Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/coredump.h>
12#include <linux/sched/numa_balancing.h>
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/shrinker.h>
19#include <linux/mm_inline.h>
20#include <linux/swapops.h>
21#include <linux/dax.h>
22#include <linux/khugepaged.h>
23#include <linux/freezer.h>
24#include <linux/pfn_t.h>
25#include <linux/mman.h>
26#include <linux/memremap.h>
27#include <linux/pagemap.h>
28#include <linux/debugfs.h>
29#include <linux/migrate.h>
30#include <linux/hashtable.h>
31#include <linux/userfaultfd_k.h>
32#include <linux/page_idle.h>
33#include <linux/shmem_fs.h>
34#include <linux/oom.h>
35#include <linux/numa.h>
36#include <linux/page_owner.h>
37#include <linux/sched/sysctl.h>
38
39#include <asm/tlb.h>
40#include <asm/pgalloc.h>
41#include "internal.h"
42#include "swap.h"
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/thp.h>
46
47/*
48 * By default, transparent hugepage support is disabled in order to avoid
49 * risking an increased memory footprint for applications that are not
50 * guaranteed to benefit from it. When transparent hugepage support is
51 * enabled, it is for all mappings, and khugepaged scans all mappings.
52 * Defrag is invoked by khugepaged hugepage allocations and by page faults
53 * for all hugepage allocations.
54 */
55unsigned long transparent_hugepage_flags __read_mostly =
56#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
57 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
58#endif
59#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
60 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
61#endif
62 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
63 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
64 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
65
66static struct shrinker deferred_split_shrinker;
67
68static atomic_t huge_zero_refcount;
69struct page *huge_zero_page __read_mostly;
70unsigned long huge_zero_pfn __read_mostly = ~0UL;
71
72bool transparent_hugepage_active(struct vm_area_struct *vma)
73{
74 /* The addr is used to check if the vma size fits */
75 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
76
77 if (!transhuge_vma_suitable(vma, addr))
78 return false;
79 if (vma_is_anonymous(vma))
80 return __transparent_hugepage_enabled(vma);
81 if (vma_is_shmem(vma))
82 return shmem_huge_enabled(vma);
83 if (transhuge_vma_enabled(vma, vma->vm_flags) && file_thp_enabled(vma))
84 return true;
85
86 return false;
87}
88
89static bool get_huge_zero_page(void)
90{
91 struct page *zero_page;
92retry:
93 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
94 return true;
95
96 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
97 HPAGE_PMD_ORDER);
98 if (!zero_page) {
99 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
100 return false;
101 }
102 count_vm_event(THP_ZERO_PAGE_ALLOC);
103 preempt_disable();
104 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
105 preempt_enable();
106 __free_pages(zero_page, compound_order(zero_page));
107 goto retry;
108 }
109 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
110
111 /* We take additional reference here. It will be put back by shrinker */
112 atomic_set(&huge_zero_refcount, 2);
113 preempt_enable();
114 return true;
115}
116
117static void put_huge_zero_page(void)
118{
119 /*
120 * Counter should never go to zero here. Only shrinker can put
121 * last reference.
122 */
123 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
124}
125
126struct page *mm_get_huge_zero_page(struct mm_struct *mm)
127{
128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 return READ_ONCE(huge_zero_page);
130
131 if (!get_huge_zero_page())
132 return NULL;
133
134 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
135 put_huge_zero_page();
136
137 return READ_ONCE(huge_zero_page);
138}
139
140void mm_put_huge_zero_page(struct mm_struct *mm)
141{
142 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
143 put_huge_zero_page();
144}
145
146static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
147 struct shrink_control *sc)
148{
149 /* we can free zero page only if last reference remains */
150 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
151}
152
153static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
154 struct shrink_control *sc)
155{
156 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
157 struct page *zero_page = xchg(&huge_zero_page, NULL);
158 BUG_ON(zero_page == NULL);
159 WRITE_ONCE(huge_zero_pfn, ~0UL);
160 __free_pages(zero_page, compound_order(zero_page));
161 return HPAGE_PMD_NR;
162 }
163
164 return 0;
165}
166
167static struct shrinker huge_zero_page_shrinker = {
168 .count_objects = shrink_huge_zero_page_count,
169 .scan_objects = shrink_huge_zero_page_scan,
170 .seeks = DEFAULT_SEEKS,
171};
172
173#ifdef CONFIG_SYSFS
174static ssize_t enabled_show(struct kobject *kobj,
175 struct kobj_attribute *attr, char *buf)
176{
177 const char *output;
178
179 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
180 output = "[always] madvise never";
181 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
182 &transparent_hugepage_flags))
183 output = "always [madvise] never";
184 else
185 output = "always madvise [never]";
186
187 return sysfs_emit(buf, "%s\n", output);
188}
189
190static ssize_t enabled_store(struct kobject *kobj,
191 struct kobj_attribute *attr,
192 const char *buf, size_t count)
193{
194 ssize_t ret = count;
195
196 if (sysfs_streq(buf, "always")) {
197 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
199 } else if (sysfs_streq(buf, "madvise")) {
200 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
202 } else if (sysfs_streq(buf, "never")) {
203 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
204 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
205 } else
206 ret = -EINVAL;
207
208 if (ret > 0) {
209 int err = start_stop_khugepaged();
210 if (err)
211 ret = err;
212 }
213 return ret;
214}
215static struct kobj_attribute enabled_attr =
216 __ATTR(enabled, 0644, enabled_show, enabled_store);
217
218ssize_t single_hugepage_flag_show(struct kobject *kobj,
219 struct kobj_attribute *attr, char *buf,
220 enum transparent_hugepage_flag flag)
221{
222 return sysfs_emit(buf, "%d\n",
223 !!test_bit(flag, &transparent_hugepage_flags));
224}
225
226ssize_t single_hugepage_flag_store(struct kobject *kobj,
227 struct kobj_attribute *attr,
228 const char *buf, size_t count,
229 enum transparent_hugepage_flag flag)
230{
231 unsigned long value;
232 int ret;
233
234 ret = kstrtoul(buf, 10, &value);
235 if (ret < 0)
236 return ret;
237 if (value > 1)
238 return -EINVAL;
239
240 if (value)
241 set_bit(flag, &transparent_hugepage_flags);
242 else
243 clear_bit(flag, &transparent_hugepage_flags);
244
245 return count;
246}
247
248static ssize_t defrag_show(struct kobject *kobj,
249 struct kobj_attribute *attr, char *buf)
250{
251 const char *output;
252
253 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
254 &transparent_hugepage_flags))
255 output = "[always] defer defer+madvise madvise never";
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
257 &transparent_hugepage_flags))
258 output = "always [defer] defer+madvise madvise never";
259 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
260 &transparent_hugepage_flags))
261 output = "always defer [defer+madvise] madvise never";
262 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
263 &transparent_hugepage_flags))
264 output = "always defer defer+madvise [madvise] never";
265 else
266 output = "always defer defer+madvise madvise [never]";
267
268 return sysfs_emit(buf, "%s\n", output);
269}
270
271static ssize_t defrag_store(struct kobject *kobj,
272 struct kobj_attribute *attr,
273 const char *buf, size_t count)
274{
275 if (sysfs_streq(buf, "always")) {
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 } else if (sysfs_streq(buf, "defer+madvise")) {
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
285 } else if (sysfs_streq(buf, "defer")) {
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
290 } else if (sysfs_streq(buf, "madvise")) {
291 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
294 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
295 } else if (sysfs_streq(buf, "never")) {
296 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
297 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
300 } else
301 return -EINVAL;
302
303 return count;
304}
305static struct kobj_attribute defrag_attr =
306 __ATTR(defrag, 0644, defrag_show, defrag_store);
307
308static ssize_t use_zero_page_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf)
310{
311 return single_hugepage_flag_show(kobj, attr, buf,
312 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
313}
314static ssize_t use_zero_page_store(struct kobject *kobj,
315 struct kobj_attribute *attr, const char *buf, size_t count)
316{
317 return single_hugepage_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
319}
320static struct kobj_attribute use_zero_page_attr =
321 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
322
323static ssize_t hpage_pmd_size_show(struct kobject *kobj,
324 struct kobj_attribute *attr, char *buf)
325{
326 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
327}
328static struct kobj_attribute hpage_pmd_size_attr =
329 __ATTR_RO(hpage_pmd_size);
330
331static struct attribute *hugepage_attr[] = {
332 &enabled_attr.attr,
333 &defrag_attr.attr,
334 &use_zero_page_attr.attr,
335 &hpage_pmd_size_attr.attr,
336#ifdef CONFIG_SHMEM
337 &shmem_enabled_attr.attr,
338#endif
339 NULL,
340};
341
342static const struct attribute_group hugepage_attr_group = {
343 .attrs = hugepage_attr,
344};
345
346static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347{
348 int err;
349
350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 if (unlikely(!*hugepage_kobj)) {
352 pr_err("failed to create transparent hugepage kobject\n");
353 return -ENOMEM;
354 }
355
356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
357 if (err) {
358 pr_err("failed to register transparent hugepage group\n");
359 goto delete_obj;
360 }
361
362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
363 if (err) {
364 pr_err("failed to register transparent hugepage group\n");
365 goto remove_hp_group;
366 }
367
368 return 0;
369
370remove_hp_group:
371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372delete_obj:
373 kobject_put(*hugepage_kobj);
374 return err;
375}
376
377static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378{
379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 kobject_put(hugepage_kobj);
382}
383#else
384static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385{
386 return 0;
387}
388
389static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390{
391}
392#endif /* CONFIG_SYSFS */
393
394static int __init hugepage_init(void)
395{
396 int err;
397 struct kobject *hugepage_kobj;
398
399 if (!has_transparent_hugepage()) {
400 /*
401 * Hardware doesn't support hugepages, hence disable
402 * DAX PMD support.
403 */
404 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
405 return -EINVAL;
406 }
407
408 /*
409 * hugepages can't be allocated by the buddy allocator
410 */
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
412 /*
413 * we use page->mapping and page->index in second tail page
414 * as list_head: assuming THP order >= 2
415 */
416 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
417
418 err = hugepage_init_sysfs(&hugepage_kobj);
419 if (err)
420 goto err_sysfs;
421
422 err = khugepaged_init();
423 if (err)
424 goto err_slab;
425
426 err = register_shrinker(&huge_zero_page_shrinker);
427 if (err)
428 goto err_hzp_shrinker;
429 err = register_shrinker(&deferred_split_shrinker);
430 if (err)
431 goto err_split_shrinker;
432
433 /*
434 * By default disable transparent hugepages on smaller systems,
435 * where the extra memory used could hurt more than TLB overhead
436 * is likely to save. The admin can still enable it through /sys.
