Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98static void destroy_regulator(struct regulator *regulator);
99static void _regulator_put(struct regulator *regulator);
100
101const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110EXPORT_SYMBOL_GPL(rdev_get_name);
111
112static bool have_full_constraints(void)
113{
114 return has_full_constraints || of_have_populated_dt();
115}
116
117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118{
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128}
129
130/**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
141static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143{
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172}
173
174/**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
184static void regulator_lock(struct regulator_dev *rdev)
185{
186 regulator_lock_nested(rdev, NULL);
187}
188
189/**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
196static void regulator_unlock(struct regulator_dev *rdev)
197{
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208}
209
210static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211{
212 struct regulator_dev *c_rdev;
213 int i;
214
215 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218 if (rdev->supply->rdev == c_rdev)
219 return true;
220 }
221
222 return false;
223}
224
225static void regulator_unlock_recursive(struct regulator_dev *rdev,
226 unsigned int n_coupled)
227{
228 struct regulator_dev *c_rdev, *supply_rdev;
229 int i, supply_n_coupled;
230
231 for (i = n_coupled; i > 0; i--) {
232 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234 if (!c_rdev)
235 continue;
236
237 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238 supply_rdev = c_rdev->supply->rdev;
239 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241 regulator_unlock_recursive(supply_rdev,
242 supply_n_coupled);
243 }
244
245 regulator_unlock(c_rdev);
246 }
247}
248
249static int regulator_lock_recursive(struct regulator_dev *rdev,
250 struct regulator_dev **new_contended_rdev,
251 struct regulator_dev **old_contended_rdev,
252 struct ww_acquire_ctx *ww_ctx)
253{
254 struct regulator_dev *c_rdev;
255 int i, err;
256
257 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260 if (!c_rdev)
261 continue;
262
263 if (c_rdev != *old_contended_rdev) {
264 err = regulator_lock_nested(c_rdev, ww_ctx);
265 if (err) {
266 if (err == -EDEADLK) {
267 *new_contended_rdev = c_rdev;
268 goto err_unlock;
269 }
270
271 /* shouldn't happen */
272 WARN_ON_ONCE(err != -EALREADY);
273 }
274 } else {
275 *old_contended_rdev = NULL;
276 }
277
278 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 err = regulator_lock_recursive(c_rdev->supply->rdev,
280 new_contended_rdev,
281 old_contended_rdev,
282 ww_ctx);
283 if (err) {
284 regulator_unlock(c_rdev);
285 goto err_unlock;
286 }
287 }
288 }
289
290 return 0;
291
292err_unlock:
293 regulator_unlock_recursive(rdev, i);
294
295 return err;
296}
297
298/**
299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300 * regulators
301 * @rdev: regulator source
302 * @ww_ctx: w/w mutex acquire context
303 *
304 * Unlock all regulators related with rdev by coupling or supplying.
305 */
306static void regulator_unlock_dependent(struct regulator_dev *rdev,
307 struct ww_acquire_ctx *ww_ctx)
308{
309 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310 ww_acquire_fini(ww_ctx);
311}
312
313/**
314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315 * @rdev: regulator source
316 * @ww_ctx: w/w mutex acquire context
317 *
318 * This function as a wrapper on regulator_lock_recursive(), which locks
319 * all regulators related with rdev by coupling or supplying.
320 */
321static void regulator_lock_dependent(struct regulator_dev *rdev,
322 struct ww_acquire_ctx *ww_ctx)
323{
324 struct regulator_dev *new_contended_rdev = NULL;
325 struct regulator_dev *old_contended_rdev = NULL;
326 int err;
327
328 mutex_lock(®ulator_list_mutex);
329
330 ww_acquire_init(ww_ctx, ®ulator_ww_class);
331
332 do {
333 if (new_contended_rdev) {
334 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335 old_contended_rdev = new_contended_rdev;
336 old_contended_rdev->ref_cnt++;
337 }
338
339 err = regulator_lock_recursive(rdev,
340 &new_contended_rdev,
341 &old_contended_rdev,
342 ww_ctx);
343
344 if (old_contended_rdev)
345 regulator_unlock(old_contended_rdev);
346
347 } while (err == -EDEADLK);
348
349 ww_acquire_done(ww_ctx);
350
351 mutex_unlock(®ulator_list_mutex);
352}
353
354/**
355 * of_get_child_regulator - get a child regulator device node
356 * based on supply name
357 * @parent: Parent device node
358 * @prop_name: Combination regulator supply name and "-supply"
359 *
360 * Traverse all child nodes.
361 * Extract the child regulator device node corresponding to the supply name.
362 * returns the device node corresponding to the regulator if found, else
363 * returns NULL.
364 */
365static struct device_node *of_get_child_regulator(struct device_node *parent,
366 const char *prop_name)
367{
368 struct device_node *regnode = NULL;
369 struct device_node *child = NULL;
370
371 for_each_child_of_node(parent, child) {
372 regnode = of_parse_phandle(child, prop_name, 0);
373
374 if (!regnode) {
375 regnode = of_get_child_regulator(child, prop_name);
376 if (regnode)
377 goto err_node_put;
378 } else {
379 goto err_node_put;
380 }
381 }
382 return NULL;
383
384err_node_put:
385 of_node_put(child);
386 return regnode;
387}
388
389/**
390 * of_get_regulator - get a regulator device node based on supply name
391 * @dev: Device pointer for the consumer (of regulator) device
392 * @supply: regulator supply name
393 *
394 * Extract the regulator device node corresponding to the supply name.
395 * returns the device node corresponding to the regulator if found, else
396 * returns NULL.
397 */
398static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399{
400 struct device_node *regnode = NULL;
401 char prop_name[64]; /* 64 is max size of property name */
402
403 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405 snprintf(prop_name, 64, "%s-supply", supply);
406 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408 if (!regnode) {
409 regnode = of_get_child_regulator(dev->of_node, prop_name);
410 if (regnode)
411 return regnode;
412
413 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414 prop_name, dev->of_node);
415 return NULL;
416 }
417 return regnode;
418}
419
420/* Platform voltage constraint check */
421int regulator_check_voltage(struct regulator_dev *rdev,
422 int *min_uV, int *max_uV)
423{
424 BUG_ON(*min_uV > *max_uV);
425
426 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427 rdev_err(rdev, "voltage operation not allowed\n");
428 return -EPERM;
429 }
430
431 if (*max_uV > rdev->constraints->max_uV)
432 *max_uV = rdev->constraints->max_uV;
433 if (*min_uV < rdev->constraints->min_uV)
434 *min_uV = rdev->constraints->min_uV;
435
436 if (*min_uV > *max_uV) {
437 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438 *min_uV, *max_uV);
439 return -EINVAL;
440 }
441
442 return 0;
443}
444
445/* return 0 if the state is valid */
446static int regulator_check_states(suspend_state_t state)
447{
448 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449}
450
451/* Make sure we select a voltage that suits the needs of all
452 * regulator consumers
453 */
454int regulator_check_consumers(struct regulator_dev *rdev,
455 int *min_uV, int *max_uV,
456 suspend_state_t state)
457{
458 struct regulator *regulator;
459 struct regulator_voltage *voltage;
460
461 list_for_each_entry(regulator, &rdev->consumer_list, list) {
462 voltage = ®ulator->voltage[state];
463 /*
464 * Assume consumers that didn't say anything are OK
465 * with anything in the constraint range.
466 */
467 if (!voltage->min_uV && !voltage->max_uV)
468 continue;
469
470 if (*max_uV > voltage->max_uV)
471 *max_uV = voltage->max_uV;
472 if (*min_uV < voltage->min_uV)
473 *min_uV = voltage->min_uV;
474 }
475
476 if (*min_uV > *max_uV) {
477 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478 *min_uV, *max_uV);
479 return -EINVAL;
480 }
481
482 return 0;
483}
484
485/* current constraint check */
486static int regulator_check_current_limit(struct regulator_dev *rdev,
487 int *min_uA, int *max_uA)
488{
489 BUG_ON(*min_uA > *max_uA);
490
491 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492 rdev_err(rdev, "current operation not allowed\n");
493 return -EPERM;
494 }
495
496 if (*max_uA > rdev->constraints->max_uA)
497 *max_uA = rdev->constraints->max_uA;
498 if (*min_uA < rdev->constraints->min_uA)
499 *min_uA = rdev->constraints->min_uA;
500
501 if (*min_uA > *max_uA) {
502 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503 *min_uA, *max_uA);
504 return -EINVAL;
505 }
506
507 return 0;
508}
509
510/* operating mode constraint check */
511static int regulator_mode_constrain(struct regulator_dev *rdev,
512 unsigned int *mode)
513{
514 switch (*mode) {
515 case REGULATOR_MODE_FAST:
516 case REGULATOR_MODE_NORMAL:
517 case REGULATOR_MODE_IDLE:
518 case REGULATOR_MODE_STANDBY:
519 break;
520 default:
521 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 return -EINVAL;
523 }
524
525 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526 rdev_err(rdev, "mode operation not allowed\n");
527 return -EPERM;
528 }
529
530 /* The modes are bitmasks, the most power hungry modes having
531 * the lowest values. If the requested mode isn't supported
532 * try higher modes.
533 */
534 while (*mode) {
535 if (rdev->constraints->valid_modes_mask & *mode)
536 return 0;
537 *mode /= 2;
538 }
539
540 return -EINVAL;
541}
542
543static inline struct regulator_state *
544regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545{
546 if (rdev->constraints == NULL)
547 return NULL;
548
549 switch (state) {
550 case PM_SUSPEND_STANDBY:
551 return &rdev->constraints->state_standby;
552 case PM_SUSPEND_MEM:
553 return &rdev->constraints->state_mem;
554 case PM_SUSPEND_MAX:
555 return &rdev->constraints->state_disk;
556 default:
557 return NULL;
558 }
559}
560
561static const struct regulator_state *
562regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563{
564 const struct regulator_state *rstate;
565
566 rstate = regulator_get_suspend_state(rdev, state);
567 if (rstate == NULL)
568 return NULL;
569
570 /* If we have no suspend mode configuration don't set anything;
571 * only warn if the driver implements set_suspend_voltage or
572 * set_suspend_mode callback.
573 */
574 if (rstate->enabled != ENABLE_IN_SUSPEND &&
575 rstate->enabled != DISABLE_IN_SUSPEND) {
576 if (rdev->desc->ops->set_suspend_voltage ||
577 rdev->desc->ops->set_suspend_mode)
578 rdev_warn(rdev, "No configuration\n");
579 return NULL;
580 }
581
582 return rstate;
583}
584
585static ssize_t microvolts_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589 int uV;
590
591 regulator_lock(rdev);
592 uV = regulator_get_voltage_rdev(rdev);
593 regulator_unlock(rdev);
594
595 if (uV < 0)
596 return uV;
597 return sprintf(buf, "%d\n", uV);
598}
599static DEVICE_ATTR_RO(microvolts);
600
601static ssize_t microamps_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603{
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607}
608static DEVICE_ATTR_RO(microamps);
609
610static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611 char *buf)
612{
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615 return sprintf(buf, "%s\n", rdev_get_name(rdev));
616}
617static DEVICE_ATTR_RO(name);
618
619static const char *regulator_opmode_to_str(int mode)
620{
621 switch (mode) {
622 case REGULATOR_MODE_FAST:
623 return "fast";
624 case REGULATOR_MODE_NORMAL:
625 return "normal";
626 case REGULATOR_MODE_IDLE:
627 return "idle";
628 case REGULATOR_MODE_STANDBY:
629 return "standby";
630 }
631 return "unknown";
632}
633
634static ssize_t regulator_print_opmode(char *buf, int mode)
635{
636 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637}
638
639static ssize_t opmode_show(struct device *dev,
640 struct device_attribute *attr, char *buf)
641{
642 struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645}
646static DEVICE_ATTR_RO(opmode);
647
648static ssize_t regulator_print_state(char *buf, int state)
649{
650 if (state > 0)
651 return sprintf(buf, "enabled\n");
652 else if (state == 0)
653 return sprintf(buf, "disabled\n");
654 else
655 return sprintf(buf, "unknown\n");
656}
657
658static ssize_t state_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 ssize_t ret;
663
664 regulator_lock(rdev);
665 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666 regulator_unlock(rdev);
667
668 return ret;
669}
670static DEVICE_ATTR_RO(state);
671
672static ssize_t status_show(struct device *dev,
673 struct device_attribute *attr, char *buf)
674{
675 struct regulator_dev *rdev = dev_get_drvdata(dev);
676 int status;
677 char *label;
678
679 status = rdev->desc->ops->get_status(rdev);
680 if (status < 0)
681 return status;
682
683 switch (status) {
684 case REGULATOR_STATUS_OFF:
685 label = "off";
686 break;
687 case REGULATOR_STATUS_ON:
688 label = "on";
689 break;
690 case REGULATOR_STATUS_ERROR:
691 label = "error";
692 break;
693 case REGULATOR_STATUS_FAST:
694 label = "fast";
695 break;
696 case REGULATOR_STATUS_NORMAL:
697 label = "normal";
698 break;
699 case REGULATOR_STATUS_IDLE:
700 label = "idle";
701 break;
702 case REGULATOR_STATUS_STANDBY:
703 label = "standby";
704 break;
705 case REGULATOR_STATUS_BYPASS:
706 label = "bypass";
707 break;
708 case REGULATOR_STATUS_UNDEFINED:
709 label = "undefined";
710 break;
711 default:
712 return -ERANGE;
713 }
714
715 return sprintf(buf, "%s\n", label);
716}
717static DEVICE_ATTR_RO(status);
718
719static ssize_t min_microamps_show(struct device *dev,
720 struct device_attribute *attr, char *buf)
721{
722 struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724 if (!rdev->constraints)
725 return sprintf(buf, "constraint not defined\n");
726
727 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728}
729static DEVICE_ATTR_RO(min_microamps);
730
731static ssize_t max_microamps_show(struct device *dev,
732 struct device_attribute *attr, char *buf)
733{
734 struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736 if (!rdev->constraints)
737 return sprintf(buf, "constraint not defined\n");
738
739 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740}
741static DEVICE_ATTR_RO(max_microamps);
742
743static ssize_t min_microvolts_show(struct device *dev,
744 struct device_attribute *attr, char *buf)
745{
746 struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748 if (!rdev->constraints)
749 return sprintf(buf, "constraint not defined\n");
750
751 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752}
753static DEVICE_ATTR_RO(min_microvolts);
754
755static ssize_t max_microvolts_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757{
758 struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760 if (!rdev->constraints)
761 return sprintf(buf, "constraint not defined\n");
762
763 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764}
765static DEVICE_ATTR_RO(max_microvolts);
766
767static ssize_t requested_microamps_show(struct device *dev,
768 struct device_attribute *attr, char *buf)
769{
770 struct regulator_dev *rdev = dev_get_drvdata(dev);
771 struct regulator *regulator;
772 int uA = 0;
773
774 regulator_lock(rdev);
775 list_for_each_entry(regulator, &rdev->consumer_list, list) {
776 if (regulator->enable_count)
777 uA += regulator->uA_load;
778 }
779 regulator_unlock(rdev);
780 return sprintf(buf, "%d\n", uA);
781}
782static DEVICE_ATTR_RO(requested_microamps);
783
784static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785 char *buf)
786{
787 struct regulator_dev *rdev = dev_get_drvdata(dev);
788 return sprintf(buf, "%d\n", rdev->use_count);
789}
790static DEVICE_ATTR_RO(num_users);
791
792static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794{
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797 switch (rdev->desc->type) {
798 case REGULATOR_VOLTAGE:
799 return sprintf(buf, "voltage\n");
800 case REGULATOR_CURRENT:
801 return sprintf(buf, "current\n");
802 }
803 return sprintf(buf, "unknown\n");
804}
805static DEVICE_ATTR_RO(type);
806
807static ssize_t suspend_mem_microvolts_show(struct device *dev,
808 struct device_attribute *attr, char *buf)
809{
810 struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813}
814static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816static ssize_t suspend_disk_microvolts_show(struct device *dev,
817 struct device_attribute *attr, char *buf)
818{
819 struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822}
823static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825static ssize_t suspend_standby_microvolts_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827{
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831}
832static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834static ssize_t suspend_mem_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_mem.mode);
841}
842static DEVICE_ATTR_RO(suspend_mem_mode);
843
844static ssize_t suspend_disk_mode_show(struct device *dev,
845 struct device_attribute *attr, char *buf)
846{
847 struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849 return regulator_print_opmode(buf,
850 rdev->constraints->state_disk.mode);
851}
852static DEVICE_ATTR_RO(suspend_disk_mode);
853
854static ssize_t suspend_standby_mode_show(struct device *dev,
855 struct device_attribute *attr, char *buf)
856{
857 struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859 return regulator_print_opmode(buf,
860 rdev->constraints->state_standby.mode);
861}
862static DEVICE_ATTR_RO(suspend_standby_mode);
863
864static ssize_t suspend_mem_state_show(struct device *dev,
865 struct device_attribute *attr, char *buf)
866{
867 struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869 return regulator_print_state(buf,
870 rdev->constraints->state_mem.enabled);
871}
872static DEVICE_ATTR_RO(suspend_mem_state);
873
874static ssize_t suspend_disk_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876{
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_disk.enabled);
881}
882static DEVICE_ATTR_RO(suspend_disk_state);
883
884static ssize_t suspend_standby_state_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return regulator_print_state(buf,
890 rdev->constraints->state_standby.enabled);
891}
892static DEVICE_ATTR_RO(suspend_standby_state);
893
894static ssize_t bypass_show(struct device *dev,
895 struct device_attribute *attr, char *buf)
896{
897 struct regulator_dev *rdev = dev_get_drvdata(dev);
898 const char *report;
899 bool bypass;
900 int ret;
901
902 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904 if (ret != 0)
905 report = "unknown";
906 else if (bypass)
907 report = "enabled";
908 else
909 report = "disabled";
910
911 return sprintf(buf, "%s\n", report);
912}
913static DEVICE_ATTR_RO(bypass);
914
915#define REGULATOR_ERROR_ATTR(name, bit) \
916 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
917 char *buf) \
918 { \
919 int ret; \
920 unsigned int flags; \
921 struct regulator_dev *rdev = dev_get_drvdata(dev); \
922 ret = _regulator_get_error_flags(rdev, &flags); \
923 if (ret) \
924 return ret; \
925 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
926 } \
927 static DEVICE_ATTR_RO(name)
928
929REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939/* Calculate the new optimum regulator operating mode based on the new total
940 * consumer load. All locks held by caller
941 */
942static int drms_uA_update(struct regulator_dev *rdev)
943{
944 struct regulator *sibling;
945 int current_uA = 0, output_uV, input_uV, err;
946 unsigned int mode;
947
948 /*
949 * first check to see if we can set modes at all, otherwise just
950 * tell the consumer everything is OK.
