == wiphy &&
1888 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1889 /* This guarantees the driver's requested regulatory domain
1890 * will always be used as a base for further regulatory
1891 * settings
1892 */
1893 chan->flags =
1894 map_regdom_flags(rrule1->flags) |
1895 map_regdom_flags(rrule2->flags) |
1896 bw_flags1 |
1897 bw_flags2;
1898 chan->orig_flags = chan->flags;
1899 chan->max_antenna_gain =
1900 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1901 MBI_TO_DBI(power_rule2->max_antenna_gain));
1902 chan->orig_mag = chan->max_antenna_gain;
1903 chan->max_reg_power =
1904 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1905 MBM_TO_DBM(power_rule2->max_eirp));
1906 chan->max_power = chan->max_reg_power;
1907 chan->orig_mpwr = chan->max_reg_power;
1908
1909 if (chan->flags & IEEE80211_CHAN_RADAR) {
1910 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912 chan->dfs_cac_ms = max_t(unsigned int,
1913 rrule1->dfs_cac_ms,
1914 rrule2->dfs_cac_ms);
1915 }
1916
1917 return;
1918 }
1919
1920 chan->dfs_state = NL80211_DFS_USABLE;
1921 chan->dfs_state_entered = jiffies;
1922
1923 chan->beacon_found = false;
1924 chan->flags = flags | bw_flags1 | bw_flags2 |
1925 map_regdom_flags(rrule1->flags) |
1926 map_regdom_flags(rrule2->flags);
1927
1928 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1929 * (otherwise no adj. rule case), recheck therefore
1930 */
1931 if (cfg80211_does_bw_fit_range(comb_range,
1932 ieee80211_channel_to_khz(chan),
1933 MHZ_TO_KHZ(10)))
1934 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1935 if (cfg80211_does_bw_fit_range(comb_range,
1936 ieee80211_channel_to_khz(chan),
1937 MHZ_TO_KHZ(20)))
1938 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1939
1940 chan->max_antenna_gain =
1941 min_t(int, chan->orig_mag,
1942 min_t(int,
1943 MBI_TO_DBI(power_rule1->max_antenna_gain),
1944 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1945 chan->max_reg_power = min_t(int,
1946 MBM_TO_DBM(power_rule1->max_eirp),
1947 MBM_TO_DBM(power_rule2->max_eirp));
1948
1949 if (chan->flags & IEEE80211_CHAN_RADAR) {
1950 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1951 chan->dfs_cac_ms = max_t(unsigned int,
1952 rrule1->dfs_cac_ms,
1953 rrule2->dfs_cac_ms);
1954 else
1955 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1956 }
1957
1958 if (chan->orig_mpwr) {
1959 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1960 * will always follow the passed country IE power settings.
1961 */
1962 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1963 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1964 chan->max_power = chan->max_reg_power;
1965 else
1966 chan->max_power = min(chan->orig_mpwr,
1967 chan->max_reg_power);
1968 } else {
1969 chan->max_power = chan->max_reg_power;
1970 }
1971}
1972
1973/* Note that right now we assume the desired channel bandwidth
1974 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1975 * per channel, the primary and the extension channel).
1976 */
1977static void handle_channel(struct wiphy *wiphy,
1978 enum nl80211_reg_initiator initiator,
1979 struct ieee80211_channel *chan)
1980{
1981 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1982 struct regulatory_request *lr = get_last_request();
1983 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1984 const struct ieee80211_reg_rule *rrule = NULL;
1985 const struct ieee80211_reg_rule *rrule1 = NULL;
1986 const struct ieee80211_reg_rule *rrule2 = NULL;
1987
1988 u32 flags = chan->orig_flags;
1989
1990 rrule = freq_reg_info(wiphy, orig_chan_freq);
1991 if (IS_ERR(rrule)) {
1992 /* check for adjacent match, therefore get rules for
1993 * chan - 20 MHz and chan + 20 MHz and test
1994 * if reg rules are adjacent
1995 */
1996 rrule1 = freq_reg_info(wiphy,
1997 orig_chan_freq - MHZ_TO_KHZ(20));
1998 rrule2 = freq_reg_info(wiphy,
1999 orig_chan_freq + MHZ_TO_KHZ(20));
2000 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2001 struct ieee80211_freq_range comb_range;
2002
2003 if (rrule1->freq_range.end_freq_khz !=
2004 rrule2->freq_range.start_freq_khz)
2005 goto disable_chan;
2006
2007 comb_range.start_freq_khz =
2008 rrule1->freq_range.start_freq_khz;
2009 comb_range.end_freq_khz =
2010 rrule2->freq_range.end_freq_khz;
2011 comb_range.max_bandwidth_khz =
2012 min_t(u32,
2013 rrule1->freq_range.max_bandwidth_khz,
2014 rrule2->freq_range.max_bandwidth_khz);
2015
2016 if (!cfg80211_does_bw_fit_range(&comb_range,
2017 orig_chan_freq,
2018 MHZ_TO_KHZ(20)))
2019 goto disable_chan;
2020
2021 handle_channel_adjacent_rules(wiphy, initiator, chan,
2022 flags, lr, request_wiphy,
2023 rrule1, rrule2,
2024 &comb_range);
2025 return;
2026 }
2027
2028disable_chan:
2029 /* We will disable all channels that do not match our
2030 * received regulatory rule unless the hint is coming
2031 * from a Country IE and the Country IE had no information
2032 * about a band. The IEEE 802.11 spec allows for an AP
2033 * to send only a subset of the regulatory rules allowed,
2034 * so an AP in the US that only supports 2.4 GHz may only send
2035 * a country IE with information for the 2.4 GHz band
2036 * while 5 GHz is still supported.
2037 */
2038 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2039 PTR_ERR(rrule) == -ERANGE)
2040 return;
2041
2042 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2043 request_wiphy && request_wiphy == wiphy &&
2044 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2045 pr_debug("Disabling freq %d.%03d MHz for good\n",
2046 chan->center_freq, chan->freq_offset);
2047 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2048 chan->flags = chan->orig_flags;
2049 } else {
2050 pr_debug("Disabling freq %d.%03d MHz\n",
2051 chan->center_freq, chan->freq_offset);
2052 chan->flags |= IEEE80211_CHAN_DISABLED;
2053 }
2054 return;
2055 }
2056
2057 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2058 request_wiphy, rrule);
2059}
2060
2061static void handle_band(struct wiphy *wiphy,
2062 enum nl80211_reg_initiator initiator,
2063 struct ieee80211_supported_band *sband)
2064{
2065 unsigned int i;
2066
2067 if (!sband)
2068 return;
2069
2070 for (i = 0; i < sband->n_channels; i++)
2071 handle_channel(wiphy, initiator, &sband->channels[i]);
2072}
2073
2074static bool reg_request_cell_base(struct regulatory_request *request)
2075{
2076 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2077 return false;
2078 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2079}
2080
2081bool reg_last_request_cell_base(void)
2082{
2083 return reg_request_cell_base(get_last_request());
2084}
2085
2086#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2087/* Core specific check */
2088static enum reg_request_treatment
2089reg_ignore_cell_hint(struct regulatory_request *pending_request)
2090{
2091 struct regulatory_request *lr = get_last_request();
2092
2093 if (!reg_num_devs_support_basehint)
2094 return REG_REQ_IGNORE;
2095
2096 if (reg_request_cell_base(lr) &&
2097 !regdom_changes(pending_request->alpha2))
2098 return REG_REQ_ALREADY_SET;
2099
2100 return REG_REQ_OK;
2101}
2102
2103/* Device specific check */
2104static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2105{
2106 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2107}
2108#else
2109static enum reg_request_treatment
2110reg_ignore_cell_hint(struct regulatory_request *pending_request)
2111{
2112 return REG_REQ_IGNORE;
2113}
2114
2115static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2116{
2117 return true;
2118}
2119#endif
2120
2121static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2122{
2123 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2124 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2125 return true;
2126 return false;
2127}
2128
2129static bool ignore_reg_update(struct wiphy *wiphy,
2130 enum nl80211_reg_initiator initiator)
2131{
2132 struct regulatory_request *lr = get_last_request();
2133
2134 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2135 return true;
2136
2137 if (!lr) {
2138 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2139 reg_initiator_name(initiator));
2140 return true;
2141 }
2142
2143 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2144 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2145 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2146 reg_initiator_name(initiator));
2147 return true;
2148 }
2149
2150 /*
2151 * wiphy->regd will be set once the device has its own
2152 * desired regulatory domain set
2153 */
2154 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2155 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2156 !is_world_regdom(lr->alpha2)) {
2157 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2158 reg_initiator_name(initiator));
2159 return true;
2160 }
2161
2162 if (reg_request_cell_base(lr))
2163 return reg_dev_ignore_cell_hint(wiphy);
2164
2165 return false;
2166}
2167
2168static bool reg_is_world_roaming(struct wiphy *wiphy)
2169{
2170 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2171 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2172 struct regulatory_request *lr = get_last_request();
2173
2174 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2175 return true;
2176
2177 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2178 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2179 return true;
2180
2181 return false;
2182}
2183
2184static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185 struct reg_beacon *reg_beacon)
2186{
2187 struct ieee80211_supported_band *sband;
2188 struct ieee80211_channel *chan;
2189 bool channel_changed = false;
2190 struct ieee80211_channel chan_before;
2191
2192 sband = wiphy->bands[reg_beacon->chan.band];
2193 chan = &sband->channels[chan_idx];
2194
2195 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2196 return;
2197
2198 if (chan->beacon_found)
2199 return;
2200
2201 chan->beacon_found = true;
2202
2203 if (!reg_is_world_roaming(wiphy))
2204 return;
2205
2206 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2207 return;
2208
2209 chan_before = *chan;
2210
2211 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2212 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2213 channel_changed = true;
2214 }
2215
2216 if (channel_changed)
2217 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2218}
2219
2220/*
2221 * Called when a scan on a wiphy finds a beacon on
2222 * new channel
2223 */
2224static void wiphy_update_new_beacon(struct wiphy *wiphy,
2225 struct reg_beacon *reg_beacon)
2226{
2227 unsigned int i;
2228 struct ieee80211_supported_band *sband;
2229
2230 if (!wiphy->bands[reg_beacon->chan.band])
2231 return;
2232
2233 sband = wiphy->bands[reg_beacon->chan.band];
2234
2235 for (i = 0; i < sband->n_channels; i++)
2236 handle_reg_beacon(wiphy, i, reg_beacon);
2237}
2238
2239/*
2240 * Called upon reg changes or a new wiphy is added
2241 */
2242static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2243{
2244 unsigned int i;
2245 struct ieee80211_supported_band *sband;
2246 struct reg_beacon *reg_beacon;
2247
2248 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2249 if (!wiphy->bands[reg_beacon->chan.band])
2250 continue;
2251 sband = wiphy->bands[reg_beacon->chan.band];
2252 for (i = 0; i < sband->n_channels; i++)
2253 handle_reg_beacon(wiphy, i, reg_beacon);
2254 }
2255}
2256
2257/* Reap the advantages of previously found beacons */
2258static void reg_process_beacons(struct wiphy *wiphy)
2259{
2260 /*
2261 * Means we are just firing up cfg80211, so no beacons would
2262 * have been processed yet.