437 */
438 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 transparent_hugepage_flags = 0;
440 return 0;
441 }
442
443 err = start_stop_khugepaged();
444 if (err)
445 goto err_khugepaged;
446
447 return 0;
448err_khugepaged:
449 unregister_shrinker(&deferred_split_shrinker);
450err_split_shrinker:
451 unregister_shrinker(&huge_zero_page_shrinker);
452err_hzp_shrinker:
453 khugepaged_destroy();
454err_slab:
455 hugepage_exit_sysfs(hugepage_kobj);
456err_sysfs:
457 return err;
458}
459subsys_initcall(hugepage_init);
460
461static int __init setup_transparent_hugepage(char *str)
462{
463 int ret = 0;
464 if (!str)
465 goto out;
466 if (!strcmp(str, "always")) {
467 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
471 ret = 1;
472 } else if (!strcmp(str, "madvise")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
477 ret = 1;
478 } else if (!strcmp(str, "never")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 &transparent_hugepage_flags);
481 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 &transparent_hugepage_flags);
483 ret = 1;
484 }
485out:
486 if (!ret)
487 pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 return ret;
489}
490__setup("transparent_hugepage=", setup_transparent_hugepage);
491
492pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493{
494 if (likely(vma->vm_flags & VM_WRITE))
495 pmd = pmd_mkwrite(pmd);
496 return pmd;
497}
498
499#ifdef CONFIG_MEMCG
500static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501{
502 struct mem_cgroup *memcg = page_memcg(compound_head(page));
503 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
504
505 if (memcg)
506 return &memcg->deferred_split_queue;
507 else
508 return &pgdat->deferred_split_queue;
509}
510#else
511static inline struct deferred_split *get_deferred_split_queue(struct page *page)
512{
513 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
514
515 return &pgdat->deferred_split_queue;
516}
517#endif
518
519void prep_transhuge_page(struct page *page)
520{
521 /*
522 * we use page->mapping and page->indexlru in second tail page
523 * as list_head: assuming THP order >= 2
524 */
525
526 INIT_LIST_HEAD(page_deferred_list(page));
527 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
528}
529
530static inline bool is_transparent_hugepage(struct page *page)
531{
532 if (!PageCompound(page))
533 return false;
534
535 page = compound_head(page);
536 return is_huge_zero_page(page) ||
537 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
538}
539
540static unsigned long __thp_get_unmapped_area(struct file *filp,
541 unsigned long addr, unsigned long len,
542 loff_t off, unsigned long flags, unsigned long size)
543{
544 loff_t off_end = off + len;
545 loff_t off_align = round_up(off, size);
546 unsigned long len_pad, ret;
547
548 if (off_end <= off_align || (off_end - off_align) < size)
549 return 0;
550
551 len_pad = len + size;
552 if (len_pad < len || (off + len_pad) < off)
553 return 0;
554
555 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
556 off >> PAGE_SHIFT, flags);
557
558 /*
559 * The failure might be due to length padding. The caller will retry
560 * without the padding.
561 */
562 if (IS_ERR_VALUE(ret))
563 return 0;
564
565 /*
566 * Do not try to align to THP boundary if allocation at the address
567 * hint succeeds.
568 */
569 if (ret == addr)
570 return addr;
571
572 ret += (off - ret) & (size - 1);
573 return ret;
574}
575
576unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
577 unsigned long len, unsigned long pgoff, unsigned long flags)
578{
579 unsigned long ret;
580 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
581
582 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
583 if (ret)
584 return ret;
585
586 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
587}
588EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
589
590static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
591 struct page *page, gfp_t gfp)
592{
593 struct vm_area_struct *vma = vmf->vma;
594 pgtable_t pgtable;
595 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
596 vm_fault_t ret = 0;
597
598 VM_BUG_ON_PAGE(!PageCompound(page), page);
599
600 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
601 put_page(page);
602 count_vm_event(THP_FAULT_FALLBACK);
603 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
604 return VM_FAULT_FALLBACK;
605 }
606 cgroup_throttle_swaprate(page, gfp);
607
608 pgtable = pte_alloc_one(vma->vm_mm);
609 if (unlikely(!pgtable)) {
610 ret = VM_FAULT_OOM;
611 goto release;
612 }
613
614 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
615 /*
616 * The memory barrier inside __SetPageUptodate makes sure that
617 * clear_huge_page writes become visible before the set_pmd_at()
618 * write.
619 */
620 __SetPageUptodate(page);
621
622 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
623 if (unlikely(!pmd_none(*vmf->pmd))) {
624 goto unlock_release;
625 } else {
626 pmd_t entry;
627
628 ret = check_stable_address_space(vma->vm_mm);
629 if (ret)
630 goto unlock_release;
631
632 /* Deliver the page fault to userland */
633 if (userfaultfd_missing(vma)) {
634 spin_unlock(vmf->ptl);
635 put_page(page);
636 pte_free(vma->vm_mm, pgtable);
637 ret = handle_userfault(vmf, VM_UFFD_MISSING);
638 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
639 return ret;
640 }
641
642 entry = mk_huge_pmd(page, vma->vm_page_prot);
643 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
644 page_add_new_anon_rmap(page, vma, haddr);
645 lru_cache_add_inactive_or_unevictable(page, vma);
646 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
647 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
648 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
649 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
650 mm_inc_nr_ptes(vma->vm_mm);
651 spin_unlock(vmf->ptl);
652 count_vm_event(THP_FAULT_ALLOC);
653 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
654 }
655
656 return 0;
657unlock_release:
658 spin_unlock(vmf->ptl);
659release:
660 if (pgtable)
661 pte_free(vma->vm_mm, pgtable);
662 put_page(page);
663 return ret;
664
665}
666
667/*
668 * always: directly stall for all thp allocations
669 * defer: wake kswapd and fail if not immediately available
670 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
671 * fail if not immediately available
672 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
673 * available
674 * never: never stall for any thp allocation
675 */
676gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
677{
678 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
679
680 /* Always do synchronous compaction */
681 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
682 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
683
684 /* Kick kcompactd and fail quickly */
685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
686 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
687
688 /* Synchronous compaction if madvised, otherwise kick kcompactd */
689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
690 return GFP_TRANSHUGE_LIGHT |
691 (vma_madvised ? __GFP_DIRECT_RECLAIM :
692 __GFP_KSWAPD_RECLAIM);
693
694 /* Only do synchronous compaction if madvised */
695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
698
699 return GFP_TRANSHUGE_LIGHT;
700}
701
702/* Caller must hold page table lock. */
703static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
704 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
705 struct page *zero_page)
706{
707 pmd_t entry;
708 if (!pmd_none(*pmd))
709 return;
710 entry = mk_pmd(zero_page, vma->vm_page_prot);
711 entry = pmd_mkhuge(entry);
712 if (pgtable)
713 pgtable_trans_huge_deposit(mm, pmd, pgtable);
714 set_pmd_at(mm, haddr, pmd, entry);
715 mm_inc_nr_ptes(mm);
716}
717
718vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
719{
720 struct vm_area_struct *vma = vmf->vma;
721 gfp_t gfp;
722 struct folio *folio;
723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
724
725 if (!transhuge_vma_suitable(vma, haddr))
726 return VM_FAULT_FALLBACK;
727 if (unlikely(anon_vma_prepare(vma)))
728 return VM_FAULT_OOM;
729 khugepaged_enter(vma, vma->vm_flags);
730
731 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
732 !mm_forbids_zeropage(vma->vm_mm) &&
733 transparent_hugepage_use_zero_page()) {
734 pgtable_t pgtable;
735 struct page *zero_page;
736 vm_fault_t ret;
737 pgtable = pte_alloc_one(vma->vm_mm);
738 if (unlikely(!pgtable))
739 return VM_FAULT_OOM;
740 zero_page = mm_get_huge_zero_page(vma->vm_mm);
741 if (unlikely(!zero_page)) {
742 pte_free(vma->vm_mm, pgtable);
743 count_vm_event(THP_FAULT_FALLBACK);
744 return VM_FAULT_FALLBACK;
745 }
746 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
747 ret = 0;
748 if (pmd_none(*vmf->pmd)) {
749 ret = check_stable_address_space(vma->vm_mm);
750 if (ret) {
751 spin_unlock(vmf->ptl);
752 pte_free(vma->vm_mm, pgtable);
753 } else if (userfaultfd_missing(vma)) {
754 spin_unlock(vmf->ptl);
755 pte_free(vma->vm_mm, pgtable);
756 ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
758 } else {
759 set_huge_zero_page(pgtable, vma->vm_mm, vma,
760 haddr, vmf->pmd, zero_page);
761 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
762 spin_unlock(vmf->ptl);
763 }
764 } else {
765 spin_unlock(vmf->ptl);
766 pte_free(vma->vm_mm, pgtable);
767 }
768 return ret;
769 }
770 gfp = vma_thp_gfp_mask(vma);
771 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
772 if (unlikely(!folio)) {
773 count_vm_event(THP_FAULT_FALLBACK);
774 return VM_FAULT_FALLBACK;
775 }
776 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
777}
778
779static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
780 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
781 pgtable_t pgtable)
782{
783 struct mm_struct *mm = vma->vm_mm;
784 pmd_t entry;
785 spinlock_t *ptl;
786
787 ptl = pmd_lock(mm, pmd);
788 if (!pmd_none(*pmd)) {
789 if (write) {
790 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
791 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
792 goto out_unlock;
793 }
794 entry = pmd_mkyoung(*pmd);
795 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
796 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
797 update_mmu_cache_pmd(vma, addr, pmd);
798 }
799
800 goto out_unlock;
801 }
802
803 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
804 if (pfn_t_devmap(pfn))
805 entry = pmd_mkdevmap(entry);
806 if (write) {
807 entry = pmd_mkyoung(pmd_mkdirty(entry));
808 entry = maybe_pmd_mkwrite(entry, vma);
809 }
810
811 if (pgtable) {
812 pgtable_trans_huge_deposit(mm, pmd, pgtable);
813 mm_inc_nr_ptes(mm);
814 pgtable = NULL;
815 }
816
817 set_pmd_at(mm, addr, pmd, entry);
818 update_mmu_cache_pmd(vma, addr, pmd);
819
820out_unlock:
821 spin_unlock(ptl);
822 if (pgtable)
823 pte_free(mm, pgtable);
824}
825
826/**
827 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
828 * @vmf: Structure describing the fault
829 * @pfn: pfn to insert
830 * @pgprot: page protection to use
831 * @write: whether it's a write fault
832 *
833 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
834 * also consult the vmf_insert_mixed_prot() documentation when
835 * @pgprot != @vmf->vma->vm_page_prot.
836 *
837 * Return: vm_fault_t value.
838 */
839vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
840 pgprot_t pgprot, bool write)
841{
842 unsigned long addr = vmf->address & PMD_MASK;
843 struct vm_area_struct *vma = vmf->vma;
844 pgtable_t pgtable = NULL;
845
846 /*
847 * If we had pmd_special, we could avoid all these restrictions,
848 * but we need to be consistent with PTEs and architectures that
849 * can't support a 'special' bit.
850 */
851 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
852 !pfn_t_devmap(pfn));
853 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
854 (VM_PFNMAP|VM_MIXEDMAP));
855 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
856
857 if (addr < vma->vm_start || addr >= vma->vm_end)
858 return VM_FAULT_SIGBUS;
859
860 if (arch_needs_pgtable_deposit()) {
861 pgtable = pte_alloc_one(vma->vm_mm);
862 if (!pgtable)
863 return VM_FAULT_OOM;
864 }
865
866 track_pfn_insert(vma, &pgprot, pfn);
867
868 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
869 return VM_FAULT_NOPAGE;
870}
871EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
872
873#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
874static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
875{
876 if (likely(vma->vm_flags & VM_WRITE))
877 pud = pud_mkwrite(pud);
878 return pud;
879}
880
881static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
882 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
883{
884 struct mm_struct *mm = vma->vm_mm;
885 pud_t entry;
886 spinlock_t *ptl;
887
888 ptl = pud_lock(mm, pud);
889 if (!pud_none(*pud)) {
890 if (write) {
891 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
892 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
893 goto out_unlock;
894 }
895 entry = pud_mkyoung(*pud);
896 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
897 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
898 update_mmu_cache_pud(vma, addr, pud);
899 }
900 goto out_unlock;
901 }
902
903 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
904 if (pfn_t_devmap(pfn))
905 entry = pud_mkdevmap(entry);
906 if (write) {
907 entry = pud_mkyoung(pud_mkdirty(entry));
908 entry = maybe_pud_mkwrite(entry, vma);
909 }
910 set_pud_at(mm, addr, pud, entry);
911 update_mmu_cache_pud(vma, addr, pud);
912
913out_unlock:
914 spin_unlock(ptl);
915}
916
917/**
918 * vmf_insert_pfn_pud_prot - insert a pud size pfn
919 * @vmf: Structure describing the fault
920 * @pfn: pfn to insert
921 * @pgprot: page protection to use
922 * @write: whether it's a write fault
923 *
924 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
925 * also consult the vmf_insert_mixed_prot() documentation when
926 * @pgprot != @vmf->vma->vm_page_prot.