951 */
952 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953 rdev_dbg(rdev, "DRMS operation not allowed\n");
954 return 0;
955 }
956
957 if (!rdev->desc->ops->get_optimum_mode &&
958 !rdev->desc->ops->set_load)
959 return 0;
960
961 if (!rdev->desc->ops->set_mode &&
962 !rdev->desc->ops->set_load)
963 return -EINVAL;
964
965 /* calc total requested load */
966 list_for_each_entry(sibling, &rdev->consumer_list, list) {
967 if (sibling->enable_count)
968 current_uA += sibling->uA_load;
969 }
970
971 current_uA += rdev->constraints->system_load;
972
973 if (rdev->desc->ops->set_load) {
974 /* set the optimum mode for our new total regulator load */
975 err = rdev->desc->ops->set_load(rdev, current_uA);
976 if (err < 0)
977 rdev_err(rdev, "failed to set load %d: %pe\n",
978 current_uA, ERR_PTR(err));
979 } else {
980 /* get output voltage */
981 output_uV = regulator_get_voltage_rdev(rdev);
982 if (output_uV <= 0) {
983 rdev_err(rdev, "invalid output voltage found\n");
984 return -EINVAL;
985 }
986
987 /* get input voltage */
988 input_uV = 0;
989 if (rdev->supply)
990 input_uV = regulator_get_voltage(rdev->supply);
991 if (input_uV <= 0)
992 input_uV = rdev->constraints->input_uV;
993 if (input_uV <= 0) {
994 rdev_err(rdev, "invalid input voltage found\n");
995 return -EINVAL;
996 }
997
998 /* now get the optimum mode for our new total regulator load */
999 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1000 output_uV, current_uA);
1001
1002 /* check the new mode is allowed */
1003 err = regulator_mode_constrain(rdev, &mode);
1004 if (err < 0) {
1005 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1006 current_uA, input_uV, output_uV, ERR_PTR(err));
1007 return err;
1008 }
1009
1010 err = rdev->desc->ops->set_mode(rdev, mode);
1011 if (err < 0)
1012 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1013 mode, ERR_PTR(err));
1014 }
1015
1016 return err;
1017}
1018
1019static int __suspend_set_state(struct regulator_dev *rdev,
1020 const struct regulator_state *rstate)
1021{
1022 int ret = 0;
1023
1024 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1025 rdev->desc->ops->set_suspend_enable)
1026 ret = rdev->desc->ops->set_suspend_enable(rdev);
1027 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1028 rdev->desc->ops->set_suspend_disable)
1029 ret = rdev->desc->ops->set_suspend_disable(rdev);
1030 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1031 ret = 0;
1032
1033 if (ret < 0) {
1034 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1035 return ret;
1036 }
1037
1038 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1039 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1040 if (ret < 0) {
1041 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1042 return ret;
1043 }
1044 }
1045
1046 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1047 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1048 if (ret < 0) {
1049 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1050 return ret;
1051 }
1052 }
1053
1054 return ret;
1055}
1056
1057static int suspend_set_initial_state(struct regulator_dev *rdev)
1058{
1059 const struct regulator_state *rstate;
1060
1061 rstate = regulator_get_suspend_state_check(rdev,
1062 rdev->constraints->initial_state);
1063 if (!rstate)
1064 return 0;
1065
1066 return __suspend_set_state(rdev, rstate);
1067}
1068
1069#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1070static void print_constraints_debug(struct regulator_dev *rdev)
1071{
1072 struct regulation_constraints *constraints = rdev->constraints;
1073 char buf[160] = "";
1074 size_t len = sizeof(buf) - 1;
1075 int count = 0;
1076 int ret;
1077
1078 if (constraints->min_uV && constraints->max_uV) {
1079 if (constraints->min_uV == constraints->max_uV)
1080 count += scnprintf(buf + count, len - count, "%d mV ",
1081 constraints->min_uV / 1000);
1082 else
1083 count += scnprintf(buf + count, len - count,
1084 "%d <--> %d mV ",
1085 constraints->min_uV / 1000,
1086 constraints->max_uV / 1000);
1087 }
1088
1089 if (!constraints->min_uV ||
1090 constraints->min_uV != constraints->max_uV) {
1091 ret = regulator_get_voltage_rdev(rdev);
1092 if (ret > 0)
1093 count += scnprintf(buf + count, len - count,
1094 "at %d mV ", ret / 1000);
1095 }
1096
1097 if (constraints->uV_offset)
1098 count += scnprintf(buf + count, len - count, "%dmV offset ",
1099 constraints->uV_offset / 1000);
1100
1101 if (constraints->min_uA && constraints->max_uA) {
1102 if (constraints->min_uA == constraints->max_uA)
1103 count += scnprintf(buf + count, len - count, "%d mA ",
1104 constraints->min_uA / 1000);
1105 else
1106 count += scnprintf(buf + count, len - count,
1107 "%d <--> %d mA ",
1108 constraints->min_uA / 1000,
1109 constraints->max_uA / 1000);
1110 }
1111
1112 if (!constraints->min_uA ||
1113 constraints->min_uA != constraints->max_uA) {
1114 ret = _regulator_get_current_limit(rdev);
1115 if (ret > 0)
1116 count += scnprintf(buf + count, len - count,
1117 "at %d mA ", ret / 1000);
1118 }
1119
1120 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1121 count += scnprintf(buf + count, len - count, "fast ");
1122 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1123 count += scnprintf(buf + count, len - count, "normal ");
1124 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1125 count += scnprintf(buf + count, len - count, "idle ");
1126 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1127 count += scnprintf(buf + count, len - count, "standby ");
1128
1129 if (!count)
1130 count = scnprintf(buf, len, "no parameters");
1131 else
1132 --count;
1133
1134 count += scnprintf(buf + count, len - count, ", %s",
1135 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1136
1137 rdev_dbg(rdev, "%s\n", buf);
1138}
1139#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1140static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1141#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1142
1143static void print_constraints(struct regulator_dev *rdev)
1144{
1145 struct regulation_constraints *constraints = rdev->constraints;
1146
1147 print_constraints_debug(rdev);
1148
1149 if ((constraints->min_uV != constraints->max_uV) &&
1150 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1151 rdev_warn(rdev,
1152 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1153}
1154
1155static int machine_constraints_voltage(struct regulator_dev *rdev,
1156 struct regulation_constraints *constraints)
1157{
1158 const struct regulator_ops *ops = rdev->desc->ops;
1159 int ret;
1160
1161 /* do we need to apply the constraint voltage */
1162 if (rdev->constraints->apply_uV &&
1163 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1164 int target_min, target_max;
1165 int current_uV = regulator_get_voltage_rdev(rdev);
1166
1167 if (current_uV == -ENOTRECOVERABLE) {
1168 /* This regulator can't be read and must be initialized */
1169 rdev_info(rdev, "Setting %d-%duV\n",
1170 rdev->constraints->min_uV,
1171 rdev->constraints->max_uV);
1172 _regulator_do_set_voltage(rdev,
1173 rdev->constraints->min_uV,
1174 rdev->constraints->max_uV);
1175 current_uV = regulator_get_voltage_rdev(rdev);
1176 }
1177
1178 if (current_uV < 0) {
1179 if (current_uV != -EPROBE_DEFER)
1180 rdev_err(rdev,
1181 "failed to get the current voltage: %pe\n",
1182 ERR_PTR(current_uV));
1183 return current_uV;
1184 }
1185
1186 /*
1187 * If we're below the minimum voltage move up to the
1188 * minimum voltage, if we're above the maximum voltage
1189 * then move down to the maximum.
1190 */
1191 target_min = current_uV;
1192 target_max = current_uV;
1193
1194 if (current_uV < rdev->constraints->min_uV) {
1195 target_min = rdev->constraints->min_uV;
1196 target_max = rdev->constraints->min_uV;
1197 }
1198
1199 if (current_uV > rdev->constraints->max_uV) {
1200 target_min = rdev->constraints->max_uV;
1201 target_max = rdev->constraints->max_uV;
1202 }
1203
1204 if (target_min != current_uV || target_max != current_uV) {
1205 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1206 current_uV, target_min, target_max);
1207 ret = _regulator_do_set_voltage(
1208 rdev, target_min, target_max);
1209 if (ret < 0) {
1210 rdev_err(rdev,
1211 "failed to apply %d-%duV constraint: %pe\n",
1212 target_min, target_max, ERR_PTR(ret));
1213 return ret;
1214 }
1215 }
1216 }
1217
1218 /* constrain machine-level voltage specs to fit
1219 * the actual range supported by this regulator.
1220 */
1221 if (ops->list_voltage && rdev->desc->n_voltages) {
1222 int count = rdev->desc->n_voltages;
1223 int i;
1224 int min_uV = INT_MAX;
1225 int max_uV = INT_MIN;
1226 int cmin = constraints->min_uV;
1227 int cmax = constraints->max_uV;
1228
1229 /* it's safe to autoconfigure fixed-voltage supplies
1230 * and the constraints are used by list_voltage.
1231 */
1232 if (count == 1 && !cmin) {
1233 cmin = 1;
1234 cmax = INT_MAX;
1235 constraints->min_uV = cmin;
1236 constraints->max_uV = cmax;
1237 }
1238
1239 /* voltage constraints are optional */
1240 if ((cmin == 0) && (cmax == 0))
1241 return 0;
1242
1243 /* else require explicit machine-level constraints */
1244 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1245 rdev_err(rdev, "invalid voltage constraints\n");
1246 return -EINVAL;
1247 }
1248
1249 /* no need to loop voltages if range is continuous */
1250 if (rdev->desc->continuous_voltage_range)
1251 return 0;
1252
1253 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1254 for (i = 0; i < count; i++) {
1255 int value;
1256
1257 value = ops->list_voltage(rdev, i);
1258 if (value <= 0)
1259 continue;
1260
1261 /* maybe adjust [min_uV..max_uV] */
1262 if (value >= cmin && value < min_uV)
1263 min_uV = value;
1264 if (value <= cmax && value > max_uV)
1265 max_uV = value;
1266 }
1267
1268 /* final: [min_uV..max_uV] valid iff constraints valid */
1269 if (max_uV < min_uV) {
1270 rdev_err(rdev,
1271 "unsupportable voltage constraints %u-%uuV\n",
1272 min_uV, max_uV);
1273 return -EINVAL;
1274 }
1275
1276 /* use regulator's subset of machine constraints */
1277 if (constraints->min_uV < min_uV) {
1278 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1279 constraints->min_uV, min_uV);
1280 constraints->min_uV = min_uV;
1281 }
1282 if (constraints->max_uV > max_uV) {
1283 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1284 constraints->max_uV, max_uV);
1285 constraints->max_uV = max_uV;
1286 }
1287 }
1288
1289 return 0;
1290}
1291
1292static int machine_constraints_current(struct regulator_dev *rdev,
1293 struct regulation_constraints *constraints)
1294{
1295 const struct regulator_ops *ops = rdev->desc->ops;
1296 int ret;
1297
1298 if (!constraints->min_uA && !constraints->max_uA)
1299 return 0;
1300
1301 if (constraints->min_uA > constraints->max_uA) {
1302 rdev_err(rdev, "Invalid current constraints\n");
1303 return -EINVAL;
1304 }
1305
1306 if (!ops->set_current_limit || !ops->get_current_limit) {
1307 rdev_warn(rdev, "Operation of current configuration missing\n");
1308 return 0;
1309 }
1310
1311 /* Set regulator current in constraints range */
1312 ret = ops->set_current_limit(rdev, constraints->min_uA,
1313 constraints->max_uA);
1314 if (ret < 0) {
1315 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1316 return ret;
1317 }
1318
1319 return 0;
1320}
1321
1322static int _regulator_do_enable(struct regulator_dev *rdev);
1323
1324static int notif_set_limit(struct regulator_dev *rdev,
1325 int (*set)(struct regulator_dev *, int, int, bool),
1326 int limit, int severity)
1327{
1328 bool enable;
1329
1330 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1331 enable = false;
1332 limit = 0;
1333 } else {
1334 enable = true;
1335 }
1336
1337 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1338 limit = 0;
1339
1340 return set(rdev, limit, severity, enable);
1341}
1342
1343static int handle_notify_limits(struct regulator_dev *rdev,
1344 int (*set)(struct regulator_dev *, int, int, bool),
1345 struct notification_limit *limits)
1346{
1347 int ret = 0;
1348
1349 if (!set)
1350 return -EOPNOTSUPP;
1351
1352 if (limits->prot)
1353 ret = notif_set_limit(rdev, set, limits->prot,
1354 REGULATOR_SEVERITY_PROT);
1355 if (ret)
1356 return ret;
1357
1358 if (limits->err)
1359 ret = notif_set_limit(rdev, set, limits->err,
1360 REGULATOR_SEVERITY_ERR);
1361 if (ret)
1362 return ret;
1363
1364 if (limits->warn)
1365 ret = notif_set_limit(rdev, set, limits->warn,
1366 REGULATOR_SEVERITY_WARN);
1367
1368 return ret;
1369}
1370/**
1371 * set_machine_constraints - sets regulator constraints
1372 * @rdev: regulator source
1373 *
1374 * Allows platform initialisation code to define and constrain
1375 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1376 * Constraints *must* be set by platform code in order for some
1377 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1378 * set_mode.
1379 */
1380static int set_machine_constraints(struct regulator_dev *rdev)
1381{
1382 int ret = 0;
1383 const struct regulator_ops *ops = rdev->desc->ops;
1384
1385 ret = machine_constraints_voltage(rdev, rdev->constraints);
1386 if (ret != 0)
1387 return ret;
1388
1389 ret = machine_constraints_current(rdev, rdev->constraints);
1390 if (ret != 0)
1391 return ret;
1392
1393 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1394 ret = ops->set_input_current_limit(rdev,
1395 rdev->constraints->ilim_uA);
1396 if (ret < 0) {
1397 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1398 return ret;
1399 }
1400 }
1401
1402 /* do we need to setup our suspend state */
1403 if (rdev->constraints->initial_state) {
1404 ret = suspend_set_initial_state(rdev);
1405 if (ret < 0) {
1406 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1407 return ret;
1408 }
1409 }
1410
1411 if (rdev->constraints->initial_mode) {
1412 if (!ops->set_mode) {
1413 rdev_err(rdev, "no set_mode operation\n");
1414 return -EINVAL;
1415 }
1416
1417 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1418 if (ret < 0) {
1419 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1420 return ret;
1421 }
1422 } else if (rdev->constraints->system_load) {
1423 /*
1424 * We'll only apply the initial system load if an
1425 * initial mode wasn't specified.
1426 */
1427 drms_uA_update(rdev);
1428 }
1429
1430 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1431 && ops->set_ramp_delay) {
1432 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1433 if (ret < 0) {
1434 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1435 return ret;
1436 }
1437 }
1438
1439 if (rdev->constraints->pull_down && ops->set_pull_down) {
1440 ret = ops->set_pull_down(rdev);
1441 if (ret < 0) {
1442 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1443 return ret;
1444 }
1445 }
1446
1447 if (rdev->constraints->soft_start && ops->set_soft_start) {
1448 ret = ops->set_soft_start(rdev);
1449 if (ret < 0) {
1450 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1451 return ret;
1452 }
1453 }
1454
1455 /*
1456 * Existing logic does not warn if over_current_protection is given as
1457 * a constraint but driver does not support that. I think we should
1458 * warn about this type of issues as it is possible someone changes
1459 * PMIC on board to another type - and the another PMIC's driver does
1460 * not support setting protection. Board composer may happily believe
1461 * the DT limits are respected - especially if the new PMIC HW also
1462 * supports protection but the driver does not. I won't change the logic
1463 * without hearing more experienced opinion on this though.
1464 *
1465 * If warning is seen as a good idea then we can merge handling the
1466 * over-curret protection and detection and get rid of this special
1467 * handling.
1468 */
1469 if (rdev->constraints->over_current_protection
1470 && ops->set_over_current_protection) {
1471 int lim = rdev->constraints->over_curr_limits.prot;
1472
1473 ret = ops->set_over_current_protection(rdev, lim,
1474 REGULATOR_SEVERITY_PROT,
1475 true);
1476 if (ret < 0) {
1477 rdev_err(rdev, "failed to set over current protection: %pe\n",
1478 ERR_PTR(ret));
1479 return ret;
1480 }
1481 }
1482
1483 if (rdev->constraints->over_current_detection)
1484 ret = handle_notify_limits(rdev,
1485 ops->set_over_current_protection,
1486 &rdev->constraints->over_curr_limits);
1487 if (ret) {
1488 if (ret != -EOPNOTSUPP) {
1489 rdev_err(rdev, "failed to set over current limits: %pe\n",
1490 ERR_PTR(ret));
1491 return ret;
1492 }
1493 rdev_warn(rdev,
1494 "IC does not support requested over-current limits\n");
1495 }
1496
1497 if (rdev->constraints->over_voltage_detection)
1498 ret = handle_notify_limits(rdev,
1499 ops->set_over_voltage_protection,
1500 &rdev->constraints->over_voltage_limits);
1501 if (ret) {
1502 if (ret != -EOPNOTSUPP) {
1503 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1504 ERR_PTR(ret));
1505 return ret;
1506 }
1507 rdev_warn(rdev,
1508 "IC does not support requested over voltage limits\n");
1509 }
1510
1511 if (rdev->constraints->under_voltage_detection)
1512 ret = handle_notify_limits(rdev,
1513 ops->set_under_voltage_protection,
1514 &rdev->constraints->under_voltage_limits);
1515 if (ret) {
1516 if (ret != -EOPNOTSUPP) {
1517 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1518 ERR_PTR(ret));
1519 return ret;
1520 }
1521 rdev_warn(rdev,
1522 "IC does not support requested under voltage limits\n");
1523 }
1524
1525 if (rdev->constraints->over_temp_detection)
1526 ret = handle_notify_limits(rdev,
1527 ops->set_thermal_protection,
1528 &rdev->constraints->temp_limits);
1529 if (ret) {
1530 if (ret != -EOPNOTSUPP) {
1531 rdev_err(rdev, "failed to set temperature limits %pe\n",
1532 ERR_PTR(ret));
1533 return ret;
1534 }
1535 rdev_warn(rdev,
1536 "IC does not support requested temperature limits\n");
1537 }
1538
1539 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1540 bool ad_state = (rdev->constraints->active_discharge ==
1541 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1542
1543 ret = ops->set_active_discharge(rdev, ad_state);
1544 if (ret < 0) {
1545 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1546 return ret;
1547 }
1548 }
1549
1550 /*
1551 * If there is no mechanism for controlling the regulator then
1552 * flag it as always_on so we don't end up duplicating checks
1553 * for this so much. Note that we could control the state of
1554 * a supply to control the output on a regulator that has no
1555 * direct control.
1556 */
1557 if (!rdev->ena_pin && !ops->enable) {
1558 if (rdev->supply_name && !rdev->supply)
1559 return -EPROBE_DEFER;
1560
1561 if (rdev->supply)
1562 rdev->constraints->always_on =
1563 rdev->supply->rdev->constraints->always_on;
1564 else
1565 rdev->constraints->always_on = true;
1566 }
1567
1568 /* If the constraints say the regulator should be on at this point
1569 * and we have control then make sure it is enabled.
1570 */
1571 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1572 /* If we want to enable this regulator, make sure that we know
1573 * the supplying regulator.
1574 */
1575 if (rdev->supply_name && !rdev->supply)
1576 return -EPROBE_DEFER;
1577
1578 if (rdev->supply) {
1579 ret = regulator_enable(rdev->supply);
1580 if (ret < 0) {
1581 _regulator_put(rdev->supply);
1582 rdev->supply = NULL;
1583 return ret;
1584 }
1585 }
1586
1587 ret = _regulator_do_enable(rdev);
1588 if (ret < 0 && ret != -EINVAL) {
1589 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1590 return ret;
1591 }
1592
1593 if (rdev->constraints->always_on)
1594 rdev->use_count++;
1595 } else if (rdev->desc->off_on_delay) {
1596 rdev->last_off = ktime_get();
1597 }
1598
1599 print_constraints(rdev);
1600 return 0;
1601}
1602
1603/**
1604 * set_supply - set regulator supply regulator
1605 * @rdev: regulator name
1606 * @supply_rdev: supply regulator name
1607 *
1608 * Called by platform initialisation code to set the supply regulator for this
1609 * regulator. This ensures that a regulators supply will also be enabled by the
1610 * core if it's child is enabled.
1611 */
1612static int set_supply(struct regulator_dev *rdev,
1613 struct regulator_dev *supply_rdev)
1614{
1615 int err;
1616
1617 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1618
1619 if (!try_module_get(supply_rdev->owner))
1620 return -ENODEV;
1621
1622 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1623 if (rdev->supply == NULL) {
1624 err = -ENOMEM;
1625 return err;
1626 }
1627 supply_rdev->open_count++;
1628
1629 return 0;
1630}
1631
1632/**
1633 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1634 * @rdev: regulator source
1635 * @consumer_dev_name: dev_name() string for device supply applies to
1636 * @supply: symbolic name for supply
1637 *
1638 * Allows platform initialisation code to map physical regulator
1639 * sources to symbolic names for supplies for use by devices. Devices
1640 * should use these symbolic names to request regulators, avoiding the
1641 * need to provide board-specific regulator names as platform data.
1642 */
1643static int set_consumer_device_supply(struct regulator_dev *rdev,
1644 const char *consumer_dev_name,
1645 const char *supply)
1646{
1647 struct regulator_map *node, *new_node;
1648 int has_dev;
1649
1650 if (supply == NULL)
1651 return -EINVAL;
1652
1653 if (consumer_dev_name != NULL)
1654 has_dev = 1;
1655 else
1656 has_dev = 0;
1657
1658 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1659 if (new_node == NULL)
1660 return -ENOMEM;
1661
1662 new_node->regulator = rdev;
1663 new_node->supply = supply;
1664
1665 if (has_dev) {
1666 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1667 if (new_node->dev_name == NULL) {
1668 kfree(new_node);
1669 return -ENOMEM;
1670 }
1671 }
1672
1673 mutex_lock(®ulator_list_mutex);
1674 list_for_each_entry(node, ®ulator_map_list, list) {
1675 if (node->dev_name && consumer_dev_name) {
1676 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1677 continue;
1678 } else if (node->dev_name || consumer_dev_name) {
1679 continue;
1680 }
1681
1682 if (strcmp(node->supply, supply) != 0)
1683 continue;
1684
1685 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1686 consumer_dev_name,
1687 dev_name(&node->regulator->dev),
1688 node->regulator->desc->name,
1689 supply,
1690 dev_name(&rdev->dev), rdev_get_name(rdev));
1691 goto fail;
1692 }
1693
1694 list_add(&new_node->list, ®ulator_map_list);
1695 mutex_unlock(®ulator_list_mutex);
1696
1697 return 0;
1698
1699fail:
1700 mutex_unlock(®ulator_list_mutex);
1701 kfree(new_node->dev_name);
1702 kfree(new_node);
1703 return -EBUSY;
1704}
1705
1706static void unset_regulator_supplies(struct regulator_dev *rdev)
1707{
1708 struct regulator_map *node, *n;
1709
1710 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1711 if (rdev == node->regulator) {
1712 list_del(&node->list);
1713 kfree(node->dev_name);
1714 kfree(node);
1715 }
1716 }
1717}
1718
1719#ifdef CONFIG_DEBUG_FS
1720static ssize_t constraint_flags_read_file(struct file *file,
1721 char __user *user_buf,
1722 size_t count, loff_t *ppos)
1723{
1724 const struct regulator *regulator = file->private_data;
1725 const struct regulation_constraints *c = regulator->rdev->constraints;
1726 char *buf;
1727 ssize_t ret;
1728
1729 if (!c)
1730 return 0;
1731
1732 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1733 if (!buf)
1734 return -ENOMEM;
1735
1736 ret = snprintf(buf, PAGE_SIZE,
1737 "always_on: %u\n"
1738 "boot_on: %u\n"
1739 "apply_uV: %u\n"
1740 "ramp_disable: %u\n"
1741 "soft_start: %u\n"
1742 "pull_down: %u\n"
1743 "over_current_protection: %u\n",
1744 c->always_on,
1745 c->boot_on,
1746 c->apply_uV,
1747 c->ramp_disable,
1748 c->soft_start,
1749 c->pull_down,
1750 c->over_current_protection);
1751
1752 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1753 kfree(buf);
1754
1755 return ret;
1756}
1757
1758#endif
1759
1760static const struct file_operations constraint_flags_fops = {
1761#ifdef CONFIG_DEBUG_FS
1762 .open = simple_open,
1763 .read = constraint_flags_read_file,
1764 .llseek = default_llseek,
1765#endif
1766};
1767
1768#define REG_STR_SIZE 64
1769
1770static struct regulator *create_regulator(struct regulator_dev *rdev,
1771 struct device *dev,
1772 const char *supply_name)
1773{
1774 struct regulator *regulator;
1775 int err = 0;
1776
1777 if (dev) {
1778 char buf[REG_STR_SIZE];
1779 int size;
1780
1781 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1782 dev->kobj.name, supply_name);
1783 if (size >= REG_STR_SIZE)
1784 return NULL;
1785
1786 supply_name = kstrdup(buf, GFP_KERNEL);
1787 if (supply_name == NULL)
1788 return NULL;
1789 } else {
1790 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1791 if (supply_name == NULL)
1792 return NULL;
1793 }
1794
1795 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1796 if (regulator == NULL) {
1797 kfree(supply_name);
1798 return NULL;
1799 }
1800
1801 regulator->rdev = rdev;
1802 regulator->supply_name = supply_name;
1803
1804 regulator_lock(rdev);
1805 list_add(®ulator->list, &rdev->consumer_list);
1806 regulator_unlock(rdev);
1807
1808 if (dev) {
1809 regulator->dev = dev;
1810
1811 /* Add a link to the device sysfs entry */
1812 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1813 supply_name);
1814 if (err) {
1815 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1816 dev->kobj.name, ERR_PTR(err));
1817 /* non-fatal */
1818 }
1819 }
1820
1821 if (err != -EEXIST)
1822 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1823 if (!regulator->debugfs) {
1824 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1825 } else {
1826 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1827 ®ulator->uA_load);
1828 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1829 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1830 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1831 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1832 debugfs_create_file("constraint_flags", 0444,
1833 regulator->debugfs, regulator,
1834 &constraint_flags_fops);
1835 }
1836
1837 /*
1838 * Check now if the regulator is an always on regulator - if
1839 * it is then we don't need to do nearly so much work for
1840 * enable/disable calls.
