Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/generic-radix-tree.h>
63#include <linux/string.h>
64#include <linux/seq_file.h>
65#include <linux/namei.h>
66#include <linux/mnt_namespace.h>
67#include <linux/mm.h>
68#include <linux/swap.h>
69#include <linux/rcupdate.h>
70#include <linux/kallsyms.h>
71#include <linux/stacktrace.h>
72#include <linux/resource.h>
73#include <linux/module.h>
74#include <linux/mount.h>
75#include <linux/security.h>
76#include <linux/ptrace.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <linux/cn_proc.h>
99#include <trace/events/oom.h>
100#include "internal.h"
101#include "fd.h"
102
103#include "../../lib/kstrtox.h"
104
105/* NOTE:
106 * Implementing inode permission operations in /proc is almost
107 * certainly an error. Permission checks need to happen during
108 * each system call not at open time. The reason is that most of
109 * what we wish to check for permissions in /proc varies at runtime.
110 *
111 * The classic example of a problem is opening file descriptors
112 * in /proc for a task before it execs a suid executable.
113 */
114
115static u8 nlink_tid __ro_after_init;
116static u8 nlink_tgid __ro_after_init;
117
118struct pid_entry {
119 const char *name;
120 unsigned int len;
121 umode_t mode;
122 const struct inode_operations *iop;
123 const struct file_operations *fop;
124 union proc_op op;
125};
126
127#define NOD(NAME, MODE, IOP, FOP, OP) { \
128 .name = (NAME), \
129 .len = sizeof(NAME) - 1, \
130 .mode = MODE, \
131 .iop = IOP, \
132 .fop = FOP, \
133 .op = OP, \
134}
135
136#define DIR(NAME, MODE, iops, fops) \
137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138#define LNK(NAME, get_link) \
139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
140 &proc_pid_link_inode_operations, NULL, \
141 { .proc_get_link = get_link } )
142#define REG(NAME, MODE, fops) \
143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144#define ONE(NAME, MODE, show) \
145 NOD(NAME, (S_IFREG|(MODE)), \
146 NULL, &proc_single_file_operations, \
147 { .proc_show = show } )
148#define ATTR(LSM, NAME, MODE) \
149 NOD(NAME, (S_IFREG|(MODE)), \
150 NULL, &proc_pid_attr_operations, \
151 { .lsm = LSM })
152
153/*
154 * Count the number of hardlinks for the pid_entry table, excluding the .
155 * and .. links.
156 */
157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 unsigned int n)
159{
160 unsigned int i;
161 unsigned int count;
162
163 count = 2;
164 for (i = 0; i < n; ++i) {
165 if (S_ISDIR(entries[i].mode))
166 ++count;
167 }
168
169 return count;
170}
171
172static int get_task_root(struct task_struct *task, struct path *root)
173{
174 int result = -ENOENT;
175
176 task_lock(task);
177 if (task->fs) {
178 get_fs_root(task->fs, root);
179 result = 0;
180 }
181 task_unlock(task);
182 return result;
183}
184
185static int proc_cwd_link(struct dentry *dentry, struct path *path)
186{
187 struct task_struct *task = get_proc_task(d_inode(dentry));
188 int result = -ENOENT;
189
190 if (task) {
191 task_lock(task);
192 if (task->fs) {
193 get_fs_pwd(task->fs, path);
194 result = 0;
195 }
196 task_unlock(task);
197 put_task_struct(task);
198 }
199 return result;
200}
201
202static int proc_root_link(struct dentry *dentry, struct path *path)
203{
204 struct task_struct *task = get_proc_task(d_inode(dentry));
205 int result = -ENOENT;
206
207 if (task) {
208 result = get_task_root(task, path);
209 put_task_struct(task);
210 }
211 return result;
212}
213
214/*
215 * If the user used setproctitle(), we just get the string from
216 * user space at arg_start, and limit it to a maximum of one page.
217 */
218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 size_t count, unsigned long pos,
220 unsigned long arg_start)
221{
222 char *page;
223 int ret, got;
224
225 if (pos >= PAGE_SIZE)
226 return 0;
227
228 page = (char *)__get_free_page(GFP_KERNEL);
229 if (!page)
230 return -ENOMEM;
231
232 ret = 0;
233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 if (got > 0) {
235 int len = strnlen(page, got);
236
237 /* Include the NUL character if it was found */
238 if (len < got)
239 len++;
240
241 if (len > pos) {
242 len -= pos;
243 if (len > count)
244 len = count;
245 len -= copy_to_user(buf, page+pos, len);
246 if (!len)
247 len = -EFAULT;
248 ret = len;
249 }
250 }
251 free_page((unsigned long)page);
252 return ret;
253}
254
255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 size_t count, loff_t *ppos)
257{
258 unsigned long arg_start, arg_end, env_start, env_end;
259 unsigned long pos, len;
260 char *page, c;
261
262 /* Check if process spawned far enough to have cmdline. */
263 if (!mm->env_end)
264 return 0;
265
266 spin_lock(&mm->arg_lock);
267 arg_start = mm->arg_start;
268 arg_end = mm->arg_end;
269 env_start = mm->env_start;
270 env_end = mm->env_end;
271 spin_unlock(&mm->arg_lock);
272
273 if (arg_start >= arg_end)
274 return 0;
275
276 /*
277 * We allow setproctitle() to overwrite the argument
278 * strings, and overflow past the original end. But
279 * only when it overflows into the environment area.
280 */
281 if (env_start != arg_end || env_end < env_start)
282 env_start = env_end = arg_end;
283 len = env_end - arg_start;
284
285 /* We're not going to care if "*ppos" has high bits set */
286 pos = *ppos;
287 if (pos >= len)
288 return 0;
289 if (count > len - pos)
290 count = len - pos;
291 if (!count)
292 return 0;
293
294 /*
295 * Magical special case: if the argv[] end byte is not
296 * zero, the user has overwritten it with setproctitle(3).
297 *
298 * Possible future enhancement: do this only once when
299 * pos is 0, and set a flag in the 'struct file'.
300 */
301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 return get_mm_proctitle(mm, buf, count, pos, arg_start);
303
304 /*
305 * For the non-setproctitle() case we limit things strictly
306 * to the [arg_start, arg_end[ range.
307 */
308 pos += arg_start;
309 if (pos < arg_start || pos >= arg_end)
310 return 0;
311 if (count > arg_end - pos)
312 count = arg_end - pos;
313
314 page = (char *)__get_free_page(GFP_KERNEL);
315 if (!page)
316 return -ENOMEM;
317
318 len = 0;
319 while (count) {
320 int got;
321 size_t size = min_t(size_t, PAGE_SIZE, count);
322
323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 if (got <= 0)
325 break;
326 got -= copy_to_user(buf, page, got);
327 if (unlikely(!got)) {
328 if (!len)
329 len = -EFAULT;
330 break;
331 }
332 pos += got;
333 buf += got;
334 len += got;
335 count -= got;
336 }
337
338 free_page((unsigned long)page);
339 return len;
340}
341
342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 size_t count, loff_t *pos)
344{
345 struct mm_struct *mm;
346 ssize_t ret;
347
348 mm = get_task_mm(tsk);
349 if (!mm)
350 return 0;
351
352 ret = get_mm_cmdline(mm, buf, count, pos);
353 mmput(mm);
354 return ret;
355}
356
357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 size_t count, loff_t *pos)
359{
360 struct task_struct *tsk;
361 ssize_t ret;
362
363 BUG_ON(*pos < 0);
364
365 tsk = get_proc_task(file_inode(file));
366 if (!tsk)
367 return -ESRCH;
368 ret = get_task_cmdline(tsk, buf, count, pos);
369 put_task_struct(tsk);
370 if (ret > 0)
371 *pos += ret;
372 return ret;
373}
374
375static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378};
379
380#ifdef CONFIG_KALLSYMS
381/*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387{
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400print0:
401 seq_putc(m, '0');
402 return 0;
403}
404#endif /* CONFIG_KALLSYMS */
405
406static int lock_trace(struct task_struct *task)
407{
408 int err = down_read_killable(&task->signal->exec_update_lock);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 up_read(&task->signal->exec_update_lock);
413 return -EPERM;
414 }
415 return 0;
416}
417
418static void unlock_trace(struct task_struct *task)
419{
420 up_read(&task->signal->exec_update_lock);
421}
422
423#ifdef CONFIG_STACKTRACE
424
425#define MAX_STACK_TRACE_DEPTH 64
426
427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429{
430 unsigned long *entries;
431 int err;
432
433 /*
434 * The ability to racily run the kernel stack unwinder on a running task
435 * and then observe the unwinder output is scary; while it is useful for
436 * debugging kernel issues, it can also allow an attacker to leak kernel
437 * stack contents.
438 * Doing this in a manner that is at least safe from races would require
439 * some work to ensure that the remote task can not be scheduled; and
440 * even then, this would still expose the unwinder as local attack
441 * surface.
442 * Therefore, this interface is restricted to root.
443 */
444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 return -EACCES;
446
447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 GFP_KERNEL);
449 if (!entries)
450 return -ENOMEM;
451
452 err = lock_trace(task);
453 if (!err) {
454 unsigned int i, nr_entries;
455
456 nr_entries = stack_trace_save_tsk(task, entries,
457 MAX_STACK_TRACE_DEPTH, 0);
458
459 for (i = 0; i < nr_entries; i++) {
460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 }
462
463 unlock_trace(task);
464 }
465 kfree(entries);
466
467 return err;
468}
469#endif
470
471#ifdef CONFIG_SCHED_INFO
472/*
473 * Provides /proc/PID/schedstat
474 */
475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 struct pid *pid, struct task_struct *task)
477{
478 if (unlikely(!sched_info_on()))
479 seq_puts(m, "0 0 0\n");
480 else
481 seq_printf(m, "%llu %llu %lu\n",
482 (unsigned long long)task->se.sum_exec_runtime,
483 (unsigned long long)task->sched_info.run_delay,
484 task->sched_info.pcount);
485
486 return 0;
487}
488#endif
489
490#ifdef CONFIG_LATENCYTOP
491static int lstats_show_proc(struct seq_file *m, void *v)
492{
493 int i;
494 struct inode *inode = m->private;
495 struct task_struct *task = get_proc_task(inode);
496
497 if (!task)
498 return -ESRCH;
499 seq_puts(m, "Latency Top version : v0.1\n");
500 for (i = 0; i < LT_SAVECOUNT; i++) {
501 struct latency_record *lr = &task->latency_record[i];
502 if (lr->backtrace[0]) {
503 int q;
504 seq_printf(m, "%i %li %li",
505 lr->count, lr->time, lr->max);
506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 unsigned long bt = lr->backtrace[q];
508
509 if (!bt)
510 break;
511 seq_printf(m, " %ps", (void *)bt);
512 }
513 seq_putc(m, '\n');
514 }
515
516 }
517 put_task_struct(task);
518 return 0;
519}
520
521static int lstats_open(struct inode *inode, struct file *file)
522{
523 return single_open(file, lstats_show_proc, inode);
524}
525
526static ssize_t lstats_write(struct file *file, const char __user *buf,
527 size_t count, loff_t *offs)
528{
529 struct task_struct *task = get_proc_task(file_inode(file));
530
531 if (!task)
532 return -ESRCH;
533 clear_tsk_latency_tracing(task);
534 put_task_struct(task);
535
536 return count;
537}
538
539static const struct file_operations proc_lstats_operations = {
540 .open = lstats_open,
541 .read = seq_read,
542 .write = lstats_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545};
546
547#endif
548
549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 struct pid *pid, struct task_struct *task)
551{
552 unsigned long totalpages = totalram_pages() + total_swap_pages;
553 unsigned long points = 0;
554 long badness;
555
556 badness = oom_badness(task, totalpages);
557 /*
558 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 * badness value into [0, 2000] range which we have been
560 * exporting for a long time so userspace might depend on it.
