Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292{
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300}
301
302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303{
304 put_unaligned_be32(val << shift, buf);
305}
306
307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308{
309 put_unaligned_le32(val << shift, buf);
310}
311
312static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314{
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318}
319
320#ifdef CONFIG_64BIT
321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322{
323 put_unaligned_be64((u64) val << shift, buf);
324}
325
326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327{
328 put_unaligned_le64((u64) val << shift, buf);
329}
330
331static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333{
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337}
338#endif
339
340static void regmap_parse_inplace_noop(void *buf)
341{
342}
343
344static unsigned int regmap_parse_8(const void *buf)
345{
346 const u8 *b = buf;
347
348 return b[0];
349}
350
351static unsigned int regmap_parse_16_be(const void *buf)
352{
353 return get_unaligned_be16(buf);
354}
355
356static unsigned int regmap_parse_16_le(const void *buf)
357{
358 return get_unaligned_le16(buf);
359}
360
361static void regmap_parse_16_be_inplace(void *buf)
362{
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366}
367
368static void regmap_parse_16_le_inplace(void *buf)
369{
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373}
374
375static unsigned int regmap_parse_16_native(const void *buf)
376{
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381}
382
383static unsigned int regmap_parse_24(const void *buf)
384{
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391}
392
393static unsigned int regmap_parse_32_be(const void *buf)
394{
395 return get_unaligned_be32(buf);
396}
397
398static unsigned int regmap_parse_32_le(const void *buf)
399{
400 return get_unaligned_le32(buf);
401}
402
403static void regmap_parse_32_be_inplace(void *buf)
404{
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408}
409
410static void regmap_parse_32_le_inplace(void *buf)
411{
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415}
416
417static unsigned int regmap_parse_32_native(const void *buf)
418{
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423}
424
425#ifdef CONFIG_64BIT
426static unsigned int regmap_parse_64_be(const void *buf)
427{
428 return get_unaligned_be64(buf);
429}
430
431static unsigned int regmap_parse_64_le(const void *buf)
432{
433 return get_unaligned_le64(buf);
434}
435
436static void regmap_parse_64_be_inplace(void *buf)
437{
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441}
442
443static void regmap_parse_64_le_inplace(void *buf)
444{
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448}
449
450static unsigned int regmap_parse_64_native(const void *buf)
451{
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456}
457#endif
458
459static void regmap_lock_hwlock(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464}
465
466static void regmap_lock_hwlock_irq(void *__map)
467{
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471}
472
473static void regmap_lock_hwlock_irqsave(void *__map)
474{
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479}
480
481static void regmap_unlock_hwlock(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486}
487
488static void regmap_unlock_hwlock_irq(void *__map)
489{
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493}
494
495static void regmap_unlock_hwlock_irqrestore(void *__map)
496{
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500}
501
502static void regmap_lock_unlock_none(void *__map)
503{
504
505}
506
507static void regmap_lock_mutex(void *__map)
508{
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511}
512
513static void regmap_unlock_mutex(void *__map)
514{
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517}
518
519static void regmap_lock_spinlock(void *__map)
520__acquires(&map->spinlock)
521{
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527}
528
529static void regmap_unlock_spinlock(void *__map)
530__releases(&map->spinlock)
531{
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534}
535
536static void regmap_lock_raw_spinlock(void *__map)
537__acquires(&map->raw_spinlock)
538{
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544}
545
546static void regmap_unlock_raw_spinlock(void *__map)
547__releases(&map->raw_spinlock)
548{
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551}
552
553static void dev_get_regmap_release(struct device *dev, void *res)
554{
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560}
561
562static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564{
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585}
586
587static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589{
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605}
606
607static void regmap_range_exit(struct regmap *map)
608{
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621}
622
623static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624{
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636}
637
638int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640{
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
652
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 if (!m) {
656 regmap_debugfs_exit(map);
657 return -ENOMEM;
658 }
659 *m = map;
660 devres_add(dev, m);
661
662 return 0;
663}
664EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
666static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
668{
669 enum regmap_endian endian;
670
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
673
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
676 return endian;
677
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
681
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
688}
689
690enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
693{
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
696
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
699
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
702 return endian;
703
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
711
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
714 return endian;
715
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
719
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
722 return endian;
723
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
726}
727EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
729struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
731 void *bus_context,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
735{
736 struct regmap *map;
737 int ret = -EINVAL;
738 enum regmap_endian reg_endian, val_endian;
739 int i, j;
740
741 if (!config)
742 goto err;
743
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
745 if (map == NULL) {
746 ret = -ENOMEM;
747 goto err;
748 }
749
750 ret = regmap_set_name(map, config);
751 if (ret)
752 goto err_map;
753
754 ret = -EINVAL; /* Later error paths rely on this */
755
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 if (!map->hwlock) {
768 ret = -ENXIO;
769 goto err_name;
770 }
771
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
776 break;
777 case HWLOCK_IRQ:
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
780 break;
781 default:
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
784 break;
785 }
786
787 map->lock_arg = map;
788 } else {
789 if ((bus && bus->fast_io) ||
790 config->fast_io) {
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
797 } else {
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
803 }
804 } else {
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
811 }
812 map->lock_arg = map;
813 }
814
815 /*
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
818 */
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
821 else
822 map->alloc_flags = GFP_KERNEL;
823
824 map->reg_base = config->reg_base;
825
826 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827 map->format.pad_bytes = config->pad_bits / 8;
828 map->format.reg_downshift = config->reg_downshift;
829 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
831 config->val_bits + config->pad_bits, 8);
832 map->reg_shift = config->pad_bits % 8;
833 if (config->reg_stride)
834 map->reg_stride = config->reg_stride;
835 else
836 map->reg_stride = 1;
837 if (is_power_of_2(map->reg_stride))
838 map->reg_stride_order = ilog2(map->reg_stride);
839 else
840 map->reg_stride_order = -1;
841 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
842 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
843 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
844 if (bus) {
845 map->max_raw_read = bus->max_raw_read;
846 map->max_raw_write = bus->max_raw_write;
847 } else if (config->max_raw_read && config->max_raw_write) {
848 map->max_raw_read = config->max_raw_read;
849 map->max_raw_write = config->max_raw_write;
850 }
851 map->dev = dev;
852 map->bus = bus;
853 map->bus_context = bus_context;
854 map->max_register = config->max_register;
855 map->wr_table = config->wr_table;
856 map->rd_table = config->rd_table;
857 map->volatile_table = config->volatile_table;
858 map->precious_table = config->precious_table;
859 map->wr_noinc_table = config->wr_noinc_table;
860 map->rd_noinc_table = config->rd_noinc_table;
861 map->writeable_reg = config->writeable_reg;
862 map->readable_reg = config->readable_reg;
863 map->volatile_reg = config->volatile_reg;
864 map->precious_reg = config->precious_reg;
865 map->writeable_noinc_reg = config->writeable_noinc_reg;
866 map->readable_noinc_reg = config->readable_noinc_reg;
867 map->cache_type = config->cache_type;
868
869 spin_lock_init(&map->async_lock);
870 INIT_LIST_HEAD(&map->async_list);
871 INIT_LIST_HEAD(&map->async_free);
872 init_waitqueue_head(&map->async_waitq);
873
874 if (config->read_flag_mask ||
875 config->write_flag_mask ||
876 config->zero_flag_mask) {
877 map->read_flag_mask = config->read_flag_mask;
878 map->write_flag_mask = config->write_flag_mask;
879 } else if (bus) {
880 map->read_flag_mask = bus->read_flag_mask;
881 }
882
883 if (config && config->read && config->write) {
884 map->reg_read = _regmap_bus_read;
885
886 /* Bulk read/write */
887 map->read = config->read;
888 map->write = config->write;
889
890 reg_endian = REGMAP_ENDIAN_NATIVE;
891 val_endian = REGMAP_ENDIAN_NATIVE;
892 } else if (!bus) {
893 map->reg_read = config->reg_read;
894 map->reg_write = config->reg_write;
895 map->reg_update_bits = config->reg_update_bits;
896
897 map->defer_caching = false;
898 goto skip_format_initialization;
899 } else if (!bus->read || !bus->write) {
900 map->reg_read = _regmap_bus_reg_read;
901 map->reg_write = _regmap_bus_reg_write;
