Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
41#include <linux/pfn_t.h>
42#include <linux/memremap.h>
43#include <linux/userfaultfd_k.h>
44#include <linux/balloon_compaction.h>
45#include <linux/page_idle.h>
46#include <linux/page_owner.h>
47#include <linux/sched/mm.h>
48#include <linux/ptrace.h>
49#include <linux/oom.h>
50#include <linux/memory.h>
51#include <linux/random.h>
52#include <linux/sched/sysctl.h>
53
54#include <asm/tlbflush.h>
55
56#include <trace/events/migrate.h>
57
58#include "internal.h"
59
60int isolate_movable_page(struct page *page, isolate_mode_t mode)
61{
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 SetPageIsolated(page);
109 unlock_page(page);
110
111 return 0;
112
113out_no_isolated:
114 unlock_page(page);
115out_putpage:
116 put_page(page);
117out:
118 return -EBUSY;
119}
120
121static void putback_movable_page(struct page *page)
122{
123 struct address_space *mapping;
124
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 ClearPageIsolated(page);
128}
129
130/*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
137 */
138void putback_movable_pages(struct list_head *l)
139{
140 struct page *page;
141 struct page *page2;
142
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
148 list_del(&page->lru);
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
167 }
168 }
169}
170
171/*
172 * Restore a potential migration pte to a working pte entry
173 */
174static bool remove_migration_pte(struct folio *folio,
175 struct vm_area_struct *vma, unsigned long addr, void *old)
176{
177 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
178
179 while (page_vma_mapped_walk(&pvmw)) {
180 rmap_t rmap_flags = RMAP_NONE;
181 pte_t pte;
182 swp_entry_t entry;
183 struct page *new;
184 unsigned long idx = 0;
185
186 /* pgoff is invalid for ksm pages, but they are never large */
187 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
188 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
189 new = folio_page(folio, idx);
190
191#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
192 /* PMD-mapped THP migration entry */
193 if (!pvmw.pte) {
194 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
195 !folio_test_pmd_mappable(folio), folio);
196 remove_migration_pmd(&pvmw, new);
197 continue;
198 }
199#endif
200
201 folio_get(folio);
202 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
203 if (pte_swp_soft_dirty(*pvmw.pte))
204 pte = pte_mksoft_dirty(pte);
205
206 /*
207 * Recheck VMA as permissions can change since migration started
208 */
209 entry = pte_to_swp_entry(*pvmw.pte);
210 if (is_writable_migration_entry(entry))
211 pte = maybe_mkwrite(pte, vma);
212 else if (pte_swp_uffd_wp(*pvmw.pte))
213 pte = pte_mkuffd_wp(pte);
214
215 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
216 rmap_flags |= RMAP_EXCLUSIVE;
217
218 if (unlikely(is_device_private_page(new))) {
219 if (pte_write(pte))
220 entry = make_writable_device_private_entry(
221 page_to_pfn(new));
222 else
223 entry = make_readable_device_private_entry(
224 page_to_pfn(new));
225 pte = swp_entry_to_pte(entry);
226 if (pte_swp_soft_dirty(*pvmw.pte))
227 pte = pte_swp_mksoft_dirty(pte);
228 if (pte_swp_uffd_wp(*pvmw.pte))
229 pte = pte_swp_mkuffd_wp(pte);
230 }
231
232#ifdef CONFIG_HUGETLB_PAGE
233 if (folio_test_hugetlb(folio)) {
234 unsigned int shift = huge_page_shift(hstate_vma(vma));
235
236 pte = pte_mkhuge(pte);
237 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238 if (folio_test_anon(folio))
239 hugepage_add_anon_rmap(new, vma, pvmw.address,
240 rmap_flags);
241 else
242 page_dup_file_rmap(new, true);
243 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244 } else
245#endif
246 {
247 if (folio_test_anon(folio))
248 page_add_anon_rmap(new, vma, pvmw.address,
249 rmap_flags);
250 else
251 page_add_file_rmap(new, vma, false);
252 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
253 }
254 if (vma->vm_flags & VM_LOCKED)
255 mlock_page_drain_local();
256
257 trace_remove_migration_pte(pvmw.address, pte_val(pte),
258 compound_order(new));
259
260 /* No need to invalidate - it was non-present before */
261 update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 }
263
264 return true;
265}
266
267/*
268 * Get rid of all migration entries and replace them by
269 * references to the indicated page.
270 */
271void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
272{
273 struct rmap_walk_control rwc = {
274 .rmap_one = remove_migration_pte,
275 .arg = src,
276 };
277
278 if (locked)
279 rmap_walk_locked(dst, &rwc);
280 else
281 rmap_walk(dst, &rwc);
282}
283
284/*
285 * Something used the pte of a page under migration. We need to
286 * get to the page and wait until migration is finished.
287 * When we return from this function the fault will be retried.
288 */
289void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 spinlock_t *ptl)
291{
292 pte_t pte;
293 swp_entry_t entry;
294
295 spin_lock(ptl);
296 pte = *ptep;
297 if (!is_swap_pte(pte))
298 goto out;
299
300 entry = pte_to_swp_entry(pte);
301 if (!is_migration_entry(entry))
302 goto out;
303
304 migration_entry_wait_on_locked(entry, ptep, ptl);
305 return;
306out:
307 pte_unmap_unlock(ptep, ptl);
308}
309
310void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
311 unsigned long address)
312{
313 spinlock_t *ptl = pte_lockptr(mm, pmd);
314 pte_t *ptep = pte_offset_map(pmd, address);
315 __migration_entry_wait(mm, ptep, ptl);
316}
317
318void migration_entry_wait_huge(struct vm_area_struct *vma,
319 struct mm_struct *mm, pte_t *pte)
320{
321 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
322 __migration_entry_wait(mm, pte, ptl);
323}
324
325#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
326void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
327{
328 spinlock_t *ptl;
329
330 ptl = pmd_lock(mm, pmd);
331 if (!is_pmd_migration_entry(*pmd))
332 goto unlock;
333 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
334 return;
335unlock:
336 spin_unlock(ptl);
337}
338#endif
339
340static int expected_page_refs(struct address_space *mapping, struct page *page)
341{
342 int expected_count = 1;
343
344 if (mapping)
345 expected_count += compound_nr(page) + page_has_private(page);
346 return expected_count;
347}
348
349/*
350 * Replace the page in the mapping.
351 *
352 * The number of remaining references must be:
353 * 1 for anonymous pages without a mapping
354 * 2 for pages with a mapping
355 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
356 */
357int folio_migrate_mapping(struct address_space *mapping,
358 struct folio *newfolio, struct folio *folio, int extra_count)
359{
360 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
361 struct zone *oldzone, *newzone;
362 int dirty;
363 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
364 long nr = folio_nr_pages(folio);
365
366 if (!mapping) {
367 /* Anonymous page without mapping */
368 if (folio_ref_count(folio) != expected_count)
369 return -EAGAIN;
370
371 /* No turning back from here */
372 newfolio->index = folio->index;
373 newfolio->mapping = folio->mapping;
374 if (folio_test_swapbacked(folio))
375 __folio_set_swapbacked(newfolio);
376
377 return MIGRATEPAGE_SUCCESS;
378 }
379
380 oldzone = folio_zone(folio);
381 newzone = folio_zone(newfolio);
382
383 xas_lock_irq(&xas);
384 if (!folio_ref_freeze(folio, expected_count)) {
385 xas_unlock_irq(&xas);
386 return -EAGAIN;
387 }
388
389 /*
390 * Now we know that no one else is looking at the folio:
391 * no turning back from here.
392 */
393 newfolio->index = folio->index;
394 newfolio->mapping = folio->mapping;
395 folio_ref_add(newfolio, nr); /* add cache reference */
396 if (folio_test_swapbacked(folio)) {
397 __folio_set_swapbacked(newfolio);
398 if (folio_test_swapcache(folio)) {
399 folio_set_swapcache(newfolio);
400 newfolio->private = folio_get_private(folio);
401 }
402 } else {
403 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
404 }
405
406 /* Move dirty while page refs frozen and newpage not yet exposed */
407 dirty = folio_test_dirty(folio);
408 if (dirty) {
409 folio_clear_dirty(folio);
410 folio_set_dirty(newfolio);
411 }
412
413 xas_store(&xas, newfolio);
414
415 /*
416 * Drop cache reference from old page by unfreezing
417 * to one less reference.
418 * We know this isn't the last reference.
419 */
420 folio_ref_unfreeze(folio, expected_count - nr);
421
422 xas_unlock(&xas);
423 /* Leave irq disabled to prevent preemption while updating stats */
424
425 /*
426 * If moved to a different zone then also account
427 * the page for that zone. Other VM counters will be
428 * taken care of when we establish references to the
429 * new page and drop references to the old page.
430 *
431 * Note that anonymous pages are accounted for
432 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
433 * are mapped to swap space.