2263 */
2264 if (!last_request)
2265 return;
2266 wiphy_update_beacon_reg(wiphy);
2267}
2268
2269static bool is_ht40_allowed(struct ieee80211_channel *chan)
2270{
2271 if (!chan)
2272 return false;
2273 if (chan->flags & IEEE80211_CHAN_DISABLED)
2274 return false;
2275 /* This would happen when regulatory rules disallow HT40 completely */
2276 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2277 return false;
2278 return true;
2279}
2280
2281static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2282 struct ieee80211_channel *channel)
2283{
2284 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2285 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2286 const struct ieee80211_regdomain *regd;
2287 unsigned int i;
2288 u32 flags;
2289
2290 if (!is_ht40_allowed(channel)) {
2291 channel->flags |= IEEE80211_CHAN_NO_HT40;
2292 return;
2293 }
2294
2295 /*
2296 * We need to ensure the extension channels exist to
2297 * be able to use HT40- or HT40+, this finds them (or not)
2298 */
2299 for (i = 0; i < sband->n_channels; i++) {
2300 struct ieee80211_channel *c = &sband->channels[i];
2301
2302 if (c->center_freq == (channel->center_freq - 20))
2303 channel_before = c;
2304 if (c->center_freq == (channel->center_freq + 20))
2305 channel_after = c;
2306 }
2307
2308 flags = 0;
2309 regd = get_wiphy_regdom(wiphy);
2310 if (regd) {
2311 const struct ieee80211_reg_rule *reg_rule =
2312 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2313 regd, MHZ_TO_KHZ(20));
2314
2315 if (!IS_ERR(reg_rule))
2316 flags = reg_rule->flags;
2317 }
2318
2319 /*
2320 * Please note that this assumes target bandwidth is 20 MHz,
2321 * if that ever changes we also need to change the below logic
2322 * to include that as well.
2323 */
2324 if (!is_ht40_allowed(channel_before) ||
2325 flags & NL80211_RRF_NO_HT40MINUS)
2326 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2327 else
2328 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2329
2330 if (!is_ht40_allowed(channel_after) ||
2331 flags & NL80211_RRF_NO_HT40PLUS)
2332 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2333 else
2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2335}
2336
2337static void reg_process_ht_flags_band(struct wiphy *wiphy,
2338 struct ieee80211_supported_band *sband)
2339{
2340 unsigned int i;
2341
2342 if (!sband)
2343 return;
2344
2345 for (i = 0; i < sband->n_channels; i++)
2346 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2347}
2348
2349static void reg_process_ht_flags(struct wiphy *wiphy)
2350{
2351 enum nl80211_band band;
2352
2353 if (!wiphy)
2354 return;
2355
2356 for (band = 0; band < NUM_NL80211_BANDS; band++)
2357 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2358}
2359
2360static void reg_call_notifier(struct wiphy *wiphy,
2361 struct regulatory_request *request)
2362{
2363 if (wiphy->reg_notifier)
2364 wiphy->reg_notifier(wiphy, request);
2365}
2366
2367static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368{
2369 struct cfg80211_chan_def chandef = {};
2370 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371 enum nl80211_iftype iftype;
2372 bool ret;
2373
2374 wdev_lock(wdev);
2375 iftype = wdev->iftype;
2376
2377 /* make sure the interface is active */
2378 if (!wdev->netdev || !netif_running(wdev->netdev))
2379 goto wdev_inactive_unlock;
2380
2381 switch (iftype) {
2382 case NL80211_IFTYPE_AP:
2383 case NL80211_IFTYPE_P2P_GO:
2384 case NL80211_IFTYPE_MESH_POINT:
2385 if (!wdev->beacon_interval)
2386 goto wdev_inactive_unlock;
2387 chandef = wdev->chandef;
2388 break;
2389 case NL80211_IFTYPE_ADHOC:
2390 if (!wdev->ssid_len)
2391 goto wdev_inactive_unlock;
2392 chandef = wdev->chandef;
2393 break;
2394 case NL80211_IFTYPE_STATION:
2395 case NL80211_IFTYPE_P2P_CLIENT:
2396 if (!wdev->current_bss ||
2397 !wdev->current_bss->pub.channel)
2398 goto wdev_inactive_unlock;
2399
2400 if (!rdev->ops->get_channel ||
2401 rdev_get_channel(rdev, wdev, &chandef))
2402 cfg80211_chandef_create(&chandef,
2403 wdev->current_bss->pub.channel,
2404 NL80211_CHAN_NO_HT);
2405 break;
2406 case NL80211_IFTYPE_MONITOR:
2407 case NL80211_IFTYPE_AP_VLAN:
2408 case NL80211_IFTYPE_P2P_DEVICE:
2409 /* no enforcement required */
2410 break;
2411 default:
2412 /* others not implemented for now */
2413 WARN_ON(1);
2414 break;
2415 }
2416
2417 wdev_unlock(wdev);
2418
2419 switch (iftype) {
2420 case NL80211_IFTYPE_AP:
2421 case NL80211_IFTYPE_P2P_GO:
2422 case NL80211_IFTYPE_ADHOC:
2423 case NL80211_IFTYPE_MESH_POINT:
2424 wiphy_lock(wiphy);
2425 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2426 wiphy_unlock(wiphy);
2427
2428 return ret;
2429 case NL80211_IFTYPE_STATION:
2430 case NL80211_IFTYPE_P2P_CLIENT:
2431 return cfg80211_chandef_usable(wiphy, &chandef,
2432 IEEE80211_CHAN_DISABLED);
2433 default:
2434 break;
2435 }
2436
2437 return true;
2438
2439wdev_inactive_unlock:
2440 wdev_unlock(wdev);
2441 return true;
2442}
2443
2444static void reg_leave_invalid_chans(struct wiphy *wiphy)
2445{
2446 struct wireless_dev *wdev;
2447 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2448
2449 ASSERT_RTNL();
2450
2451 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452 if (!reg_wdev_chan_valid(wiphy, wdev))
2453 cfg80211_leave(rdev, wdev);
2454}
2455
2456static void reg_check_chans_work(struct work_struct *work)
2457{
2458 struct cfg80211_registered_device *rdev;
2459
2460 pr_debug("Verifying active interfaces after reg change\n");
2461 rtnl_lock();
2462
2463 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2464 if (!(rdev->wiphy.regulatory_flags &
2465 REGULATORY_IGNORE_STALE_KICKOFF))
2466 reg_leave_invalid_chans(&rdev->wiphy);
2467
2468 rtnl_unlock();
2469}
2470
2471static void reg_check_channels(void)
2472{
2473 /*
2474 * Give usermode a chance to do something nicer (move to another
2475 * channel, orderly disconnection), before forcing a disconnection.
2476 */
2477 mod_delayed_work(system_power_efficient_wq,
2478 ®_check_chans,
2479 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2480}
2481
2482static void wiphy_update_regulatory(struct wiphy *wiphy,
2483 enum nl80211_reg_initiator initiator)
2484{
2485 enum nl80211_band band;
2486 struct regulatory_request *lr = get_last_request();
2487
2488 if (ignore_reg_update(wiphy, initiator)) {
2489 /*
2490 * Regulatory updates set by CORE are ignored for custom
2491 * regulatory cards. Let us notify the changes to the driver,
2492 * as some drivers used this to restore its orig_* reg domain.