902 map->reg_update_bits = bus->reg_update_bits;
903
904 map->defer_caching = false;
905 goto skip_format_initialization;
906 } else {
907 map->reg_read = _regmap_bus_read;
908 map->reg_update_bits = bus->reg_update_bits;
909 /* Bulk read/write */
910 map->read = bus->read;
911 map->write = bus->write;
912
913 reg_endian = regmap_get_reg_endian(bus, config);
914 val_endian = regmap_get_val_endian(dev, bus, config);
915 }
916
917 switch (config->reg_bits + map->reg_shift) {
918 case 2:
919 switch (config->val_bits) {
920 case 6:
921 map->format.format_write = regmap_format_2_6_write;
922 break;
923 default:
924 goto err_hwlock;
925 }
926 break;
927
928 case 4:
929 switch (config->val_bits) {
930 case 12:
931 map->format.format_write = regmap_format_4_12_write;
932 break;
933 default:
934 goto err_hwlock;
935 }
936 break;
937
938 case 7:
939 switch (config->val_bits) {
940 case 9:
941 map->format.format_write = regmap_format_7_9_write;
942 break;
943 case 17:
944 map->format.format_write = regmap_format_7_17_write;
945 break;
946 default:
947 goto err_hwlock;
948 }
949 break;
950
951 case 10:
952 switch (config->val_bits) {
953 case 14:
954 map->format.format_write = regmap_format_10_14_write;
955 break;
956 default:
957 goto err_hwlock;
958 }
959 break;
960
961 case 12:
962 switch (config->val_bits) {
963 case 20:
964 map->format.format_write = regmap_format_12_20_write;
965 break;
966 default:
967 goto err_hwlock;
968 }
969 break;
970
971 case 8:
972 map->format.format_reg = regmap_format_8;
973 break;
974
975 case 16:
976 switch (reg_endian) {
977 case REGMAP_ENDIAN_BIG:
978 map->format.format_reg = regmap_format_16_be;
979 break;
980 case REGMAP_ENDIAN_LITTLE:
981 map->format.format_reg = regmap_format_16_le;
982 break;
983 case REGMAP_ENDIAN_NATIVE:
984 map->format.format_reg = regmap_format_16_native;
985 break;
986 default:
987 goto err_hwlock;
988 }
989 break;
990
991 case 24:
992 if (reg_endian != REGMAP_ENDIAN_BIG)
993 goto err_hwlock;
994 map->format.format_reg = regmap_format_24;
995 break;
996
997 case 32:
998 switch (reg_endian) {
999 case REGMAP_ENDIAN_BIG:
1000 map->format.format_reg = regmap_format_32_be;
1001 break;
1002 case REGMAP_ENDIAN_LITTLE:
1003 map->format.format_reg = regmap_format_32_le;
1004 break;
1005 case REGMAP_ENDIAN_NATIVE:
1006 map->format.format_reg = regmap_format_32_native;
1007 break;
1008 default:
1009 goto err_hwlock;
1010 }
1011 break;
1012
1013#ifdef CONFIG_64BIT
1014 case 64:
1015 switch (reg_endian) {
1016 case REGMAP_ENDIAN_BIG:
1017 map->format.format_reg = regmap_format_64_be;
1018 break;
1019 case REGMAP_ENDIAN_LITTLE:
1020 map->format.format_reg = regmap_format_64_le;
1021 break;
1022 case REGMAP_ENDIAN_NATIVE:
1023 map->format.format_reg = regmap_format_64_native;
1024 break;
1025 default:
1026 goto err_hwlock;
1027 }
1028 break;
1029#endif
1030
1031 default:
1032 goto err_hwlock;
1033 }
1034
1035 if (val_endian == REGMAP_ENDIAN_NATIVE)
1036 map->format.parse_inplace = regmap_parse_inplace_noop;
1037
1038 switch (config->val_bits) {
1039 case 8:
1040 map->format.format_val = regmap_format_8;
1041 map->format.parse_val = regmap_parse_8;
1042 map->format.parse_inplace = regmap_parse_inplace_noop;
1043 break;
1044 case 16:
1045 switch (val_endian) {
1046 case REGMAP_ENDIAN_BIG:
1047 map->format.format_val = regmap_format_16_be;
1048 map->format.parse_val = regmap_parse_16_be;
1049 map->format.parse_inplace = regmap_parse_16_be_inplace;
1050 break;
1051 case REGMAP_ENDIAN_LITTLE:
1052 map->format.format_val = regmap_format_16_le;
1053 map->format.parse_val = regmap_parse_16_le;
1054 map->format.parse_inplace = regmap_parse_16_le_inplace;
1055 break;
1056 case REGMAP_ENDIAN_NATIVE:
1057 map->format.format_val = regmap_format_16_native;
1058 map->format.parse_val = regmap_parse_16_native;
1059 break;
1060 default:
1061 goto err_hwlock;
1062 }
1063 break;
1064 case 24:
1065 if (val_endian != REGMAP_ENDIAN_BIG)
1066 goto err_hwlock;
1067 map->format.format_val = regmap_format_24;
1068 map->format.parse_val = regmap_parse_24;
1069 break;
1070 case 32:
1071 switch (val_endian) {
1072 case REGMAP_ENDIAN_BIG:
1073 map->format.format_val = regmap_format_32_be;
1074 map->format.parse_val = regmap_parse_32_be;
1075 map->format.parse_inplace = regmap_parse_32_be_inplace;
1076 break;
1077 case REGMAP_ENDIAN_LITTLE:
1078 map->format.format_val = regmap_format_32_le;
1079 map->format.parse_val = regmap_parse_32_le;
1080 map->format.parse_inplace = regmap_parse_32_le_inplace;
1081 break;
1082 case REGMAP_ENDIAN_NATIVE:
1083 map->format.format_val = regmap_format_32_native;
1084 map->format.parse_val = regmap_parse_32_native;
1085 break;
1086 default:
1087 goto err_hwlock;
1088 }
1089 break;
1090#ifdef CONFIG_64BIT
1091 case 64:
1092 switch (val_endian) {
1093 case REGMAP_ENDIAN_BIG:
1094 map->format.format_val = regmap_format_64_be;
1095 map->format.parse_val = regmap_parse_64_be;
1096 map->format.parse_inplace = regmap_parse_64_be_inplace;
1097 break;
1098 case REGMAP_ENDIAN_LITTLE:
1099 map->format.format_val = regmap_format_64_le;
1100 map->format.parse_val = regmap_parse_64_le;
1101 map->format.parse_inplace = regmap_parse_64_le_inplace;
1102 break;
1103 case REGMAP_ENDIAN_NATIVE:
1104 map->format.format_val = regmap_format_64_native;
1105 map->format.parse_val = regmap_parse_64_native;
1106 break;
1107 default:
1108 goto err_hwlock;
1109 }
1110 break;
1111#endif
1112 }
1113
1114 if (map->format.format_write) {
1115 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1116 (val_endian != REGMAP_ENDIAN_BIG))
1117 goto err_hwlock;
1118 map->use_single_write = true;
1119 }
1120
1121 if (!map->format.format_write &&
1122 !(map->format.format_reg && map->format.format_val))
1123 goto err_hwlock;
1124
1125 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1126 if (map->work_buf == NULL) {
1127 ret = -ENOMEM;
1128 goto err_hwlock;
1129 }
1130
1131 if (map->format.format_write) {
1132 map->defer_caching = false;
1133 map->reg_write = _regmap_bus_formatted_write;
1134 } else if (map->format.format_val) {
1135 map->defer_caching = true;
1136 map->reg_write = _regmap_bus_raw_write;
1137 }
1138
1139skip_format_initialization:
1140
1141 map->range_tree = RB_ROOT;
1142 for (i = 0; i < config->num_ranges; i++) {
1143 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1144 struct regmap_range_node *new;
1145
1146 /* Sanity check */
1147 if (range_cfg->range_max < range_cfg->range_min) {
1148 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1149 range_cfg->range_max, range_cfg->range_min);
1150 goto err_range;
1151 }
1152
1153 if (range_cfg->range_max > map->max_register) {
1154 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1155 range_cfg->range_max, map->max_register);
1156 goto err_range;
1157 }
1158
1159 if (range_cfg->selector_reg > map->max_register) {
1160 dev_err(map->dev,
1161 "Invalid range %d: selector out of map\n", i);
1162 goto err_range;
1163 }
1164
1165 if (range_cfg->window_len == 0) {
1166 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1167 i);
1168 goto err_range;
1169 }
1170
1171 /* Make sure, that this register range has no selector
1172 or data window within its boundary */
1173 for (j = 0; j < config->num_ranges; j++) {
1174 unsigned int sel_reg = config->ranges[j].selector_reg;
1175 unsigned int win_min = config->ranges[j].window_start;
1176 unsigned int win_max = win_min +
1177 config->ranges[j].window_len - 1;
1178
1179 /* Allow data window inside its own virtual range */
1180 if (j == i)
1181 continue;
1182
1183 if (range_cfg->range_min <= sel_reg &&
1184 sel_reg <= range_cfg->range_max) {
1185 dev_err(map->dev,
1186 "Range %d: selector for %d in window\n",
1187 i, j);
1188 goto err_range;
1189 }
1190
1191 if (!(win_max < range_cfg->range_min ||
1192 win_min > range_cfg->range_max)) {
1193 dev_err(map->dev,
1194 "Range %d: window for %d in window\n",
1195 i, j);
1196 goto err_range;
1197 }
1198 }
1199
1200 new = kzalloc(sizeof(*new), GFP_KERNEL);
1201 if (new == NULL) {
1202 ret = -ENOMEM;
1203 goto err_range;
1204 }
1205
1206 new->map = map;
1207 new->name = range_cfg->name;
1208 new->range_min = range_cfg->range_min;
1209 new->range_max = range_cfg->range_max;
1210 new->selector_reg = range_cfg->selector_reg;
1211 new->selector_mask = range_cfg->selector_mask;
1212 new->selector_shift = range_cfg->selector_shift;
1213 new->window_start = range_cfg->window_start;
1214 new->window_len = range_cfg->window_len;
1215
1216 if (!_regmap_range_add(map, new)) {
1217 dev_err(map->dev, "Failed to add range %d\n", i);
1218 kfree(new);
1219 goto err_range;
1220 }
1221
1222 if (map->selector_work_buf == NULL) {
1223 map->selector_work_buf =
1224 kzalloc(map->format.buf_size, GFP_KERNEL);
1225 if (map->selector_work_buf == NULL) {
1226 ret = -ENOMEM;
1227 goto err_range;
1228 }
1229 }
1230 }
1231
1232 ret = regcache_init(map, config);
1233 if (ret != 0)
1234 goto err_range;
1235
1236 if (dev) {
1237 ret = regmap_attach_dev(dev, map, config);
1238 if (ret != 0)
1239 goto err_regcache;
1240 } else {
1241 regmap_debugfs_init(map);
1242 }
1243
1244 return map;
1245
1246err_regcache:
1247 regcache_exit(map);
1248err_range:
1249 regmap_range_exit(map);
1250 kfree(map->work_buf);
1251err_hwlock:
1252 if (map->hwlock)
1253 hwspin_lock_free(map->hwlock);
1254err_name:
1255 kfree_const(map->name);
1256err_map:
1257 kfree(map);
1258err:
1259 return ERR_PTR(ret);
1260}
1261EXPORT_SYMBOL_GPL(__regmap_init);
1262
1263static void devm_regmap_release(struct device *dev, void *res)
1264{
1265 regmap_exit(*(struct regmap **)res);
1266}
1267
1268struct regmap *__devm_regmap_init(struct device *dev,
1269 const struct regmap_bus *bus,
1270 void *bus_context,
1271 const struct regmap_config *config,
1272 struct lock_class_key *lock_key,
1273 const char *lock_name)
1274{
1275 struct regmap **ptr, *regmap;
1276
1277 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1278 if (!ptr)
1279 return ERR_PTR(-ENOMEM);
1280
1281 regmap = __regmap_init(dev, bus, bus_context, config,
1282 lock_key, lock_name);
1283 if (!IS_ERR(regmap)) {
1284 *ptr = regmap;
1285 devres_add(dev, ptr);
1286 } else {
1287 devres_free(ptr);
1288 }
1289
1290 return regmap;
1291}
1292EXPORT_SYMBOL_GPL(__devm_regmap_init);
1293
1294static void regmap_field_init(struct regmap_field *rm_field,
1295 struct regmap *regmap, struct reg_field reg_field)
1296{
1297 rm_field->regmap = regmap;
1298 rm_field->reg = reg_field.reg;
1299 rm_field->shift = reg_field.lsb;
1300 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1301 rm_field->id_size = reg_field.id_size;
1302 rm_field->id_offset = reg_field.id_offset;
1303}
1304
1305/**
1306 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1307 *
1308 * @dev: Device that will be interacted with
1309 * @regmap: regmap bank in which this register field is located.