434 */
435 if (newzone != oldzone) {
436 struct lruvec *old_lruvec, *new_lruvec;
437 struct mem_cgroup *memcg;
438
439 memcg = folio_memcg(folio);
440 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
441 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
442
443 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
444 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
445 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
446 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
447 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
448 }
449#ifdef CONFIG_SWAP
450 if (folio_test_swapcache(folio)) {
451 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
452 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
453 }
454#endif
455 if (dirty && mapping_can_writeback(mapping)) {
456 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
457 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
458 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
459 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
460 }
461 }
462 local_irq_enable();
463
464 return MIGRATEPAGE_SUCCESS;
465}
466EXPORT_SYMBOL(folio_migrate_mapping);
467
468/*
469 * The expected number of remaining references is the same as that
470 * of folio_migrate_mapping().
471 */
472int migrate_huge_page_move_mapping(struct address_space *mapping,
473 struct page *newpage, struct page *page)
474{
475 XA_STATE(xas, &mapping->i_pages, page_index(page));
476 int expected_count;
477
478 xas_lock_irq(&xas);
479 expected_count = 2 + page_has_private(page);
480 if (!page_ref_freeze(page, expected_count)) {
481 xas_unlock_irq(&xas);
482 return -EAGAIN;
483 }
484
485 newpage->index = page->index;
486 newpage->mapping = page->mapping;
487
488 get_page(newpage);
489
490 xas_store(&xas, newpage);
491
492 page_ref_unfreeze(page, expected_count - 1);
493
494 xas_unlock_irq(&xas);
495
496 return MIGRATEPAGE_SUCCESS;
497}
498
499/*
500 * Copy the flags and some other ancillary information
501 */
502void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
503{
504 int cpupid;
505
506 if (folio_test_error(folio))
507 folio_set_error(newfolio);
508 if (folio_test_referenced(folio))
509 folio_set_referenced(newfolio);
510 if (folio_test_uptodate(folio))
511 folio_mark_uptodate(newfolio);
512 if (folio_test_clear_active(folio)) {
513 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
514 folio_set_active(newfolio);
515 } else if (folio_test_clear_unevictable(folio))
516 folio_set_unevictable(newfolio);
517 if (folio_test_workingset(folio))
518 folio_set_workingset(newfolio);
519 if (folio_test_checked(folio))
520 folio_set_checked(newfolio);
521 /*
522 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
523 * migration entries. We can still have PG_anon_exclusive set on an
524 * effectively unmapped and unreferenced first sub-pages of an
525 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
526 */
527 if (folio_test_mappedtodisk(folio))
528 folio_set_mappedtodisk(newfolio);
529
530 /* Move dirty on pages not done by folio_migrate_mapping() */
531 if (folio_test_dirty(folio))
532 folio_set_dirty(newfolio);
533
534 if (folio_test_young(folio))
535 folio_set_young(newfolio);
536 if (folio_test_idle(folio))
537 folio_set_idle(newfolio);
538
539 /*
540 * Copy NUMA information to the new page, to prevent over-eager
541 * future migrations of this same page.
542 */
543 cpupid = page_cpupid_xchg_last(&folio->page, -1);
544 page_cpupid_xchg_last(&newfolio->page, cpupid);
545
546 folio_migrate_ksm(newfolio, folio);
547 /*
548 * Please do not reorder this without considering how mm/ksm.c's
549 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
550 */
551 if (folio_test_swapcache(folio))
552 folio_clear_swapcache(folio);
553 folio_clear_private(folio);
554
555 /* page->private contains hugetlb specific flags */
556 if (!folio_test_hugetlb(folio))
557 folio->private = NULL;
558
559 /*
560 * If any waiters have accumulated on the new page then
561 * wake them up.
562 */
563 if (folio_test_writeback(newfolio))
564 folio_end_writeback(newfolio);
565
566 /*
567 * PG_readahead shares the same bit with PG_reclaim. The above
568 * end_page_writeback() may clear PG_readahead mistakenly, so set the
569 * bit after that.
570 */
571 if (folio_test_readahead(folio))
572 folio_set_readahead(newfolio);
573
574 folio_copy_owner(newfolio, folio);
575
576 if (!folio_test_hugetlb(folio))
577 mem_cgroup_migrate(folio, newfolio);
578}
579EXPORT_SYMBOL(folio_migrate_flags);
580
581void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
582{
583 folio_copy(newfolio, folio);
584 folio_migrate_flags(newfolio, folio);
585}
586EXPORT_SYMBOL(folio_migrate_copy);
587
588/************************************************************
589 * Migration functions
590 ***********************************************************/
591
592/*
593 * Common logic to directly migrate a single LRU page suitable for
594 * pages that do not use PagePrivate/PagePrivate2.
595 *
596 * Pages are locked upon entry and exit.
597 */
598int migrate_page(struct address_space *mapping,
599 struct page *newpage, struct page *page,
600 enum migrate_mode mode)
601{
602 struct folio *newfolio = page_folio(newpage);
603 struct folio *folio = page_folio(page);
604 int rc;
605
606 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */
607
608 rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
609
610 if (rc != MIGRATEPAGE_SUCCESS)
611 return rc;
612
613 if (mode != MIGRATE_SYNC_NO_COPY)
614 folio_migrate_copy(newfolio, folio);
615 else
616 folio_migrate_flags(newfolio, folio);
617 return MIGRATEPAGE_SUCCESS;
618}
619EXPORT_SYMBOL(migrate_page);
620
621#ifdef CONFIG_BLOCK
622/* Returns true if all buffers are successfully locked */
623static bool buffer_migrate_lock_buffers(struct buffer_head *head,
624 enum migrate_mode mode)
625{
626 struct buffer_head *bh = head;
627
628 /* Simple case, sync compaction */
629 if (mode != MIGRATE_ASYNC) {
630 do {
631 lock_buffer(bh);
632 bh = bh->b_this_page;
633
634 } while (bh != head);
635
636 return true;
637 }
638
639 /* async case, we cannot block on lock_buffer so use trylock_buffer */
640 do {
641 if (!trylock_buffer(bh)) {
642 /*
643 * We failed to lock the buffer and cannot stall in
644 * async migration. Release the taken locks
645 */
646 struct buffer_head *failed_bh = bh;
647 bh = head;
648 while (bh != failed_bh) {
649 unlock_buffer(bh);
650 bh = bh->b_this_page;
651 }
652 return false;
653 }
654
655 bh = bh->b_this_page;
656 } while (bh != head);
657 return true;
658}
659
660static int __buffer_migrate_page(struct address_space *mapping,
661 struct page *newpage, struct page *page, enum migrate_mode mode,
662 bool check_refs)
663{
664 struct buffer_head *bh, *head;
665 int rc;
666 int expected_count;
667
668 if (!page_has_buffers(page))
669 return migrate_page(mapping, newpage, page, mode);
670
671 /* Check whether page does not have extra refs before we do more work */
672 expected_count = expected_page_refs(mapping, page);
673 if (page_count(page) != expected_count)
674 return -EAGAIN;
675
676 head = page_buffers(page);
677 if (!buffer_migrate_lock_buffers(head, mode))
678 return -EAGAIN;
679
680 if (check_refs) {
681 bool busy;
682 bool invalidated = false;
683
684recheck_buffers:
685 busy = false;
686 spin_lock(&mapping->private_lock);
687 bh = head;
688 do {
689 if (atomic_read(&bh->b_count)) {
690 busy = true;
691 break;
692 }
693 bh = bh->b_this_page;
694 } while (bh != head);
695 if (busy) {
696 if (invalidated) {
697 rc = -EAGAIN;
698 goto unlock_buffers;
699 }
700 spin_unlock(&mapping->private_lock);
701 invalidate_bh_lrus();
702 invalidated = true;
703 goto recheck_buffers;
704 }
705 }
706
707 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
708 if (rc != MIGRATEPAGE_SUCCESS)
709 goto unlock_buffers;
710
711 attach_page_private(newpage, detach_page_private(page));
712
713 bh = head;
714 do {
715 set_bh_page(bh, newpage, bh_offset(bh));
716 bh = bh->b_this_page;
717
718 } while (bh != head);
719
720 if (mode != MIGRATE_SYNC_NO_COPY)
721 migrate_page_copy(newpage, page);
722 else
723 migrate_page_states(newpage, page);
724
725 rc = MIGRATEPAGE_SUCCESS;
726unlock_buffers:
727 if (check_refs)
728 spin_unlock(&mapping->private_lock);
729 bh = head;
730 do {
731 unlock_buffer(bh);
732 bh = bh->b_this_page;
733
734 } while (bh != head);
735
736 return rc;
737}
738
739/*
740 * Migration function for pages with buffers. This function can only be used
741 * if the underlying filesystem guarantees that no other references to "page"
742 * exist. For example attached buffer heads are accessed only under page lock.
743 */
744int buffer_migrate_page(struct address_space *mapping,
745 struct page *newpage, struct page *page, enum migrate_mode mode)
746{
747 return __buffer_migrate_page(mapping, newpage, page, mode, false);
748}
749EXPORT_SYMBOL(buffer_migrate_page);
750
751/*
752 * Same as above except that this variant is more careful and checks that there
753 * are also no buffer head references. This function is the right one for
754 * mappings where buffer heads are directly looked up and referenced (such as
755 * block device mappings).