2493 */
2494 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2495 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2496 !(wiphy->regulatory_flags &
2497 REGULATORY_WIPHY_SELF_MANAGED))
2498 reg_call_notifier(wiphy, lr);
2499 return;
2500 }
2501
2502 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2503
2504 for (band = 0; band < NUM_NL80211_BANDS; band++)
2505 handle_band(wiphy, initiator, wiphy->bands[band]);
2506
2507 reg_process_beacons(wiphy);
2508 reg_process_ht_flags(wiphy);
2509 reg_call_notifier(wiphy, lr);
2510}
2511
2512static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2513{
2514 struct cfg80211_registered_device *rdev;
2515 struct wiphy *wiphy;
2516
2517 ASSERT_RTNL();
2518
2519 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2520 wiphy = &rdev->wiphy;
2521 wiphy_update_regulatory(wiphy, initiator);
2522 }
2523
2524 reg_check_channels();
2525}
2526
2527static void handle_channel_custom(struct wiphy *wiphy,
2528 struct ieee80211_channel *chan,
2529 const struct ieee80211_regdomain *regd,
2530 u32 min_bw)
2531{
2532 u32 bw_flags = 0;
2533 const struct ieee80211_reg_rule *reg_rule = NULL;
2534 const struct ieee80211_power_rule *power_rule = NULL;
2535 u32 bw, center_freq_khz;
2536
2537 center_freq_khz = ieee80211_channel_to_khz(chan);
2538 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2539 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2540 if (!IS_ERR(reg_rule))
2541 break;
2542 }
2543
2544 if (IS_ERR_OR_NULL(reg_rule)) {
2545 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2546 chan->center_freq, chan->freq_offset);
2547 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2548 chan->flags |= IEEE80211_CHAN_DISABLED;
2549 } else {
2550 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2551 chan->flags = chan->orig_flags;
2552 }
2553 return;
2554 }
2555
2556 power_rule = ®_rule->power_rule;
2557 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2558
2559 chan->dfs_state_entered = jiffies;
2560 chan->dfs_state = NL80211_DFS_USABLE;
2561
2562 chan->beacon_found = false;
2563
2564 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2565 chan->flags = chan->orig_flags | bw_flags |
2566 map_regdom_flags(reg_rule->flags);
2567 else
2568 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2569
2570 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2571 chan->max_reg_power = chan->max_power =
2572 (int) MBM_TO_DBM(power_rule->max_eirp);
2573
2574 if (chan->flags & IEEE80211_CHAN_RADAR) {
2575 if (reg_rule->dfs_cac_ms)
2576 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2577 else
2578 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2579 }
2580
2581 chan->max_power = chan->max_reg_power;
2582}
2583
2584static void handle_band_custom(struct wiphy *wiphy,
2585 struct ieee80211_supported_band *sband,
2586 const struct ieee80211_regdomain *regd)
2587{
2588 unsigned int i;
2589
2590 if (!sband)
2591 return;
2592
2593 /*
2594 * We currently assume that you always want at least 20 MHz,
2595 * otherwise channel 12 might get enabled if this rule is
2596 * compatible to US, which permits 2402 - 2472 MHz.
2597 */
2598 for (i = 0; i < sband->n_channels; i++)
2599 handle_channel_custom(wiphy, &sband->channels[i], regd,
2600 MHZ_TO_KHZ(20));
2601}
2602
2603/* Used by drivers prior to wiphy registration */
2604void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2605 const struct ieee80211_regdomain *regd)
2606{
2607 const struct ieee80211_regdomain *new_regd, *tmp;
2608 enum nl80211_band band;
2609 unsigned int bands_set = 0;
2610
2611 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2612 "wiphy should have REGULATORY_CUSTOM_REG\n");
2613 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2614
2615 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2616 if (!wiphy->bands[band])
2617 continue;
2618 handle_band_custom(wiphy, wiphy->bands[band], regd);
2619 bands_set++;
2620 }
2621
2622 /*
2623 * no point in calling this if it won't have any effect
2624 * on your device's supported bands.
2625 */
2626 WARN_ON(!bands_set);
2627 new_regd = reg_copy_regd(regd);
2628 if (IS_ERR(new_regd))
2629 return;
2630
2631 rtnl_lock();
2632 wiphy_lock(wiphy);
2633
2634 tmp = get_wiphy_regdom(wiphy);
2635 rcu_assign_pointer(wiphy->regd, new_regd);
2636 rcu_free_regdom(tmp);
2637
2638 wiphy_unlock(wiphy);
2639 rtnl_unlock();
2640}
2641EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2642
2643static void reg_set_request_processed(void)
2644{
2645 bool need_more_processing = false;
2646 struct regulatory_request *lr = get_last_request();
2647
2648 lr->processed = true;
2649
2650 spin_lock(®_requests_lock);
2651 if (!list_empty(®_requests_list))
2652 need_more_processing = true;
2653 spin_unlock(®_requests_lock);
2654
2655 cancel_crda_timeout();
2656
2657 if (need_more_processing)
2658 schedule_work(®_work);
2659}
2660
2661/**
2662 * reg_process_hint_core - process core regulatory requests
2663 * @core_request: a pending core regulatory request
2664 *
2665 * The wireless subsystem can use this function to process
2666 * a regulatory request issued by the regulatory core.
2667 */
2668static enum reg_request_treatment
2669reg_process_hint_core(struct regulatory_request *core_request)
2670{
2671 if (reg_query_database(core_request)) {
2672 core_request->intersect = false;
2673 core_request->processed = false;
2674 reg_update_last_request(core_request);
2675 return REG_REQ_OK;
2676 }
2677
2678 return REG_REQ_IGNORE;
2679}
2680
2681static enum reg_request_treatment
2682__reg_process_hint_user(struct regulatory_request *user_request)
2683{
2684 struct regulatory_request *lr = get_last_request();
2685
2686 if (reg_request_cell_base(user_request))
2687 return reg_ignore_cell_hint(user_request);
2688
2689 if (reg_request_cell_base(lr))
2690 return REG_REQ_IGNORE;
2691
2692 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2693 return REG_REQ_INTERSECT;
2694 /*
2695 * If the user knows better the user should set the regdom
2696 * to their country before the IE is picked up
2697 */
2698 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2699 lr->intersect)
2700 return REG_REQ_IGNORE;
2701 /*
2702 * Process user requests only after previous user/driver/core
2703 * requests have been processed
2704 */
2705 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2706 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2707 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2708 regdom_changes(lr->alpha2))
2709 return REG_REQ_IGNORE;
2710
2711 if (!regdom_changes(user_request->alpha2))
2712 return REG_REQ_ALREADY_SET;
2713
2714 return REG_REQ_OK;
2715}
2716
2717/**
2718 * reg_process_hint_user - process user regulatory requests
2719 * @user_request: a pending user regulatory request
2720 *
2721 * The wireless subsystem can use this function to process
2722 * a regulatory request initiated by userspace.
2723 */
2724static enum reg_request_treatment
2725reg_process_hint_user(struct regulatory_request *user_request)
2726{
2727 enum reg_request_treatment treatment;
2728
2729 treatment = __reg_process_hint_user(user_request);
2730 if (treatment == REG_REQ_IGNORE ||
2731 treatment == REG_REQ_ALREADY_SET)
2732 return REG_REQ_IGNORE;
2733
2734 user_request->intersect = treatment == REG_REQ_INTERSECT;
2735 user_request->processed = false;
2736
2737 if (reg_query_database(user_request)) {
2738 reg_update_last_request(user_request);
2739 user_alpha2[0] = user_request->alpha2[0];
2740 user_alpha2[1] = user_request->alpha2[1];
2741 return REG_REQ_OK;
2742 }
2743
2744 return REG_REQ_IGNORE;
2745}
2746
2747static enum reg_request_treatment
2748__reg_process_hint_driver(struct regulatory_request *driver_request)
2749{
2750 struct regulatory_request *lr = get_last_request();
2751
2752 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2753 if (regdom_changes(driver_request->alpha2))
2754 return REG_REQ_OK;
2755 return REG_REQ_ALREADY_SET;
2756 }
2757
2758 /*
2759 * This would happen if you unplug and plug your card
2760 * back in or if you add a new device for which the previously
2761 * loaded card also agrees on the regulatory domain.
2762 */
2763 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2764 !regdom_changes(driver_request->alpha2))
2765 return REG_REQ_ALREADY_SET;
2766
2767 return REG_REQ_INTERSECT;
2768}
2769
2770/**
2771 * reg_process_hint_driver - process driver regulatory requests
2772 * @wiphy: the wireless device for the regulatory request
2773 * @driver_request: a pending driver regulatory request
2774 *
2775 * The wireless subsystem can use this function to process
2776 * a regulatory request issued by an 802.11 driver.
2777 *
2778 * Returns one of the different reg request treatment values.