1310 * @reg_field: Register field with in the bank.
1311 *
1312 * The return value will be an ERR_PTR() on error or a valid pointer
1313 * to a struct regmap_field. The regmap_field will be automatically freed
1314 * by the device management code.
1315 */
1316struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1317 struct regmap *regmap, struct reg_field reg_field)
1318{
1319 struct regmap_field *rm_field = devm_kzalloc(dev,
1320 sizeof(*rm_field), GFP_KERNEL);
1321 if (!rm_field)
1322 return ERR_PTR(-ENOMEM);
1323
1324 regmap_field_init(rm_field, regmap, reg_field);
1325
1326 return rm_field;
1327
1328}
1329EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1330
1331
1332/**
1333 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1334 *
1335 * @regmap: regmap bank in which this register field is located.
1336 * @rm_field: regmap register fields within the bank.
1337 * @reg_field: Register fields within the bank.
1338 * @num_fields: Number of register fields.
1339 *
1340 * The return value will be an -ENOMEM on error or zero for success.
1341 * Newly allocated regmap_fields should be freed by calling
1342 * regmap_field_bulk_free()
1343 */
1344int regmap_field_bulk_alloc(struct regmap *regmap,
1345 struct regmap_field **rm_field,
1346 const struct reg_field *reg_field,
1347 int num_fields)
1348{
1349 struct regmap_field *rf;
1350 int i;
1351
1352 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1353 if (!rf)
1354 return -ENOMEM;
1355
1356 for (i = 0; i < num_fields; i++) {
1357 regmap_field_init(&rf[i], regmap, reg_field[i]);
1358 rm_field[i] = &rf[i];
1359 }
1360
1361 return 0;
1362}
1363EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1364
1365/**
1366 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1367 * fields.
1368 *
1369 * @dev: Device that will be interacted with
1370 * @regmap: regmap bank in which this register field is located.
1371 * @rm_field: regmap register fields within the bank.
1372 * @reg_field: Register fields within the bank.
1373 * @num_fields: Number of register fields.
1374 *
1375 * The return value will be an -ENOMEM on error or zero for success.
1376 * Newly allocated regmap_fields will be automatically freed by the
1377 * device management code.
1378 */
1379int devm_regmap_field_bulk_alloc(struct device *dev,
1380 struct regmap *regmap,
1381 struct regmap_field **rm_field,
1382 const struct reg_field *reg_field,
1383 int num_fields)
1384{
1385 struct regmap_field *rf;
1386 int i;
1387
1388 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1389 if (!rf)
1390 return -ENOMEM;
1391
1392 for (i = 0; i < num_fields; i++) {
1393 regmap_field_init(&rf[i], regmap, reg_field[i]);
1394 rm_field[i] = &rf[i];
1395 }
1396
1397 return 0;
1398}
1399EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1400
1401/**
1402 * regmap_field_bulk_free() - Free register field allocated using
1403 * regmap_field_bulk_alloc.
1404 *
1405 * @field: regmap fields which should be freed.
1406 */
1407void regmap_field_bulk_free(struct regmap_field *field)
1408{
1409 kfree(field);
1410}
1411EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1412
1413/**
1414 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1415 * devm_regmap_field_bulk_alloc.
1416 *
1417 * @dev: Device that will be interacted with
1418 * @field: regmap field which should be freed.
1419 *
1420 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1421 * drivers need not call this function, as the memory allocated via devm
1422 * will be freed as per device-driver life-cycle.
1423 */
1424void devm_regmap_field_bulk_free(struct device *dev,
1425 struct regmap_field *field)
1426{
1427 devm_kfree(dev, field);
1428}
1429EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1430
1431/**
1432 * devm_regmap_field_free() - Free a register field allocated using
1433 * devm_regmap_field_alloc.
1434 *
1435 * @dev: Device that will be interacted with
1436 * @field: regmap field which should be freed.
1437 *
1438 * Free register field allocated using devm_regmap_field_alloc(). Usually
1439 * drivers need not call this function, as the memory allocated via devm
1440 * will be freed as per device-driver life-cyle.
1441 */
1442void devm_regmap_field_free(struct device *dev,
1443 struct regmap_field *field)
1444{
1445 devm_kfree(dev, field);
1446}
1447EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1448
1449/**
1450 * regmap_field_alloc() - Allocate and initialise a register field.
1451 *
1452 * @regmap: regmap bank in which this register field is located.
1453 * @reg_field: Register field with in the bank.
1454 *
1455 * The return value will be an ERR_PTR() on error or a valid pointer
1456 * to a struct regmap_field. The regmap_field should be freed by the
1457 * user once its finished working with it using regmap_field_free().
1458 */
1459struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1460 struct reg_field reg_field)
1461{
1462 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1463
1464 if (!rm_field)
1465 return ERR_PTR(-ENOMEM);
1466
1467 regmap_field_init(rm_field, regmap, reg_field);
1468
1469 return rm_field;
1470}
1471EXPORT_SYMBOL_GPL(regmap_field_alloc);
1472
1473/**
1474 * regmap_field_free() - Free register field allocated using
1475 * regmap_field_alloc.
1476 *
1477 * @field: regmap field which should be freed.
1478 */
1479void regmap_field_free(struct regmap_field *field)
1480{
1481 kfree(field);
1482}
1483EXPORT_SYMBOL_GPL(regmap_field_free);
1484
1485/**
1486 * regmap_reinit_cache() - Reinitialise the current register cache
1487 *
1488 * @map: Register map to operate on.
1489 * @config: New configuration. Only the cache data will be used.
1490 *
1491 * Discard any existing register cache for the map and initialize a
1492 * new cache. This can be used to restore the cache to defaults or to
1493 * update the cache configuration to reflect runtime discovery of the
1494 * hardware.
1495 *
1496 * No explicit locking is done here, the user needs to ensure that
1497 * this function will not race with other calls to regmap.
1498 */
1499int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1500{
1501 int ret;
1502
1503 regcache_exit(map);
1504 regmap_debugfs_exit(map);
1505
1506 map->max_register = config->max_register;
1507 map->writeable_reg = config->writeable_reg;
1508 map->readable_reg = config->readable_reg;
1509 map->volatile_reg = config->volatile_reg;
1510 map->precious_reg = config->precious_reg;
1511 map->writeable_noinc_reg = config->writeable_noinc_reg;
1512 map->readable_noinc_reg = config->readable_noinc_reg;
1513 map->cache_type = config->cache_type;
1514
1515 ret = regmap_set_name(map, config);
1516 if (ret)
1517 return ret;
1518
1519 regmap_debugfs_init(map);
1520
1521 map->cache_bypass = false;
1522 map->cache_only = false;
1523
1524 return regcache_init(map, config);
1525}
1526EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1527
1528/**
1529 * regmap_exit() - Free a previously allocated register map
1530 *
1531 * @map: Register map to operate on.
1532 */
1533void regmap_exit(struct regmap *map)
1534{
1535 struct regmap_async *async;
1536
1537 regcache_exit(map);
1538 regmap_debugfs_exit(map);
1539 regmap_range_exit(map);
1540 if (map->bus && map->bus->free_context)
1541 map->bus->free_context(map->bus_context);
1542 kfree(map->work_buf);
1543 while (!list_empty(&map->async_free)) {
1544 async = list_first_entry_or_null(&map->async_free,
1545 struct regmap_async,
1546 list);
1547 list_del(&async->list);
1548 kfree(async->work_buf);
1549 kfree(async);
1550 }
1551 if (map->hwlock)
1552 hwspin_lock_free(map->hwlock);
1553 if (map->lock == regmap_lock_mutex)
1554 mutex_destroy(&map->mutex);
1555 kfree_const(map->name);
1556 kfree(map->patch);
1557 if (map->bus && map->bus->free_on_exit)
1558 kfree(map->bus);
1559 kfree(map);
1560}
1561EXPORT_SYMBOL_GPL(regmap_exit);
1562
1563static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1564{
1565 struct regmap **r = res;
1566 if (!r || !*r) {
1567 WARN_ON(!r || !*r);
1568 return 0;
1569 }
1570
1571 /* If the user didn't specify a name match any */
1572 if (data)
1573 return !strcmp((*r)->name, data);
1574 else
1575 return 1;
1576}
1577
1578/**
1579 * dev_get_regmap() - Obtain the regmap (if any) for a device
1580 *
1581 * @dev: Device to retrieve the map for
1582 * @name: Optional name for the register map, usually NULL.
1583 *
1584 * Returns the regmap for the device if one is present, or NULL. If
1585 * name is specified then it must match the name specified when
1586 * registering the device, if it is NULL then the first regmap found
1587 * will be used. Devices with multiple register maps are very rare,
1588 * generic code should normally not need to specify a name.
1589 */
1590struct regmap *dev_get_regmap(struct device *dev, const char *name)
1591{
1592 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1593 dev_get_regmap_match, (void *)name);
1594
1595 if (!r)
1596 return NULL;
1597 return *r;
1598}
1599EXPORT_SYMBOL_GPL(dev_get_regmap);
1600
1601/**
1602 * regmap_get_device() - Obtain the device from a regmap
1603 *
1604 * @map: Register map to operate on.
1605 *
1606 * Returns the underlying device that the regmap has been created for.