1841 */
1842 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1843 _regulator_is_enabled(rdev))
1844 regulator->always_on = true;
1845
1846 return regulator;
1847}
1848
1849static int _regulator_get_enable_time(struct regulator_dev *rdev)
1850{
1851 if (rdev->constraints && rdev->constraints->enable_time)
1852 return rdev->constraints->enable_time;
1853 if (rdev->desc->ops->enable_time)
1854 return rdev->desc->ops->enable_time(rdev);
1855 return rdev->desc->enable_time;
1856}
1857
1858static struct regulator_supply_alias *regulator_find_supply_alias(
1859 struct device *dev, const char *supply)
1860{
1861 struct regulator_supply_alias *map;
1862
1863 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1864 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1865 return map;
1866
1867 return NULL;
1868}
1869
1870static void regulator_supply_alias(struct device **dev, const char **supply)
1871{
1872 struct regulator_supply_alias *map;
1873
1874 map = regulator_find_supply_alias(*dev, *supply);
1875 if (map) {
1876 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1877 *supply, map->alias_supply,
1878 dev_name(map->alias_dev));
1879 *dev = map->alias_dev;
1880 *supply = map->alias_supply;
1881 }
1882}
1883
1884static int regulator_match(struct device *dev, const void *data)
1885{
1886 struct regulator_dev *r = dev_to_rdev(dev);
1887
1888 return strcmp(rdev_get_name(r), data) == 0;
1889}
1890
1891static struct regulator_dev *regulator_lookup_by_name(const char *name)
1892{
1893 struct device *dev;
1894
1895 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1896
1897 return dev ? dev_to_rdev(dev) : NULL;
1898}
1899
1900/**
1901 * regulator_dev_lookup - lookup a regulator device.
1902 * @dev: device for regulator "consumer".
1903 * @supply: Supply name or regulator ID.
1904 *
1905 * If successful, returns a struct regulator_dev that corresponds to the name
1906 * @supply and with the embedded struct device refcount incremented by one.
1907 * The refcount must be dropped by calling put_device().
1908 * On failure one of the following ERR-PTR-encoded values is returned:
1909 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1910 * in the future.
1911 */
1912static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1913 const char *supply)
1914{
1915 struct regulator_dev *r = NULL;
1916 struct device_node *node;
1917 struct regulator_map *map;
1918 const char *devname = NULL;
1919
1920 regulator_supply_alias(&dev, &supply);
1921
1922 /* first do a dt based lookup */
1923 if (dev && dev->of_node) {
1924 node = of_get_regulator(dev, supply);
1925 if (node) {
1926 r = of_find_regulator_by_node(node);
1927 if (r)
1928 return r;
1929
1930 /*
1931 * We have a node, but there is no device.
1932 * assume it has not registered yet.
1933 */
1934 return ERR_PTR(-EPROBE_DEFER);
1935 }
1936 }
1937
1938 /* if not found, try doing it non-dt way */
1939 if (dev)
1940 devname = dev_name(dev);
1941
1942 mutex_lock(®ulator_list_mutex);
1943 list_for_each_entry(map, ®ulator_map_list, list) {
1944 /* If the mapping has a device set up it must match */
1945 if (map->dev_name &&
1946 (!devname || strcmp(map->dev_name, devname)))
1947 continue;
1948
1949 if (strcmp(map->supply, supply) == 0 &&
1950 get_device(&map->regulator->dev)) {
1951 r = map->regulator;
1952 break;
1953 }
1954 }
1955 mutex_unlock(®ulator_list_mutex);
1956
1957 if (r)
1958 return r;
1959
1960 r = regulator_lookup_by_name(supply);
1961 if (r)
1962 return r;
1963
1964 return ERR_PTR(-ENODEV);
1965}
1966
1967static int regulator_resolve_supply(struct regulator_dev *rdev)
1968{
1969 struct regulator_dev *r;
1970 struct device *dev = rdev->dev.parent;
1971 int ret = 0;
1972
1973 /* No supply to resolve? */
1974 if (!rdev->supply_name)
1975 return 0;
1976
1977 /* Supply already resolved? (fast-path without locking contention) */
1978 if (rdev->supply)
1979 return 0;
1980
1981 r = regulator_dev_lookup(dev, rdev->supply_name);
1982 if (IS_ERR(r)) {
1983 ret = PTR_ERR(r);
1984
1985 /* Did the lookup explicitly defer for us? */
1986 if (ret == -EPROBE_DEFER)
1987 goto out;
1988
1989 if (have_full_constraints()) {
1990 r = dummy_regulator_rdev;
1991 get_device(&r->dev);
1992 } else {
1993 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1994 rdev->supply_name, rdev->desc->name);
1995 ret = -EPROBE_DEFER;
1996 goto out;
1997 }
1998 }
1999
2000 if (r == rdev) {
2001 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2002 rdev->desc->name, rdev->supply_name);
2003 if (!have_full_constraints()) {
2004 ret = -EINVAL;
2005 goto out;
2006 }
2007 r = dummy_regulator_rdev;
2008 get_device(&r->dev);
2009 }
2010
2011 /*
2012 * If the supply's parent device is not the same as the
2013 * regulator's parent device, then ensure the parent device
2014 * is bound before we resolve the supply, in case the parent
2015 * device get probe deferred and unregisters the supply.
2016 */
2017 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2018 if (!device_is_bound(r->dev.parent)) {
2019 put_device(&r->dev);
2020 ret = -EPROBE_DEFER;
2021 goto out;
2022 }
2023 }
2024
2025 /* Recursively resolve the supply of the supply */
2026 ret = regulator_resolve_supply(r);
2027 if (ret < 0) {
2028 put_device(&r->dev);
2029 goto out;
2030 }
2031
2032 /*
2033 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2034 * between rdev->supply null check and setting rdev->supply in
2035 * set_supply() from concurrent tasks.
2036 */
2037 regulator_lock(rdev);
2038
2039 /* Supply just resolved by a concurrent task? */
2040 if (rdev->supply) {
2041 regulator_unlock(rdev);
2042 put_device(&r->dev);
2043 goto out;
2044 }
2045
2046 ret = set_supply(rdev, r);
2047 if (ret < 0) {
2048 regulator_unlock(rdev);
2049 put_device(&r->dev);
2050 goto out;
2051 }
2052
2053 regulator_unlock(rdev);
2054
2055 /*
2056 * In set_machine_constraints() we may have turned this regulator on
2057 * but we couldn't propagate to the supply if it hadn't been resolved
2058 * yet. Do it now.
2059 */
2060 if (rdev->use_count) {
2061 ret = regulator_enable(rdev->supply);
2062 if (ret < 0) {
2063 _regulator_put(rdev->supply);
2064 rdev->supply = NULL;
2065 goto out;
2066 }
2067 }
2068
2069out:
2070 return ret;
2071}
2072
2073/* Internal regulator request function */
2074struct regulator *_regulator_get(struct device *dev, const char *id,
2075 enum regulator_get_type get_type)
2076{
2077 struct regulator_dev *rdev;
2078 struct regulator *regulator;
2079 struct device_link *link;
2080 int ret;
2081
2082 if (get_type >= MAX_GET_TYPE) {
2083 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2084 return ERR_PTR(-EINVAL);
2085 }
2086
2087 if (id == NULL) {
2088 pr_err("get() with no identifier\n");
2089 return ERR_PTR(-EINVAL);
2090 }
2091
2092 rdev = regulator_dev_lookup(dev, id);
2093 if (IS_ERR(rdev)) {
2094 ret = PTR_ERR(rdev);
2095
2096 /*
2097 * If regulator_dev_lookup() fails with error other
2098 * than -ENODEV our job here is done, we simply return it.
2099 */
2100 if (ret != -ENODEV)
2101 return ERR_PTR(ret);
2102
2103 if (!have_full_constraints()) {
2104 dev_warn(dev,
2105 "incomplete constraints, dummy supplies not allowed\n");
2106 return ERR_PTR(-ENODEV);
2107 }
2108
2109 switch (get_type) {
2110 case NORMAL_GET:
2111 /*
2112 * Assume that a regulator is physically present and
2113 * enabled, even if it isn't hooked up, and just
2114 * provide a dummy.
2115 */
2116 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2117 rdev = dummy_regulator_rdev;
2118 get_device(&rdev->dev);
2119 break;
2120
2121 case EXCLUSIVE_GET:
2122 dev_warn(dev,
2123 "dummy supplies not allowed for exclusive requests\n");
2124 fallthrough;
2125
2126 default:
2127 return ERR_PTR(-ENODEV);
2128 }
2129 }
2130
2131 if (rdev->exclusive) {
2132 regulator = ERR_PTR(-EPERM);
2133 put_device(&rdev->dev);
2134 return regulator;
2135 }
2136
2137 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2138 regulator = ERR_PTR(-EBUSY);
2139 put_device(&rdev->dev);
2140 return regulator;
2141 }
2142
2143 mutex_lock(®ulator_list_mutex);
2144 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2145 mutex_unlock(®ulator_list_mutex);
2146
2147 if (ret != 0) {
2148 regulator = ERR_PTR(-EPROBE_DEFER);
2149 put_device(&rdev->dev);
2150 return regulator;
2151 }
2152
2153 ret = regulator_resolve_supply(rdev);
2154 if (ret < 0) {
2155 regulator = ERR_PTR(ret);
2156 put_device(&rdev->dev);
2157 return regulator;
2158 }
2159
2160 if (!try_module_get(rdev->owner)) {
2161 regulator = ERR_PTR(-EPROBE_DEFER);
2162 put_device(&rdev->dev);
2163 return regulator;
2164 }
2165
2166 regulator = create_regulator(rdev, dev, id);
2167 if (regulator == NULL) {
2168 regulator = ERR_PTR(-ENOMEM);
2169 module_put(rdev->owner);
2170 put_device(&rdev->dev);
2171 return regulator;
2172 }
2173
2174 rdev->open_count++;
2175 if (get_type == EXCLUSIVE_GET) {
2176 rdev->exclusive = 1;
2177
2178 ret = _regulator_is_enabled(rdev);
2179 if (ret > 0) {
2180 rdev->use_count = 1;
2181 regulator->enable_count = 1;
2182 } else {
2183 rdev->use_count = 0;
2184 regulator->enable_count = 0;
2185 }
2186 }
2187
2188 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2189 if (!IS_ERR_OR_NULL(link))
2190 regulator->device_link = true;
2191
2192 return regulator;
2193}
2194
2195/**
2196 * regulator_get - lookup and obtain a reference to a regulator.
2197 * @dev: device for regulator "consumer"
2198 * @id: Supply name or regulator ID.
2199 *
2200 * Returns a struct regulator corresponding to the regulator producer,
2201 * or IS_ERR() condition containing errno.
2202 *
2203 * Use of supply names configured via set_consumer_device_supply() is
2204 * strongly encouraged. It is recommended that the supply name used
2205 * should match the name used for the supply and/or the relevant
2206 * device pins in the datasheet.
2207 */
2208struct regulator *regulator_get(struct device *dev, const char *id)
2209{
2210 return _regulator_get(dev, id, NORMAL_GET);
2211}
2212EXPORT_SYMBOL_GPL(regulator_get);
2213
2214/**
2215 * regulator_get_exclusive - obtain exclusive access to a regulator.
2216 * @dev: device for regulator "consumer"
2217 * @id: Supply name or regulator ID.
2218 *
2219 * Returns a struct regulator corresponding to the regulator producer,
2220 * or IS_ERR() condition containing errno. Other consumers will be
2221 * unable to obtain this regulator while this reference is held and the
2222 * use count for the regulator will be initialised to reflect the current
2223 * state of the regulator.
2224 *
2225 * This is intended for use by consumers which cannot tolerate shared
2226 * use of the regulator such as those which need to force the
2227 * regulator off for correct operation of the hardware they are
2228 * controlling.
2229 *
2230 * Use of supply names configured via set_consumer_device_supply() is
2231 * strongly encouraged. It is recommended that the supply name used
2232 * should match the name used for the supply and/or the relevant
2233 * device pins in the datasheet.
2234 */
2235struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2236{
2237 return _regulator_get(dev, id, EXCLUSIVE_GET);
2238}
2239EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2240
2241/**
2242 * regulator_get_optional - obtain optional access to a regulator.
2243 * @dev: device for regulator "consumer"
2244 * @id: Supply name or regulator ID.
2245 *
2246 * Returns a struct regulator corresponding to the regulator producer,
2247 * or IS_ERR() condition containing errno.
2248 *
2249 * This is intended for use by consumers for devices which can have
2250 * some supplies unconnected in normal use, such as some MMC devices.
2251 * It can allow the regulator core to provide stub supplies for other
2252 * supplies requested using normal regulator_get() calls without
2253 * disrupting the operation of drivers that can handle absent
2254 * supplies.
2255 *
2256 * Use of supply names configured via set_consumer_device_supply() is
2257 * strongly encouraged. It is recommended that the supply name used
2258 * should match the name used for the supply and/or the relevant
2259 * device pins in the datasheet.
2260 */
2261struct regulator *regulator_get_optional(struct device *dev, const char *id)
2262{
2263 return _regulator_get(dev, id, OPTIONAL_GET);
2264}
2265EXPORT_SYMBOL_GPL(regulator_get_optional);
2266
2267static void destroy_regulator(struct regulator *regulator)
2268{
2269 struct regulator_dev *rdev = regulator->rdev;
2270
2271 debugfs_remove_recursive(regulator->debugfs);
2272
2273 if (regulator->dev) {
2274 if (regulator->device_link)
2275 device_link_remove(regulator->dev, &rdev->dev);
2276
2277 /* remove any sysfs entries */
2278 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2279 }
2280
2281 regulator_lock(rdev);
2282 list_del(®ulator->list);
2283
2284 rdev->open_count--;
2285 rdev->exclusive = 0;
2286 regulator_unlock(rdev);
2287
2288 kfree_const(regulator->supply_name);
2289 kfree(regulator);
2290}
2291
2292/* regulator_list_mutex lock held by regulator_put() */
2293static void _regulator_put(struct regulator *regulator)
2294{
2295 struct regulator_dev *rdev;
2296
2297 if (IS_ERR_OR_NULL(regulator))
2298 return;
2299
2300 lockdep_assert_held_once(®ulator_list_mutex);
2301
2302 /* Docs say you must disable before calling regulator_put() */
2303 WARN_ON(regulator->enable_count);
2304
2305 rdev = regulator->rdev;
2306
2307 destroy_regulator(regulator);
2308
2309 module_put(rdev->owner);
2310 put_device(&rdev->dev);
2311}
2312
2313/**
2314 * regulator_put - "free" the regulator source
2315 * @regulator: regulator source
2316 *
2317 * Note: drivers must ensure that all regulator_enable calls made on this
2318 * regulator source are balanced by regulator_disable calls prior to calling
2319 * this function.
2320 */
2321void regulator_put(struct regulator *regulator)
2322{
2323 mutex_lock(®ulator_list_mutex);
2324 _regulator_put(regulator);
2325 mutex_unlock(®ulator_list_mutex);
2326}
2327EXPORT_SYMBOL_GPL(regulator_put);
2328
2329/**
2330 * regulator_register_supply_alias - Provide device alias for supply lookup
2331 *
2332 * @dev: device that will be given as the regulator "consumer"
2333 * @id: Supply name or regulator ID
2334 * @alias_dev: device that should be used to lookup the supply
2335 * @alias_id: Supply name or regulator ID that should be used to lookup the
2336 * supply
2337 *
2338 * All lookups for id on dev will instead be conducted for alias_id on
2339 * alias_dev.
2340 */
2341int regulator_register_supply_alias(struct device *dev, const char *id,
2342 struct device *alias_dev,
2343 const char *alias_id)
2344{
2345 struct regulator_supply_alias *map;
2346
2347 map = regulator_find_supply_alias(dev, id);
2348 if (map)
2349 return -EEXIST;
2350
2351 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2352 if (!map)
2353 return -ENOMEM;
2354
2355 map->src_dev = dev;
2356 map->src_supply = id;
2357 map->alias_dev = alias_dev;
2358 map->alias_supply = alias_id;
2359
2360 list_add(&map->list, ®ulator_supply_alias_list);
2361
2362 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2363 id, dev_name(dev), alias_id, dev_name(alias_dev));
2364
2365 return 0;
2366}
2367EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2368
2369/**
2370 * regulator_unregister_supply_alias - Remove device alias
2371 *
2372 * @dev: device that will be given as the regulator "consumer"
2373 * @id: Supply name or regulator ID
2374 *
2375 * Remove a lookup alias if one exists for id on dev.
2376 */
2377void regulator_unregister_supply_alias(struct device *dev, const char *id)
2378{
2379 struct regulator_supply_alias *map;
2380
2381 map = regulator_find_supply_alias(dev, id);
2382 if (map) {
2383 list_del(&map->list);
2384 kfree(map);
2385 }
2386}
2387EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2388
2389/**
2390 * regulator_bulk_register_supply_alias - register multiple aliases
2391 *
2392 * @dev: device that will be given as the regulator "consumer"
2393 * @id: List of supply names or regulator IDs
2394 * @alias_dev: device that should be used to lookup the supply
2395 * @alias_id: List of supply names or regulator IDs that should be used to
2396 * lookup the supply
2397 * @num_id: Number of aliases to register
2398 *
2399 * @return 0 on success, an errno on failure.
2400 *
2401 * This helper function allows drivers to register several supply
2402 * aliases in one operation. If any of the aliases cannot be
2403 * registered any aliases that were registered will be removed
2404 * before returning to the caller.
2405 */
2406int regulator_bulk_register_supply_alias(struct device *dev,
2407 const char *const *id,
2408 struct device *alias_dev,
2409 const char *const *alias_id,
2410 int num_id)
2411{
2412 int i;
2413 int ret;
2414
2415 for (i = 0; i < num_id; ++i) {
2416 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2417 alias_id[i]);
2418 if (ret < 0)
2419 goto err;
2420 }
2421
2422 return 0;
2423
2424err:
2425 dev_err(dev,
2426 "Failed to create supply alias %s,%s -> %s,%s\n",
2427 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2428
2429 while (--i >= 0)
2430 regulator_unregister_supply_alias(dev, id[i]);
2431
2432 return ret;
2433}
2434EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2435
2436/**
2437 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2438 *
2439 * @dev: device that will be given as the regulator "consumer"
2440 * @id: List of supply names or regulator IDs
2441 * @num_id: Number of aliases to unregister
2442 *
2443 * This helper function allows drivers to unregister several supply
2444 * aliases in one operation.
2445 */
2446void regulator_bulk_unregister_supply_alias(struct device *dev,
2447 const char *const *id,
2448 int num_id)
2449{
2450 int i;
2451
2452 for (i = 0; i < num_id; ++i)
2453 regulator_unregister_supply_alias(dev, id[i]);
2454}
2455EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2456
2457
2458/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2459static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2460 const struct regulator_config *config)
2461{
2462 struct regulator_enable_gpio *pin, *new_pin;
2463 struct gpio_desc *gpiod;
2464
2465 gpiod = config->ena_gpiod;
2466 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2467
2468 mutex_lock(®ulator_list_mutex);
2469
2470 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2471 if (pin->gpiod == gpiod) {
2472 rdev_dbg(rdev, "GPIO is already used\n");
2473 goto update_ena_gpio_to_rdev;
2474 }
2475 }
2476
2477 if (new_pin == NULL) {
2478 mutex_unlock(®ulator_list_mutex);
2479 return -ENOMEM;
2480 }
2481
2482 pin = new_pin;
2483 new_pin = NULL;
2484
2485 pin->gpiod = gpiod;
2486 list_add(&pin->list, ®ulator_ena_gpio_list);
2487
2488update_ena_gpio_to_rdev:
2489 pin->request_count++;
2490 rdev->ena_pin = pin;
2491
2492 mutex_unlock(®ulator_list_mutex);
2493 kfree(new_pin);
2494
2495 return 0;
2496}
2497
2498static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2499{
2500 struct regulator_enable_gpio *pin, *n;
2501
2502 if (!rdev->ena_pin)
2503 return;
2504
2505 /* Free the GPIO only in case of no use */
2506 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2507 if (pin != rdev->ena_pin)
2508 continue;
2509
2510 if (--pin->request_count)
2511 break;
2512
2513 gpiod_put(pin->gpiod);
2514 list_del(&pin->list);
2515 kfree(pin);
2516 break;
2517 }
2518
2519 rdev->ena_pin = NULL;
2520}
2521
2522/**
2523 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2524 * @rdev: regulator_dev structure
2525 * @enable: enable GPIO at initial use?