561 */
562 if (badness != LONG_MIN)
563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564
565 seq_printf(m, "%lu\n", points);
566
567 return 0;
568}
569
570struct limit_names {
571 const char *name;
572 const char *unit;
573};
574
575static const struct limit_names lnames[RLIM_NLIMITS] = {
576 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 [RLIMIT_DATA] = {"Max data size", "bytes"},
579 [RLIMIT_STACK] = {"Max stack size", "bytes"},
580 [RLIMIT_CORE] = {"Max core file size", "bytes"},
581 [RLIMIT_RSS] = {"Max resident set", "bytes"},
582 [RLIMIT_NPROC] = {"Max processes", "processes"},
583 [RLIMIT_NOFILE] = {"Max open files", "files"},
584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 [RLIMIT_AS] = {"Max address space", "bytes"},
586 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 [RLIMIT_NICE] = {"Max nice priority", NULL},
590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592};
593
594/* Display limits for a process */
595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 struct pid *pid, struct task_struct *task)
597{
598 unsigned int i;
599 unsigned long flags;
600
601 struct rlimit rlim[RLIM_NLIMITS];
602
603 if (!lock_task_sighand(task, &flags))
604 return 0;
605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 unlock_task_sighand(task, &flags);
607
608 /*
609 * print the file header
610 */
611 seq_puts(m, "Limit "
612 "Soft Limit "
613 "Hard Limit "
614 "Units \n");
615
616 for (i = 0; i < RLIM_NLIMITS; i++) {
617 if (rlim[i].rlim_cur == RLIM_INFINITY)
618 seq_printf(m, "%-25s %-20s ",
619 lnames[i].name, "unlimited");
620 else
621 seq_printf(m, "%-25s %-20lu ",
622 lnames[i].name, rlim[i].rlim_cur);
623
624 if (rlim[i].rlim_max == RLIM_INFINITY)
625 seq_printf(m, "%-20s ", "unlimited");
626 else
627 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628
629 if (lnames[i].unit)
630 seq_printf(m, "%-10s\n", lnames[i].unit);
631 else
632 seq_putc(m, '\n');
633 }
634
635 return 0;
636}
637
638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 struct pid *pid, struct task_struct *task)
641{
642 struct syscall_info info;
643 u64 *args = &info.data.args[0];
644 int res;
645
646 res = lock_trace(task);
647 if (res)
648 return res;
649
650 if (task_current_syscall(task, &info))
651 seq_puts(m, "running\n");
652 else if (info.data.nr < 0)
653 seq_printf(m, "%d 0x%llx 0x%llx\n",
654 info.data.nr, info.sp, info.data.instruction_pointer);
655 else
656 seq_printf(m,
657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 info.data.nr,
659 args[0], args[1], args[2], args[3], args[4], args[5],
660 info.sp, info.data.instruction_pointer);
661 unlock_trace(task);
662
663 return 0;
664}
665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666
667/************************************************************************/
668/* Here the fs part begins */
669/************************************************************************/
670
671/* permission checks */
672static bool proc_fd_access_allowed(struct inode *inode)
673{
674 struct task_struct *task;
675 bool allowed = false;
676 /* Allow access to a task's file descriptors if it is us or we
677 * may use ptrace attach to the process and find out that
678 * information.
679 */
680 task = get_proc_task(inode);
681 if (task) {
682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 put_task_struct(task);
684 }
685 return allowed;
686}
687
688int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
689 struct iattr *attr)
690{
691 int error;
692 struct inode *inode = d_inode(dentry);
693
694 if (attr->ia_valid & ATTR_MODE)
695 return -EPERM;
696
697 error = setattr_prepare(&init_user_ns, dentry, attr);
698 if (error)
699 return error;
700
701 setattr_copy(&init_user_ns, inode, attr);
702 mark_inode_dirty(inode);
703 return 0;
704}
705
706/*
707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708 * or euid/egid (for hide_pid_min=2)?
709 */
710static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 struct task_struct *task,
712 enum proc_hidepid hide_pid_min)
713{
714 /*
715 * If 'hidpid' mount option is set force a ptrace check,
716 * we indicate that we are using a filesystem syscall
717 * by passing PTRACE_MODE_READ_FSCREDS
718 */
719 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721
722 if (fs_info->hide_pid < hide_pid_min)
723 return true;
724 if (in_group_p(fs_info->pid_gid))
725 return true;
726 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727}
728
729
730static int proc_pid_permission(struct user_namespace *mnt_userns,
731 struct inode *inode, int mask)
732{
733 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
734 struct task_struct *task;
735 bool has_perms;
736
737 task = get_proc_task(inode);
738 if (!task)
739 return -ESRCH;
740 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
741 put_task_struct(task);
742
743 if (!has_perms) {
744 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
745 /*
746 * Let's make getdents(), stat(), and open()
747 * consistent with each other. If a process
748 * may not stat() a file, it shouldn't be seen
749 * in procfs at all.
750 */
751 return -ENOENT;
752 }
753
754 return -EPERM;
755 }
756 return generic_permission(&init_user_ns, inode, mask);
757}
758
759
760
761static const struct inode_operations proc_def_inode_operations = {
762 .setattr = proc_setattr,
763};
764
765static int proc_single_show(struct seq_file *m, void *v)
766{
767 struct inode *inode = m->private;
768 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
769 struct pid *pid = proc_pid(inode);
770 struct task_struct *task;
771 int ret;
772
773 task = get_pid_task(pid, PIDTYPE_PID);
774 if (!task)
775 return -ESRCH;
776
777 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
778
779 put_task_struct(task);
780 return ret;
781}
782
783static int proc_single_open(struct inode *inode, struct file *filp)
784{
785 return single_open(filp, proc_single_show, inode);
786}
787
788static const struct file_operations proc_single_file_operations = {
789 .open = proc_single_open,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793};
794
795
796struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
797{
798 struct task_struct *task = get_proc_task(inode);
799 struct mm_struct *mm = ERR_PTR(-ESRCH);
800
801 if (task) {
802 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
803 put_task_struct(task);
804
805 if (!IS_ERR_OR_NULL(mm)) {
806 /* ensure this mm_struct can't be freed */
807 mmgrab(mm);
808 /* but do not pin its memory */
809 mmput(mm);
810 }
811 }
812
813 return mm;
814}
815
816static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
817{
818 struct mm_struct *mm = proc_mem_open(inode, mode);
819
820 if (IS_ERR(mm))
821 return PTR_ERR(mm);
822
823 file->private_data = mm;
824 return 0;
825}
826
827static int mem_open(struct inode *inode, struct file *file)
828{
829 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
830
831 /* OK to pass negative loff_t, we can catch out-of-range */
832 file->f_mode |= FMODE_UNSIGNED_OFFSET;
833
834 return ret;
835}
836
837static ssize_t mem_rw(struct file *file, char __user *buf,
838 size_t count, loff_t *ppos, int write)
839{
840 struct mm_struct *mm = file->private_data;
841 unsigned long addr = *ppos;
842 ssize_t copied;
843 char *page;
844 unsigned int flags;
845
846 if (!mm)
847 return 0;
848
849 page = (char *)__get_free_page(GFP_KERNEL);
850 if (!page)
851 return -ENOMEM;
852
853 copied = 0;
854 if (!mmget_not_zero(mm))
855 goto free;
856
857 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
858
859 while (count > 0) {
860 size_t this_len = min_t(size_t, count, PAGE_SIZE);
861
862 if (write && copy_from_user(page, buf, this_len)) {
863 copied = -EFAULT;
864 break;
865 }
866
867 this_len = access_remote_vm(mm, addr, page, this_len, flags);
868 if (!this_len) {
869 if (!copied)
870 copied = -EIO;
871 break;
872 }
873
874 if (!write && copy_to_user(buf, page, this_len)) {
875 copied = -EFAULT;
876 break;
877 }
878
879 buf += this_len;
880 addr += this_len;
881 copied += this_len;
882 count -= this_len;
883 }
884 *ppos = addr;
885
886 mmput(mm);
887free:
888 free_page((unsigned long) page);
889 return copied;
890}
891
892static ssize_t mem_read(struct file *file, char __user *buf,
893 size_t count, loff_t *ppos)
894{
895 return mem_rw(file, buf, count, ppos, 0);
896}
897
898static ssize_t mem_write(struct file *file, const char __user *buf,
899 size_t count, loff_t *ppos)
900{
901 return mem_rw(file, (char __user*)buf, count, ppos, 1);
902}
903
904loff_t mem_lseek(struct file *file, loff_t offset, int orig)
905{
906 switch (orig) {
907 case 0:
908 file->f_pos = offset;
909 break;
910 case 1:
911 file->f_pos += offset;
912 break;
913 default:
914 return -EINVAL;
915 }
916 force_successful_syscall_return();
917 return file->f_pos;
918}
919
920static int mem_release(struct inode *inode, struct file *file)
921{
922 struct mm_struct *mm = file->private_data;
923 if (mm)
924 mmdrop(mm);
925 return 0;
926}
927
928static const struct file_operations proc_mem_operations = {
929 .llseek = mem_lseek,
930 .read = mem_read,
931 .write = mem_write,
932 .open = mem_open,
933 .release = mem_release,
934};
935
936static int environ_open(struct inode *inode, struct file *file)
937{
938 return __mem_open(inode, file, PTRACE_MODE_READ);
939}
940
941static ssize_t environ_read(struct file *file, char __user *buf,
942 size_t count, loff_t *ppos)
943{
944 char *page;
945 unsigned long src = *ppos;
946 int ret = 0;
947 struct mm_struct *mm = file->private_data;
948 unsigned long env_start, env_end;
949
950 /* Ensure the process spawned far enough to have an environment. */
951 if (!mm || !mm->env_end)
952 return 0;
953
954 page = (char *)__get_free_page(GFP_KERNEL);
955 if (!page)
956 return -ENOMEM;
957
958 ret = 0;
959 if (!mmget_not_zero(mm))
960 goto free;
961
962 spin_lock(&mm->arg_lock);
963 env_start = mm->env_start;
964 env_end = mm->env_end;
965 spin_unlock(&mm->arg_lock);
966
967 while (count > 0) {
968 size_t this_len, max_len;
969 int retval;
970
971 if (src >= (env_end - env_start))
972 break;
973
974 this_len = env_end - (env_start + src);
975
976 max_len = min_t(size_t, PAGE_SIZE, count);
977 this_len = min(max_len, this_len);
978
979 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
980
981 if (retval <= 0) {
982 ret = retval;
983 break;
984 }
985
986 if (copy_to_user(buf, page, retval)) {
987 ret = -EFAULT;
988 break;
989 }
990
991 ret += retval;
992 src += retval;
993 buf += retval;
994 count -= retval;
995 }
996 *ppos = src;
997 mmput(mm);
998
999free:
1000 free_page((unsigned long) page);
1001 return ret;
1002}
1003
1004static const struct file_operations proc_environ_operations = {
1005 .open = environ_open,
1006 .read = environ_read,
1007 .llseek = generic_file_llseek,
1008 .release = mem_release,
1009};
1010
1011static int auxv_open(struct inode *inode, struct file *file)
1012{
1013 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1014}
1015
1016static ssize_t auxv_read(struct file *file, char __user *buf,
1017 size_t count, loff_t *ppos)
1018{
1019 struct mm_struct *mm = file->private_data;
1020 unsigned int nwords = 0;
1021
1022 if (!mm)
1023 return 0;
1024 do {
1025 nwords += 2;
1026 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028 nwords * sizeof(mm->saved_auxv[0]));
1029}
1030
1031static const struct file_operations proc_auxv_operations = {
1032 .open = auxv_open,
1033 .read = auxv_read,
1034 .llseek = generic_file_llseek,
1035 .release = mem_release,
1036};
1037
1038static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1039 loff_t *ppos)
1040{
1041 struct task_struct *task = get_proc_task(file_inode(file));
1042 char buffer[PROC_NUMBUF];
1043 int oom_adj = OOM_ADJUST_MIN;
1044 size_t len;
1045
1046 if (!task)
1047 return -ESRCH;
1048 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049 oom_adj = OOM_ADJUST_MAX;
1050 else
1051 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1052 OOM_SCORE_ADJ_MAX;
1053 put_task_struct(task);
1054 if (oom_adj > OOM_ADJUST_MAX)
1055 oom_adj = OOM_ADJUST_MAX;
1056 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1058}
1059
1060static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1061{
1062 struct mm_struct *mm = NULL;
1063 struct task_struct *task;
1064 int err = 0;
1065
1066 task = get_proc_task(file_inode(file));
1067 if (!task)
1068 return -ESRCH;
1069
1070 mutex_lock(&oom_adj_mutex);
1071 if (legacy) {
1072 if (oom_adj < task->signal->oom_score_adj &&
1073 !capable(CAP_SYS_RESOURCE)) {
1074 err = -EACCES;
1075 goto err_unlock;
1076 }
1077 /*
1078 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079 * /proc/pid/oom_score_adj instead.
1080 */
1081 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082 current->comm, task_pid_nr(current), task_pid_nr(task),
1083 task_pid_nr(task));
1084 } else {
1085 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086 !capable(CAP_SYS_RESOURCE)) {
1087 err = -EACCES;
1088 goto err_unlock;
1089 }
1090 }
1091
1092 /*
1093 * Make sure we will check other processes sharing the mm if this is
1094 * not vfrok which wants its own oom_score_adj.