1607 */
1608struct device *regmap_get_device(struct regmap *map)
1609{
1610 return map->dev;
1611}
1612EXPORT_SYMBOL_GPL(regmap_get_device);
1613
1614static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1615 struct regmap_range_node *range,
1616 unsigned int val_num)
1617{
1618 void *orig_work_buf;
1619 unsigned int win_offset;
1620 unsigned int win_page;
1621 bool page_chg;
1622 int ret;
1623
1624 win_offset = (*reg - range->range_min) % range->window_len;
1625 win_page = (*reg - range->range_min) / range->window_len;
1626
1627 if (val_num > 1) {
1628 /* Bulk write shouldn't cross range boundary */
1629 if (*reg + val_num - 1 > range->range_max)
1630 return -EINVAL;
1631
1632 /* ... or single page boundary */
1633 if (val_num > range->window_len - win_offset)
1634 return -EINVAL;
1635 }
1636
1637 /* It is possible to have selector register inside data window.
1638 In that case, selector register is located on every page and
1639 it needs no page switching, when accessed alone. */
1640 if (val_num > 1 ||
1641 range->window_start + win_offset != range->selector_reg) {
1642 /* Use separate work_buf during page switching */
1643 orig_work_buf = map->work_buf;
1644 map->work_buf = map->selector_work_buf;
1645
1646 ret = _regmap_update_bits(map, range->selector_reg,
1647 range->selector_mask,
1648 win_page << range->selector_shift,
1649 &page_chg, false);
1650
1651 map->work_buf = orig_work_buf;
1652
1653 if (ret != 0)
1654 return ret;
1655 }
1656
1657 *reg = range->window_start + win_offset;
1658
1659 return 0;
1660}
1661
1662static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1663 unsigned long mask)
1664{
1665 u8 *buf;
1666 int i;
1667
1668 if (!mask || !map->work_buf)
1669 return;
1670
1671 buf = map->work_buf;
1672
1673 for (i = 0; i < max_bytes; i++)
1674 buf[i] |= (mask >> (8 * i)) & 0xff;
1675}
1676
1677static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1678 const void *val, size_t val_len, bool noinc)
1679{
1680 struct regmap_range_node *range;
1681 unsigned long flags;
1682 void *work_val = map->work_buf + map->format.reg_bytes +
1683 map->format.pad_bytes;
1684 void *buf;
1685 int ret = -ENOTSUPP;
1686 size_t len;
1687 int i;
1688
1689 /* Check for unwritable or noinc registers in range
1690 * before we start
1691 */
1692 if (!regmap_writeable_noinc(map, reg)) {
1693 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1694 unsigned int element =
1695 reg + regmap_get_offset(map, i);
1696 if (!regmap_writeable(map, element) ||
1697 regmap_writeable_noinc(map, element))
1698 return -EINVAL;
1699 }
1700 }
1701
1702 if (!map->cache_bypass && map->format.parse_val) {
1703 unsigned int ival;
1704 int val_bytes = map->format.val_bytes;
1705 for (i = 0; i < val_len / val_bytes; i++) {
1706 ival = map->format.parse_val(val + (i * val_bytes));
1707 ret = regcache_write(map,
1708 reg + regmap_get_offset(map, i),
1709 ival);
1710 if (ret) {
1711 dev_err(map->dev,
1712 "Error in caching of register: %x ret: %d\n",
1713 reg + regmap_get_offset(map, i), ret);
1714 return ret;
1715 }
1716 }
1717 if (map->cache_only) {
1718 map->cache_dirty = true;
1719 return 0;
1720 }
1721 }
1722
1723 range = _regmap_range_lookup(map, reg);
1724 if (range) {
1725 int val_num = val_len / map->format.val_bytes;
1726 int win_offset = (reg - range->range_min) % range->window_len;
1727 int win_residue = range->window_len - win_offset;
1728
1729 /* If the write goes beyond the end of the window split it */
1730 while (val_num > win_residue) {
1731 dev_dbg(map->dev, "Writing window %d/%zu\n",
1732 win_residue, val_len / map->format.val_bytes);
1733 ret = _regmap_raw_write_impl(map, reg, val,
1734 win_residue *
1735 map->format.val_bytes, noinc);
1736 if (ret != 0)
1737 return ret;
1738
1739 reg += win_residue;
1740 val_num -= win_residue;
1741 val += win_residue * map->format.val_bytes;
1742 val_len -= win_residue * map->format.val_bytes;
1743
1744 win_offset = (reg - range->range_min) %
1745 range->window_len;
1746 win_residue = range->window_len - win_offset;
1747 }
1748
1749 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1750 if (ret != 0)
1751 return ret;
1752 }
1753
1754 reg += map->reg_base;
1755 reg >>= map->format.reg_downshift;
1756 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1757 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1758 map->write_flag_mask);
1759
1760 /*
1761 * Essentially all I/O mechanisms will be faster with a single
1762 * buffer to write. Since register syncs often generate raw
1763 * writes of single registers optimise that case.
1764 */
1765 if (val != work_val && val_len == map->format.val_bytes) {
1766 memcpy(work_val, val, map->format.val_bytes);
1767 val = work_val;
1768 }
1769
1770 if (map->async && map->bus && map->bus->async_write) {
1771 struct regmap_async *async;
1772
1773 trace_regmap_async_write_start(map, reg, val_len);
1774
1775 spin_lock_irqsave(&map->async_lock, flags);
1776 async = list_first_entry_or_null(&map->async_free,
1777 struct regmap_async,
1778 list);
1779 if (async)
1780 list_del(&async->list);
1781 spin_unlock_irqrestore(&map->async_lock, flags);
1782
1783 if (!async) {
1784 async = map->bus->async_alloc();
1785 if (!async)
1786 return -ENOMEM;
1787
1788 async->work_buf = kzalloc(map->format.buf_size,
1789 GFP_KERNEL | GFP_DMA);
1790 if (!async->work_buf) {
1791 kfree(async);
1792 return -ENOMEM;
1793 }
1794 }
1795
1796 async->map = map;
1797
1798 /* If the caller supplied the value we can use it safely. */
1799 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1800 map->format.reg_bytes + map->format.val_bytes);
1801
1802 spin_lock_irqsave(&map->async_lock, flags);
1803 list_add_tail(&async->list, &map->async_list);
1804 spin_unlock_irqrestore(&map->async_lock, flags);
1805
1806 if (val != work_val)
1807 ret = map->bus->async_write(map->bus_context,
1808 async->work_buf,
1809 map->format.reg_bytes +
1810 map->format.pad_bytes,
1811 val, val_len, async);
1812 else
1813 ret = map->bus->async_write(map->bus_context,
1814 async->work_buf,
1815 map->format.reg_bytes +
1816 map->format.pad_bytes +
1817 val_len, NULL, 0, async);
1818
1819 if (ret != 0) {
1820 dev_err(map->dev, "Failed to schedule write: %d\n",
1821 ret);
1822
1823 spin_lock_irqsave(&map->async_lock, flags);
1824 list_move(&async->list, &map->async_free);
1825 spin_unlock_irqrestore(&map->async_lock, flags);
1826 }
1827
1828 return ret;
1829 }
1830
1831 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1832
1833 /* If we're doing a single register write we can probably just
1834 * send the work_buf directly, otherwise try to do a gather
1835 * write.
1836 */
1837 if (val == work_val)
1838 ret = map->write(map->bus_context, map->work_buf,
1839 map->format.reg_bytes +
1840 map->format.pad_bytes +
1841 val_len);
1842 else if (map->bus && map->bus->gather_write)
1843 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1844 map->format.reg_bytes +
1845 map->format.pad_bytes,
1846 val, val_len);
1847 else
1848 ret = -ENOTSUPP;
1849
1850 /* If that didn't work fall back on linearising by hand. */
1851 if (ret == -ENOTSUPP) {
1852 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1853 buf = kzalloc(len, GFP_KERNEL);
1854 if (!buf)
1855 return -ENOMEM;
1856
1857 memcpy(buf, map->work_buf, map->format.reg_bytes);
1858 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1859 val, val_len);
1860 ret = map->write(map->bus_context, buf, len);
1861
1862 kfree(buf);
1863 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1864 /* regcache_drop_region() takes lock that we already have,
1865 * thus call map->cache_ops->drop() directly
1866 */
1867 if (map->cache_ops && map->cache_ops->drop)
1868 map->cache_ops->drop(map, reg, reg + 1);
1869 }
1870
1871 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1872
1873 return ret;
1874}
1875
1876/**
1877 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1878 *
1879 * @map: Map to check.
1880 */
1881bool regmap_can_raw_write(struct regmap *map)
1882{
1883 return map->bus && map->bus->write && map->format.format_val &&
1884 map->format.format_reg;
1885}
1886EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1887
1888/**
1889 * regmap_get_raw_read_max - Get the maximum size we can read
1890 *
1891 * @map: Map to check.
1892 */
1893size_t regmap_get_raw_read_max(struct regmap *map)
1894{
1895 return map->max_raw_read;
1896}
1897EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1898
1899/**
1900 * regmap_get_raw_write_max - Get the maximum size we can read
1901 *
1902 * @map: Map to check.