927 *
928 * Return: vm_fault_t value.
929 */
930vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
931 pgprot_t pgprot, bool write)
932{
933 unsigned long addr = vmf->address & PUD_MASK;
934 struct vm_area_struct *vma = vmf->vma;
935
936 /*
937 * If we had pud_special, we could avoid all these restrictions,
938 * but we need to be consistent with PTEs and architectures that
939 * can't support a 'special' bit.
940 */
941 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
942 !pfn_t_devmap(pfn));
943 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
944 (VM_PFNMAP|VM_MIXEDMAP));
945 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
946
947 if (addr < vma->vm_start || addr >= vma->vm_end)
948 return VM_FAULT_SIGBUS;
949
950 track_pfn_insert(vma, &pgprot, pfn);
951
952 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
953 return VM_FAULT_NOPAGE;
954}
955EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
956#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
957
958static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
959 pmd_t *pmd, int flags)
960{
961 pmd_t _pmd;
962
963 _pmd = pmd_mkyoung(*pmd);
964 if (flags & FOLL_WRITE)
965 _pmd = pmd_mkdirty(_pmd);
966 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
967 pmd, _pmd, flags & FOLL_WRITE))
968 update_mmu_cache_pmd(vma, addr, pmd);
969}
970
971struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
972 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
973{
974 unsigned long pfn = pmd_pfn(*pmd);
975 struct mm_struct *mm = vma->vm_mm;
976 struct page *page;
977
978 assert_spin_locked(pmd_lockptr(mm, pmd));
979
980 /*
981 * When we COW a devmap PMD entry, we split it into PTEs, so we should
982 * not be in this function with `flags & FOLL_COW` set.
983 */
984 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
985
986 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
987 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
988 (FOLL_PIN | FOLL_GET)))
989 return NULL;
990
991 if (flags & FOLL_WRITE && !pmd_write(*pmd))
992 return NULL;
993
994 if (pmd_present(*pmd) && pmd_devmap(*pmd))
995 /* pass */;
996 else
997 return NULL;
998
999 if (flags & FOLL_TOUCH)
1000 touch_pmd(vma, addr, pmd, flags);
1001
1002 /*
1003 * device mapped pages can only be returned if the
1004 * caller will manage the page reference count.
1005 */
1006 if (!(flags & (FOLL_GET | FOLL_PIN)))
1007 return ERR_PTR(-EEXIST);
1008
1009 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1010 *pgmap = get_dev_pagemap(pfn, *pgmap);
1011 if (!*pgmap)
1012 return ERR_PTR(-EFAULT);
1013 page = pfn_to_page(pfn);
1014 if (!try_grab_page(page, flags))
1015 page = ERR_PTR(-ENOMEM);
1016
1017 return page;
1018}
1019
1020int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1021 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1022 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1023{
1024 spinlock_t *dst_ptl, *src_ptl;
1025 struct page *src_page;
1026 pmd_t pmd;
1027 pgtable_t pgtable = NULL;
1028 int ret = -ENOMEM;
1029
1030 /* Skip if can be re-fill on fault */
1031 if (!vma_is_anonymous(dst_vma))
1032 return 0;
1033
1034 pgtable = pte_alloc_one(dst_mm);
1035 if (unlikely(!pgtable))
1036 goto out;
1037
1038 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1039 src_ptl = pmd_lockptr(src_mm, src_pmd);
1040 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1041
1042 ret = -EAGAIN;
1043 pmd = *src_pmd;
1044
1045#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1046 if (unlikely(is_swap_pmd(pmd))) {
1047 swp_entry_t entry = pmd_to_swp_entry(pmd);
1048
1049 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1050 if (!is_readable_migration_entry(entry)) {
1051 entry = make_readable_migration_entry(
1052 swp_offset(entry));
1053 pmd = swp_entry_to_pmd(entry);
1054 if (pmd_swp_soft_dirty(*src_pmd))
1055 pmd = pmd_swp_mksoft_dirty(pmd);
1056 if (pmd_swp_uffd_wp(*src_pmd))
1057 pmd = pmd_swp_mkuffd_wp(pmd);
1058 set_pmd_at(src_mm, addr, src_pmd, pmd);
1059 }
1060 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1061 mm_inc_nr_ptes(dst_mm);
1062 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1063 if (!userfaultfd_wp(dst_vma))
1064 pmd = pmd_swp_clear_uffd_wp(pmd);
1065 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1066 ret = 0;
1067 goto out_unlock;
1068 }
1069#endif
1070
1071 if (unlikely(!pmd_trans_huge(pmd))) {
1072 pte_free(dst_mm, pgtable);
1073 goto out_unlock;
1074 }
1075 /*
1076 * When page table lock is held, the huge zero pmd should not be
1077 * under splitting since we don't split the page itself, only pmd to
1078 * a page table.
1079 */
1080 if (is_huge_zero_pmd(pmd)) {
1081 /*
1082 * get_huge_zero_page() will never allocate a new page here,
1083 * since we already have a zero page to copy. It just takes a
1084 * reference.
1085 */
1086 mm_get_huge_zero_page(dst_mm);
1087 goto out_zero_page;
1088 }
1089
1090 src_page = pmd_page(pmd);
1091 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1092
1093 get_page(src_page);
1094 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1095 /* Page maybe pinned: split and retry the fault on PTEs. */
1096 put_page(src_page);
1097 pte_free(dst_mm, pgtable);
1098 spin_unlock(src_ptl);
1099 spin_unlock(dst_ptl);
1100 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1101 return -EAGAIN;
1102 }
1103 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1104out_zero_page:
1105 mm_inc_nr_ptes(dst_mm);
1106 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1107 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1108 if (!userfaultfd_wp(dst_vma))
1109 pmd = pmd_clear_uffd_wp(pmd);
1110 pmd = pmd_mkold(pmd_wrprotect(pmd));
1111 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1112
1113 ret = 0;
1114out_unlock:
1115 spin_unlock(src_ptl);
1116 spin_unlock(dst_ptl);
1117out:
1118 return ret;
1119}
1120
1121#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1122static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1123 pud_t *pud, int flags)
1124{
1125 pud_t _pud;
1126
1127 _pud = pud_mkyoung(*pud);
1128 if (flags & FOLL_WRITE)
1129 _pud = pud_mkdirty(_pud);
1130 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1131 pud, _pud, flags & FOLL_WRITE))
1132 update_mmu_cache_pud(vma, addr, pud);
1133}
1134
1135struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1136 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1137{
1138 unsigned long pfn = pud_pfn(*pud);
1139 struct mm_struct *mm = vma->vm_mm;
1140 struct page *page;
1141
1142 assert_spin_locked(pud_lockptr(mm, pud));
1143
1144 if (flags & FOLL_WRITE && !pud_write(*pud))
1145 return NULL;
1146
1147 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1148 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1149 (FOLL_PIN | FOLL_GET)))
1150 return NULL;
1151
1152 if (pud_present(*pud) && pud_devmap(*pud))
1153 /* pass */;
1154 else
1155 return NULL;
1156
1157 if (flags & FOLL_TOUCH)
1158 touch_pud(vma, addr, pud, flags);
1159
1160 /*
1161 * device mapped pages can only be returned if the
1162 * caller will manage the page reference count.
1163 *
1164 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1165 */
1166 if (!(flags & (FOLL_GET | FOLL_PIN)))
1167 return ERR_PTR(-EEXIST);
1168
1169 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1170 *pgmap = get_dev_pagemap(pfn, *pgmap);
1171 if (!*pgmap)
1172 return ERR_PTR(-EFAULT);
1173 page = pfn_to_page(pfn);
1174 if (!try_grab_page(page, flags))
1175 page = ERR_PTR(-ENOMEM);
1176
1177 return page;
1178}
1179
1180int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1181 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1182 struct vm_area_struct *vma)
1183{
1184 spinlock_t *dst_ptl, *src_ptl;
1185 pud_t pud;
1186 int ret;
1187
1188 dst_ptl = pud_lock(dst_mm, dst_pud);
1189 src_ptl = pud_lockptr(src_mm, src_pud);
1190 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1191
1192 ret = -EAGAIN;
1193 pud = *src_pud;
1194 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1195 goto out_unlock;
1196
1197 /*
1198 * When page table lock is held, the huge zero pud should not be
1199 * under splitting since we don't split the page itself, only pud to
1200 * a page table.
1201 */
1202 if (is_huge_zero_pud(pud)) {
1203 /* No huge zero pud yet */
1204 }
1205
1206 /*
1207 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1208 * and split if duplicating fails.
1209 */
1210 pudp_set_wrprotect(src_mm, addr, src_pud);
1211 pud = pud_mkold(pud_wrprotect(pud));
1212 set_pud_at(dst_mm, addr, dst_pud, pud);
1213
1214 ret = 0;
1215out_unlock:
1216 spin_unlock(src_ptl);
1217 spin_unlock(dst_ptl);
1218 return ret;
1219}
1220
1221void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1222{
1223 pud_t entry;
1224 unsigned long haddr;
1225 bool write = vmf->flags & FAULT_FLAG_WRITE;
1226
1227 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1228 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1229 goto unlock;
1230
1231 entry = pud_mkyoung(orig_pud);
1232 if (write)
1233 entry = pud_mkdirty(entry);
1234 haddr = vmf->address & HPAGE_PUD_MASK;
1235 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1236 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1237
1238unlock:
1239 spin_unlock(vmf->ptl);
1240}
1241#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1242
1243void huge_pmd_set_accessed(struct vm_fault *vmf)
1244{
1245 pmd_t entry;
1246 unsigned long haddr;
1247 bool write = vmf->flags & FAULT_FLAG_WRITE;
1248 pmd_t orig_pmd = vmf->orig_pmd;
1249
1250 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1251 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1252 goto unlock;
1253
1254 entry = pmd_mkyoung(orig_pmd);
1255 if (write)
1256 entry = pmd_mkdirty(entry);
1257 haddr = vmf->address & HPAGE_PMD_MASK;
1258 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1259 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1260
1261unlock:
1262 spin_unlock(vmf->ptl);
1263}
1264
1265vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1266{
1267 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1268 struct vm_area_struct *vma = vmf->vma;
1269 struct page *page;
1270 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1271 pmd_t orig_pmd = vmf->orig_pmd;
1272
1273 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1274 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1275
1276 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1277 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1278
1279 if (is_huge_zero_pmd(orig_pmd))
1280 goto fallback;
1281
1282 spin_lock(vmf->ptl);
1283
1284 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1285 spin_unlock(vmf->ptl);
1286 return 0;
1287 }
1288
1289 page = pmd_page(orig_pmd);
1290 VM_BUG_ON_PAGE(!PageHead(page), page);
1291
1292 /* Early check when only holding the PT lock. */
1293 if (PageAnonExclusive(page))
1294 goto reuse;
1295
1296 if (!trylock_page(page)) {
1297 get_page(page);
1298 spin_unlock(vmf->ptl);
1299 lock_page(page);
1300 spin_lock(vmf->ptl);
1301 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1302 spin_unlock(vmf->ptl);
1303 unlock_page(page);
1304 put_page(page);
1305 return 0;
1306 }
1307 put_page(page);
1308 }
1309
1310 /* Recheck after temporarily dropping the PT lock. */
1311 if (PageAnonExclusive(page)) {
1312 unlock_page(page);
1313 goto reuse;
1314 }
1315
1316 /*
1317 * See do_wp_page(): we can only reuse the page exclusively if there are
1318 * no additional references. Note that we always drain the LRU
1319 * pagevecs immediately after adding a THP.