1095 * pin the mm so it doesn't go away and get reused after task_unlock
1096 */
1097 if (!task->vfork_done) {
1098 struct task_struct *p = find_lock_task_mm(task);
1099
1100 if (p) {
1101 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1102 mm = p->mm;
1103 mmgrab(mm);
1104 }
1105 task_unlock(p);
1106 }
1107 }
1108
1109 task->signal->oom_score_adj = oom_adj;
1110 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111 task->signal->oom_score_adj_min = (short)oom_adj;
1112 trace_oom_score_adj_update(task);
1113
1114 if (mm) {
1115 struct task_struct *p;
1116
1117 rcu_read_lock();
1118 for_each_process(p) {
1119 if (same_thread_group(task, p))
1120 continue;
1121
1122 /* do not touch kernel threads or the global init */
1123 if (p->flags & PF_KTHREAD || is_global_init(p))
1124 continue;
1125
1126 task_lock(p);
1127 if (!p->vfork_done && process_shares_mm(p, mm)) {
1128 p->signal->oom_score_adj = oom_adj;
1129 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130 p->signal->oom_score_adj_min = (short)oom_adj;
1131 }
1132 task_unlock(p);
1133 }
1134 rcu_read_unlock();
1135 mmdrop(mm);
1136 }
1137err_unlock:
1138 mutex_unlock(&oom_adj_mutex);
1139 put_task_struct(task);
1140 return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels. The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154 size_t count, loff_t *ppos)
1155{
1156 char buffer[PROC_NUMBUF];
1157 int oom_adj;
1158 int err;
1159
1160 memset(buffer, 0, sizeof(buffer));
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count)) {
1164 err = -EFAULT;
1165 goto out;
1166 }
1167
1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169 if (err)
1170 goto out;
1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 oom_adj != OOM_DISABLE) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /*
1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 * value is always attainable.
1180 */
1181 if (oom_adj == OOM_ADJUST_MAX)
1182 oom_adj = OOM_SCORE_ADJ_MAX;
1183 else
1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186 err = __set_oom_adj(file, oom_adj, true);
1187out:
1188 return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192 .read = oom_adj_read,
1193 .write = oom_adj_write,
1194 .llseek = generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 size_t count, loff_t *ppos)
1199{
1200 struct task_struct *task = get_proc_task(file_inode(file));
1201 char buffer[PROC_NUMBUF];
1202 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203 size_t len;
1204
1205 if (!task)
1206 return -ESRCH;
1207 oom_score_adj = task->signal->oom_score_adj;
1208 put_task_struct(task);
1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 size_t count, loff_t *ppos)
1215{
1216 char buffer[PROC_NUMBUF];
1217 int oom_score_adj;
1218 int err;
1219
1220 memset(buffer, 0, sizeof(buffer));
1221 if (count > sizeof(buffer) - 1)
1222 count = sizeof(buffer) - 1;
1223 if (copy_from_user(buffer, buf, count)) {
1224 err = -EFAULT;
1225 goto out;
1226 }
1227
1228 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229 if (err)
1230 goto out;
1231 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233 err = -EINVAL;
1234 goto out;
1235 }
1236
1237 err = __set_oom_adj(file, oom_score_adj, false);
1238out:
1239 return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243 .read = oom_score_adj_read,
1244 .write = oom_score_adj_write,
1245 .llseek = default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDIT
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251 size_t count, loff_t *ppos)
1252{
1253 struct inode * inode = file_inode(file);
1254 struct task_struct *task = get_proc_task(inode);
1255 ssize_t length;
1256 char tmpbuf[TMPBUFLEN];
1257
1258 if (!task)
1259 return -ESRCH;
1260 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261 from_kuid(file->f_cred->user_ns,
1262 audit_get_loginuid(task)));
1263 put_task_struct(task);
1264 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268 size_t count, loff_t *ppos)
1269{
1270 struct inode * inode = file_inode(file);
1271 uid_t loginuid;
1272 kuid_t kloginuid;
1273 int rv;
1274
1275 /* Don't let kthreads write their own loginuid */
1276 if (current->flags & PF_KTHREAD)
1277 return -EPERM;
1278
1279 rcu_read_lock();
1280 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1281 rcu_read_unlock();
1282 return -EPERM;
1283 }
1284 rcu_read_unlock();
1285
1286 if (*ppos != 0) {
1287 /* No partial writes. */
1288 return -EINVAL;
1289 }
1290
1291 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1292 if (rv < 0)
1293 return rv;
1294
1295 /* is userspace tring to explicitly UNSET the loginuid? */
1296 if (loginuid == AUDIT_UID_UNSET) {
1297 kloginuid = INVALID_UID;
1298 } else {
1299 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1300 if (!uid_valid(kloginuid))
1301 return -EINVAL;
1302 }
1303
1304 rv = audit_set_loginuid(kloginuid);
1305 if (rv < 0)
1306 return rv;
1307 return count;
1308}
1309
1310static const struct file_operations proc_loginuid_operations = {
1311 .read = proc_loginuid_read,
1312 .write = proc_loginuid_write,
1313 .llseek = generic_file_llseek,
1314};
1315
1316static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1317 size_t count, loff_t *ppos)
1318{
1319 struct inode * inode = file_inode(file);
1320 struct task_struct *task = get_proc_task(inode);
1321 ssize_t length;
1322 char tmpbuf[TMPBUFLEN];
1323
1324 if (!task)
1325 return -ESRCH;
1326 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1327 audit_get_sessionid(task));
1328 put_task_struct(task);
1329 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1330}
1331
1332static const struct file_operations proc_sessionid_operations = {
1333 .read = proc_sessionid_read,
1334 .llseek = generic_file_llseek,
1335};
1336#endif
1337
1338#ifdef CONFIG_FAULT_INJECTION
1339static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1340 size_t count, loff_t *ppos)
1341{
1342 struct task_struct *task = get_proc_task(file_inode(file));
1343 char buffer[PROC_NUMBUF];
1344 size_t len;
1345 int make_it_fail;
1346
1347 if (!task)
1348 return -ESRCH;
1349 make_it_fail = task->make_it_fail;
1350 put_task_struct(task);
1351
1352 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1353
1354 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1355}
1356
1357static ssize_t proc_fault_inject_write(struct file * file,
1358 const char __user * buf, size_t count, loff_t *ppos)
1359{
1360 struct task_struct *task;
1361 char buffer[PROC_NUMBUF];
1362 int make_it_fail;
1363 int rv;
1364
1365 if (!capable(CAP_SYS_RESOURCE))
1366 return -EPERM;
1367 memset(buffer, 0, sizeof(buffer));
1368 if (count > sizeof(buffer) - 1)
1369 count = sizeof(buffer) - 1;
1370 if (copy_from_user(buffer, buf, count))
1371 return -EFAULT;
1372 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1373 if (rv < 0)
1374 return rv;
1375 if (make_it_fail < 0 || make_it_fail > 1)
1376 return -EINVAL;
1377
1378 task = get_proc_task(file_inode(file));
1379 if (!task)
1380 return -ESRCH;
1381 task->make_it_fail = make_it_fail;
1382 put_task_struct(task);
1383
1384 return count;
1385}
1386
1387static const struct file_operations proc_fault_inject_operations = {
1388 .read = proc_fault_inject_read,
1389 .write = proc_fault_inject_write,
1390 .llseek = generic_file_llseek,
1391};
1392
1393static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1394 size_t count, loff_t *ppos)
1395{
1396 struct task_struct *task;
1397 int err;
1398 unsigned int n;
1399
1400 err = kstrtouint_from_user(buf, count, 0, &n);
1401 if (err)
1402 return err;
1403
1404 task = get_proc_task(file_inode(file));
1405 if (!task)
1406 return -ESRCH;
1407 task->fail_nth = n;
1408 put_task_struct(task);
1409
1410 return count;
1411}
1412
1413static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1414 size_t count, loff_t *ppos)
1415{
1416 struct task_struct *task;
1417 char numbuf[PROC_NUMBUF];
1418 ssize_t len;
1419
1420 task = get_proc_task(file_inode(file));
1421 if (!task)
1422 return -ESRCH;
1423 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1424 put_task_struct(task);
1425 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1426}
1427
1428static const struct file_operations proc_fail_nth_operations = {
1429 .read = proc_fail_nth_read,
1430 .write = proc_fail_nth_write,
1431};
1432#endif
1433
1434
1435#ifdef CONFIG_SCHED_DEBUG
1436/*
1437 * Print out various scheduling related per-task fields:
1438 */
1439static int sched_show(struct seq_file *m, void *v)
1440{
1441 struct inode *inode = m->private;
1442 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1443 struct task_struct *p;
1444
1445 p = get_proc_task(inode);
1446 if (!p)
1447 return -ESRCH;
1448 proc_sched_show_task(p, ns, m);
1449
1450 put_task_struct(p);
1451
1452 return 0;
1453}
1454
1455static ssize_t
1456sched_write(struct file *file, const char __user *buf,
1457 size_t count, loff_t *offset)
1458{
1459 struct inode *inode = file_inode(file);
1460 struct task_struct *p;
1461
1462 p = get_proc_task(inode);
1463 if (!p)
1464 return -ESRCH;
1465 proc_sched_set_task(p);
1466
1467 put_task_struct(p);
1468
1469 return count;
1470}
1471
1472static int sched_open(struct inode *inode, struct file *filp)
1473{
1474 return single_open(filp, sched_show, inode);
1475}
1476
1477static const struct file_operations proc_pid_sched_operations = {
1478 .open = sched_open,
1479 .read = seq_read,
1480 .write = sched_write,
1481 .llseek = seq_lseek,
1482 .release = single_release,
1483};
1484
1485#endif
1486
1487#ifdef CONFIG_SCHED_AUTOGROUP
1488/*
1489 * Print out autogroup related information:
1490 */
1491static int sched_autogroup_show(struct seq_file *m, void *v)
1492{
1493 struct inode *inode = m->private;
1494 struct task_struct *p;
1495
1496 p = get_proc_task(inode);
1497 if (!p)
1498 return -ESRCH;
1499 proc_sched_autogroup_show_task(p, m);
1500
1501 put_task_struct(p);
1502
1503 return 0;
1504}
1505
1506static ssize_t
1507sched_autogroup_write(struct file *file, const char __user *buf,
1508 size_t count, loff_t *offset)
1509{
1510 struct inode *inode = file_inode(file);
1511 struct task_struct *p;
1512 char buffer[PROC_NUMBUF];
1513 int nice;
1514 int err;
1515
1516 memset(buffer, 0, sizeof(buffer));
1517 if (count > sizeof(buffer) - 1)
1518 count = sizeof(buffer) - 1;
1519 if (copy_from_user(buffer, buf, count))
1520 return -EFAULT;
1521
1522 err = kstrtoint(strstrip(buffer), 0, &nice);
1523 if (err < 0)
1524 return err;
1525
1526 p = get_proc_task(inode);
1527 if (!p)
1528 return -ESRCH;
1529
1530 err = proc_sched_autogroup_set_nice(p, nice);
1531 if (err)
1532 count = err;
1533
1534 put_task_struct(p);
1535
1536 return count;
1537}
1538
1539static int sched_autogroup_open(struct inode *inode, struct file *filp)
1540{
1541 int ret;
1542
1543 ret = single_open(filp, sched_autogroup_show, NULL);
1544 if (!ret) {
1545 struct seq_file *m = filp->private_data;
1546
1547 m->private = inode;
1548 }
1549 return ret;
1550}
1551
1552static const struct file_operations proc_pid_sched_autogroup_operations = {
1553 .open = sched_autogroup_open,
1554 .read = seq_read,
1555 .write = sched_autogroup_write,
1556 .llseek = seq_lseek,
1557 .release = single_release,
1558};
1559
1560#endif /* CONFIG_SCHED_AUTOGROUP */
1561
1562#ifdef CONFIG_TIME_NS
1563static int timens_offsets_show(struct seq_file *m, void *v)
1564{
1565 struct task_struct *p;
1566
1567 p = get_proc_task(file_inode(m->file));
1568 if (!p)
1569 return -ESRCH;
1570 proc_timens_show_offsets(p, m);
1571
1572 put_task_struct(p);
1573
1574 return 0;
1575}
1576
1577static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1578 size_t count, loff_t *ppos)
1579{
1580 struct inode *inode = file_inode(file);
1581 struct proc_timens_offset offsets[2];
1582 char *kbuf = NULL, *pos, *next_line;
1583 struct task_struct *p;
1584 int ret, noffsets;
1585
1586 /* Only allow < page size writes at the beginning of the file */
1587 if ((*ppos != 0) || (count >= PAGE_SIZE))
1588 return -EINVAL;
1589
1590 /* Slurp in the user data */
1591 kbuf = memdup_user_nul(buf, count);
1592 if (IS_ERR(kbuf))
1593 return PTR_ERR(kbuf);
1594
1595 /* Parse the user data */
1596 ret = -EINVAL;
1597 noffsets = 0;
1598 for (pos = kbuf; pos; pos = next_line) {