2779 */
2780static enum reg_request_treatment
2781reg_process_hint_driver(struct wiphy *wiphy,
2782 struct regulatory_request *driver_request)
2783{
2784 const struct ieee80211_regdomain *regd, *tmp;
2785 enum reg_request_treatment treatment;
2786
2787 treatment = __reg_process_hint_driver(driver_request);
2788
2789 switch (treatment) {
2790 case REG_REQ_OK:
2791 break;
2792 case REG_REQ_IGNORE:
2793 return REG_REQ_IGNORE;
2794 case REG_REQ_INTERSECT:
2795 case REG_REQ_ALREADY_SET:
2796 regd = reg_copy_regd(get_cfg80211_regdom());
2797 if (IS_ERR(regd))
2798 return REG_REQ_IGNORE;
2799
2800 tmp = get_wiphy_regdom(wiphy);
2801 ASSERT_RTNL();
2802 wiphy_lock(wiphy);
2803 rcu_assign_pointer(wiphy->regd, regd);
2804 wiphy_unlock(wiphy);
2805 rcu_free_regdom(tmp);
2806 }
2807
2808
2809 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2810 driver_request->processed = false;
2811
2812 /*
2813 * Since CRDA will not be called in this case as we already
2814 * have applied the requested regulatory domain before we just
2815 * inform userspace we have processed the request
2816 */
2817 if (treatment == REG_REQ_ALREADY_SET) {
2818 nl80211_send_reg_change_event(driver_request);
2819 reg_update_last_request(driver_request);
2820 reg_set_request_processed();
2821 return REG_REQ_ALREADY_SET;
2822 }
2823
2824 if (reg_query_database(driver_request)) {
2825 reg_update_last_request(driver_request);
2826 return REG_REQ_OK;
2827 }
2828
2829 return REG_REQ_IGNORE;
2830}
2831
2832static enum reg_request_treatment
2833__reg_process_hint_country_ie(struct wiphy *wiphy,
2834 struct regulatory_request *country_ie_request)
2835{
2836 struct wiphy *last_wiphy = NULL;
2837 struct regulatory_request *lr = get_last_request();
2838
2839 if (reg_request_cell_base(lr)) {
2840 /* Trust a Cell base station over the AP's country IE */
2841 if (regdom_changes(country_ie_request->alpha2))
2842 return REG_REQ_IGNORE;
2843 return REG_REQ_ALREADY_SET;
2844 } else {
2845 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2846 return REG_REQ_IGNORE;
2847 }
2848
2849 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2850 return -EINVAL;
2851
2852 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2853 return REG_REQ_OK;
2854
2855 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2856
2857 if (last_wiphy != wiphy) {
2858 /*
2859 * Two cards with two APs claiming different
2860 * Country IE alpha2s. We could
2861 * intersect them, but that seems unlikely
2862 * to be correct. Reject second one for now.
2863 */
2864 if (regdom_changes(country_ie_request->alpha2))
2865 return REG_REQ_IGNORE;
2866 return REG_REQ_ALREADY_SET;
2867 }
2868
2869 if (regdom_changes(country_ie_request->alpha2))
2870 return REG_REQ_OK;
2871 return REG_REQ_ALREADY_SET;
2872}
2873
2874/**
2875 * reg_process_hint_country_ie - process regulatory requests from country IEs
2876 * @wiphy: the wireless device for the regulatory request
2877 * @country_ie_request: a regulatory request from a country IE
2878 *
2879 * The wireless subsystem can use this function to process
2880 * a regulatory request issued by a country Information Element.
2881 *
2882 * Returns one of the different reg request treatment values.
2883 */
2884static enum reg_request_treatment
2885reg_process_hint_country_ie(struct wiphy *wiphy,
2886 struct regulatory_request *country_ie_request)
2887{
2888 enum reg_request_treatment treatment;
2889
2890 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2891
2892 switch (treatment) {
2893 case REG_REQ_OK:
2894 break;
2895 case REG_REQ_IGNORE:
2896 return REG_REQ_IGNORE;
2897 case REG_REQ_ALREADY_SET:
2898 reg_free_request(country_ie_request);
2899 return REG_REQ_ALREADY_SET;
2900 case REG_REQ_INTERSECT:
2901 /*
2902 * This doesn't happen yet, not sure we
2903 * ever want to support it for this case.
2904 */
2905 WARN_ONCE(1, "Unexpected intersection for country elements");
2906 return REG_REQ_IGNORE;
2907 }
2908
2909 country_ie_request->intersect = false;
2910 country_ie_request->processed = false;
2911
2912 if (reg_query_database(country_ie_request)) {
2913 reg_update_last_request(country_ie_request);
2914 return REG_REQ_OK;
2915 }
2916
2917 return REG_REQ_IGNORE;
2918}
2919
2920bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2921{
2922 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2923 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2924 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2925 bool dfs_domain_same;
2926
2927 rcu_read_lock();
2928
2929 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2930 wiphy1_regd = rcu_dereference(wiphy1->regd);
2931 if (!wiphy1_regd)
2932 wiphy1_regd = cfg80211_regd;
2933
2934 wiphy2_regd = rcu_dereference(wiphy2->regd);
2935 if (!wiphy2_regd)
2936 wiphy2_regd = cfg80211_regd;
2937
2938 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2939
2940 rcu_read_unlock();
2941
2942 return dfs_domain_same;
2943}
2944
2945static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2946 struct ieee80211_channel *src_chan)
2947{
2948 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2949 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2950 return;
2951
2952 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2953 src_chan->flags & IEEE80211_CHAN_DISABLED)
2954 return;
2955
2956 if (src_chan->center_freq == dst_chan->center_freq &&
2957 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2958 dst_chan->dfs_state = src_chan->dfs_state;
2959 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2960 }
2961}
2962
2963static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2964 struct wiphy *src_wiphy)
2965{
2966 struct ieee80211_supported_band *src_sband, *dst_sband;
2967 struct ieee80211_channel *src_chan, *dst_chan;
2968 int i, j, band;
2969
2970 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2971 return;
2972
2973 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2974 dst_sband = dst_wiphy->bands[band];
2975 src_sband = src_wiphy->bands[band];
2976 if (!dst_sband || !src_sband)
2977 continue;
2978
2979 for (i = 0; i < dst_sband->n_channels; i++) {
2980 dst_chan = &dst_sband->channels[i];
2981 for (j = 0; j < src_sband->n_channels; j++) {
2982 src_chan = &src_sband->channels[j];
2983 reg_copy_dfs_chan_state(dst_chan, src_chan);
2984 }
2985 }
2986 }
2987}
2988
2989static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2990{
2991 struct cfg80211_registered_device *rdev;
2992
2993 ASSERT_RTNL();
2994
2995 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2996 if (wiphy == &rdev->wiphy)
2997 continue;
2998 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2999 }
3000}
3001
3002/* This processes *all* regulatory hints */
3003static void reg_process_hint(struct regulatory_request *reg_request)
3004{
3005 struct wiphy *wiphy = NULL;
3006 enum reg_request_treatment treatment;
3007 enum nl80211_reg_initiator initiator = reg_request->initiator;
3008
3009 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3010 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3011
3012 switch (initiator) {
3013 case NL80211_REGDOM_SET_BY_CORE:
3014 treatment = reg_process_hint_core(reg_request);
3015 break;
3016 case NL80211_REGDOM_SET_BY_USER:
3017 treatment = reg_process_hint_user(reg_request);
3018 break;
3019 case NL80211_REGDOM_SET_BY_DRIVER:
3020 if (!wiphy)
3021 goto out_free;
3022 treatment = reg_process_hint_driver(wiphy, reg_request);
3023 break;
3024 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3025 if (!wiphy)
3026 goto out_free;
3027 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3028 break;
3029 default:
3030 WARN(1, "invalid initiator %d\n", initiator);
3031 goto out_free;
3032 }
3033
3034 if (treatment == REG_REQ_IGNORE)
3035 goto out_free;
3036
3037 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3038 "unexpected treatment value %d\n", treatment);
3039
3040 /* This is required so that the orig_* parameters are saved.
3041 * NOTE: treatment must be set for any case that reaches here!
3042 */
3043 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3044 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3045 wiphy_update_regulatory(wiphy, initiator);
3046 wiphy_all_share_dfs_chan_state(wiphy);
3047 reg_check_channels();
3048 }
3049
3050 return;
3051
3052out_free:
3053 reg_free_request(reg_request);
3054}
3055
3056static void notify_self_managed_wiphys(struct regulatory_request *request)
3057{
3058 struct cfg80211_registered_device *rdev;
3059 struct wiphy *wiphy;
3060
3061 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3062 wiphy = &rdev->wiphy;
3063 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3064 request->initiator == NL80211_REGDOM_SET_BY_USER)
3065 reg_call_notifier(wiphy, request);
3066 }
3067}
3068
3069/*
3070 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3071 * Regulatory hints come on a first come first serve basis and we
3072 * must process each one atomically.