1320 */
1321 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1322 goto unlock_fallback;
1323 if (PageSwapCache(page))
1324 try_to_free_swap(page);
1325 if (page_count(page) == 1) {
1326 pmd_t entry;
1327
1328 page_move_anon_rmap(page, vma);
1329 unlock_page(page);
1330reuse:
1331 if (unlikely(unshare)) {
1332 spin_unlock(vmf->ptl);
1333 return 0;
1334 }
1335 entry = pmd_mkyoung(orig_pmd);
1336 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1337 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1338 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1339 spin_unlock(vmf->ptl);
1340 return VM_FAULT_WRITE;
1341 }
1342
1343unlock_fallback:
1344 unlock_page(page);
1345 spin_unlock(vmf->ptl);
1346fallback:
1347 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1348 return VM_FAULT_FALLBACK;
1349}
1350
1351/*
1352 * FOLL_FORCE can write to even unwritable pmd's, but only
1353 * after we've gone through a COW cycle and they are dirty.
1354 */
1355static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1356{
1357 return pmd_write(pmd) ||
1358 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1359}
1360
1361struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1362 unsigned long addr,
1363 pmd_t *pmd,
1364 unsigned int flags)
1365{
1366 struct mm_struct *mm = vma->vm_mm;
1367 struct page *page = NULL;
1368
1369 assert_spin_locked(pmd_lockptr(mm, pmd));
1370
1371 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1372 goto out;
1373
1374 /* Avoid dumping huge zero page */
1375 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1376 return ERR_PTR(-EFAULT);
1377
1378 /* Full NUMA hinting faults to serialise migration in fault paths */
1379 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1380 goto out;
1381
1382 page = pmd_page(*pmd);
1383 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1384
1385 if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1386 return ERR_PTR(-EMLINK);
1387
1388 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1389 !PageAnonExclusive(page), page);
1390
1391 if (!try_grab_page(page, flags))
1392 return ERR_PTR(-ENOMEM);
1393
1394 if (flags & FOLL_TOUCH)
1395 touch_pmd(vma, addr, pmd, flags);
1396
1397 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1398 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1399
1400out:
1401 return page;
1402}
1403
1404/* NUMA hinting page fault entry point for trans huge pmds */
1405vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1406{
1407 struct vm_area_struct *vma = vmf->vma;
1408 pmd_t oldpmd = vmf->orig_pmd;
1409 pmd_t pmd;
1410 struct page *page;
1411 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1412 int page_nid = NUMA_NO_NODE;
1413 int target_nid, last_cpupid = -1;
1414 bool migrated = false;
1415 bool was_writable = pmd_savedwrite(oldpmd);
1416 int flags = 0;
1417
1418 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1419 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1420 spin_unlock(vmf->ptl);
1421 goto out;
1422 }
1423
1424 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1425 page = vm_normal_page_pmd(vma, haddr, pmd);
1426 if (!page)
1427 goto out_map;
1428
1429 /* See similar comment in do_numa_page for explanation */
1430 if (!was_writable)
1431 flags |= TNF_NO_GROUP;
1432
1433 page_nid = page_to_nid(page);
1434 last_cpupid = page_cpupid_last(page);
1435 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1436 &flags);
1437
1438 if (target_nid == NUMA_NO_NODE) {
1439 put_page(page);
1440 goto out_map;
1441 }
1442
1443 spin_unlock(vmf->ptl);
1444
1445 migrated = migrate_misplaced_page(page, vma, target_nid);
1446 if (migrated) {
1447 flags |= TNF_MIGRATED;
1448 page_nid = target_nid;
1449 } else {
1450 flags |= TNF_MIGRATE_FAIL;
1451 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1452 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1453 spin_unlock(vmf->ptl);
1454 goto out;
1455 }
1456 goto out_map;
1457 }
1458
1459out:
1460 if (page_nid != NUMA_NO_NODE)
1461 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1462 flags);
1463
1464 return 0;
1465
1466out_map:
1467 /* Restore the PMD */
1468 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1469 pmd = pmd_mkyoung(pmd);
1470 if (was_writable)
1471 pmd = pmd_mkwrite(pmd);
1472 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1473 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1474 spin_unlock(vmf->ptl);
1475 goto out;
1476}
1477
1478/*
1479 * Return true if we do MADV_FREE successfully on entire pmd page.
1480 * Otherwise, return false.
1481 */
1482bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1483 pmd_t *pmd, unsigned long addr, unsigned long next)
1484{
1485 spinlock_t *ptl;
1486 pmd_t orig_pmd;
1487 struct page *page;
1488 struct mm_struct *mm = tlb->mm;
1489 bool ret = false;
1490
1491 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1492
1493 ptl = pmd_trans_huge_lock(pmd, vma);
1494 if (!ptl)
1495 goto out_unlocked;
1496
1497 orig_pmd = *pmd;
1498 if (is_huge_zero_pmd(orig_pmd))
1499 goto out;
1500
1501 if (unlikely(!pmd_present(orig_pmd))) {
1502 VM_BUG_ON(thp_migration_supported() &&
1503 !is_pmd_migration_entry(orig_pmd));
1504 goto out;
1505 }
1506
1507 page = pmd_page(orig_pmd);
1508 /*
1509 * If other processes are mapping this page, we couldn't discard
1510 * the page unless they all do MADV_FREE so let's skip the page.
1511 */
1512 if (total_mapcount(page) != 1)
1513 goto out;
1514
1515 if (!trylock_page(page))
1516 goto out;
1517
1518 /*
1519 * If user want to discard part-pages of THP, split it so MADV_FREE
1520 * will deactivate only them.
1521 */
1522 if (next - addr != HPAGE_PMD_SIZE) {
1523 get_page(page);
1524 spin_unlock(ptl);
1525 split_huge_page(page);
1526 unlock_page(page);
1527 put_page(page);
1528 goto out_unlocked;
1529 }
1530
1531 if (PageDirty(page))
1532 ClearPageDirty(page);
1533 unlock_page(page);
1534
1535 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1536 pmdp_invalidate(vma, addr, pmd);
1537 orig_pmd = pmd_mkold(orig_pmd);
1538 orig_pmd = pmd_mkclean(orig_pmd);
1539
1540 set_pmd_at(mm, addr, pmd, orig_pmd);
1541 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1542 }
1543
1544 mark_page_lazyfree(page);
1545 ret = true;
1546out:
1547 spin_unlock(ptl);
1548out_unlocked:
1549 return ret;
1550}
1551
1552static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1553{
1554 pgtable_t pgtable;
1555
1556 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1557 pte_free(mm, pgtable);
1558 mm_dec_nr_ptes(mm);
1559}
1560
1561int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1562 pmd_t *pmd, unsigned long addr)
1563{
1564 pmd_t orig_pmd;
1565 spinlock_t *ptl;
1566
1567 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1568
1569 ptl = __pmd_trans_huge_lock(pmd, vma);
1570 if (!ptl)
1571 return 0;
1572 /*
1573 * For architectures like ppc64 we look at deposited pgtable
1574 * when calling pmdp_huge_get_and_clear. So do the
1575 * pgtable_trans_huge_withdraw after finishing pmdp related
1576 * operations.
1577 */
1578 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1579 tlb->fullmm);
1580 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1581 if (vma_is_special_huge(vma)) {
1582 if (arch_needs_pgtable_deposit())
1583 zap_deposited_table(tlb->mm, pmd);
1584 spin_unlock(ptl);
1585 } else if (is_huge_zero_pmd(orig_pmd)) {
1586 zap_deposited_table(tlb->mm, pmd);
1587 spin_unlock(ptl);
1588 } else {
1589 struct page *page = NULL;
1590 int flush_needed = 1;
1591
1592 if (pmd_present(orig_pmd)) {
1593 page = pmd_page(orig_pmd);
1594 page_remove_rmap(page, vma, true);
1595 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1596 VM_BUG_ON_PAGE(!PageHead(page), page);
1597 } else if (thp_migration_supported()) {
1598 swp_entry_t entry;
1599
1600 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1601 entry = pmd_to_swp_entry(orig_pmd);
1602 page = pfn_swap_entry_to_page(entry);
1603 flush_needed = 0;
1604 } else
1605 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1606
1607 if (PageAnon(page)) {
1608 zap_deposited_table(tlb->mm, pmd);
1609 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1610 } else {
1611 if (arch_needs_pgtable_deposit())
1612 zap_deposited_table(tlb->mm, pmd);
1613 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1614 }
1615
1616 spin_unlock(ptl);
1617 if (flush_needed)
1618 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1619 }
1620 return 1;
1621}
1622
1623#ifndef pmd_move_must_withdraw
1624static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1625 spinlock_t *old_pmd_ptl,
1626 struct vm_area_struct *vma)
1627{
1628 /*
1629 * With split pmd lock we also need to move preallocated
1630 * PTE page table if new_pmd is on different PMD page table.
1631 *
1632 * We also don't deposit and withdraw tables for file pages.
1633 */
1634 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1635}
1636#endif
1637
1638static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1639{
1640#ifdef CONFIG_MEM_SOFT_DIRTY
1641 if (unlikely(is_pmd_migration_entry(pmd)))
1642 pmd = pmd_swp_mksoft_dirty(pmd);
1643 else if (pmd_present(pmd))
1644 pmd = pmd_mksoft_dirty(pmd);
1645#endif
1646 return pmd;
1647}
1648
1649bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1650 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1651{
1652 spinlock_t *old_ptl, *new_ptl;
1653 pmd_t pmd;
1654 struct mm_struct *mm = vma->vm_mm;
1655 bool force_flush = false;
1656
1657 /*
1658 * The destination pmd shouldn't be established, free_pgtables()
1659 * should have release it.
1660 */
1661 if (WARN_ON(!pmd_none(*new_pmd))) {
1662 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1663 return false;
1664 }
1665
1666 /*
1667 * We don't have to worry about the ordering of src and dst
1668 * ptlocks because exclusive mmap_lock prevents deadlock.