1599 struct proc_timens_offset *off = &offsets[noffsets];
1600 char clock[10];
1601 int err;
1602
1603 /* Find the end of line and ensure we don't look past it */
1604 next_line = strchr(pos, '\n');
1605 if (next_line) {
1606 *next_line = '\0';
1607 next_line++;
1608 if (*next_line == '\0')
1609 next_line = NULL;
1610 }
1611
1612 err = sscanf(pos, "%9s %lld %lu", clock,
1613 &off->val.tv_sec, &off->val.tv_nsec);
1614 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1615 goto out;
1616
1617 clock[sizeof(clock) - 1] = 0;
1618 if (strcmp(clock, "monotonic") == 0 ||
1619 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1620 off->clockid = CLOCK_MONOTONIC;
1621 else if (strcmp(clock, "boottime") == 0 ||
1622 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1623 off->clockid = CLOCK_BOOTTIME;
1624 else
1625 goto out;
1626
1627 noffsets++;
1628 if (noffsets == ARRAY_SIZE(offsets)) {
1629 if (next_line)
1630 count = next_line - kbuf;
1631 break;
1632 }
1633 }
1634
1635 ret = -ESRCH;
1636 p = get_proc_task(inode);
1637 if (!p)
1638 goto out;
1639 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1640 put_task_struct(p);
1641 if (ret)
1642 goto out;
1643
1644 ret = count;
1645out:
1646 kfree(kbuf);
1647 return ret;
1648}
1649
1650static int timens_offsets_open(struct inode *inode, struct file *filp)
1651{
1652 return single_open(filp, timens_offsets_show, inode);
1653}
1654
1655static const struct file_operations proc_timens_offsets_operations = {
1656 .open = timens_offsets_open,
1657 .read = seq_read,
1658 .write = timens_offsets_write,
1659 .llseek = seq_lseek,
1660 .release = single_release,
1661};
1662#endif /* CONFIG_TIME_NS */
1663
1664static ssize_t comm_write(struct file *file, const char __user *buf,
1665 size_t count, loff_t *offset)
1666{
1667 struct inode *inode = file_inode(file);
1668 struct task_struct *p;
1669 char buffer[TASK_COMM_LEN];
1670 const size_t maxlen = sizeof(buffer) - 1;
1671
1672 memset(buffer, 0, sizeof(buffer));
1673 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1674 return -EFAULT;
1675
1676 p = get_proc_task(inode);
1677 if (!p)
1678 return -ESRCH;
1679
1680 if (same_thread_group(current, p)) {
1681 set_task_comm(p, buffer);
1682 proc_comm_connector(p);
1683 }
1684 else
1685 count = -EINVAL;
1686
1687 put_task_struct(p);
1688
1689 return count;
1690}
1691
1692static int comm_show(struct seq_file *m, void *v)
1693{
1694 struct inode *inode = m->private;
1695 struct task_struct *p;
1696
1697 p = get_proc_task(inode);
1698 if (!p)
1699 return -ESRCH;
1700
1701 proc_task_name(m, p, false);
1702 seq_putc(m, '\n');
1703
1704 put_task_struct(p);
1705
1706 return 0;
1707}
1708
1709static int comm_open(struct inode *inode, struct file *filp)
1710{
1711 return single_open(filp, comm_show, inode);
1712}
1713
1714static const struct file_operations proc_pid_set_comm_operations = {
1715 .open = comm_open,
1716 .read = seq_read,
1717 .write = comm_write,
1718 .llseek = seq_lseek,
1719 .release = single_release,
1720};
1721
1722static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1723{
1724 struct task_struct *task;
1725 struct file *exe_file;
1726
1727 task = get_proc_task(d_inode(dentry));
1728 if (!task)
1729 return -ENOENT;
1730 exe_file = get_task_exe_file(task);
1731 put_task_struct(task);
1732 if (exe_file) {
1733 *exe_path = exe_file->f_path;
1734 path_get(&exe_file->f_path);
1735 fput(exe_file);
1736 return 0;
1737 } else
1738 return -ENOENT;
1739}
1740
1741static const char *proc_pid_get_link(struct dentry *dentry,
1742 struct inode *inode,
1743 struct delayed_call *done)
1744{
1745 struct path path;
1746 int error = -EACCES;
1747
1748 if (!dentry)
1749 return ERR_PTR(-ECHILD);
1750
1751 /* Are we allowed to snoop on the tasks file descriptors? */
1752 if (!proc_fd_access_allowed(inode))
1753 goto out;
1754
1755 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1756 if (error)
1757 goto out;
1758
1759 error = nd_jump_link(&path);
1760out:
1761 return ERR_PTR(error);
1762}
1763
1764static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1765{
1766 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1767 char *pathname;
1768 int len;
1769
1770 if (!tmp)
1771 return -ENOMEM;
1772
1773 pathname = d_path(path, tmp, PATH_MAX);
1774 len = PTR_ERR(pathname);
1775 if (IS_ERR(pathname))
1776 goto out;
1777 len = tmp + PATH_MAX - 1 - pathname;
1778
1779 if (len > buflen)
1780 len = buflen;
1781 if (copy_to_user(buffer, pathname, len))
1782 len = -EFAULT;
1783 out:
1784 kfree(tmp);
1785 return len;
1786}
1787
1788static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1789{
1790 int error = -EACCES;
1791 struct inode *inode = d_inode(dentry);
1792 struct path path;
1793
1794 /* Are we allowed to snoop on the tasks file descriptors? */
1795 if (!proc_fd_access_allowed(inode))
1796 goto out;
1797
1798 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1799 if (error)
1800 goto out;
1801
1802 error = do_proc_readlink(&path, buffer, buflen);
1803 path_put(&path);
1804out:
1805 return error;
1806}
1807
1808const struct inode_operations proc_pid_link_inode_operations = {
1809 .readlink = proc_pid_readlink,
1810 .get_link = proc_pid_get_link,
1811 .setattr = proc_setattr,
1812};
1813
1814
1815/* building an inode */
1816
1817void task_dump_owner(struct task_struct *task, umode_t mode,
1818 kuid_t *ruid, kgid_t *rgid)
1819{
1820 /* Depending on the state of dumpable compute who should own a
1821 * proc file for a task.
1822 */
1823 const struct cred *cred;
1824 kuid_t uid;
1825 kgid_t gid;
1826
1827 if (unlikely(task->flags & PF_KTHREAD)) {
1828 *ruid = GLOBAL_ROOT_UID;
1829 *rgid = GLOBAL_ROOT_GID;
1830 return;
1831 }
1832
1833 /* Default to the tasks effective ownership */
1834 rcu_read_lock();
1835 cred = __task_cred(task);
1836 uid = cred->euid;
1837 gid = cred->egid;
1838 rcu_read_unlock();
1839
1840 /*
1841 * Before the /proc/pid/status file was created the only way to read
1842 * the effective uid of a /process was to stat /proc/pid. Reading
1843 * /proc/pid/status is slow enough that procps and other packages
1844 * kept stating /proc/pid. To keep the rules in /proc simple I have
1845 * made this apply to all per process world readable and executable
1846 * directories.
1847 */
1848 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1849 struct mm_struct *mm;
1850 task_lock(task);
1851 mm = task->mm;
1852 /* Make non-dumpable tasks owned by some root */
1853 if (mm) {
1854 if (get_dumpable(mm) != SUID_DUMP_USER) {
1855 struct user_namespace *user_ns = mm->user_ns;
1856
1857 uid = make_kuid(user_ns, 0);
1858 if (!uid_valid(uid))
1859 uid = GLOBAL_ROOT_UID;
1860
1861 gid = make_kgid(user_ns, 0);
1862 if (!gid_valid(gid))
1863 gid = GLOBAL_ROOT_GID;
1864 }
1865 } else {
1866 uid = GLOBAL_ROOT_UID;
1867 gid = GLOBAL_ROOT_GID;
1868 }
1869 task_unlock(task);
1870 }
1871 *ruid = uid;
1872 *rgid = gid;
1873}
1874
1875void proc_pid_evict_inode(struct proc_inode *ei)
1876{
1877 struct pid *pid = ei->pid;
1878
1879 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1880 spin_lock(&pid->lock);
1881 hlist_del_init_rcu(&ei->sibling_inodes);
1882 spin_unlock(&pid->lock);
1883 }
1884
1885 put_pid(pid);
1886}
1887
1888struct inode *proc_pid_make_inode(struct super_block * sb,
1889 struct task_struct *task, umode_t mode)
1890{
1891 struct inode * inode;
1892 struct proc_inode *ei;
1893 struct pid *pid;
1894
1895 /* We need a new inode */
1896
1897 inode = new_inode(sb);
1898 if (!inode)
1899 goto out;
1900
1901 /* Common stuff */
1902 ei = PROC_I(inode);
1903 inode->i_mode = mode;
1904 inode->i_ino = get_next_ino();
1905 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1906 inode->i_op = &proc_def_inode_operations;
1907
1908 /*
1909 * grab the reference to task.
1910 */
1911 pid = get_task_pid(task, PIDTYPE_PID);
1912 if (!pid)
1913 goto out_unlock;
1914
1915 /* Let the pid remember us for quick removal */
1916 ei->pid = pid;
1917 if (S_ISDIR(mode)) {
1918 spin_lock(&pid->lock);
1919 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1920 spin_unlock(&pid->lock);
1921 }
1922
1923 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1924 security_task_to_inode(task, inode);
1925
1926out:
1927 return inode;
1928
1929out_unlock:
1930 iput(inode);
1931 return NULL;
1932}
1933
1934int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1935 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1936{
1937 struct inode *inode = d_inode(path->dentry);
1938 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1939 struct task_struct *task;
1940
1941 generic_fillattr(&init_user_ns, inode, stat);
1942
1943 stat->uid = GLOBAL_ROOT_UID;
1944 stat->gid = GLOBAL_ROOT_GID;
1945 rcu_read_lock();
1946 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1947 if (task) {
1948 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1949 rcu_read_unlock();
1950 /*
1951 * This doesn't prevent learning whether PID exists,
1952 * it only makes getattr() consistent with readdir().
1953 */
1954 return -ENOENT;
1955 }
1956 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1957 }
1958 rcu_read_unlock();
1959 return 0;
1960}
1961
1962/* dentry stuff */
1963
1964/*
1965 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1966 */
1967void pid_update_inode(struct task_struct *task, struct inode *inode)
1968{
1969 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1970
1971 inode->i_mode &= ~(S_ISUID | S_ISGID);
1972 security_task_to_inode(task, inode);
1973}
1974
1975/*
1976 * Rewrite the inode's ownerships here because the owning task may have
1977 * performed a setuid(), etc.
1978 *
1979 */
1980static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1981{
1982 struct inode *inode;
1983 struct task_struct *task;
1984 int ret = 0;
1985
1986 rcu_read_lock();
1987 inode = d_inode_rcu(dentry);
1988 if (!inode)
1989 goto out;
1990 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1991
1992 if (task) {
1993 pid_update_inode(task, inode);
1994 ret = 1;
1995 }
1996out:
1997 rcu_read_unlock();
1998 return ret;
1999}
2000
2001static inline bool proc_inode_is_dead(struct inode *inode)
2002{
2003 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2004}
2005
2006int pid_delete_dentry(const struct dentry *dentry)
2007{
2008 /* Is the task we represent dead?
2009 * If so, then don't put the dentry on the lru list,
2010 * kill it immediately.
2011 */
2012 return proc_inode_is_dead(d_inode(dentry));
2013}
2014
2015const struct dentry_operations pid_dentry_operations =
2016{
2017 .d_revalidate = pid_revalidate,
2018 .d_delete = pid_delete_dentry,
2019};
2020
2021/* Lookups */
2022
2023/*
2024 * Fill a directory entry.
2025 *
2026 * If possible create the dcache entry and derive our inode number and
2027 * file type from dcache entry.
2028 *
2029 * Since all of the proc inode numbers are dynamically generated, the inode
2030 * numbers do not exist until the inode is cache. This means creating
2031 * the dcache entry in readdir is necessary to keep the inode numbers
2032 * reported by readdir in sync with the inode numbers reported
2033 * by stat.
2034 */
2035bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2036 const char *name, unsigned int len,
2037 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2038{
2039 struct dentry *child, *dir = file->f_path.dentry;
2040 struct qstr qname = QSTR_INIT(name, len);
2041 struct inode *inode;
2042 unsigned type = DT_UNKNOWN;
2043 ino_t ino = 1;
2044
2045 child = d_hash_and_lookup(dir, &qname);
2046 if (!child) {
2047 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2048 child = d_alloc_parallel(dir, &qname, &wq);
2049 if (IS_ERR(child))
2050 goto end_instantiate;
2051 if (d_in_lookup(child)) {
2052 struct dentry *res;
2053 res = instantiate(child, task, ptr);
2054 d_lookup_done(child);
2055 if (unlikely(res)) {
2056 dput(child);
2057 child = res;
2058 if (IS_ERR(child))
2059 goto end_instantiate;
2060 }
2061 }
2062 }
2063 inode = d_inode(child);
2064 ino = inode->i_ino;
2065 type = inode->i_mode >> 12;
2066 dput(child);
2067end_instantiate:
2068 return dir_emit(ctx, name, len, ino, type);
2069}
2070
2071/*
2072 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2073 * which represent vma start and end addresses.