756 */
757int buffer_migrate_page_norefs(struct address_space *mapping,
758 struct page *newpage, struct page *page, enum migrate_mode mode)
759{
760 return __buffer_migrate_page(mapping, newpage, page, mode, true);
761}
762#endif
763
764/*
765 * Writeback a page to clean the dirty state
766 */
767static int writeout(struct address_space *mapping, struct page *page)
768{
769 struct folio *folio = page_folio(page);
770 struct writeback_control wbc = {
771 .sync_mode = WB_SYNC_NONE,
772 .nr_to_write = 1,
773 .range_start = 0,
774 .range_end = LLONG_MAX,
775 .for_reclaim = 1
776 };
777 int rc;
778
779 if (!mapping->a_ops->writepage)
780 /* No write method for the address space */
781 return -EINVAL;
782
783 if (!clear_page_dirty_for_io(page))
784 /* Someone else already triggered a write */
785 return -EAGAIN;
786
787 /*
788 * A dirty page may imply that the underlying filesystem has
789 * the page on some queue. So the page must be clean for
790 * migration. Writeout may mean we loose the lock and the
791 * page state is no longer what we checked for earlier.
792 * At this point we know that the migration attempt cannot
793 * be successful.
794 */
795 remove_migration_ptes(folio, folio, false);
796
797 rc = mapping->a_ops->writepage(page, &wbc);
798
799 if (rc != AOP_WRITEPAGE_ACTIVATE)
800 /* unlocked. Relock */
801 lock_page(page);
802
803 return (rc < 0) ? -EIO : -EAGAIN;
804}
805
806/*
807 * Default handling if a filesystem does not provide a migration function.
808 */
809static int fallback_migrate_page(struct address_space *mapping,
810 struct page *newpage, struct page *page, enum migrate_mode mode)
811{
812 if (PageDirty(page)) {
813 /* Only writeback pages in full synchronous migration */
814 switch (mode) {
815 case MIGRATE_SYNC:
816 case MIGRATE_SYNC_NO_COPY:
817 break;
818 default:
819 return -EBUSY;
820 }
821 return writeout(mapping, page);
822 }
823
824 /*
825 * Buffers may be managed in a filesystem specific way.
826 * We must have no buffers or drop them.
827 */
828 if (page_has_private(page) &&
829 !try_to_release_page(page, GFP_KERNEL))
830 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
831
832 return migrate_page(mapping, newpage, page, mode);
833}
834
835/*
836 * Move a page to a newly allocated page
837 * The page is locked and all ptes have been successfully removed.
838 *
839 * The new page will have replaced the old page if this function
840 * is successful.
841 *
842 * Return value:
843 * < 0 - error code
844 * MIGRATEPAGE_SUCCESS - success
845 */
846static int move_to_new_folio(struct folio *dst, struct folio *src,
847 enum migrate_mode mode)
848{
849 struct address_space *mapping;
850 int rc = -EAGAIN;
851 bool is_lru = !__PageMovable(&src->page);
852
853 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
854 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
855
856 mapping = folio_mapping(src);
857
858 if (likely(is_lru)) {
859 if (!mapping)
860 rc = migrate_page(mapping, &dst->page, &src->page, mode);
861 else if (mapping->a_ops->migratepage)
862 /*
863 * Most pages have a mapping and most filesystems
864 * provide a migratepage callback. Anonymous pages
865 * are part of swap space which also has its own
866 * migratepage callback. This is the most common path
867 * for page migration.
868 */
869 rc = mapping->a_ops->migratepage(mapping, &dst->page,
870 &src->page, mode);
871 else
872 rc = fallback_migrate_page(mapping, &dst->page,
873 &src->page, mode);
874 } else {
875 /*
876 * In case of non-lru page, it could be released after
877 * isolation step. In that case, we shouldn't try migration.
878 */
879 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
880 if (!folio_test_movable(src)) {
881 rc = MIGRATEPAGE_SUCCESS;
882 folio_clear_isolated(src);
883 goto out;
884 }
885
886 rc = mapping->a_ops->migratepage(mapping, &dst->page,
887 &src->page, mode);
888 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
889 !folio_test_isolated(src));
890 }
891
892 /*
893 * When successful, old pagecache src->mapping must be cleared before
894 * src is freed; but stats require that PageAnon be left as PageAnon.
895 */
896 if (rc == MIGRATEPAGE_SUCCESS) {
897 if (__PageMovable(&src->page)) {
898 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
899
900 /*
901 * We clear PG_movable under page_lock so any compactor
902 * cannot try to migrate this page.
903 */
904 folio_clear_isolated(src);
905 }
906
907 /*
908 * Anonymous and movable src->mapping will be cleared by
909 * free_pages_prepare so don't reset it here for keeping
910 * the type to work PageAnon, for example.
911 */
912 if (!folio_mapping_flags(src))
913 src->mapping = NULL;
914
915 if (likely(!folio_is_zone_device(dst)))
916 flush_dcache_folio(dst);
917 }
918out:
919 return rc;
920}
921
922static int __unmap_and_move(struct page *page, struct page *newpage,
923 int force, enum migrate_mode mode)
924{
925 struct folio *folio = page_folio(page);
926 struct folio *dst = page_folio(newpage);
927 int rc = -EAGAIN;
928 bool page_was_mapped = false;
929 struct anon_vma *anon_vma = NULL;
930 bool is_lru = !__PageMovable(page);
931
932 if (!trylock_page(page)) {
933 if (!force || mode == MIGRATE_ASYNC)
934 goto out;
935
936 /*
937 * It's not safe for direct compaction to call lock_page.
938 * For example, during page readahead pages are added locked
939 * to the LRU. Later, when the IO completes the pages are
940 * marked uptodate and unlocked. However, the queueing
941 * could be merging multiple pages for one bio (e.g.
942 * mpage_readahead). If an allocation happens for the
943 * second or third page, the process can end up locking
944 * the same page twice and deadlocking. Rather than
945 * trying to be clever about what pages can be locked,
946 * avoid the use of lock_page for direct compaction
947 * altogether.
948 */
949 if (current->flags & PF_MEMALLOC)
950 goto out;
951
952 lock_page(page);
953 }
954
955 if (PageWriteback(page)) {
956 /*
957 * Only in the case of a full synchronous migration is it
958 * necessary to wait for PageWriteback. In the async case,
959 * the retry loop is too short and in the sync-light case,
960 * the overhead of stalling is too much
961 */
962 switch (mode) {
963 case MIGRATE_SYNC:
964 case MIGRATE_SYNC_NO_COPY:
965 break;
966 default:
967 rc = -EBUSY;
968 goto out_unlock;
969 }
970 if (!force)
971 goto out_unlock;
972 wait_on_page_writeback(page);
973 }
974
975 /*
976 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
977 * we cannot notice that anon_vma is freed while we migrates a page.
978 * This get_anon_vma() delays freeing anon_vma pointer until the end
979 * of migration. File cache pages are no problem because of page_lock()
980 * File Caches may use write_page() or lock_page() in migration, then,
981 * just care Anon page here.
982 *
983 * Only page_get_anon_vma() understands the subtleties of
984 * getting a hold on an anon_vma from outside one of its mms.
985 * But if we cannot get anon_vma, then we won't need it anyway,
986 * because that implies that the anon page is no longer mapped
987 * (and cannot be remapped so long as we hold the page lock).
988 */
989 if (PageAnon(page) && !PageKsm(page))
990 anon_vma = page_get_anon_vma(page);
991
992 /*
993 * Block others from accessing the new page when we get around to
994 * establishing additional references. We are usually the only one
995 * holding a reference to newpage at this point. We used to have a BUG
996 * here if trylock_page(newpage) fails, but would like to allow for
997 * cases where there might be a race with the previous use of newpage.
998 * This is much like races on refcount of oldpage: just don't BUG().
999 */
1000 if (unlikely(!trylock_page(newpage)))
1001 goto out_unlock;
1002
1003 if (unlikely(!is_lru)) {
1004 rc = move_to_new_folio(dst, folio, mode);
1005 goto out_unlock_both;
1006 }
1007
1008 /*
1009 * Corner case handling:
1010 * 1. When a new swap-cache page is read into, it is added to the LRU
1011 * and treated as swapcache but it has no rmap yet.
1012 * Calling try_to_unmap() against a page->mapping==NULL page will
1013 * trigger a BUG. So handle it here.
1014 * 2. An orphaned page (see truncate_cleanup_page) might have
1015 * fs-private metadata. The page can be picked up due to memory
1016 * offlining. Everywhere else except page reclaim, the page is
1017 * invisible to the vm, so the page can not be migrated. So try to
1018 * free the metadata, so the page can be freed.
1019 */
1020 if (!page->mapping) {
1021 VM_BUG_ON_PAGE(PageAnon(page), page);
1022 if (page_has_private(page)) {
1023 try_to_free_buffers(folio);
1024 goto out_unlock_both;
1025 }
1026 } else if (page_mapped(page)) {
1027 /* Establish migration ptes */
1028 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1029 page);
1030 try_to_migrate(folio, 0);
1031 page_was_mapped = true;
1032 }
1033
1034 if (!page_mapped(page))
1035 rc = move_to_new_folio(dst, folio, mode);
1036
1037 /*
1038 * When successful, push newpage to LRU immediately: so that if it
1039 * turns out to be an mlocked page, remove_migration_ptes() will
1040 * automatically build up the correct newpage->mlock_count for it.
1041 *
1042 * We would like to do something similar for the old page, when
1043 * unsuccessful, and other cases when a page has been temporarily
1044 * isolated from the unevictable LRU: but this case is the easiest.