3073 */
3074static void reg_process_pending_hints(void)
3075{
3076 struct regulatory_request *reg_request, *lr;
3077
3078 lr = get_last_request();
3079
3080 /* When last_request->processed becomes true this will be rescheduled */
3081 if (lr && !lr->processed) {
3082 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3083 return;
3084 }
3085
3086 spin_lock(®_requests_lock);
3087
3088 if (list_empty(®_requests_list)) {
3089 spin_unlock(®_requests_lock);
3090 return;
3091 }
3092
3093 reg_request = list_first_entry(®_requests_list,
3094 struct regulatory_request,
3095 list);
3096 list_del_init(®_request->list);
3097
3098 spin_unlock(®_requests_lock);
3099
3100 notify_self_managed_wiphys(reg_request);
3101
3102 reg_process_hint(reg_request);
3103
3104 lr = get_last_request();
3105
3106 spin_lock(®_requests_lock);
3107 if (!list_empty(®_requests_list) && lr && lr->processed)
3108 schedule_work(®_work);
3109 spin_unlock(®_requests_lock);
3110}
3111
3112/* Processes beacon hints -- this has nothing to do with country IEs */
3113static void reg_process_pending_beacon_hints(void)
3114{
3115 struct cfg80211_registered_device *rdev;
3116 struct reg_beacon *pending_beacon, *tmp;
3117
3118 /* This goes through the _pending_ beacon list */
3119 spin_lock_bh(®_pending_beacons_lock);
3120
3121 list_for_each_entry_safe(pending_beacon, tmp,
3122 ®_pending_beacons, list) {
3123 list_del_init(&pending_beacon->list);
3124
3125 /* Applies the beacon hint to current wiphys */
3126 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3127 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3128
3129 /* Remembers the beacon hint for new wiphys or reg changes */
3130 list_add_tail(&pending_beacon->list, ®_beacon_list);
3131 }
3132
3133 spin_unlock_bh(®_pending_beacons_lock);
3134}
3135
3136static void reg_process_self_managed_hint(struct wiphy *wiphy)
3137{
3138 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3139 const struct ieee80211_regdomain *tmp;
3140 const struct ieee80211_regdomain *regd;
3141 enum nl80211_band band;
3142 struct regulatory_request request = {};
3143
3144 ASSERT_RTNL();
3145 lockdep_assert_wiphy(wiphy);
3146
3147 spin_lock(®_requests_lock);
3148 regd = rdev->requested_regd;
3149 rdev->requested_regd = NULL;
3150 spin_unlock(®_requests_lock);
3151
3152 if (!regd)
3153 return;
3154
3155 tmp = get_wiphy_regdom(wiphy);
3156 rcu_assign_pointer(wiphy->regd, regd);
3157 rcu_free_regdom(tmp);
3158
3159 for (band = 0; band < NUM_NL80211_BANDS; band++)
3160 handle_band_custom(wiphy, wiphy->bands[band], regd);
3161
3162 reg_process_ht_flags(wiphy);
3163
3164 request.wiphy_idx = get_wiphy_idx(wiphy);
3165 request.alpha2[0] = regd->alpha2[0];
3166 request.alpha2[1] = regd->alpha2[1];
3167 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3168
3169 nl80211_send_wiphy_reg_change_event(&request);
3170}
3171
3172static void reg_process_self_managed_hints(void)
3173{
3174 struct cfg80211_registered_device *rdev;
3175
3176 ASSERT_RTNL();
3177
3178 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3179 wiphy_lock(&rdev->wiphy);
3180 reg_process_self_managed_hint(&rdev->wiphy);
3181 wiphy_unlock(&rdev->wiphy);
3182 }
3183
3184 reg_check_channels();
3185}
3186
3187static void reg_todo(struct work_struct *work)
3188{
3189 rtnl_lock();
3190 reg_process_pending_hints();
3191 reg_process_pending_beacon_hints();
3192 reg_process_self_managed_hints();
3193 rtnl_unlock();
3194}
3195
3196static void queue_regulatory_request(struct regulatory_request *request)
3197{
3198 request->alpha2[0] = toupper(request->alpha2[0]);
3199 request->alpha2[1] = toupper(request->alpha2[1]);
3200
3201 spin_lock(®_requests_lock);
3202 list_add_tail(&request->list, ®_requests_list);
3203 spin_unlock(®_requests_lock);
3204
3205 schedule_work(®_work);
3206}
3207
3208/*
3209 * Core regulatory hint -- happens during cfg80211_init()
3210 * and when we restore regulatory settings.
3211 */
3212static int regulatory_hint_core(const char *alpha2)
3213{
3214 struct regulatory_request *request;
3215
3216 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3217 if (!request)
3218 return -ENOMEM;
3219
3220 request->alpha2[0] = alpha2[0];
3221 request->alpha2[1] = alpha2[1];
3222 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3223 request->wiphy_idx = WIPHY_IDX_INVALID;
3224
3225 queue_regulatory_request(request);
3226
3227 return 0;
3228}
3229
3230/* User hints */
3231int regulatory_hint_user(const char *alpha2,
3232 enum nl80211_user_reg_hint_type user_reg_hint_type)
3233{
3234 struct regulatory_request *request;
3235
3236 if (WARN_ON(!alpha2))
3237 return -EINVAL;
3238
3239 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3240 return -EINVAL;
3241
3242 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3243 if (!request)
3244 return -ENOMEM;
3245
3246 request->wiphy_idx = WIPHY_IDX_INVALID;
3247 request->alpha2[0] = alpha2[0];
3248 request->alpha2[1] = alpha2[1];
3249 request->initiator = NL80211_REGDOM_SET_BY_USER;
3250 request->user_reg_hint_type = user_reg_hint_type;
3251
3252 /* Allow calling CRDA again */
3253 reset_crda_timeouts();
3254
3255 queue_regulatory_request(request);
3256
3257 return 0;
3258}
3259
3260int regulatory_hint_indoor(bool is_indoor, u32 portid)
3261{
3262 spin_lock(®_indoor_lock);
3263
3264 /* It is possible that more than one user space process is trying to
3265 * configure the indoor setting. To handle such cases, clear the indoor
3266 * setting in case that some process does not think that the device
3267 * is operating in an indoor environment. In addition, if a user space
3268 * process indicates that it is controlling the indoor setting, save its
3269 * portid, i.e., make it the owner.
3270 */
3271 reg_is_indoor = is_indoor;
3272 if (reg_is_indoor) {
3273 if (!reg_is_indoor_portid)
3274 reg_is_indoor_portid = portid;
3275 } else {
3276 reg_is_indoor_portid = 0;
3277 }
3278
3279 spin_unlock(®_indoor_lock);
3280
3281 if (!is_indoor)
3282 reg_check_channels();
3283
3284 return 0;
3285}
3286
3287void regulatory_netlink_notify(u32 portid)
3288{
3289 spin_lock(®_indoor_lock);
3290
3291 if (reg_is_indoor_portid != portid) {
3292 spin_unlock(®_indoor_lock);
3293 return;
3294 }
3295
3296 reg_is_indoor = false;
3297 reg_is_indoor_portid = 0;
3298
3299 spin_unlock(®_indoor_lock);
3300
3301 reg_check_channels();
3302}
3303
3304/* Driver hints */
3305int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3306{
3307 struct regulatory_request *request;
3308
3309 if (WARN_ON(!alpha2 || !wiphy))
3310 return -EINVAL;
3311
3312 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3313
3314 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3315 if (!request)
3316 return -ENOMEM;
3317
3318 request->wiphy_idx = get_wiphy_idx(wiphy);
3319
3320 request->alpha2[0] = alpha2[0];
3321 request->alpha2[1] = alpha2[1];
3322 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3323
3324 /* Allow calling CRDA again */
3325 reset_crda_timeouts();
3326
3327 queue_regulatory_request(request);
3328
3329 return 0;
3330}
3331EXPORT_SYMBOL(regulatory_hint);
3332
3333void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3334 const u8 *country_ie, u8 country_ie_len)
3335{
3336 char alpha2[2];
3337 enum environment_cap env = ENVIRON_ANY;
3338 struct regulatory_request *request = NULL, *lr;
3339
3340 /* IE len must be evenly divisible by 2 */
3341 if (country_ie_len & 0x01)
3342 return;
3343
3344 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3345 return;
3346
3347 request = kzalloc(sizeof(*request), GFP_KERNEL);
3348 if (!request)
3349 return;
3350
3351 alpha2[0] = country_ie[0];
3352 alpha2[1] = country_ie[1];
3353
3354 if (country_ie[2] == 'I')
3355 env = ENVIRON_INDOOR;
3356 else if (country_ie[2] == 'O')
3357 env = ENVIRON_OUTDOOR;
3358
3359 rcu_read_lock();
3360 lr = get_last_request();
3361
3362 if (unlikely(!lr))
3363 goto out;
3364
3365 /*
3366 * We will run this only upon a successful connection on cfg80211.
3367 * We leave conflict resolution to the workqueue, where can hold
3368 * the RTNL.
3369 */
3370 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3371 lr->wiphy_idx != WIPHY_IDX_INVALID)
3372 goto out;
3373
3374 request->wiphy_idx = get_wiphy_idx(wiphy);
3375 request->alpha2[0] = alpha2[0];
3376 request->alpha2[1] = alpha2[1];
3377 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3378 request->country_ie_env = env;
3379
3380 /* Allow calling CRDA again */
3381 reset_crda_timeouts();
3382
3383 queue_regulatory_request(request);
3384 request = NULL;
3385out:
3386 kfree(request);
3387 rcu_read_unlock();
3388}
3389
3390static void restore_alpha2(char *alpha2, bool reset_user)
3391{
3392 /* indicates there is no alpha2 to consider for restoration */
3393 alpha2[0] = '9';
3394 alpha2[1] = '7';
3395
3396 /* The user setting has precedence over the module parameter */
3397 if (is_user_regdom_saved()) {
3398 /* Unless we're asked to ignore it and reset it */
3399 if (reset_user) {
3400 pr_debug("Restoring regulatory settings including user preference\n");
3401 user_alpha2[0] = '9';
3402 user_alpha2[1] = '7';
3403
3404 /*
3405 * If we're ignoring user settings, we still need to
3406 * check the module parameter to ensure we put things
3407 * back as they were for a full restore.