1669 */
1670 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1671 if (old_ptl) {
1672 new_ptl = pmd_lockptr(mm, new_pmd);
1673 if (new_ptl != old_ptl)
1674 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1675 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1676 if (pmd_present(pmd))
1677 force_flush = true;
1678 VM_BUG_ON(!pmd_none(*new_pmd));
1679
1680 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1681 pgtable_t pgtable;
1682 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1683 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1684 }
1685 pmd = move_soft_dirty_pmd(pmd);
1686 set_pmd_at(mm, new_addr, new_pmd, pmd);
1687 if (force_flush)
1688 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1689 if (new_ptl != old_ptl)
1690 spin_unlock(new_ptl);
1691 spin_unlock(old_ptl);
1692 return true;
1693 }
1694 return false;
1695}
1696
1697/*
1698 * Returns
1699 * - 0 if PMD could not be locked
1700 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1701 * or if prot_numa but THP migration is not supported
1702 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1703 */
1704int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1705 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1706 unsigned long cp_flags)
1707{
1708 struct mm_struct *mm = vma->vm_mm;
1709 spinlock_t *ptl;
1710 pmd_t oldpmd, entry;
1711 bool preserve_write;
1712 int ret;
1713 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1714 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1715 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1716
1717 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1718
1719 if (prot_numa && !thp_migration_supported())
1720 return 1;
1721
1722 ptl = __pmd_trans_huge_lock(pmd, vma);
1723 if (!ptl)
1724 return 0;
1725
1726 preserve_write = prot_numa && pmd_write(*pmd);
1727 ret = 1;
1728
1729#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1730 if (is_swap_pmd(*pmd)) {
1731 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1732 struct page *page = pfn_swap_entry_to_page(entry);
1733
1734 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1735 if (is_writable_migration_entry(entry)) {
1736 pmd_t newpmd;
1737 /*
1738 * A protection check is difficult so
1739 * just be safe and disable write
1740 */
1741 if (PageAnon(page))
1742 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1743 else
1744 entry = make_readable_migration_entry(swp_offset(entry));
1745 newpmd = swp_entry_to_pmd(entry);
1746 if (pmd_swp_soft_dirty(*pmd))
1747 newpmd = pmd_swp_mksoft_dirty(newpmd);
1748 if (pmd_swp_uffd_wp(*pmd))
1749 newpmd = pmd_swp_mkuffd_wp(newpmd);
1750 set_pmd_at(mm, addr, pmd, newpmd);
1751 }
1752 goto unlock;
1753 }
1754#endif
1755
1756 if (prot_numa) {
1757 struct page *page;
1758 /*
1759 * Avoid trapping faults against the zero page. The read-only
1760 * data is likely to be read-cached on the local CPU and
1761 * local/remote hits to the zero page are not interesting.
1762 */
1763 if (is_huge_zero_pmd(*pmd))
1764 goto unlock;
1765
1766 if (pmd_protnone(*pmd))
1767 goto unlock;
1768
1769 page = pmd_page(*pmd);
1770 /*
1771 * Skip scanning top tier node if normal numa
1772 * balancing is disabled
1773 */
1774 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1775 node_is_toptier(page_to_nid(page)))
1776 goto unlock;
1777 }
1778 /*
1779 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1780 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1781 * which is also under mmap_read_lock(mm):
1782 *
1783 * CPU0: CPU1:
1784 * change_huge_pmd(prot_numa=1)
1785 * pmdp_huge_get_and_clear_notify()
1786 * madvise_dontneed()
1787 * zap_pmd_range()
1788 * pmd_trans_huge(*pmd) == 0 (without ptl)
1789 * // skip the pmd
1790 * set_pmd_at();
1791 * // pmd is re-established
1792 *
1793 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1794 * which may break userspace.
1795 *
1796 * pmdp_invalidate_ad() is required to make sure we don't miss
1797 * dirty/young flags set by hardware.
1798 */
1799 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1800
1801 entry = pmd_modify(oldpmd, newprot);
1802 if (preserve_write)
1803 entry = pmd_mk_savedwrite(entry);
1804 if (uffd_wp) {
1805 entry = pmd_wrprotect(entry);
1806 entry = pmd_mkuffd_wp(entry);
1807 } else if (uffd_wp_resolve) {
1808 /*
1809 * Leave the write bit to be handled by PF interrupt
1810 * handler, then things like COW could be properly
1811 * handled.
1812 */
1813 entry = pmd_clear_uffd_wp(entry);
1814 }
1815 ret = HPAGE_PMD_NR;
1816 set_pmd_at(mm, addr, pmd, entry);
1817
1818 if (huge_pmd_needs_flush(oldpmd, entry))
1819 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1820
1821 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1822unlock:
1823 spin_unlock(ptl);
1824 return ret;
1825}
1826
1827/*
1828 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1829 *
1830 * Note that if it returns page table lock pointer, this routine returns without
1831 * unlocking page table lock. So callers must unlock it.
1832 */
1833spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1834{
1835 spinlock_t *ptl;
1836 ptl = pmd_lock(vma->vm_mm, pmd);
1837 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1838 pmd_devmap(*pmd)))
1839 return ptl;
1840 spin_unlock(ptl);
1841 return NULL;
1842}
1843
1844/*
1845 * Returns true if a given pud maps a thp, false otherwise.
1846 *
1847 * Note that if it returns true, this routine returns without unlocking page
1848 * table lock. So callers must unlock it.
1849 */
1850spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1851{
1852 spinlock_t *ptl;
1853
1854 ptl = pud_lock(vma->vm_mm, pud);
1855 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1856 return ptl;
1857 spin_unlock(ptl);
1858 return NULL;
1859}
1860
1861#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1862int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1863 pud_t *pud, unsigned long addr)
1864{
1865 spinlock_t *ptl;
1866
1867 ptl = __pud_trans_huge_lock(pud, vma);
1868 if (!ptl)
1869 return 0;
1870 /*
1871 * For architectures like ppc64 we look at deposited pgtable
1872 * when calling pudp_huge_get_and_clear. So do the
1873 * pgtable_trans_huge_withdraw after finishing pudp related
1874 * operations.
1875 */
1876 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1877 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1878 if (vma_is_special_huge(vma)) {
1879 spin_unlock(ptl);
1880 /* No zero page support yet */
1881 } else {
1882 /* No support for anonymous PUD pages yet */
1883 BUG();
1884 }
1885 return 1;
1886}
1887
1888static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1889 unsigned long haddr)
1890{
1891 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1892 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1893 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1894 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1895
1896 count_vm_event(THP_SPLIT_PUD);
1897
1898 pudp_huge_clear_flush_notify(vma, haddr, pud);
1899}
1900
1901void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1902 unsigned long address)
1903{
1904 spinlock_t *ptl;
1905 struct mmu_notifier_range range;
1906
1907 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1908 address & HPAGE_PUD_MASK,
1909 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1910 mmu_notifier_invalidate_range_start(&range);
1911 ptl = pud_lock(vma->vm_mm, pud);
1912 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1913 goto out;
1914 __split_huge_pud_locked(vma, pud, range.start);
1915
1916out:
1917 spin_unlock(ptl);
1918 /*
1919 * No need to double call mmu_notifier->invalidate_range() callback as
1920 * the above pudp_huge_clear_flush_notify() did already call it.
1921 */
1922 mmu_notifier_invalidate_range_only_end(&range);
1923}
1924#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1925
1926static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1927 unsigned long haddr, pmd_t *pmd)
1928{
1929 struct mm_struct *mm = vma->vm_mm;
1930 pgtable_t pgtable;
1931 pmd_t _pmd;
1932 int i;
1933
1934 /*
1935 * Leave pmd empty until pte is filled note that it is fine to delay
1936 * notification until mmu_notifier_invalidate_range_end() as we are
1937 * replacing a zero pmd write protected page with a zero pte write
1938 * protected page.
1939 *
1940 * See Documentation/vm/mmu_notifier.rst
1941 */
1942 pmdp_huge_clear_flush(vma, haddr, pmd);
1943
1944 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1945 pmd_populate(mm, &_pmd, pgtable);
1946
1947 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1948 pte_t *pte, entry;
1949 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1950 entry = pte_mkspecial(entry);
1951 pte = pte_offset_map(&_pmd, haddr);
1952 VM_BUG_ON(!pte_none(*pte));
1953 set_pte_at(mm, haddr, pte, entry);
1954 pte_unmap(pte);
1955 }
1956 smp_wmb(); /* make pte visible before pmd */
1957 pmd_populate(mm, pmd, pgtable);
1958}
1959
1960static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1961 unsigned long haddr, bool freeze)
1962{
1963 struct mm_struct *mm = vma->vm_mm;
1964 struct page *page;
1965 pgtable_t pgtable;
1966 pmd_t old_pmd, _pmd;
1967 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1968 bool anon_exclusive = false;
1969 unsigned long addr;
1970 int i;
1971
1972 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1973 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1974 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1975 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1976 && !pmd_devmap(*pmd));
1977
1978 count_vm_event(THP_SPLIT_PMD);
1979
1980 if (!vma_is_anonymous(vma)) {
1981 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1982 /*
1983 * We are going to unmap this huge page. So
1984 * just go ahead and zap it
1985 */
1986 if (arch_needs_pgtable_deposit())
1987 zap_deposited_table(mm, pmd);
1988 if (vma_is_special_huge(vma))
1989 return;
1990 if (unlikely(is_pmd_migration_entry(old_pmd))) {
1991 swp_entry_t entry;
1992
1993 entry = pmd_to_swp_entry(old_pmd);
1994 page = pfn_swap_entry_to_page(entry);
1995 } else {
1996 page = pmd_page(old_pmd);
1997 if (!PageDirty(page) && pmd_dirty(old_pmd))
1998 set_page_dirty(page);
1999 if (!PageReferenced(page) && pmd_young(old_pmd))
2000 SetPageReferenced(page);
2001 page_remove_rmap(page, vma, true);
2002 put_page(page);
2003 }
2004 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2005 return;
2006 }
2007
2008 if (is_huge_zero_pmd(*pmd)) {
2009 /*
2010 * FIXME: Do we want to invalidate secondary mmu by calling
2011 * mmu_notifier_invalidate_range() see comments below inside
2012 * __split_huge_pmd() ?
2013 *
2014 * We are going from a zero huge page write protected to zero
2015 * small page also write protected so it does not seems useful
2016 * to invalidate secondary mmu at this time.
2017 */
2018 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2019 }
2020
2021 /*
2022 * Up to this point the pmd is present and huge and userland has the
2023 * whole access to the hugepage during the split (which happens in
2024 * place). If we overwrite the pmd with the not-huge version pointing
2025 * to the pte here (which of course we could if all CPUs were bug
2026 * free), userland could trigger a small page size TLB miss on the
2027 * small sized TLB while the hugepage TLB entry is still established in
2028 * the huge TLB. Some CPU doesn't like that.
2029 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2030 * 383 on page 105. Intel should be safe but is also warns that it's
2031 * only safe if the permission and cache attributes of the two entries
2032 * loaded in the two TLB is identical (which should be the case here).
2033 * But it is generally safer to never allow small and huge TLB entries
2034 * for the same virtual address to be loaded simultaneously. So instead
2035 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2036 * current pmd notpresent (atomically because here the pmd_trans_huge
2037 * must remain set at all times on the pmd until the split is complete
2038 * for this pmd), then we flush the SMP TLB and finally we write the
2039 * non-huge version of the pmd entry with pmd_populate.
2040 */
2041 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2042
2043 pmd_migration = is_pmd_migration_entry(old_pmd);
2044 if (unlikely(pmd_migration)) {
2045 swp_entry_t entry;
2046
2047 entry = pmd_to_swp_entry(old_pmd);
2048 page = pfn_swap_entry_to_page(entry);
2049 write = is_writable_migration_entry(entry);
2050 if (PageAnon(page))
2051 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2052 young = false;
2053 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2054 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2055 } else {
2056 page = pmd_page(old_pmd);
2057 if (pmd_dirty(old_pmd))
2058 SetPageDirty(page);
2059 write = pmd_write(old_pmd);
2060 young = pmd_young(old_pmd);
2061 soft_dirty = pmd_soft_dirty(old_pmd);
2062 uffd_wp = pmd_uffd_wp(old_pmd);
2063
2064 VM_BUG_ON_PAGE(!page_count(page), page);
2065 page_ref_add(page, HPAGE_PMD_NR - 1);
2066
2067 /*
2068 * Without "freeze", we'll simply split the PMD, propagating the
2069 * PageAnonExclusive() flag for each PTE by setting it for
2070 * each subpage -- no need to (temporarily) clear.