2526 *
2527 * GPIO is enabled in case of initial use. (enable_count is 0)
2528 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2529 */
2530static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2531{
2532 struct regulator_enable_gpio *pin = rdev->ena_pin;
2533
2534 if (!pin)
2535 return -EINVAL;
2536
2537 if (enable) {
2538 /* Enable GPIO at initial use */
2539 if (pin->enable_count == 0)
2540 gpiod_set_value_cansleep(pin->gpiod, 1);
2541
2542 pin->enable_count++;
2543 } else {
2544 if (pin->enable_count > 1) {
2545 pin->enable_count--;
2546 return 0;
2547 }
2548
2549 /* Disable GPIO if not used */
2550 if (pin->enable_count <= 1) {
2551 gpiod_set_value_cansleep(pin->gpiod, 0);
2552 pin->enable_count = 0;
2553 }
2554 }
2555
2556 return 0;
2557}
2558
2559/**
2560 * _regulator_delay_helper - a delay helper function
2561 * @delay: time to delay in microseconds
2562 *
2563 * Delay for the requested amount of time as per the guidelines in:
2564 *
2565 * Documentation/timers/timers-howto.rst
2566 *
2567 * The assumption here is that these regulator operations will never used in
2568 * atomic context and therefore sleeping functions can be used.
2569 */
2570static void _regulator_delay_helper(unsigned int delay)
2571{
2572 unsigned int ms = delay / 1000;
2573 unsigned int us = delay % 1000;
2574
2575 if (ms > 0) {
2576 /*
2577 * For small enough values, handle super-millisecond
2578 * delays in the usleep_range() call below.
2579 */
2580 if (ms < 20)
2581 us += ms * 1000;
2582 else
2583 msleep(ms);
2584 }
2585
2586 /*
2587 * Give the scheduler some room to coalesce with any other
2588 * wakeup sources. For delays shorter than 10 us, don't even
2589 * bother setting up high-resolution timers and just busy-
2590 * loop.
2591 */
2592 if (us >= 10)
2593 usleep_range(us, us + 100);
2594 else
2595 udelay(us);
2596}
2597
2598/**
2599 * _regulator_check_status_enabled
2600 *
2601 * A helper function to check if the regulator status can be interpreted
2602 * as 'regulator is enabled'.
2603 * @rdev: the regulator device to check
2604 *
2605 * Return:
2606 * * 1 - if status shows regulator is in enabled state
2607 * * 0 - if not enabled state
2608 * * Error Value - as received from ops->get_status()
2609 */
2610static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2611{
2612 int ret = rdev->desc->ops->get_status(rdev);
2613
2614 if (ret < 0) {
2615 rdev_info(rdev, "get_status returned error: %d\n", ret);
2616 return ret;
2617 }
2618
2619 switch (ret) {
2620 case REGULATOR_STATUS_OFF:
2621 case REGULATOR_STATUS_ERROR:
2622 case REGULATOR_STATUS_UNDEFINED:
2623 return 0;
2624 default:
2625 return 1;
2626 }
2627}
2628
2629static int _regulator_do_enable(struct regulator_dev *rdev)
2630{
2631 int ret, delay;
2632
2633 /* Query before enabling in case configuration dependent. */
2634 ret = _regulator_get_enable_time(rdev);
2635 if (ret >= 0) {
2636 delay = ret;
2637 } else {
2638 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2639 delay = 0;
2640 }
2641
2642 trace_regulator_enable(rdev_get_name(rdev));
2643
2644 if (rdev->desc->off_on_delay && rdev->last_off) {
2645 /* if needed, keep a distance of off_on_delay from last time
2646 * this regulator was disabled.
2647 */
2648 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2649 s64 remaining = ktime_us_delta(end, ktime_get());
2650
2651 if (remaining > 0)
2652 _regulator_delay_helper(remaining);
2653 }
2654
2655 if (rdev->ena_pin) {
2656 if (!rdev->ena_gpio_state) {
2657 ret = regulator_ena_gpio_ctrl(rdev, true);
2658 if (ret < 0)
2659 return ret;
2660 rdev->ena_gpio_state = 1;
2661 }
2662 } else if (rdev->desc->ops->enable) {
2663 ret = rdev->desc->ops->enable(rdev);
2664 if (ret < 0)
2665 return ret;
2666 } else {
2667 return -EINVAL;
2668 }
2669
2670 /* Allow the regulator to ramp; it would be useful to extend
2671 * this for bulk operations so that the regulators can ramp
2672 * together.
2673 */
2674 trace_regulator_enable_delay(rdev_get_name(rdev));
2675
2676 /* If poll_enabled_time is set, poll upto the delay calculated
2677 * above, delaying poll_enabled_time uS to check if the regulator
2678 * actually got enabled.
2679 * If the regulator isn't enabled after our delay helper has expired,
2680 * return -ETIMEDOUT.
2681 */
2682 if (rdev->desc->poll_enabled_time) {
2683 unsigned int time_remaining = delay;
2684
2685 while (time_remaining > 0) {
2686 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2687
2688 if (rdev->desc->ops->get_status) {
2689 ret = _regulator_check_status_enabled(rdev);
2690 if (ret < 0)
2691 return ret;
2692 else if (ret)
2693 break;
2694 } else if (rdev->desc->ops->is_enabled(rdev))
2695 break;
2696
2697 time_remaining -= rdev->desc->poll_enabled_time;
2698 }
2699
2700 if (time_remaining <= 0) {
2701 rdev_err(rdev, "Enabled check timed out\n");
2702 return -ETIMEDOUT;
2703 }
2704 } else {
2705 _regulator_delay_helper(delay);
2706 }
2707
2708 trace_regulator_enable_complete(rdev_get_name(rdev));
2709
2710 return 0;
2711}
2712
2713/**
2714 * _regulator_handle_consumer_enable - handle that a consumer enabled
2715 * @regulator: regulator source
2716 *
2717 * Some things on a regulator consumer (like the contribution towards total
2718 * load on the regulator) only have an effect when the consumer wants the
2719 * regulator enabled. Explained in example with two consumers of the same
2720 * regulator:
2721 * consumer A: set_load(100); => total load = 0
2722 * consumer A: regulator_enable(); => total load = 100
2723 * consumer B: set_load(1000); => total load = 100
2724 * consumer B: regulator_enable(); => total load = 1100
2725 * consumer A: regulator_disable(); => total_load = 1000
2726 *
2727 * This function (together with _regulator_handle_consumer_disable) is
2728 * responsible for keeping track of the refcount for a given regulator consumer
2729 * and applying / unapplying these things.
2730 *
2731 * Returns 0 upon no error; -error upon error.
2732 */
2733static int _regulator_handle_consumer_enable(struct regulator *regulator)
2734{
2735 struct regulator_dev *rdev = regulator->rdev;
2736
2737 lockdep_assert_held_once(&rdev->mutex.base);
2738
2739 regulator->enable_count++;
2740 if (regulator->uA_load && regulator->enable_count == 1)
2741 return drms_uA_update(rdev);
2742
2743 return 0;
2744}
2745
2746/**
2747 * _regulator_handle_consumer_disable - handle that a consumer disabled
2748 * @regulator: regulator source
2749 *
2750 * The opposite of _regulator_handle_consumer_enable().
2751 *
2752 * Returns 0 upon no error; -error upon error.
2753 */
2754static int _regulator_handle_consumer_disable(struct regulator *regulator)
2755{
2756 struct regulator_dev *rdev = regulator->rdev;
2757
2758 lockdep_assert_held_once(&rdev->mutex.base);
2759
2760 if (!regulator->enable_count) {
2761 rdev_err(rdev, "Underflow of regulator enable count\n");
2762 return -EINVAL;
2763 }
2764
2765 regulator->enable_count--;
2766 if (regulator->uA_load && regulator->enable_count == 0)
2767 return drms_uA_update(rdev);
2768
2769 return 0;
2770}
2771
2772/* locks held by regulator_enable() */
2773static int _regulator_enable(struct regulator *regulator)
2774{
2775 struct regulator_dev *rdev = regulator->rdev;
2776 int ret;
2777
2778 lockdep_assert_held_once(&rdev->mutex.base);
2779
2780 if (rdev->use_count == 0 && rdev->supply) {
2781 ret = _regulator_enable(rdev->supply);
2782 if (ret < 0)
2783 return ret;
2784 }
2785
2786 /* balance only if there are regulators coupled */
2787 if (rdev->coupling_desc.n_coupled > 1) {
2788 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2789 if (ret < 0)
2790 goto err_disable_supply;
2791 }
2792
2793 ret = _regulator_handle_consumer_enable(regulator);
2794 if (ret < 0)
2795 goto err_disable_supply;
2796
2797 if (rdev->use_count == 0) {
2798 /*
2799 * The regulator may already be enabled if it's not switchable
2800 * or was left on
2801 */
2802 ret = _regulator_is_enabled(rdev);
2803 if (ret == -EINVAL || ret == 0) {
2804 if (!regulator_ops_is_valid(rdev,
2805 REGULATOR_CHANGE_STATUS)) {
2806 ret = -EPERM;
2807 goto err_consumer_disable;
2808 }
2809
2810 ret = _regulator_do_enable(rdev);
2811 if (ret < 0)
2812 goto err_consumer_disable;
2813
2814 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2815 NULL);
2816 } else if (ret < 0) {
2817 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2818 goto err_consumer_disable;
2819 }
2820 /* Fallthrough on positive return values - already enabled */
2821 }
2822
2823 rdev->use_count++;
2824
2825 return 0;
2826
2827err_consumer_disable:
2828 _regulator_handle_consumer_disable(regulator);
2829
2830err_disable_supply:
2831 if (rdev->use_count == 0 && rdev->supply)
2832 _regulator_disable(rdev->supply);
2833
2834 return ret;
2835}
2836
2837/**
2838 * regulator_enable - enable regulator output
2839 * @regulator: regulator source
2840 *
2841 * Request that the regulator be enabled with the regulator output at
2842 * the predefined voltage or current value. Calls to regulator_enable()
2843 * must be balanced with calls to regulator_disable().
2844 *
2845 * NOTE: the output value can be set by other drivers, boot loader or may be
2846 * hardwired in the regulator.
2847 */
2848int regulator_enable(struct regulator *regulator)
2849{
2850 struct regulator_dev *rdev = regulator->rdev;
2851 struct ww_acquire_ctx ww_ctx;
2852 int ret;
2853
2854 regulator_lock_dependent(rdev, &ww_ctx);
2855 ret = _regulator_enable(regulator);
2856 regulator_unlock_dependent(rdev, &ww_ctx);
2857
2858 return ret;
2859}
2860EXPORT_SYMBOL_GPL(regulator_enable);
2861
2862static int _regulator_do_disable(struct regulator_dev *rdev)
2863{
2864 int ret;
2865
2866 trace_regulator_disable(rdev_get_name(rdev));
2867
2868 if (rdev->ena_pin) {
2869 if (rdev->ena_gpio_state) {
2870 ret = regulator_ena_gpio_ctrl(rdev, false);
2871 if (ret < 0)
2872 return ret;
2873 rdev->ena_gpio_state = 0;
2874 }
2875
2876 } else if (rdev->desc->ops->disable) {
2877 ret = rdev->desc->ops->disable(rdev);
2878 if (ret != 0)
2879 return ret;
2880 }
2881
2882 if (rdev->desc->off_on_delay)
2883 rdev->last_off = ktime_get();
2884
2885 trace_regulator_disable_complete(rdev_get_name(rdev));
2886
2887 return 0;
2888}
2889
2890/* locks held by regulator_disable() */
2891static int _regulator_disable(struct regulator *regulator)
2892{
2893 struct regulator_dev *rdev = regulator->rdev;
2894 int ret = 0;
2895
2896 lockdep_assert_held_once(&rdev->mutex.base);
2897
2898 if (WARN(rdev->use_count <= 0,
2899 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2900 return -EIO;
2901
2902 /* are we the last user and permitted to disable ? */
2903 if (rdev->use_count == 1 &&
2904 (rdev->constraints && !rdev->constraints->always_on)) {
2905
2906 /* we are last user */
2907 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2908 ret = _notifier_call_chain(rdev,
2909 REGULATOR_EVENT_PRE_DISABLE,
2910 NULL);
2911 if (ret & NOTIFY_STOP_MASK)
2912 return -EINVAL;
2913
2914 ret = _regulator_do_disable(rdev);
2915 if (ret < 0) {
2916 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2917 _notifier_call_chain(rdev,
2918 REGULATOR_EVENT_ABORT_DISABLE,
2919 NULL);
2920 return ret;
2921 }
2922 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2923 NULL);
2924 }
2925
2926 rdev->use_count = 0;
2927 } else if (rdev->use_count > 1) {
2928 rdev->use_count--;
2929 }
2930
2931 if (ret == 0)
2932 ret = _regulator_handle_consumer_disable(regulator);
2933
2934 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2935 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2936
2937 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2938 ret = _regulator_disable(rdev->supply);
2939
2940 return ret;
2941}
2942
2943/**
2944 * regulator_disable - disable regulator output
2945 * @regulator: regulator source
2946 *
2947 * Disable the regulator output voltage or current. Calls to
2948 * regulator_enable() must be balanced with calls to
2949 * regulator_disable().
2950 *
2951 * NOTE: this will only disable the regulator output if no other consumer
2952 * devices have it enabled, the regulator device supports disabling and
2953 * machine constraints permit this operation.
2954 */
2955int regulator_disable(struct regulator *regulator)
2956{
2957 struct regulator_dev *rdev = regulator->rdev;
2958 struct ww_acquire_ctx ww_ctx;
2959 int ret;
2960
2961 regulator_lock_dependent(rdev, &ww_ctx);
2962 ret = _regulator_disable(regulator);
2963 regulator_unlock_dependent(rdev, &ww_ctx);
2964
2965 return ret;
2966}
2967EXPORT_SYMBOL_GPL(regulator_disable);
2968
2969/* locks held by regulator_force_disable() */
2970static int _regulator_force_disable(struct regulator_dev *rdev)
2971{
2972 int ret = 0;
2973
2974 lockdep_assert_held_once(&rdev->mutex.base);
2975
2976 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2977 REGULATOR_EVENT_PRE_DISABLE, NULL);
2978 if (ret & NOTIFY_STOP_MASK)
2979 return -EINVAL;
2980
2981 ret = _regulator_do_disable(rdev);
2982 if (ret < 0) {
2983 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2984 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2985 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2986 return ret;
2987 }
2988
2989 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2990 REGULATOR_EVENT_DISABLE, NULL);
2991
2992 return 0;
2993}
2994
2995/**
2996 * regulator_force_disable - force disable regulator output
2997 * @regulator: regulator source
2998 *
2999 * Forcibly disable the regulator output voltage or current.
3000 * NOTE: this *will* disable the regulator output even if other consumer
3001 * devices have it enabled. This should be used for situations when device
3002 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3003 */
3004int regulator_force_disable(struct regulator *regulator)
3005{
3006 struct regulator_dev *rdev = regulator->rdev;
3007 struct ww_acquire_ctx ww_ctx;
3008 int ret;
3009
3010 regulator_lock_dependent(rdev, &ww_ctx);
3011
3012 ret = _regulator_force_disable(regulator->rdev);
3013
3014 if (rdev->coupling_desc.n_coupled > 1)
3015 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3016
3017 if (regulator->uA_load) {
3018 regulator->uA_load = 0;
3019 ret = drms_uA_update(rdev);
3020 }
3021
3022 if (rdev->use_count != 0 && rdev->supply)
3023 _regulator_disable(rdev->supply);
3024
3025 regulator_unlock_dependent(rdev, &ww_ctx);
3026
3027 return ret;
3028}
3029EXPORT_SYMBOL_GPL(regulator_force_disable);
3030
3031static void regulator_disable_work(struct work_struct *work)
3032{
3033 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3034 disable_work.work);
3035 struct ww_acquire_ctx ww_ctx;
3036 int count, i, ret;
3037 struct regulator *regulator;
3038 int total_count = 0;
3039
3040 regulator_lock_dependent(rdev, &ww_ctx);
3041
3042 /*
3043 * Workqueue functions queue the new work instance while the previous
3044 * work instance is being processed. Cancel the queued work instance
3045 * as the work instance under processing does the job of the queued
3046 * work instance.
3047 */
3048 cancel_delayed_work(&rdev->disable_work);
3049
3050 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3051 count = regulator->deferred_disables;
3052
3053 if (!count)
3054 continue;
3055
3056 total_count += count;
3057 regulator->deferred_disables = 0;
3058
3059 for (i = 0; i < count; i++) {
3060 ret = _regulator_disable(regulator);
3061 if (ret != 0)
3062 rdev_err(rdev, "Deferred disable failed: %pe\n",
3063 ERR_PTR(ret));
3064 }
3065 }
3066 WARN_ON(!total_count);
3067
3068 if (rdev->coupling_desc.n_coupled > 1)
3069 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3070
3071 regulator_unlock_dependent(rdev, &ww_ctx);
3072}
3073
3074/**
3075 * regulator_disable_deferred - disable regulator output with delay
3076 * @regulator: regulator source
3077 * @ms: milliseconds until the regulator is disabled
3078 *
3079 * Execute regulator_disable() on the regulator after a delay. This
3080 * is intended for use with devices that require some time to quiesce.
3081 *
3082 * NOTE: this will only disable the regulator output if no other consumer
3083 * devices have it enabled, the regulator device supports disabling and
3084 * machine constraints permit this operation.
3085 */
3086int regulator_disable_deferred(struct regulator *regulator, int ms)
3087{
3088 struct regulator_dev *rdev = regulator->rdev;
3089
3090 if (!ms)
3091 return regulator_disable(regulator);
3092
3093 regulator_lock(rdev);
3094 regulator->deferred_disables++;
3095 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3096 msecs_to_jiffies(ms));
3097 regulator_unlock(rdev);
3098
3099 return 0;
3100}
3101EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3102
3103static int _regulator_is_enabled(struct regulator_dev *rdev)
3104{
3105 /* A GPIO control always takes precedence */
3106 if (rdev->ena_pin)
3107 return rdev->ena_gpio_state;
3108
3109 /* If we don't know then assume that the regulator is always on */
3110 if (!rdev->desc->ops->is_enabled)
3111 return 1;
3112
3113 return rdev->desc->ops->is_enabled(rdev);
3114}
3115
3116static int _regulator_list_voltage(struct regulator_dev *rdev,
3117 unsigned selector, int lock)
3118{
3119 const struct regulator_ops *ops = rdev->desc->ops;
3120 int ret;
3121
3122 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3123 return rdev->desc->fixed_uV;
3124
3125 if (ops->list_voltage) {
3126 if (selector >= rdev->desc->n_voltages)
3127 return -EINVAL;
3128 if (selector < rdev->desc->linear_min_sel)
3129 return 0;
3130 if (lock)
3131 regulator_lock(rdev);
3132 ret = ops->list_voltage(rdev, selector);
3133 if (lock)
3134 regulator_unlock(rdev);
3135 } else if (rdev->is_switch && rdev->supply) {
3136 ret = _regulator_list_voltage(rdev->supply->rdev,
3137 selector, lock);
3138 } else {
3139 return -EINVAL;
3140 }
3141
3142 if (ret > 0) {
3143 if (ret < rdev->constraints->min_uV)
3144 ret = 0;
3145 else if (ret > rdev->constraints->max_uV)
3146 ret = 0;
3147 }
3148
3149 return ret;
3150}
3151
3152/**
3153 * regulator_is_enabled - is the regulator output enabled
3154 * @regulator: regulator source
3155 *
3156 * Returns positive if the regulator driver backing the source/client
3157 * has requested that the device be enabled, zero if it hasn't, else a
3158 * negative errno code.
3159 *
3160 * Note that the device backing this regulator handle can have multiple
3161 * users, so it might be enabled even if regulator_enable() was never
3162 * called for this particular source.
3163 */
3164int regulator_is_enabled(struct regulator *regulator)
3165{
3166 int ret;
3167
3168 if (regulator->always_on)
3169 return 1;
3170
3171 regulator_lock(regulator->rdev);
3172 ret = _regulator_is_enabled(regulator->rdev);
3173 regulator_unlock(regulator->rdev);
3174
3175 return ret;
3176}
3177EXPORT_SYMBOL_GPL(regulator_is_enabled);
3178
3179/**
3180 * regulator_count_voltages - count regulator_list_voltage() selectors
3181 * @regulator: regulator source
3182 *
3183 * Returns number of selectors, or negative errno. Selectors are
3184 * numbered starting at zero, and typically correspond to bitfields
3185 * in hardware registers.
3186 */
3187int regulator_count_voltages(struct regulator *regulator)
3188{
3189 struct regulator_dev *rdev = regulator->rdev;
3190
3191 if (rdev->desc->n_voltages)
3192 return rdev->desc->n_voltages;
3193
3194 if (!rdev->is_switch || !rdev->supply)
3195 return -EINVAL;
3196
3197 return regulator_count_voltages(rdev->supply);
3198}
3199EXPORT_SYMBOL_GPL(regulator_count_voltages);
3200
3201/**
3202 * regulator_list_voltage - enumerate supported voltages
3203 * @regulator: regulator source
3204 * @selector: identify voltage to list
3205 * Context: can sleep
3206 *
3207 * Returns a voltage that can be passed to @regulator_set_voltage(),
3208 * zero if this selector code can't be used on this system, or a
3209 * negative errno.
3210 */
3211int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3212{
3213 return _regulator_list_voltage(regulator->rdev, selector, 1);
3214}
3215EXPORT_SYMBOL_GPL(regulator_list_voltage);
3216
3217/**
3218 * regulator_get_regmap - get the regulator's register map
3219 * @regulator: regulator source
3220 *
3221 * Returns the register map for the given regulator, or an ERR_PTR value
3222 * if the regulator doesn't use regmap.
3223 */
3224struct regmap *regulator_get_regmap(struct regulator *regulator)
3225{
3226 struct regmap *map = regulator->rdev->regmap;
3227
3228 return map ? map : ERR_PTR(-EOPNOTSUPP);
3229}
3230
3231/**
3232 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3233 * @regulator: regulator source
3234 * @vsel_reg: voltage selector register, output parameter
3235 * @vsel_mask: mask for voltage selector bitfield, output parameter
3236 *
3237 * Returns the hardware register offset and bitmask used for setting the
3238 * regulator voltage. This might be useful when configuring voltage-scaling
3239 * hardware or firmware that can make I2C requests behind the kernel's back,
3240 * for example.
3241 *
3242 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3243 * and 0 is returned, otherwise a negative errno is returned.