1903 */
1904size_t regmap_get_raw_write_max(struct regmap *map)
1905{
1906 return map->max_raw_write;
1907}
1908EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1909
1910static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1911 unsigned int val)
1912{
1913 int ret;
1914 struct regmap_range_node *range;
1915 struct regmap *map = context;
1916
1917 WARN_ON(!map->format.format_write);
1918
1919 range = _regmap_range_lookup(map, reg);
1920 if (range) {
1921 ret = _regmap_select_page(map, ®, range, 1);
1922 if (ret != 0)
1923 return ret;
1924 }
1925
1926 reg += map->reg_base;
1927 reg >>= map->format.reg_downshift;
1928 map->format.format_write(map, reg, val);
1929
1930 trace_regmap_hw_write_start(map, reg, 1);
1931
1932 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1933
1934 trace_regmap_hw_write_done(map, reg, 1);
1935
1936 return ret;
1937}
1938
1939static int _regmap_bus_reg_write(void *context, unsigned int reg,
1940 unsigned int val)
1941{
1942 struct regmap *map = context;
1943
1944 return map->bus->reg_write(map->bus_context, reg, val);
1945}
1946
1947static int _regmap_bus_raw_write(void *context, unsigned int reg,
1948 unsigned int val)
1949{
1950 struct regmap *map = context;
1951
1952 WARN_ON(!map->format.format_val);
1953
1954 map->format.format_val(map->work_buf + map->format.reg_bytes
1955 + map->format.pad_bytes, val, 0);
1956 return _regmap_raw_write_impl(map, reg,
1957 map->work_buf +
1958 map->format.reg_bytes +
1959 map->format.pad_bytes,
1960 map->format.val_bytes,
1961 false);
1962}
1963
1964static inline void *_regmap_map_get_context(struct regmap *map)
1965{
1966 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1967}
1968
1969int _regmap_write(struct regmap *map, unsigned int reg,
1970 unsigned int val)
1971{
1972 int ret;
1973 void *context = _regmap_map_get_context(map);
1974
1975 if (!regmap_writeable(map, reg))
1976 return -EIO;
1977
1978 if (!map->cache_bypass && !map->defer_caching) {
1979 ret = regcache_write(map, reg, val);
1980 if (ret != 0)
1981 return ret;
1982 if (map->cache_only) {
1983 map->cache_dirty = true;
1984 return 0;
1985 }
1986 }
1987
1988 ret = map->reg_write(context, reg, val);
1989 if (ret == 0) {
1990 if (regmap_should_log(map))
1991 dev_info(map->dev, "%x <= %x\n", reg, val);
1992
1993 trace_regmap_reg_write(map, reg, val);
1994 }
1995
1996 return ret;
1997}
1998
1999/**
2000 * regmap_write() - Write a value to a single register
2001 *
2002 * @map: Register map to write to
2003 * @reg: Register to write to
2004 * @val: Value to be written
2005 *
2006 * A value of zero will be returned on success, a negative errno will
2007 * be returned in error cases.
2008 */
2009int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2010{
2011 int ret;
2012
2013 if (!IS_ALIGNED(reg, map->reg_stride))
2014 return -EINVAL;
2015
2016 map->lock(map->lock_arg);
2017
2018 ret = _regmap_write(map, reg, val);
2019
2020 map->unlock(map->lock_arg);
2021
2022 return ret;
2023}
2024EXPORT_SYMBOL_GPL(regmap_write);
2025
2026/**
2027 * regmap_write_async() - Write a value to a single register asynchronously
2028 *
2029 * @map: Register map to write to
2030 * @reg: Register to write to
2031 * @val: Value to be written
2032 *
2033 * A value of zero will be returned on success, a negative errno will
2034 * be returned in error cases.
2035 */
2036int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2037{
2038 int ret;
2039
2040 if (!IS_ALIGNED(reg, map->reg_stride))
2041 return -EINVAL;
2042
2043 map->lock(map->lock_arg);
2044
2045 map->async = true;
2046
2047 ret = _regmap_write(map, reg, val);
2048
2049 map->async = false;
2050
2051 map->unlock(map->lock_arg);
2052
2053 return ret;
2054}
2055EXPORT_SYMBOL_GPL(regmap_write_async);
2056
2057int _regmap_raw_write(struct regmap *map, unsigned int reg,
2058 const void *val, size_t val_len, bool noinc)
2059{
2060 size_t val_bytes = map->format.val_bytes;
2061 size_t val_count = val_len / val_bytes;
2062 size_t chunk_count, chunk_bytes;
2063 size_t chunk_regs = val_count;
2064 int ret, i;
2065
2066 if (!val_count)
2067 return -EINVAL;
2068
2069 if (map->use_single_write)
2070 chunk_regs = 1;
2071 else if (map->max_raw_write && val_len > map->max_raw_write)
2072 chunk_regs = map->max_raw_write / val_bytes;
2073
2074 chunk_count = val_count / chunk_regs;
2075 chunk_bytes = chunk_regs * val_bytes;
2076
2077 /* Write as many bytes as possible with chunk_size */
2078 for (i = 0; i < chunk_count; i++) {
2079 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2080 if (ret)
2081 return ret;
2082
2083 reg += regmap_get_offset(map, chunk_regs);
2084 val += chunk_bytes;
2085 val_len -= chunk_bytes;
2086 }
2087
2088 /* Write remaining bytes */
2089 if (val_len)
2090 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2091
2092 return ret;
2093}
2094
2095/**
2096 * regmap_raw_write() - Write raw values to one or more registers
2097 *
2098 * @map: Register map to write to
2099 * @reg: Initial register to write to
2100 * @val: Block of data to be written, laid out for direct transmission to the
2101 * device
2102 * @val_len: Length of data pointed to by val.
2103 *
2104 * This function is intended to be used for things like firmware
2105 * download where a large block of data needs to be transferred to the
2106 * device. No formatting will be done on the data provided.
2107 *
2108 * A value of zero will be returned on success, a negative errno will
2109 * be returned in error cases.
2110 */
2111int regmap_raw_write(struct regmap *map, unsigned int reg,
2112 const void *val, size_t val_len)
2113{
2114 int ret;
2115
2116 if (!regmap_can_raw_write(map))
2117 return -EINVAL;
2118 if (val_len % map->format.val_bytes)
2119 return -EINVAL;
2120
2121 map->lock(map->lock_arg);
2122
2123 ret = _regmap_raw_write(map, reg, val, val_len, false);
2124
2125 map->unlock(map->lock_arg);
2126
2127 return ret;
2128}
2129EXPORT_SYMBOL_GPL(regmap_raw_write);
2130
2131/**
2132 * regmap_noinc_write(): Write data from a register without incrementing the
2133 * register number
2134 *
2135 * @map: Register map to write to
2136 * @reg: Register to write to
2137 * @val: Pointer to data buffer
2138 * @val_len: Length of output buffer in bytes.
2139 *
2140 * The regmap API usually assumes that bulk bus write operations will write a
2141 * range of registers. Some devices have certain registers for which a write
2142 * operation can write to an internal FIFO.
2143 *
2144 * The target register must be volatile but registers after it can be
2145 * completely unrelated cacheable registers.
2146 *
2147 * This will attempt multiple writes as required to write val_len bytes.
2148 *
2149 * A value of zero will be returned on success, a negative errno will be
2150 * returned in error cases.
2151 */
2152int regmap_noinc_write(struct regmap *map, unsigned int reg,
2153 const void *val, size_t val_len)
2154{
2155 size_t write_len;
2156 int ret;
2157
2158 if (!map->bus)
2159 return -EINVAL;
2160 if (!map->bus->write)
2161 return -ENOTSUPP;
2162 if (val_len % map->format.val_bytes)
2163 return -EINVAL;
2164 if (!IS_ALIGNED(reg, map->reg_stride))
2165 return -EINVAL;
2166 if (val_len == 0)
2167 return -EINVAL;
2168
2169 map->lock(map->lock_arg);
2170
2171 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2172 ret = -EINVAL;
2173 goto out_unlock;
2174 }
2175
2176 while (val_len) {
2177 if (map->max_raw_write && map->max_raw_write < val_len)
2178 write_len = map->max_raw_write;
2179 else
2180 write_len = val_len;
2181 ret = _regmap_raw_write(map, reg, val, write_len, true);
2182 if (ret)
2183 goto out_unlock;
2184 val = ((u8 *)val) + write_len;
2185 val_len -= write_len;
2186 }
2187
2188out_unlock:
2189 map->unlock(map->lock_arg);
2190 return ret;
2191}
2192EXPORT_SYMBOL_GPL(regmap_noinc_write);
2193
2194/**
2195 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2196 * register field.
2197 *
2198 * @field: Register field to write to
2199 * @mask: Bitmask to change
2200 * @val: Value to be written
2201 * @change: Boolean indicating if a write was done
2202 * @async: Boolean indicating asynchronously
2203 * @force: Boolean indicating use force update
2204 *
2205 * Perform a read/modify/write cycle on the register field with change,
2206 * async, force option.
2207 *
2208 * A value of zero will be returned on success, a negative errno will
2209 * be returned in error cases.
2210 */
2211int regmap_field_update_bits_base(struct regmap_field *field,
2212 unsigned int mask, unsigned int val,
2213 bool *change, bool async, bool force)
2214{
2215 mask = (mask << field->shift) & field->mask;
2216
2217 return regmap_update_bits_base(field->regmap, field->reg,
2218 mask, val << field->shift,
2219 change, async, force);
2220}
2221EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2222
2223/**
2224 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2225 * register field with port ID
2226 *
2227 * @field: Register field to write to
2228 * @id: port ID
2229 * @mask: Bitmask to change
2230 * @val: Value to be written
2231 * @change: Boolean indicating if a write was done
2232 * @async: Boolean indicating asynchronously
2233 * @force: Boolean indicating use force update
2234 *
2235 * A value of zero will be returned on success, a negative errno will
2236 * be returned in error cases.
2237 */
2238int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2239 unsigned int mask, unsigned int val,
2240 bool *change, bool async, bool force)
2241{
2242 if (id >= field->id_size)
2243 return -EINVAL;
2244
2245 mask = (mask << field->shift) & field->mask;
2246
2247 return regmap_update_bits_base(field->regmap,
2248 field->reg + (field->id_offset * id),
2249 mask, val << field->shift,
2250 change, async, force);
2251}
2252EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2253
2254/**
2255 * regmap_bulk_write() - Write multiple registers to the device
2256 *
2257 * @map: Register map to write to
2258 * @reg: First register to be write from
2259 * @val: Block of data to be written, in native register size for device
2260 * @val_count: Number of registers to write
2261 *
2262 * This function is intended to be used for writing a large block of
2263 * data to the device either in single transfer or multiple transfer.
2264 *
2265 * A value of zero will be returned on success, a negative errno will
2266 * be returned in error cases.
2267 */
2268int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2269 size_t val_count)
2270{
2271 int ret = 0, i;
2272 size_t val_bytes = map->format.val_bytes;
2273
2274 if (!IS_ALIGNED(reg, map->reg_stride))
2275 return -EINVAL;
2276
2277 /*
2278 * Some devices don't support bulk write, for them we have a series of
2279 * single write operations.