2071 *
2072 * With "freeze" we want to replace mapped pages by
2073 * migration entries right away. This is only possible if we
2074 * managed to clear PageAnonExclusive() -- see
2075 * set_pmd_migration_entry().
2076 *
2077 * In case we cannot clear PageAnonExclusive(), split the PMD
2078 * only and let try_to_migrate_one() fail later.
2079 */
2080 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2081 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2082 freeze = false;
2083 }
2084
2085 /*
2086 * Withdraw the table only after we mark the pmd entry invalid.
2087 * This's critical for some architectures (Power).
2088 */
2089 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2090 pmd_populate(mm, &_pmd, pgtable);
2091
2092 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2093 pte_t entry, *pte;
2094 /*
2095 * Note that NUMA hinting access restrictions are not
2096 * transferred to avoid any possibility of altering
2097 * permissions across VMAs.
2098 */
2099 if (freeze || pmd_migration) {
2100 swp_entry_t swp_entry;
2101 if (write)
2102 swp_entry = make_writable_migration_entry(
2103 page_to_pfn(page + i));
2104 else if (anon_exclusive)
2105 swp_entry = make_readable_exclusive_migration_entry(
2106 page_to_pfn(page + i));
2107 else
2108 swp_entry = make_readable_migration_entry(
2109 page_to_pfn(page + i));
2110 entry = swp_entry_to_pte(swp_entry);
2111 if (soft_dirty)
2112 entry = pte_swp_mksoft_dirty(entry);
2113 if (uffd_wp)
2114 entry = pte_swp_mkuffd_wp(entry);
2115 } else {
2116 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117 entry = maybe_mkwrite(entry, vma);
2118 if (anon_exclusive)
2119 SetPageAnonExclusive(page + i);
2120 if (!write)
2121 entry = pte_wrprotect(entry);
2122 if (!young)
2123 entry = pte_mkold(entry);
2124 if (soft_dirty)
2125 entry = pte_mksoft_dirty(entry);
2126 if (uffd_wp)
2127 entry = pte_mkuffd_wp(entry);
2128 }
2129 pte = pte_offset_map(&_pmd, addr);
2130 BUG_ON(!pte_none(*pte));
2131 set_pte_at(mm, addr, pte, entry);
2132 if (!pmd_migration)
2133 atomic_inc(&page[i]._mapcount);
2134 pte_unmap(pte);
2135 }
2136
2137 if (!pmd_migration) {
2138 /*
2139 * Set PG_double_map before dropping compound_mapcount to avoid
2140 * false-negative page_mapped().
2141 */
2142 if (compound_mapcount(page) > 1 &&
2143 !TestSetPageDoubleMap(page)) {
2144 for (i = 0; i < HPAGE_PMD_NR; i++)
2145 atomic_inc(&page[i]._mapcount);
2146 }
2147
2148 lock_page_memcg(page);
2149 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2150 /* Last compound_mapcount is gone. */
2151 __mod_lruvec_page_state(page, NR_ANON_THPS,
2152 -HPAGE_PMD_NR);
2153 if (TestClearPageDoubleMap(page)) {
2154 /* No need in mapcount reference anymore */
2155 for (i = 0; i < HPAGE_PMD_NR; i++)
2156 atomic_dec(&page[i]._mapcount);
2157 }
2158 }
2159 unlock_page_memcg(page);
2160
2161 /* Above is effectively page_remove_rmap(page, vma, true) */
2162 munlock_vma_page(page, vma, true);
2163 }
2164
2165 smp_wmb(); /* make pte visible before pmd */
2166 pmd_populate(mm, pmd, pgtable);
2167
2168 if (freeze) {
2169 for (i = 0; i < HPAGE_PMD_NR; i++) {
2170 page_remove_rmap(page + i, vma, false);
2171 put_page(page + i);
2172 }
2173 }
2174}
2175
2176void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2177 unsigned long address, bool freeze, struct folio *folio)
2178{
2179 spinlock_t *ptl;
2180 struct mmu_notifier_range range;
2181
2182 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2183 address & HPAGE_PMD_MASK,
2184 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2185 mmu_notifier_invalidate_range_start(&range);
2186 ptl = pmd_lock(vma->vm_mm, pmd);
2187
2188 /*
2189 * If caller asks to setup a migration entry, we need a folio to check
2190 * pmd against. Otherwise we can end up replacing wrong folio.
2191 */
2192 VM_BUG_ON(freeze && !folio);
2193 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2194
2195 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2196 is_pmd_migration_entry(*pmd)) {
2197 if (folio && folio != page_folio(pmd_page(*pmd)))
2198 goto out;
2199 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2200 }
2201
2202out:
2203 spin_unlock(ptl);
2204 /*
2205 * No need to double call mmu_notifier->invalidate_range() callback.
2206 * They are 3 cases to consider inside __split_huge_pmd_locked():
2207 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2208 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2209 * fault will trigger a flush_notify before pointing to a new page
2210 * (it is fine if the secondary mmu keeps pointing to the old zero
2211 * page in the meantime)
2212 * 3) Split a huge pmd into pte pointing to the same page. No need
2213 * to invalidate secondary tlb entry they are all still valid.
2214 * any further changes to individual pte will notify. So no need
2215 * to call mmu_notifier->invalidate_range()
2216 */
2217 mmu_notifier_invalidate_range_only_end(&range);
2218}
2219
2220void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2221 bool freeze, struct folio *folio)
2222{
2223 pgd_t *pgd;
2224 p4d_t *p4d;
2225 pud_t *pud;
2226 pmd_t *pmd;
2227
2228 pgd = pgd_offset(vma->vm_mm, address);
2229 if (!pgd_present(*pgd))
2230 return;
2231
2232 p4d = p4d_offset(pgd, address);
2233 if (!p4d_present(*p4d))
2234 return;
2235
2236 pud = pud_offset(p4d, address);
2237 if (!pud_present(*pud))
2238 return;
2239
2240 pmd = pmd_offset(pud, address);
2241
2242 __split_huge_pmd(vma, pmd, address, freeze, folio);
2243}
2244
2245static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2246{
2247 /*
2248 * If the new address isn't hpage aligned and it could previously
2249 * contain an hugepage: check if we need to split an huge pmd.
2250 */
2251 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2252 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2253 ALIGN(address, HPAGE_PMD_SIZE)))
2254 split_huge_pmd_address(vma, address, false, NULL);
2255}
2256
2257void vma_adjust_trans_huge(struct vm_area_struct *vma,
2258 unsigned long start,
2259 unsigned long end,
2260 long adjust_next)
2261{
2262 /* Check if we need to split start first. */
2263 split_huge_pmd_if_needed(vma, start);
2264
2265 /* Check if we need to split end next. */
2266 split_huge_pmd_if_needed(vma, end);
2267
2268 /*
2269 * If we're also updating the vma->vm_next->vm_start,
2270 * check if we need to split it.
2271 */
2272 if (adjust_next > 0) {
2273 struct vm_area_struct *next = vma->vm_next;
2274 unsigned long nstart = next->vm_start;
2275 nstart += adjust_next;
2276 split_huge_pmd_if_needed(next, nstart);
2277 }
2278}
2279
2280static void unmap_page(struct page *page)
2281{
2282 struct folio *folio = page_folio(page);
2283 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2284 TTU_SYNC;
2285
2286 VM_BUG_ON_PAGE(!PageHead(page), page);
2287
2288 /*
2289 * Anon pages need migration entries to preserve them, but file
2290 * pages can simply be left unmapped, then faulted back on demand.
2291 * If that is ever changed (perhaps for mlock), update remap_page().
2292 */
2293 if (folio_test_anon(folio))
2294 try_to_migrate(folio, ttu_flags);
2295 else
2296 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2297}
2298
2299static void remap_page(struct folio *folio, unsigned long nr)
2300{
2301 int i = 0;
2302
2303 /* If unmap_page() uses try_to_migrate() on file, remove this check */
2304 if (!folio_test_anon(folio))
2305 return;
2306 for (;;) {
2307 remove_migration_ptes(folio, folio, true);
2308 i += folio_nr_pages(folio);
2309 if (i >= nr)
2310 break;
2311 folio = folio_next(folio);
2312 }
2313}
2314
2315static void lru_add_page_tail(struct page *head, struct page *tail,
2316 struct lruvec *lruvec, struct list_head *list)
2317{
2318 VM_BUG_ON_PAGE(!PageHead(head), head);
2319 VM_BUG_ON_PAGE(PageCompound(tail), head);
2320 VM_BUG_ON_PAGE(PageLRU(tail), head);
2321 lockdep_assert_held(&lruvec->lru_lock);
2322
2323 if (list) {
2324 /* page reclaim is reclaiming a huge page */
2325 VM_WARN_ON(PageLRU(head));
2326 get_page(tail);
2327 list_add_tail(&tail->lru, list);
2328 } else {
2329 /* head is still on lru (and we have it frozen) */
2330 VM_WARN_ON(!PageLRU(head));
2331 if (PageUnevictable(tail))
2332 tail->mlock_count = 0;
2333 else
2334 list_add_tail(&tail->lru, &head->lru);
2335 SetPageLRU(tail);
2336 }
2337}
2338
2339static void __split_huge_page_tail(struct page *head, int tail,
2340 struct lruvec *lruvec, struct list_head *list)
2341{
2342 struct page *page_tail = head + tail;
2343
2344 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2345
2346 /*
2347 * Clone page flags before unfreezing refcount.
2348 *
2349 * After successful get_page_unless_zero() might follow flags change,
2350 * for example lock_page() which set PG_waiters.
2351 *
2352 * Note that for mapped sub-pages of an anonymous THP,
2353 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2354 * the migration entry instead from where remap_page() will restore it.
2355 * We can still have PG_anon_exclusive set on effectively unmapped and
2356 * unreferenced sub-pages of an anonymous THP: we can simply drop
2357 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2358 */
2359 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2360 page_tail->flags |= (head->flags &
2361 ((1L << PG_referenced) |
2362 (1L << PG_swapbacked) |
2363 (1L << PG_swapcache) |
2364 (1L << PG_mlocked) |
2365 (1L << PG_uptodate) |
2366 (1L << PG_active) |
2367 (1L << PG_workingset) |
2368 (1L << PG_locked) |
2369 (1L << PG_unevictable) |
2370#ifdef CONFIG_64BIT
2371 (1L << PG_arch_2) |
2372#endif
2373 (1L << PG_dirty)));
2374
2375 /* ->mapping in first tail page is compound_mapcount */
2376 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2377 page_tail);
2378 page_tail->mapping = head->mapping;
2379 page_tail->index = head->index + tail;
2380
2381 /* Page flags must be visible before we make the page non-compound. */
2382 smp_wmb();
2383
2384 /*
2385 * Clear PageTail before unfreezing page refcount.
2386 *
2387 * After successful get_page_unless_zero() might follow put_page()
2388 * which needs correct compound_head().