3244 */
3245int regulator_get_hardware_vsel_register(struct regulator *regulator,
3246 unsigned *vsel_reg,
3247 unsigned *vsel_mask)
3248{
3249 struct regulator_dev *rdev = regulator->rdev;
3250 const struct regulator_ops *ops = rdev->desc->ops;
3251
3252 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3253 return -EOPNOTSUPP;
3254
3255 *vsel_reg = rdev->desc->vsel_reg;
3256 *vsel_mask = rdev->desc->vsel_mask;
3257
3258 return 0;
3259}
3260EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3261
3262/**
3263 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3264 * @regulator: regulator source
3265 * @selector: identify voltage to list
3266 *
3267 * Converts the selector to a hardware-specific voltage selector that can be
3268 * directly written to the regulator registers. The address of the voltage
3269 * register can be determined by calling @regulator_get_hardware_vsel_register.
3270 *
3271 * On error a negative errno is returned.
3272 */
3273int regulator_list_hardware_vsel(struct regulator *regulator,
3274 unsigned selector)
3275{
3276 struct regulator_dev *rdev = regulator->rdev;
3277 const struct regulator_ops *ops = rdev->desc->ops;
3278
3279 if (selector >= rdev->desc->n_voltages)
3280 return -EINVAL;
3281 if (selector < rdev->desc->linear_min_sel)
3282 return 0;
3283 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3284 return -EOPNOTSUPP;
3285
3286 return selector;
3287}
3288EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3289
3290/**
3291 * regulator_get_linear_step - return the voltage step size between VSEL values
3292 * @regulator: regulator source
3293 *
3294 * Returns the voltage step size between VSEL values for linear
3295 * regulators, or return 0 if the regulator isn't a linear regulator.
3296 */
3297unsigned int regulator_get_linear_step(struct regulator *regulator)
3298{
3299 struct regulator_dev *rdev = regulator->rdev;
3300
3301 return rdev->desc->uV_step;
3302}
3303EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3304
3305/**
3306 * regulator_is_supported_voltage - check if a voltage range can be supported
3307 *
3308 * @regulator: Regulator to check.
3309 * @min_uV: Minimum required voltage in uV.
3310 * @max_uV: Maximum required voltage in uV.
3311 *
3312 * Returns a boolean.
3313 */
3314int regulator_is_supported_voltage(struct regulator *regulator,
3315 int min_uV, int max_uV)
3316{
3317 struct regulator_dev *rdev = regulator->rdev;
3318 int i, voltages, ret;
3319
3320 /* If we can't change voltage check the current voltage */
3321 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3322 ret = regulator_get_voltage(regulator);
3323 if (ret >= 0)
3324 return min_uV <= ret && ret <= max_uV;
3325 else
3326 return ret;
3327 }
3328
3329 /* Any voltage within constrains range is fine? */
3330 if (rdev->desc->continuous_voltage_range)
3331 return min_uV >= rdev->constraints->min_uV &&
3332 max_uV <= rdev->constraints->max_uV;
3333
3334 ret = regulator_count_voltages(regulator);
3335 if (ret < 0)
3336 return 0;
3337 voltages = ret;
3338
3339 for (i = 0; i < voltages; i++) {
3340 ret = regulator_list_voltage(regulator, i);
3341
3342 if (ret >= min_uV && ret <= max_uV)
3343 return 1;
3344 }
3345
3346 return 0;
3347}
3348EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3349
3350static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3351 int max_uV)
3352{
3353 const struct regulator_desc *desc = rdev->desc;
3354
3355 if (desc->ops->map_voltage)
3356 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3357
3358 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3359 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3360
3361 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3362 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3363
3364 if (desc->ops->list_voltage ==
3365 regulator_list_voltage_pickable_linear_range)
3366 return regulator_map_voltage_pickable_linear_range(rdev,
3367 min_uV, max_uV);
3368
3369 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3370}
3371
3372static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3373 int min_uV, int max_uV,
3374 unsigned *selector)
3375{
3376 struct pre_voltage_change_data data;
3377 int ret;
3378
3379 data.old_uV = regulator_get_voltage_rdev(rdev);
3380 data.min_uV = min_uV;
3381 data.max_uV = max_uV;
3382 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3383 &data);
3384 if (ret & NOTIFY_STOP_MASK)
3385 return -EINVAL;
3386
3387 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3388 if (ret >= 0)
3389 return ret;
3390
3391 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3392 (void *)data.old_uV);
3393
3394 return ret;
3395}
3396
3397static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3398 int uV, unsigned selector)
3399{
3400 struct pre_voltage_change_data data;
3401 int ret;
3402
3403 data.old_uV = regulator_get_voltage_rdev(rdev);
3404 data.min_uV = uV;
3405 data.max_uV = uV;
3406 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3407 &data);
3408 if (ret & NOTIFY_STOP_MASK)
3409 return -EINVAL;
3410
3411 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3412 if (ret >= 0)
3413 return ret;
3414
3415 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3416 (void *)data.old_uV);
3417
3418 return ret;
3419}
3420
3421static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3422 int uV, int new_selector)
3423{
3424 const struct regulator_ops *ops = rdev->desc->ops;
3425 int diff, old_sel, curr_sel, ret;
3426
3427 /* Stepping is only needed if the regulator is enabled. */
3428 if (!_regulator_is_enabled(rdev))
3429 goto final_set;
3430
3431 if (!ops->get_voltage_sel)
3432 return -EINVAL;
3433
3434 old_sel = ops->get_voltage_sel(rdev);
3435 if (old_sel < 0)
3436 return old_sel;
3437
3438 diff = new_selector - old_sel;
3439 if (diff == 0)
3440 return 0; /* No change needed. */
3441
3442 if (diff > 0) {
3443 /* Stepping up. */
3444 for (curr_sel = old_sel + rdev->desc->vsel_step;
3445 curr_sel < new_selector;
3446 curr_sel += rdev->desc->vsel_step) {
3447 /*
3448 * Call the callback directly instead of using
3449 * _regulator_call_set_voltage_sel() as we don't
3450 * want to notify anyone yet. Same in the branch
3451 * below.
3452 */
3453 ret = ops->set_voltage_sel(rdev, curr_sel);
3454 if (ret)
3455 goto try_revert;
3456 }
3457 } else {
3458 /* Stepping down. */
3459 for (curr_sel = old_sel - rdev->desc->vsel_step;
3460 curr_sel > new_selector;
3461 curr_sel -= rdev->desc->vsel_step) {
3462 ret = ops->set_voltage_sel(rdev, curr_sel);
3463 if (ret)
3464 goto try_revert;
3465 }
3466 }
3467
3468final_set:
3469 /* The final selector will trigger the notifiers. */
3470 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3471
3472try_revert:
3473 /*
3474 * At least try to return to the previous voltage if setting a new
3475 * one failed.
3476 */
3477 (void)ops->set_voltage_sel(rdev, old_sel);
3478 return ret;
3479}
3480
3481static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3482 int old_uV, int new_uV)
3483{
3484 unsigned int ramp_delay = 0;
3485
3486 if (rdev->constraints->ramp_delay)
3487 ramp_delay = rdev->constraints->ramp_delay;
3488 else if (rdev->desc->ramp_delay)
3489 ramp_delay = rdev->desc->ramp_delay;
3490 else if (rdev->constraints->settling_time)
3491 return rdev->constraints->settling_time;
3492 else if (rdev->constraints->settling_time_up &&
3493 (new_uV > old_uV))
3494 return rdev->constraints->settling_time_up;
3495 else if (rdev->constraints->settling_time_down &&
3496 (new_uV < old_uV))
3497 return rdev->constraints->settling_time_down;
3498
3499 if (ramp_delay == 0) {
3500 rdev_dbg(rdev, "ramp_delay not set\n");
3501 return 0;
3502 }
3503
3504 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3505}
3506
3507static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3508 int min_uV, int max_uV)
3509{
3510 int ret;
3511 int delay = 0;
3512 int best_val = 0;
3513 unsigned int selector;
3514 int old_selector = -1;
3515 const struct regulator_ops *ops = rdev->desc->ops;
3516 int old_uV = regulator_get_voltage_rdev(rdev);
3517
3518 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3519
3520 min_uV += rdev->constraints->uV_offset;
3521 max_uV += rdev->constraints->uV_offset;
3522
3523 /*
3524 * If we can't obtain the old selector there is not enough
3525 * info to call set_voltage_time_sel().
3526 */
3527 if (_regulator_is_enabled(rdev) &&
3528 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3529 old_selector = ops->get_voltage_sel(rdev);
3530 if (old_selector < 0)
3531 return old_selector;
3532 }
3533
3534 if (ops->set_voltage) {
3535 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3536 &selector);
3537
3538 if (ret >= 0) {
3539 if (ops->list_voltage)
3540 best_val = ops->list_voltage(rdev,
3541 selector);
3542 else
3543 best_val = regulator_get_voltage_rdev(rdev);
3544 }
3545
3546 } else if (ops->set_voltage_sel) {
3547 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3548 if (ret >= 0) {
3549 best_val = ops->list_voltage(rdev, ret);
3550 if (min_uV <= best_val && max_uV >= best_val) {
3551 selector = ret;
3552 if (old_selector == selector)
3553 ret = 0;
3554 else if (rdev->desc->vsel_step)
3555 ret = _regulator_set_voltage_sel_step(
3556 rdev, best_val, selector);
3557 else
3558 ret = _regulator_call_set_voltage_sel(
3559 rdev, best_val, selector);
3560 } else {
3561 ret = -EINVAL;
3562 }
3563 }
3564 } else {
3565 ret = -EINVAL;
3566 }
3567
3568 if (ret)
3569 goto out;
3570
3571 if (ops->set_voltage_time_sel) {
3572 /*
3573 * Call set_voltage_time_sel if successfully obtained
3574 * old_selector
3575 */
3576 if (old_selector >= 0 && old_selector != selector)
3577 delay = ops->set_voltage_time_sel(rdev, old_selector,
3578 selector);
3579 } else {
3580 if (old_uV != best_val) {
3581 if (ops->set_voltage_time)
3582 delay = ops->set_voltage_time(rdev, old_uV,
3583 best_val);
3584 else
3585 delay = _regulator_set_voltage_time(rdev,
3586 old_uV,
3587 best_val);
3588 }
3589 }
3590
3591 if (delay < 0) {
3592 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3593 delay = 0;
3594 }
3595
3596 /* Insert any necessary delays */
3597 _regulator_delay_helper(delay);
3598
3599 if (best_val >= 0) {
3600 unsigned long data = best_val;
3601
3602 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3603 (void *)data);
3604 }
3605
3606out:
3607 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3608
3609 return ret;
3610}
3611
3612static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3613 int min_uV, int max_uV, suspend_state_t state)
3614{
3615 struct regulator_state *rstate;
3616 int uV, sel;
3617
3618 rstate = regulator_get_suspend_state(rdev, state);
3619 if (rstate == NULL)
3620 return -EINVAL;
3621
3622 if (min_uV < rstate->min_uV)
3623 min_uV = rstate->min_uV;
3624 if (max_uV > rstate->max_uV)
3625 max_uV = rstate->max_uV;
3626
3627 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3628 if (sel < 0)
3629 return sel;
3630
3631 uV = rdev->desc->ops->list_voltage(rdev, sel);
3632 if (uV >= min_uV && uV <= max_uV)
3633 rstate->uV = uV;
3634
3635 return 0;
3636}
3637
3638static int regulator_set_voltage_unlocked(struct regulator *regulator,
3639 int min_uV, int max_uV,
3640 suspend_state_t state)
3641{
3642 struct regulator_dev *rdev = regulator->rdev;
3643 struct regulator_voltage *voltage = ®ulator->voltage[state];
3644 int ret = 0;
3645 int old_min_uV, old_max_uV;
3646 int current_uV;
3647
3648 /* If we're setting the same range as last time the change
3649 * should be a noop (some cpufreq implementations use the same
3650 * voltage for multiple frequencies, for example).
3651 */
3652 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3653 goto out;
3654
3655 /* If we're trying to set a range that overlaps the current voltage,
3656 * return successfully even though the regulator does not support
3657 * changing the voltage.
3658 */
3659 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3660 current_uV = regulator_get_voltage_rdev(rdev);
3661 if (min_uV <= current_uV && current_uV <= max_uV) {
3662 voltage->min_uV = min_uV;
3663 voltage->max_uV = max_uV;
3664 goto out;
3665 }
3666 }
3667
3668 /* sanity check */
3669 if (!rdev->desc->ops->set_voltage &&
3670 !rdev->desc->ops->set_voltage_sel) {
3671 ret = -EINVAL;
3672 goto out;
3673 }
3674
3675 /* constraints check */
3676 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3677 if (ret < 0)
3678 goto out;
3679
3680 /* restore original values in case of error */
3681 old_min_uV = voltage->min_uV;
3682 old_max_uV = voltage->max_uV;
3683 voltage->min_uV = min_uV;
3684 voltage->max_uV = max_uV;
3685
3686 /* for not coupled regulators this will just set the voltage */
3687 ret = regulator_balance_voltage(rdev, state);
3688 if (ret < 0) {
3689 voltage->min_uV = old_min_uV;
3690 voltage->max_uV = old_max_uV;
3691 }
3692
3693out:
3694 return ret;
3695}
3696
3697int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3698 int max_uV, suspend_state_t state)
3699{
3700 int best_supply_uV = 0;
3701 int supply_change_uV = 0;
3702 int ret;
3703
3704 if (rdev->supply &&
3705 regulator_ops_is_valid(rdev->supply->rdev,
3706 REGULATOR_CHANGE_VOLTAGE) &&
3707 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3708 rdev->desc->ops->get_voltage_sel))) {
3709 int current_supply_uV;
3710 int selector;
3711
3712 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3713 if (selector < 0) {
3714 ret = selector;
3715 goto out;
3716 }
3717
3718 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3719 if (best_supply_uV < 0) {
3720 ret = best_supply_uV;
3721 goto out;
3722 }
3723
3724 best_supply_uV += rdev->desc->min_dropout_uV;
3725
3726 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3727 if (current_supply_uV < 0) {
3728 ret = current_supply_uV;
3729 goto out;
3730 }
3731
3732 supply_change_uV = best_supply_uV - current_supply_uV;
3733 }
3734
3735 if (supply_change_uV > 0) {
3736 ret = regulator_set_voltage_unlocked(rdev->supply,
3737 best_supply_uV, INT_MAX, state);
3738 if (ret) {
3739 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3740 ERR_PTR(ret));
3741 goto out;
3742 }
3743 }
3744
3745 if (state == PM_SUSPEND_ON)
3746 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3747 else
3748 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3749 max_uV, state);
3750 if (ret < 0)
3751 goto out;
3752
3753 if (supply_change_uV < 0) {
3754 ret = regulator_set_voltage_unlocked(rdev->supply,
3755 best_supply_uV, INT_MAX, state);
3756 if (ret)
3757 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3758 ERR_PTR(ret));
3759 /* No need to fail here */
3760 ret = 0;
3761 }
3762
3763out:
3764 return ret;
3765}
3766EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3767
3768static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3769 int *current_uV, int *min_uV)
3770{
3771 struct regulation_constraints *constraints = rdev->constraints;
3772
3773 /* Limit voltage change only if necessary */
3774 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3775 return 1;
3776
3777 if (*current_uV < 0) {
3778 *current_uV = regulator_get_voltage_rdev(rdev);
3779
3780 if (*current_uV < 0)
3781 return *current_uV;
3782 }
3783
3784 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3785 return 1;
3786
3787 /* Clamp target voltage within the given step */
3788 if (*current_uV < *min_uV)
3789 *min_uV = min(*current_uV + constraints->max_uV_step,
3790 *min_uV);
3791 else
3792 *min_uV = max(*current_uV - constraints->max_uV_step,
3793 *min_uV);
3794
3795 return 0;
3796}
3797
3798static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3799 int *current_uV,
3800 int *min_uV, int *max_uV,
3801 suspend_state_t state,
3802 int n_coupled)
3803{
3804 struct coupling_desc *c_desc = &rdev->coupling_desc;
3805 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3806 struct regulation_constraints *constraints = rdev->constraints;
3807 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3808 int max_current_uV = 0, min_current_uV = INT_MAX;
3809 int highest_min_uV = 0, target_uV, possible_uV;
3810 int i, ret, max_spread;
3811 bool done;
3812
3813 *current_uV = -1;
3814
3815 /*
3816 * If there are no coupled regulators, simply set the voltage
3817 * demanded by consumers.
3818 */
3819 if (n_coupled == 1) {
3820 /*
3821 * If consumers don't provide any demands, set voltage
3822 * to min_uV
3823 */
3824 desired_min_uV = constraints->min_uV;
3825 desired_max_uV = constraints->max_uV;
3826
3827 ret = regulator_check_consumers(rdev,
3828 &desired_min_uV,
3829 &desired_max_uV, state);
3830 if (ret < 0)
3831 return ret;
3832
3833 possible_uV = desired_min_uV;
3834 done = true;
3835
3836 goto finish;
3837 }
3838
3839 /* Find highest min desired voltage */
3840 for (i = 0; i < n_coupled; i++) {
3841 int tmp_min = 0;
3842 int tmp_max = INT_MAX;
3843
3844 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3845
3846 ret = regulator_check_consumers(c_rdevs[i],
3847 &tmp_min,
3848 &tmp_max, state);
3849 if (ret < 0)
3850 return ret;
3851
3852 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3853 if (ret < 0)
3854 return ret;
3855
3856 highest_min_uV = max(highest_min_uV, tmp_min);
3857
3858 if (i == 0) {
3859 desired_min_uV = tmp_min;
3860 desired_max_uV = tmp_max;
3861 }
3862 }
3863
3864 max_spread = constraints->max_spread[0];
3865
3866 /*
3867 * Let target_uV be equal to the desired one if possible.
3868 * If not, set it to minimum voltage, allowed by other coupled
3869 * regulators.
3870 */
3871 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3872
3873 /*
3874 * Find min and max voltages, which currently aren't violating
3875 * max_spread.
3876 */
3877 for (i = 1; i < n_coupled; i++) {
3878 int tmp_act;
3879
3880 if (!_regulator_is_enabled(c_rdevs[i]))
3881 continue;
3882
3883 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3884 if (tmp_act < 0)
3885 return tmp_act;
3886
3887 min_current_uV = min(tmp_act, min_current_uV);
3888 max_current_uV = max(tmp_act, max_current_uV);
3889 }
3890
3891 /* There aren't any other regulators enabled */
3892 if (max_current_uV == 0) {
3893 possible_uV = target_uV;
3894 } else {
3895 /*
3896 * Correct target voltage, so as it currently isn't
3897 * violating max_spread
3898 */
3899 possible_uV = max(target_uV, max_current_uV - max_spread);
3900 possible_uV = min(possible_uV, min_current_uV + max_spread);
3901 }
3902
3903 if (possible_uV > desired_max_uV)
3904 return -EINVAL;
3905
3906 done = (possible_uV == target_uV);
3907 desired_min_uV = possible_uV;
3908
3909finish:
3910 /* Apply max_uV_step constraint if necessary */
3911 if (state == PM_SUSPEND_ON) {
3912 ret = regulator_limit_voltage_step(rdev, current_uV,
3913 &desired_min_uV);
3914 if (ret < 0)
3915 return ret;
3916
3917 if (ret == 0)
3918 done = false;
3919 }
3920
3921 /* Set current_uV if wasn't done earlier in the code and if necessary */
3922 if (n_coupled > 1 && *current_uV == -1) {
3923
3924 if (_regulator_is_enabled(rdev)) {
3925 ret = regulator_get_voltage_rdev(rdev);
3926 if (ret < 0)
3927 return ret;
3928
3929 *current_uV = ret;
3930 } else {
3931 *current_uV = desired_min_uV;
3932 }
3933 }
3934
3935 *min_uV = desired_min_uV;
3936 *max_uV = desired_max_uV;
3937
3938 return done;
3939}
3940
3941int regulator_do_balance_voltage(struct regulator_dev *rdev,
3942 suspend_state_t state, bool skip_coupled)
3943{
3944 struct regulator_dev **c_rdevs;
3945 struct regulator_dev *best_rdev;
3946 struct coupling_desc *c_desc = &rdev->coupling_desc;
3947 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3948 unsigned int delta, best_delta;
3949 unsigned long c_rdev_done = 0;
3950 bool best_c_rdev_done;
3951
3952 c_rdevs = c_desc->coupled_rdevs;
3953 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3954
3955 /*
3956 * Find the best possible voltage change on each loop. Leave the loop
3957 * if there isn't any possible change.
3958 */
3959 do {
3960 best_c_rdev_done = false;
3961 best_delta = 0;
3962 best_min_uV = 0;
3963 best_max_uV = 0;
3964 best_c_rdev = 0;
3965 best_rdev = NULL;
3966
3967 /*
3968 * Find highest difference between optimal voltage
3969 * and current voltage.
3970 */
3971 for (i = 0; i < n_coupled; i++) {
3972 /*
3973 * optimal_uV is the best voltage that can be set for
3974 * i-th regulator at the moment without violating
3975 * max_spread constraint in order to balance
3976 * the coupled voltages.
3977 */
3978 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3979
3980 if (test_bit(i, &c_rdev_done))
3981 continue;
3982
3983 ret = regulator_get_optimal_voltage(c_rdevs[i],
3984 ¤t_uV,
3985 &optimal_uV,
3986 &optimal_max_uV,
3987 state, n_coupled);
3988 if (ret < 0)
3989 goto out;
3990
3991 delta = abs(optimal_uV - current_uV);
3992
3993 if (delta && best_delta <= delta) {
3994 best_c_rdev_done = ret;
3995 best_delta = delta;
3996 best_rdev = c_rdevs[i];
3997 best_min_uV = optimal_uV;
3998 best_max_uV = optimal_max_uV;
3999 best_c_rdev = i;
4000 }
4001 }
4002
4003 /* Nothing to change, return successfully */
4004 if (!best_rdev) {
4005 ret = 0;
4006 goto out;
4007 }
4008
4009 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4010 best_max_uV, state);
4011
4012 if (ret < 0)
4013 goto out;
4014
4015 if (best_c_rdev_done)
4016 set_bit(best_c_rdev, &c_rdev_done);
4017
4018 } while (n_coupled > 1);
4019
4020out:
4021 return ret;
4022}
4023
4024static int regulator_balance_voltage(struct regulator_dev *rdev,
4025 suspend_state_t state)
4026{
4027 struct coupling_desc *c_desc = &rdev->coupling_desc;
4028 struct regulator_coupler *coupler = c_desc->coupler;
4029 bool skip_coupled = false;
4030
4031 /*
4032 * If system is in a state other than PM_SUSPEND_ON, don't check
4033 * other coupled regulators.