3408 */
3409 if (!is_world_regdom(ieee80211_regdom)) {
3410 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3411 ieee80211_regdom[0], ieee80211_regdom[1]);
3412 alpha2[0] = ieee80211_regdom[0];
3413 alpha2[1] = ieee80211_regdom[1];
3414 }
3415 } else {
3416 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3417 user_alpha2[0], user_alpha2[1]);
3418 alpha2[0] = user_alpha2[0];
3419 alpha2[1] = user_alpha2[1];
3420 }
3421 } else if (!is_world_regdom(ieee80211_regdom)) {
3422 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3423 ieee80211_regdom[0], ieee80211_regdom[1]);
3424 alpha2[0] = ieee80211_regdom[0];
3425 alpha2[1] = ieee80211_regdom[1];
3426 } else
3427 pr_debug("Restoring regulatory settings\n");
3428}
3429
3430static void restore_custom_reg_settings(struct wiphy *wiphy)
3431{
3432 struct ieee80211_supported_band *sband;
3433 enum nl80211_band band;
3434 struct ieee80211_channel *chan;
3435 int i;
3436
3437 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3438 sband = wiphy->bands[band];
3439 if (!sband)
3440 continue;
3441 for (i = 0; i < sband->n_channels; i++) {
3442 chan = &sband->channels[i];
3443 chan->flags = chan->orig_flags;
3444 chan->max_antenna_gain = chan->orig_mag;
3445 chan->max_power = chan->orig_mpwr;
3446 chan->beacon_found = false;
3447 }
3448 }
3449}
3450
3451/*
3452 * Restoring regulatory settings involves ignoring any
3453 * possibly stale country IE information and user regulatory
3454 * settings if so desired, this includes any beacon hints
3455 * learned as we could have traveled outside to another country
3456 * after disconnection. To restore regulatory settings we do
3457 * exactly what we did at bootup:
3458 *
3459 * - send a core regulatory hint
3460 * - send a user regulatory hint if applicable
3461 *
3462 * Device drivers that send a regulatory hint for a specific country
3463 * keep their own regulatory domain on wiphy->regd so that does
3464 * not need to be remembered.
3465 */
3466static void restore_regulatory_settings(bool reset_user, bool cached)
3467{
3468 char alpha2[2];
3469 char world_alpha2[2];
3470 struct reg_beacon *reg_beacon, *btmp;
3471 LIST_HEAD(tmp_reg_req_list);
3472 struct cfg80211_registered_device *rdev;
3473
3474 ASSERT_RTNL();
3475
3476 /*
3477 * Clear the indoor setting in case that it is not controlled by user
3478 * space, as otherwise there is no guarantee that the device is still
3479 * operating in an indoor environment.
3480 */
3481 spin_lock(®_indoor_lock);
3482 if (reg_is_indoor && !reg_is_indoor_portid) {
3483 reg_is_indoor = false;
3484 reg_check_channels();
3485 }
3486 spin_unlock(®_indoor_lock);
3487
3488 reset_regdomains(true, &world_regdom);
3489 restore_alpha2(alpha2, reset_user);
3490
3491 /*
3492 * If there's any pending requests we simply
3493 * stash them to a temporary pending queue and
3494 * add then after we've restored regulatory
3495 * settings.
3496 */
3497 spin_lock(®_requests_lock);
3498 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3499 spin_unlock(®_requests_lock);
3500
3501 /* Clear beacon hints */
3502 spin_lock_bh(®_pending_beacons_lock);
3503 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3504 list_del(®_beacon->list);
3505 kfree(reg_beacon);
3506 }
3507 spin_unlock_bh(®_pending_beacons_lock);
3508
3509 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3510 list_del(®_beacon->list);
3511 kfree(reg_beacon);
3512 }
3513
3514 /* First restore to the basic regulatory settings */
3515 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3516 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3517
3518 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3519 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3520 continue;
3521 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3522 restore_custom_reg_settings(&rdev->wiphy);
3523 }
3524
3525 if (cached && (!is_an_alpha2(alpha2) ||
3526 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3527 reset_regdomains(false, cfg80211_world_regdom);
3528 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3529 print_regdomain(get_cfg80211_regdom());
3530 nl80211_send_reg_change_event(&core_request_world);
3531 reg_set_request_processed();
3532
3533 if (is_an_alpha2(alpha2) &&
3534 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3535 struct regulatory_request *ureq;
3536
3537 spin_lock(®_requests_lock);
3538 ureq = list_last_entry(®_requests_list,
3539 struct regulatory_request,
3540 list);
3541 list_del(&ureq->list);
3542 spin_unlock(®_requests_lock);
3543
3544 notify_self_managed_wiphys(ureq);
3545 reg_update_last_request(ureq);
3546 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3547 REGD_SOURCE_CACHED);
3548 }
3549 } else {
3550 regulatory_hint_core(world_alpha2);
3551
3552 /*
3553 * This restores the ieee80211_regdom module parameter
3554 * preference or the last user requested regulatory
3555 * settings, user regulatory settings takes precedence.
3556 */
3557 if (is_an_alpha2(alpha2))
3558 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3559 }
3560
3561 spin_lock(®_requests_lock);
3562 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3563 spin_unlock(®_requests_lock);
3564
3565 pr_debug("Kicking the queue\n");
3566
3567 schedule_work(®_work);
3568}
3569
3570static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3571{
3572 struct cfg80211_registered_device *rdev;
3573 struct wireless_dev *wdev;
3574
3575 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3576 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3577 wdev_lock(wdev);
3578 if (!(wdev->wiphy->regulatory_flags & flag)) {
3579 wdev_unlock(wdev);
3580 return false;
3581 }
3582 wdev_unlock(wdev);
3583 }
3584 }
3585
3586 return true;
3587}
3588
3589void regulatory_hint_disconnect(void)
3590{
3591 /* Restore of regulatory settings is not required when wiphy(s)
3592 * ignore IE from connected access point but clearance of beacon hints
3593 * is required when wiphy(s) supports beacon hints.
3594 */
3595 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3596 struct reg_beacon *reg_beacon, *btmp;
3597
3598 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3599 return;
3600
3601 spin_lock_bh(®_pending_beacons_lock);
3602 list_for_each_entry_safe(reg_beacon, btmp,
3603 ®_pending_beacons, list) {
3604 list_del(®_beacon->list);
3605 kfree(reg_beacon);
3606 }
3607 spin_unlock_bh(®_pending_beacons_lock);
3608
3609 list_for_each_entry_safe(reg_beacon, btmp,
3610 ®_beacon_list, list) {
3611 list_del(®_beacon->list);
3612 kfree(reg_beacon);
3613 }
3614
3615 return;
3616 }
3617
3618 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3619 restore_regulatory_settings(false, true);
3620}
3621
3622static bool freq_is_chan_12_13_14(u32 freq)
3623{
3624 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3625 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3626 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3627 return true;
3628 return false;
3629}
3630
3631static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3632{
3633 struct reg_beacon *pending_beacon;
3634
3635 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3636 if (ieee80211_channel_equal(beacon_chan,
3637 &pending_beacon->chan))
3638 return true;
3639 return false;
3640}
3641
3642int regulatory_hint_found_beacon(struct wiphy *wiphy,
3643 struct ieee80211_channel *beacon_chan,
3644 gfp_t gfp)
3645{
3646 struct reg_beacon *reg_beacon;
3647 bool processing;
3648
3649 if (beacon_chan->beacon_found ||
3650 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3651 (beacon_chan->band == NL80211_BAND_2GHZ &&
3652 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3653 return 0;
3654
3655 spin_lock_bh(®_pending_beacons_lock);
3656 processing = pending_reg_beacon(beacon_chan);
3657 spin_unlock_bh(®_pending_beacons_lock);
3658
3659 if (processing)
3660 return 0;
3661
3662 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3663 if (!reg_beacon)
3664 return -ENOMEM;
3665
3666 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3667 beacon_chan->center_freq, beacon_chan->freq_offset,
3668 ieee80211_freq_khz_to_channel(
3669 ieee80211_channel_to_khz(beacon_chan)),
3670 wiphy_name(wiphy));
3671
3672 memcpy(®_beacon->chan, beacon_chan,
3673 sizeof(struct ieee80211_channel));
3674
3675 /*
3676 * Since we can be called from BH or and non-BH context
3677 * we must use spin_lock_bh()
3678 */
3679 spin_lock_bh(®_pending_beacons_lock);
3680 list_add_tail(®_beacon->list, ®_pending_beacons);
3681 spin_unlock_bh(®_pending_beacons_lock);
3682
3683 schedule_work(®_work);
3684
3685 return 0;
3686}
3687
3688static void print_rd_rules(const struct ieee80211_regdomain *rd)
3689{
3690 unsigned int i;
3691 const struct ieee80211_reg_rule *reg_rule = NULL;
3692 const struct ieee80211_freq_range *freq_range = NULL;
3693 const struct ieee80211_power_rule *power_rule = NULL;
3694 char bw[32], cac_time[32];
3695
3696 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3697
3698 for (i = 0; i < rd->n_reg_rules; i++) {
3699 reg_rule = &rd->reg_rules[i];
3700 freq_range = ®_rule->freq_range;
3701 power_rule = ®_rule->power_rule;
3702
3703 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3704 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3705 freq_range->max_bandwidth_khz,
3706 reg_get_max_bandwidth(rd, reg_rule));
3707 else
3708 snprintf(bw, sizeof(bw), "%d KHz",
3709 freq_range->max_bandwidth_khz);
3710
3711 if (reg_rule->flags & NL80211_RRF_DFS)
3712 scnprintf(cac_time, sizeof(cac_time), "%u s",
3713 reg_rule->dfs_cac_ms/1000);
3714 else
3715 scnprintf(cac_time, sizeof(cac_time), "N/A");
3716
3717
3718 /*
3719 * There may not be documentation for max antenna gain
3720 * in certain regions
3721 */
3722 if (power_rule->max_antenna_gain)
3723 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3724 freq_range->start_freq_khz,