2074 */
2075static int dname_to_vma_addr(struct dentry *dentry,
2076 unsigned long *start, unsigned long *end)
2077{
2078 const char *str = dentry->d_name.name;
2079 unsigned long long sval, eval;
2080 unsigned int len;
2081
2082 if (str[0] == '0' && str[1] != '-')
2083 return -EINVAL;
2084 len = _parse_integer(str, 16, &sval);
2085 if (len & KSTRTOX_OVERFLOW)
2086 return -EINVAL;
2087 if (sval != (unsigned long)sval)
2088 return -EINVAL;
2089 str += len;
2090
2091 if (*str != '-')
2092 return -EINVAL;
2093 str++;
2094
2095 if (str[0] == '0' && str[1])
2096 return -EINVAL;
2097 len = _parse_integer(str, 16, &eval);
2098 if (len & KSTRTOX_OVERFLOW)
2099 return -EINVAL;
2100 if (eval != (unsigned long)eval)
2101 return -EINVAL;
2102 str += len;
2103
2104 if (*str != '\0')
2105 return -EINVAL;
2106
2107 *start = sval;
2108 *end = eval;
2109
2110 return 0;
2111}
2112
2113static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2114{
2115 unsigned long vm_start, vm_end;
2116 bool exact_vma_exists = false;
2117 struct mm_struct *mm = NULL;
2118 struct task_struct *task;
2119 struct inode *inode;
2120 int status = 0;
2121
2122 if (flags & LOOKUP_RCU)
2123 return -ECHILD;
2124
2125 inode = d_inode(dentry);
2126 task = get_proc_task(inode);
2127 if (!task)
2128 goto out_notask;
2129
2130 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2131 if (IS_ERR_OR_NULL(mm))
2132 goto out;
2133
2134 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2135 status = mmap_read_lock_killable(mm);
2136 if (!status) {
2137 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2138 vm_end);
2139 mmap_read_unlock(mm);
2140 }
2141 }
2142
2143 mmput(mm);
2144
2145 if (exact_vma_exists) {
2146 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2147
2148 security_task_to_inode(task, inode);
2149 status = 1;
2150 }
2151
2152out:
2153 put_task_struct(task);
2154
2155out_notask:
2156 return status;
2157}
2158
2159static const struct dentry_operations tid_map_files_dentry_operations = {
2160 .d_revalidate = map_files_d_revalidate,
2161 .d_delete = pid_delete_dentry,
2162};
2163
2164static int map_files_get_link(struct dentry *dentry, struct path *path)
2165{
2166 unsigned long vm_start, vm_end;
2167 struct vm_area_struct *vma;
2168 struct task_struct *task;
2169 struct mm_struct *mm;
2170 int rc;
2171
2172 rc = -ENOENT;
2173 task = get_proc_task(d_inode(dentry));
2174 if (!task)
2175 goto out;
2176
2177 mm = get_task_mm(task);
2178 put_task_struct(task);
2179 if (!mm)
2180 goto out;
2181
2182 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2183 if (rc)
2184 goto out_mmput;
2185
2186 rc = mmap_read_lock_killable(mm);
2187 if (rc)
2188 goto out_mmput;
2189
2190 rc = -ENOENT;
2191 vma = find_exact_vma(mm, vm_start, vm_end);
2192 if (vma && vma->vm_file) {
2193 *path = vma->vm_file->f_path;
2194 path_get(path);
2195 rc = 0;
2196 }
2197 mmap_read_unlock(mm);
2198
2199out_mmput:
2200 mmput(mm);
2201out:
2202 return rc;
2203}
2204
2205struct map_files_info {
2206 unsigned long start;
2207 unsigned long end;
2208 fmode_t mode;
2209};
2210
2211/*
2212 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2213 * to concerns about how the symlinks may be used to bypass permissions on
2214 * ancestor directories in the path to the file in question.
2215 */
2216static const char *
2217proc_map_files_get_link(struct dentry *dentry,
2218 struct inode *inode,
2219 struct delayed_call *done)
2220{
2221 if (!checkpoint_restore_ns_capable(&init_user_ns))
2222 return ERR_PTR(-EPERM);
2223
2224 return proc_pid_get_link(dentry, inode, done);
2225}
2226
2227/*
2228 * Identical to proc_pid_link_inode_operations except for get_link()
2229 */
2230static const struct inode_operations proc_map_files_link_inode_operations = {
2231 .readlink = proc_pid_readlink,
2232 .get_link = proc_map_files_get_link,
2233 .setattr = proc_setattr,
2234};
2235
2236static struct dentry *
2237proc_map_files_instantiate(struct dentry *dentry,
2238 struct task_struct *task, const void *ptr)
2239{
2240 fmode_t mode = (fmode_t)(unsigned long)ptr;
2241 struct proc_inode *ei;
2242 struct inode *inode;
2243
2244 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2245 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2246 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2247 if (!inode)
2248 return ERR_PTR(-ENOENT);
2249
2250 ei = PROC_I(inode);
2251 ei->op.proc_get_link = map_files_get_link;
2252
2253 inode->i_op = &proc_map_files_link_inode_operations;
2254 inode->i_size = 64;
2255
2256 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2257 return d_splice_alias(inode, dentry);
2258}
2259
2260static struct dentry *proc_map_files_lookup(struct inode *dir,
2261 struct dentry *dentry, unsigned int flags)
2262{
2263 unsigned long vm_start, vm_end;
2264 struct vm_area_struct *vma;
2265 struct task_struct *task;
2266 struct dentry *result;
2267 struct mm_struct *mm;
2268
2269 result = ERR_PTR(-ENOENT);
2270 task = get_proc_task(dir);
2271 if (!task)
2272 goto out;
2273
2274 result = ERR_PTR(-EACCES);
2275 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2276 goto out_put_task;
2277
2278 result = ERR_PTR(-ENOENT);
2279 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2280 goto out_put_task;
2281
2282 mm = get_task_mm(task);
2283 if (!mm)
2284 goto out_put_task;
2285
2286 result = ERR_PTR(-EINTR);
2287 if (mmap_read_lock_killable(mm))
2288 goto out_put_mm;
2289
2290 result = ERR_PTR(-ENOENT);
2291 vma = find_exact_vma(mm, vm_start, vm_end);
2292 if (!vma)
2293 goto out_no_vma;
2294
2295 if (vma->vm_file)
2296 result = proc_map_files_instantiate(dentry, task,
2297 (void *)(unsigned long)vma->vm_file->f_mode);
2298
2299out_no_vma:
2300 mmap_read_unlock(mm);
2301out_put_mm:
2302 mmput(mm);
2303out_put_task:
2304 put_task_struct(task);
2305out:
2306 return result;
2307}
2308
2309static const struct inode_operations proc_map_files_inode_operations = {
2310 .lookup = proc_map_files_lookup,
2311 .permission = proc_fd_permission,
2312 .setattr = proc_setattr,
2313};
2314
2315static int
2316proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2317{
2318 struct vm_area_struct *vma;
2319 struct task_struct *task;
2320 struct mm_struct *mm;
2321 unsigned long nr_files, pos, i;
2322 GENRADIX(struct map_files_info) fa;
2323 struct map_files_info *p;
2324 int ret;
2325
2326 genradix_init(&fa);
2327
2328 ret = -ENOENT;
2329 task = get_proc_task(file_inode(file));
2330 if (!task)
2331 goto out;
2332
2333 ret = -EACCES;
2334 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2335 goto out_put_task;
2336
2337 ret = 0;
2338 if (!dir_emit_dots(file, ctx))
2339 goto out_put_task;
2340
2341 mm = get_task_mm(task);
2342 if (!mm)
2343 goto out_put_task;
2344
2345 ret = mmap_read_lock_killable(mm);
2346 if (ret) {
2347 mmput(mm);
2348 goto out_put_task;
2349 }
2350
2351 nr_files = 0;
2352
2353 /*
2354 * We need two passes here:
2355 *
2356 * 1) Collect vmas of mapped files with mmap_lock taken
2357 * 2) Release mmap_lock and instantiate entries
2358 *
2359 * otherwise we get lockdep complained, since filldir()
2360 * routine might require mmap_lock taken in might_fault().
2361 */
2362
2363 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2364 if (!vma->vm_file)
2365 continue;
2366 if (++pos <= ctx->pos)
2367 continue;
2368
2369 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2370 if (!p) {
2371 ret = -ENOMEM;
2372 mmap_read_unlock(mm);
2373 mmput(mm);
2374 goto out_put_task;
2375 }
2376
2377 p->start = vma->vm_start;
2378 p->end = vma->vm_end;
2379 p->mode = vma->vm_file->f_mode;
2380 }
2381 mmap_read_unlock(mm);
2382 mmput(mm);
2383
2384 for (i = 0; i < nr_files; i++) {
2385 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2386 unsigned int len;
2387
2388 p = genradix_ptr(&fa, i);
2389 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2390 if (!proc_fill_cache(file, ctx,
2391 buf, len,
2392 proc_map_files_instantiate,
2393 task,
2394 (void *)(unsigned long)p->mode))
2395 break;
2396 ctx->pos++;
2397 }
2398
2399out_put_task:
2400 put_task_struct(task);
2401out:
2402 genradix_free(&fa);
2403 return ret;
2404}
2405
2406static const struct file_operations proc_map_files_operations = {
2407 .read = generic_read_dir,
2408 .iterate_shared = proc_map_files_readdir,
2409 .llseek = generic_file_llseek,
2410};
2411
2412#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2413struct timers_private {
2414 struct pid *pid;
2415 struct task_struct *task;
2416 struct sighand_struct *sighand;
2417 struct pid_namespace *ns;
2418 unsigned long flags;
2419};
2420
2421static void *timers_start(struct seq_file *m, loff_t *pos)
2422{
2423 struct timers_private *tp = m->private;
2424
2425 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2426 if (!tp->task)
2427 return ERR_PTR(-ESRCH);
2428
2429 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2430 if (!tp->sighand)
2431 return ERR_PTR(-ESRCH);
2432
2433 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2434}
2435
2436static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2437{
2438 struct timers_private *tp = m->private;
2439 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2440}
2441
2442static void timers_stop(struct seq_file *m, void *v)
2443{
2444 struct timers_private *tp = m->private;
2445
2446 if (tp->sighand) {
2447 unlock_task_sighand(tp->task, &tp->flags);
2448 tp->sighand = NULL;
2449 }
2450
2451 if (tp->task) {
2452 put_task_struct(tp->task);
2453 tp->task = NULL;
2454 }
2455}
2456
2457static int show_timer(struct seq_file *m, void *v)
2458{
2459 struct k_itimer *timer;
2460 struct timers_private *tp = m->private;
2461 int notify;
2462 static const char * const nstr[] = {
2463 [SIGEV_SIGNAL] = "signal",
2464 [SIGEV_NONE] = "none",
2465 [SIGEV_THREAD] = "thread",
2466 };
2467
2468 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2469 notify = timer->it_sigev_notify;
2470
2471 seq_printf(m, "ID: %d\n", timer->it_id);
2472 seq_printf(m, "signal: %d/%px\n",
2473 timer->sigq->info.si_signo,
2474 timer->sigq->info.si_value.sival_ptr);
2475 seq_printf(m, "notify: %s/%s.%d\n",
2476 nstr[notify & ~SIGEV_THREAD_ID],
2477 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2478 pid_nr_ns(timer->it_pid, tp->ns));
2479 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2480
2481 return 0;
2482}
2483
2484static const struct seq_operations proc_timers_seq_ops = {
2485 .start = timers_start,
2486 .next = timers_next,
2487 .stop = timers_stop,
2488 .show = show_timer,
2489};
2490
2491static int proc_timers_open(struct inode *inode, struct file *file)
2492{
2493 struct timers_private *tp;
2494
2495 tp = __seq_open_private(file, &proc_timers_seq_ops,
2496 sizeof(struct timers_private));
2497 if (!tp)
2498 return -ENOMEM;
2499
2500 tp->pid = proc_pid(inode);
2501 tp->ns = proc_pid_ns(inode->i_sb);
2502 return 0;
2503}
2504
2505static const struct file_operations proc_timers_operations = {
2506 .open = proc_timers_open,
2507 .read = seq_read,
2508 .llseek = seq_lseek,
2509 .release = seq_release_private,
2510};
2511#endif
2512
2513static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2514 size_t count, loff_t *offset)
2515{
2516 struct inode *inode = file_inode(file);
2517 struct task_struct *p;
2518 u64 slack_ns;
2519 int err;
2520
2521 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2522 if (err < 0)
2523 return err;
2524
2525 p = get_proc_task(inode);
2526 if (!p)
2527 return -ESRCH;
2528
2529 if (p != current) {
2530 rcu_read_lock();
2531 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2532 rcu_read_unlock();
2533 count = -EPERM;
2534 goto out;
2535 }
2536 rcu_read_unlock();
2537
2538 err = security_task_setscheduler(p);
2539 if (err) {
2540 count = err;
2541 goto out;
2542 }
2543 }
2544
2545 task_lock(p);
2546 if (slack_ns == 0)
2547 p->timer_slack_ns = p->default_timer_slack_ns;
2548 else
2549 p->timer_slack_ns = slack_ns;
2550 task_unlock(p);
2551
2552out:
2553 put_task_struct(p);
2554
2555 return count;
2556}
2557
2558static int timerslack_ns_show(struct seq_file *m, void *v)
2559{
2560 struct inode *inode = m->private;
2561 struct task_struct *p;
2562 int err = 0;
2563
2564 p = get_proc_task(inode);
2565 if (!p)
2566 return -ESRCH;
2567
2568 if (p != current) {
2569 rcu_read_lock();
2570 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2571 rcu_read_unlock();
2572 err = -EPERM;
2573 goto out;
2574 }
2575 rcu_read_unlock();
2576
2577 err = security_task_getscheduler(p);
2578 if (err)
2579 goto out;
2580 }
2581
2582 task_lock(p);
2583 seq_printf(m, "%llu\n", p->timer_slack_ns);
2584 task_unlock(p);
2585
2586out:
2587 put_task_struct(p);
2588
2589 return err;
2590}
2591
2592static int timerslack_ns_open(struct inode *inode, struct file *filp)
2593{
2594 return single_open(filp, timerslack_ns_show, inode);
2595}
2596
2597static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2598 .open = timerslack_ns_open,
2599 .read = seq_read,
2600 .write = timerslack_ns_write,
2601 .llseek = seq_lseek,
2602 .release = single_release,
2603};
2604
2605static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2606 struct task_struct *task, const void *ptr)
2607{
2608 const struct pid_entry *p = ptr;
2609 struct inode *inode;
2610 struct proc_inode *ei;
2611
2612 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2613 if (!inode)
2614 return ERR_PTR(-ENOENT);
2615
2616 ei = PROC_I(inode);
2617 if (S_ISDIR(inode->i_mode))
2618 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2619 if (p->iop)
2620 inode->i_op = p->iop;
2621 if (p->fop)
2622 inode->i_fop = p->fop;
2623 ei->op = p->op;
2624 pid_update_inode(task, inode);
2625 d_set_d_op(dentry, &pid_dentry_operations);
2626 return d_splice_alias(inode, dentry);
2627}
2628
2629static struct dentry *proc_pident_lookup(struct inode *dir,
2630 struct dentry *dentry,
2631 const struct pid_entry *p,
2632 const struct pid_entry *end)
2633{
2634 struct task_struct *task = get_proc_task(dir);
2635 struct dentry *res = ERR_PTR(-ENOENT);
2636
2637 if (!task)
2638 goto out_no_task;
2639
2640 /*
2641 * Yes, it does not scale. And it should not. Don't add
2642 * new entries into /proc/<tgid>/ without very good reasons.