2280 */
2281 if (!map->bus || !map->format.parse_inplace) {
2282 map->lock(map->lock_arg);
2283 for (i = 0; i < val_count; i++) {
2284 unsigned int ival;
2285
2286 switch (val_bytes) {
2287 case 1:
2288 ival = *(u8 *)(val + (i * val_bytes));
2289 break;
2290 case 2:
2291 ival = *(u16 *)(val + (i * val_bytes));
2292 break;
2293 case 4:
2294 ival = *(u32 *)(val + (i * val_bytes));
2295 break;
2296#ifdef CONFIG_64BIT
2297 case 8:
2298 ival = *(u64 *)(val + (i * val_bytes));
2299 break;
2300#endif
2301 default:
2302 ret = -EINVAL;
2303 goto out;
2304 }
2305
2306 ret = _regmap_write(map,
2307 reg + regmap_get_offset(map, i),
2308 ival);
2309 if (ret != 0)
2310 goto out;
2311 }
2312out:
2313 map->unlock(map->lock_arg);
2314 } else {
2315 void *wval;
2316
2317 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2318 if (!wval)
2319 return -ENOMEM;
2320
2321 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2322 map->format.parse_inplace(wval + i);
2323
2324 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2325
2326 kfree(wval);
2327 }
2328 return ret;
2329}
2330EXPORT_SYMBOL_GPL(regmap_bulk_write);
2331
2332/*
2333 * _regmap_raw_multi_reg_write()
2334 *
2335 * the (register,newvalue) pairs in regs have not been formatted, but
2336 * they are all in the same page and have been changed to being page
2337 * relative. The page register has been written if that was necessary.
2338 */
2339static int _regmap_raw_multi_reg_write(struct regmap *map,
2340 const struct reg_sequence *regs,
2341 size_t num_regs)
2342{
2343 int ret;
2344 void *buf;
2345 int i;
2346 u8 *u8;
2347 size_t val_bytes = map->format.val_bytes;
2348 size_t reg_bytes = map->format.reg_bytes;
2349 size_t pad_bytes = map->format.pad_bytes;
2350 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2351 size_t len = pair_size * num_regs;
2352
2353 if (!len)
2354 return -EINVAL;
2355
2356 buf = kzalloc(len, GFP_KERNEL);
2357 if (!buf)
2358 return -ENOMEM;
2359
2360 /* We have to linearise by hand. */
2361
2362 u8 = buf;
2363
2364 for (i = 0; i < num_regs; i++) {
2365 unsigned int reg = regs[i].reg;
2366 unsigned int val = regs[i].def;
2367 trace_regmap_hw_write_start(map, reg, 1);
2368 reg += map->reg_base;
2369 reg >>= map->format.reg_downshift;
2370 map->format.format_reg(u8, reg, map->reg_shift);
2371 u8 += reg_bytes + pad_bytes;
2372 map->format.format_val(u8, val, 0);
2373 u8 += val_bytes;
2374 }
2375 u8 = buf;
2376 *u8 |= map->write_flag_mask;
2377
2378 ret = map->write(map->bus_context, buf, len);
2379
2380 kfree(buf);
2381
2382 for (i = 0; i < num_regs; i++) {
2383 int reg = regs[i].reg;
2384 trace_regmap_hw_write_done(map, reg, 1);
2385 }
2386 return ret;
2387}
2388
2389static unsigned int _regmap_register_page(struct regmap *map,
2390 unsigned int reg,
2391 struct regmap_range_node *range)
2392{
2393 unsigned int win_page = (reg - range->range_min) / range->window_len;
2394
2395 return win_page;
2396}
2397
2398static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2399 struct reg_sequence *regs,
2400 size_t num_regs)
2401{
2402 int ret;
2403 int i, n;
2404 struct reg_sequence *base;
2405 unsigned int this_page = 0;
2406 unsigned int page_change = 0;
2407 /*
2408 * the set of registers are not neccessarily in order, but
2409 * since the order of write must be preserved this algorithm
2410 * chops the set each time the page changes. This also applies
2411 * if there is a delay required at any point in the sequence.
2412 */
2413 base = regs;
2414 for (i = 0, n = 0; i < num_regs; i++, n++) {
2415 unsigned int reg = regs[i].reg;
2416 struct regmap_range_node *range;
2417
2418 range = _regmap_range_lookup(map, reg);
2419 if (range) {
2420 unsigned int win_page = _regmap_register_page(map, reg,
2421 range);
2422
2423 if (i == 0)
2424 this_page = win_page;
2425 if (win_page != this_page) {
2426 this_page = win_page;
2427 page_change = 1;
2428 }
2429 }
2430
2431 /* If we have both a page change and a delay make sure to
2432 * write the regs and apply the delay before we change the
2433 * page.
2434 */
2435
2436 if (page_change || regs[i].delay_us) {
2437
2438 /* For situations where the first write requires
2439 * a delay we need to make sure we don't call
2440 * raw_multi_reg_write with n=0
2441 * This can't occur with page breaks as we
2442 * never write on the first iteration
2443 */
2444 if (regs[i].delay_us && i == 0)
2445 n = 1;
2446
2447 ret = _regmap_raw_multi_reg_write(map, base, n);
2448 if (ret != 0)
2449 return ret;
2450
2451 if (regs[i].delay_us) {
2452 if (map->can_sleep)
2453 fsleep(regs[i].delay_us);
2454 else
2455 udelay(regs[i].delay_us);
2456 }
2457
2458 base += n;
2459 n = 0;
2460
2461 if (page_change) {
2462 ret = _regmap_select_page(map,
2463 &base[n].reg,
2464 range, 1);
2465 if (ret != 0)
2466 return ret;
2467
2468 page_change = 0;
2469 }
2470
2471 }
2472
2473 }
2474 if (n > 0)
2475 return _regmap_raw_multi_reg_write(map, base, n);
2476 return 0;
2477}
2478
2479static int _regmap_multi_reg_write(struct regmap *map,
2480 const struct reg_sequence *regs,
2481 size_t num_regs)
2482{
2483 int i;
2484 int ret;
2485
2486 if (!map->can_multi_write) {
2487 for (i = 0; i < num_regs; i++) {
2488 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2489 if (ret != 0)
2490 return ret;
2491
2492 if (regs[i].delay_us) {
2493 if (map->can_sleep)
2494 fsleep(regs[i].delay_us);
2495 else
2496 udelay(regs[i].delay_us);
2497 }
2498 }
2499 return 0;
2500 }
2501
2502 if (!map->format.parse_inplace)
2503 return -EINVAL;
2504
2505 if (map->writeable_reg)
2506 for (i = 0; i < num_regs; i++) {
2507 int reg = regs[i].reg;
2508 if (!map->writeable_reg(map->dev, reg))
2509 return -EINVAL;
2510 if (!IS_ALIGNED(reg, map->reg_stride))
2511 return -EINVAL;
2512 }
2513
2514 if (!map->cache_bypass) {
2515 for (i = 0; i < num_regs; i++) {
2516 unsigned int val = regs[i].def;
2517 unsigned int reg = regs[i].reg;
2518 ret = regcache_write(map, reg, val);
2519 if (ret) {
2520 dev_err(map->dev,
2521 "Error in caching of register: %x ret: %d\n",
2522 reg, ret);
2523 return ret;
2524 }
2525 }
2526 if (map->cache_only) {
2527 map->cache_dirty = true;
2528 return 0;
2529 }
2530 }
2531
2532 WARN_ON(!map->bus);
2533
2534 for (i = 0; i < num_regs; i++) {
2535 unsigned int reg = regs[i].reg;
2536 struct regmap_range_node *range;
2537
2538 /* Coalesce all the writes between a page break or a delay
2539 * in a sequence
2540 */
2541 range = _regmap_range_lookup(map, reg);
2542 if (range || regs[i].delay_us) {
2543 size_t len = sizeof(struct reg_sequence)*num_regs;
2544 struct reg_sequence *base = kmemdup(regs, len,
2545 GFP_KERNEL);
2546 if (!base)
2547 return -ENOMEM;
2548 ret = _regmap_range_multi_paged_reg_write(map, base,
2549 num_regs);
2550 kfree(base);
2551
2552 return ret;
2553 }
2554 }
2555 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2556}
2557
2558/**
2559 * regmap_multi_reg_write() - Write multiple registers to the device
2560 *
2561 * @map: Register map to write to
2562 * @regs: Array of structures containing register,value to be written
2563 * @num_regs: Number of registers to write
2564 *
2565 * Write multiple registers to the device where the set of register, value
2566 * pairs are supplied in any order, possibly not all in a single range.
2567 *
2568 * The 'normal' block write mode will send ultimately send data on the
2569 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2570 * addressed. However, this alternative block multi write mode will send
2571 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2572 * must of course support the mode.
2573 *
2574 * A value of zero will be returned on success, a negative errno will be
2575 * returned in error cases.
2576 */
2577int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2578 int num_regs)
2579{
2580 int ret;
2581
2582 map->lock(map->lock_arg);
2583
2584 ret = _regmap_multi_reg_write(map, regs, num_regs);
2585
2586 map->unlock(map->lock_arg);
2587
2588 return ret;
2589}
2590EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2591
2592/**
2593 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2594 * device but not the cache
2595 *
2596 * @map: Register map to write to
2597 * @regs: Array of structures containing register,value to be written
2598 * @num_regs: Number of registers to write
2599 *
2600 * Write multiple registers to the device but not the cache where the set
2601 * of register are supplied in any order.
2602 *
2603 * This function is intended to be used for writing a large block of data
2604 * atomically to the device in single transfer for those I2C client devices
2605 * that implement this alternative block write mode.
2606 *
2607 * A value of zero will be returned on success, a negative errno will
2608 * be returned in error cases.
2609 */
2610int regmap_multi_reg_write_bypassed(struct regmap *map,
2611 const struct reg_sequence *regs,
2612 int num_regs)
2613{
2614 int ret;
2615 bool bypass;
2616
2617 map->lock(map->lock_arg);
2618
2619 bypass = map->cache_bypass;
2620 map->cache_bypass = true;
2621
2622 ret = _regmap_multi_reg_write(map, regs, num_regs);
2623
2624 map->cache_bypass = bypass;
2625
2626 map->unlock(map->lock_arg);
2627
2628 return ret;
2629}
2630EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2631
2632/**
2633 * regmap_raw_write_async() - Write raw values to one or more registers
2634 * asynchronously
2635 *
2636 * @map: Register map to write to
2637 * @reg: Initial register to write to
2638 * @val: Block of data to be written, laid out for direct transmission to the
2639 * device. Must be valid until regmap_async_complete() is called.