1045 */
1046 if (rc == MIGRATEPAGE_SUCCESS) {
1047 lru_cache_add(newpage);
1048 if (page_was_mapped)
1049 lru_add_drain();
1050 }
1051
1052 if (page_was_mapped)
1053 remove_migration_ptes(folio,
1054 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1055
1056out_unlock_both:
1057 unlock_page(newpage);
1058out_unlock:
1059 /* Drop an anon_vma reference if we took one */
1060 if (anon_vma)
1061 put_anon_vma(anon_vma);
1062 unlock_page(page);
1063out:
1064 /*
1065 * If migration is successful, decrease refcount of the newpage,
1066 * which will not free the page because new page owner increased
1067 * refcounter.
1068 */
1069 if (rc == MIGRATEPAGE_SUCCESS)
1070 put_page(newpage);
1071
1072 return rc;
1073}
1074
1075/*
1076 * Obtain the lock on page, remove all ptes and migrate the page
1077 * to the newly allocated page in newpage.
1078 */
1079static int unmap_and_move(new_page_t get_new_page,
1080 free_page_t put_new_page,
1081 unsigned long private, struct page *page,
1082 int force, enum migrate_mode mode,
1083 enum migrate_reason reason,
1084 struct list_head *ret)
1085{
1086 int rc = MIGRATEPAGE_SUCCESS;
1087 struct page *newpage = NULL;
1088
1089 if (!thp_migration_supported() && PageTransHuge(page))
1090 return -ENOSYS;
1091
1092 if (page_count(page) == 1) {
1093 /* page was freed from under us. So we are done. */
1094 ClearPageActive(page);
1095 ClearPageUnevictable(page);
1096 if (unlikely(__PageMovable(page))) {
1097 lock_page(page);
1098 if (!PageMovable(page))
1099 ClearPageIsolated(page);
1100 unlock_page(page);
1101 }
1102 goto out;
1103 }
1104
1105 newpage = get_new_page(page, private);
1106 if (!newpage)
1107 return -ENOMEM;
1108
1109 rc = __unmap_and_move(page, newpage, force, mode);
1110 if (rc == MIGRATEPAGE_SUCCESS)
1111 set_page_owner_migrate_reason(newpage, reason);
1112
1113out:
1114 if (rc != -EAGAIN) {
1115 /*
1116 * A page that has been migrated has all references
1117 * removed and will be freed. A page that has not been
1118 * migrated will have kept its references and be restored.
1119 */
1120 list_del(&page->lru);
1121 }
1122
1123 /*
1124 * If migration is successful, releases reference grabbed during
1125 * isolation. Otherwise, restore the page to right list unless
1126 * we want to retry.
1127 */
1128 if (rc == MIGRATEPAGE_SUCCESS) {
1129 /*
1130 * Compaction can migrate also non-LRU pages which are
1131 * not accounted to NR_ISOLATED_*. They can be recognized
1132 * as __PageMovable
1133 */
1134 if (likely(!__PageMovable(page)))
1135 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1136 page_is_file_lru(page), -thp_nr_pages(page));
1137
1138 if (reason != MR_MEMORY_FAILURE)
1139 /*
1140 * We release the page in page_handle_poison.
1141 */
1142 put_page(page);
1143 } else {
1144 if (rc != -EAGAIN)
1145 list_add_tail(&page->lru, ret);
1146
1147 if (put_new_page)
1148 put_new_page(newpage, private);
1149 else
1150 put_page(newpage);
1151 }
1152
1153 return rc;
1154}
1155
1156/*
1157 * Counterpart of unmap_and_move_page() for hugepage migration.
1158 *
1159 * This function doesn't wait the completion of hugepage I/O
1160 * because there is no race between I/O and migration for hugepage.
1161 * Note that currently hugepage I/O occurs only in direct I/O
1162 * where no lock is held and PG_writeback is irrelevant,
1163 * and writeback status of all subpages are counted in the reference
1164 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1165 * under direct I/O, the reference of the head page is 512 and a bit more.)
1166 * This means that when we try to migrate hugepage whose subpages are
1167 * doing direct I/O, some references remain after try_to_unmap() and
1168 * hugepage migration fails without data corruption.
1169 *
1170 * There is also no race when direct I/O is issued on the page under migration,
1171 * because then pte is replaced with migration swap entry and direct I/O code
1172 * will wait in the page fault for migration to complete.
1173 */
1174static int unmap_and_move_huge_page(new_page_t get_new_page,
1175 free_page_t put_new_page, unsigned long private,
1176 struct page *hpage, int force,
1177 enum migrate_mode mode, int reason,
1178 struct list_head *ret)
1179{
1180 struct folio *dst, *src = page_folio(hpage);
1181 int rc = -EAGAIN;
1182 int page_was_mapped = 0;
1183 struct page *new_hpage;
1184 struct anon_vma *anon_vma = NULL;
1185 struct address_space *mapping = NULL;
1186
1187 /*
1188 * Migratability of hugepages depends on architectures and their size.
1189 * This check is necessary because some callers of hugepage migration
1190 * like soft offline and memory hotremove don't walk through page
1191 * tables or check whether the hugepage is pmd-based or not before
1192 * kicking migration.
1193 */
1194 if (!hugepage_migration_supported(page_hstate(hpage))) {
1195 list_move_tail(&hpage->lru, ret);
1196 return -ENOSYS;
1197 }
1198
1199 if (page_count(hpage) == 1) {
1200 /* page was freed from under us. So we are done. */
1201 putback_active_hugepage(hpage);
1202 return MIGRATEPAGE_SUCCESS;
1203 }
1204
1205 new_hpage = get_new_page(hpage, private);
1206 if (!new_hpage)
1207 return -ENOMEM;
1208 dst = page_folio(new_hpage);
1209
1210 if (!trylock_page(hpage)) {
1211 if (!force)
1212 goto out;
1213 switch (mode) {
1214 case MIGRATE_SYNC:
1215 case MIGRATE_SYNC_NO_COPY:
1216 break;
1217 default:
1218 goto out;
1219 }
1220 lock_page(hpage);
1221 }
1222
1223 /*
1224 * Check for pages which are in the process of being freed. Without
1225 * page_mapping() set, hugetlbfs specific move page routine will not
1226 * be called and we could leak usage counts for subpools.
1227 */
1228 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1229 rc = -EBUSY;
1230 goto out_unlock;
1231 }
1232
1233 if (PageAnon(hpage))
1234 anon_vma = page_get_anon_vma(hpage);
1235
1236 if (unlikely(!trylock_page(new_hpage)))
1237 goto put_anon;
1238
1239 if (page_mapped(hpage)) {
1240 enum ttu_flags ttu = 0;
1241
1242 if (!PageAnon(hpage)) {
1243 /*
1244 * In shared mappings, try_to_unmap could potentially
1245 * call huge_pmd_unshare. Because of this, take
1246 * semaphore in write mode here and set TTU_RMAP_LOCKED
1247 * to let lower levels know we have taken the lock.
1248 */
1249 mapping = hugetlb_page_mapping_lock_write(hpage);
1250 if (unlikely(!mapping))
1251 goto unlock_put_anon;
1252
1253 ttu = TTU_RMAP_LOCKED;
1254 }
1255
1256 try_to_migrate(src, ttu);
1257 page_was_mapped = 1;
1258
1259 if (ttu & TTU_RMAP_LOCKED)
1260 i_mmap_unlock_write(mapping);
1261 }
1262
1263 if (!page_mapped(hpage))
1264 rc = move_to_new_folio(dst, src, mode);
1265
1266 if (page_was_mapped)
1267 remove_migration_ptes(src,
1268 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1269
1270unlock_put_anon:
1271 unlock_page(new_hpage);
1272
1273put_anon:
1274 if (anon_vma)
1275 put_anon_vma(anon_vma);
1276
1277 if (rc == MIGRATEPAGE_SUCCESS) {
1278 move_hugetlb_state(hpage, new_hpage, reason);
1279 put_new_page = NULL;
1280 }
1281
1282out_unlock:
1283 unlock_page(hpage);
1284out:
1285 if (rc == MIGRATEPAGE_SUCCESS)
1286 putback_active_hugepage(hpage);
1287 else if (rc != -EAGAIN)
1288 list_move_tail(&hpage->lru, ret);
1289
1290 /*
1291 * If migration was not successful and there's a freeing callback, use
1292 * it. Otherwise, put_page() will drop the reference grabbed during
1293 * isolation.
1294 */
1295 if (put_new_page)
1296 put_new_page(new_hpage, private);
1297 else
1298 putback_active_hugepage(new_hpage);
1299
1300 return rc;
1301}
1302
1303static inline int try_split_thp(struct page *page, struct page **page2,
1304 struct list_head *from)
1305{
1306 int rc = 0;
1307
1308 lock_page(page);
1309 rc = split_huge_page_to_list(page, from);
1310 unlock_page(page);
1311 if (!rc)
1312 list_safe_reset_next(page, *page2, lru);
1313
1314 return rc;
1315}
1316
1317/*
1318 * migrate_pages - migrate the pages specified in a list, to the free pages
1319 * supplied as the target for the page migration
1320 *
1321 * @from: The list of pages to be migrated.
1322 * @get_new_page: The function used to allocate free pages to be used
1323 * as the target of the page migration.