2643 */
2644 for (; p < end; p++) {
2645 if (p->len != dentry->d_name.len)
2646 continue;
2647 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2648 res = proc_pident_instantiate(dentry, task, p);
2649 break;
2650 }
2651 }
2652 put_task_struct(task);
2653out_no_task:
2654 return res;
2655}
2656
2657static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2658 const struct pid_entry *ents, unsigned int nents)
2659{
2660 struct task_struct *task = get_proc_task(file_inode(file));
2661 const struct pid_entry *p;
2662
2663 if (!task)
2664 return -ENOENT;
2665
2666 if (!dir_emit_dots(file, ctx))
2667 goto out;
2668
2669 if (ctx->pos >= nents + 2)
2670 goto out;
2671
2672 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2673 if (!proc_fill_cache(file, ctx, p->name, p->len,
2674 proc_pident_instantiate, task, p))
2675 break;
2676 ctx->pos++;
2677 }
2678out:
2679 put_task_struct(task);
2680 return 0;
2681}
2682
2683#ifdef CONFIG_SECURITY
2684static int proc_pid_attr_open(struct inode *inode, struct file *file)
2685{
2686 file->private_data = NULL;
2687 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2688 return 0;
2689}
2690
2691static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2692 size_t count, loff_t *ppos)
2693{
2694 struct inode * inode = file_inode(file);
2695 char *p = NULL;
2696 ssize_t length;
2697 struct task_struct *task = get_proc_task(inode);
2698
2699 if (!task)
2700 return -ESRCH;
2701
2702 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2703 (char*)file->f_path.dentry->d_name.name,
2704 &p);
2705 put_task_struct(task);
2706 if (length > 0)
2707 length = simple_read_from_buffer(buf, count, ppos, p, length);
2708 kfree(p);
2709 return length;
2710}
2711
2712static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2713 size_t count, loff_t *ppos)
2714{
2715 struct inode * inode = file_inode(file);
2716 struct task_struct *task;
2717 void *page;
2718 int rv;
2719
2720 /* A task may only write when it was the opener. */
2721 if (file->private_data != current->mm)
2722 return -EPERM;
2723
2724 rcu_read_lock();
2725 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2726 if (!task) {
2727 rcu_read_unlock();
2728 return -ESRCH;
2729 }
2730 /* A task may only write its own attributes. */
2731 if (current != task) {
2732 rcu_read_unlock();
2733 return -EACCES;
2734 }
2735 /* Prevent changes to overridden credentials. */
2736 if (current_cred() != current_real_cred()) {
2737 rcu_read_unlock();
2738 return -EBUSY;
2739 }
2740 rcu_read_unlock();
2741
2742 if (count > PAGE_SIZE)
2743 count = PAGE_SIZE;
2744
2745 /* No partial writes. */
2746 if (*ppos != 0)
2747 return -EINVAL;
2748
2749 page = memdup_user(buf, count);
2750 if (IS_ERR(page)) {
2751 rv = PTR_ERR(page);
2752 goto out;
2753 }
2754
2755 /* Guard against adverse ptrace interaction */
2756 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2757 if (rv < 0)
2758 goto out_free;
2759
2760 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2761 file->f_path.dentry->d_name.name, page,
2762 count);
2763 mutex_unlock(¤t->signal->cred_guard_mutex);
2764out_free:
2765 kfree(page);
2766out:
2767 return rv;
2768}
2769
2770static const struct file_operations proc_pid_attr_operations = {
2771 .open = proc_pid_attr_open,
2772 .read = proc_pid_attr_read,
2773 .write = proc_pid_attr_write,
2774 .llseek = generic_file_llseek,
2775 .release = mem_release,
2776};
2777
2778#define LSM_DIR_OPS(LSM) \
2779static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2780 struct dir_context *ctx) \
2781{ \
2782 return proc_pident_readdir(filp, ctx, \
2783 LSM##_attr_dir_stuff, \
2784 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2785} \
2786\
2787static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2788 .read = generic_read_dir, \
2789 .iterate = proc_##LSM##_attr_dir_iterate, \
2790 .llseek = default_llseek, \
2791}; \
2792\
2793static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2794 struct dentry *dentry, unsigned int flags) \
2795{ \
2796 return proc_pident_lookup(dir, dentry, \
2797 LSM##_attr_dir_stuff, \
2798 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2799} \
2800\
2801static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2802 .lookup = proc_##LSM##_attr_dir_lookup, \
2803 .getattr = pid_getattr, \
2804 .setattr = proc_setattr, \
2805}
2806
2807#ifdef CONFIG_SECURITY_SMACK
2808static const struct pid_entry smack_attr_dir_stuff[] = {
2809 ATTR("smack", "current", 0666),
2810};
2811LSM_DIR_OPS(smack);
2812#endif
2813
2814#ifdef CONFIG_SECURITY_APPARMOR
2815static const struct pid_entry apparmor_attr_dir_stuff[] = {
2816 ATTR("apparmor", "current", 0666),
2817 ATTR("apparmor", "prev", 0444),
2818 ATTR("apparmor", "exec", 0666),
2819};
2820LSM_DIR_OPS(apparmor);
2821#endif
2822
2823static const struct pid_entry attr_dir_stuff[] = {
2824 ATTR(NULL, "current", 0666),
2825 ATTR(NULL, "prev", 0444),
2826 ATTR(NULL, "exec", 0666),
2827 ATTR(NULL, "fscreate", 0666),
2828 ATTR(NULL, "keycreate", 0666),
2829 ATTR(NULL, "sockcreate", 0666),
2830#ifdef CONFIG_SECURITY_SMACK
2831 DIR("smack", 0555,
2832 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2833#endif
2834#ifdef CONFIG_SECURITY_APPARMOR
2835 DIR("apparmor", 0555,
2836 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2837#endif
2838};
2839
2840static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2841{
2842 return proc_pident_readdir(file, ctx,
2843 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2844}
2845
2846static const struct file_operations proc_attr_dir_operations = {
2847 .read = generic_read_dir,
2848 .iterate_shared = proc_attr_dir_readdir,
2849 .llseek = generic_file_llseek,
2850};
2851
2852static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2853 struct dentry *dentry, unsigned int flags)
2854{
2855 return proc_pident_lookup(dir, dentry,
2856 attr_dir_stuff,
2857 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2858}
2859
2860static const struct inode_operations proc_attr_dir_inode_operations = {
2861 .lookup = proc_attr_dir_lookup,
2862 .getattr = pid_getattr,
2863 .setattr = proc_setattr,
2864};
2865
2866#endif
2867
2868#ifdef CONFIG_ELF_CORE
2869static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2870 size_t count, loff_t *ppos)
2871{
2872 struct task_struct *task = get_proc_task(file_inode(file));
2873 struct mm_struct *mm;
2874 char buffer[PROC_NUMBUF];
2875 size_t len;
2876 int ret;
2877
2878 if (!task)
2879 return -ESRCH;
2880
2881 ret = 0;
2882 mm = get_task_mm(task);
2883 if (mm) {
2884 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2885 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2886 MMF_DUMP_FILTER_SHIFT));
2887 mmput(mm);
2888 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2889 }
2890
2891 put_task_struct(task);
2892
2893 return ret;
2894}
2895
2896static ssize_t proc_coredump_filter_write(struct file *file,
2897 const char __user *buf,
2898 size_t count,
2899 loff_t *ppos)
2900{
2901 struct task_struct *task;
2902 struct mm_struct *mm;
2903 unsigned int val;
2904 int ret;
2905 int i;
2906 unsigned long mask;
2907
2908 ret = kstrtouint_from_user(buf, count, 0, &val);
2909 if (ret < 0)
2910 return ret;
2911
2912 ret = -ESRCH;
2913 task = get_proc_task(file_inode(file));
2914 if (!task)
2915 goto out_no_task;
2916
2917 mm = get_task_mm(task);
2918 if (!mm)
2919 goto out_no_mm;
2920 ret = 0;
2921
2922 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2923 if (val & mask)
2924 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2925 else
2926 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2927 }
2928
2929 mmput(mm);
2930 out_no_mm:
2931 put_task_struct(task);
2932 out_no_task:
2933 if (ret < 0)
2934 return ret;
2935 return count;
2936}
2937
2938static const struct file_operations proc_coredump_filter_operations = {
2939 .read = proc_coredump_filter_read,
2940 .write = proc_coredump_filter_write,
2941 .llseek = generic_file_llseek,
2942};
2943#endif
2944
2945#ifdef CONFIG_TASK_IO_ACCOUNTING
2946static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2947{
2948 struct task_io_accounting acct = task->ioac;
2949 unsigned long flags;
2950 int result;
2951
2952 result = down_read_killable(&task->signal->exec_update_lock);
2953 if (result)
2954 return result;
2955
2956 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2957 result = -EACCES;
2958 goto out_unlock;
2959 }
2960
2961 if (whole && lock_task_sighand(task, &flags)) {
2962 struct task_struct *t = task;
2963
2964 task_io_accounting_add(&acct, &task->signal->ioac);
2965 while_each_thread(task, t)
2966 task_io_accounting_add(&acct, &t->ioac);
2967
2968 unlock_task_sighand(task, &flags);
2969 }
2970 seq_printf(m,
2971 "rchar: %llu\n"
2972 "wchar: %llu\n"
2973 "syscr: %llu\n"
2974 "syscw: %llu\n"
2975 "read_bytes: %llu\n"
2976 "write_bytes: %llu\n"
2977 "cancelled_write_bytes: %llu\n",
2978 (unsigned long long)acct.rchar,
2979 (unsigned long long)acct.wchar,
2980 (unsigned long long)acct.syscr,
2981 (unsigned long long)acct.syscw,
2982 (unsigned long long)acct.read_bytes,
2983 (unsigned long long)acct.write_bytes,
2984 (unsigned long long)acct.cancelled_write_bytes);
2985 result = 0;
2986
2987out_unlock:
2988 up_read(&task->signal->exec_update_lock);
2989 return result;
2990}
2991
2992static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2993 struct pid *pid, struct task_struct *task)
2994{
2995 return do_io_accounting(task, m, 0);
2996}
2997
2998static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2999 struct pid *pid, struct task_struct *task)
3000{
3001 return do_io_accounting(task, m, 1);
3002}
3003#endif /* CONFIG_TASK_IO_ACCOUNTING */
3004
3005#ifdef CONFIG_USER_NS
3006static int proc_id_map_open(struct inode *inode, struct file *file,
3007 const struct seq_operations *seq_ops)
3008{
3009 struct user_namespace *ns = NULL;
3010 struct task_struct *task;
3011 struct seq_file *seq;
3012 int ret = -EINVAL;
3013
3014 task = get_proc_task(inode);
3015 if (task) {
3016 rcu_read_lock();
3017 ns = get_user_ns(task_cred_xxx(task, user_ns));
3018 rcu_read_unlock();
3019 put_task_struct(task);
3020 }
3021 if (!ns)
3022 goto err;
3023
3024 ret = seq_open(file, seq_ops);
3025 if (ret)
3026 goto err_put_ns;
3027
3028 seq = file->private_data;
3029 seq->private = ns;
3030
3031 return 0;
3032err_put_ns:
3033 put_user_ns(ns);
3034err:
3035 return ret;
3036}
3037
3038static int proc_id_map_release(struct inode *inode, struct file *file)
3039{
3040 struct seq_file *seq = file->private_data;
3041 struct user_namespace *ns = seq->private;
3042 put_user_ns(ns);
3043 return seq_release(inode, file);
3044}
3045
3046static int proc_uid_map_open(struct inode *inode, struct file *file)
3047{
3048 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3049}
3050
3051static int proc_gid_map_open(struct inode *inode, struct file *file)
3052{
3053 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3054}
3055
3056static int proc_projid_map_open(struct inode *inode, struct file *file)
3057{
3058 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3059}
3060
3061static const struct file_operations proc_uid_map_operations = {
3062 .open = proc_uid_map_open,
3063 .write = proc_uid_map_write,
3064 .read = seq_read,
3065 .llseek = seq_lseek,
3066 .release = proc_id_map_release,
3067};
3068
3069static const struct file_operations proc_gid_map_operations = {
3070 .open = proc_gid_map_open,
3071 .write = proc_gid_map_write,
3072 .read = seq_read,
3073 .llseek = seq_lseek,
3074 .release = proc_id_map_release,
3075};
3076
3077static const struct file_operations proc_projid_map_operations = {
3078 .open = proc_projid_map_open,
3079 .write = proc_projid_map_write,
3080 .read = seq_read,
3081 .llseek = seq_lseek,
3082 .release = proc_id_map_release,
3083};
3084
3085static int proc_setgroups_open(struct inode *inode, struct file *file)
3086{
3087 struct user_namespace *ns = NULL;
3088 struct task_struct *task;
3089 int ret;
3090
3091 ret = -ESRCH;
3092 task = get_proc_task(inode);
3093 if (task) {
3094 rcu_read_lock();
3095 ns = get_user_ns(task_cred_xxx(task, user_ns));
3096 rcu_read_unlock();
3097 put_task_struct(task);
3098 }
3099 if (!ns)
3100 goto err;
3101
3102 if (file->f_mode & FMODE_WRITE) {
3103 ret = -EACCES;
3104 if (!ns_capable(ns, CAP_SYS_ADMIN))
3105 goto err_put_ns;
3106 }
3107
3108 ret = single_open(file, &proc_setgroups_show, ns);
3109 if (ret)
3110 goto err_put_ns;
3111
3112 return 0;
3113err_put_ns:
3114 put_user_ns(ns);
3115err:
3116 return ret;
3117}
3118
3119static int proc_setgroups_release(struct inode *inode, struct file *file)
3120{
3121 struct seq_file *seq = file->private_data;
3122 struct user_namespace *ns = seq->private;
3123 int ret = single_release(inode, file);
3124 put_user_ns(ns);
3125 return ret;
3126}
3127
3128static const struct file_operations proc_setgroups_operations = {
3129 .open = proc_setgroups_open,
3130 .write = proc_setgroups_write,
3131 .read = seq_read,
3132 .llseek = seq_lseek,
3133 .release = proc_setgroups_release,
3134};
3135#endif /* CONFIG_USER_NS */
3136
3137static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3138 struct pid *pid, struct task_struct *task)
3139{
3140 int err = lock_trace(task);
3141 if (!err) {
3142 seq_printf(m, "%08x\n", task->personality);
3143 unlock_trace(task);
3144 }
3145 return err;
3146}
3147
3148#ifdef CONFIG_LIVEPATCH
3149static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3150 struct pid *pid, struct task_struct *task)
3151{
3152 seq_printf(m, "%d\n", task->patch_state);
3153 return 0;
3154}
3155#endif /* CONFIG_LIVEPATCH */
3156
3157#ifdef CONFIG_KSM
3158static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3159 struct pid *pid, struct task_struct *task)
3160{
3161 struct mm_struct *mm;
3162
3163 mm = get_task_mm(task);
3164 if (mm) {
3165 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3166 mmput(mm);
3167 }
3168
3169 return 0;
3170}
3171#endif /* CONFIG_KSM */
3172
3173#ifdef CONFIG_STACKLEAK_METRICS
3174static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3175 struct pid *pid, struct task_struct *task)
3176{
3177 unsigned long prev_depth = THREAD_SIZE -
3178 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3179 unsigned long depth = THREAD_SIZE -
3180 (task->lowest_stack & (THREAD_SIZE - 1));
3181
3182 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3183 prev_depth, depth);
3184 return 0;
3185}
3186#endif /* CONFIG_STACKLEAK_METRICS */
3187
3188/*
3189 * Thread groups
3190 */
3191static const struct file_operations proc_task_operations;
3192static const struct inode_operations proc_task_inode_operations;
3193
3194static const struct pid_entry tgid_base_stuff[] = {
3195 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3196 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3197 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3198 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3199 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3200#ifdef CONFIG_NET
3201 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3202#endif
3203 REG("environ", S_IRUSR, proc_environ_operations),
3204 REG("auxv", S_IRUSR, proc_auxv_operations),
3205 ONE("status", S_IRUGO, proc_pid_status),
3206 ONE("personality", S_IRUSR, proc_pid_personality),
3207 ONE("limits", S_IRUGO, proc_pid_limits),
3208#ifdef CONFIG_SCHED_DEBUG
3209 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3210#endif
3211#ifdef CONFIG_SCHED_AUTOGROUP
3212 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3213#endif
3214#ifdef CONFIG_TIME_NS
3215 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3216#endif
3217 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3218#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3219 ONE("syscall", S_IRUSR, proc_pid_syscall),
3220#endif
3221 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3222 ONE("stat", S_IRUGO, proc_tgid_stat),
3223 ONE("statm", S_IRUGO, proc_pid_statm),
3224 REG("maps", S_IRUGO, proc_pid_maps_operations),
3225#ifdef CONFIG_NUMA
3226 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3227#endif
3228 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3229 LNK("cwd", proc_cwd_link),
3230 LNK("root", proc_root_link),
3231 LNK("exe", proc_exe_link),
3232 REG("mounts", S_IRUGO, proc_mounts_operations),
3233 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3234 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3235#ifdef CONFIG_PROC_PAGE_MONITOR
3236 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3237 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3238 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3239 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3240#endif
3241#ifdef CONFIG_SECURITY
3242 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3243#endif
3244#ifdef CONFIG_KALLSYMS
3245 ONE("wchan", S_IRUGO, proc_pid_wchan),
3246#endif
3247#ifdef CONFIG_STACKTRACE
3248 ONE("stack", S_IRUSR, proc_pid_stack),
3249#endif
3250#ifdef CONFIG_SCHED_INFO
3251 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3252#endif
3253#ifdef CONFIG_LATENCYTOP
3254 REG("latency", S_IRUGO, proc_lstats_operations),
3255#endif
3256#ifdef CONFIG_PROC_PID_CPUSET
3257 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3258#endif
3259#ifdef CONFIG_CGROUPS
3260 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3261#endif
3262#ifdef CONFIG_PROC_CPU_RESCTRL
3263 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3264#endif
3265 ONE("oom_score", S_IRUGO, proc_oom_score),
3266 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3267 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3268#ifdef CONFIG_AUDIT
3269 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3270 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3271#endif
3272#ifdef CONFIG_FAULT_INJECTION
3273 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3274 REG("fail-nth", 0644, proc_fail_nth_operations),
3275#endif
3276#ifdef CONFIG_ELF_CORE
3277 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3278#endif
3279#ifdef CONFIG_TASK_IO_ACCOUNTING
3280 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3281#endif
3282#ifdef CONFIG_USER_NS
3283 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3284 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3285 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3286 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3287#endif
3288#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3289 REG("timers", S_IRUGO, proc_timers_operations),
3290#endif
3291 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3292#ifdef CONFIG_LIVEPATCH
3293 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3294#endif
3295#ifdef CONFIG_STACKLEAK_METRICS
3296 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3297#endif
3298#ifdef CONFIG_PROC_PID_ARCH_STATUS
3299 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3300#endif
3301#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3302 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3303#endif
3304#ifdef CONFIG_KSM
3305 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3306#endif
3307};
3308
3309static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3310{
3311 return proc_pident_readdir(file, ctx,
3312 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3313}
3314
3315static const struct file_operations proc_tgid_base_operations = {
3316 .read = generic_read_dir,
3317 .iterate_shared = proc_tgid_base_readdir,
3318 .llseek = generic_file_llseek,
3319};
3320
3321struct pid *tgid_pidfd_to_pid(const struct file *file)
3322{
3323 if (file->f_op != &proc_tgid_base_operations)
3324 return ERR_PTR(-EBADF);
3325
3326 return proc_pid(file_inode(file));
3327}
3328
3329static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3330{
3331 return proc_pident_lookup(dir, dentry,
3332 tgid_base_stuff,
3333 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3334}
3335
3336static const struct inode_operations proc_tgid_base_inode_operations = {
3337 .lookup = proc_tgid_base_lookup,
3338 .getattr = pid_getattr,
3339 .setattr = proc_setattr,
3340 .permission = proc_pid_permission,
3341};
3342
3343/**
3344 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3345 * @pid: pid that should be flushed.
3346 *
3347 * This function walks a list of inodes (that belong to any proc
3348 * filesystem) that are attached to the pid and flushes them from
3349 * the dentry cache.
3350 *
3351 * It is safe and reasonable to cache /proc entries for a task until
3352 * that task exits. After that they just clog up the dcache with
3353 * useless entries, possibly causing useful dcache entries to be
3354 * flushed instead. This routine is provided to flush those useless
3355 * dcache entries when a process is reaped.
3356 *
3357 * NOTE: This routine is just an optimization so it does not guarantee
3358 * that no dcache entries will exist after a process is reaped
3359 * it just makes it very unlikely that any will persist.
3360 */
3361
3362void proc_flush_pid(struct pid *pid)
3363{
3364 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3365}
3366
3367static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3368 struct task_struct *task, const void *ptr)
3369{
3370 struct inode *inode;
3371
3372 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3373 if (!inode)
3374 return ERR_PTR(-ENOENT);
3375
3376 inode->i_op = &proc_tgid_base_inode_operations;
3377 inode->i_fop = &proc_tgid_base_operations;
3378 inode->i_flags|=S_IMMUTABLE;
3379
3380 set_nlink(inode, nlink_tgid);
3381 pid_update_inode(task, inode);
3382
3383 d_set_d_op(dentry, &pid_dentry_operations);
3384 return d_splice_alias(inode, dentry);
3385}
3386
3387struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3388{
3389 struct task_struct *task;
3390 unsigned tgid;
3391 struct proc_fs_info *fs_info;
3392 struct pid_namespace *ns;
3393 struct dentry *result = ERR_PTR(-ENOENT);
3394
3395 tgid = name_to_int(&dentry->d_name);
3396 if (tgid == ~0U)
3397 goto out;
3398
3399 fs_info = proc_sb_info(dentry->d_sb);
3400 ns = fs_info->pid_ns;
3401 rcu_read_lock();
3402 task = find_task_by_pid_ns(tgid, ns);
3403 if (task)
3404 get_task_struct(task);
3405 rcu_read_unlock();
3406 if (!task)
3407 goto out;
3408
3409 /* Limit procfs to only ptraceable tasks */
3410 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3411 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3412 goto out_put_task;
3413 }
3414
3415 result = proc_pid_instantiate(dentry, task, NULL);
3416out_put_task:
3417 put_task_struct(task);
3418out:
3419 return result;
3420}
3421
3422/*
3423 * Find the first task with tgid >= tgid
3424 *
3425 */
3426struct tgid_iter {
3427 unsigned int tgid;
3428 struct task_struct *task;
3429};
3430static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3431{
3432 struct pid *pid;
3433
3434 if (iter.task)
3435 put_task_struct(iter.task);
3436 rcu_read_lock();
3437retry:
3438 iter.task = NULL;
3439 pid = find_ge_pid(iter.tgid, ns);
3440 if (pid) {
3441 iter.tgid = pid_nr_ns(pid, ns);
3442 iter.task = pid_task(pid, PIDTYPE_TGID);
3443 if (!iter.task) {
3444 iter.tgid += 1;
3445 goto retry;
3446 }
3447 get_task_struct(iter.task);
3448 }
3449 rcu_read_unlock();
3450 return iter;
3451}
3452
3453#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3454
3455/* for the /proc/ directory itself, after non-process stuff has been done */
3456int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3457{
3458 struct tgid_iter iter;
3459 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3460 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3461 loff_t pos = ctx->pos;
3462
3463 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3464 return 0;
3465
3466 if (pos == TGID_OFFSET - 2) {
3467 struct inode *inode = d_inode(fs_info->proc_self);
3468 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3469 return 0;
3470 ctx->pos = pos = pos + 1;
3471 }
3472 if (pos == TGID_OFFSET - 1) {
3473 struct inode *inode = d_inode(fs_info->proc_thread_self);
3474 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3475 return 0;
3476 ctx->pos = pos = pos + 1;
3477 }
3478 iter.tgid = pos - TGID_OFFSET;
3479 iter.task = NULL;
3480 for (iter = next_tgid(ns, iter);
3481 iter.task;
3482 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3483 char name[10 + 1];
3484 unsigned int len;
3485
3486 cond_resched();
3487 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3488 continue;
3489
3490 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3491 ctx->pos = iter.tgid + TGID_OFFSET;
3492 if (!proc_fill_cache(file, ctx, name, len,
3493 proc_pid_instantiate, iter.task, NULL)) {
3494 put_task_struct(iter.task);
3495 return 0;
3496 }
3497 }
3498 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3499 return 0;
3500}
3501
3502/*
3503 * proc_tid_comm_permission is a special permission function exclusively
3504 * used for the node /proc/<pid>/task/<tid>/comm.