2640 * @val_len: Length of data pointed to by val.
2641 *
2642 * This function is intended to be used for things like firmware
2643 * download where a large block of data needs to be transferred to the
2644 * device. No formatting will be done on the data provided.
2645 *
2646 * If supported by the underlying bus the write will be scheduled
2647 * asynchronously, helping maximise I/O speed on higher speed buses
2648 * like SPI. regmap_async_complete() can be called to ensure that all
2649 * asynchrnous writes have been completed.
2650 *
2651 * A value of zero will be returned on success, a negative errno will
2652 * be returned in error cases.
2653 */
2654int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2655 const void *val, size_t val_len)
2656{
2657 int ret;
2658
2659 if (val_len % map->format.val_bytes)
2660 return -EINVAL;
2661 if (!IS_ALIGNED(reg, map->reg_stride))
2662 return -EINVAL;
2663
2664 map->lock(map->lock_arg);
2665
2666 map->async = true;
2667
2668 ret = _regmap_raw_write(map, reg, val, val_len, false);
2669
2670 map->async = false;
2671
2672 map->unlock(map->lock_arg);
2673
2674 return ret;
2675}
2676EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2677
2678static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2679 unsigned int val_len, bool noinc)
2680{
2681 struct regmap_range_node *range;
2682 int ret;
2683
2684 if (!map->read)
2685 return -EINVAL;
2686
2687 range = _regmap_range_lookup(map, reg);
2688 if (range) {
2689 ret = _regmap_select_page(map, ®, range,
2690 noinc ? 1 : val_len / map->format.val_bytes);
2691 if (ret != 0)
2692 return ret;
2693 }
2694
2695 reg += map->reg_base;
2696 reg >>= map->format.reg_downshift;
2697 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2698 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2699 map->read_flag_mask);
2700 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2701
2702 ret = map->read(map->bus_context, map->work_buf,
2703 map->format.reg_bytes + map->format.pad_bytes,
2704 val, val_len);
2705
2706 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2707
2708 return ret;
2709}
2710
2711static int _regmap_bus_reg_read(void *context, unsigned int reg,
2712 unsigned int *val)
2713{
2714 struct regmap *map = context;
2715
2716 return map->bus->reg_read(map->bus_context, reg, val);
2717}
2718
2719static int _regmap_bus_read(void *context, unsigned int reg,
2720 unsigned int *val)
2721{
2722 int ret;
2723 struct regmap *map = context;
2724 void *work_val = map->work_buf + map->format.reg_bytes +
2725 map->format.pad_bytes;
2726
2727 if (!map->format.parse_val)
2728 return -EINVAL;
2729
2730 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2731 if (ret == 0)
2732 *val = map->format.parse_val(work_val);
2733
2734 return ret;
2735}
2736
2737static int _regmap_read(struct regmap *map, unsigned int reg,
2738 unsigned int *val)
2739{
2740 int ret;
2741 void *context = _regmap_map_get_context(map);
2742
2743 if (!map->cache_bypass) {
2744 ret = regcache_read(map, reg, val);
2745 if (ret == 0)
2746 return 0;
2747 }
2748
2749 if (map->cache_only)
2750 return -EBUSY;
2751
2752 if (!regmap_readable(map, reg))
2753 return -EIO;
2754
2755 ret = map->reg_read(context, reg, val);
2756 if (ret == 0) {
2757 if (regmap_should_log(map))
2758 dev_info(map->dev, "%x => %x\n", reg, *val);
2759
2760 trace_regmap_reg_read(map, reg, *val);
2761
2762 if (!map->cache_bypass)
2763 regcache_write(map, reg, *val);
2764 }
2765
2766 return ret;
2767}
2768
2769/**
2770 * regmap_read() - Read a value from a single register
2771 *
2772 * @map: Register map to read from
2773 * @reg: Register to be read from
2774 * @val: Pointer to store read value
2775 *
2776 * A value of zero will be returned on success, a negative errno will
2777 * be returned in error cases.
2778 */
2779int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2780{
2781 int ret;
2782
2783 if (!IS_ALIGNED(reg, map->reg_stride))
2784 return -EINVAL;
2785
2786 map->lock(map->lock_arg);
2787
2788 ret = _regmap_read(map, reg, val);
2789
2790 map->unlock(map->lock_arg);
2791
2792 return ret;
2793}
2794EXPORT_SYMBOL_GPL(regmap_read);
2795
2796/**
2797 * regmap_raw_read() - Read raw data from the device
2798 *
2799 * @map: Register map to read from
2800 * @reg: First register to be read from
2801 * @val: Pointer to store read value
2802 * @val_len: Size of data to read
2803 *
2804 * A value of zero will be returned on success, a negative errno will
2805 * be returned in error cases.
2806 */
2807int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2808 size_t val_len)
2809{
2810 size_t val_bytes = map->format.val_bytes;
2811 size_t val_count = val_len / val_bytes;
2812 unsigned int v;
2813 int ret, i;
2814
2815 if (val_len % map->format.val_bytes)
2816 return -EINVAL;
2817 if (!IS_ALIGNED(reg, map->reg_stride))
2818 return -EINVAL;
2819 if (val_count == 0)
2820 return -EINVAL;
2821
2822 map->lock(map->lock_arg);
2823
2824 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2825 map->cache_type == REGCACHE_NONE) {
2826 size_t chunk_count, chunk_bytes;
2827 size_t chunk_regs = val_count;
2828
2829 if (!map->read) {
2830 ret = -ENOTSUPP;
2831 goto out;
2832 }
2833
2834 if (map->use_single_read)
2835 chunk_regs = 1;
2836 else if (map->max_raw_read && val_len > map->max_raw_read)
2837 chunk_regs = map->max_raw_read / val_bytes;
2838
2839 chunk_count = val_count / chunk_regs;
2840 chunk_bytes = chunk_regs * val_bytes;
2841
2842 /* Read bytes that fit into whole chunks */
2843 for (i = 0; i < chunk_count; i++) {
2844 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2845 if (ret != 0)
2846 goto out;
2847
2848 reg += regmap_get_offset(map, chunk_regs);
2849 val += chunk_bytes;
2850 val_len -= chunk_bytes;
2851 }
2852
2853 /* Read remaining bytes */
2854 if (val_len) {
2855 ret = _regmap_raw_read(map, reg, val, val_len, false);
2856 if (ret != 0)
2857 goto out;
2858 }
2859 } else {
2860 /* Otherwise go word by word for the cache; should be low
2861 * cost as we expect to hit the cache.
2862 */
2863 for (i = 0; i < val_count; i++) {
2864 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2865 &v);
2866 if (ret != 0)
2867 goto out;
2868
2869 map->format.format_val(val + (i * val_bytes), v, 0);
2870 }
2871 }
2872
2873 out:
2874 map->unlock(map->lock_arg);
2875
2876 return ret;
2877}
2878EXPORT_SYMBOL_GPL(regmap_raw_read);
2879
2880/**
2881 * regmap_noinc_read(): Read data from a register without incrementing the
2882 * register number
2883 *
2884 * @map: Register map to read from
2885 * @reg: Register to read from
2886 * @val: Pointer to data buffer
2887 * @val_len: Length of output buffer in bytes.
2888 *
2889 * The regmap API usually assumes that bulk read operations will read a
2890 * range of registers. Some devices have certain registers for which a read
2891 * operation read will read from an internal FIFO.
2892 *
2893 * The target register must be volatile but registers after it can be
2894 * completely unrelated cacheable registers.
2895 *
2896 * This will attempt multiple reads as required to read val_len bytes.
2897 *
2898 * A value of zero will be returned on success, a negative errno will be
2899 * returned in error cases.
2900 */
2901int regmap_noinc_read(struct regmap *map, unsigned int reg,
2902 void *val, size_t val_len)
2903{
2904 size_t read_len;
2905 int ret;
2906
2907 if (val_len % map->format.val_bytes)
2908 return -EINVAL;
2909 if (!IS_ALIGNED(reg, map->reg_stride))
2910 return -EINVAL;
2911 if (val_len == 0)
2912 return -EINVAL;
2913
2914 map->lock(map->lock_arg);
2915
2916 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2917 ret = -EINVAL;
2918 goto out_unlock;
2919 }
2920
2921 while (val_len) {
2922 if (map->max_raw_read && map->max_raw_read < val_len)
2923 read_len = map->max_raw_read;
2924 else
2925 read_len = val_len;
2926 ret = _regmap_raw_read(map, reg, val, read_len, true);
2927 if (ret)
2928 goto out_unlock;
2929 val = ((u8 *)val) + read_len;
2930 val_len -= read_len;
2931 }
2932
2933out_unlock:
2934 map->unlock(map->lock_arg);
2935 return ret;
2936}
2937EXPORT_SYMBOL_GPL(regmap_noinc_read);
2938
2939/**
2940 * regmap_field_read(): Read a value to a single register field
2941 *
2942 * @field: Register field to read from
2943 * @val: Pointer to store read value
2944 *
2945 * A value of zero will be returned on success, a negative errno will
2946 * be returned in error cases.
2947 */
2948int regmap_field_read(struct regmap_field *field, unsigned int *val)
2949{
2950 int ret;
2951 unsigned int reg_val;
2952 ret = regmap_read(field->regmap, field->reg, ®_val);
2953 if (ret != 0)
2954 return ret;
2955
2956 reg_val &= field->mask;
2957 reg_val >>= field->shift;
2958 *val = reg_val;
2959
2960 return ret;
2961}
2962EXPORT_SYMBOL_GPL(regmap_field_read);
2963
2964/**
2965 * regmap_fields_read() - Read a value to a single register field with port ID
2966 *
2967 * @field: Register field to read from
2968 * @id: port ID
2969 * @val: Pointer to store read value
2970 *
2971 * A value of zero will be returned on success, a negative errno will
2972 * be returned in error cases.