1324 * @put_new_page: The function used to free target pages if migration
1325 * fails, or NULL if no special handling is necessary.
1326 * @private: Private data to be passed on to get_new_page()
1327 * @mode: The migration mode that specifies the constraints for
1328 * page migration, if any.
1329 * @reason: The reason for page migration.
1330 * @ret_succeeded: Set to the number of normal pages migrated successfully if
1331 * the caller passes a non-NULL pointer.
1332 *
1333 * The function returns after 10 attempts or if no pages are movable any more
1334 * because the list has become empty or no retryable pages exist any more.
1335 * It is caller's responsibility to call putback_movable_pages() to return pages
1336 * to the LRU or free list only if ret != 0.
1337 *
1338 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1339 * an error code. The number of THP splits will be considered as the number of
1340 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1341 */
1342int migrate_pages(struct list_head *from, new_page_t get_new_page,
1343 free_page_t put_new_page, unsigned long private,
1344 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1345{
1346 int retry = 1;
1347 int thp_retry = 1;
1348 int nr_failed = 0;
1349 int nr_failed_pages = 0;
1350 int nr_succeeded = 0;
1351 int nr_thp_succeeded = 0;
1352 int nr_thp_failed = 0;
1353 int nr_thp_split = 0;
1354 int pass = 0;
1355 bool is_thp = false;
1356 struct page *page;
1357 struct page *page2;
1358 int rc, nr_subpages;
1359 LIST_HEAD(ret_pages);
1360 LIST_HEAD(thp_split_pages);
1361 bool nosplit = (reason == MR_NUMA_MISPLACED);
1362 bool no_subpage_counting = false;
1363
1364 trace_mm_migrate_pages_start(mode, reason);
1365
1366thp_subpage_migration:
1367 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1368 retry = 0;
1369 thp_retry = 0;
1370
1371 list_for_each_entry_safe(page, page2, from, lru) {
1372retry:
1373 /*
1374 * THP statistics is based on the source huge page.
1375 * Capture required information that might get lost
1376 * during migration.
1377 */
1378 is_thp = PageTransHuge(page) && !PageHuge(page);
1379 nr_subpages = compound_nr(page);
1380 cond_resched();
1381
1382 if (PageHuge(page))
1383 rc = unmap_and_move_huge_page(get_new_page,
1384 put_new_page, private, page,
1385 pass > 2, mode, reason,
1386 &ret_pages);
1387 else
1388 rc = unmap_and_move(get_new_page, put_new_page,
1389 private, page, pass > 2, mode,
1390 reason, &ret_pages);
1391 /*
1392 * The rules are:
1393 * Success: non hugetlb page will be freed, hugetlb
1394 * page will be put back
1395 * -EAGAIN: stay on the from list
1396 * -ENOMEM: stay on the from list
1397 * Other errno: put on ret_pages list then splice to
1398 * from list
1399 */
1400 switch(rc) {
1401 /*
1402 * THP migration might be unsupported or the
1403 * allocation could've failed so we should
1404 * retry on the same page with the THP split
1405 * to base pages.
1406 *
1407 * Head page is retried immediately and tail
1408 * pages are added to the tail of the list so
1409 * we encounter them after the rest of the list
1410 * is processed.
1411 */
1412 case -ENOSYS:
1413 /* THP migration is unsupported */
1414 if (is_thp) {
1415 nr_thp_failed++;
1416 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1417 nr_thp_split++;
1418 goto retry;
1419 }
1420 /* Hugetlb migration is unsupported */
1421 } else if (!no_subpage_counting) {
1422 nr_failed++;
1423 }
1424
1425 nr_failed_pages += nr_subpages;
1426 break;
1427 case -ENOMEM:
1428 /*
1429 * When memory is low, don't bother to try to migrate
1430 * other pages, just exit.
1431 * THP NUMA faulting doesn't split THP to retry.
1432 */
1433 if (is_thp && !nosplit) {
1434 nr_thp_failed++;
1435 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1436 nr_thp_split++;
1437 goto retry;
1438 }
1439 } else if (!no_subpage_counting) {
1440 nr_failed++;
1441 }
1442
1443 nr_failed_pages += nr_subpages;
1444 /*
1445 * There might be some subpages of fail-to-migrate THPs
1446 * left in thp_split_pages list. Move them back to migration
1447 * list so that they could be put back to the right list by
1448 * the caller otherwise the page refcnt will be leaked.
1449 */
1450 list_splice_init(&thp_split_pages, from);
1451 nr_thp_failed += thp_retry;
1452 goto out;
1453 case -EAGAIN:
1454 if (is_thp)
1455 thp_retry++;
1456 else
1457 retry++;
1458 break;
1459 case MIGRATEPAGE_SUCCESS:
1460 nr_succeeded += nr_subpages;
1461 if (is_thp)
1462 nr_thp_succeeded++;
1463 break;
1464 default:
1465 /*
1466 * Permanent failure (-EBUSY, etc.):
1467 * unlike -EAGAIN case, the failed page is
1468 * removed from migration page list and not
1469 * retried in the next outer loop.
1470 */
1471 if (is_thp)
1472 nr_thp_failed++;
1473 else if (!no_subpage_counting)
1474 nr_failed++;
1475
1476 nr_failed_pages += nr_subpages;
1477 break;
1478 }
1479 }
1480 }
1481 nr_failed += retry;
1482 nr_thp_failed += thp_retry;
1483 /*
1484 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1485 * counting in this round, since all subpages of a THP is counted
1486 * as 1 failure in the first round.
1487 */
1488 if (!list_empty(&thp_split_pages)) {
1489 /*
1490 * Move non-migrated pages (after 10 retries) to ret_pages
1491 * to avoid migrating them again.
1492 */
1493 list_splice_init(from, &ret_pages);
1494 list_splice_init(&thp_split_pages, from);
1495 no_subpage_counting = true;
1496 retry = 1;
1497 goto thp_subpage_migration;
1498 }
1499
1500 rc = nr_failed + nr_thp_failed;
1501out:
1502 /*
1503 * Put the permanent failure page back to migration list, they
1504 * will be put back to the right list by the caller.
1505 */
1506 list_splice(&ret_pages, from);
1507
1508 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1509 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1510 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1511 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1512 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1513 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1514 nr_thp_failed, nr_thp_split, mode, reason);
1515
1516 if (ret_succeeded)
1517 *ret_succeeded = nr_succeeded;
1518
1519 return rc;
1520}
1521
1522struct page *alloc_migration_target(struct page *page, unsigned long private)
1523{
1524 struct folio *folio = page_folio(page);
1525 struct migration_target_control *mtc;
1526 gfp_t gfp_mask;
1527 unsigned int order = 0;
1528 struct folio *new_folio = NULL;
1529 int nid;
1530 int zidx;
1531
1532 mtc = (struct migration_target_control *)private;
1533 gfp_mask = mtc->gfp_mask;
1534 nid = mtc->nid;
1535 if (nid == NUMA_NO_NODE)
1536 nid = folio_nid(folio);
1537
1538 if (folio_test_hugetlb(folio)) {
1539 struct hstate *h = page_hstate(&folio->page);
1540
1541 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1542 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1543 }
1544
1545 if (folio_test_large(folio)) {
1546 /*
1547 * clear __GFP_RECLAIM to make the migration callback
1548 * consistent with regular THP allocations.
1549 */
1550 gfp_mask &= ~__GFP_RECLAIM;
1551 gfp_mask |= GFP_TRANSHUGE;
1552 order = folio_order(folio);
1553 }
1554 zidx = zone_idx(folio_zone(folio));
1555 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1556 gfp_mask |= __GFP_HIGHMEM;
1557
1558 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1559
1560 return &new_folio->page;
1561}
1562
1563#ifdef CONFIG_NUMA
1564
1565static int store_status(int __user *status, int start, int value, int nr)
1566{
1567 while (nr-- > 0) {
1568 if (put_user(value, status + start))
1569 return -EFAULT;
1570 start++;
1571 }
1572
1573 return 0;
1574}
1575
1576static int do_move_pages_to_node(struct mm_struct *mm,
1577 struct list_head *pagelist, int node)
1578{
1579 int err;
1580 struct migration_target_control mtc = {
1581 .nid = node,
1582 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1583 };
1584
1585 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1586 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1587 if (err)
1588 putback_movable_pages(pagelist);
1589 return err;
1590}
1591
1592/*
1593 * Resolves the given address to a struct page, isolates it from the LRU and
1594 * puts it to the given pagelist.