2389 */
2390 clear_compound_head(page_tail);
2391
2392 /* Finally unfreeze refcount. Additional reference from page cache. */
2393 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2394 PageSwapCache(head)));
2395
2396 if (page_is_young(head))
2397 set_page_young(page_tail);
2398 if (page_is_idle(head))
2399 set_page_idle(page_tail);
2400
2401 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2402
2403 /*
2404 * always add to the tail because some iterators expect new
2405 * pages to show after the currently processed elements - e.g.
2406 * migrate_pages
2407 */
2408 lru_add_page_tail(head, page_tail, lruvec, list);
2409}
2410
2411static void __split_huge_page(struct page *page, struct list_head *list,
2412 pgoff_t end)
2413{
2414 struct folio *folio = page_folio(page);
2415 struct page *head = &folio->page;
2416 struct lruvec *lruvec;
2417 struct address_space *swap_cache = NULL;
2418 unsigned long offset = 0;
2419 unsigned int nr = thp_nr_pages(head);
2420 int i;
2421
2422 /* complete memcg works before add pages to LRU */
2423 split_page_memcg(head, nr);
2424
2425 if (PageAnon(head) && PageSwapCache(head)) {
2426 swp_entry_t entry = { .val = page_private(head) };
2427
2428 offset = swp_offset(entry);
2429 swap_cache = swap_address_space(entry);
2430 xa_lock(&swap_cache->i_pages);
2431 }
2432
2433 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2434 lruvec = folio_lruvec_lock(folio);
2435
2436 ClearPageHasHWPoisoned(head);
2437
2438 for (i = nr - 1; i >= 1; i--) {
2439 __split_huge_page_tail(head, i, lruvec, list);
2440 /* Some pages can be beyond EOF: drop them from page cache */
2441 if (head[i].index >= end) {
2442 ClearPageDirty(head + i);
2443 __delete_from_page_cache(head + i, NULL);
2444 if (shmem_mapping(head->mapping))
2445 shmem_uncharge(head->mapping->host, 1);
2446 put_page(head + i);
2447 } else if (!PageAnon(page)) {
2448 __xa_store(&head->mapping->i_pages, head[i].index,
2449 head + i, 0);
2450 } else if (swap_cache) {
2451 __xa_store(&swap_cache->i_pages, offset + i,
2452 head + i, 0);
2453 }
2454 }
2455
2456 ClearPageCompound(head);
2457 unlock_page_lruvec(lruvec);
2458 /* Caller disabled irqs, so they are still disabled here */
2459
2460 split_page_owner(head, nr);
2461
2462 /* See comment in __split_huge_page_tail() */
2463 if (PageAnon(head)) {
2464 /* Additional pin to swap cache */
2465 if (PageSwapCache(head)) {
2466 page_ref_add(head, 2);
2467 xa_unlock(&swap_cache->i_pages);
2468 } else {
2469 page_ref_inc(head);
2470 }
2471 } else {
2472 /* Additional pin to page cache */
2473 page_ref_add(head, 2);
2474 xa_unlock(&head->mapping->i_pages);
2475 }
2476 local_irq_enable();
2477
2478 remap_page(folio, nr);
2479
2480 if (PageSwapCache(head)) {
2481 swp_entry_t entry = { .val = page_private(head) };
2482
2483 split_swap_cluster(entry);
2484 }
2485
2486 for (i = 0; i < nr; i++) {
2487 struct page *subpage = head + i;
2488 if (subpage == page)
2489 continue;
2490 unlock_page(subpage);
2491
2492 /*
2493 * Subpages may be freed if there wasn't any mapping
2494 * like if add_to_swap() is running on a lru page that
2495 * had its mapping zapped. And freeing these pages
2496 * requires taking the lru_lock so we do the put_page
2497 * of the tail pages after the split is complete.
2498 */
2499 put_page(subpage);
2500 }
2501}
2502
2503/* Racy check whether the huge page can be split */
2504bool can_split_folio(struct folio *folio, int *pextra_pins)
2505{
2506 int extra_pins;
2507
2508 /* Additional pins from page cache */
2509 if (folio_test_anon(folio))
2510 extra_pins = folio_test_swapcache(folio) ?
2511 folio_nr_pages(folio) : 0;
2512 else
2513 extra_pins = folio_nr_pages(folio);
2514 if (pextra_pins)
2515 *pextra_pins = extra_pins;
2516 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2517}
2518
2519/*
2520 * This function splits huge page into normal pages. @page can point to any
2521 * subpage of huge page to split. Split doesn't change the position of @page.
2522 *
2523 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2524 * The huge page must be locked.
2525 *
2526 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2527 *
2528 * Both head page and tail pages will inherit mapping, flags, and so on from
2529 * the hugepage.
2530 *
2531 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2532 * they are not mapped.
2533 *
2534 * Returns 0 if the hugepage is split successfully.
2535 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2536 * us.
2537 */
2538int split_huge_page_to_list(struct page *page, struct list_head *list)
2539{
2540 struct folio *folio = page_folio(page);
2541 struct page *head = &folio->page;
2542 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2543 XA_STATE(xas, &head->mapping->i_pages, head->index);
2544 struct anon_vma *anon_vma = NULL;
2545 struct address_space *mapping = NULL;
2546 int extra_pins, ret;
2547 pgoff_t end;
2548 bool is_hzp;
2549
2550 VM_BUG_ON_PAGE(!PageLocked(head), head);
2551 VM_BUG_ON_PAGE(!PageCompound(head), head);
2552
2553 is_hzp = is_huge_zero_page(head);
2554 VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2555 if (is_hzp)
2556 return -EBUSY;
2557
2558 if (PageWriteback(head))
2559 return -EBUSY;
2560
2561 if (PageAnon(head)) {
2562 /*
2563 * The caller does not necessarily hold an mmap_lock that would
2564 * prevent the anon_vma disappearing so we first we take a
2565 * reference to it and then lock the anon_vma for write. This
2566 * is similar to folio_lock_anon_vma_read except the write lock
2567 * is taken to serialise against parallel split or collapse
2568 * operations.
2569 */
2570 anon_vma = page_get_anon_vma(head);
2571 if (!anon_vma) {
2572 ret = -EBUSY;
2573 goto out;
2574 }
2575 end = -1;
2576 mapping = NULL;
2577 anon_vma_lock_write(anon_vma);
2578 } else {
2579 mapping = head->mapping;
2580
2581 /* Truncated ? */
2582 if (!mapping) {
2583 ret = -EBUSY;
2584 goto out;
2585 }
2586
2587 xas_split_alloc(&xas, head, compound_order(head),
2588 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2589 if (xas_error(&xas)) {
2590 ret = xas_error(&xas);
2591 goto out;
2592 }
2593
2594 anon_vma = NULL;
2595 i_mmap_lock_read(mapping);
2596
2597 /*
2598 *__split_huge_page() may need to trim off pages beyond EOF:
2599 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2600 * which cannot be nested inside the page tree lock. So note
2601 * end now: i_size itself may be changed at any moment, but
2602 * head page lock is good enough to serialize the trimming.
2603 */
2604 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2605 if (shmem_mapping(mapping))
2606 end = shmem_fallocend(mapping->host, end);
2607 }
2608
2609 /*
2610 * Racy check if we can split the page, before unmap_page() will
2611 * split PMDs
2612 */
2613 if (!can_split_folio(folio, &extra_pins)) {
2614 ret = -EBUSY;
2615 goto out_unlock;
2616 }
2617
2618 unmap_page(head);
2619
2620 /* block interrupt reentry in xa_lock and spinlock */
2621 local_irq_disable();
2622 if (mapping) {
2623 /*
2624 * Check if the head page is present in page cache.
2625 * We assume all tail are present too, if head is there.
2626 */
2627 xas_lock(&xas);
2628 xas_reset(&xas);
2629 if (xas_load(&xas) != head)
2630 goto fail;
2631 }
2632
2633 /* Prevent deferred_split_scan() touching ->_refcount */
2634 spin_lock(&ds_queue->split_queue_lock);
2635 if (page_ref_freeze(head, 1 + extra_pins)) {
2636 if (!list_empty(page_deferred_list(head))) {
2637 ds_queue->split_queue_len--;
2638 list_del(page_deferred_list(head));
2639 }
2640 spin_unlock(&ds_queue->split_queue_lock);
2641 if (mapping) {
2642 int nr = thp_nr_pages(head);
2643
2644 xas_split(&xas, head, thp_order(head));
2645 if (PageSwapBacked(head)) {
2646 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2647 -nr);
2648 } else {
2649 __mod_lruvec_page_state(head, NR_FILE_THPS,
2650 -nr);
2651 filemap_nr_thps_dec(mapping);
2652 }
2653 }
2654
2655 __split_huge_page(page, list, end);
2656 ret = 0;
2657 } else {
2658 spin_unlock(&ds_queue->split_queue_lock);
2659fail:
2660 if (mapping)
2661 xas_unlock(&xas);
2662 local_irq_enable();
2663 remap_page(folio, folio_nr_pages(folio));
2664 ret = -EBUSY;
2665 }
2666
2667out_unlock:
2668 if (anon_vma) {
2669 anon_vma_unlock_write(anon_vma);
2670 put_anon_vma(anon_vma);
2671 }
2672 if (mapping)
2673 i_mmap_unlock_read(mapping);
2674out:
2675 xas_destroy(&xas);
2676 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2677 return ret;
2678}
2679
2680void free_transhuge_page(struct page *page)
2681{
2682 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2683 unsigned long flags;
2684
2685 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2686 if (!list_empty(page_deferred_list(page))) {
2687 ds_queue->split_queue_len--;
2688 list_del(page_deferred_list(page));
2689 }
2690 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2691 free_compound_page(page);
2692}
2693
2694void deferred_split_huge_page(struct page *page)
2695{
2696 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2697#ifdef CONFIG_MEMCG
2698 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2699#endif
2700 unsigned long flags;
2701
2702 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2703
2704 /*
2705 * The try_to_unmap() in page reclaim path might reach here too,
2706 * this may cause a race condition to corrupt deferred split queue.
2707 * And, if page reclaim is already handling the same page, it is
2708 * unnecessary to handle it again in shrinker.
2709 *
2710 * Check PageSwapCache to determine if the page is being
2711 * handled by page reclaim since THP swap would add the page into
2712 * swap cache before calling try_to_unmap().
2713 */
2714 if (PageSwapCache(page))
2715 return;
2716
2717 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2718 if (list_empty(page_deferred_list(page))) {
2719 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2720 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2721 ds_queue->split_queue_len++;
2722#ifdef CONFIG_MEMCG
2723 if (memcg)
2724 set_shrinker_bit(memcg, page_to_nid(page),
2725 deferred_split_shrinker.id);
2726#endif
2727 }
2728 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2729}
2730
2731static unsigned long deferred_split_count(struct shrinker *shrink,
2732 struct shrink_control *sc)
2733{
2734 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2735 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2736
2737#ifdef CONFIG_MEMCG
2738 if (sc->memcg)
2739 ds_queue = &sc->memcg->deferred_split_queue;
2740#endif
2741 return READ_ONCE(ds_queue->split_queue_len);
2742}
2743
2744static unsigned long deferred_split_scan(struct shrinker *shrink,
2745 struct shrink_control *sc)
2746{
2747 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2748 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2749 unsigned long flags;
2750 LIST_HEAD(list), *pos, *next;
2751 struct page *page;
2752 int split = 0;
2753
2754#ifdef CONFIG_MEMCG
2755 if (sc->memcg)
2756 ds_queue = &sc->memcg->deferred_split_queue;
2757#endif
2758
2759 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2760 /* Take pin on all head pages to avoid freeing them under us */
2761 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2762 page = list_entry((void *)pos, struct page, deferred_list);
2763 page = compound_head(page);
2764 if (get_page_unless_zero(page)) {
2765 list_move(page_deferred_list(page), &list);
2766 } else {
2767 /* We lost race with put_compound_page() */
2768 list_del_init(page_deferred_list(page));
2769 ds_queue->split_queue_len--;
2770 }
2771 if (!--sc->nr_to_scan)
2772 break;
2773 }
2774 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2775
2776 list_for_each_safe(pos, next, &list) {
2777 page = list_entry((void *)pos, struct page, deferred_list);
2778 if (!trylock_page(page))
2779 goto next;
2780 /* split_huge_page() removes page from list on success */
2781 if (!split_huge_page(page))
2782 split++;
2783 unlock_page(page);
2784next:
2785 put_page(page);
2786 }
2787
2788 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2789 list_splice_tail(&list, &ds_queue->split_queue);
2790 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2791
2792 /*
2793 * Stop shrinker if we didn't split any page, but the queue is empty.