2973 */
2974int regmap_fields_read(struct regmap_field *field, unsigned int id,
2975 unsigned int *val)
2976{
2977 int ret;
2978 unsigned int reg_val;
2979
2980 if (id >= field->id_size)
2981 return -EINVAL;
2982
2983 ret = regmap_read(field->regmap,
2984 field->reg + (field->id_offset * id),
2985 ®_val);
2986 if (ret != 0)
2987 return ret;
2988
2989 reg_val &= field->mask;
2990 reg_val >>= field->shift;
2991 *val = reg_val;
2992
2993 return ret;
2994}
2995EXPORT_SYMBOL_GPL(regmap_fields_read);
2996
2997/**
2998 * regmap_bulk_read() - Read multiple registers from the device
2999 *
3000 * @map: Register map to read from
3001 * @reg: First register to be read from
3002 * @val: Pointer to store read value, in native register size for device
3003 * @val_count: Number of registers to read
3004 *
3005 * A value of zero will be returned on success, a negative errno will
3006 * be returned in error cases.
3007 */
3008int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3009 size_t val_count)
3010{
3011 int ret, i;
3012 size_t val_bytes = map->format.val_bytes;
3013 bool vol = regmap_volatile_range(map, reg, val_count);
3014
3015 if (!IS_ALIGNED(reg, map->reg_stride))
3016 return -EINVAL;
3017 if (val_count == 0)
3018 return -EINVAL;
3019
3020 if (map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3021 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3022 if (ret != 0)
3023 return ret;
3024
3025 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3026 map->format.parse_inplace(val + i);
3027 } else {
3028#ifdef CONFIG_64BIT
3029 u64 *u64 = val;
3030#endif
3031 u32 *u32 = val;
3032 u16 *u16 = val;
3033 u8 *u8 = val;
3034
3035 map->lock(map->lock_arg);
3036
3037 for (i = 0; i < val_count; i++) {
3038 unsigned int ival;
3039
3040 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3041 &ival);
3042 if (ret != 0)
3043 goto out;
3044
3045 switch (map->format.val_bytes) {
3046#ifdef CONFIG_64BIT
3047 case 8:
3048 u64[i] = ival;
3049 break;
3050#endif
3051 case 4:
3052 u32[i] = ival;
3053 break;
3054 case 2:
3055 u16[i] = ival;
3056 break;
3057 case 1:
3058 u8[i] = ival;
3059 break;
3060 default:
3061 ret = -EINVAL;
3062 goto out;
3063 }
3064 }
3065
3066out:
3067 map->unlock(map->lock_arg);
3068 }
3069
3070 return ret;
3071}
3072EXPORT_SYMBOL_GPL(regmap_bulk_read);
3073
3074static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3075 unsigned int mask, unsigned int val,
3076 bool *change, bool force_write)
3077{
3078 int ret;
3079 unsigned int tmp, orig;
3080
3081 if (change)
3082 *change = false;
3083
3084 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3085 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3086 if (ret == 0 && change)
3087 *change = true;
3088 } else {
3089 ret = _regmap_read(map, reg, &orig);
3090 if (ret != 0)
3091 return ret;
3092
3093 tmp = orig & ~mask;
3094 tmp |= val & mask;
3095
3096 if (force_write || (tmp != orig)) {
3097 ret = _regmap_write(map, reg, tmp);
3098 if (ret == 0 && change)
3099 *change = true;
3100 }
3101 }
3102
3103 return ret;
3104}
3105
3106/**
3107 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3108 *
3109 * @map: Register map to update
3110 * @reg: Register to update
3111 * @mask: Bitmask to change
3112 * @val: New value for bitmask
3113 * @change: Boolean indicating if a write was done
3114 * @async: Boolean indicating asynchronously
3115 * @force: Boolean indicating use force update
3116 *
3117 * Perform a read/modify/write cycle on a register map with change, async, force
3118 * options.
3119 *
3120 * If async is true:
3121 *
3122 * With most buses the read must be done synchronously so this is most useful
3123 * for devices with a cache which do not need to interact with the hardware to
3124 * determine the current register value.
3125 *
3126 * Returns zero for success, a negative number on error.
3127 */
3128int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3129 unsigned int mask, unsigned int val,
3130 bool *change, bool async, bool force)
3131{
3132 int ret;
3133
3134 map->lock(map->lock_arg);
3135
3136 map->async = async;
3137
3138 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3139
3140 map->async = false;
3141
3142 map->unlock(map->lock_arg);
3143
3144 return ret;
3145}
3146EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3147
3148/**
3149 * regmap_test_bits() - Check if all specified bits are set in a register.
3150 *
3151 * @map: Register map to operate on
3152 * @reg: Register to read from
3153 * @bits: Bits to test
3154 *
3155 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3156 * bits are set and a negative error number if the underlying regmap_read()
3157 * fails.
3158 */
3159int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3160{
3161 unsigned int val, ret;
3162
3163 ret = regmap_read(map, reg, &val);
3164 if (ret)
3165 return ret;
3166
3167 return (val & bits) == bits;
3168}
3169EXPORT_SYMBOL_GPL(regmap_test_bits);
3170
3171void regmap_async_complete_cb(struct regmap_async *async, int ret)
3172{
3173 struct regmap *map = async->map;
3174 bool wake;
3175
3176 trace_regmap_async_io_complete(map);
3177
3178 spin_lock(&map->async_lock);
3179 list_move(&async->list, &map->async_free);
3180 wake = list_empty(&map->async_list);
3181
3182 if (ret != 0)
3183 map->async_ret = ret;
3184
3185 spin_unlock(&map->async_lock);
3186
3187 if (wake)
3188 wake_up(&map->async_waitq);
3189}
3190EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3191
3192static int regmap_async_is_done(struct regmap *map)
3193{
3194 unsigned long flags;
3195 int ret;
3196
3197 spin_lock_irqsave(&map->async_lock, flags);
3198 ret = list_empty(&map->async_list);
3199 spin_unlock_irqrestore(&map->async_lock, flags);
3200
3201 return ret;
3202}
3203
3204/**
3205 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3206 *
3207 * @map: Map to operate on.
3208 *
3209 * Blocks until any pending asynchronous I/O has completed. Returns
3210 * an error code for any failed I/O operations.
3211 */
3212int regmap_async_complete(struct regmap *map)
3213{
3214 unsigned long flags;
3215 int ret;
3216
3217 /* Nothing to do with no async support */
3218 if (!map->bus || !map->bus->async_write)
3219 return 0;
3220
3221 trace_regmap_async_complete_start(map);
3222
3223 wait_event(map->async_waitq, regmap_async_is_done(map));
3224
3225 spin_lock_irqsave(&map->async_lock, flags);
3226 ret = map->async_ret;
3227 map->async_ret = 0;
3228 spin_unlock_irqrestore(&map->async_lock, flags);
3229
3230 trace_regmap_async_complete_done(map);
3231
3232 return ret;
3233}
3234EXPORT_SYMBOL_GPL(regmap_async_complete);
3235
3236/**
3237 * regmap_register_patch - Register and apply register updates to be applied
3238 * on device initialistion
3239 *
3240 * @map: Register map to apply updates to.
3241 * @regs: Values to update.
3242 * @num_regs: Number of entries in regs.
3243 *
3244 * Register a set of register updates to be applied to the device
3245 * whenever the device registers are synchronised with the cache and
3246 * apply them immediately. Typically this is used to apply
3247 * corrections to be applied to the device defaults on startup, such
3248 * as the updates some vendors provide to undocumented registers.
3249 *
3250 * The caller must ensure that this function cannot be called
3251 * concurrently with either itself or regcache_sync().
3252 */
3253int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3254 int num_regs)
3255{
3256 struct reg_sequence *p;
3257 int ret;
3258 bool bypass;
3259
3260 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3261 num_regs))
3262 return 0;
3263
3264 p = krealloc(map->patch,
3265 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3266 GFP_KERNEL);
3267 if (p) {
3268 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3269 map->patch = p;
3270 map->patch_regs += num_regs;
3271 } else {
3272 return -ENOMEM;
3273 }
3274
3275 map->lock(map->lock_arg);
3276
3277 bypass = map->cache_bypass;
3278
3279 map->cache_bypass = true;
3280 map->async = true;
3281
3282 ret = _regmap_multi_reg_write(map, regs, num_regs);
3283
3284 map->async = false;
3285 map->cache_bypass = bypass;
3286
3287 map->unlock(map->lock_arg);
3288
3289 regmap_async_complete(map);
3290
3291 return ret;
3292}
3293EXPORT_SYMBOL_GPL(regmap_register_patch);
3294
3295/**
3296 * regmap_get_val_bytes() - Report the size of a register value
3297 *
3298 * @map: Register map to operate on.
3299 *
3300 * Report the size of a register value, mainly intended to for use by
3301 * generic infrastructure built on top of regmap.
3302 */
3303int regmap_get_val_bytes(struct regmap *map)
3304{
3305 if (map->format.format_write)
3306 return -EINVAL;
3307
3308 return map->format.val_bytes;
3309}
3310EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3311
3312/**
3313 * regmap_get_max_register() - Report the max register value
3314 *
3315 * @map: Register map to operate on.
3316 *
3317 * Report the max register value, mainly intended to for use by
3318 * generic infrastructure built on top of regmap.
3319 */
3320int regmap_get_max_register(struct regmap *map)
3321{
3322 return map->max_register ? map->max_register : -EINVAL;
3323}
3324EXPORT_SYMBOL_GPL(regmap_get_max_register);
3325
3326/**
3327 * regmap_get_reg_stride() - Report the register address stride
3328 *
3329 * @map: Register map to operate on.
3330 *
3331 * Report the register address stride, mainly intended to for use by
3332 * generic infrastructure built on top of regmap.
3333 */
3334int regmap_get_reg_stride(struct regmap *map)
3335{
3336 return map->reg_stride;
3337}
3338EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3339
3340int regmap_parse_val(struct regmap *map, const void *buf,
3341 unsigned int *val)
3342{
3343 if (!map->format.parse_val)
3344 return -EINVAL;
3345
3346 *val = map->format.parse_val(buf);
3347
3348 return 0;
3349}
3350EXPORT_SYMBOL_GPL(regmap_parse_val);
3351
3352static int __init regmap_initcall(void)
3353{
3354 regmap_debugfs_initcall();
3355
3356 return 0;
3357}
3358postcore_initcall(regmap_initcall);