1595 * Returns:
1596 * errno - if the page cannot be found/isolated
1597 * 0 - when it doesn't have to be migrated because it is already on the
1598 * target node
1599 * 1 - when it has been queued
1600 */
1601static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1602 int node, struct list_head *pagelist, bool migrate_all)
1603{
1604 struct vm_area_struct *vma;
1605 struct page *page;
1606 int err;
1607
1608 mmap_read_lock(mm);
1609 err = -EFAULT;
1610 vma = vma_lookup(mm, addr);
1611 if (!vma || !vma_migratable(vma))
1612 goto out;
1613
1614 /* FOLL_DUMP to ignore special (like zero) pages */
1615 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1616
1617 err = PTR_ERR(page);
1618 if (IS_ERR(page))
1619 goto out;
1620
1621 err = -ENOENT;
1622 if (!page)
1623 goto out;
1624
1625 err = 0;
1626 if (page_to_nid(page) == node)
1627 goto out_putpage;
1628
1629 err = -EACCES;
1630 if (page_mapcount(page) > 1 && !migrate_all)
1631 goto out_putpage;
1632
1633 if (PageHuge(page)) {
1634 if (PageHead(page)) {
1635 isolate_huge_page(page, pagelist);
1636 err = 1;
1637 }
1638 } else {
1639 struct page *head;
1640
1641 head = compound_head(page);
1642 err = isolate_lru_page(head);
1643 if (err)
1644 goto out_putpage;
1645
1646 err = 1;
1647 list_add_tail(&head->lru, pagelist);
1648 mod_node_page_state(page_pgdat(head),
1649 NR_ISOLATED_ANON + page_is_file_lru(head),
1650 thp_nr_pages(head));
1651 }
1652out_putpage:
1653 /*
1654 * Either remove the duplicate refcount from
1655 * isolate_lru_page() or drop the page ref if it was
1656 * not isolated.
1657 */
1658 put_page(page);
1659out:
1660 mmap_read_unlock(mm);
1661 return err;
1662}
1663
1664static int move_pages_and_store_status(struct mm_struct *mm, int node,
1665 struct list_head *pagelist, int __user *status,
1666 int start, int i, unsigned long nr_pages)
1667{
1668 int err;
1669
1670 if (list_empty(pagelist))
1671 return 0;
1672
1673 err = do_move_pages_to_node(mm, pagelist, node);
1674 if (err) {
1675 /*
1676 * Positive err means the number of failed
1677 * pages to migrate. Since we are going to
1678 * abort and return the number of non-migrated
1679 * pages, so need to include the rest of the
1680 * nr_pages that have not been attempted as
1681 * well.
1682 */
1683 if (err > 0)
1684 err += nr_pages - i - 1;
1685 return err;
1686 }
1687 return store_status(status, start, node, i - start);
1688}
1689
1690/*
1691 * Migrate an array of page address onto an array of nodes and fill
1692 * the corresponding array of status.
1693 */
1694static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1695 unsigned long nr_pages,
1696 const void __user * __user *pages,
1697 const int __user *nodes,
1698 int __user *status, int flags)
1699{
1700 int current_node = NUMA_NO_NODE;
1701 LIST_HEAD(pagelist);
1702 int start, i;
1703 int err = 0, err1;
1704
1705 lru_cache_disable();
1706
1707 for (i = start = 0; i < nr_pages; i++) {
1708 const void __user *p;
1709 unsigned long addr;
1710 int node;
1711
1712 err = -EFAULT;
1713 if (get_user(p, pages + i))
1714 goto out_flush;
1715 if (get_user(node, nodes + i))
1716 goto out_flush;
1717 addr = (unsigned long)untagged_addr(p);
1718
1719 err = -ENODEV;
1720 if (node < 0 || node >= MAX_NUMNODES)
1721 goto out_flush;
1722 if (!node_state(node, N_MEMORY))
1723 goto out_flush;
1724
1725 err = -EACCES;
1726 if (!node_isset(node, task_nodes))
1727 goto out_flush;
1728
1729 if (current_node == NUMA_NO_NODE) {
1730 current_node = node;
1731 start = i;
1732 } else if (node != current_node) {
1733 err = move_pages_and_store_status(mm, current_node,
1734 &pagelist, status, start, i, nr_pages);
1735 if (err)
1736 goto out;
1737 start = i;
1738 current_node = node;
1739 }
1740
1741 /*
1742 * Errors in the page lookup or isolation are not fatal and we simply
1743 * report them via status
1744 */
1745 err = add_page_for_migration(mm, addr, current_node,
1746 &pagelist, flags & MPOL_MF_MOVE_ALL);
1747
1748 if (err > 0) {
1749 /* The page is successfully queued for migration */
1750 continue;
1751 }
1752
1753 /*
1754 * The move_pages() man page does not have an -EEXIST choice, so
1755 * use -EFAULT instead.
1756 */
1757 if (err == -EEXIST)
1758 err = -EFAULT;
1759
1760 /*
1761 * If the page is already on the target node (!err), store the
1762 * node, otherwise, store the err.
1763 */
1764 err = store_status(status, i, err ? : current_node, 1);
1765 if (err)
1766 goto out_flush;
1767
1768 err = move_pages_and_store_status(mm, current_node, &pagelist,
1769 status, start, i, nr_pages);
1770 if (err)
1771 goto out;
1772 current_node = NUMA_NO_NODE;
1773 }
1774out_flush:
1775 /* Make sure we do not overwrite the existing error */
1776 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1777 status, start, i, nr_pages);
1778 if (err >= 0)
1779 err = err1;
1780out:
1781 lru_cache_enable();
1782 return err;
1783}
1784
1785/*
1786 * Determine the nodes of an array of pages and store it in an array of status.
1787 */
1788static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1789 const void __user **pages, int *status)
1790{
1791 unsigned long i;
1792
1793 mmap_read_lock(mm);
1794
1795 for (i = 0; i < nr_pages; i++) {
1796 unsigned long addr = (unsigned long)(*pages);
1797 struct vm_area_struct *vma;
1798 struct page *page;
1799 int err = -EFAULT;
1800
1801 vma = vma_lookup(mm, addr);
1802 if (!vma)
1803 goto set_status;
1804
1805 /* FOLL_DUMP to ignore special (like zero) pages */
1806 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1807
1808 err = PTR_ERR(page);
1809 if (IS_ERR(page))
1810 goto set_status;
1811
1812 if (page) {
1813 err = page_to_nid(page);
1814 put_page(page);
1815 } else {
1816 err = -ENOENT;
1817 }
1818set_status:
1819 *status = err;
1820
1821 pages++;
1822 status++;
1823 }
1824
1825 mmap_read_unlock(mm);
1826}
1827
1828static int get_compat_pages_array(const void __user *chunk_pages[],
1829 const void __user * __user *pages,
1830 unsigned long chunk_nr)
1831{
1832 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1833 compat_uptr_t p;
1834 int i;
1835
1836 for (i = 0; i < chunk_nr; i++) {
1837 if (get_user(p, pages32 + i))
1838 return -EFAULT;
1839 chunk_pages[i] = compat_ptr(p);
1840 }
1841
1842 return 0;
1843}
1844
1845/*
1846 * Determine the nodes of a user array of pages and store it in
1847 * a user array of status.
1848 */
1849static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1850 const void __user * __user *pages,
1851 int __user *status)
1852{
1853#define DO_PAGES_STAT_CHUNK_NR 16UL
1854 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1855 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1856
1857 while (nr_pages) {
1858 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1859
1860 if (in_compat_syscall()) {
1861 if (get_compat_pages_array(chunk_pages, pages,
1862 chunk_nr))
1863 break;
1864 } else {
1865 if (copy_from_user(chunk_pages, pages,
1866 chunk_nr * sizeof(*chunk_pages)))
1867 break;
1868 }
1869
1870 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1871
1872 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1873 break;
1874
1875 pages += chunk_nr;
1876 status += chunk_nr;
1877 nr_pages -= chunk_nr;
1878 }
1879 return nr_pages ? -EFAULT : 0;
1880}
1881
1882static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1883{
1884 struct task_struct *task;
1885 struct mm_struct *mm;
1886
1887 /*
1888 * There is no need to check if current process has the right to modify
1889 * the specified process when they are same.
1890 */
1891 if (!pid) {
1892 mmget(current->mm);
1893 *mem_nodes = cpuset_mems_allowed(current);
1894 return current->mm;
1895 }
1896
1897 /* Find the mm_struct */
1898 rcu_read_lock();
1899 task = find_task_by_vpid(pid);
1900 if (!task) {
1901 rcu_read_unlock();
1902 return ERR_PTR(-ESRCH);
1903 }
1904 get_task_struct(task);
1905
1906 /*
1907 * Check if this process has the right to modify the specified
1908 * process. Use the regular "ptrace_may_access()" checks.
1909 */
1910 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1911 rcu_read_unlock();
1912 mm = ERR_PTR(-EPERM);
1913 goto out;
1914 }
1915 rcu_read_unlock();
1916
1917 mm = ERR_PTR(security_task_movememory(task));
1918 if (IS_ERR(mm))
1919 goto out;
1920 *mem_nodes = cpuset_mems_allowed(task);
1921 mm = get_task_mm(task);
1922out:
1923 put_task_struct(task);
1924 if (!mm)
1925 mm = ERR_PTR(-EINVAL);
1926 return mm;
1927}
1928
1929/*
1930 * Move a list of pages in the address space of the currently executing
1931 * process.