3725 freq_range->end_freq_khz,
3726 bw,
3727 power_rule->max_antenna_gain,
3728 power_rule->max_eirp,
3729 cac_time);
3730 else
3731 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3732 freq_range->start_freq_khz,
3733 freq_range->end_freq_khz,
3734 bw,
3735 power_rule->max_eirp,
3736 cac_time);
3737 }
3738}
3739
3740bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3741{
3742 switch (dfs_region) {
3743 case NL80211_DFS_UNSET:
3744 case NL80211_DFS_FCC:
3745 case NL80211_DFS_ETSI:
3746 case NL80211_DFS_JP:
3747 return true;
3748 default:
3749 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3750 return false;
3751 }
3752}
3753
3754static void print_regdomain(const struct ieee80211_regdomain *rd)
3755{
3756 struct regulatory_request *lr = get_last_request();
3757
3758 if (is_intersected_alpha2(rd->alpha2)) {
3759 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3760 struct cfg80211_registered_device *rdev;
3761 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3762 if (rdev) {
3763 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3764 rdev->country_ie_alpha2[0],
3765 rdev->country_ie_alpha2[1]);
3766 } else
3767 pr_debug("Current regulatory domain intersected:\n");
3768 } else
3769 pr_debug("Current regulatory domain intersected:\n");
3770 } else if (is_world_regdom(rd->alpha2)) {
3771 pr_debug("World regulatory domain updated:\n");
3772 } else {
3773 if (is_unknown_alpha2(rd->alpha2))
3774 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3775 else {
3776 if (reg_request_cell_base(lr))
3777 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3778 rd->alpha2[0], rd->alpha2[1]);
3779 else
3780 pr_debug("Regulatory domain changed to country: %c%c\n",
3781 rd->alpha2[0], rd->alpha2[1]);
3782 }
3783 }
3784
3785 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3786 print_rd_rules(rd);
3787}
3788
3789static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3790{
3791 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3792 print_rd_rules(rd);
3793}
3794
3795static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3796{
3797 if (!is_world_regdom(rd->alpha2))
3798 return -EINVAL;
3799 update_world_regdomain(rd);
3800 return 0;
3801}
3802
3803static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3804 struct regulatory_request *user_request)
3805{
3806 const struct ieee80211_regdomain *intersected_rd = NULL;
3807
3808 if (!regdom_changes(rd->alpha2))
3809 return -EALREADY;
3810
3811 if (!is_valid_rd(rd)) {
3812 pr_err("Invalid regulatory domain detected: %c%c\n",
3813 rd->alpha2[0], rd->alpha2[1]);
3814 print_regdomain_info(rd);
3815 return -EINVAL;
3816 }
3817
3818 if (!user_request->intersect) {
3819 reset_regdomains(false, rd);
3820 return 0;
3821 }
3822
3823 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3824 if (!intersected_rd)
3825 return -EINVAL;
3826
3827 kfree(rd);
3828 rd = NULL;
3829 reset_regdomains(false, intersected_rd);
3830
3831 return 0;
3832}
3833
3834static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3835 struct regulatory_request *driver_request)
3836{
3837 const struct ieee80211_regdomain *regd;
3838 const struct ieee80211_regdomain *intersected_rd = NULL;
3839 const struct ieee80211_regdomain *tmp;
3840 struct wiphy *request_wiphy;
3841
3842 if (is_world_regdom(rd->alpha2))
3843 return -EINVAL;
3844
3845 if (!regdom_changes(rd->alpha2))
3846 return -EALREADY;
3847
3848 if (!is_valid_rd(rd)) {
3849 pr_err("Invalid regulatory domain detected: %c%c\n",
3850 rd->alpha2[0], rd->alpha2[1]);
3851 print_regdomain_info(rd);
3852 return -EINVAL;
3853 }
3854
3855 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3856 if (!request_wiphy)
3857 return -ENODEV;
3858
3859 if (!driver_request->intersect) {
3860 ASSERT_RTNL();
3861 wiphy_lock(request_wiphy);
3862 if (request_wiphy->regd) {
3863 wiphy_unlock(request_wiphy);
3864 return -EALREADY;
3865 }
3866
3867 regd = reg_copy_regd(rd);
3868 if (IS_ERR(regd)) {
3869 wiphy_unlock(request_wiphy);
3870 return PTR_ERR(regd);
3871 }
3872
3873 rcu_assign_pointer(request_wiphy->regd, regd);
3874 wiphy_unlock(request_wiphy);
3875 reset_regdomains(false, rd);
3876 return 0;
3877 }
3878
3879 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3880 if (!intersected_rd)
3881 return -EINVAL;
3882
3883 /*
3884 * We can trash what CRDA provided now.
3885 * However if a driver requested this specific regulatory
3886 * domain we keep it for its private use
3887 */
3888 tmp = get_wiphy_regdom(request_wiphy);
3889 rcu_assign_pointer(request_wiphy->regd, rd);
3890 rcu_free_regdom(tmp);
3891
3892 rd = NULL;
3893
3894 reset_regdomains(false, intersected_rd);
3895
3896 return 0;
3897}
3898
3899static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3900 struct regulatory_request *country_ie_request)
3901{
3902 struct wiphy *request_wiphy;
3903
3904 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3905 !is_unknown_alpha2(rd->alpha2))
3906 return -EINVAL;
3907
3908 /*
3909 * Lets only bother proceeding on the same alpha2 if the current
3910 * rd is non static (it means CRDA was present and was used last)
3911 * and the pending request came in from a country IE
3912 */
3913
3914 if (!is_valid_rd(rd)) {
3915 pr_err("Invalid regulatory domain detected: %c%c\n",
3916 rd->alpha2[0], rd->alpha2[1]);
3917 print_regdomain_info(rd);
3918 return -EINVAL;
3919 }
3920
3921 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3922 if (!request_wiphy)
3923 return -ENODEV;
3924
3925 if (country_ie_request->intersect)
3926 return -EINVAL;
3927
3928 reset_regdomains(false, rd);
3929 return 0;
3930}
3931
3932/*
3933 * Use this call to set the current regulatory domain. Conflicts with
3934 * multiple drivers can be ironed out later. Caller must've already
3935 * kmalloc'd the rd structure.
3936 */
3937int set_regdom(const struct ieee80211_regdomain *rd,
3938 enum ieee80211_regd_source regd_src)
3939{
3940 struct regulatory_request *lr;
3941 bool user_reset = false;
3942 int r;
3943
3944 if (IS_ERR_OR_NULL(rd))
3945 return -ENODATA;
3946
3947 if (!reg_is_valid_request(rd->alpha2)) {
3948 kfree(rd);
3949 return -EINVAL;
3950 }
3951
3952 if (regd_src == REGD_SOURCE_CRDA)
3953 reset_crda_timeouts();
3954
3955 lr = get_last_request();
3956
3957 /* Note that this doesn't update the wiphys, this is done below */
3958 switch (lr->initiator) {
3959 case NL80211_REGDOM_SET_BY_CORE:
3960 r = reg_set_rd_core(rd);
3961 break;
3962 case NL80211_REGDOM_SET_BY_USER:
3963 cfg80211_save_user_regdom(rd);
3964 r = reg_set_rd_user(rd, lr);
3965 user_reset = true;
3966 break;
3967 case NL80211_REGDOM_SET_BY_DRIVER:
3968 r = reg_set_rd_driver(rd, lr);
3969 break;
3970 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3971 r = reg_set_rd_country_ie(rd, lr);
3972 break;
3973 default:
3974 WARN(1, "invalid initiator %d\n", lr->initiator);
3975 kfree(rd);
3976 return -EINVAL;
3977 }
3978
3979 if (r) {
3980 switch (r) {
3981 case -EALREADY:
3982 reg_set_request_processed();
3983 break;
3984 default:
3985 /* Back to world regulatory in case of errors */
3986 restore_regulatory_settings(user_reset, false);
3987 }
3988
3989 kfree(rd);
3990 return r;
3991 }
3992
3993 /* This would make this whole thing pointless */
3994 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3995 return -EINVAL;
3996
3997 /* update all wiphys now with the new established regulatory domain */
3998 update_all_wiphy_regulatory(lr->initiator);
3999
4000 print_regdomain(get_cfg80211_regdom());
4001
4002 nl80211_send_reg_change_event(lr);
4003
4004 reg_set_request_processed();
4005
4006 return 0;
4007}
4008
4009static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4010 struct ieee80211_regdomain *rd)
4011{
4012 const struct ieee80211_regdomain *regd;
4013 const struct ieee80211_regdomain *prev_regd;
4014 struct cfg80211_registered_device *rdev;
4015
4016 if (WARN_ON(!wiphy || !rd))
4017 return -EINVAL;
4018
4019 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4020 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4021 return -EPERM;
4022
4023 if (WARN(!is_valid_rd(rd),
4024 "Invalid regulatory domain detected: %c%c\n",
4025 rd->alpha2[0], rd->alpha2[1])) {
4026 print_regdomain_info(rd);
4027 return -EINVAL;
4028 }
4029
4030 regd = reg_copy_regd(rd);
4031 if (IS_ERR(regd))
4032 return PTR_ERR(regd);
4033
4034 rdev = wiphy_to_rdev(wiphy);
4035
4036 spin_lock(®_requests_lock);
4037 prev_regd = rdev->requested_regd;
4038 rdev->requested_regd = regd;
4039 spin_unlock(®_requests_lock);
4040
4041 kfree(prev_regd);
4042 return 0;
4043}
4044
4045int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4046 struct ieee80211_regdomain *rd)
4047{
4048 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4049
4050 if (ret)
4051 return ret;
4052
4053 schedule_work(®_work);
4054 return 0;
4055}
4056EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4057
4058int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4059 struct ieee80211_regdomain *rd)
4060{
4061 int ret;
4062
4063 ASSERT_RTNL();
4064
4065 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4066 if (ret)
4067 return ret;
4068
4069 /* process the request immediately */
4070 reg_process_self_managed_hint(wiphy);
4071 reg_check_channels();
4072 return 0;
4073}
4074EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4075
4076void wiphy_regulatory_register(struct wiphy *wiphy)
4077{
4078 struct regulatory_request *lr = get_last_request();
4079
4080 /* self-managed devices ignore beacon hints and country IE */
4081 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4082 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4083 REGULATORY_COUNTRY_IE_IGNORE;
4084
4085 /*
4086 * The last request may have been received before this
4087 * registration call. Call the driver notifier if
4088 * initiator is USER.