4034 */
4035 if (state != PM_SUSPEND_ON)
4036 skip_coupled = true;
4037
4038 if (c_desc->n_resolved < c_desc->n_coupled) {
4039 rdev_err(rdev, "Not all coupled regulators registered\n");
4040 return -EPERM;
4041 }
4042
4043 /* Invoke custom balancer for customized couplers */
4044 if (coupler && coupler->balance_voltage)
4045 return coupler->balance_voltage(coupler, rdev, state);
4046
4047 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4048}
4049
4050/**
4051 * regulator_set_voltage - set regulator output voltage
4052 * @regulator: regulator source
4053 * @min_uV: Minimum required voltage in uV
4054 * @max_uV: Maximum acceptable voltage in uV
4055 *
4056 * Sets a voltage regulator to the desired output voltage. This can be set
4057 * during any regulator state. IOW, regulator can be disabled or enabled.
4058 *
4059 * If the regulator is enabled then the voltage will change to the new value
4060 * immediately otherwise if the regulator is disabled the regulator will
4061 * output at the new voltage when enabled.
4062 *
4063 * NOTE: If the regulator is shared between several devices then the lowest
4064 * request voltage that meets the system constraints will be used.
4065 * Regulator system constraints must be set for this regulator before
4066 * calling this function otherwise this call will fail.
4067 */
4068int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4069{
4070 struct ww_acquire_ctx ww_ctx;
4071 int ret;
4072
4073 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4074
4075 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4076 PM_SUSPEND_ON);
4077
4078 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4079
4080 return ret;
4081}
4082EXPORT_SYMBOL_GPL(regulator_set_voltage);
4083
4084static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4085 suspend_state_t state, bool en)
4086{
4087 struct regulator_state *rstate;
4088
4089 rstate = regulator_get_suspend_state(rdev, state);
4090 if (rstate == NULL)
4091 return -EINVAL;
4092
4093 if (!rstate->changeable)
4094 return -EPERM;
4095
4096 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4097
4098 return 0;
4099}
4100
4101int regulator_suspend_enable(struct regulator_dev *rdev,
4102 suspend_state_t state)
4103{
4104 return regulator_suspend_toggle(rdev, state, true);
4105}
4106EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4107
4108int regulator_suspend_disable(struct regulator_dev *rdev,
4109 suspend_state_t state)
4110{
4111 struct regulator *regulator;
4112 struct regulator_voltage *voltage;
4113
4114 /*
4115 * if any consumer wants this regulator device keeping on in
4116 * suspend states, don't set it as disabled.
4117 */
4118 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4119 voltage = ®ulator->voltage[state];
4120 if (voltage->min_uV || voltage->max_uV)
4121 return 0;
4122 }
4123
4124 return regulator_suspend_toggle(rdev, state, false);
4125}
4126EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4127
4128static int _regulator_set_suspend_voltage(struct regulator *regulator,
4129 int min_uV, int max_uV,
4130 suspend_state_t state)
4131{
4132 struct regulator_dev *rdev = regulator->rdev;
4133 struct regulator_state *rstate;
4134
4135 rstate = regulator_get_suspend_state(rdev, state);
4136 if (rstate == NULL)
4137 return -EINVAL;
4138
4139 if (rstate->min_uV == rstate->max_uV) {
4140 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4141 return -EPERM;
4142 }
4143
4144 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4145}
4146
4147int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4148 int max_uV, suspend_state_t state)
4149{
4150 struct ww_acquire_ctx ww_ctx;
4151 int ret;
4152
4153 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4154 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4155 return -EINVAL;
4156
4157 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4158
4159 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4160 max_uV, state);
4161
4162 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4163
4164 return ret;
4165}
4166EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4167
4168/**
4169 * regulator_set_voltage_time - get raise/fall time
4170 * @regulator: regulator source
4171 * @old_uV: starting voltage in microvolts
4172 * @new_uV: target voltage in microvolts
4173 *
4174 * Provided with the starting and ending voltage, this function attempts to
4175 * calculate the time in microseconds required to rise or fall to this new
4176 * voltage.
4177 */
4178int regulator_set_voltage_time(struct regulator *regulator,
4179 int old_uV, int new_uV)
4180{
4181 struct regulator_dev *rdev = regulator->rdev;
4182 const struct regulator_ops *ops = rdev->desc->ops;
4183 int old_sel = -1;
4184 int new_sel = -1;
4185 int voltage;
4186 int i;
4187
4188 if (ops->set_voltage_time)
4189 return ops->set_voltage_time(rdev, old_uV, new_uV);
4190 else if (!ops->set_voltage_time_sel)
4191 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4192
4193 /* Currently requires operations to do this */
4194 if (!ops->list_voltage || !rdev->desc->n_voltages)
4195 return -EINVAL;
4196
4197 for (i = 0; i < rdev->desc->n_voltages; i++) {
4198 /* We only look for exact voltage matches here */
4199 if (i < rdev->desc->linear_min_sel)
4200 continue;
4201
4202 if (old_sel >= 0 && new_sel >= 0)
4203 break;
4204
4205 voltage = regulator_list_voltage(regulator, i);
4206 if (voltage < 0)
4207 return -EINVAL;
4208 if (voltage == 0)
4209 continue;
4210 if (voltage == old_uV)
4211 old_sel = i;
4212 if (voltage == new_uV)
4213 new_sel = i;
4214 }
4215
4216 if (old_sel < 0 || new_sel < 0)
4217 return -EINVAL;
4218
4219 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4220}
4221EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4222
4223/**
4224 * regulator_set_voltage_time_sel - get raise/fall time
4225 * @rdev: regulator source device
4226 * @old_selector: selector for starting voltage
4227 * @new_selector: selector for target voltage
4228 *
4229 * Provided with the starting and target voltage selectors, this function
4230 * returns time in microseconds required to rise or fall to this new voltage
4231 *
4232 * Drivers providing ramp_delay in regulation_constraints can use this as their
4233 * set_voltage_time_sel() operation.
4234 */
4235int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4236 unsigned int old_selector,
4237 unsigned int new_selector)
4238{
4239 int old_volt, new_volt;
4240
4241 /* sanity check */
4242 if (!rdev->desc->ops->list_voltage)
4243 return -EINVAL;
4244
4245 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4246 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4247
4248 if (rdev->desc->ops->set_voltage_time)
4249 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4250 new_volt);
4251 else
4252 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4253}
4254EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4255
4256int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4257{
4258 int ret;
4259
4260 regulator_lock(rdev);
4261
4262 if (!rdev->desc->ops->set_voltage &&
4263 !rdev->desc->ops->set_voltage_sel) {
4264 ret = -EINVAL;
4265 goto out;
4266 }
4267
4268 /* balance only, if regulator is coupled */
4269 if (rdev->coupling_desc.n_coupled > 1)
4270 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4271 else
4272 ret = -EOPNOTSUPP;
4273
4274out:
4275 regulator_unlock(rdev);
4276 return ret;
4277}
4278
4279/**
4280 * regulator_sync_voltage - re-apply last regulator output voltage
4281 * @regulator: regulator source
4282 *
4283 * Re-apply the last configured voltage. This is intended to be used
4284 * where some external control source the consumer is cooperating with
4285 * has caused the configured voltage to change.
4286 */
4287int regulator_sync_voltage(struct regulator *regulator)
4288{
4289 struct regulator_dev *rdev = regulator->rdev;
4290 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4291 int ret, min_uV, max_uV;
4292
4293 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4294 return 0;
4295
4296 regulator_lock(rdev);
4297
4298 if (!rdev->desc->ops->set_voltage &&
4299 !rdev->desc->ops->set_voltage_sel) {
4300 ret = -EINVAL;
4301 goto out;
4302 }
4303
4304 /* This is only going to work if we've had a voltage configured. */
4305 if (!voltage->min_uV && !voltage->max_uV) {
4306 ret = -EINVAL;
4307 goto out;
4308 }
4309
4310 min_uV = voltage->min_uV;
4311 max_uV = voltage->max_uV;
4312
4313 /* This should be a paranoia check... */
4314 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4315 if (ret < 0)
4316 goto out;
4317
4318 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4319 if (ret < 0)
4320 goto out;
4321
4322 /* balance only, if regulator is coupled */
4323 if (rdev->coupling_desc.n_coupled > 1)
4324 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4325 else
4326 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4327
4328out:
4329 regulator_unlock(rdev);
4330 return ret;
4331}
4332EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4333
4334int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4335{
4336 int sel, ret;
4337 bool bypassed;
4338
4339 if (rdev->desc->ops->get_bypass) {
4340 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4341 if (ret < 0)
4342 return ret;
4343 if (bypassed) {
4344 /* if bypassed the regulator must have a supply */
4345 if (!rdev->supply) {
4346 rdev_err(rdev,
4347 "bypassed regulator has no supply!\n");
4348 return -EPROBE_DEFER;
4349 }
4350
4351 return regulator_get_voltage_rdev(rdev->supply->rdev);
4352 }
4353 }
4354
4355 if (rdev->desc->ops->get_voltage_sel) {
4356 sel = rdev->desc->ops->get_voltage_sel(rdev);
4357 if (sel < 0)
4358 return sel;
4359 ret = rdev->desc->ops->list_voltage(rdev, sel);
4360 } else if (rdev->desc->ops->get_voltage) {
4361 ret = rdev->desc->ops->get_voltage(rdev);
4362 } else if (rdev->desc->ops->list_voltage) {
4363 ret = rdev->desc->ops->list_voltage(rdev, 0);
4364 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4365 ret = rdev->desc->fixed_uV;
4366 } else if (rdev->supply) {
4367 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4368 } else if (rdev->supply_name) {
4369 return -EPROBE_DEFER;
4370 } else {
4371 return -EINVAL;
4372 }
4373
4374 if (ret < 0)
4375 return ret;
4376 return ret - rdev->constraints->uV_offset;
4377}
4378EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4379
4380/**
4381 * regulator_get_voltage - get regulator output voltage
4382 * @regulator: regulator source
4383 *
4384 * This returns the current regulator voltage in uV.
4385 *
4386 * NOTE: If the regulator is disabled it will return the voltage value. This
4387 * function should not be used to determine regulator state.
4388 */
4389int regulator_get_voltage(struct regulator *regulator)
4390{
4391 struct ww_acquire_ctx ww_ctx;
4392 int ret;
4393
4394 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4395 ret = regulator_get_voltage_rdev(regulator->rdev);
4396 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4397
4398 return ret;
4399}
4400EXPORT_SYMBOL_GPL(regulator_get_voltage);
4401
4402/**
4403 * regulator_set_current_limit - set regulator output current limit
4404 * @regulator: regulator source
4405 * @min_uA: Minimum supported current in uA
4406 * @max_uA: Maximum supported current in uA
4407 *
4408 * Sets current sink to the desired output current. This can be set during
4409 * any regulator state. IOW, regulator can be disabled or enabled.
4410 *
4411 * If the regulator is enabled then the current will change to the new value
4412 * immediately otherwise if the regulator is disabled the regulator will
4413 * output at the new current when enabled.
4414 *
4415 * NOTE: Regulator system constraints must be set for this regulator before
4416 * calling this function otherwise this call will fail.
4417 */
4418int regulator_set_current_limit(struct regulator *regulator,
4419 int min_uA, int max_uA)
4420{
4421 struct regulator_dev *rdev = regulator->rdev;
4422 int ret;
4423
4424 regulator_lock(rdev);
4425
4426 /* sanity check */
4427 if (!rdev->desc->ops->set_current_limit) {
4428 ret = -EINVAL;
4429 goto out;
4430 }
4431
4432 /* constraints check */
4433 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4434 if (ret < 0)
4435 goto out;
4436
4437 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4438out:
4439 regulator_unlock(rdev);
4440 return ret;
4441}
4442EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4443
4444static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4445{
4446 /* sanity check */
4447 if (!rdev->desc->ops->get_current_limit)
4448 return -EINVAL;
4449
4450 return rdev->desc->ops->get_current_limit(rdev);
4451}
4452
4453static int _regulator_get_current_limit(struct regulator_dev *rdev)
4454{
4455 int ret;
4456
4457 regulator_lock(rdev);
4458 ret = _regulator_get_current_limit_unlocked(rdev);
4459 regulator_unlock(rdev);
4460
4461 return ret;
4462}
4463
4464/**
4465 * regulator_get_current_limit - get regulator output current
4466 * @regulator: regulator source
4467 *
4468 * This returns the current supplied by the specified current sink in uA.
4469 *
4470 * NOTE: If the regulator is disabled it will return the current value. This
4471 * function should not be used to determine regulator state.
4472 */
4473int regulator_get_current_limit(struct regulator *regulator)
4474{
4475 return _regulator_get_current_limit(regulator->rdev);
4476}
4477EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4478
4479/**
4480 * regulator_set_mode - set regulator operating mode
4481 * @regulator: regulator source
4482 * @mode: operating mode - one of the REGULATOR_MODE constants
4483 *
4484 * Set regulator operating mode to increase regulator efficiency or improve
4485 * regulation performance.
4486 *
4487 * NOTE: Regulator system constraints must be set for this regulator before
4488 * calling this function otherwise this call will fail.
4489 */
4490int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4491{
4492 struct regulator_dev *rdev = regulator->rdev;
4493 int ret;
4494 int regulator_curr_mode;
4495
4496 regulator_lock(rdev);
4497
4498 /* sanity check */
4499 if (!rdev->desc->ops->set_mode) {
4500 ret = -EINVAL;
4501 goto out;
4502 }
4503
4504 /* return if the same mode is requested */
4505 if (rdev->desc->ops->get_mode) {
4506 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4507 if (regulator_curr_mode == mode) {
4508 ret = 0;
4509 goto out;
4510 }
4511 }
4512
4513 /* constraints check */
4514 ret = regulator_mode_constrain(rdev, &mode);
4515 if (ret < 0)
4516 goto out;
4517
4518 ret = rdev->desc->ops->set_mode(rdev, mode);
4519out:
4520 regulator_unlock(rdev);
4521 return ret;
4522}
4523EXPORT_SYMBOL_GPL(regulator_set_mode);
4524
4525static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4526{
4527 /* sanity check */
4528 if (!rdev->desc->ops->get_mode)
4529 return -EINVAL;
4530
4531 return rdev->desc->ops->get_mode(rdev);
4532}
4533
4534static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4535{
4536 int ret;
4537
4538 regulator_lock(rdev);
4539 ret = _regulator_get_mode_unlocked(rdev);
4540 regulator_unlock(rdev);
4541
4542 return ret;
4543}
4544
4545/**
4546 * regulator_get_mode - get regulator operating mode
4547 * @regulator: regulator source
4548 *
4549 * Get the current regulator operating mode.
4550 */
4551unsigned int regulator_get_mode(struct regulator *regulator)
4552{
4553 return _regulator_get_mode(regulator->rdev);
4554}
4555EXPORT_SYMBOL_GPL(regulator_get_mode);
4556
4557static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4558{
4559 int ret = 0;
4560
4561 if (rdev->use_cached_err) {
4562 spin_lock(&rdev->err_lock);
4563 ret = rdev->cached_err;
4564 spin_unlock(&rdev->err_lock);
4565 }
4566 return ret;
4567}
4568
4569static int _regulator_get_error_flags(struct regulator_dev *rdev,
4570 unsigned int *flags)
4571{
4572 int cached_flags, ret = 0;
4573
4574 regulator_lock(rdev);
4575
4576 cached_flags = rdev_get_cached_err_flags(rdev);
4577
4578 if (rdev->desc->ops->get_error_flags)
4579 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4580 else if (!rdev->use_cached_err)
4581 ret = -EINVAL;
4582
4583 *flags |= cached_flags;
4584
4585 regulator_unlock(rdev);
4586
4587 return ret;
4588}
4589
4590/**
4591 * regulator_get_error_flags - get regulator error information
4592 * @regulator: regulator source
4593 * @flags: pointer to store error flags
4594 *
4595 * Get the current regulator error information.
4596 */
4597int regulator_get_error_flags(struct regulator *regulator,
4598 unsigned int *flags)
4599{
4600 return _regulator_get_error_flags(regulator->rdev, flags);
4601}
4602EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4603
4604/**
4605 * regulator_set_load - set regulator load
4606 * @regulator: regulator source
4607 * @uA_load: load current
4608 *
4609 * Notifies the regulator core of a new device load. This is then used by
4610 * DRMS (if enabled by constraints) to set the most efficient regulator
4611 * operating mode for the new regulator loading.
4612 *
4613 * Consumer devices notify their supply regulator of the maximum power
4614 * they will require (can be taken from device datasheet in the power
4615 * consumption tables) when they change operational status and hence power
4616 * state. Examples of operational state changes that can affect power
4617 * consumption are :-
4618 *
4619 * o Device is opened / closed.
4620 * o Device I/O is about to begin or has just finished.
4621 * o Device is idling in between work.
4622 *
4623 * This information is also exported via sysfs to userspace.
4624 *
4625 * DRMS will sum the total requested load on the regulator and change
4626 * to the most efficient operating mode if platform constraints allow.
4627 *
4628 * NOTE: when a regulator consumer requests to have a regulator
4629 * disabled then any load that consumer requested no longer counts
4630 * toward the total requested load. If the regulator is re-enabled
4631 * then the previously requested load will start counting again.
4632 *
4633 * If a regulator is an always-on regulator then an individual consumer's
4634 * load will still be removed if that consumer is fully disabled.
4635 *
4636 * On error a negative errno is returned.
4637 */
4638int regulator_set_load(struct regulator *regulator, int uA_load)
4639{
4640 struct regulator_dev *rdev = regulator->rdev;
4641 int old_uA_load;
4642 int ret = 0;
4643
4644 regulator_lock(rdev);
4645 old_uA_load = regulator->uA_load;
4646 regulator->uA_load = uA_load;
4647 if (regulator->enable_count && old_uA_load != uA_load) {
4648 ret = drms_uA_update(rdev);
4649 if (ret < 0)
4650 regulator->uA_load = old_uA_load;
4651 }
4652 regulator_unlock(rdev);
4653
4654 return ret;
4655}
4656EXPORT_SYMBOL_GPL(regulator_set_load);
4657
4658/**
4659 * regulator_allow_bypass - allow the regulator to go into bypass mode
4660 *
4661 * @regulator: Regulator to configure
4662 * @enable: enable or disable bypass mode
4663 *
4664 * Allow the regulator to go into bypass mode if all other consumers
4665 * for the regulator also enable bypass mode and the machine
4666 * constraints allow this. Bypass mode means that the regulator is
4667 * simply passing the input directly to the output with no regulation.
4668 */
4669int regulator_allow_bypass(struct regulator *regulator, bool enable)
4670{
4671 struct regulator_dev *rdev = regulator->rdev;
4672 const char *name = rdev_get_name(rdev);
4673 int ret = 0;
4674
4675 if (!rdev->desc->ops->set_bypass)
4676 return 0;
4677
4678 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4679 return 0;
4680
4681 regulator_lock(rdev);
4682
4683 if (enable && !regulator->bypass) {
4684 rdev->bypass_count++;
4685
4686 if (rdev->bypass_count == rdev->open_count) {
4687 trace_regulator_bypass_enable(name);
4688
4689 ret = rdev->desc->ops->set_bypass(rdev, enable);
4690 if (ret != 0)
4691 rdev->bypass_count--;
4692 else
4693 trace_regulator_bypass_enable_complete(name);
4694 }
4695
4696 } else if (!enable && regulator->bypass) {
4697 rdev->bypass_count--;
4698
4699 if (rdev->bypass_count != rdev->open_count) {
4700 trace_regulator_bypass_disable(name);
4701
4702 ret = rdev->desc->ops->set_bypass(rdev, enable);
4703 if (ret != 0)
4704 rdev->bypass_count++;
4705 else
4706 trace_regulator_bypass_disable_complete(name);
4707 }
4708 }
4709
4710 if (ret == 0)
4711 regulator->bypass = enable;
4712
4713 regulator_unlock(rdev);
4714
4715 return ret;
4716}
4717EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4718
4719/**
4720 * regulator_register_notifier - register regulator event notifier
4721 * @regulator: regulator source
4722 * @nb: notifier block
4723 *
4724 * Register notifier block to receive regulator events.
4725 */
4726int regulator_register_notifier(struct regulator *regulator,
4727 struct notifier_block *nb)
4728{
4729 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4730 nb);
4731}
4732EXPORT_SYMBOL_GPL(regulator_register_notifier);
4733
4734/**
4735 * regulator_unregister_notifier - unregister regulator event notifier
4736 * @regulator: regulator source
4737 * @nb: notifier block
4738 *
4739 * Unregister regulator event notifier block.
4740 */
4741int regulator_unregister_notifier(struct regulator *regulator,
4742 struct notifier_block *nb)
4743{
4744 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4745 nb);
4746}
4747EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4748
4749/* notify regulator consumers and downstream regulator consumers.
4750 * Note mutex must be held by caller.
4751 */
4752static int _notifier_call_chain(struct regulator_dev *rdev,
4753 unsigned long event, void *data)
4754{
4755 /* call rdev chain first */
4756 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4757}
4758
4759/**
4760 * regulator_bulk_get - get multiple regulator consumers
4761 *
4762 * @dev: Device to supply
4763 * @num_consumers: Number of consumers to register
4764 * @consumers: Configuration of consumers; clients are stored here.
4765 *
4766 * @return 0 on success, an errno on failure.
4767 *
4768 * This helper function allows drivers to get several regulator
4769 * consumers in one operation. If any of the regulators cannot be
4770 * acquired then any regulators that were allocated will be freed
4771 * before returning to the caller.