1932 */
1933static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1934 const void __user * __user *pages,
1935 const int __user *nodes,
1936 int __user *status, int flags)
1937{
1938 struct mm_struct *mm;
1939 int err;
1940 nodemask_t task_nodes;
1941
1942 /* Check flags */
1943 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1944 return -EINVAL;
1945
1946 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1947 return -EPERM;
1948
1949 mm = find_mm_struct(pid, &task_nodes);
1950 if (IS_ERR(mm))
1951 return PTR_ERR(mm);
1952
1953 if (nodes)
1954 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1955 nodes, status, flags);
1956 else
1957 err = do_pages_stat(mm, nr_pages, pages, status);
1958
1959 mmput(mm);
1960 return err;
1961}
1962
1963SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1964 const void __user * __user *, pages,
1965 const int __user *, nodes,
1966 int __user *, status, int, flags)
1967{
1968 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1969}
1970
1971#ifdef CONFIG_NUMA_BALANCING
1972/*
1973 * Returns true if this is a safe migration target node for misplaced NUMA
1974 * pages. Currently it only checks the watermarks which is crude.
1975 */
1976static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1977 unsigned long nr_migrate_pages)
1978{
1979 int z;
1980
1981 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1982 struct zone *zone = pgdat->node_zones + z;
1983
1984 if (!managed_zone(zone))
1985 continue;
1986
1987 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1988 if (!zone_watermark_ok(zone, 0,
1989 high_wmark_pages(zone) +
1990 nr_migrate_pages,
1991 ZONE_MOVABLE, 0))
1992 continue;
1993 return true;
1994 }
1995 return false;
1996}
1997
1998static struct page *alloc_misplaced_dst_page(struct page *page,
1999 unsigned long data)
2000{
2001 int nid = (int) data;
2002 int order = compound_order(page);
2003 gfp_t gfp = __GFP_THISNODE;
2004 struct folio *new;
2005
2006 if (order > 0)
2007 gfp |= GFP_TRANSHUGE_LIGHT;
2008 else {
2009 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2010 __GFP_NOWARN;
2011 gfp &= ~__GFP_RECLAIM;
2012 }
2013 new = __folio_alloc_node(gfp, order, nid);
2014
2015 return &new->page;
2016}
2017
2018static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2019{
2020 int nr_pages = thp_nr_pages(page);
2021 int order = compound_order(page);
2022
2023 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2024
2025 /* Do not migrate THP mapped by multiple processes */
2026 if (PageTransHuge(page) && total_mapcount(page) > 1)
2027 return 0;
2028
2029 /* Avoid migrating to a node that is nearly full */
2030 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2031 int z;
2032
2033 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2034 return 0;
2035 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2036 if (managed_zone(pgdat->node_zones + z))
2037 break;
2038 }
2039 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2040 return 0;
2041 }
2042
2043 if (isolate_lru_page(page))
2044 return 0;
2045
2046 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2047 nr_pages);
2048
2049 /*
2050 * Isolating the page has taken another reference, so the
2051 * caller's reference can be safely dropped without the page
2052 * disappearing underneath us during migration.
2053 */
2054 put_page(page);
2055 return 1;
2056}
2057
2058/*
2059 * Attempt to migrate a misplaced page to the specified destination
2060 * node. Caller is expected to have an elevated reference count on
2061 * the page that will be dropped by this function before returning.
2062 */
2063int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2064 int node)
2065{
2066 pg_data_t *pgdat = NODE_DATA(node);
2067 int isolated;
2068 int nr_remaining;
2069 unsigned int nr_succeeded;
2070 LIST_HEAD(migratepages);
2071 int nr_pages = thp_nr_pages(page);
2072
2073 /*
2074 * Don't migrate file pages that are mapped in multiple processes
2075 * with execute permissions as they are probably shared libraries.
2076 */
2077 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2078 (vma->vm_flags & VM_EXEC))
2079 goto out;
2080
2081 /*
2082 * Also do not migrate dirty pages as not all filesystems can move
2083 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2084 */
2085 if (page_is_file_lru(page) && PageDirty(page))
2086 goto out;
2087
2088 isolated = numamigrate_isolate_page(pgdat, page);
2089 if (!isolated)
2090 goto out;
2091
2092 list_add(&page->lru, &migratepages);
2093 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2094 NULL, node, MIGRATE_ASYNC,
2095 MR_NUMA_MISPLACED, &nr_succeeded);
2096 if (nr_remaining) {
2097 if (!list_empty(&migratepages)) {
2098 list_del(&page->lru);
2099 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2100 page_is_file_lru(page), -nr_pages);
2101 putback_lru_page(page);
2102 }
2103 isolated = 0;
2104 }
2105 if (nr_succeeded) {
2106 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2107 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2108 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2109 nr_succeeded);
2110 }
2111 BUG_ON(!list_empty(&migratepages));
2112 return isolated;
2113
2114out:
2115 put_page(page);
2116 return 0;
2117}
2118#endif /* CONFIG_NUMA_BALANCING */
2119
2120/*
2121 * node_demotion[] example:
2122 *
2123 * Consider a system with two sockets. Each socket has
2124 * three classes of memory attached: fast, medium and slow.
2125 * Each memory class is placed in its own NUMA node. The
2126 * CPUs are placed in the node with the "fast" memory. The
2127 * 6 NUMA nodes (0-5) might be split among the sockets like
2128 * this:
2129 *
2130 * Socket A: 0, 1, 2
2131 * Socket B: 3, 4, 5
2132 *
2133 * When Node 0 fills up, its memory should be migrated to
2134 * Node 1. When Node 1 fills up, it should be migrated to
2135 * Node 2. The migration path start on the nodes with the
2136 * processors (since allocations default to this node) and
2137 * fast memory, progress through medium and end with the
2138 * slow memory:
2139 *
2140 * 0 -> 1 -> 2 -> stop
2141 * 3 -> 4 -> 5 -> stop
2142 *
2143 * This is represented in the node_demotion[] like this:
2144 *
2145 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2146 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2147 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2148 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2149 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2150 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2151 *
2152 * Moreover some systems may have multiple slow memory nodes.
2153 * Suppose a system has one socket with 3 memory nodes, node 0
2154 * is fast memory type, and node 1/2 both are slow memory
2155 * type, and the distance between fast memory node and slow
2156 * memory node is same. So the migration path should be:
2157 *
2158 * 0 -> 1/2 -> stop
2159 *
2160 * This is represented in the node_demotion[] like this:
2161 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2162 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2163 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2164 */
2165
2166/*
2167 * Writes to this array occur without locking. Cycles are
2168 * not allowed: Node X demotes to Y which demotes to X...
2169 *
2170 * If multiple reads are performed, a single rcu_read_lock()
2171 * must be held over all reads to ensure that no cycles are
2172 * observed.
2173 */
2174#define DEFAULT_DEMOTION_TARGET_NODES 15
2175
2176#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2177#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
2178#else
2179#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
2180#endif
2181
2182struct demotion_nodes {
2183 unsigned short nr;
2184 short nodes[DEMOTION_TARGET_NODES];
2185};
2186
2187static struct demotion_nodes *node_demotion __read_mostly;
2188
2189/**
2190 * next_demotion_node() - Get the next node in the demotion path
2191 * @node: The starting node to lookup the next node
2192 *
2193 * Return: node id for next memory node in the demotion path hierarchy
2194 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
2195 * @node online or guarantee that it *continues* to be the next demotion
2196 * target.
2197 */
2198int next_demotion_node(int node)
2199{
2200 struct demotion_nodes *nd;
2201 unsigned short target_nr, index;
2202 int target;
2203
2204 if (!node_demotion)
2205 return NUMA_NO_NODE;
2206
2207 nd = &node_demotion[node];
2208
2209 /*
2210 * node_demotion[] is updated without excluding this
2211 * function from running. RCU doesn't provide any
2212 * compiler barriers, so the READ_ONCE() is required
2213 * to avoid compiler reordering or read merging.
2214 *
2215 * Make sure to use RCU over entire code blocks if
2216 * node_demotion[] reads need to be consistent.
2217 */
2218 rcu_read_lock();
2219 target_nr = READ_ONCE(nd->nr);
2220
2221 switch (target_nr) {
2222 case 0:
2223 target = NUMA_NO_NODE;
2224 goto out;
2225 case 1:
2226 index = 0;
2227 break;
2228 default:
2229 /*
2230 * If there are multiple target nodes, just select one
2231 * target node randomly.
2232 *
2233 * In addition, we can also use round-robin to select
2234 * target node, but we should introduce another variable
2235 * for node_demotion[] to record last selected target node,
2236 * that may cause cache ping-pong due to the changing of
2237 * last target node. Or introducing per-cpu data to avoid
2238 * caching issue, which seems more complicated. So selecting
2239 * target node randomly seems better until now.
2240 */
2241 index = get_random_int() % target_nr;
2242 break;
2243 }
2244
2245 target = READ_ONCE(nd->nodes[index]);
2246
2247out:
2248 rcu_read_unlock();
2249 return target;
2250}
2251
2252/* Disable reclaim-based migration. */
2253static void __disable_all_migrate_targets(void)
2254{
2255 int node, i;
2256
2257 if (!node_demotion)
2258 return;
2259
2260 for_each_online_node(node) {
2261 node_demotion[node].nr = 0;
2262 for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2263 node_demotion[node].nodes[i] = NUMA_NO_NODE;
2264 }
2265}
2266
2267static void disable_all_migrate_targets(void)
2268{
2269 __disable_all_migrate_targets();
2270
2271 /*
2272 * Ensure that the "disable" is visible across the system.
2273 * Readers will see either a combination of before+disable
2274 * state or disable+after. They will never see before and
2275 * after state together.