3505 * It bypasses generic permission checks in the case where a task of the same
3506 * task group attempts to access the node.
3507 * The rationale behind this is that glibc and bionic access this node for
3508 * cross thread naming (pthread_set/getname_np(!self)). However, if
3509 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3510 * which locks out the cross thread naming implementation.
3511 * This function makes sure that the node is always accessible for members of
3512 * same thread group.
3513 */
3514static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3515 struct inode *inode, int mask)
3516{
3517 bool is_same_tgroup;
3518 struct task_struct *task;
3519
3520 task = get_proc_task(inode);
3521 if (!task)
3522 return -ESRCH;
3523 is_same_tgroup = same_thread_group(current, task);
3524 put_task_struct(task);
3525
3526 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3527 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3528 * read or written by the members of the corresponding
3529 * thread group.
3530 */
3531 return 0;
3532 }
3533
3534 return generic_permission(&init_user_ns, inode, mask);
3535}
3536
3537static const struct inode_operations proc_tid_comm_inode_operations = {
3538 .permission = proc_tid_comm_permission,
3539};
3540
3541/*
3542 * Tasks
3543 */
3544static const struct pid_entry tid_base_stuff[] = {
3545 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3546 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3547 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3548#ifdef CONFIG_NET
3549 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3550#endif
3551 REG("environ", S_IRUSR, proc_environ_operations),
3552 REG("auxv", S_IRUSR, proc_auxv_operations),
3553 ONE("status", S_IRUGO, proc_pid_status),
3554 ONE("personality", S_IRUSR, proc_pid_personality),
3555 ONE("limits", S_IRUGO, proc_pid_limits),
3556#ifdef CONFIG_SCHED_DEBUG
3557 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3558#endif
3559 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3560 &proc_tid_comm_inode_operations,
3561 &proc_pid_set_comm_operations, {}),
3562#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3563 ONE("syscall", S_IRUSR, proc_pid_syscall),
3564#endif
3565 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3566 ONE("stat", S_IRUGO, proc_tid_stat),
3567 ONE("statm", S_IRUGO, proc_pid_statm),
3568 REG("maps", S_IRUGO, proc_pid_maps_operations),
3569#ifdef CONFIG_PROC_CHILDREN
3570 REG("children", S_IRUGO, proc_tid_children_operations),
3571#endif
3572#ifdef CONFIG_NUMA
3573 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3574#endif
3575 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3576 LNK("cwd", proc_cwd_link),
3577 LNK("root", proc_root_link),
3578 LNK("exe", proc_exe_link),
3579 REG("mounts", S_IRUGO, proc_mounts_operations),
3580 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3581#ifdef CONFIG_PROC_PAGE_MONITOR
3582 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3583 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3584 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3585 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3586#endif
3587#ifdef CONFIG_SECURITY
3588 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3589#endif
3590#ifdef CONFIG_KALLSYMS
3591 ONE("wchan", S_IRUGO, proc_pid_wchan),
3592#endif
3593#ifdef CONFIG_STACKTRACE
3594 ONE("stack", S_IRUSR, proc_pid_stack),
3595#endif
3596#ifdef CONFIG_SCHED_INFO
3597 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3598#endif
3599#ifdef CONFIG_LATENCYTOP
3600 REG("latency", S_IRUGO, proc_lstats_operations),
3601#endif
3602#ifdef CONFIG_PROC_PID_CPUSET
3603 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3604#endif
3605#ifdef CONFIG_CGROUPS
3606 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3607#endif
3608#ifdef CONFIG_PROC_CPU_RESCTRL
3609 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3610#endif
3611 ONE("oom_score", S_IRUGO, proc_oom_score),
3612 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3613 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3614#ifdef CONFIG_AUDIT
3615 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3616 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3617#endif
3618#ifdef CONFIG_FAULT_INJECTION
3619 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3620 REG("fail-nth", 0644, proc_fail_nth_operations),
3621#endif
3622#ifdef CONFIG_TASK_IO_ACCOUNTING
3623 ONE("io", S_IRUSR, proc_tid_io_accounting),
3624#endif
3625#ifdef CONFIG_USER_NS
3626 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3627 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3628 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3629 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3630#endif
3631#ifdef CONFIG_LIVEPATCH
3632 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3633#endif
3634#ifdef CONFIG_PROC_PID_ARCH_STATUS
3635 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3636#endif
3637#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3638 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3639#endif
3640#ifdef CONFIG_KSM
3641 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3642#endif
3643};
3644
3645static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3646{
3647 return proc_pident_readdir(file, ctx,
3648 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3649}
3650
3651static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3652{
3653 return proc_pident_lookup(dir, dentry,
3654 tid_base_stuff,
3655 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3656}
3657
3658static const struct file_operations proc_tid_base_operations = {
3659 .read = generic_read_dir,
3660 .iterate_shared = proc_tid_base_readdir,
3661 .llseek = generic_file_llseek,
3662};
3663
3664static const struct inode_operations proc_tid_base_inode_operations = {
3665 .lookup = proc_tid_base_lookup,
3666 .getattr = pid_getattr,
3667 .setattr = proc_setattr,
3668};
3669
3670static struct dentry *proc_task_instantiate(struct dentry *dentry,
3671 struct task_struct *task, const void *ptr)
3672{
3673 struct inode *inode;
3674 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3675 if (!inode)
3676 return ERR_PTR(-ENOENT);
3677
3678 inode->i_op = &proc_tid_base_inode_operations;
3679 inode->i_fop = &proc_tid_base_operations;
3680 inode->i_flags |= S_IMMUTABLE;
3681
3682 set_nlink(inode, nlink_tid);
3683 pid_update_inode(task, inode);
3684
3685 d_set_d_op(dentry, &pid_dentry_operations);
3686 return d_splice_alias(inode, dentry);
3687}
3688
3689static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3690{
3691 struct task_struct *task;
3692 struct task_struct *leader = get_proc_task(dir);
3693 unsigned tid;
3694 struct proc_fs_info *fs_info;
3695 struct pid_namespace *ns;
3696 struct dentry *result = ERR_PTR(-ENOENT);
3697
3698 if (!leader)
3699 goto out_no_task;
3700
3701 tid = name_to_int(&dentry->d_name);
3702 if (tid == ~0U)
3703 goto out;
3704
3705 fs_info = proc_sb_info(dentry->d_sb);
3706 ns = fs_info->pid_ns;
3707 rcu_read_lock();
3708 task = find_task_by_pid_ns(tid, ns);
3709 if (task)
3710 get_task_struct(task);
3711 rcu_read_unlock();
3712 if (!task)
3713 goto out;
3714 if (!same_thread_group(leader, task))
3715 goto out_drop_task;
3716
3717 result = proc_task_instantiate(dentry, task, NULL);
3718out_drop_task:
3719 put_task_struct(task);
3720out:
3721 put_task_struct(leader);
3722out_no_task:
3723 return result;
3724}
3725
3726/*
3727 * Find the first tid of a thread group to return to user space.
3728 *
3729 * Usually this is just the thread group leader, but if the users
3730 * buffer was too small or there was a seek into the middle of the
3731 * directory we have more work todo.
3732 *
3733 * In the case of a short read we start with find_task_by_pid.
3734 *
3735 * In the case of a seek we start with the leader and walk nr
3736 * threads past it.
3737 */
3738static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3739 struct pid_namespace *ns)
3740{
3741 struct task_struct *pos, *task;
3742 unsigned long nr = f_pos;
3743
3744 if (nr != f_pos) /* 32bit overflow? */
3745 return NULL;
3746
3747 rcu_read_lock();
3748 task = pid_task(pid, PIDTYPE_PID);
3749 if (!task)
3750 goto fail;
3751
3752 /* Attempt to start with the tid of a thread */
3753 if (tid && nr) {
3754 pos = find_task_by_pid_ns(tid, ns);
3755 if (pos && same_thread_group(pos, task))
3756 goto found;
3757 }
3758
3759 /* If nr exceeds the number of threads there is nothing todo */
3760 if (nr >= get_nr_threads(task))
3761 goto fail;
3762
3763 /* If we haven't found our starting place yet start
3764 * with the leader and walk nr threads forward.
3765 */
3766 pos = task = task->group_leader;
3767 do {
3768 if (!nr--)
3769 goto found;
3770 } while_each_thread(task, pos);
3771fail:
3772 pos = NULL;
3773 goto out;
3774found:
3775 get_task_struct(pos);
3776out:
3777 rcu_read_unlock();
3778 return pos;
3779}
3780
3781/*
3782 * Find the next thread in the thread list.
3783 * Return NULL if there is an error or no next thread.
3784 *
3785 * The reference to the input task_struct is released.
3786 */
3787static struct task_struct *next_tid(struct task_struct *start)
3788{
3789 struct task_struct *pos = NULL;
3790 rcu_read_lock();
3791 if (pid_alive(start)) {
3792 pos = next_thread(start);
3793 if (thread_group_leader(pos))
3794 pos = NULL;
3795 else
3796 get_task_struct(pos);
3797 }
3798 rcu_read_unlock();
3799 put_task_struct(start);
3800 return pos;
3801}
3802
3803/* for the /proc/TGID/task/ directories */
3804static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3805{
3806 struct inode *inode = file_inode(file);
3807 struct task_struct *task;
3808 struct pid_namespace *ns;
3809 int tid;
3810
3811 if (proc_inode_is_dead(inode))
3812 return -ENOENT;
3813
3814 if (!dir_emit_dots(file, ctx))
3815 return 0;
3816
3817 /* f_version caches the tgid value that the last readdir call couldn't
3818 * return. lseek aka telldir automagically resets f_version to 0.
3819 */
3820 ns = proc_pid_ns(inode->i_sb);
3821 tid = (int)file->f_version;
3822 file->f_version = 0;
3823 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3824 task;
3825 task = next_tid(task), ctx->pos++) {
3826 char name[10 + 1];
3827 unsigned int len;
3828
3829 tid = task_pid_nr_ns(task, ns);
3830 if (!tid)
3831 continue; /* The task has just exited. */
3832 len = snprintf(name, sizeof(name), "%u", tid);
3833 if (!proc_fill_cache(file, ctx, name, len,
3834 proc_task_instantiate, task, NULL)) {
3835 /* returning this tgid failed, save it as the first
3836 * pid for the next readir call */
3837 file->f_version = (u64)tid;
3838 put_task_struct(task);
3839 break;
3840 }
3841 }
3842
3843 return 0;
3844}
3845
3846static int proc_task_getattr(struct user_namespace *mnt_userns,
3847 const struct path *path, struct kstat *stat,
3848 u32 request_mask, unsigned int query_flags)
3849{
3850 struct inode *inode = d_inode(path->dentry);
3851 struct task_struct *p = get_proc_task(inode);
3852 generic_fillattr(&init_user_ns, inode, stat);
3853
3854 if (p) {
3855 stat->nlink += get_nr_threads(p);
3856 put_task_struct(p);
3857 }
3858
3859 return 0;
3860}
3861
3862static const struct inode_operations proc_task_inode_operations = {
3863 .lookup = proc_task_lookup,
3864 .getattr = proc_task_getattr,
3865 .setattr = proc_setattr,
3866 .permission = proc_pid_permission,
3867};
3868
3869static const struct file_operations proc_task_operations = {
3870 .read = generic_read_dir,
3871 .iterate_shared = proc_task_readdir,
3872 .llseek = generic_file_llseek,
3873};
3874
3875void __init set_proc_pid_nlink(void)
3876{
3877 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3878 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3879}