4772 */
4773int regulator_bulk_get(struct device *dev, int num_consumers,
4774 struct regulator_bulk_data *consumers)
4775{
4776 int i;
4777 int ret;
4778
4779 for (i = 0; i < num_consumers; i++)
4780 consumers[i].consumer = NULL;
4781
4782 for (i = 0; i < num_consumers; i++) {
4783 consumers[i].consumer = regulator_get(dev,
4784 consumers[i].supply);
4785 if (IS_ERR(consumers[i].consumer)) {
4786 ret = PTR_ERR(consumers[i].consumer);
4787 consumers[i].consumer = NULL;
4788 goto err;
4789 }
4790 }
4791
4792 return 0;
4793
4794err:
4795 if (ret != -EPROBE_DEFER)
4796 dev_err(dev, "Failed to get supply '%s': %pe\n",
4797 consumers[i].supply, ERR_PTR(ret));
4798 else
4799 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4800 consumers[i].supply);
4801
4802 while (--i >= 0)
4803 regulator_put(consumers[i].consumer);
4804
4805 return ret;
4806}
4807EXPORT_SYMBOL_GPL(regulator_bulk_get);
4808
4809static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4810{
4811 struct regulator_bulk_data *bulk = data;
4812
4813 bulk->ret = regulator_enable(bulk->consumer);
4814}
4815
4816/**
4817 * regulator_bulk_enable - enable multiple regulator consumers
4818 *
4819 * @num_consumers: Number of consumers
4820 * @consumers: Consumer data; clients are stored here.
4821 * @return 0 on success, an errno on failure
4822 *
4823 * This convenience API allows consumers to enable multiple regulator
4824 * clients in a single API call. If any consumers cannot be enabled
4825 * then any others that were enabled will be disabled again prior to
4826 * return.
4827 */
4828int regulator_bulk_enable(int num_consumers,
4829 struct regulator_bulk_data *consumers)
4830{
4831 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4832 int i;
4833 int ret = 0;
4834
4835 for (i = 0; i < num_consumers; i++) {
4836 async_schedule_domain(regulator_bulk_enable_async,
4837 &consumers[i], &async_domain);
4838 }
4839
4840 async_synchronize_full_domain(&async_domain);
4841
4842 /* If any consumer failed we need to unwind any that succeeded */
4843 for (i = 0; i < num_consumers; i++) {
4844 if (consumers[i].ret != 0) {
4845 ret = consumers[i].ret;
4846 goto err;
4847 }
4848 }
4849
4850 return 0;
4851
4852err:
4853 for (i = 0; i < num_consumers; i++) {
4854 if (consumers[i].ret < 0)
4855 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4856 ERR_PTR(consumers[i].ret));
4857 else
4858 regulator_disable(consumers[i].consumer);
4859 }
4860
4861 return ret;
4862}
4863EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4864
4865/**
4866 * regulator_bulk_disable - disable multiple regulator consumers
4867 *
4868 * @num_consumers: Number of consumers
4869 * @consumers: Consumer data; clients are stored here.
4870 * @return 0 on success, an errno on failure
4871 *
4872 * This convenience API allows consumers to disable multiple regulator
4873 * clients in a single API call. If any consumers cannot be disabled
4874 * then any others that were disabled will be enabled again prior to
4875 * return.
4876 */
4877int regulator_bulk_disable(int num_consumers,
4878 struct regulator_bulk_data *consumers)
4879{
4880 int i;
4881 int ret, r;
4882
4883 for (i = num_consumers - 1; i >= 0; --i) {
4884 ret = regulator_disable(consumers[i].consumer);
4885 if (ret != 0)
4886 goto err;
4887 }
4888
4889 return 0;
4890
4891err:
4892 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4893 for (++i; i < num_consumers; ++i) {
4894 r = regulator_enable(consumers[i].consumer);
4895 if (r != 0)
4896 pr_err("Failed to re-enable %s: %pe\n",
4897 consumers[i].supply, ERR_PTR(r));
4898 }
4899
4900 return ret;
4901}
4902EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4903
4904/**
4905 * regulator_bulk_force_disable - force disable multiple regulator consumers
4906 *
4907 * @num_consumers: Number of consumers
4908 * @consumers: Consumer data; clients are stored here.
4909 * @return 0 on success, an errno on failure
4910 *
4911 * This convenience API allows consumers to forcibly disable multiple regulator
4912 * clients in a single API call.
4913 * NOTE: This should be used for situations when device damage will
4914 * likely occur if the regulators are not disabled (e.g. over temp).
4915 * Although regulator_force_disable function call for some consumers can
4916 * return error numbers, the function is called for all consumers.
4917 */
4918int regulator_bulk_force_disable(int num_consumers,
4919 struct regulator_bulk_data *consumers)
4920{
4921 int i;
4922 int ret = 0;
4923
4924 for (i = 0; i < num_consumers; i++) {
4925 consumers[i].ret =
4926 regulator_force_disable(consumers[i].consumer);
4927
4928 /* Store first error for reporting */
4929 if (consumers[i].ret && !ret)
4930 ret = consumers[i].ret;
4931 }
4932
4933 return ret;
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4936
4937/**
4938 * regulator_bulk_free - free multiple regulator consumers
4939 *
4940 * @num_consumers: Number of consumers
4941 * @consumers: Consumer data; clients are stored here.
4942 *
4943 * This convenience API allows consumers to free multiple regulator
4944 * clients in a single API call.
4945 */
4946void regulator_bulk_free(int num_consumers,
4947 struct regulator_bulk_data *consumers)
4948{
4949 int i;
4950
4951 for (i = 0; i < num_consumers; i++) {
4952 regulator_put(consumers[i].consumer);
4953 consumers[i].consumer = NULL;
4954 }
4955}
4956EXPORT_SYMBOL_GPL(regulator_bulk_free);
4957
4958/**
4959 * regulator_notifier_call_chain - call regulator event notifier
4960 * @rdev: regulator source
4961 * @event: notifier block
4962 * @data: callback-specific data.
4963 *
4964 * Called by regulator drivers to notify clients a regulator event has
4965 * occurred.
4966 */
4967int regulator_notifier_call_chain(struct regulator_dev *rdev,
4968 unsigned long event, void *data)
4969{
4970 _notifier_call_chain(rdev, event, data);
4971 return NOTIFY_DONE;
4972
4973}
4974EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4975
4976/**
4977 * regulator_mode_to_status - convert a regulator mode into a status
4978 *
4979 * @mode: Mode to convert
4980 *
4981 * Convert a regulator mode into a status.
4982 */
4983int regulator_mode_to_status(unsigned int mode)
4984{
4985 switch (mode) {
4986 case REGULATOR_MODE_FAST:
4987 return REGULATOR_STATUS_FAST;
4988 case REGULATOR_MODE_NORMAL:
4989 return REGULATOR_STATUS_NORMAL;
4990 case REGULATOR_MODE_IDLE:
4991 return REGULATOR_STATUS_IDLE;
4992 case REGULATOR_MODE_STANDBY:
4993 return REGULATOR_STATUS_STANDBY;
4994 default:
4995 return REGULATOR_STATUS_UNDEFINED;
4996 }
4997}
4998EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4999
5000static struct attribute *regulator_dev_attrs[] = {
5001 &dev_attr_name.attr,
5002 &dev_attr_num_users.attr,
5003 &dev_attr_type.attr,
5004 &dev_attr_microvolts.attr,
5005 &dev_attr_microamps.attr,
5006 &dev_attr_opmode.attr,
5007 &dev_attr_state.attr,
5008 &dev_attr_status.attr,
5009 &dev_attr_bypass.attr,
5010 &dev_attr_requested_microamps.attr,
5011 &dev_attr_min_microvolts.attr,
5012 &dev_attr_max_microvolts.attr,
5013 &dev_attr_min_microamps.attr,
5014 &dev_attr_max_microamps.attr,
5015 &dev_attr_under_voltage.attr,
5016 &dev_attr_over_current.attr,
5017 &dev_attr_regulation_out.attr,
5018 &dev_attr_fail.attr,
5019 &dev_attr_over_temp.attr,
5020 &dev_attr_under_voltage_warn.attr,
5021 &dev_attr_over_current_warn.attr,
5022 &dev_attr_over_voltage_warn.attr,
5023 &dev_attr_over_temp_warn.attr,
5024 &dev_attr_suspend_standby_state.attr,
5025 &dev_attr_suspend_mem_state.attr,
5026 &dev_attr_suspend_disk_state.attr,
5027 &dev_attr_suspend_standby_microvolts.attr,
5028 &dev_attr_suspend_mem_microvolts.attr,
5029 &dev_attr_suspend_disk_microvolts.attr,
5030 &dev_attr_suspend_standby_mode.attr,
5031 &dev_attr_suspend_mem_mode.attr,
5032 &dev_attr_suspend_disk_mode.attr,
5033 NULL
5034};
5035
5036/*
5037 * To avoid cluttering sysfs (and memory) with useless state, only
5038 * create attributes that can be meaningfully displayed.
5039 */
5040static umode_t regulator_attr_is_visible(struct kobject *kobj,
5041 struct attribute *attr, int idx)
5042{
5043 struct device *dev = kobj_to_dev(kobj);
5044 struct regulator_dev *rdev = dev_to_rdev(dev);
5045 const struct regulator_ops *ops = rdev->desc->ops;
5046 umode_t mode = attr->mode;
5047
5048 /* these three are always present */
5049 if (attr == &dev_attr_name.attr ||
5050 attr == &dev_attr_num_users.attr ||
5051 attr == &dev_attr_type.attr)
5052 return mode;
5053
5054 /* some attributes need specific methods to be displayed */
5055 if (attr == &dev_attr_microvolts.attr) {
5056 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5057 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5058 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5059 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5060 return mode;
5061 return 0;
5062 }
5063
5064 if (attr == &dev_attr_microamps.attr)
5065 return ops->get_current_limit ? mode : 0;
5066
5067 if (attr == &dev_attr_opmode.attr)
5068 return ops->get_mode ? mode : 0;
5069
5070 if (attr == &dev_attr_state.attr)
5071 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5072
5073 if (attr == &dev_attr_status.attr)
5074 return ops->get_status ? mode : 0;
5075
5076 if (attr == &dev_attr_bypass.attr)
5077 return ops->get_bypass ? mode : 0;
5078
5079 if (attr == &dev_attr_under_voltage.attr ||
5080 attr == &dev_attr_over_current.attr ||
5081 attr == &dev_attr_regulation_out.attr ||
5082 attr == &dev_attr_fail.attr ||
5083 attr == &dev_attr_over_temp.attr ||
5084 attr == &dev_attr_under_voltage_warn.attr ||
5085 attr == &dev_attr_over_current_warn.attr ||
5086 attr == &dev_attr_over_voltage_warn.attr ||
5087 attr == &dev_attr_over_temp_warn.attr)
5088 return ops->get_error_flags ? mode : 0;
5089
5090 /* constraints need specific supporting methods */
5091 if (attr == &dev_attr_min_microvolts.attr ||
5092 attr == &dev_attr_max_microvolts.attr)
5093 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5094
5095 if (attr == &dev_attr_min_microamps.attr ||
5096 attr == &dev_attr_max_microamps.attr)
5097 return ops->set_current_limit ? mode : 0;
5098
5099 if (attr == &dev_attr_suspend_standby_state.attr ||
5100 attr == &dev_attr_suspend_mem_state.attr ||
5101 attr == &dev_attr_suspend_disk_state.attr)
5102 return mode;
5103
5104 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5105 attr == &dev_attr_suspend_mem_microvolts.attr ||
5106 attr == &dev_attr_suspend_disk_microvolts.attr)
5107 return ops->set_suspend_voltage ? mode : 0;
5108
5109 if (attr == &dev_attr_suspend_standby_mode.attr ||
5110 attr == &dev_attr_suspend_mem_mode.attr ||
5111 attr == &dev_attr_suspend_disk_mode.attr)
5112 return ops->set_suspend_mode ? mode : 0;
5113
5114 return mode;
5115}
5116
5117static const struct attribute_group regulator_dev_group = {
5118 .attrs = regulator_dev_attrs,
5119 .is_visible = regulator_attr_is_visible,
5120};
5121
5122static const struct attribute_group *regulator_dev_groups[] = {
5123 ®ulator_dev_group,
5124 NULL
5125};
5126
5127static void regulator_dev_release(struct device *dev)
5128{
5129 struct regulator_dev *rdev = dev_get_drvdata(dev);
5130
5131 kfree(rdev->constraints);
5132 of_node_put(rdev->dev.of_node);
5133 kfree(rdev);
5134}
5135
5136static void rdev_init_debugfs(struct regulator_dev *rdev)
5137{
5138 struct device *parent = rdev->dev.parent;
5139 const char *rname = rdev_get_name(rdev);
5140 char name[NAME_MAX];
5141
5142 /* Avoid duplicate debugfs directory names */
5143 if (parent && rname == rdev->desc->name) {
5144 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5145 rname);
5146 rname = name;
5147 }
5148
5149 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5150 if (!rdev->debugfs) {
5151 rdev_warn(rdev, "Failed to create debugfs directory\n");
5152 return;
5153 }
5154
5155 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5156 &rdev->use_count);
5157 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5158 &rdev->open_count);
5159 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5160 &rdev->bypass_count);
5161}
5162
5163static int regulator_register_resolve_supply(struct device *dev, void *data)
5164{
5165 struct regulator_dev *rdev = dev_to_rdev(dev);
5166
5167 if (regulator_resolve_supply(rdev))
5168 rdev_dbg(rdev, "unable to resolve supply\n");
5169
5170 return 0;
5171}
5172
5173int regulator_coupler_register(struct regulator_coupler *coupler)
5174{
5175 mutex_lock(®ulator_list_mutex);
5176 list_add_tail(&coupler->list, ®ulator_coupler_list);
5177 mutex_unlock(®ulator_list_mutex);
5178
5179 return 0;
5180}
5181
5182static struct regulator_coupler *
5183regulator_find_coupler(struct regulator_dev *rdev)
5184{
5185 struct regulator_coupler *coupler;
5186 int err;
5187
5188 /*
5189 * Note that regulators are appended to the list and the generic
5190 * coupler is registered first, hence it will be attached at last
5191 * if nobody cared.
5192 */
5193 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5194 err = coupler->attach_regulator(coupler, rdev);
5195 if (!err) {
5196 if (!coupler->balance_voltage &&
5197 rdev->coupling_desc.n_coupled > 2)
5198 goto err_unsupported;
5199
5200 return coupler;
5201 }
5202
5203 if (err < 0)
5204 return ERR_PTR(err);
5205
5206 if (err == 1)
5207 continue;
5208
5209 break;
5210 }
5211
5212 return ERR_PTR(-EINVAL);
5213
5214err_unsupported:
5215 if (coupler->detach_regulator)
5216 coupler->detach_regulator(coupler, rdev);
5217
5218 rdev_err(rdev,
5219 "Voltage balancing for multiple regulator couples is unimplemented\n");
5220
5221 return ERR_PTR(-EPERM);
5222}
5223
5224static void regulator_resolve_coupling(struct regulator_dev *rdev)
5225{
5226 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5227 struct coupling_desc *c_desc = &rdev->coupling_desc;
5228 int n_coupled = c_desc->n_coupled;
5229 struct regulator_dev *c_rdev;
5230 int i;
5231
5232 for (i = 1; i < n_coupled; i++) {
5233 /* already resolved */
5234 if (c_desc->coupled_rdevs[i])
5235 continue;
5236
5237 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5238
5239 if (!c_rdev)
5240 continue;
5241
5242 if (c_rdev->coupling_desc.coupler != coupler) {
5243 rdev_err(rdev, "coupler mismatch with %s\n",
5244 rdev_get_name(c_rdev));
5245 return;
5246 }
5247
5248 c_desc->coupled_rdevs[i] = c_rdev;
5249 c_desc->n_resolved++;
5250
5251 regulator_resolve_coupling(c_rdev);
5252 }
5253}
5254
5255static void regulator_remove_coupling(struct regulator_dev *rdev)
5256{
5257 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5258 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5259 struct regulator_dev *__c_rdev, *c_rdev;
5260 unsigned int __n_coupled, n_coupled;
5261 int i, k;
5262 int err;
5263
5264 n_coupled = c_desc->n_coupled;
5265
5266 for (i = 1; i < n_coupled; i++) {
5267 c_rdev = c_desc->coupled_rdevs[i];
5268
5269 if (!c_rdev)
5270 continue;
5271
5272 regulator_lock(c_rdev);
5273
5274 __c_desc = &c_rdev->coupling_desc;
5275 __n_coupled = __c_desc->n_coupled;
5276
5277 for (k = 1; k < __n_coupled; k++) {
5278 __c_rdev = __c_desc->coupled_rdevs[k];
5279
5280 if (__c_rdev == rdev) {
5281 __c_desc->coupled_rdevs[k] = NULL;
5282 __c_desc->n_resolved--;
5283 break;
5284 }
5285 }
5286
5287 regulator_unlock(c_rdev);
5288
5289 c_desc->coupled_rdevs[i] = NULL;
5290 c_desc->n_resolved--;
5291 }
5292
5293 if (coupler && coupler->detach_regulator) {
5294 err = coupler->detach_regulator(coupler, rdev);
5295 if (err)
5296 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5297 ERR_PTR(err));
5298 }
5299
5300 kfree(rdev->coupling_desc.coupled_rdevs);
5301 rdev->coupling_desc.coupled_rdevs = NULL;
5302}
5303
5304static int regulator_init_coupling(struct regulator_dev *rdev)
5305{
5306 struct regulator_dev **coupled;
5307 int err, n_phandles;
5308
5309 if (!IS_ENABLED(CONFIG_OF))
5310 n_phandles = 0;
5311 else
5312 n_phandles = of_get_n_coupled(rdev);
5313
5314 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5315 if (!coupled)
5316 return -ENOMEM;
5317
5318 rdev->coupling_desc.coupled_rdevs = coupled;
5319
5320 /*
5321 * Every regulator should always have coupling descriptor filled with
5322 * at least pointer to itself.
5323 */
5324 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5325 rdev->coupling_desc.n_coupled = n_phandles + 1;
5326 rdev->coupling_desc.n_resolved++;
5327
5328 /* regulator isn't coupled */
5329 if (n_phandles == 0)
5330 return 0;
5331
5332 if (!of_check_coupling_data(rdev))
5333 return -EPERM;
5334
5335 mutex_lock(®ulator_list_mutex);
5336 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5337 mutex_unlock(®ulator_list_mutex);
5338
5339 if (IS_ERR(rdev->coupling_desc.coupler)) {
5340 err = PTR_ERR(rdev->coupling_desc.coupler);
5341 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5342 return err;
5343 }
5344
5345 return 0;
5346}
5347
5348static int generic_coupler_attach(struct regulator_coupler *coupler,
5349 struct regulator_dev *rdev)
5350{
5351 if (rdev->coupling_desc.n_coupled > 2) {
5352 rdev_err(rdev,
5353 "Voltage balancing for multiple regulator couples is unimplemented\n");
5354 return -EPERM;
5355 }
5356
5357 if (!rdev->constraints->always_on) {
5358 rdev_err(rdev,
5359 "Coupling of a non always-on regulator is unimplemented\n");
5360 return -ENOTSUPP;
5361 }
5362
5363 return 0;
5364}
5365
5366static struct regulator_coupler generic_regulator_coupler = {
5367 .attach_regulator = generic_coupler_attach,
5368};
5369
5370/**
5371 * regulator_register - register regulator
5372 * @regulator_desc: regulator to register
5373 * @cfg: runtime configuration for regulator
5374 *
5375 * Called by regulator drivers to register a regulator.
5376 * Returns a valid pointer to struct regulator_dev on success
5377 * or an ERR_PTR() on error.
5378 */
5379struct regulator_dev *
5380regulator_register(const struct regulator_desc *regulator_desc,
5381 const struct regulator_config *cfg)
5382{
5383 const struct regulator_init_data *init_data;
5384 struct regulator_config *config = NULL;
5385 static atomic_t regulator_no = ATOMIC_INIT(-1);
5386 struct regulator_dev *rdev;
5387 bool dangling_cfg_gpiod = false;
5388 bool dangling_of_gpiod = false;
5389 struct device *dev;
5390 int ret, i;
5391
5392 if (cfg == NULL)
5393 return ERR_PTR(-EINVAL);
5394 if (cfg->ena_gpiod)
5395 dangling_cfg_gpiod = true;
5396 if (regulator_desc == NULL) {
5397 ret = -EINVAL;
5398 goto rinse;
5399 }
5400
5401 dev = cfg->dev;
5402 WARN_ON(!dev);
5403
5404 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5405 ret = -EINVAL;
5406 goto rinse;
5407 }
5408
5409 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5410 regulator_desc->type != REGULATOR_CURRENT) {
5411 ret = -EINVAL;
5412 goto rinse;
5413 }
5414
5415 /* Only one of each should be implemented */
5416 WARN_ON(regulator_desc->ops->get_voltage &&
5417 regulator_desc->ops->get_voltage_sel);
5418 WARN_ON(regulator_desc->ops->set_voltage &&
5419 regulator_desc->ops->set_voltage_sel);
5420
5421 /* If we're using selectors we must implement list_voltage. */
5422 if (regulator_desc->ops->get_voltage_sel &&
5423 !regulator_desc->ops->list_voltage) {
5424 ret = -EINVAL;
5425 goto rinse;
5426 }
5427 if (regulator_desc->ops->set_voltage_sel &&
5428 !regulator_desc->ops->list_voltage) {
5429 ret = -EINVAL;
5430 goto rinse;
5431 }
5432
5433 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5434 if (rdev == NULL) {
5435 ret = -ENOMEM;
5436 goto rinse;
5437 }
5438 device_initialize(&rdev->dev);
5439 spin_lock_init(&rdev->err_lock);
5440
5441 /*
5442 * Duplicate the config so the driver could override it after
5443 * parsing init data.
5444 */
5445 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5446 if (config == NULL) {
5447 ret = -ENOMEM;
5448 goto clean;
5449 }
5450
5451 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5452 &rdev->dev.of_node);
5453
5454 /*
5455 * Sometimes not all resources are probed already so we need to take
5456 * that into account. This happens most the time if the ena_gpiod comes
5457 * from a gpio extender or something else.