2276 *
2277 * The before+after state together might have cycles and
2278 * could cause readers to do things like loop until this
2279 * function finishes. This ensures they can only see a
2280 * single "bad" read and would, for instance, only loop
2281 * once.
2282 */
2283 synchronize_rcu();
2284}
2285
2286/*
2287 * Find an automatic demotion target for 'node'.
2288 * Failing here is OK. It might just indicate
2289 * being at the end of a chain.
2290 */
2291static int establish_migrate_target(int node, nodemask_t *used,
2292 int best_distance)
2293{
2294 int migration_target, index, val;
2295 struct demotion_nodes *nd;
2296
2297 if (!node_demotion)
2298 return NUMA_NO_NODE;
2299
2300 nd = &node_demotion[node];
2301
2302 migration_target = find_next_best_node(node, used);
2303 if (migration_target == NUMA_NO_NODE)
2304 return NUMA_NO_NODE;
2305
2306 /*
2307 * If the node has been set a migration target node before,
2308 * which means it's the best distance between them. Still
2309 * check if this node can be demoted to other target nodes
2310 * if they have a same best distance.
2311 */
2312 if (best_distance != -1) {
2313 val = node_distance(node, migration_target);
2314 if (val > best_distance)
2315 goto out_clear;
2316 }
2317
2318 index = nd->nr;
2319 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2320 "Exceeds maximum demotion target nodes\n"))
2321 goto out_clear;
2322
2323 nd->nodes[index] = migration_target;
2324 nd->nr++;
2325
2326 return migration_target;
2327out_clear:
2328 node_clear(migration_target, *used);
2329 return NUMA_NO_NODE;
2330}
2331
2332/*
2333 * When memory fills up on a node, memory contents can be
2334 * automatically migrated to another node instead of
2335 * discarded at reclaim.
2336 *
2337 * Establish a "migration path" which will start at nodes
2338 * with CPUs and will follow the priorities used to build the
2339 * page allocator zonelists.
2340 *
2341 * The difference here is that cycles must be avoided. If
2342 * node0 migrates to node1, then neither node1, nor anything
2343 * node1 migrates to can migrate to node0. Also one node can
2344 * be migrated to multiple nodes if the target nodes all have
2345 * a same best-distance against the source node.
2346 *
2347 * This function can run simultaneously with readers of
2348 * node_demotion[]. However, it can not run simultaneously
2349 * with itself. Exclusion is provided by memory hotplug events
2350 * being single-threaded.
2351 */
2352static void __set_migration_target_nodes(void)
2353{
2354 nodemask_t next_pass;
2355 nodemask_t this_pass;
2356 nodemask_t used_targets = NODE_MASK_NONE;
2357 int node, best_distance;
2358
2359 /*
2360 * Avoid any oddities like cycles that could occur
2361 * from changes in the topology. This will leave
2362 * a momentary gap when migration is disabled.
2363 */
2364 disable_all_migrate_targets();
2365
2366 /*
2367 * Allocations go close to CPUs, first. Assume that
2368 * the migration path starts at the nodes with CPUs.
2369 */
2370 next_pass = node_states[N_CPU];
2371again:
2372 this_pass = next_pass;
2373 next_pass = NODE_MASK_NONE;
2374 /*
2375 * To avoid cycles in the migration "graph", ensure
2376 * that migration sources are not future targets by
2377 * setting them in 'used_targets'. Do this only
2378 * once per pass so that multiple source nodes can
2379 * share a target node.
2380 *
2381 * 'used_targets' will become unavailable in future
2382 * passes. This limits some opportunities for
2383 * multiple source nodes to share a destination.
2384 */
2385 nodes_or(used_targets, used_targets, this_pass);
2386
2387 for_each_node_mask(node, this_pass) {
2388 best_distance = -1;
2389
2390 /*
2391 * Try to set up the migration path for the node, and the target
2392 * migration nodes can be multiple, so doing a loop to find all
2393 * the target nodes if they all have a best node distance.
2394 */
2395 do {
2396 int target_node =
2397 establish_migrate_target(node, &used_targets,
2398 best_distance);
2399
2400 if (target_node == NUMA_NO_NODE)
2401 break;
2402
2403 if (best_distance == -1)
2404 best_distance = node_distance(node, target_node);
2405
2406 /*
2407 * Visit targets from this pass in the next pass.
2408 * Eventually, every node will have been part of
2409 * a pass, and will become set in 'used_targets'.
2410 */
2411 node_set(target_node, next_pass);
2412 } while (1);
2413 }
2414 /*
2415 * 'next_pass' contains nodes which became migration
2416 * targets in this pass. Make additional passes until
2417 * no more migrations targets are available.
2418 */
2419 if (!nodes_empty(next_pass))
2420 goto again;
2421}
2422
2423/*
2424 * For callers that do not hold get_online_mems() already.
2425 */
2426void set_migration_target_nodes(void)
2427{
2428 get_online_mems();
2429 __set_migration_target_nodes();
2430 put_online_mems();
2431}
2432
2433/*
2434 * This leaves migrate-on-reclaim transiently disabled between
2435 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
2436 * whether reclaim-based migration is enabled or not, which
2437 * ensures that the user can turn reclaim-based migration at
2438 * any time without needing to recalculate migration targets.
2439 *
2440 * These callbacks already hold get_online_mems(). That is why
2441 * __set_migration_target_nodes() can be used as opposed to
2442 * set_migration_target_nodes().
2443 */
2444#ifdef CONFIG_MEMORY_HOTPLUG
2445static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2446 unsigned long action, void *_arg)
2447{
2448 struct memory_notify *arg = _arg;
2449
2450 /*
2451 * Only update the node migration order when a node is
2452 * changing status, like online->offline. This avoids
2453 * the overhead of synchronize_rcu() in most cases.
2454 */
2455 if (arg->status_change_nid < 0)
2456 return notifier_from_errno(0);
2457
2458 switch (action) {
2459 case MEM_GOING_OFFLINE:
2460 /*
2461 * Make sure there are not transient states where
2462 * an offline node is a migration target. This
2463 * will leave migration disabled until the offline
2464 * completes and the MEM_OFFLINE case below runs.
2465 */
2466 disable_all_migrate_targets();
2467 break;
2468 case MEM_OFFLINE:
2469 case MEM_ONLINE:
2470 /*
2471 * Recalculate the target nodes once the node
2472 * reaches its final state (online or offline).
2473 */
2474 __set_migration_target_nodes();
2475 break;
2476 case MEM_CANCEL_OFFLINE:
2477 /*
2478 * MEM_GOING_OFFLINE disabled all the migration
2479 * targets. Reenable them.
2480 */
2481 __set_migration_target_nodes();
2482 break;
2483 case MEM_GOING_ONLINE:
2484 case MEM_CANCEL_ONLINE:
2485 break;
2486 }
2487
2488 return notifier_from_errno(0);
2489}
2490#endif
2491
2492void __init migrate_on_reclaim_init(void)
2493{
2494 node_demotion = kcalloc(nr_node_ids,
2495 sizeof(struct demotion_nodes),
2496 GFP_KERNEL);
2497 WARN_ON(!node_demotion);
2498#ifdef CONFIG_MEMORY_HOTPLUG
2499 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2500#endif
2501 /*
2502 * At this point, all numa nodes with memory/CPus have their state
2503 * properly set, so we can build the demotion order now.
2504 * Let us hold the cpu_hotplug lock just, as we could possibily have
2505 * CPU hotplug events during boot.
2506 */
2507 cpus_read_lock();
2508 set_migration_target_nodes();
2509 cpus_read_unlock();
2510}
2511
2512bool numa_demotion_enabled = false;
2513
2514#ifdef CONFIG_SYSFS
2515static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2516 struct kobj_attribute *attr, char *buf)
2517{
2518 return sysfs_emit(buf, "%s\n",
2519 numa_demotion_enabled ? "true" : "false");
2520}
2521
2522static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2523 struct kobj_attribute *attr,
2524 const char *buf, size_t count)
2525{
2526 ssize_t ret;
2527
2528 ret = kstrtobool(buf, &numa_demotion_enabled);
2529 if (ret)
2530 return ret;
2531
2532 return count;
2533}
2534
2535static struct kobj_attribute numa_demotion_enabled_attr =
2536 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2537 numa_demotion_enabled_store);
2538
2539static struct attribute *numa_attrs[] = {
2540 &numa_demotion_enabled_attr.attr,
2541 NULL,
2542};
2543
2544static const struct attribute_group numa_attr_group = {
2545 .attrs = numa_attrs,
2546};
2547
2548static int __init numa_init_sysfs(void)
2549{
2550 int err;
2551 struct kobject *numa_kobj;
2552
2553 numa_kobj = kobject_create_and_add("numa", mm_kobj);
2554 if (!numa_kobj) {
2555 pr_err("failed to create numa kobject\n");
2556 return -ENOMEM;
2557 }
2558 err = sysfs_create_group(numa_kobj, &numa_attr_group);
2559 if (err) {
2560 pr_err("failed to register numa group\n");
2561 goto delete_obj;
2562 }
2563 return 0;
2564
2565delete_obj:
2566 kobject_put(numa_kobj);
2567 return err;
2568}
2569subsys_initcall(numa_init_sysfs);
2570#endif /* CONFIG_SYSFS */
2571#endif /* CONFIG_NUMA */