4089 */
4090 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4091 reg_call_notifier(wiphy, lr);
4092 }
4093
4094 if (!reg_dev_ignore_cell_hint(wiphy))
4095 reg_num_devs_support_basehint++;
4096
4097 wiphy_update_regulatory(wiphy, lr->initiator);
4098 wiphy_all_share_dfs_chan_state(wiphy);
4099 reg_process_self_managed_hints();
4100}
4101
4102void wiphy_regulatory_deregister(struct wiphy *wiphy)
4103{
4104 struct wiphy *request_wiphy = NULL;
4105 struct regulatory_request *lr;
4106
4107 lr = get_last_request();
4108
4109 if (!reg_dev_ignore_cell_hint(wiphy))
4110 reg_num_devs_support_basehint--;
4111
4112 rcu_free_regdom(get_wiphy_regdom(wiphy));
4113 RCU_INIT_POINTER(wiphy->regd, NULL);
4114
4115 if (lr)
4116 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4117
4118 if (!request_wiphy || request_wiphy != wiphy)
4119 return;
4120
4121 lr->wiphy_idx = WIPHY_IDX_INVALID;
4122 lr->country_ie_env = ENVIRON_ANY;
4123}
4124
4125/*
4126 * See FCC notices for UNII band definitions
4127 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4128 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4129 */
4130int cfg80211_get_unii(int freq)
4131{
4132 /* UNII-1 */
4133 if (freq >= 5150 && freq <= 5250)
4134 return 0;
4135
4136 /* UNII-2A */
4137 if (freq > 5250 && freq <= 5350)
4138 return 1;
4139
4140 /* UNII-2B */
4141 if (freq > 5350 && freq <= 5470)
4142 return 2;
4143
4144 /* UNII-2C */
4145 if (freq > 5470 && freq <= 5725)
4146 return 3;
4147
4148 /* UNII-3 */
4149 if (freq > 5725 && freq <= 5825)
4150 return 4;
4151
4152 /* UNII-5 */
4153 if (freq > 5925 && freq <= 6425)
4154 return 5;
4155
4156 /* UNII-6 */
4157 if (freq > 6425 && freq <= 6525)
4158 return 6;
4159
4160 /* UNII-7 */
4161 if (freq > 6525 && freq <= 6875)
4162 return 7;
4163
4164 /* UNII-8 */
4165 if (freq > 6875 && freq <= 7125)
4166 return 8;
4167
4168 return -EINVAL;
4169}
4170
4171bool regulatory_indoor_allowed(void)
4172{
4173 return reg_is_indoor;
4174}
4175
4176bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4177{
4178 const struct ieee80211_regdomain *regd = NULL;
4179 const struct ieee80211_regdomain *wiphy_regd = NULL;
4180 bool pre_cac_allowed = false;
4181
4182 rcu_read_lock();
4183
4184 regd = rcu_dereference(cfg80211_regdomain);
4185 wiphy_regd = rcu_dereference(wiphy->regd);
4186 if (!wiphy_regd) {
4187 if (regd->dfs_region == NL80211_DFS_ETSI)
4188 pre_cac_allowed = true;
4189
4190 rcu_read_unlock();
4191
4192 return pre_cac_allowed;
4193 }
4194
4195 if (regd->dfs_region == wiphy_regd->dfs_region &&
4196 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4197 pre_cac_allowed = true;
4198
4199 rcu_read_unlock();
4200
4201 return pre_cac_allowed;
4202}
4203EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4204
4205static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4206{
4207 struct wireless_dev *wdev;
4208 /* If we finished CAC or received radar, we should end any
4209 * CAC running on the same channels.
4210 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4211 * either all channels are available - those the CAC_FINISHED
4212 * event has effected another wdev state, or there is a channel
4213 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4214 * event has effected another wdev state.
4215 * In both cases we should end the CAC on the wdev.
4216 */
4217 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4218 if (wdev->cac_started &&
4219 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4220 rdev_end_cac(rdev, wdev->netdev);
4221 }
4222}
4223
4224void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4225 struct cfg80211_chan_def *chandef,
4226 enum nl80211_dfs_state dfs_state,
4227 enum nl80211_radar_event event)
4228{
4229 struct cfg80211_registered_device *rdev;
4230
4231 ASSERT_RTNL();
4232
4233 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4234 return;
4235
4236 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4237 if (wiphy == &rdev->wiphy)
4238 continue;
4239
4240 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4241 continue;
4242
4243 if (!ieee80211_get_channel(&rdev->wiphy,
4244 chandef->chan->center_freq))
4245 continue;
4246
4247 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4248
4249 if (event == NL80211_RADAR_DETECTED ||
4250 event == NL80211_RADAR_CAC_FINISHED) {
4251 cfg80211_sched_dfs_chan_update(rdev);
4252 cfg80211_check_and_end_cac(rdev);
4253 }
4254
4255 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4256 }
4257}
4258
4259static int __init regulatory_init_db(void)
4260{
4261 int err;
4262
4263 /*
4264 * It's possible that - due to other bugs/issues - cfg80211
4265 * never called regulatory_init() below, or that it failed;
4266 * in that case, don't try to do any further work here as
4267 * it's doomed to lead to crashes.
4268 */
4269 if (IS_ERR_OR_NULL(reg_pdev))
4270 return -EINVAL;
4271
4272 err = load_builtin_regdb_keys();
4273 if (err)
4274 return err;
4275
4276 /* We always try to get an update for the static regdomain */
4277 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4278 if (err) {
4279 if (err == -ENOMEM) {
4280 platform_device_unregister(reg_pdev);
4281 return err;
4282 }
4283 /*
4284 * N.B. kobject_uevent_env() can fail mainly for when we're out
4285 * memory which is handled and propagated appropriately above
4286 * but it can also fail during a netlink_broadcast() or during
4287 * early boot for call_usermodehelper(). For now treat these
4288 * errors as non-fatal.
4289 */
4290 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4291 }
4292
4293 /*
4294 * Finally, if the user set the module parameter treat it
4295 * as a user hint.
4296 */
4297 if (!is_world_regdom(ieee80211_regdom))
4298 regulatory_hint_user(ieee80211_regdom,
4299 NL80211_USER_REG_HINT_USER);
4300
4301 return 0;
4302}
4303#ifndef MODULE
4304late_initcall(regulatory_init_db);
4305#endif
4306
4307int __init regulatory_init(void)
4308{
4309 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4310 if (IS_ERR(reg_pdev))
4311 return PTR_ERR(reg_pdev);
4312
4313 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4314
4315 user_alpha2[0] = '9';
4316 user_alpha2[1] = '7';
4317
4318#ifdef MODULE
4319 return regulatory_init_db();
4320#else
4321 return 0;
4322#endif
4323}
4324
4325void regulatory_exit(void)
4326{
4327 struct regulatory_request *reg_request, *tmp;
4328 struct reg_beacon *reg_beacon, *btmp;
4329
4330 cancel_work_sync(®_work);
4331 cancel_crda_timeout_sync();
4332 cancel_delayed_work_sync(®_check_chans);
4333
4334 /* Lock to suppress warnings */
4335 rtnl_lock();
4336 reset_regdomains(true, NULL);
4337 rtnl_unlock();
4338
4339 dev_set_uevent_suppress(®_pdev->dev, true);
4340
4341 platform_device_unregister(reg_pdev);
4342
4343 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4344 list_del(®_beacon->list);
4345 kfree(reg_beacon);
4346 }
4347
4348 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4349 list_del(®_beacon->list);
4350 kfree(reg_beacon);
4351 }
4352
4353 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4354 list_del(®_request->list);
4355 kfree(reg_request);
4356 }
4357
4358 if (!IS_ERR_OR_NULL(regdb))
4359 kfree(regdb);
4360 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4361 kfree(cfg80211_user_regdom);
4362
4363 free_regdb_keyring();
4364}