2794 * This can happen if pages were freed under us.
2795 */
2796 if (!split && list_empty(&ds_queue->split_queue))
2797 return SHRINK_STOP;
2798 return split;
2799}
2800
2801static struct shrinker deferred_split_shrinker = {
2802 .count_objects = deferred_split_count,
2803 .scan_objects = deferred_split_scan,
2804 .seeks = DEFAULT_SEEKS,
2805 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2806 SHRINKER_NONSLAB,
2807};
2808
2809#ifdef CONFIG_DEBUG_FS
2810static void split_huge_pages_all(void)
2811{
2812 struct zone *zone;
2813 struct page *page;
2814 unsigned long pfn, max_zone_pfn;
2815 unsigned long total = 0, split = 0;
2816
2817 pr_debug("Split all THPs\n");
2818 for_each_populated_zone(zone) {
2819 max_zone_pfn = zone_end_pfn(zone);
2820 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2821 if (!pfn_valid(pfn))
2822 continue;
2823
2824 page = pfn_to_page(pfn);
2825 if (!get_page_unless_zero(page))
2826 continue;
2827
2828 if (zone != page_zone(page))
2829 goto next;
2830
2831 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2832 goto next;
2833
2834 total++;
2835 lock_page(page);
2836 if (!split_huge_page(page))
2837 split++;
2838 unlock_page(page);
2839next:
2840 put_page(page);
2841 cond_resched();
2842 }
2843 }
2844
2845 pr_debug("%lu of %lu THP split\n", split, total);
2846}
2847
2848static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2849{
2850 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2851 is_vm_hugetlb_page(vma);
2852}
2853
2854static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2855 unsigned long vaddr_end)
2856{
2857 int ret = 0;
2858 struct task_struct *task;
2859 struct mm_struct *mm;
2860 unsigned long total = 0, split = 0;
2861 unsigned long addr;
2862
2863 vaddr_start &= PAGE_MASK;
2864 vaddr_end &= PAGE_MASK;
2865
2866 /* Find the task_struct from pid */
2867 rcu_read_lock();
2868 task = find_task_by_vpid(pid);
2869 if (!task) {
2870 rcu_read_unlock();
2871 ret = -ESRCH;
2872 goto out;
2873 }
2874 get_task_struct(task);
2875 rcu_read_unlock();
2876
2877 /* Find the mm_struct */
2878 mm = get_task_mm(task);
2879 put_task_struct(task);
2880
2881 if (!mm) {
2882 ret = -EINVAL;
2883 goto out;
2884 }
2885
2886 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2887 pid, vaddr_start, vaddr_end);
2888
2889 mmap_read_lock(mm);
2890 /*
2891 * always increase addr by PAGE_SIZE, since we could have a PTE page
2892 * table filled with PTE-mapped THPs, each of which is distinct.
2893 */
2894 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2895 struct vm_area_struct *vma = find_vma(mm, addr);
2896 struct page *page;
2897
2898 if (!vma || addr < vma->vm_start)
2899 break;
2900
2901 /* skip special VMA and hugetlb VMA */
2902 if (vma_not_suitable_for_thp_split(vma)) {
2903 addr = vma->vm_end;
2904 continue;
2905 }
2906
2907 /* FOLL_DUMP to ignore special (like zero) pages */
2908 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2909
2910 if (IS_ERR(page))
2911 continue;
2912 if (!page)
2913 continue;
2914
2915 if (!is_transparent_hugepage(page))
2916 goto next;
2917
2918 total++;
2919 if (!can_split_folio(page_folio(page), NULL))
2920 goto next;
2921
2922 if (!trylock_page(page))
2923 goto next;
2924
2925 if (!split_huge_page(page))
2926 split++;
2927
2928 unlock_page(page);
2929next:
2930 put_page(page);
2931 cond_resched();
2932 }
2933 mmap_read_unlock(mm);
2934 mmput(mm);
2935
2936 pr_debug("%lu of %lu THP split\n", split, total);
2937
2938out:
2939 return ret;
2940}
2941
2942static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2943 pgoff_t off_end)
2944{
2945 struct filename *file;
2946 struct file *candidate;
2947 struct address_space *mapping;
2948 int ret = -EINVAL;
2949 pgoff_t index;
2950 int nr_pages = 1;
2951 unsigned long total = 0, split = 0;
2952
2953 file = getname_kernel(file_path);
2954 if (IS_ERR(file))
2955 return ret;
2956
2957 candidate = file_open_name(file, O_RDONLY, 0);
2958 if (IS_ERR(candidate))
2959 goto out;
2960
2961 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
2962 file_path, off_start, off_end);
2963
2964 mapping = candidate->f_mapping;
2965
2966 for (index = off_start; index < off_end; index += nr_pages) {
2967 struct page *fpage = pagecache_get_page(mapping, index,
2968 FGP_ENTRY | FGP_HEAD, 0);
2969
2970 nr_pages = 1;
2971 if (xa_is_value(fpage) || !fpage)
2972 continue;
2973
2974 if (!is_transparent_hugepage(fpage))
2975 goto next;
2976
2977 total++;
2978 nr_pages = thp_nr_pages(fpage);
2979
2980 if (!trylock_page(fpage))
2981 goto next;
2982
2983 if (!split_huge_page(fpage))
2984 split++;
2985
2986 unlock_page(fpage);
2987next:
2988 put_page(fpage);
2989 cond_resched();
2990 }
2991
2992 filp_close(candidate, NULL);
2993 ret = 0;
2994
2995 pr_debug("%lu of %lu file-backed THP split\n", split, total);
2996out:
2997 putname(file);
2998 return ret;
2999}
3000
3001#define MAX_INPUT_BUF_SZ 255
3002
3003static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3004 size_t count, loff_t *ppops)
3005{
3006 static DEFINE_MUTEX(split_debug_mutex);
3007 ssize_t ret;
3008 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3009 char input_buf[MAX_INPUT_BUF_SZ];
3010 int pid;
3011 unsigned long vaddr_start, vaddr_end;
3012
3013 ret = mutex_lock_interruptible(&split_debug_mutex);
3014 if (ret)
3015 return ret;
3016
3017 ret = -EFAULT;
3018
3019 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3020 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3021 goto out;
3022
3023 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3024
3025 if (input_buf[0] == '/') {
3026 char *tok;
3027 char *buf = input_buf;
3028 char file_path[MAX_INPUT_BUF_SZ];
3029 pgoff_t off_start = 0, off_end = 0;
3030 size_t input_len = strlen(input_buf);
3031
3032 tok = strsep(&buf, ",");
3033 if (tok) {
3034 strcpy(file_path, tok);
3035 } else {
3036 ret = -EINVAL;
3037 goto out;
3038 }
3039
3040 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3041 if (ret != 2) {
3042 ret = -EINVAL;
3043 goto out;
3044 }
3045 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3046 if (!ret)
3047 ret = input_len;
3048
3049 goto out;
3050 }
3051
3052 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3053 if (ret == 1 && pid == 1) {
3054 split_huge_pages_all();
3055 ret = strlen(input_buf);
3056 goto out;
3057 } else if (ret != 3) {
3058 ret = -EINVAL;
3059 goto out;
3060 }
3061
3062 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3063 if (!ret)
3064 ret = strlen(input_buf);
3065out:
3066 mutex_unlock(&split_debug_mutex);
3067 return ret;
3068
3069}
3070
3071static const struct file_operations split_huge_pages_fops = {
3072 .owner = THIS_MODULE,
3073 .write = split_huge_pages_write,
3074 .llseek = no_llseek,
3075};
3076
3077static int __init split_huge_pages_debugfs(void)
3078{
3079 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3080 &split_huge_pages_fops);
3081 return 0;
3082}
3083late_initcall(split_huge_pages_debugfs);
3084#endif
3085
3086#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3087int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3088 struct page *page)
3089{
3090 struct vm_area_struct *vma = pvmw->vma;
3091 struct mm_struct *mm = vma->vm_mm;
3092 unsigned long address = pvmw->address;
3093 bool anon_exclusive;
3094 pmd_t pmdval;
3095 swp_entry_t entry;
3096 pmd_t pmdswp;
3097
3098 if (!(pvmw->pmd && !pvmw->pte))
3099 return 0;
3100
3101 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3102 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3103
3104 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3105 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3106 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3107 return -EBUSY;
3108 }
3109
3110 if (pmd_dirty(pmdval))
3111 set_page_dirty(page);
3112 if (pmd_write(pmdval))
3113 entry = make_writable_migration_entry(page_to_pfn(page));
3114 else if (anon_exclusive)
3115 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3116 else
3117 entry = make_readable_migration_entry(page_to_pfn(page));
3118 pmdswp = swp_entry_to_pmd(entry);
3119 if (pmd_soft_dirty(pmdval))
3120 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3121 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3122 page_remove_rmap(page, vma, true);
3123 put_page(page);
3124 trace_set_migration_pmd(address, pmd_val(pmdswp));
3125
3126 return 0;
3127}
3128
3129void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3130{
3131 struct vm_area_struct *vma = pvmw->vma;
3132 struct mm_struct *mm = vma->vm_mm;
3133 unsigned long address = pvmw->address;
3134 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3135 pmd_t pmde;
3136 swp_entry_t entry;
3137
3138 if (!(pvmw->pmd && !pvmw->pte))
3139 return;
3140
3141 entry = pmd_to_swp_entry(*pvmw->pmd);
3142 get_page(new);
3143 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3144 if (pmd_swp_soft_dirty(*pvmw->pmd))
3145 pmde = pmd_mksoft_dirty(pmde);
3146 if (is_writable_migration_entry(entry))
3147 pmde = maybe_pmd_mkwrite(pmde, vma);
3148 if (pmd_swp_uffd_wp(*pvmw->pmd))
3149 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3150
3151 if (PageAnon(new)) {
3152 rmap_t rmap_flags = RMAP_COMPOUND;
3153
3154 if (!is_readable_migration_entry(entry))
3155 rmap_flags |= RMAP_EXCLUSIVE;
3156
3157 page_add_anon_rmap(new, vma, mmun_start, rmap_flags);
3158 } else {
3159 page_add_file_rmap(new, vma, true);
3160 }
3161 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3162 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3163
3164 /* No need to invalidate - it was non-present before */
3165 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3166 trace_remove_migration_pmd(address, pmd_val(pmde));
3167}
3168#endif