5458 */
5459 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5460 ret = -EPROBE_DEFER;
5461 goto clean;
5462 }
5463
5464 /*
5465 * We need to keep track of any GPIO descriptor coming from the
5466 * device tree until we have handled it over to the core. If the
5467 * config that was passed in to this function DOES NOT contain
5468 * a descriptor, and the config after this call DOES contain
5469 * a descriptor, we definitely got one from parsing the device
5470 * tree.
5471 */
5472 if (!cfg->ena_gpiod && config->ena_gpiod)
5473 dangling_of_gpiod = true;
5474 if (!init_data) {
5475 init_data = config->init_data;
5476 rdev->dev.of_node = of_node_get(config->of_node);
5477 }
5478
5479 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5480 rdev->reg_data = config->driver_data;
5481 rdev->owner = regulator_desc->owner;
5482 rdev->desc = regulator_desc;
5483 if (config->regmap)
5484 rdev->regmap = config->regmap;
5485 else if (dev_get_regmap(dev, NULL))
5486 rdev->regmap = dev_get_regmap(dev, NULL);
5487 else if (dev->parent)
5488 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5489 INIT_LIST_HEAD(&rdev->consumer_list);
5490 INIT_LIST_HEAD(&rdev->list);
5491 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5492 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5493
5494 /* preform any regulator specific init */
5495 if (init_data && init_data->regulator_init) {
5496 ret = init_data->regulator_init(rdev->reg_data);
5497 if (ret < 0)
5498 goto clean;
5499 }
5500
5501 if (config->ena_gpiod) {
5502 ret = regulator_ena_gpio_request(rdev, config);
5503 if (ret != 0) {
5504 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5505 ERR_PTR(ret));
5506 goto clean;
5507 }
5508 /* The regulator core took over the GPIO descriptor */
5509 dangling_cfg_gpiod = false;
5510 dangling_of_gpiod = false;
5511 }
5512
5513 /* register with sysfs */
5514 rdev->dev.class = ®ulator_class;
5515 rdev->dev.parent = dev;
5516 dev_set_name(&rdev->dev, "regulator.%lu",
5517 (unsigned long) atomic_inc_return(®ulator_no));
5518 dev_set_drvdata(&rdev->dev, rdev);
5519
5520 /* set regulator constraints */
5521 if (init_data)
5522 rdev->constraints = kmemdup(&init_data->constraints,
5523 sizeof(*rdev->constraints),
5524 GFP_KERNEL);
5525 else
5526 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5527 GFP_KERNEL);
5528 if (!rdev->constraints) {
5529 ret = -ENOMEM;
5530 goto wash;
5531 }
5532
5533 if (init_data && init_data->supply_regulator)
5534 rdev->supply_name = init_data->supply_regulator;
5535 else if (regulator_desc->supply_name)
5536 rdev->supply_name = regulator_desc->supply_name;
5537
5538 ret = set_machine_constraints(rdev);
5539 if (ret == -EPROBE_DEFER) {
5540 /* Regulator might be in bypass mode and so needs its supply
5541 * to set the constraints
5542 */
5543 /* FIXME: this currently triggers a chicken-and-egg problem
5544 * when creating -SUPPLY symlink in sysfs to a regulator
5545 * that is just being created
5546 */
5547 rdev_dbg(rdev, "will resolve supply early: %s\n",
5548 rdev->supply_name);
5549 ret = regulator_resolve_supply(rdev);
5550 if (!ret)
5551 ret = set_machine_constraints(rdev);
5552 else
5553 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5554 ERR_PTR(ret));
5555 }
5556 if (ret < 0)
5557 goto wash;
5558
5559 ret = regulator_init_coupling(rdev);
5560 if (ret < 0)
5561 goto wash;
5562
5563 /* add consumers devices */
5564 if (init_data) {
5565 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5566 ret = set_consumer_device_supply(rdev,
5567 init_data->consumer_supplies[i].dev_name,
5568 init_data->consumer_supplies[i].supply);
5569 if (ret < 0) {
5570 dev_err(dev, "Failed to set supply %s\n",
5571 init_data->consumer_supplies[i].supply);
5572 goto unset_supplies;
5573 }
5574 }
5575 }
5576
5577 if (!rdev->desc->ops->get_voltage &&
5578 !rdev->desc->ops->list_voltage &&
5579 !rdev->desc->fixed_uV)
5580 rdev->is_switch = true;
5581
5582 ret = device_add(&rdev->dev);
5583 if (ret != 0)
5584 goto unset_supplies;
5585
5586 rdev_init_debugfs(rdev);
5587
5588 /* try to resolve regulators coupling since a new one was registered */
5589 mutex_lock(®ulator_list_mutex);
5590 regulator_resolve_coupling(rdev);
5591 mutex_unlock(®ulator_list_mutex);
5592
5593 /* try to resolve regulators supply since a new one was registered */
5594 class_for_each_device(®ulator_class, NULL, NULL,
5595 regulator_register_resolve_supply);
5596 kfree(config);
5597 return rdev;
5598
5599unset_supplies:
5600 mutex_lock(®ulator_list_mutex);
5601 unset_regulator_supplies(rdev);
5602 regulator_remove_coupling(rdev);
5603 mutex_unlock(®ulator_list_mutex);
5604wash:
5605 kfree(rdev->coupling_desc.coupled_rdevs);
5606 mutex_lock(®ulator_list_mutex);
5607 regulator_ena_gpio_free(rdev);
5608 mutex_unlock(®ulator_list_mutex);
5609clean:
5610 if (dangling_of_gpiod)
5611 gpiod_put(config->ena_gpiod);
5612 kfree(config);
5613 put_device(&rdev->dev);
5614rinse:
5615 if (dangling_cfg_gpiod)
5616 gpiod_put(cfg->ena_gpiod);
5617 return ERR_PTR(ret);
5618}
5619EXPORT_SYMBOL_GPL(regulator_register);
5620
5621/**
5622 * regulator_unregister - unregister regulator
5623 * @rdev: regulator to unregister
5624 *
5625 * Called by regulator drivers to unregister a regulator.
5626 */
5627void regulator_unregister(struct regulator_dev *rdev)
5628{
5629 if (rdev == NULL)
5630 return;
5631
5632 if (rdev->supply) {
5633 while (rdev->use_count--)
5634 regulator_disable(rdev->supply);
5635 regulator_put(rdev->supply);
5636 }
5637
5638 flush_work(&rdev->disable_work.work);
5639
5640 mutex_lock(®ulator_list_mutex);
5641
5642 debugfs_remove_recursive(rdev->debugfs);
5643 WARN_ON(rdev->open_count);
5644 regulator_remove_coupling(rdev);
5645 unset_regulator_supplies(rdev);
5646 list_del(&rdev->list);
5647 regulator_ena_gpio_free(rdev);
5648 device_unregister(&rdev->dev);
5649
5650 mutex_unlock(®ulator_list_mutex);
5651}
5652EXPORT_SYMBOL_GPL(regulator_unregister);
5653
5654#ifdef CONFIG_SUSPEND
5655/**
5656 * regulator_suspend - prepare regulators for system wide suspend
5657 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5658 *
5659 * Configure each regulator with it's suspend operating parameters for state.
5660 */
5661static int regulator_suspend(struct device *dev)
5662{
5663 struct regulator_dev *rdev = dev_to_rdev(dev);
5664 suspend_state_t state = pm_suspend_target_state;
5665 int ret;
5666 const struct regulator_state *rstate;
5667
5668 rstate = regulator_get_suspend_state_check(rdev, state);
5669 if (!rstate)
5670 return 0;
5671
5672 regulator_lock(rdev);
5673 ret = __suspend_set_state(rdev, rstate);
5674 regulator_unlock(rdev);
5675
5676 return ret;
5677}
5678
5679static int regulator_resume(struct device *dev)
5680{
5681 suspend_state_t state = pm_suspend_target_state;
5682 struct regulator_dev *rdev = dev_to_rdev(dev);
5683 struct regulator_state *rstate;
5684 int ret = 0;
5685
5686 rstate = regulator_get_suspend_state(rdev, state);
5687 if (rstate == NULL)
5688 return 0;
5689
5690 /* Avoid grabbing the lock if we don't need to */
5691 if (!rdev->desc->ops->resume)
5692 return 0;
5693
5694 regulator_lock(rdev);
5695
5696 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5697 rstate->enabled == DISABLE_IN_SUSPEND)
5698 ret = rdev->desc->ops->resume(rdev);
5699
5700 regulator_unlock(rdev);
5701
5702 return ret;
5703}
5704#else /* !CONFIG_SUSPEND */
5705
5706#define regulator_suspend NULL
5707#define regulator_resume NULL
5708
5709#endif /* !CONFIG_SUSPEND */
5710
5711#ifdef CONFIG_PM
5712static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5713 .suspend = regulator_suspend,
5714 .resume = regulator_resume,
5715};
5716#endif
5717
5718struct class regulator_class = {
5719 .name = "regulator",
5720 .dev_release = regulator_dev_release,
5721 .dev_groups = regulator_dev_groups,
5722#ifdef CONFIG_PM
5723 .pm = ®ulator_pm_ops,
5724#endif
5725};
5726/**
5727 * regulator_has_full_constraints - the system has fully specified constraints
5728 *
5729 * Calling this function will cause the regulator API to disable all
5730 * regulators which have a zero use count and don't have an always_on
5731 * constraint in a late_initcall.
5732 *
5733 * The intention is that this will become the default behaviour in a
5734 * future kernel release so users are encouraged to use this facility
5735 * now.
5736 */
5737void regulator_has_full_constraints(void)
5738{
5739 has_full_constraints = 1;
5740}
5741EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5742
5743/**
5744 * rdev_get_drvdata - get rdev regulator driver data
5745 * @rdev: regulator
5746 *
5747 * Get rdev regulator driver private data. This call can be used in the
5748 * regulator driver context.
5749 */
5750void *rdev_get_drvdata(struct regulator_dev *rdev)
5751{
5752 return rdev->reg_data;
5753}
5754EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5755
5756/**
5757 * regulator_get_drvdata - get regulator driver data
5758 * @regulator: regulator
5759 *
5760 * Get regulator driver private data. This call can be used in the consumer
5761 * driver context when non API regulator specific functions need to be called.
5762 */
5763void *regulator_get_drvdata(struct regulator *regulator)
5764{
5765 return regulator->rdev->reg_data;
5766}
5767EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5768
5769/**
5770 * regulator_set_drvdata - set regulator driver data
5771 * @regulator: regulator
5772 * @data: data
5773 */
5774void regulator_set_drvdata(struct regulator *regulator, void *data)
5775{
5776 regulator->rdev->reg_data = data;
5777}
5778EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5779
5780/**
5781 * rdev_get_id - get regulator ID
5782 * @rdev: regulator
5783 */
5784int rdev_get_id(struct regulator_dev *rdev)
5785{
5786 return rdev->desc->id;
5787}
5788EXPORT_SYMBOL_GPL(rdev_get_id);
5789
5790struct device *rdev_get_dev(struct regulator_dev *rdev)
5791{
5792 return &rdev->dev;
5793}
5794EXPORT_SYMBOL_GPL(rdev_get_dev);
5795
5796struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5797{
5798 return rdev->regmap;
5799}
5800EXPORT_SYMBOL_GPL(rdev_get_regmap);
5801
5802void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5803{
5804 return reg_init_data->driver_data;
5805}
5806EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5807
5808#ifdef CONFIG_DEBUG_FS
5809static int supply_map_show(struct seq_file *sf, void *data)
5810{
5811 struct regulator_map *map;
5812
5813 list_for_each_entry(map, ®ulator_map_list, list) {
5814 seq_printf(sf, "%s -> %s.%s\n",
5815 rdev_get_name(map->regulator), map->dev_name,
5816 map->supply);
5817 }
5818
5819 return 0;
5820}
5821DEFINE_SHOW_ATTRIBUTE(supply_map);
5822
5823struct summary_data {
5824 struct seq_file *s;
5825 struct regulator_dev *parent;
5826 int level;
5827};
5828
5829static void regulator_summary_show_subtree(struct seq_file *s,
5830 struct regulator_dev *rdev,
5831 int level);
5832
5833static int regulator_summary_show_children(struct device *dev, void *data)
5834{
5835 struct regulator_dev *rdev = dev_to_rdev(dev);
5836 struct summary_data *summary_data = data;
5837
5838 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5839 regulator_summary_show_subtree(summary_data->s, rdev,
5840 summary_data->level + 1);
5841
5842 return 0;
5843}
5844
5845static void regulator_summary_show_subtree(struct seq_file *s,
5846 struct regulator_dev *rdev,
5847 int level)
5848{
5849 struct regulation_constraints *c;
5850 struct regulator *consumer;
5851 struct summary_data summary_data;
5852 unsigned int opmode;
5853
5854 if (!rdev)
5855 return;
5856
5857 opmode = _regulator_get_mode_unlocked(rdev);
5858 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5859 level * 3 + 1, "",
5860 30 - level * 3, rdev_get_name(rdev),
5861 rdev->use_count, rdev->open_count, rdev->bypass_count,
5862 regulator_opmode_to_str(opmode));
5863
5864 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5865 seq_printf(s, "%5dmA ",
5866 _regulator_get_current_limit_unlocked(rdev) / 1000);
5867
5868 c = rdev->constraints;
5869 if (c) {
5870 switch (rdev->desc->type) {
5871 case REGULATOR_VOLTAGE:
5872 seq_printf(s, "%5dmV %5dmV ",
5873 c->min_uV / 1000, c->max_uV / 1000);
5874 break;
5875 case REGULATOR_CURRENT:
5876 seq_printf(s, "%5dmA %5dmA ",
5877 c->min_uA / 1000, c->max_uA / 1000);
5878 break;
5879 }
5880 }
5881
5882 seq_puts(s, "\n");
5883
5884 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5885 if (consumer->dev && consumer->dev->class == ®ulator_class)
5886 continue;
5887
5888 seq_printf(s, "%*s%-*s ",
5889 (level + 1) * 3 + 1, "",
5890 30 - (level + 1) * 3,
5891 consumer->supply_name ? consumer->supply_name :
5892 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5893
5894 switch (rdev->desc->type) {
5895 case REGULATOR_VOLTAGE:
5896 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5897 consumer->enable_count,
5898 consumer->uA_load / 1000,
5899 consumer->uA_load && !consumer->enable_count ?
5900 '*' : ' ',
5901 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5902 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5903 break;
5904 case REGULATOR_CURRENT:
5905 break;
5906 }
5907
5908 seq_puts(s, "\n");
5909 }
5910
5911 summary_data.s = s;
5912 summary_data.level = level;
5913 summary_data.parent = rdev;
5914
5915 class_for_each_device(®ulator_class, NULL, &summary_data,
5916 regulator_summary_show_children);
5917}
5918
5919struct summary_lock_data {
5920 struct ww_acquire_ctx *ww_ctx;
5921 struct regulator_dev **new_contended_rdev;
5922 struct regulator_dev **old_contended_rdev;
5923};
5924
5925static int regulator_summary_lock_one(struct device *dev, void *data)
5926{
5927 struct regulator_dev *rdev = dev_to_rdev(dev);
5928 struct summary_lock_data *lock_data = data;
5929 int ret = 0;
5930
5931 if (rdev != *lock_data->old_contended_rdev) {
5932 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5933
5934 if (ret == -EDEADLK)
5935 *lock_data->new_contended_rdev = rdev;
5936 else
5937 WARN_ON_ONCE(ret);
5938 } else {
5939 *lock_data->old_contended_rdev = NULL;
5940 }
5941
5942 return ret;
5943}
5944
5945static int regulator_summary_unlock_one(struct device *dev, void *data)
5946{
5947 struct regulator_dev *rdev = dev_to_rdev(dev);
5948 struct summary_lock_data *lock_data = data;
5949
5950 if (lock_data) {
5951 if (rdev == *lock_data->new_contended_rdev)
5952 return -EDEADLK;
5953 }
5954
5955 regulator_unlock(rdev);
5956
5957 return 0;
5958}
5959
5960static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5961 struct regulator_dev **new_contended_rdev,
5962 struct regulator_dev **old_contended_rdev)
5963{
5964 struct summary_lock_data lock_data;
5965 int ret;
5966
5967 lock_data.ww_ctx = ww_ctx;
5968 lock_data.new_contended_rdev = new_contended_rdev;
5969 lock_data.old_contended_rdev = old_contended_rdev;
5970
5971 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5972 regulator_summary_lock_one);
5973 if (ret)
5974 class_for_each_device(®ulator_class, NULL, &lock_data,
5975 regulator_summary_unlock_one);
5976
5977 return ret;
5978}
5979
5980static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5981{
5982 struct regulator_dev *new_contended_rdev = NULL;
5983 struct regulator_dev *old_contended_rdev = NULL;
5984 int err;
5985
5986 mutex_lock(®ulator_list_mutex);
5987
5988 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5989
5990 do {
5991 if (new_contended_rdev) {
5992 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5993 old_contended_rdev = new_contended_rdev;
5994 old_contended_rdev->ref_cnt++;
5995 }
5996
5997 err = regulator_summary_lock_all(ww_ctx,
5998 &new_contended_rdev,
5999 &old_contended_rdev);
6000
6001 if (old_contended_rdev)
6002 regulator_unlock(old_contended_rdev);
6003
6004 } while (err == -EDEADLK);
6005
6006 ww_acquire_done(ww_ctx);
6007}
6008
6009static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6010{
6011 class_for_each_device(®ulator_class, NULL, NULL,
6012 regulator_summary_unlock_one);
6013 ww_acquire_fini(ww_ctx);
6014
6015 mutex_unlock(®ulator_list_mutex);
6016}
6017
6018static int regulator_summary_show_roots(struct device *dev, void *data)
6019{
6020 struct regulator_dev *rdev = dev_to_rdev(dev);
6021 struct seq_file *s = data;
6022
6023 if (!rdev->supply)
6024 regulator_summary_show_subtree(s, rdev, 0);
6025
6026 return 0;
6027}
6028
6029static int regulator_summary_show(struct seq_file *s, void *data)
6030{
6031 struct ww_acquire_ctx ww_ctx;
6032
6033 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6034 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6035
6036 regulator_summary_lock(&ww_ctx);
6037
6038 class_for_each_device(®ulator_class, NULL, s,
6039 regulator_summary_show_roots);
6040
6041 regulator_summary_unlock(&ww_ctx);
6042
6043 return 0;
6044}
6045DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6046#endif /* CONFIG_DEBUG_FS */
6047
6048static int __init regulator_init(void)
6049{
6050 int ret;
6051
6052 ret = class_register(®ulator_class);
6053
6054 debugfs_root = debugfs_create_dir("regulator", NULL);
6055 if (!debugfs_root)
6056 pr_warn("regulator: Failed to create debugfs directory\n");
6057
6058#ifdef CONFIG_DEBUG_FS
6059 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6060 &supply_map_fops);
6061
6062 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6063 NULL, ®ulator_summary_fops);
6064#endif
6065 regulator_dummy_init();
6066
6067 regulator_coupler_register(&generic_regulator_coupler);
6068
6069 return ret;
6070}
6071
6072/* init early to allow our consumers to complete system booting */
6073core_initcall(regulator_init);
6074
6075static int regulator_late_cleanup(struct device *dev, void *data)
6076{
6077 struct regulator_dev *rdev = dev_to_rdev(dev);
6078 struct regulation_constraints *c = rdev->constraints;
6079 int ret;
6080
6081 if (c && c->always_on)
6082 return 0;
6083
6084 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6085 return 0;
6086
6087 regulator_lock(rdev);
6088
6089 if (rdev->use_count)
6090 goto unlock;
6091
6092 /* If reading the status failed, assume that it's off. */
6093 if (_regulator_is_enabled(rdev) <= 0)
6094 goto unlock;
6095
6096 if (have_full_constraints()) {
6097 /* We log since this may kill the system if it goes
6098 * wrong.
6099 */
6100 rdev_info(rdev, "disabling\n");
6101 ret = _regulator_do_disable(rdev);
6102 if (ret != 0)
6103 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6104 } else {
6105 /* The intention is that in future we will
6106 * assume that full constraints are provided
6107 * so warn even if we aren't going to do
6108 * anything here.
6109 */
6110 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6111 }
6112
6113unlock:
6114 regulator_unlock(rdev);
6115
6116 return 0;
6117}
6118
6119static void regulator_init_complete_work_function(struct work_struct *work)
6120{
6121 /*
6122 * Regulators may had failed to resolve their input supplies
6123 * when were registered, either because the input supply was
6124 * not registered yet or because its parent device was not
6125 * bound yet. So attempt to resolve the input supplies for
6126 * pending regulators before trying to disable unused ones.
6127 */
6128 class_for_each_device(®ulator_class, NULL, NULL,
6129 regulator_register_resolve_supply);
6130
6131 /* If we have a full configuration then disable any regulators
6132 * we have permission to change the status for and which are
6133 * not in use or always_on. This is effectively the default
6134 * for DT and ACPI as they have full constraints.
6135 */
6136 class_for_each_device(®ulator_class, NULL, NULL,
6137 regulator_late_cleanup);
6138}
6139
6140static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6141 regulator_init_complete_work_function);
6142
6143static int __init regulator_init_complete(void)
6144{
6145 /*
6146 * Since DT doesn't provide an idiomatic mechanism for
6147 * enabling full constraints and since it's much more natural
6148 * with DT to provide them just assume that a DT enabled
6149 * system has full constraints.
6150 */
6151 if (of_have_populated_dt())
6152 has_full_constraints = true;
6153
6154 /*
6155 * We punt completion for an arbitrary amount of time since
6156 * systems like distros will load many drivers from userspace
6157 * so consumers might not always be ready yet, this is
6158 * particularly an issue with laptops where this might bounce
6159 * the display off then on. Ideally we'd get a notification
6160 * from userspace when this happens but we don't so just wait
6161 * a bit and hope we waited long enough. It'd be better if
6162 * we'd only do this on systems that need it, and a kernel
6163 * command line option might be useful.
6164 */
6165 schedule_delayed_work(®ulator_init_complete_work,
6166 msecs_to_jiffies(30000));
6167
6168 return 0;
6169}
6170late_initcall_sync(regulator_init_complete);